
INSTITUT FÜR INFORMATIK

Softwaretechnik und Programmiersprachen

Universitätsstr. 1 D–40225 Düsseldorf

An Extendable Multi Programming
Paradigm Code Generator for B

Masterarbeit
im Studiengang Informatik

zur Erlangung des akademischen Grades

Master of Science (M.Sc.)

vorgelegt von
Dominik Brandt

Beginn der Arbeit: 10. Januar 2023
Abgabe der Arbeit: 10. Juli 2023

Erstgutachter: Prof. Dr. Michael Leuschel
Zweitgutachter: Dr. Jens Bendisposto

ii

iii

Selbstständigkeitserklärung

Hiermit versichere ich die vorliegende Masterarbeit selbstständig verfasst und keine anderen
als die angegebenen Quellen und Hilfsmittel benutzt zu haben. Alle Stellen, die aus den
Quellen entnommen wurden, sind als solche kenntlich gemacht worden. Diese Arbeit hat in
gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Düsseldorf, den 10. Juli 2023
Dominik Brandt

iv

v

Abstract

This thesis introduces MPPCG, a code generator currently capable of generating code of the B
Method to Java and Prolog code. It is implemented with extendability in mind, providing
the foundation to support multiple different input languages, as well as output languages
of different programming paradigms.

MPPCG was inspired by B2Program, a code generator for the B Method targeting various
different languages. However, B2Program faces restrictions when targeting programming
languages of other, non-imperative programming paradigms, especially when targeting
Prolog.

MPPCG can successfully generate Java and Prolog code by using a combination of a
template-based code generation approach and intermediate code generation. This approach
enables the separation of the output languages, provides improved extendability and
maintainability, but requires a certain level of redundancy across the output languages. For
Prolog, MPPCG implements optimizations during the generation, so that fewer lines of code
will be generated. It does currently not generate model checking code, but supports the XTL
interface for Prolog. Hence, ProB can execute and model check the generated Prolog code.
The presented code generator currently supports less target languages than B2Program,
and does not implement features of B2Program like model checking or animation. However,
it gives some ideas of improvement for B2Program, to support even more output languages.

This thesis discusses the implementation and the components of MPPCG and how to use
and extend it. It also compares benchmarks of the model checking performance of ProB
executing machine files, ProB executing the generated Prolog code, and the generated Java
model checking code of B2Program.

vi

vii

Acknowledgements

I would like to extends my thanks to Fabian Vu, for the valuable support and guidance
provided during both my project work and Master’s thesis. I am grateful for his helpful tips
whenever I encountered difficulties. With his expertise and input, I was able to enhance
the quality of my work. Thank you.

viii

Contents

1 Introduction and Motivation 1

2 Background 3

2.1 Programming Paradigms . 3

2.2 B Method . 4

2.3 Model Checking . 5

2.4 Code Generation . 7

2.5 B2Program . 8

2.6 Hindley-Milner Type Inference . 9

2.6.1 Example Language of the Algorithm 10

2.6.2 Type Inference . 10

2.6.3 Unification . 11

2.7 Partial Evaluation . 12

3 Extending B2Program vs. Developing a new Generator 12

4 Design Decisions 15

4.1 Kotlin vs. Java . 15

4.2 Template Engine . 17

5 Multi Programming Paradigm Code Generator 19

5.1 Generator . 19

5.2 Lexer and Parser . 21

5.3 Intermediate Code . 23

5.4 Type Inference Module . 25

5.5 Code Rendering . 25

5.6 Testing Framework . 28

5.7 Working with MPPCG . 29

6 Language Implementations 30

6.1 Java Implementation . 31

6.2 Prolog Implementation . 32

6.3 Optimizer . 35

ix

x CONTENTS

6.4 Problems and Improvements . 38

6.5 Comparing MPPCG with B2Program . 41

7 Experiments 44

8 Related Work 49

9 Conclusion and Future Work 50

Appendix A Experiment Results 51

List of Figures 53

List of Tables 53

List of Listings 53

1

1 Introduction and Motivation

Code generation is an important procedure in software development. Its purpose is
the generation of source code, or even executable code, from a given model, or given
input code. There are many existing translating code generators, translating code of one
language/model, to code of another language. One such code generator is B2Program[46,
44], which translates models of the B-Method[2] to various other (target) programming
languages. So far, B2Program’s supported target languages are Java, C++, Python,
JavaScript/Typescript, and Rust. However, these target languages are mostly imperative
programming languages[47].

Programming languages differ in their syntax and their programming paradigms. Each
programming paradigm has its own characteristics, purposes, advantages, and disadvantages,
depending on the problem to solve. Thus, the same program across different programming
languages and paradigms can vary much.

B2Program shows, that code can be generated efficiently to target languages of the same
programming paradigm, without many changes to the generator when adding new target
languages. When B2Program aimed at support for Prolog, which is a logic and declarative
programming language, some design choices contradicted with Prolog’s programming
paradigm. Code generation for Prolog is in general not as straight forward as for imperative
programming languages, due to its remarkable different program structure. However, the
problems during implementation led to the assumption that, when adding a target language
of another programming paradigm, B2Program might not provide the best approach.

In this thesis, I implemented a code generator which generates Java and Prolog code from
given B models. The question that arose was, if it is possible to design a code generator in
a way that different programming paradigms can be handled. One reason for B2Program
to support Prolog was to compare the performance of the generated Prolog code with
ProB[33, 34]. ProB is model checker for B, which uses a Prolog interpreter for the B models.
Hence, in this thesis I focused mainly on Prolog support, to make the desired comparison.
Meanwhile, this code generator needs to be as simple as possible, but as powerful as needed,
in order to keep the level of complexity regardless of the amount of implemented languages.
While B2Program is restricted to the B-Method as input language, it is also interesting
to see if the code generator can not only swap the output languages, but also the input
languages. However, this is not examined in this thesis, as only one input language is
supported, but the design choices I made prepared the code generator for this procedure in
the future.

2 1 INTRODUCTION AND MOTIVATION

This multi programming paradigm code generator, referenced to as MPPCG1, is required to
fulfill three main aspects:

1. Extendability

2. Maintainability / Readability

3. Versatility

MPPCG should grant the best possible extendability when adding or modifying input
languages, parser generators, and output languages. Maintainability has also a high
priority in terms of readability and complexity. MPPCG is required to be as powerful
as possible, while being easy to maintain because of simple data structures and simple
program structures. Lastly, versatility is one of the core functionalities, as one objective
is to enable support for many different input language as well as many different output
languages.

When developing the code generator, it needs to be designed in a way that the main
generation part is independent of the code generator’s common code. This means, that
each language is responsible for its output and the languages are independent of each other.
If this is possible, it needs to be discussed whether this approach of code generation is
simpler in terms of extendability and maintainability, compared to other approaches, like
in B2Program. The results can not only be used as an alternative to B2Program, but
also as an inspiration for improvements of B2Program, to support more target languages.
Another problem to discuss is the potential redundancy between the generator code of
output languages.

If it is possible to design such a code generator, with regard to the mentioned goals, then
it could develop over time to a versatile translator, usable for translating code between
various languages.

Chapter 2 gives a brief overview over the B-Method, programming paradigms, model
checking, and more background knowledge. In chapter 3, B2Program is described in
further detail, and the problems with other programming paradigms than the implemented
ones are discussed. Design decisions are addressed in chapter 4, and in chapter 5, the
implementation and components of MPPCG are described. Afterward, we will have a look at
the implemented languages in chapter 6, as well as problems during the implementation, and
a comparison with B2Program. In chapter 7, we compare the model checking performance
of the generated Prolog code, executed with ProB, to the model checking performance
of ProB and the model checking performance of the generated Java code of B2Program.
Chapter 8 presents other code generators and related work, and finally, in chapter 9 the
foregoing questions, as well as future work, are discussed.

1
Available at: https://github.com/dobra101/mppcg

3

2 Background

This chapter gives an overview and basic understanding of the main topics of the imple-
mented code generator. Since MPPCG aims to support different programming paradigms,
programming paradigms in general are explained in section 2.1. Problems during the work
with B2Program [46] have been the main motivation for a multi programming paradigm
code generator. Since B2Program’s input language is the B Method, MPPCG implements
it as well and it is described in section 2.2. This is also necessary, as the B Method is
implemented as a first input language of MPPCG, to grant a better starting point for
the comparison with B2Program. B2Program supports model checking. Model checking
and the model checker ProB[34, 33] are mentioned in section 2.3, as MPPCG aims to
generate model checkable output code, which can be executed by ProB. Further, a general
understanding of the concepts of code generation is required to fully understand the design
of MPPCG and B2Program. These required information are given in section 2.4. Then, as
most of the general concepts required to understand B2Program are given, B2Program is
introduced in section 2.5 to prepare the foundation for the comparison of B2Program and
MPPCG later in this thesis. Many programming languages are based on a type system,
but when generating type sensitive code and no explicit types are provided, these types
need to be inferred. Section 2.6 introduces the type inference algorithm by Hindley and
Milner [24, 11], which is used in the implemented code generator. Partial evaluation can
be used to optimize the execution of Prolog programs. Since the generated Prolog code is
related to partial evaluation, it is introduced in section 2.7.

2.1 Programming Paradigms

Programming paradigms are principles, concepts, and approaches defining the programs
structure and design. Each programming paradigm has a different use case, advantages,
and disadvantages. The most common programming paradigms are listed in this section.

Object-Oriented programming. Object-oriented programming [37], or short OOP, encap-
sulates the code into classes representing objects, hence the name. These classes can
contain data and determine how to interact with it. It includes concepts like inheritance to
inherit data and behavior from super classes. Many popular programming languages are
object-oriented, for example Java and Python.

Functional Programming. In functional programming languages [27], computations are
treated as the evaluation of mathematical functions. Mutable data and states are avoided,
and higher-order functions, i.e. functions can be passed as parameters, and immutability
are emphasized. Popular functional programming languages are Haskell and Lisp.

Declarative Programming. Declarative programming means, that the problems are described
focusing on what to achieve, instead of how to achieve it [47]. Query languages like SQL
and logic programming languages like Prolog are declarative programming languages.

4 2 BACKGROUND

Imperative Programming. In contrast to declarative programming, imperative programming
focuses on how to solve problems [47]. Therefore, step-by-step instructions are provided.
Variables, assignments, loops, and conditionals are some of the concepts of imperative
programming. Imperative programming languages are for example C and Java.

Next to the presented paradigms, there are even more programming paradigms, not further
stated here. As we have already seen with imperative and object-oriented programming, a
language is not restricted to one singular paradigm, but instead, multiple paradigms can be
combined. However, not all paradigms are easy to combine. For example, the concepts of
imperative programming contradict the concepts of declarative programming. Hence, such
contradictions have to be considered when designing a multi programming paradigm code
generator.

2.2 B Method

The B Method[2] is a formal method focusing on the development of correct and reliable
systems. Therefore, it uses the formal specification language, called the B language, where
concepts from set theory and first-order predicate logic are combined. In the B language,
systems are represented by models (or machines), which describe their behavior using
mathematical constructs.

The base structure of a machine consists of variables, constants, sets, invariants, and
operations. The models are initially described in a generalized way, with constraints
on its properties, and invariants which must hold true. Invariants are predicates which
are evaluated in each state, i.e. after each operation, and their outcome determines the
correctness of the machine and its behavior after executing each operation.

Once the base model is designed, it is refined in several refinement steps. In a refinement
step, the machine gets progressively more details and constraints, specifying the exact
behavior. Thus, the initial and more general machine becomes a precise, correct, and
reliable machine during the refinement.

Once the machine is fully refined, code generation can be performed. There are multiple
code generators capable of generating B models to code of various programming languages,
like C and Java. One such code generator is AtelierB[10], which supports implementations
written in B0 (a subset of B). It also provides tools for specification and verification,
ensuring a system’s correctness. Like ProB, AtelierB supports the development of complex,
safety-critical systems and helps the developer with modular development for an increased
maintainability. Another code generator is, as mentioned, ProB[33, 34], which also supports
other languages like TLA+, Z, and CSP-M.

The B Method is being used in various use cases, like railways, critical infrastructure, and
transportation systems, and is an important tool for developing safety-critical systems.
Example use cases are the automatic Paris Métro lines 1 and 14[18, 6].

2.3 Model Checking 5

Each machine also contains an initialization, assigning the initial values for the variables
and creating the initial state. A machine changes between states with transitions defined by
operations. An operation can be parameterized and can contain guards specifying whether
the machine is in a valid state, such that the given operation can be executed.

Listing 1: Example B Machine of a Lift Controller

1: MACHINE Lift
2: VARIABLES level
3: INVARIANT level >= 0 & level <= 100
4: INITIALISATION level := 0
5: OPERATIONS
6: inc = PRE level < 100 THEN level := level + 1 END;
7: dec = PRE level > 0 THEN level := level - 1 END
8: END

An example state machine is shown in listing 1. It contains a variable level, which holds
the value of the current level. The invariants determine, that the state is only valid and
safe, as long as the level is between 0 and 100, including the borders. It is initialized at
level = 0 and two operations are defined: inc and dec, which increase the level if the
guard level < 100 holds, and decrease the level respectively.

In a refinement step, for example a call button for each level could be introduced, to call
the lift. This enables, that the level does not change arbitrarily, but approaches the level of
the activated call button, as a real lift would do. Then, in a next refinement step, buttons
inside the lift could be introduced, as well as the behavior, that the lift tries to approach
the level of the activated button inside (we call this level L1 for now). Furthermore, the
lift is required to stop only at levels between the current level and L1, if a call button is
activated. We can see, that the refinement steps lead to a lift behaving as we know it from
the real world, by procedurally adding more information to the machine.

2.3 Model Checking

Model checking is a verification technique to ensure a system’s correctness. This is done by
an analysis of the entire state space, which is a set of all possible states a system can have.
In general, a system’s state is represented by a model containing the system’s assigned
variable values. When analyzing the state space, each state is checked against a given set
of properties (or invariants in the B Method) and is said to be valid, if all properties hold
true and no errors or other violations occur. It is also checked for deadlocks, where a state
has no enabled transitions. Models of the B Method define the possible transitions, guards,
invariants, and other constraints or properties representing a system’s state. When model
checking, the state space is generated first by exploring all possible states, i.e. by exploring
all possible transitions in every state. During the exploration, model checkers can evaluate
the invariants and deadlock freedom.

6 2 BACKGROUND

Model checking is popular in development of safety-critical systems and verification of
hardware. Due to the exhaustive analysis of all possible states a system can have, the system
can be proven correct within the defined properties and invariants. However, model checking
also has some disadvantages, especially when facing the state space explosion problem[9].
This is, that as for every state successor states are calculated, the amount of states might
grow exponentially. Consequently, it is challenging to maintain the storage space, while
simultaneously facing an exponential increase in analysis time. For such problems, various
optimization strategies have been developed to reduce the state space. One strategy is
Symbolic Representation, where instead of explicitly enumerating every possible state, sets
of states are represented compactly using a symbolic representation. Another optimization
strategy is Partial Order Reduction[20], where independencies between actions are exploited
by pruning equivalent or redundant states. Hence, only relevant interleavings of actions are
considered.

Model Checking Example. When model checking the machine of listing 1, each state is
traversed. There are 101 states, as there are exactly 101 possible variable assignments, and
each value of level between 0 and 100 can be reached through the operations. Since the
operation’s guards prevent level from exceeding the bounds of 0 and 100, the invariants
hold true in each state. Hence, the machine is correct.

ProB[33, 34] is a sophisticated model checker used for system analysis and verification. In
ProB systems can be modeled, animated, and verified using the B Method[2], but also
using other high-level specification formalisms like Z, CSP, Promela, and more. Through its
graphical interface, ProB offers an intuitive environment where B models can be executed
interactively, allowing users to observe and analyze the behavior of the system. This
graphical interface greatly enhances the understanding and validation of the modeled
systems and supports the user during development.

