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Abstract

In this thesis I develop an additional constraint solving