One feature of ProB is its support of temporal logic formulas. Temporal logic formulas
are time related propositions. That is, that terms require a condition for example to be
always true, or to be eventually satisfied. These formulas enable the specification of safety
and liveness properties, to check properties which are required to hold true at all times
(in every state). By checking these properties against the B model, ProB helps to ensure
the correctness and reliability of the system. This is particularly valuable in safety-critical
systems.

ProB has also a consistency checking mechanism that performs static analysis of the
model’s specifications. This helps to identify potential errors, such as incomplete definitions,
inconsistencies, or conflicting constraints, and provides guidance during the refinement
of the model. By this guidance, ProB increases the efficiency of the development, and
decreases the likelihood of introducing new critical errors.

Another aspect of ProB is its ability to generate executable code for target languages like
Java, C, and Ada. With that feature, ProB facilitates the process of integration of formal
methods with software development.

2.4 Code Generation 7

Next to the model development features of ProB, it can model check these models and
implements various model checking optimizations like Partial Order Reduction. However,
models written in Prolog can also be model checked if they provide predicates for the
XTL interface. The XTL, short term for executable temporal logic, interface is utilized by
providing the relevant information for model checking for ProB. This is done by providing
three components in the Prolog code: start, trans, and prop.

start. This predicate is used to calculate and provide the initial state of the system.

trans. This component represents the transitions of the system. It describes the guards and
conditions to enable a transition, and the following operations on the system to progress
from one state to another. In general, this component represents the operations of a model
of the B Method.

prop. The prop component provides the temporal properties that need to hold true during
execution. Typically, temporal logic is used to express these properties. The contents of
this component are among other things the invariants of the model. ProB checks, if prop
returns unsafe in order to determine if a system is in a safe state.

2.4 Code Generation

Code generation has a significant role in software development. It is the process of producing
source code (or executable code) from a different representation [4]. Therefore, a higher-level
representation is transformed to code in several sequential steps, also seen in figure 1 and [44].

Input code

Semantic AST

Output code

Token

AST

Lexer

Parser

Semantic Checker

Code Generator

Figure 1: Input Code to Output

Code [4]

Starting with the lexical analysis step, the relevant
information about the structure of the code is col-
lected and extracted. In this step, a lexer splits the
code into token and passes them to the parser.

In the syntactical analysis, the parser takes these
token and checks, if they appear in the correct order.
Hence, the parser checks the syntax of the program
and generates an abstract syntax tree (AST), using
the received token. The lexical and the syntactical
analysis are typically connected, as the parser expects
the exact token of the lexer.

The next step is the semantic analysis, where the
AST of the parser is processed to verify the input’s
semantic correctness. This is, for example, where
type checking is applied and scoping of variables is
evaluated and checked.

After the analysis steps, the AST is passed to the
code generator which transforms the input code into

8 2 BACKGROUND

the output code’s representation. The code generator can also apply optimizations, like
dead code elimination as well as optimizations in terms of performance. Finally, the output
code’s representation is rendered as source code or executable code. Section 5.3, provides
a more in-depth explanation of the mentioned steps and how they are implemented in
MPPCG.

While the code generator can preprocess the AST, the input code can also be preprocessed
before it is passed to the lexer. MPPCG generates code with input code of the B Method. As
stated in section 2.2 and section 2.3, the B models are typically model checked and verified
before code generation. This guarantees, that if the steps of code generation are implemented
correctly, the output code is verified and working as expected. However, generated code
needs to be tested and verified carefully, as many bugs can be introduced unknowingly
to the generated program. For example, B2Program and MPPCG implement BTypes
and their methods. While the generated code might be correct, these implementation
might contain errors, such that the program contains unexpected behavior. To validate
the output’s correctness, common practice in industry is to use multiple different code
generators, developed by different teams with different techniques. These different code
generators can then be used to validate the main code generator.

Code generation is used in various areas of software development. Compilers generate
bytecode or machine code from source code of their high-level input programming language.
Other use cases are software development tools which generate repetitive code patterns
to reduce the development times for common tasks. Lastly, it is used for example in
template-based code generation, where predefined code snippets with placeholders are
filled with values, like B2Program[46] uses it. However, generated code has also some
limitations, for example in terms of readability, where not meaningful variable names might
be generated.

2.5 B2Program

B2Program[46] is a code generator able to generate code from to B Method to various output
languages. It is capable of generating model checking code[44] supporting explicit-state
model checking, verification of invariants, and deadlock checks. However, as of now, LTL
and symbolic model checking are not supported. The model checking performance has
already been evaluated and compared with ProB and TLC in [44]. It was concluded, that
B2Program generates model checking code which can model check faster than ProB and
TLC in many cases. Nevertheless, ProB performs much better on other machines, due to its
constraint solving capabilities and operation caching techniques[31, 44]. B2Program does
also provide visualizations, where it generates an interactive HTML validation document. In
this document, operations, states, scenarios, and the history of operations can be observed.

Currently, its supported target languages are Java, C++, Python, JavaScript/Typescript,
and Rust. However, those output languages are mainly imperative programming languages.
The design is carefully chosen and works well with the supported languages, but imple-

2.6 Hindley-Milner Type Inference 9

menting support for additional output languages with other programming paradigms comes
in hand with drawbacks and limitations.

After a B machine was refined, an implementable subset of B, often referred to as B0, is
reached. There are multiple code generators targeting programming languages such as C or
Ada, which use B0 as input language. Examples are the code generators in AtelierB[10],
B2LLVM[7], which emits the LLVM intermediate representation, or jBTools[43] which
generates low-level Java code. B2Program, however, targets drawbacks and limitations of
such existing code generators. It can generate B code to multiple different output languages,
and supports higher-level constructs, resulting in a larger supported subset of B, compared
to B0. To achieve this, B2Program uses a templated-based approach for the generation
steps to achieve also some software engineering principles such as generic programming [5]
and don’t repeat yourself [42].

This templated-based approach works by providing templates for each output language,
i.e. templates for the various code constructs for each output language. Each template file
for each target language consists of multiple templates, with mainly uniform names and
parameters across the different target languages. Then, after the B machine was parsed,
the parsed syntax tree is traversed and for each node the parameters for the templates are
evaluated and rendered recursively. For this recursive rendering, the visitor pattern[17] is
used. This design pattern enables efficient processing of data structures like abstract syntax
trees by separating the data structure and the operations. The visitors are classes containing
operations which can be implemented for each class of the data structure. B2Program
simplifies the implementation of additional output languages. If no additional information
are required, it is sufficient to implement the new templates, and since the template- and
parameter names are identical, the visitor classes can handle the code generation. When
B2Program produces the correct output code, the B types have to be implemented in the
new target language. B2Program stated for such implementation cases an example (see
[46] section 3.3) where additional type information are required in the new target language.
This example is again evaluated in section 6.5 and compared to MPPCG.

2.6 Hindley-Milner Type Inference

This chapter describes the type inference by J. Roger Hindley and Robin Milner[24, 11]
as MPPCG implements this algorithm. Functional programming languages and languages
with functional features, like Java, rely on the use of type systems to ensure type safety
and correctness. Types are assigned for example to variables and expressions and define the
behavior and possible operations. Hindley-Milner’s type inference algorithm, also known as
Damas-Milner2, is widely used for inferring types in functional programming languages. It is
a unification based type inference algorithm, where a set of equations is created, associating
variables and expressions with variable types. Finally, the equations are solved to determine
the correct types.

2
Luis Damas proved the correctness and completeness of the algorithm in [11]

10 2 BACKGROUND

2.6.1 Example Language of the Algorithm

In the proof of the algorithm (see [11]), a simple language Exp of expressions e is created,
assuming a set Id of identifiers x. This language’s syntax can be seen in listing 2.

Listing 2: Language Exp in [11]

1: e ::= x | e e’ | � x.e | let x = e in e’

2.6.2 Type Inference

The core type inference algorithm is Algorithm W, which is used to infer principal types
for expressions. Principal types are the most general types for given expressions, and the
goal of the algorithm is, to assign these principal types to each expression. Pseudocode for
Algorithm W is listed in listing 3.

Listing 3: Pseudocode for Algorithm W in [11] Rewritten in Kotlin

1: fun inferType(expression: Expression): Type {
2: when (expression) {
3: is Variable -> return newTypeVariable ()
4: is Application -> {
5: val t1: Type = inferType(expression.e)
6: val t2: Type = inferType(expression.e1)
7: val t3: Type = newTypeVariable ()
8: unify(t1 , FunctionType(t2 , t3))
9: return t3

10: }
11: is LambdaAbstraction -> {
12: val t1: Type = newTypeVariable ()
13: environment[expression.x] = t1
14: val t2: Type = inferType(expression.e)
15: return FunctionType(t1, t2)
16: }
17: is LetExpression -> {
18: val t1: Type = inferType(expression.e)
19: environment[expression.x] = t1
20: return inferType(expression.e1)
21: }
22: else -> {
23: // other language constructs
24: }
25: }
26: }

In the algorithm, the syntax tree of an expression is recursively traversed. First, the
algorithm creates relations between variables and expressions of the program. This means,

2.6 Hindley-Milner Type Inference 11

type variables are created and stored in an environment. The environment is basically a
map containing the types for expressions, which might depend on other types, which are
not evaluated yet. This can be seen for example in line 12 and line 13 of listing 3, where
first a new type variable is created, and stored in the environment for x. In this case, x
is the lambda variable. It can be seen that for untyped lambda abstractions (e.g. x ->
someFunction(x)) the type of their variables depend on their usage on the right side of the
abstraction. Hence, the environment stores a new type variable for expression x. Continuing
with the example of the lambda abstraction, the algorithm is called recursively on it’s
remaining expressions (in this case, this is the right side of the abstraction: expression e).
As the environment contains the type variable of x, the recursive call on e can access this
type variable, and unifies it with a value.

2.6.3 Unification

During unification the algorithm tries to assign concrete values to type variables. Therefore,
the algorithm defines the syntax of types ⌧ and type-schemes � which are listed in listing 4.
Type-schemes are mainly used to introduce polymorphism in a programming language.
Hence, type-schemes are for the foregoing example not relevant. Type variables are
represented by ↵ and primitive types by ◆.

Listing 4: Syntax of Types and Type-Schemes in [24, 11]

1: ⌧ ::= ↵ | ◆ | ⌧!⌧
2: � ::= ⌧ | 8↵�

The unification is done by replacing type variables with concrete values. In listing 3
unification is also used for Applications (line 8). In this case, Applications are function
calls.

Example. Let us assume, that the current expression is functionA(3). In line 4–10, type
t3 of the expression functionA(3) is returned. functionA(3) consists of the components
functionA (expression.e) and 3 (expression.e1). Since functionA is a function, it
takes in this case one parameter of type ⌧a, and returns a value of type ⌧b. Hence, the type
of functionA is FunctionType(⌧a, ⌧b). ⌧a and ⌧b are known after line 5, t2 is known after
line 6. So, line 8 would equal unify(FunctionType(⌧a, ⌧b), FunctionType(t2, t3)).
This means, that ⌧a would be unified with t2 and ⌧b with t3 respectively. If we assume now,
that ⌧a and t2 are still type variables (↵1) and ⌧b is a primitive type ◆1, the type variable t3
of line 7 would get the primitive value ◆1 assigned. Without knowing the primitive type of
↵1, the method returns a primitive value, which can then be used for further unifications.

12 3 EXTENDING B2PROGRAM VS. DEVELOPING A NEW GENERATOR

2.7 Partial Evaluation

In Prolog programming, partial evaluation is a technique to optimize the execution of the
program. Therefore, parts of the program are evaluated at compile time, rather than at
runtime. This results in significant performance improvements. The optimization is done
by producing new programs specialized to specific inputs or known values. Executing the
specialized programs, redundant computations can be eliminated and branches can be
resolved based on known information. Further, partial evaluation can reduce the search
space, as more specific information to the Prolog engine enable faster resolution of queries.

Partial evaluation is not a built-in feature of Prolog, but can be implemented using
specialized tools. However, generating Prolog code is related to partial evaluation, as
certain optimizations can be generated. For example, the generated Prolog code can be
specialized regarding the XTL interface mentioned in section 2.3.

3 Extending B2Program vs. Developing a new Generator

This chapter gives a more detailed view on B2Program[46], and we discuss the potential
of extending B2Program to support other programming paradigms. Arising problems
implementing programming languages with other programming paradigms, i.e. with non-
imperative programming languages, are explained and the main motivation of creating a
multi programming paradigm code generator is shown in the following.

During the implementation of support for Prolog in B2Program, we encountered that certain
design choices of B2Program contradicted the programming paradigm of Prolog. This is,
because Prolog is a declarative and logic programming language. Although B2Program is
a powerful code generator supporting multiple languages and features, it does have some
drawbacks. Specifically, the extendability, or more precise, the limited extendability of
non-imperative and non-object-oriented programming languages. In Java, expressions and
predicates can be passed as method parameters. Furthermore, you can chain and nest
expressions and use language constructs like if-else, while- or for-loops. These constructs
and nested expressions are well-supported in B2Program, such that one has only to provide
the correct StringTemplate3 templates to support other languages which contain the same
constructs. But having a look at Prolog, a declarative and logic programming language,
these constructs are not supported. Due to the syntax and structure of Prolog programs, it
is required to evaluate expressions and predicates one after another.

Listing 5: Nested Expressions in B

1: max(dom({0 |-> 1}))

Listing 5 shows nested expressions in B, where the maximum value of the domain of a
3
https://www.stringtemplate.org/

13

relation is calculated. The components of the expressions are colored, as this will indicate
the problem B2Program has with generating Prolog code. In the following we will see how
B2Program handles such expressions, and what problems occur when trying to handle such
expressions for Prolog. Note, that the same expressions could be represented in a different
way in Java, but B2Program utilizes its BTypes.

B2Program evaluates such expressions by starting from the innermost expression, and
inserting the rendered code snippet into the next (outer) expression. Hence, B2Program
would generate the Java code shown in listing 6.

Listing 6: Listing 5 Rendered to Java Code by B2Program

1: new BRelation<BInteger, BInteger>(
2: new BTuple<>(new BInteger(0), new BInteger(1))
3:).domain().max()

This evaluation order is determined by B2Program, depends on the underlying abstract
syntax tree, and is the same for every target language. In this example, to support
another target language it is sufficient to add the templates for tuple, relation, and unary
expression.

The same nested expression calls rewritten in Prolog can be seen in listing 7.

Listing 7: Listing 5 Rewritten in Prolog

1: % max(dom ([0/1] , Expr_0), Expr_1)
2:

3: domain([0/1], Expr_0),
4: max(Expr_0, Expr_1)

In line 1 of listing 7, we can see what B2Program would generate if the templates for Prolog
are provided. However, this is not a valid statement in Prolog. The correct Prolog code is
given in line 3 and line 4.

The evaluation order is, again, from the inside to the outside, and even if it looks straight-
forward, this is not possible in B2Program. We can observe the problem B2Program
currently has, just by looking at the colors of the code components: B2Program returns
a colored component as a plain string for a given input code, which is valid for Java and
other imperative programming languages. The color of an outer node / expression can
wrap around the color of an inner node. However, the color of an inner node can not occur
multiple times inside the color of an outer node.

In the previous example, the outer node is the maximum-call, and the first inner node is
the domain-call. We can see in listing 7, that the color of the domain-call occurs before
the maximum-call (line 3), and inside the maximum-call (line 4). Currently, B2Program
can not handle this problem, as rendering a node returns just a string. To enable the same
color of a component to occur multiple times in the component of its outer node, the color,
and hence the returned component has to be split. However, splitting the returned string

14 3 EXTENDING B2PROGRAM VS. DEVELOPING A NEW GENERATOR

to receive the relevant information is not trivial. Thus, a rendered (colored) component
should not be returned as a whole string, but as a class that can contain more information
than just the string.

For a better understanding, the responsible parts of B2Program’s implementation for
generating unary expressions are shown in listing 8 (template) and listing 9 (implementation).

Listing 8: B2Program’s Java Template for Unary Expressions

1: unary(operator , obj , args) ::= <<
2: <obj >.<operator >(<args; separator=", ">)
3: >>

The Prolog template for unary expressions would need an additional before-parameter. This
parameter needs to contain the code of line 3 in listing 7. Hence, this parameter contains
the code to execute before the unary expression and which returns a variable. The returned
variable holds the result of the previous executed expression and can then be used in the
outer expression (the maximum-call).

Listing 9: B2Program’s Implementation to Generate Unary Expressions

1: private String generateUnaryExpression(
2: ExpressionOperatorNode.ExpressionOperator operator ,
3: List <String > expressionList
4:) {
5: ST expression = generateUnary(operator);
6: TemplateHandler.add(expression , "obj", expressionList.get (0));
7: TemplateHandler.add(
8: expression ,
9: "args",

10: expressionList.subList(1, expressionList.size ())
11:);
12: return expression.render ();
13: }

However, B2Program fills the templates as shown in listing 9. As already mentioned in
section 2.5, the template files for the different target languages have mostly the same
template parameters. This is, because the same generator code passes the parameters to
templates of different target languages. When targeting languages of the same programming
paradigm, this is as simple as it can be, and can be seen in line 6 and lines 7–11 in
listing 9. Hence, it is sufficient to change the template files in order to generate code
for multiple target languages with the same generator code implementation. Meanwhile,
this is the main problem when targeting languages of other programming paradigms. The
resulting rendered string of generateUnaryExpression is passed directly into the next,
outer rendering method. Having a look at line 3 and line 4 of listing 7 shows, that Prolog
needs additional information. This information is on the one hand the variable name of
the variable which contains the result of the previous expression. In this example, this is

15

Expr_0. And on the other hand Prolog needs the next expression count (this could be a 1
in this case), to identify the variable which stores the next result. In this example, this
variable is Expr_1.

At this point, there is no possibility to extract only the relevant information of line 3 in
listing 7 (Expr_0), since line 3 is just a string. Hence, without modifying the rendering
methods, no valid Prolog code can be rendered.

Solving this problem is not trivial, since major refactoring would be required. Additional
information need to be passed through multiple rendering methods, and each rendering
method gets more complex with each additional parameter. This might be possible, however,
over time B2Program would get hard to maintain. This limitation was the motivation to
create a code generator with the ability to support different programming paradigms.

4 Design Decisions

This chapter describes some of the pre-development design decisions. B2Program is
implemented in Java, however, Kotlin has some interesting features in terms of readability
and maintainability. Thus, section 4.1 compares Java and Kotlin and explains why Kotlin
was chosen for the implementation. Another decision was to select a template engine, which
fulfills the needs and goals of MPPCG. This decision is described in section 4.2.

4.1 Kotlin vs. Java

Java. Java is an object-oriented programming language developed by Sun Microsystems
(now owned by Oracle 4). Java programs run on a Java virtual machine, or short JVM,
and execute Java bytecode. It is one of the most popular programming languages and aims
at goals like simplicity, security and robustness, and independence of the architecture [21].
Java follows an object-oriented programming paradigm (see section 2.1), meaning that
programs contain objects interacting with each other. Therefore, the four main principles
of object-oriented programming are supported: encapsulation, inheritance, polymorphism,
and abstraction.

Kotlin. Kotlin is a statically-typed programming language developed by JetBrains 5 and
was introduced in 2011. It runs on the JVM and also supports multiplatform projects[29],
enabling code to be compiled to JavaScript or native code. Combining object-oriented and
functional programming concepts, Kotlin became a versatile language and is for example
used in Android development.

Kotlin was introduced as an alternative to Java, using the advantages of Java and fixing
4
https://www.oracle.com/

5
https://www.jetbrains.com/

16 4 DESIGN DECISIONS

some of Java’s disadvantages and issues, and increasing developers productivity with an
enhanced syntax. Further, Kotlin is interoperable with Java, such that Kotlin can interact
with Java code and libraries. Thus, projects can be migrated step-by-step from Java to
Kotlin. Due to its enhanced syntax and features like its Domain-specific language (DSL)
support, code can be written compact and readable.

Kotlin has several additional language building blocks that Java does not have. One of these
building blocks is crucial for MPPCG: extension functions. Extension functions enable the
programmer to add new methods to existing classes. The code snippet in listing 10 adds
the method powerSet to the class Set<T> and is, if available in the calling scope, present
for every Set instance. In the same way, also operator functions can be added to existing
classes, enabling operations using for example the ’+’-operator on custom classes.

Listing 10: Extension Function for Sets

1: public fun Set <T>. powerSet () : Set <Set <T>> {
2: // ...
3: }

MPPCG uses extension functions to add methods to nodes. These methods are only
accessible inside each output language, enabling the separation of the output languages.
Thus, every output language defines a renderSelf method for each node, such that all
nodes can access only the renderSelf methods of the calling output language. Therefore,
all output languages are separated from each other. More detailed information are described
in section 5.5.

Kotlin addresses also some issues of Java [28]. Since Kotlin’s type system has nullable types
and non-null types, NullPointerExceptions only occur when explicitly trying to get a
non-nullable value from a nullable type via the !!-operator. Null-safety does not only help
avoiding unexpected behavior due to null-values, it also reduces the code complexity. A
Java example is given in listing 11 and a Kotlin example respectively in listing 12.

Listing 11: Null-check in Java

1: Set <Integer > canBeNull = getNullableSet ();
2: if (canBeNull != null) {
3: canBeNull.doSomething ();
4: }

Listing 12: Null-check in Kotlin

1: val canBeNull: Set <Int >? = getNullableSet ()
2: canBeNull ?. doSomething ()

In Java, one would need to check if canBeNull is not null and then call doSomething.
Kotlin calls doSomething only if canBeNull is not null. This reduces not only the lines of
code needed, but increases also the programs readability.

4.2 Template Engine 17

Most of MPPCG’s nodes are data classes. These simplify the code again, an example is
shown in listing 13.

Listing 13: Example Kotlin Data Class

1: data class Person(val name: String , var age: Int)

An instance of class Person is initialized for example by calling Person("MyName", 30),
and contains already methods like toString for pretty-printing the instance, equals and
hashCode, as well as getter methods for name and age, and a setter method for age, as the
value of age is not final.

Because of the listed features and simplifications of Kotlin over Java, and since a goal of
MPPCG is the maintainability and readability, MPPCG was implemented in Kotlin.

Further differences and enhancements are listed at [28].

4.2 Template Engine

One important aspect of a code generator is the template engine. While there are several
template engines for Java and Kotlin, only a few were shortlisted for MPPCG. Reasons
for that are for example, that some template engines are designed especially for webpages
written in HTML. Others are almost as complex as an own programming language, providing
too much power and overcomplicating the use case. However, according to MPPCG’s goals,
a simple template engine without much logic is required and sufficient. The final choice for
MPPCG was one of Apache FreeMarker6, StringTemplate7 or Kotlin’s default templating
structures.

Listing 14: Example String Template in Kotlin

1: val body = "System.out.println(x);"
2: val method = """
3: public String myMethod () {
4: $body
5: }
6: """
7:

8: /* method would result in:
9: public String myMethod () {

10: System.out.println(x);
11: }
12: */

The latter one was promising at first, but became rather unusable as different indentation
levels would have to be maintained manually. On multiline strings containing variables, the

6
https://freemarker.apache.org/

7
https://www.stringtemplate.org/

18 4 DESIGN DECISIONS

indentation changes are applied at runtime and not at compile time. An example is given
in listing 14, where the indentation of a multiline string (of the right brace in line 11) is not
as expected. Thus, keeping track of the different indentation levels for each variable and
each output language was against the goal of an easy to extend and easy to maintain code
generator. Further, MPPCG would have needed functions building and returning these
string templates, which in general is not as readable, as for example StringTemplate’s
templates.

Apache FreeMarker is a Java template engine for generating text output, for example for
web pages, e-mail templates, or source code. The templates itself are written in a simple
language called FTL (FreeMarker Template Language). Programming languages like Java
are used to fill the placeholders in the templates, and Apache FreeMarker then renders
these templates.

Apache FreeMarker and StringTemplate both focus on model-view separation. This
means, that the template engine focuses on the presentation of the data, while another
language which fills the placeholders, focuses on what to present. This is also called Model
View Controller (MVC) pattern[13] and is used when separation leads to an improved
outcome. For example, when developing web pages, page designers can design the templates
while developers create the program itself. Thus, model and view can be developed from
different teams without the need of knowledge in both areas.

StringTemplate is also a Java template engine for generating any kind of formatted text.
The developer states, that it is “particularly good at code generators” 8. It benefits from
separating the implementation and model logic from the template rendering[19]. For
MPPCG, the model-view separation enables retargetability, since the model can stay the
same, while the view changes between the output languages. However, StringTemplate
is powerful enough, that simple expressions like conditionals can be evaluated inside the
templates. It was designed with maintenance in mind, since most other template engines
come with more power than is needed for simple templating[19]. In other template engines,
when maintenance is not important, the model gets part of the engine and logic changes
can break the model. Another useful feature is template inheritance, such that the same
templates do not have to be rewritten for every output language. This can also be used
when supporting multiple versions of the same language, where only some parts change.

Compared to StringTemplate, FreeMarker is a bit more complex, as classes representing
the data-model have to be implemented. This is indirectly done by MPPCG, as each
node is rendered. However, the rendering logic is not meant to be implemented inside the
nodes itself, but in the output environments (see section 5.5). Thus, due to its simplicity,
StringTemplate fits best for the implemented code generator. As mentioned in section 4.1,
Kotlin is interoperable with Java code. Hence, a Java template engine can be used from
Kotlin code.

8
https://www.stringtemplate.org/

19

5 Multi Programming Paradigm Code Generator

This chapter describes the main components of the implemented multi programming
paradigm code generator (MPPCG). Section 5.1 gives an overview of how MPPCG’s
components interact with each other. Then, in section 5.2 we will see in more detail, what
MPPCG’s first parser generator is, and how it works. This parser generator parses the input
code and emits an abstract syntax tree. Subsequently, MPPCG translates the generated
AST into an intermediate code representation (section 5.3) which builds an internal syntax
tree with custom nodes. MPPCG makes no assumption about the correctness of the input
code, but translates the code as provided by the AST into code of the output language.
The only part where the input code’s correctness is being verified, is during type checking.
However, not every parser generator provides type information. Thus, section 5.4 describes
how MPPCG implements a type inference module, which calculates missing types, and
verifies given types one-the-fly. Some input languages have custom operators. For example,
B has relations and methods for these relations. Output language specific implementations
of these methods are required to execute the generated code. These implementations are
provided in the input language module, which is described in section 5.5, along with the
output language module. This module is responsible for the main rendering step in MPPCG.
The implemented code generator implements a simple testing framework for generating
executable test files. This framework enables the execution of generated code while testing
for specified expected results and is described in section 5.6. Lastly, section 5.7 gives insights
on how to use and extend MPPCG.

5.1 Generator

The generator module itself combines the other modules and is the start and the endpoint of
MPPCG’s code generation. It does not only start a recursive rendering process and writes
the results to an appropriate file, it can also perform pre and (theoretically) postprocessing
of the input code.

Postprocessing is in general possible, but not implemented as it is not required for the
implemented languages. Preprocessing, however, is implemented as the type inference
(mentioned in section 5.4) is performed, and a keyword handler processes the intermediate
code.

The keyword handler traverses all identifier nodes of the intermediate syntax tree via
reflection and takes the keywords of the output language into account. Whenever a node
contains an identifier which resembles a keyword, all occurrences of this identifier are
replaced by a modified identifier of the form keyword_someNumber. To achieve a correct
keyword handling, each output language has to provide a StringTemplate file containing all
keywords of the language.

Before having an in-depth look at the base components of MPPCG, we will now have an

20 5 MULTI PROGRAMMING PARADIGM CODE GENERATOR

overview about how they interact with each other. This can also be seen in figure 2.

Input Code Lexical
Analysis

Semantic
Analysis AST

Intermediate
Code

Output Code

Parser Generator

Type
inference &

Keyword
Handling

Adapter

Rendering

Preprocessor Environment

MPPCG

Figure 2: MPPCG

Parser Generator. First, the parser generator parses the input code and creates an abstract
syntax tree from it. Hence, it executes the lexical and the semantic analysis and returns
the resulting AST. This is described in section 5.2 and is represented by the upper, green
box of figure 2. The generated abstract syntax tree is then passed to MPPCG’s adapter.

Adapter. Generation starts by converting the parser generator’s abstract syntax tree into
MPPCG’s custom nodes. Therefore, starting from the root node, the implemented adapter
converts recursively the entire abstract syntax tree to the intermediate code representation.
The tree is traversed by visitors, described in section 5.3. Each visitor returns a created
MPPCG node, and the resulting intermediate code representation is again a tree. On this
tree, preprocessing can be performed.

Preprocessor. The preprocessing can be extended if required. For now, MPPCG calls the
type inference module (see section 5.4) to verify and complement the nodes types. After
this step, the keyword handler is called to prepare the nodes for rendering and to avoid
for example compile time errors of the generated code. When preprocessing is done, the
intermediate code tree is passed to the environment.

Environment. For each output language, MPPCG implements an environment. The
environment is the component, where the main rendering logic of the output language
is implemented. It implements the rendering method for each MPPCG node, as well as
output language specific information. For example for Prolog, part of these information can

5.2 Lexer and Parser 21

be a counter, keeping track of the variable storing the current result. The rendering is done
recursively by visiting every (for the output code required) child node. MPPCG’s code
generation is complete when the environment has rendered the entire intermediate code.

5.2 Lexer and Parser

An abstract syntax tree (AST) is the representation of the abstract syntactic structure of
code, in the form of a tree[4]. The AST consists of nodes, which can have one or more child
nodes, sibling nodes, and one parent node. It is called abstract, since it stores no detailed
information about the nodes, but represents only the syntactic structure. An example
of an AST is given in figure 3, which consists of only three nodes: A Binary Expression
node with two Expression nodes as child nodes. In this example, each node contains also
the token returned by the lexer. In this case, the BinaryExpr node contains the operator,

Expression Expression

BinaryExpr

1 2

+

Figure 3: AST with Three Nodes

such that other operators might also generate BinaryExpr nodes. A different approach
to design such an AST is to implement distinct nodes for each operation, for example
with AddNodes, MultiplyNodes, and SubtractionNodes. The parser generator MPPCG
uses, provides distinct nodes for each operation. A core component for MPPCG is the
intermediate code representation, which stores these information in data class fields. This is
similar to the nodes in the example AST. When an input file is parsed, it is first analysed
lexically, then syntactically, and finally semantically[4]. The following steps describe, how
the input 1 + 2 is analysed, and how the AST of figure 3 is being created.

Lexical analysis. The input for the lexical analysis is a stream of characters and letters, the
output is a stream of token. Hence, the content and words of the file are broken into token
by a lexer. This is done, by reading one character after another until for example a regular
expression matches the input. Depending on the matching regular expression, the lexer
returns a token for the processed characters. In our example, the lexer reads the 1, and
returns a NumberToken. The 1 is followed by a whitespace, such that a WhiteSpaceToken
is returned. The next character is the ’+’, for which an AddToken is returned. This token is
followed by another WhiteSpaceToken and another NumberToken. Note: In our example,
whitespaces can be neglected, and will be ignored by our example parser.

22 5 MULTI PROGRAMMING PARADIGM CODE GENERATOR

Syntactical analysis. The syntactical analysis is done by a parser which receives the stream
of token of the lexer. The parser consumes the token, until a grammar rule (syntactic rule)
matches the sequence of token. If such a rule matches, the parser returns an AST node
for the consumed token. In our example, the parser ignores the WhiteSpaceToken such
that it reads NumberToken AddToken NumberToken. Each NumberToken is recognized as an
Expression so that the parser returns Expression nodes for the NumberToken. Then, the
parser reads Expression AddToken Expression and recognizes this sequence as a binary
expression. Hence, the parser returns a BinaryExpr node with two child nodes.

Semantic analysis. In the semantic analysis, the AST is validated for its semantic correctness.
A syntactically correct AST does not imply its semantic correctness. As an example, the
input 1 + true would be syntactically correct, as a BinaryExpr with two Expression
nodes could be returned. However, this abstract syntax tree is semantically not correct, as
most languages would not support the addition of integers and booleans. Further checks of
the semantic analysis are for example scope errors or type checks.

These steps can be executed by parser generators. Two popular parser generators are
SableCC[16] and ANTLR[39]. B2Program uses an existing ANTLR parser9 for B in its
implementation. MPPCG uses the SableCC version10 which is also being used in ProB.
Both versions have advantages and disadvantages over another. As an example, the ANTLR
parser supports only a subset of B, but provides type information. Thus, the ANTLR
parser yields a typed AST. The SableCC version however, supports B in total, but does
not provide type information. I decided to use the SableCC implementation, as it enables
the chance to generate a larger subset of B, compared to the ANTLR parser. However, to
generate Java code, or code for other type sensitive languages, a type inference algorithm
implementation is additionally required.

SableCC supports also multiple tree traversing features, like the DepthFirstAdapter[16]
which traverses the abstract syntax tree in depth first order. To achieve the goal of
extendability, such that the input and output languages are exchangeable, this tree should
always consist of the same node types / classes. Thus, the parser generated nodes have
to be converted to MPPCG’s custom nodes, such that the entire AST is transformed to
MPPCG’s intermediate code representation. With SableCC this transformation can be
done due to the tree traversing features. Crucial to this transformation is the structure of
the parser’s AST. Complex and badly designed parser generators require more complex
adapters. The more similar the parser’s node classes are to the nodes of MPPCG, the more
trivial the adapter is. However, providing a lexer and parser for each input language is not
part of MPPCG’s responsibility.

9
https://github.com/hhu-stups/antlr-parser

10
https://github.com/hhu-stups/probparsers/tree/develop/bparser

5.3 Intermediate Code 23

5.3 Intermediate Code

As mentioned in section 5.2, the parser generator’s AST has to be converted to a custom
intermediate code representation in order to keep the languages exchangeable. The interme-
diate code’s nodes are designed to have as few different node types as possible. This is, to
keep the output environments as simple as possible, as fewer rendering methods have to be
implemented. The conversion is done by an adapter and the main mapping mechanism can
be seen in figure 4. An adapter maps nodes of one representation, to nodes of MPPCG’s
representation. As different parser generators have different node representations, one
adapter is required for every parser generator.

Parser Generator

Class 1

Class 2

Class 3

Class N

. . .

Intermediate Code

Class 1

Class 2

Class 3

Class M

. . .

convert

convert

Figure 4: MPPCG’s Parser Generator Adapter

Most of MPPCG’s nodes have one of the following node types: Collection, Expression,
Predicate, or Substitution. Input languages might need additional node types, which
can not be represented by the common types. For B, these are for example nodes to
represent transitions. Hence, the nodes itself inherit from one of the base node types. For
example, the BinaryExpression inherits from Expression, and contains two child nodes of
type Expression, as well as an operator. The base node class every other node inherits from
is the MPPCGNode. This class ensures, that every node has a render-Method called on the
current Environment and provides the name of the responsible template. MPPCG’s nodes
are data classes without any method implementation. As different input languages might
contain unique language constructs, like B has quantifier constructs, custom nodes have to
be created. For the implemented input language, the B Method, the adapter converts the
SableCC nodes to MPPCG nodes. Therefore, the adapter utilizes the DepthFirstAdapter
of SableCC, and implements visitors, which in turn implement operations depending on the
visited node. Listing 15 presents the code which converts an AModuloExpression and an
APowerOfExpression of SableCC to MPPCG nodes. Both nodes are BinaryExpressions
and contain a left and a right expression each, but differ in their operator.

24 5 MULTI PROGRAMMING PARADIGM CODE GENERATOR

Listing 15: Part of MPPCG’s ExpressionVisitor using SableCC’s Visitor Pattern

1: override fun caseAModuloExpression(node: AModuloExpression) {
2: result = BinaryExpression(
3: node.left.convert ()!!,
4: node.right.convert ()!!,
5: BinaryExpressionOperator.MOD
6:)
7: }
8:

9: override fun caseAPowerOfExpression(node: APowerOfExpression) {
10: result = BinaryExpression(
11: node.left.convert ()!!,
12: node.right.convert ()!!,
13: BinaryExpressionOperator.POW
14:)
15: }

Listing 15 shows also, that MPPCG contains much less intermediate code nodes com-
pared to the used SableCC implementation, as multiple SableCC nodes, which represent
binary expressions, can be represented by a single MPPCG class. This code is part of
the ExpressionVisitor, which returns only ExpressionNodes. convert is an extension
function MPPCG implements for each of the super classes of SableCC’s nodes and is, for
example for expressions, implemented as seen in listing 16. These extension functions
apply the ExpressionVisitor on expressions (and for example the SubstitutionVisitor
on substitutions respectively) and return the visitors result. Thus, in listing 15, the
BinaryExpressions receive as first two arguments the results of the visitors of the left and
the right nodes.

Listing 16: Example convert-Method for Expressions

1: fun PExpression ?. convert (): Expression? {
2: if (this == null) return null
3:

4: val visitor = ExpressionVisitor ()
5: this.apply(visitor)
6: return visitor.result
7: }

The most careful design decisions took place in the design of the custom nodes. On the
one hand, the goals of MPPCG had to be considered, such that fewer MPPCG nodes
result in less rendering-implementation logic. On the other hand, it was required to decide
which nodes might be common in most languages and which nodes are only relevant for B.
MPPCG encapsulates this whole transformation process in its adapters, which are required
for each input language (and each parser generator).

All method extensions MPPCG implements rely on the intermediate code representation.

5.4 Type Inference Module 25

The output environments implement these extension methods to add rendering methods
to the MPPCG nodes. Thus, the adapters are used to transform the input AST to the
intermediate code, which then can be rendered. This does not only reduce the amount of
different nodes and prepares these nodes for simpler rendering implementations. It does
also enable the change of the input language.

5.4 Type Inference Module

The provision of node types by parsers varies depending on their implementation. When
working with a type-providing parser, the type inference can be skipped or rather be used
as a type verification step. However, when working with a parser like the SableCC B
parser11 which MPPCG used, no types are given. My first approach was calculating types
when creating nodes inside the adapter (see 5.3). Calculations were mainly based on the
operator (if a node contained one) but this procedure was unstable, error-prone, and would
have to be recreated in each parser adapter. It might be a workaround for some input
languages with a simpler type system, such that most types could be inferred just from
operators. For example a ’+’ could always indicate that both types are integers. But as B
also contains relations, deferred sets, functions, and more unique structures, this approach
was too unstable and became quickly complex and hard to maintain.

This complexity contradicted the goal of an easy extendable code generator and was finally
replaced by a type inference module. This module implements the Hindley-Milner type
inference algorithm[24, 11], as described in section 2.6. However, the algorithm requires an
environment, also called context, which contains some base types as starting points. As
an example, consider the expression x+2. If this expression is encountered, the environment
needs the information that the ValueNode containing 2 is of type integer (or at least a
subtype of number). With this information, the type of x could be inferred. But these rules
change from language to language. Therefore, nodes like ValueExpression, which contain
primitive types, have in MPPCG a type assigned during their creation in the adapter.
Hence, the context of the algorithm is created on-the-fly by each adapter indirectly. The
algorithm itself is implemented as described in section 2.6 and as seen in listing 3, but needs
to provide a when-branch for each MPPCG node. Additionally, some rules (branches) might
change between languages. The different branch implementations for the same node can be
switched, as the type inference module has knowledge about the current input language.

5.5 Code Rendering

Rendering code for an output language requires the implementation of two modules for
this output language. The input language module is an interface between the actual input
language and the generated output code. In this module, input language specific components

11
https://github.com/hhu-stups/probparsers/tree/develop/bparser

26 5 MULTI PROGRAMMING PARADIGM CODE GENERATOR

are implemented as libraries which can then be used by the output code. Currently, as
MPPCG implements only the B Method as input language, this is the module where
the BTypes are implemented for Java and Prolog. Hence, the input language module is
responsible for providing libraries to execute the generated code.

The output language module is the module where the rendering is implemented. MPPCG
provides an OutputLanguageEnvironment containing the abstract renderSelf methods for
each common node. Common nodes are nodes which are present in many input languages
and programming paradigms, such as binary expressions or assignments. Additionally, it
provides the routing of a node’s render method to the correct renderSelf implementation
in the specific output language (as described in section 5.1). Furthermore, this module
acts like a template engine interface, as it loads the template files, fills the parameters of a
template, and renders the template itself. The OutputLanguageEnvironment is designed
such that it is as simple as possible to implement a new output language. For better
readability, it also provides render extension functions for lists, such that a whole list can
be rendered at once, and a list of results is returned.

As shown in the code example in listing 17, it is designed in a way that you can call render
whenever needed, without taking care of the exact field type. This increases the readability
and reduces the complexity.

Listing 17: An Example Mapping of Template Variable Names to its Values

1: val map = mapOf(
2: "expression" to expr.render(),
3: "predicate" to pred.render(),
4: "listOfParameters" to params.render ()
5:)

Rendering-methods for operators are also implemented, as operators might be called
differently in different output languages. For example, for a boolean conjunction the
JavaOutputEnvironment would render the operator ’&&’ while the PrologOutputEnvironment
would just render a single ’,’.

As mentioned, input languages might contain operations or methods which are not covered
in the output language’s default libraries. These are the operations implemented in the input
language module’s libraries. For these operations, which are represented as custom nodes,
abstract rendering methods have to be provided. Since the OutputLanguageEnvironment
provides only abstract rendering methods for the common nodes (which are common in most
languages), MPPCG implements a BEnvironment, which provides the remaining abstract
methods for the B Method’s custom MPPCG nodes. This BEnvironment complements
the OutputLanguageEnvironment and can be exchanged with other input language specific
environments.

To add an output language, a subclass of OutputLanguageEnvironment for this output
language is required. This subclass implements the renderSelf methods and is therefore
able to handle the entire translation from intermediate code to output language code.

5.5 Code Rendering 27

Text

Text

Node

OutputLanguageEnvironment PrologOutputEnvironment

render

resolve

NodeExtension

renderSelf

contains

Common Output Language

Figure 5: MPPCG’s Rendering Mechanism

In figure 5, the rendering process of the output environment can be seen. MPPCG starts
the rendering by calling a recursive, tree traversing rendering mechanism on the root node.
This is done by calling render() on the root node. However, to get the environment
involved, the render-method calls the environment, which in turn delegates the call to the
associated abstract renderSelf-method. Note, that up to this point, the delegation is not
part of any specific output language. The specific output language environment provides
just the renderSelf() implementation, to which the call is resolved. In figure 5, this is the
PrologOutputEnvironment that implements renderSelf(), which in turn is an extension
method of the called node. This node might contain child nodes, which call again their
render() method. For example, if a BinaryExpression-node is being rendered, render()
is also called on both of its child nodes. At this point, the cycle is complete and starts with
each child node as a new starting point.

Note, that it is not possible to call renderSelf() directly on the child nodes inside the
PrologOutputEnvironment. This is, because the child nodes are types of generalized super-
classes, for example Expression or Substitution, and the renderSelf() implementations
are extensions of the subclasses, for example BinaryExpression. Hence, the environment
does not only delegate the call to the correct output language, but also resolves the node
to the correct subclass.

The return value of render() and renderSelf() is a RenderResult. A RenderResult
contains the rendered String, as well as an info-map for additional information required
by the environment. Depending on the output language, the info might not be necessary.
Thus, info is an optional map, providing flexibility in the amount and types of the returned
values. In MPPCG’s Prolog implementation, most rendering methods of expression nodes
provide a before-String in this info map. This is, to address the coloring-problem mentioned

28 5 MULTI PROGRAMMING PARADIGM CODE GENERATOR

in chapter 3, where information of a previous rendered node need to be extracted. The
renderSelf-methods create a map, mapping the template engine’s parameter names to the
RenderResults (or other primitive values for the template engine), and passes this map to
a renderTemplate-method. This is the map shown in listing 17.

The renderTemplate-method is also an extension function for each node. It gathers the
correct template for each node (provided in the templateName field of each node), and
fills the template according to the passed mapping. The resulting rendered String is then
returned and encapsulated inside the RenderResult of the calling renderSelf-method.
After the whole intermediate code tree is rendered, the last returned RenderResult contains
the entire rendered output code.

5.6 Testing Framework

MPPCG provides several default tests for the B Method as input language. The idea of the
testing structure was inspired by B2Program and contains execution tests and generation
tests. Generation tests are used for testing an output language’s capability of handling
different types of nodes. Hence, generation tests check if every possible node can be rendered.
Execution tests consist of many different machines and execution paths and test whether
the generated code yields the desired behavior.

Instead of execution paths, B2Program uses for each machine and each output language a
file written in the output language itself. This file contains a simple program executing the
generated and translated B Methods. For example, a Java file contains a class with a main
method. Inside the main method, an instance of the machine is instantiated which then
executes operations. Further, B2Program has for each machine a *.out file which contains
only the expected result after executing the program.

This concept enables the ability to execute each machine in a custom way, however, many
additional executable files have to be written by hand. In numbers, MPPCG contains
168 machine files for execution tests. In B2Program, this would require additional 168
*.out files and for each output language again 168 execution files. Supporting two output
languages, this would end up in a total of 672 files, increasing by 168 for every new output
language. Thus, MPPCG simplified this procedure, but grants the same results. Instead of
*.out files and executable files, MPPCG has for each machine exactly one corresponding
file: a *.execPath file. Each file contains the operations to execute, as well as the expected
result. Listing 18 shows an example for the content of such a file.

Listing 18: Example execPath File

1: plus (5)
2: addOne
3: *** Expected Result:
4: getResult =7

5.7 Working with MPPCG 29

Line 3 is parsed like a breakpoint: For the previous lines, the framework generates a file
for each output language, which instantiates the machine and executes the operations in
these lines. For example for Java, the file with the main method described before is being
generated. In this case, plus is a method (or predicate, depending on the output language)
with 5 as parameter and addOne is a method (or predicate) without any parameter.

After generating the executable operations before the breakpoint, the results (line 4 in
listing 18) are parsed. Again multiple results can be tested. In this case, a method/predicate
getResult is called without any parameter and returns a value. This value is expected
to be equal to 7. The generated file calls next to the operations getResult, and prints
the result. This output stream is being read by the test framework and compared to the
expected value.

To translate the content of *.execPath files, for each output language a short StringTemplate
setup file is required. In case of Java for example, this StringTemplate returns a template for
a class with variable name, a main function executing operations, and a template for calling
methods. If more machines need to be tested, only the machine file and the *.execPath are
required.

The tests are executed by first generating the output code for the machine file. Then, the
framework generates the execution file, which in turn executes the prior generated output
code. Finally, the results are compared.

5.7 Working with MPPCG

This section explains how to work, modify, and extend MPPCG. In MPPCG it is possible to
change the input language, the input language’s parser generator, and the output language.

Exchanging the Parser Generator. To support a new parser generator, the parser generator’s
implementation itself is required. Note, that this implementation is independent of MPPCG.
MPPCG implements a Launcher which is the starting point of the code generation. Here,
the input and output languages (and therefore the corresponding output environment),
and the parser generator is defined. The launcher must be modified to be able to execute
the new parser generator. The next step is to provide an adapter which converts the
parser generator’s AST into MPPCG’s intermediate code representation. This adapter was
described in section 5.3. When the parser generator’s AST is converted into the intermediate
code representation, the new parser generator can be used. In general, when changing the
parser generator, the only crucial part is the mapping from AST nodes to MPPCG’s nodes.

Adding a new Input Language. First of all, the input language needs to have a corresponding
parser generator. The input language might also have for example some control structures,
which are not covered by the common nodes of the intermediate code. For B, this might be
for example a comprehension set, which needs to be represented in an own new node. If
new nodes are required, these nodes have to be integrated into MPPCG.

30 6 LANGUAGE IMPLEMENTATIONS

First, the nodes have to be implemented in the TypeInference module, otherwise the
algorithm throws an exception when discovering unrecognized nodes. Secondly, a cus-
tom LanguageEnvironment-interface has to be implemented, containing the abstract
renderSelf-methods for these new nodes. For example for the B Method, this is the
implemented BEnvironment. Additionally, if needed, an environment configuration can
be implemented. In B’s BEnvironmentConfig, for example, this holds the values for the
smallest and the largest implementable integer. Note, that if a new input language is
added, the existing output languages can not handle the input language, unless each output
environment implements the renderSelf-methods for each new node. The last step when
adding a new input language is to provide libraries for each output language. These libraries
are written in each output language and contain implementations for input language specific
operators. Examples are the BTypes[46] implemented in Prolog and Java.

Adding a new Output Language. While implementing MPPCG, it was one goal to keep
this step as simple as possible. To add a new output language, an OutputEnvironment
subclassing the OutputLanguageEnvironment (see section 5.5) has to be created. This
OutputEnvironment needs to implement the renderSelf-method for each MPPCG node.
Additionally, the StringTemplate templates have to be implemented. Lastly, to successfully
execute the generated code, the already mentioned input language libraries have to be
implemented in this new output language.

6 Language Implementations

This chapter describes the implementation of the first two supported output languages
Java (section 6.1) and Prolog (section 6.2). It shows also what code MPPCG generates
when targeting Java and Prolog with the first implemented input language, the B Method.
Previously, the code generator implemented an optimizer module for generating both
optimized, and non-optimized code. However, this module got merged into the output
language module, such that one output language implementation can not generate different
versions of the same code. In section 6.3, we will have a look at the currently implemented
optimizations, especially regarding Prolog, as well as the decision to remove this module.
The difficulties and problems during the implementation of these first languages are
described in section 6.4. Finally, section 6.5 compares MPPCG’s implementation with the
implementation and design of B2Program.

Currently, MPPCG supports only a subset of B. Not supported machine sections are
includes, extends, sees, uses, promotes, and refines. Thus, only single machine files
are supported. Enumerated sets and set operations are implemented, except for finite subsets
and generalized expressions on sets. Most operations on relations are supported, except for
closures and translations between relations and relations / functions (fnc, rel). Sequences
and functions are fully supported, however, records and strings, and their operations are
not. MPPCG supports also if-then-else, while, and quantifier constructs, as well as
select substitutions. Not supported substitutions are any, let, var, assert, choice, and

6.1 Java Implementation 31

case. To support a larger subset, the conversion methods in the adapter, and probably
additional MPPCG nodes have to be implemented. Further implementations are required
in the type inference module, where the new nodes have to be considered, as well as the
rendering methods in the output environments, and the templates itself.

Through this chapter, we will compare parts of the generated code of the CAN Bus machine
file12. The relevant excerpts of this file are shown in listing 19. The generated Java and
Prolog code will be shown in this chapter, as well as the generated Java code of B2Program.

Listing 19: Excerpt of the CAN Bus Machine File

1: SETS
2: % more sets
3: T3state = {T3_READY ,T3_WRITE ,T3_RELEASE ,T3_READ ,T3_PROC ,T3_WAIT}
4:

5: INVARIANT
6: % more invariants
7: T3_state : T3state & BUSwrite : 0..5 +-> INTEGER
8:

9: % initialization , other operations , ...
10: T3writebus(ppriority ,pv) =
11: PRE
12: ppriority = 4 & pv = 0
13: & T3_state = T3_WRITE
14: THEN
15: BUSwrite := BUSwrite <+ {ppriority |-> pv}
16: || T3_state := T3_WAIT
17: END

6.1 Java Implementation

The implementation of the Java support was not the main focus of this thesis. However,
the generated Java code is executable and implements BTypes similar to the BTypes of
B2Program[46]. Java is an object-oriented and imperative programming language which
is also supported by B2Program and was mainly implemented to demonstrate MPPCG’s
ability to generate code for multiple programming paradigms.

In Java, the BTypes are more complex, as MPPCG implements different Java classes for
different B data structures, like B2Program does [46]. Thus, the input language module for
Java emits a jar-file which can be used by the generated Java code.

Listing 20 shows the Java code generated by MPPCG of the mentioned CAN Bus excerpt.
The implementation was inspired by B2Program’s implementation, such that the guard
and the substitution of the B operation are seperated. The guard, prefixed by tr_ takes
the operation’s parameters as arguments and returns a boolean indicating whether the

12
In all listings, unneccessary whitespaces have been removed.

32 6 LANGUAGE IMPLEMENTATIONS

machine’s state is valid to execute the substitution. This guard implementation can be
optimized, for example by collapsing negated boolean predicates to an unequal -operator.
However, as Java was not the main focus, this optimization has not been implemented yet.

Listing 20: Excerpt of the CAN Bus Java Code

1: // rest of class
2:

3: // Guard
4: public boolean tr_T3writebus(Integer ppriority , Integer pv) {
5: if (!(ppriority == 4)) {
6: return false;
7: }
8: if (!(pv == 0)) {
9: return false;

10: }
11: if (!(T3_state == T3state.T3_WRITE)) {
12: return false;
13: }
14: return true;
15: }
16:

17: // Substitution
18: public void T3writebus(Integer ppriority , Integer pv) {
19: BUSwrite = BUSwrite.override(new BRelation <Integer , Integer >(
20: new BCouple <>(ppriority , pv)
21:));
22: T3_state = T3state.T3_WAIT;
23: }

The substitution method is the place where the state is being modified. MPPCG does not
generate code for primitive Java values, but generates their nullable types instead. For
example, instead of generating int, MPPCG generated Integer in order to allow nullability.
Nullable values are required for generic BTypes and thus preferred also for every other use
case where primitive values would be sufficient. B sets, like T3state in this example, are
represented in Java as enumerations. Hence, in line 22 of listing 20, T3_state gets the
value T3_WAIT of the enum T3state assigned.

6.2 Prolog Implementation

As B2Program has particularly problems generating Prolog code, this section gives some
insights in MPPCG’s generated Prolog code and its PrologOutputEnvironment.

MPPCG generates Prolog code which implements the XTL interface mentioned in section 2.3,
to enable ProB to execute the generated code. Figure 6 shows the workflow of model
checking a B machine with Prolog code. First, the B machine is passed to a parser generator.
The parser generator creates an abstract syntax tree of the machine file, as already seen

6.2 Prolog Implementation 33

Listing 21: Part of a B Machine and its Prolog Representation

1: % ...
2: VARIABLES x
3: INVARIANT x : NATURAL +-> NATURAL
4: INITIALISATION x := {1 |-> 2, 3 |-> 4, 2 |-> 3}
5: % ...
6:

7: % State in Prolog after initialisation:
8: % [x-[1-2, 2-3, 3-4]]

in section 5.2. MPPCG’s adapter transform this AST to MPPCG’s intermediate code
representation, which is the starting point for the main code generation step. The generated
Prolog code implements the XTL interface and can be executed and model checked by
ProB.

Parser Generator

MPPCG

Prolog Code

B Machine

ProB

Figure 6: From B Machine

to ProB Execution

The machine states are represented as ordered lists with name
- value entries. B-Relations are again stored as ordered lists.
Listing 21 shows a simple B machine and its initialisation, as
well as how the generated Prolog code represents the machine
state after initialisation (line 8).

Unlike for example in Java, a variable in Prolog cannot be
reassigned. Thus, machine states cannot be modified directly,
but have to be stored in a separate variable after modification.
To access the correct, newest state representation, MPPCG’s
generated Prolog code enumerates the state and increases
a state counter after each modification. For example, after
State_0 was updated, State_1 contains the updated values,
and State_0 contains the same values as before.

Updating values of a state is done via an update/4
predicate of the form update(<variableName>, <value>,
<StateBefore>, <StateAfter>). For the prior example, the
update call would be update(x, [1-2,2-3,3-4], State_0,
State_1).

To receive values of a state, the Prolog code implements a
get/3 predicate of the form get(<State>, <variableName>,
<value>). Prolog variables containing machine values or other
intermediate values are represented by Expr_, suffixed with
the current expression count. For example, Expr_0 contains
the value of the first evaluated variable, Expr_1 contains the
value of the second one respectively. Nodes (and so their corre-
sponding subtrees) are stored in a map, with their expression

34 6 LANGUAGE IMPLEMENTATIONS

count as a value. Hence, when a node is encountered again in the same scope, only the
Expr_<exprCount> will be rendered to reduce redundant code. However, the expression
count, the state count, and the node map are reset between certain code sections. Thus,
every transition and invariant has its own scope for these values.

Sets, (concrete) constants, and concrete variables, whose values are constant are represented
differently. The generated Prolog code stores their values in runtime predicates with names
equal to the name of the set / constant, prefixed by s_ for sets and c_ for constants.
Listing 22 shows an example of a B Set EXAMPLE and its generated Prolog code.

Listing 22: Example B Set and its Generated Prolog Code

1: SETS EXAMPLE ={A,B,C,D,E}
2:

3: % MPPCG generates:
4: % s_EXAMPLE ([’A’, ’B’, ’C’, ’D’, ’E’]).

To access the values of the set, the generated Prolog code calls s_EXAMPLE(Expr_0) (or
with a different expression count, if already incremented).

MPPCG renders constants in a similar way, however, their values might be the result of a
more complex expression / calculation. To avoid the same calculation of the same constant
on every access, MPPCG renders an initialisation step, where the values are calculated and
the predicates are asserted13 at runtime.

MPPCG implements the B operators for Prolog in a single Prolog file (btypes.pl) inside
its input language module. To avoid the redefinition of existing SICStus Prolog predicates,
the predicates are named as mppcg_<operatorName>.

Listing 23: Excerpt of the CAN Bus Prolog Code

1: % initialization , other predicates , ...
2:

3: trans(’T3writebus ’(ppriority=Expr_ppriority , pv=Expr_pv), State_0 ,
4: ,!State_2) :-
5: % Guard
6: mppcg_equal(Expr_ppriority , 4),
7: mppcg_equal(Expr_pv , 0),
8: get(State_0 , ’T3_state ’, ’T3_WRITE ’),
9:

10: % Substitution
11: get(State_0 , ’BUSwrite ’, Expr_0),
12: mppcg_override(Expr_0 , [Expr_ppriority -Expr_pv], Expr_1),
13: update(’BUSwrite ’, Expr_1 , State_0 , State_1),
14: update(’T3_state ’, ’T3_WAIT ’, State_1 , State_2).

Listing 23 shows excerpts of the Prolog code MPPCG generates for the CAN Bus model.
13

Assertions in Prolog enable the creation of predicates at runtime.

6.3 Optimizer 35

While in Java the guard and the substitution are being separated, MPPCG renders both of
them inside the trans predicate of the XTL interface. The mppcg_equal predicates in line
6 and 7 are required, as the trans-predicate can also be called with variables for ppriority
and pv. The implementation of mppcg_equal unifies such variables with the second passed
value, while a comparison via the equal operator ’==’ would fail. Such a failing equality
check would suggest, that the transition is not valid.

The use of the state count and expression count of the PrologOutputEnvironment is also
shown throughout listing 23, as State_2 contains the final state representation after every
update and is returned from the transition as a third argument.

Without passing concrete values for the operation parameters ppriority and pv, Prolog
is able to calculate every possible parameter combination and every resulting state via
unification. However, the current state (State_0) needs to have a valid value.

6.3 Optimizer

In earlier stages, MPPCG included an optimizer module for each output language. That
module enabled MPPCG to generate optimized code, as well as the per default non-optimized
code. Current optimizations of the generated Prolog code are optimized comparisons and
unifications, tracked variables to avoid redundant state accesses, tracked expressions to
avoid redundant calculations, and precalculated constants. These optimizations lead to
fewer lines of generated code.

In the following, the different types of optimizations are explained with examples. Without
any optimization, MPPCG would generate for a comparison like x == y the Prolog code
shown in listing 24.

Listing 24: Default Equality Check in Prolog

1: ...
2: get(State_0 , ’x’, Expr_0),
3: get(State_0 , ’y’, Expr_1),
4: Expr_0 == Expr_1 ,
5: ...

In this version the values of x and y are retrieved from the current state via the get/3
predicate, and afterward these values are checked for equality. However, this check can take
place already as soon as the value of x is known, as shown in listing 25.

Listing 25: Optimized equality check in Prolog

1: ...
2: get(State_0 , ’x’, Expr_0),
3: get(State_0 , ’y’, Expr_0),
4: ...

36 6 LANGUAGE IMPLEMENTATIONS

Note, that the variable Expr_0, containing the value of x, is inserted in the get/3 predicate
in line 3 to attempt the unification of the value of y with the value of x. In larger files,
that alone can save multiple lines of code. As another example, Prolog’s optimizer keeps
track of which values are stored in variables. Thus, without optimization, the pseudocode
z = x + y; z1 = x + y would be rendered to the code seen in listing 26.

Listing 26: Untracked Variables in Prolog

1: ...
2: get(State_0 , ’x’, Expr_0),
3: get(State_0 , ’y’, Expr_1),
4: Expr_2 is Expr_0 + Expr_1 ,
5: update(’z’, Expr_2 , State_0 , State_1),
6: get(State_1 , ’x’, Expr_3),
7: get(State_1 , ’y’, Expr_4),
8: Expr_5 is Expr_3 + Expr_4 ,
9: update(’z1’, Expr_5 , State_1 , State_2),

10: ...

Keeping track of the variables means, that x’s and y’s values do not need to be retrieved
from the current state again, as they did not change between State_0 and State_1. The
optimized version is shown in listing 27, where Expr_0 and Expr_1, which contain the
values of x and y are reused to calculate Expr_3.

Listing 27: Tracked Variables in Prolog

1: ...
2: get(State_0 , ’x’, Expr_0),
3: get(State_0 , ’y’, Expr_1),
4: Expr_2 is Expr_0 + Expr_1 ,
5: update(’z’, Expr_2 , State_0 , State_1),
6: Expr_3 is Expr_0 + Expr_1 ,
7: update(’z1’, Expr_3 , State_1 , State_2),
8: ...

Furthermore, MPPCG’s Prolog environment implements optimizations in terms of tracking
evaluated expressions, such that the previous example results in the code of listing 28.

Listing 28: Tracked Expressions in Prolog

1: ...
2: get(State_0 , ’x’, Expr_0),
3: get(State_0 , ’y’, Expr_1),
4: Expr_2 is Expr_0 + Expr_1 ,
5: update(’z’, Expr_2 , State_0 , State_1),
6: update(’z1’, Expr_2 , State_1 , State_2),
7: ...

Tracking expressions has potentially the largest impact on the lines of generated code.
Large nested reoccurring expressions will not be generated again, if a variable contains the

6.3 Optimizer 37

result already. This is done by comparing subtrees. An evaluated subtree (this subtree has
to have an expression node as its root node) is mapped to the variable storing its result.
When the same subtree is encountered again in the same scope, then MPPCG does not
recursively visit the subtree a second time. Instead, just the name of the variable which
holds the result of the evaluation is being rendered.

These three optimization features reduce the generated code from 8 lines to 5, for only two
statements of the pseudocode. It can easily be seen, that large files can be reduced much more.
This results in faster execution times of the Prolog code, as arbitrarily large, reoccurring
subtrees can be neglected while executing the generated code, by just reusing the result of
the previous evaluation. While implementing optimization, the OutputEnvironment’s code
for each output language became more complex and harder to maintain over time. Thus, a
design decision was required.

The possibility to generate non-optimized code as well as optimized code was a feature
which might not be used much, as optimized code would most likely be used if available,
making non-optimized code unnecessary. However, even if not used much, this feature is a
major increase of the output environment’s complexity, which contradicts the goal of having
an easy to extend and maintain code generator. Thus, the separated optimizer module was
removed and the optimized node rendering was implemented as the default rendering for
the implemented output languages. However, if in some cases both an optimized and a
non-optimized version of the same code is required, this can still be achieved. Either by
having two separate output environments for the same output language, or by creating for
example an optimized output environment. This optimized output environment can be
subclassed by a non-optimized environment, which overrides only the required rendering
methods.

Listing 29: Code Extract of a Modified Version of the Train Model

1: SETS
2: BLOCKS ={A,B,C,D,E,F,G,H,I,J,K,L,M,N};
3: ROUTES ={R1,R2 ,R3 ,R4 ,R5 ,R6,R7,R8,R9,R10}
4:

5: CONCRETE_CONSTANTS
6: nxt ,
7: rtbl
8:

9: PROPERTIES
10: nxt : ROUTES --> (BLOCKS >+> BLOCKS)
11: & rtbl = {b,r|b : BLOCKS & r : ROUTES &
12: (r : dom(nxt) & (b : dom(nxt(r)) or b : ran(nxt(r))))}

MPPCG implements also another optimization, especially for Prolog: Models of the B-
Method might contain concrete variables or concrete constants, which are variables whose
values are known. My first approach was to generate predicates for such variables, so that
the values can be obtained by calling the corresponding predicate. For more complex values,
which are computed inside the predicate, this approach led to performance issues. Consider

38 6 LANGUAGE IMPLEMENTATIONS

the code snipped in listing 29 of a modified version of [32] of the Train interlocking from [1].
The generated Prolog code for rtbl is shown in listing 30, where Expr_10 contains the
resulting value for rtbl.

Listing 30: Comprehension Set in Prolog

1: findall(
2: (Expr_b - Expr_r),
3: (
4: s_BLOCKS(Expr_0),
5: mppcg_member(Expr_b , Expr_0),
6: s_ROUTES(Expr_1),
7: mppcg_member(Expr_r , Expr_1),
8: c_nxt(Expr_2),
9: mppcg_domain(Expr_2 , Expr_3),

10: mppcg_member(Expr_r , Expr_3),
11: (c_nxt(Expr_4),
12: mppcg_callFunction(Expr_4 , Expr_r , Expr_5),
13: mppcg_domain(Expr_5 , Expr_6),
14: mppcg_member(Expr_b , Expr_6);
15: c_nxt(Expr_7),
16: mppcg_callFunction(Expr_7 , Expr_r , Expr_8),
17: mppcg_range(Expr_8 , Expr_9),
18: mppcg_member(Expr_b , Expr_9))
19:),
20: Expr_10
21:)

When executing this code every time the value of rtbl is required, which may be several
thousands of times per model checking execution, this same code returns always the same
value, and takes always some time to execute. To avoid this redundant execution, MPPCG
contains for Prolog an initialisation step, where such expressions are evaluated. After
evaluation, the resulting expressions are asserted, such that the corresponding predicate
does no code execution, but instead returns the previous calculated value. Assertions in
Prolog are a way of creating predicates during runtime. This optimization provides fast
access times even for complex concrete variables and constants, which are not stored in the
machine’s state.

6.4 Problems and Improvements

This chapter covers some difficulties and problems during the implementation of MPPCG,
as well as how the current implementation solves them.

While implementing MPPCG, my first approach was to have templates for the output
language specific implementation of the B operators and functions. The generator had

6.4 Problems and Improvements 39

then tracked per generation process which custom methods were required for the generated
machine. Finally, only the templates for the required B operations have been rendered in
the resulting file. On the one hand, this approach generated a single runnable file, such that
no additional files were needed for executing the code. On the other hand, the same code
for the same B operators was generated again for each machine, increasing code redundancy
across the output files. This redundancy can be neglected as the generation time and
generated file size might not be important. However, keeping track of the required methods,
which in turn might depend on some other custom methods, can get very complex. Thus, to
avoid this complexity, every input language has now one module for every output language,
where these operators are implemented. Hence, MPPCG introduced the input language
module.

Also, some prior design decisions of the code generator’s implementation itself led to
problems. Since not every parser generator provides types, these types might need to
be inferred by the generator. First, this was implemented in the node’s data classes
and partially in the AST adapter itself. This led to hardly maintainable code and was
not in accordance with the goal of supporting multiple input languages, because these
implementations would have been necessary in each AST adapter of untyped ASTs14. Thus,
MPPCG implemented the type inference module (see section 5.4). This module, however,
might get complex with more input languages containing custom nodes. To reduce this
complexity, MPPCG faces the same design choices as with the other components: A careful
decision of which nodes are common across different programming languages is required,
such that common parts can be extracted and do not need to be implemented for every
language again.

Key = K1
Value = 1

Key = K2
Value = 2

Key = K1
Value = 1

Key = K2
Value = 2-11

0 0

Figure 7: Two Different AVL Trees

During the implementation of the PrologOutputEnvironment, one of the problems was the
state representation. The first approach of the state representation was using AVL trees[3].
AVL trees are balanced, binary trees and provide fast access times in terms of searching
(O(log n)) and insertion and deletion of nodes (both with the worst case complexity of

14
As long as the output language requires types.

40 6 LANGUAGE IMPLEMENTATIONS

O(log n)). This would have been a speed-up in various operations, however, a crucial part
to the structure of AVL trees is the insertion/deletion order of the nodes.

In figure 7, two AVL trees with the same content are presented. Both trees have a node
with K2 as key and 2 as value (green), and a node with K1 as key and 1 as value (yellow).
The weights, also called Balance Factor, of the nodes are displayed on the left side of each
node. This balance factor is the result of subtracting the height of the left node from the
height of the right node. Listing 31 shows, how these AVL trees are represented by SICStus
Prolog’s avl library. The syntactic structure of such an AVL representation is shown in
line 1. Line 2 contains the representation of the left tree of figure 7, line 3 of the right tree
respectively. The keyword empty on the position of a LeftChild or a RightChild indicates,
that the node does not have such a child node.

Listing 31: AVL Representations by SICStus Prolog’s AVL Library

1: % node(Key , Value , Weight , LeftChild , RightChild)
2: node(’K1’,1,1,empty ,node(’K2’,2,0,empty ,empty))
3: node(’K2’,2,-1,node(’K1’,1,0,empty ,empty),empty)

Even if both trees contain the same nodes, their structure differ. This is caused by the
insertion order of the nodes. ProB compares the states between transitions and decides, if
a state has been visited before. In this comparison the syntactic structure and the content
of the states are compared. Since the AVL trees represent the same state in different ways,
ProB treats both trees as different states.

This led to the replacement of AVL trees with ordered sets in MPPCG’s Prolog implemen-
tation of the B library. MPPCG uses ordered sets instead of lists, as the access times of
ordered sets are faster. This is, because it can be determined if an ordered set (or a subset)
does definitely not contain an item X, by comparing the first element of the set with X. Sets
have in Prolog a first element, as they are represented as lists with distinct elements. Their
worst case access times are O(n) for insertion and deletion, as well as O(n) for searching
nodes, as probably the entire set has to be visited. The time complexity of ordered sets is
worse compared to the time complexity of AVL trees, however, ordered sets represent same
states in the same syntactic structure. Most of the implemented B operators in Prolog
depend on the state’s structure. Hence, changing the state representation implies changing
most B operator implementations.

To increase the performance for Prolog in the future, there are different possibilities. One
could either use AVL trees again, and insert during the setup phase the possible variables
with uninitialized values. This would set up the same structure for different states, as
all keys are present from the beginning. But as B supports relations, which might be
represented as AVL trees again, this could lead to further problems, as large or even infinite
relations can not create their AVL tree with every possible key.

Another approach could be mutable dictionaries as their access times are faster than
the access times of ordered sets. However, creating mutable dictionaries and calculating

6.5 Comparing MPPCG with B2Program 41

hash values for possibly very large sets or relations, could again diminish this improved
performance.

6.5 Comparing MPPCG with B2Program

B2Program uses a template-based approach instead of using intermediate code. This
is, to simplify the implementation of multiple output languages and to achieve software
engineering principles [46] such as generic programming [5] and don’t repeat yourself [42].
A pure intermediate code approach of code generation does not support multiple output
languages as the intermediate code is translated directly to output code. However, MPPCG
combines intermediate code with a template-based approach of code generation. Thus,
MPPCG does not only support multiple output languages, but also multiple input languages.

Listing 32 shows, how B2Program visits its abstract syntax tree nodes, in this case the
initialisation node. It shows further, how B2Program instantiates and fills the templates.
In comparison, listing 33 shows how MPPCG implements this logic.

Listing 32: Rendering of B’s Machine Initialization in B2Program

1: private String visitInitialisation(MachineNode node) {
2: String machineName = ...
3: ST initialization = group.getInstanceOf("initialisation");
4: TemplateHandler.add(initialization , "machine", machineName);
5: TemplateHandler.add(initialization , "properties",
6: generateConstantsInitializations(node));
7: TemplateHandler.add(initialization , "values", generateValues(node));
8: if (node.getInitialisation () != null) {
9: TemplateHandler.add(initialization , "body",

10: machineGenerator.visitSubstitutionNode (...));
11: }
12: return initialization.render ();
13: }

Listing 33: Rendering of B’s Machine Initialization in MPPCG

1: override fun Initialization.renderSelf (): RenderResult {
2: val map = mapOf(
3: "substitutions" to substitutions.render(),
4: "name" to currentProgram.name
5:)
6:

7: return RenderResult(renderTemplate(map))
8: }

When we compare listing 32 and listing 33, we can observe general differences in how both
code generators visit nodes and fill templates. As MPPCG executes the extension function
renderTemplate on each node, inside the function the fields of the extended node can be

42 6 LANGUAGE IMPLEMENTATIONS

accessed. This enables the reduction of lines of codes, as the StringTemplate template does
not need to be gathered inside the renderSelf method. In contrast, B2Program retrieves
the template instance as shown in line 3 of listing 32. Instead, nodes of MPPCG contain
the template’s name as a field, such that the correct template can be obtained in a more
dynamic, instead of hard coded, way inside renderTemplate.

In this example, MPPCG contains less information that need to be passed to the template.
This depends on the underlying AST and intermediate code representation and is therefore
not considered as an advantage or disadvantage. B2Program fills the template with its
TemplateHandler. This handler receives a template instance, a parameter name, and a
parameter value. It checks, whether the template instance expects the specified parameter
name, and inserts then the parameter value. MPPCG does also encapsulate the filling
of the template, but also executes additional operation on the parameters. This way, a
RenderResult (line 3 of listing 33) is a valid parameter, as only it’s rendered string is
extracted and passed to the template.

Listing 34: Rendering of a Tuple/Couple in B2Program (Listing 5 in [46])

1: private String generateTuple(
2: List<String> args,
3: BType leftType ,
4: BType rightType
5:)
6: ST tuple = currentGroup.getInstanceOf("tuple_create");
7: TemplateHandler.add(
8: tuple ,
9: "leftType",

10: typeGenerator.generate(leftType)
11:);
12: TemplateHandler.add(
13: tuple ,
14: "rightType",
15: typeGenerator.generate(rightType)
16:);
17: TemplateHandler.add(tuple, "arg1", args.get(0));
18: TemplateHandler.add(tuple, "arg2", args.get(1));
19: return tuple.render();
20: }

Listing 34 shows how B2Program renders a tuple, and listing 35 shows how MPPCG does
it, respectively. Note, that in MPPCG tuples are called couple. Listing 34 was presented
in [46] to demonstrate the necessary changes when adding support for C++ as output
language. As in the original listing, the highlighted code of listing 34 is the C++ specific
code.

As MPPCG provides a custom renderSelf method for each node in each output language,
it is not necessary to modify an existing method when implementing a new output language.

6.5 Comparing MPPCG with B2Program 43

Listing 35: Rendering of a Tuple/Couple in MPPCG

1: override fun Couple.renderSelf (): RenderResult {
2: val map = mapOf(
3: "from" to from.render(),
4: "to" to to.render ()
5:)
6: return RenderResult(renderTemplate(map))
7: }

In B2Program, however, it is necessary to add additional lines of code inside a method.
Further, when an existing method needs additional parameters, these parameters might have
to be passed through multiple methods, starting from their origin. This is the main reason
B2Program gets more complex with each new supported target language. MPPCG implies
a certain level of redundancy as the renderSelf methods for different output languages
might be equal. However, this redundancy comes along with complete control over the
environment. To summarize, it can be stated that while adding a new language to both
code generators, B2Program increases in terms of complexity, while MPPCG increases in
terms of redundancy.

As future improvement, MPPCG could implement interfaces or superclasses like for example
an ObjectOrientedOutputEnvironment to reduce this redundancy and simplify the process
of adding new output languages even further. Object-oriented languages which need a
different renderSelf implementation than the provided one, could then override the
wrong implementations. This, however, needs a prior analysis of each node’s renderSelf
implementation in order to determine which implementations might be equal for most
object-oriented languages.

The results can also inspire B2Program in terms of improvements. For example, B2Program
could start using structures like MPPCG’s RenderResult, to pass more information between
rendering methods than just plain Strings. However, this change would require major
refactoring. B2Program’s TemplateHandler would need to support these new structures,
and the rendering methods need to be adapted to return these structures. This refactoring
could be a solution for the coloring-problem mentioned in chapter 3.

Another idea of improvement for B2Program is to introduce environments, similar to
MPPCG. For B2Program these environments could be objects containing various additional
information for the current target language, and could be either statically or created while
initializing the code generator. With that change, language specific information, like the
current expression count which might be required for generating Prolog code, would be
available without passing them through deep nested method calls. It can then be studied,
whether these two improvements enable B2Program to generate Prolog code.

Listing 36 shows an excerpt of the Java code for the CAN Bus model, generated by
B2Program. This listing shows also, that B2Program renders model checking code. While

44 7 EXPERIMENTS

the generated substitution code in Java is similar in B2Program and MPPCG, the generated
guards differ in their signature.

Listing 36: Excerpt of the CAN Bus Java Code of B2Program

1: // rest of class ...
2:

3: public BSet <BTuple <BInteger , BInteger >> _tr_T3writebus () {
4: BSet <BTuple <BInteger , BInteger >> _ic_set_14 =
5: ,!new BSet <BTuple <BInteger , BInteger >>();
6: for(BInteger _ic_ppriority_1 : Arrays.asList(new BInteger (4))) {
7: for(BInteger _ic_pv_1 : Arrays.asList(new BInteger (0))) {
8: if((T3_state.equal(T3state.T3_WRITE)). booleanValue ()) {
9: _ic_set_14 = _ic_set_14.union(

10: ,!new BSet <BTuple <BInteger , BInteger >>(
11: ,!new BTuple <>(_ic_ppriority_1 , _ic_pv_1)));
12: }
13: }
14: }
15: return _ic_set_14;
16: }

MPPCG returns a boolean value to indicate whether the substitution can be executed. In
contrast, B2Program returns a set of possible parameter combinations, for which the guard
is true. This is similar to the unification done by Prolog, to receive the possible parameter
combinations. B2Program requires this signature for the generated model checker, as each
possible parameter combination returned by each transition guard is being used to execute
the substitution. Such a code generation is more complex than the generation done by
MPPCG (for the guards in Java), as iteration constructs need to be generated and handled.
While MPPCG focuses more on a 1-to-1 translation of the B operations to Java code,
B2Program focuses on the usability with respect to model checking.

7 Experiments

This chapter compares the model checking performance of the generated Prolog code
executed in ProB, with the model checking performance of ProB executing machine files,
and with the model checking performance of Java. For this comparison, the ProB CLI was
used. As mentioned in section 6.1, the generated Java code does not contain any model
checking code so far, as the results would be similar to the generated Java model checker of
B2Program. Thus, the generated Java code of B2Program was used for the benchmarks.
A performance comparison of the Java model checker, ProB, and other generated model
checkers, was already done and discussed in chapter 4 of [44].

All benchmarks are run on a MacBook Pro with 16 GB of RAM and a M1 Pro chip. ProB
CLI has been built locally, to run an ARM version instead of an emulated Intel version of

45

ProB. Hence, version 1.12.1-final15 was used with SICStus16 4.8.017. SICStus states, that
its emulated Intel/x86 version “works well on newer Macs with Apple Silicon hardware,
using the macOS built-in Intel emulator”[41]. They further say, that the native Apple
Silicon version lacks the JIT compiler, and thus, the emulated Intel version is faster[41].
To determine the performance difference between the two versions, and to select the best
version for the final benchmarks, I executed model checking on some of the benchmarked
machines and measured the time. During these model checks, the ARM version performed
much better compared to the emulated Intel version. To be precise, the ARM version
performed on most machines almost twice as fast as the Intel version 18. This suggests that
ProB does not benefit much from the JIT compiler. As a result, the ARM version was used
for the benchmarks.

For the final benchmarks, each file was model checked ten times with a timeout of one
hour for each run. From these model checks, the median runtimes were then measured and
compared. The median was chosen as the metric, as it represents the middle value where
half of the results have longer runtimes and the other half have shorter runtimes. This
approach helps to reduce the impact of outliers or significantly deviating runtimes, ensuring
they have less influence on the overall comparison. ProB was benchmarked with machine
files twice: with the parameter -p OPERATION_REUSE full, and without. The same applies
for ProB’s model checking on the generated Prolog files. With this parameter set, ProB
tries to reuse previously computed operation effects to avoid redundant calculations.

10 different machines have been benchmarked, most of them have already been benchmarked
and described in [44]. Both Train machines and the CAN Bus model implement set and
relational operations. As in [44], a modified version of [32] of the Train interlocking from [1]
has been used. This version has only ten routes. A second modified version of Train with
9 routes has also been benchmarked. In the second version (Train_POR), partial order
reduction is applied manually, as B2Program can currently not handle some of the original
constructs.

Other machines are the Volvo Cruise Controller and the Landing Gear model (from Event-
B [30]) which focus mainly on boolean variables and logical operations [44]. The Landing
Gear model does also contain a large number of set operations.

An insertion sort algorithm (originally from Event-B [40]) with 1000 elements, which
contains relational operations has also been benchmarked.

A version of Lift from [46], which increments and decrements a counter between 0 and
1,000,000 (instead of 0 and 100) is being used as a simple model with a large state space.

The N-Queens problem is implemented in two B models, for N = 4 and N = 8. These

15
Revision 56aa9d8bf76e49a7f300a3a550352c3877e13d1b

16
https://sicstus.sics.se/index.html

17
arm64-darwin-20.1.0 version

18
When model checking with ProB. This might be a ProB issue or could be related to the generated

Prolog code.

46 7 EXPERIMENTS

models have been benchmarked as they focus on constraint solving capabilities.

Lastly, Nokia’s NoTa (Network on Terminal architecture) model [38] was benchmarked as
in [44]. It contains many set operations, power sets, and quantified constructs, and was
rewritten to apply B2Program. This modified version has fewer transitions but does not
affect the performance of ProB.

C
A
N

B
us

C
ru

is
e
C
on

tr
ol
le
r

L
ift

L
an

di
ng

G
ea

r

N
oT

a

Q
ue

en
s
4

Q
ue

en
s
8

so
rt
_
10

00

T
ra

in
_
P
O
R

T
ra

in

0.01

0.1

1

10

100

ProB Prolog OP_REUSE Prolog Java (B2Program)

Figure 8: Speedups Relative to ProB with OP_REUSE

The results of the benchmarks are presented in figure 8 and listed in more detail in table 1
to 5 in Appendix A. On the one hand, the impact of ProB’s operation reuse can be seen,
when both of ProB’s benchmarks are compared.

ProB with and without Operation Reuse. First, we will compare ProB with Operation
Reuse to ProB without this property. In average, model checking with operation reuse
is about two to three times as fast, as without operation reuse. Both Queens machines
seem to be not impacted by the flag, which might be lead back to their small state space.
The most notable speedup can be seen on the NoTa machine, where model checking with
operation reuse is about 6 times as fast as without. However, on the Lift model, model
checking with operation reuse performs worse than without.

ProB Running Prolog with and without Operation Reuse. On the other hand, when
comparing both Prolog benchmarks, operation reuse has almost no notable impact. The

47

only machine profiting from the flag is Volvo’s Cruise Controller. With operation reuse,
ProB model checks the Prolog code of this Cruise Controller about 40 percent faster as
without. Similar to the comparison of ProB’s benchmarks, it can again be seen that the
Lift model performs slightly better without operation reuse. This comparison leads to the
assumption, that operation reuse might not be fully supported for Prolog code using the
XTL interface.

ProB Running Prolog and Machine Files with Operation Reuse. The performance increase
in ProB with operation reuse is notable, resulting in the best results overall when comparing
with Prolog. The only machines, where Prolog outperforms ProB are the Cruise Controller
and the Lift model.

ProB Running Prolog and Machine Files without Operation Reuse. As ProB may not
fully support operation reuse for Prolog yet, we will also compare ProB’s and Prolog’s
benchmarks, both without operation reuse. The results are shown in figure 9. Here, the

C
A
N

B
us

C
ru

is
e
C
on

tr
ol
le
r

L
ift

L
an

di
ng

G
ea

r

N
oT

a

Q
ue

en
s
4

Q
ue

en
s
8

so
rt
_
10

00

T
ra

in
_
P
O
R

T
ra

in

0.01

0.1

1

10

100

Prolog Java (B2Program)

Figure 9: Speedups Relative to ProB without OP_REUSE

results are more balanced, as ProB executing the generated Prolog code outperforms ProB
running the machine files in 6 machines, and vice versa in 4 machines. The highest speedup
is again achieved when benchmarking the Lift model, which is for Prolog about 2.6 times
as fast as ProB model checking the machine file. Model checking Train_POR, where partial
order reduction has been applied manually, yields additionally better results for Prolog

48 7 EXPERIMENTS

and ProB than model checking Train. Notable are also both benchmarks on the Queens
models, where ProB is much faster when model checking the machine files. In numbers,
ProB needs for both versions just 50 milliseconds. Prolog in contrast needs 8.6 seconds,
which is a speedup of more than two orders of magnitude for ProB. On the one hand,
this is due to ProB’s constraint solving capabilities[44]. On the other hand, to recheck the
results I implemented a simple model checker in Prolog.

Examining the Results of the Queens Benchmarks. The queens machine has only one
transition: from the initial state to the state where the modeled problem is solved. After the
problem is solved, this transition can be executed again, but does not alter the state further.
This single relevant transition enabled it to implement a simple model checker. First,
the model checker calculated the initial state. Then, this state was checked for invariant
violations using prop/2. Using Prolog’s findall, every valid transition and hence every
successor state has been calculated and checked again with prop/2. The performance was
measured using statistics(walltime, ...) which provided completely different results
than the previous benchmarks. Using this simple model checker, the Queens machines
have been model checked in Prolog within 60 milliseconds. ProB includes also many other
checks and calculations, which this simple model checker does not implement. However,
the difference in performance is remarkable. As ProB executes the same generated Prolog
code as this simple model checker, one reason for this behavior could be the used Prolog
data structure to represent machine states. The generated Prolog code represents machines
as ordered lists, as already discussed in section 6.4. It might be the case, that this data
structure is not optimal for ProB combined with the XTL interface. However, if this is
the case, this would imply that the other benchmarked machines would also have a much
higher possible speedup. This performance issue can be further examined using different
data structures representing the machines in Prolog.

Comparison with Java. When comparing the results with the Java model checking code
generated by B2Program, we see that this Java model checker dominates in most machines.
When model checking the CAN Bus, the Java model checker performs more than an order
of magnitude faster than ProB with operation reuse, and the relative speedup is even
faster when comparing with Prolog. Notable are also the benchmarks of the Lift model,
where Java performs almost two orders of magnitude faster than ProB with operation reuse.
However, when solving the Queens Problems, Java is more than two orders of magnitude
slower than ProB, and one order of magnitude slower than the Prolog benchmarks.

While benchmarking the Cruise Controller, ProB model checking the generated Prolog
code with operation reuse outperforms every other model checking benchmark. Meanwhile,
this is the only machine where Prolog achieved the fastest results. MPPCG’s generated
Prolog code can be further optimized in terms of performance. That could be achieved
by reducing the lines of generated Prolog code. This requires an improved detection of
evaluated expressions in the PrologOutputEnvironment. The invariant checking can also be
optimized, since at the current state, the invariants have been split into different predicates.
Thus, repetitive evaluation of code might occur, as the variables keeping the evaluation
of expressions are not passed between the different Prolog predicates. And, as already

49

mentioned, the implementation of the B types for Prolog, as well as the state representation,
can be further optimized.

8 Related Work

Partial Evaluation. An example use of partial evaluation are the three Futamura projections
introduced in [15]. The first Futamura projection is defined by specializing an interpreter for
given source code. This results in an executable interpreter that only runs this given source
code and is therefore faster than the original interpreter. The second Futamura projection
is the specialization of the specializer for that interpreter of the first Futamura projection.
This projection yields a resulting compiler. The third and last Futamura projection is
specializing the specializer of the second projection. Hence, a tool to convert any interpreter
to a compiler is created.

Some of the existing partial evaluation tools for Prolog are the online partial evaluator
ECCE [35] and the offline partial evaluator Logen [35].

Code Generators. B2Program is a code generator that inspired the development of MPPCG.
B2Program has far more features than MPPCG has, like generating model checking code
for Java, C++, Rust, and JavaScript. Further, it implements animation of the generated
JavaScript code [45]. However, B2Program is restricted to a subset of the B Method as input
language, while MPPCG implements the foundation of supporting different input languages.
There are also many other code generators for the B Method (or Event-B) [8, 14, 12, 36, 40],
but also code generators for various other use cases, like generating parser generators [39]
or reverse engineering tools assisting and simplifying the development process [23].

Model Checker. MPPCG does currently not generate executable model checking code.
However, the generated Prolog code supports the XTL interface, such that model checking
can be executed by ProB[33, 34]. ProB is a model checker and animator with several features
and was already described in the previous chapters. Another existing model checkers is
SPIN[25, 26] which is used for model checking concurrent systems. The systems are modeled
using the Promela language and properties are specified in linear temporal logic (LTL).
JavaPathFinder[22] is a model checker for Java programs. It checks race conditions and
deadlocks and implements backtracking features. The Java code can also be translated to
Promela, to model check the code with SPIN.

50 9 CONCLUSION AND FUTURE WORK

9 Conclusion and Future Work

This thesis presented MPPCG, a code generator capable of generating code for programming
languages of different programming paradigms. MPPCG demonstrated that it is possible to
create such an extendable, maintainable, and versatile code generator, with some advantages
but also some drawbacks. We discussed the flexibility compared to B2Program and have
seen, that Java and Prolog code can be generated efficiently. However, this approach faces
issues in terms of redundancy. Separating the generator code of the programming languages
enables the implementation of new output languages, but requires redundant code to keep
this separation. This redundancy increases the development time for new languages, but
grants an improved maintainability.

We have seen in listing 34, that B2Program adds additional parameters to existing methods,
in order to support new languages. However, with an increasing amount of supported
languages methods get complex over time and it might become difficult to determine which
parameter belongs to which output language. With the language separation of MPPCG,
each output language contains only its required variables and maintaining the language
is less difficult. In the future, it can be studied, if it is possible or even recommended
to weaken the separation, at least between output languages of similar programming
paradigms, to avoid the discussed redundancy. This could either be by using for example
an ObjectOrientedOutputEnvironment or by utilizing StringTemplate’s template inheri-
tance, to minimize redundancy across templates. We also discussed possible improvements
for B2Program in section 6.5 which could enable B2Program to support other programming
paradigms.

The generation of Prolog code implements some optimizations in terms of a reduced number
of generated lines of code. MPPCG’s design enables also the development of code generation
for different versions of the same language. This can for example be an optimized and
regular version of the same output language. In the performance analysis, we have seen some
strengths and weaknesses of the generated Prolog code. We have seen, that it does not profit
from ProB’s operation reuse property and that model checking the Prolog code in ProB
performs similar to model checking the machine files. The performance of the generated
code can be improved by a different state representation and by enhanced implementations
of the B operators. We have also seen, that B2Program generates fast model checking code,
which outperforms the other model checking benchmarks on many models.

In the future, MPPCG will be able to generate model checking code for Java. However, this
will require more implementations regarding the analysis of the machine files to efficiently
use various model checking techniques. This includes also constraint solving, which is
currently not implemented in the generated Prolog code. At the current state MPPCG
supports only a subset of B, which will be enlarged in the future.

51

Appendices

A Experiment Results

Table 1: ProB with Operation Reuse

Machine Median (sec) States Transitions
CAN Bus 15.40 132,598 340,264
Cruise Controller 0.86 1,360 26,148
Lift 65.94 1,000,001 2,000,000
Landing Gear 25.09 131,328 884,368
NoTa 16.68 80,718 1,797,352
Queens 4 0.50 3 4
Queens 8 0.50 3 4
Sort 1000 184.51 500,500 500,500
Train POR 14.56 24,635 62,224
Train 535.07 1,044,335 4,515,172

Table 2: ProB without Operation Reuse, Speedup Relative to ProB with Operation

Reuse

Machine Median (sec) Speedup States Transitions
CAN Bus 31.96 0.482 132,598 340,264
Cruise Controller 1.53 0.562 1,360 26,148
Lift 49.53 1.331 1,000,001 2,000,000
Landing Gear 114.73 0.219 131,328 884,368
NoTa 101.40 0.164 80,718 1,797,352
Queens 4 0.50 1.000 3 4
Queens 8 0.50 1.000 3 4
Sort 1000 233.70 0.790 500,500 500,500
Train POR 40.58 0.359 24,635 62,224
Train 1995.90 0.268 1,044,335 4,515,172

52 A EXPERIMENT RESULTS

Table 3: Prolog in ProB with Operation Reuse, Speedup Relative to ProB with Operation

Reuse

Machine Median (sec) Speedup States Transitions
CAN Bus 31.69 0.486 132,598 340,264
Cruise Controller 0.28 3.071 1,360 26,148
Lift 21.40 3.081 1,000,001 2,000,000
Landing Gear 68.71 0.365 131,328 884,368
NoTa 66.05 0.253 80,718 1,797,352
Queens 4 8.71 0.057 3 4
Queens 8 8.70 0.057 3 4
Sort 1000 > 3600 < 0.051 500,500 500,500
Train POR 26.66 0.546 24,635 62,224
Train 2256.72 0.237 1,044,335 4,515,172

Table 4: Prolog in ProB without Operation Reuse, Speedup Relative to ProB with and

without Operation Reuse

Machine Median (sec) Speedup (OP_REUSE) Speedup States Transitions
CAN Bus 30.93 0.498 1.033 132,598 340,264
Cruise Controller 0.72 1.194 2.125 1,360 26,148
Lift 19.18 3.439 2.583 1,000,001 2,000,000
Landing Gear 67.67 0.371 1.696 131,328 884,368
NoTa 65.54 0.255 1.547 80,718 1,797,352
Queens 4 8.61 0.058 0.058 3 4
Queens 8 8.61 0.058 0.058 3 4
Sort 1000 > 3600 < 0.051 < 0.0649 500,500 500,500
Train POR 26.16 0.556 1.551 24,635 62,224
Train 2,222.95 0.241 0.898 1,044,335 4,515,172

Table 5: B2Program’s Generated Java Code, Speedup Relative to ProB with and without

Operation Reuse

Machine Median (sec) Speedup (OP_REUSE) Speedup States Transitions
CAN Bus 1.41 10.957 22.747 132,598 340,264
Cruise Controller 0.39 2.205 3.923 1,360 26,148
Lift 0.78 85.077 63.903 1,000,001 2,000,000
Landing Gear 4.81 5.221 23.877 131,328 884,368
NoTa 3.64 4.589 27.895 80,718 1,797,352
Queens 4 82.66 0.006 0.006 3 4
Queens 8 80.26 0.006 0.006 3 4
Sort 1000 64.05 2.881 3.649 500,500 500,500
Train POR 6.08 2.394 6.674 24,635 62,224
Train 430.40 1.243 4.637 1,044,335 4,515,172

List of Figures

1 Input Code to Output Code [4] . 7
2 MPPCG . 20
3 AST with Three Nodes . 21
4 MPPCG’s Parser Generator Adapter . 23
5 MPPCG’s Rendering Mechanism . 27
6 From B Machine to ProB Execution . 33
7 Two Different AVL Trees . 39
8 Speedups Relative to ProB with OP_REUSE 46
9 Speedups Relative to ProB without OP_REUSE 47

List of Tables

1 ProB with Operation Reuse . 51
2 ProB without Operation Reuse, Speedup Relative to ProB with Operation

Reuse . 51
3 Prolog in ProB with Operation Reuse, Speedup Relative to ProB with

Operation Reuse . 52
4 Prolog in ProB without Operation Reuse, Speedup Relative to ProB with

and without Operation Reuse . 52
5 B2Program’s Generated Java Code, Speedup Relative to ProB with and

without Operation Reuse . 52

List of Listings

1 Example B Machine of a Lift Controller . 5
2 Language Exp in [11] . 10
3 Pseudocode for Algorithm W in [11] Rewritten in Kotlin 10
4 Syntax of Types and Type-Schemes in [24, 11] 11
5 Nested Expressions in B . 12
6 Listing 5 Rendered to Java Code by B2Program 13
7 Listing 5 Rewritten in Prolog . 13
8 B2Program’s Java Template for Unary Expressions 14
9 B2Program’s Implementation to Generate Unary Expressions 14
10 Extension Function for Sets . 16
11 Null-check in Java . 16
12 Null-check in Kotlin . 16
13 Example Kotlin Data Class . 17
14 Example String Template in Kotlin . 17
15 Part of MPPCG’s ExpressionVisitor using SableCC’s Visitor Pattern 24
16 Example convert-Method for Expressions 24
17 An Example Mapping of Template Variable Names to its Values 26
18 Example execPath File . 28

53

54 LIST OF LISTINGS

19 Excerpt of the CAN Bus Machine File . 31
20 Excerpt of the CAN Bus Java Code . 32
21 Part of a B Machine and its Prolog Representation 33
22 Example B Set and its Generated Prolog Code 34
23 Excerpt of the CAN Bus Prolog Code . 34
24 Default Equality Check in Prolog . 35
25 Optimized equality check in Prolog . 35
26 Untracked Variables in Prolog . 36
27 Tracked Variables in Prolog . 36
28 Tracked Expressions in Prolog . 36
29 Code Extract of a Modified Version of the Train Model 37
30 Comprehension Set in Prolog . 38
31 AVL Representations by SICStus Prolog’s AVL Library 40
32 Rendering of B’s Machine Initialization in B2Program 41
33 Rendering of B’s Machine Initialization in MPPCG 41
34 Rendering of a Tuple/Couple in B2Program (Listing 5 in [46]) 42
35 Rendering of a Tuple/Couple in MPPCG 43
36 Excerpt of the CAN Bus Java Code of B2Program 44

REFERENCES 55

References

[1] Jean-Raymond Abrial. Modeling in Event-B: System and Software Engineering. New
York, NY, USA: Cambridge University Press, 2010.

[2] Jean-Raymond Abrial. The B-Book: Assigning Programs to Meanings. New York, NY,
USA: Cambridge University Press, 1996.

[3] G. M. Adelson-Velskii and E. M. Landis. “An Algorithm for Organization of Informa-
tion”. In: Proceedings of the USSR Academy of Sciences 146. Ed. by Myron J. Ricci.
1962, pp. 263–266.

[4] Alfred V. Aho and Monica S. Lam. Compilers: Principles, Techniques, and Tools.
2nd ed. Addison-Wesley, 1986. Chap. The Structure of a Compiler.

[5] R. Backhouse et al. “Generic Programming”. In: Advanced Functional Programming.
Vol. 1608. LNCS. Berlin, Heidelberg: Springer, 1999, pp. 28–115. doi: 10.1007/
10704973_2.

[6] Patrick Behm et al. “METEOR: A Successful Application of B in a Large Project”. In:
Formal Methods. Vol. 1708. LNCS. Berlin, Heidelberg: Springer, Jan. 1999, pp. 369–
387. doi: 10.1007/3-540-48119-2_22.

[7] Richard Bonichon et al. “LLVM-Based Code Generation for B”. In: Formal Methods:
Foundations and Applications. Vol. 8941. LNCS. Cham: Springer, Jan. 2015, pp. 1–16.
doi: 10.1007/978-3-319-15075-8_1.

[8] Néstor Catano and Víctor Rivera. “EventB2Java: A code generator for Event-B”. In:
NASA Formal Methods. Vol. 9690. LNCS. Cham: Springer, June 2016, pp. 166–171.

[9] Edmund M. Clarke et al. “Model Checking and the State Explosion Problem”. In: Tools
for Practical Software Verification. Vol. 7682. LNCS. Berlin, Heidelberg: Springer,
2012, pp. 1–30. isbn: 978-3-642-35746-6. doi: 10.1007/978-3-642-35746-6_1.

[10] ClearSy. Atelier B, User and Reference Manuals. 06.2023. url: http : / / www .
atelierb.eu.

[11] Luís Damas and Robin Milner. “Principal Type-Schemes for Functional Programs”.
In: Symposium on Principles of programming languages. POPL. ACM, Jan. 1982,
pp. 207–212. doi: 10.1145/582153.582176.

[12] Andrew Edmunds. “Templates for Event-B Code Generation”. In: Abstract State
Machines, Alloy, B, TLA, VDM, and Z. Vol. 8477. LNCS. Berlin, Heidelberg: Springer,
2014, pp. 284–289. isbn: 978-3-662-43652-3.

[13] Martin Fowler. Patterns of enterprise application architecture. Boston, MA: Addison-
Wesley, 2015.

[14] Andreas Fürst et al. “Code generation for Event-B”. In: Integrated Formal Methods.
Vol. 8739. LNCS. Cham: Springer, 2014, pp. 323–338.

https://doi.org/10.1007/10704973_2
https://doi.org/10.1007/10704973_2
https://doi.org/10.1007/3-540-48119-2_22
https://doi.org/10.1007/978-3-319-15075-8_1
https://doi.org/10.1007/978-3-642-35746-6_1
http://www.atelierb.eu
http://www.atelierb.eu
https://doi.org/10.1145/582153.582176

56 REFERENCES

[15] Yoshihiko Futamura. “Partial Evaluation of Computation Process–An Approach to
a Compiler-Compiler”. In: Higher-Order and Symbolic Computation 12 (Dec. 1999),
pp. 381–391.

[16] E.M. Gagnon and L.J. Hendren. “SableCC, an object-oriented compiler framework”. In:
Proceedings. Technology of Object-Oriented Languages. TOOLS 26 (Cat. No.98EX176).
Santa Barbara, CA, USA: IEEE, Aug. 1998, pp. 140–154. doi: 10.1109/TOOLS.1998.
711009.

[17] Erich Gamma et al. Design Patterns. Elements of Reusable Object-Oriented Software.
Prentice Hall, July 1997.

[18] Susan Gerhart, D. Craigen, and Ted Ralston. “Case study: Paris metro signaling
system”. In: IEEE Software 11.1 (Jan. 1994), pp. 28–32. doi: 10.1109/MS.1994.
1279941.

[19] GitHub StringTemplate 4. 06.2023. url: https://github.com/antlr/stringtemplate4/
blob/master/doc/index.md.

[20] Patrice Godefroid. Partial-order methods for the verification of concurrent systems:
an approach to the state-explosion problem. Vol. 1032. LNCS. Springer, 1996.

[21] James Gosling. Java: an Overview. Feb. 1995.
[22] Klaus Havelund and Thomoas Pressburger. “Model checking JAVA programs us-

ing JAVA PathFinder”. In: International Journal on Software Tools for Technology
Transfer (Mar. 2000), pp. 366–381. doi: 10.1007/s100090050043.

[23] Hibernate. 07.2023. url: https://hibernate.org/tools/.
[24] Roger Hindley. “The Principal Type-Scheme of an Object in Combinatory Logic”. In:

Transactions of the American Mathematical Society 146 (Dec. 1969), pp. 29–60.
[25] Gerard J. Holzmann. “The model checker SPIN”. In: IEEE Transactions on Software

Engineering 23.5 (May 1997), pp. 279–295. doi: 10.1109/32.588521.
[26] Gerard J. Holzmann. The Spin Model Checker: Primer and Reference Manual. Addison-

Wesley, Sept. 2003. isbn: 0-321-22862-6.
[27] Paul Hudak. “Conception, Evolution, and Application of Functional Programming

Languages”. In: ACM Computing Surveys 21.3 (Sept. 1989), pp. 359–411. doi: 10.
1145/72551.72554.

[28] Kotlin. 06.2023. url: https://kotlinlang.org/docs/comparison-to-java.html.
[29] Kotlin Multiplatform. 06.2023. url: https://kotlinlang.org/lp/multiplatform/.
[30] Lukas Ladenberger et al. “Validation of the ABZ landing gear system using ProB”.

In: International Journal on Software Tools for Technology Transfer 19 (Apr. 2017),
pp. 187–203. doi: 10.1007/s10009-015-0395-9.

[31] Michael Leuschel. “Operation Caching and State Compression for Model Checking
of High-Level Models”. In: Integrated Formal Methods. Vol. 13274. LNCS. Cham:
Springer, June 2022, pp. 129–145. isbn: 978-3-031-07727-2.

https://doi.org/10.1109/TOOLS.1998.711009
https://doi.org/10.1109/TOOLS.1998.711009
https://doi.org/10.1109/MS.1994.1279941
https://doi.org/10.1109/MS.1994.1279941
https://github.com/antlr/stringtemplate4/blob/master/doc/index.md
https://github.com/antlr/stringtemplate4/blob/master/doc/index.md
https://doi.org/10.1007/s100090050043
https://hibernate.org/tools/
https://doi.org/10.1109/32.588521
https://doi.org/10.1145/72551.72554
https://doi.org/10.1145/72551.72554
https://kotlinlang.org/docs/comparison-to-java.html
https://kotlinlang.org/lp/multiplatform/
https://doi.org/10.1007/s10009-015-0395-9

REFERENCES 57

[32] Michael Leuschel, Jens Bendisposto, and Dominik Hansen. “Unlocking the Mysteries
of a Formal Model of an Interlocking System”. In: Proceedings Rodin Workshop. 2014.

[33] Michael Leuschel and Michael Butler. “ProB: A Model Checker for B”. In: FME
2003: Formal Methods. Vol. 2805. LNCS. Berlin, Heidelberg: Springer, Sept. 2003,
pp. 855–874.

[34] Michael Leuschel and Michael Butler. “ProB: An Automated Analysis Toolset for the
B Method”. In: International Journal on Software Tools for Technology Transfer 10.2
(Mar. 2008), pp. 185–203.

[35] Michael Leuschel et al. “The Ecce and Logen Partial Evaluators and their Web
Interfaces”. In: Partial Evaluation and Semantics-Based Program Manipulation. New
York, NY, USA: Association for Computing Machinery, Jan. 2006, pp. 88–94. doi:
10.1145/1111542.1111557.

[36] Dominique Méry and Neeraj Kumar Singh. “Automatic code generation from Event-B
models”. In: Proceedings of the 2nd Symposium on Information and Communication
Technology. New York, NY, USA: Association for Computing Machinery, Oct. 2011,
pp. 179–188.

[37] Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, 1997. isbn:
0-13-629155-4.

[38] Ian Oliver. “Experiences in Using B and UML in Industrial Development”. In: Formal
Specification and Development in B. Berlin, Heidelberg: Springer, 2007, pp. 248–251.
doi: 10.1007/11955757_20.

[39] Terence J. Parr and Russell W. Quong. “ANTLR: A predicated-LL (k) parser genera-
tor”. In: Software: Practice and Experience 25.7 (July 1995), pp. 789–810.

[40] Victor Rivera et al. “Code generation for Event-B”. In: International Journal on
Software Tools for Technology Transfer 19 (May 2015), pp. 31–52. doi: 10.1007/
s10009-015-0381-2.

[41] SICStus Prolog. 07.2023. url: https://sicstus.sics.se/download4.html.
[42] The Pragmatic Programmer: From Journeyman to Master. Amsterdam: Addison-

Wesley, 1999.
[43] Jean-Christophe Voisinet. “JBTools: An experimental platform for the formal B

method”. In: Proceedings of the inaugural conference on the Principles and Practice
of programming. Maynooth, County Kildare, Ireland: National University of Ireland,
June 2022, pp. 137–139.

[44] Fabian Vu, Dominik Brandt, and Michael Leuschel. “Model Checking B Models
via High-Level Code Generation”. In: Formal Methods and Software Engineering.
Vol. 13478. LNCS. Cham: Springer, Oct. 2022, pp. 334–351. doi: 10.1007/978-3-
031-17244-1_20.

https://doi.org/10.1145/1111542.1111557
https://doi.org/10.1007/11955757_20
https://doi.org/10.1007/s10009-015-0381-2
https://doi.org/10.1007/s10009-015-0381-2
https://sicstus.sics.se/download4.html
https://doi.org/10.1007/978-3-031-17244-1_20
https://doi.org/10.1007/978-3-031-17244-1_20

58 REFERENCES

[45] Fabian Vu, Christopher Happe, and Michael Leuschel. “Generating Domain-Specific
Interactive Validation Documents”. In: Formal Methods for Industrial Critical Systems.
Vol. 13487. LNCS. Cham: Springer, Sept. 2022, pp. 32–49. isbn: 978-3-031-15007-4.
doi: 10.1007/978-3-031-15008-1_4.

[46] Fabian Vu et al. “A Multi-target Code Generator for High-Level B”. In: Proceedings
iFM 2019. Vol. 11918. LNCS. Cham: Springer, Nov. 2019, pp. 456–473. doi: 10.1007/
978-3-030-34968-4_25.

[47] Robert G. Wilson Leslie B. amd Clark. Comparative Programming Languages. 3rd ed.
Addison-Wesley, 2000. isbn: 0201710129.

https://doi.org/10.1007/978-3-031-15008-1_4
https://doi.org/10.1007/978-3-030-34968-4_25
https://doi.org/10.1007/978-3-030-34968-4_25

	Introduction and Motivation
	Background
	Programming Paradigms
	B Method
	Model Checking
	Code Generation
	B2Program
	Hindley-Milner Type Inference
	Example Language of the Algorithm
	Type Inference
	Unification

	Partial Evaluation

	Extending B2Program vs. Developing a new Generator
	Design Decisions
	Kotlin vs. Java
	Template Engine

	Multi Programming Paradigm Code Generator
	Generator
	Lexer and Parser
	Intermediate Code
	Type Inference Module
	Code Rendering
	Testing Framework
	Working with MPPCG

	Language Implementations
	Java Implementation
	Prolog Implementation
	Optimizer
	Problems and Improvements
	Comparing MPPCG with B2Program

	Experiments
	Related Work
	Conclusion and Future Work
	Appendix A Experiment Results
	List of Figures
	List of Tables
	List of Listings

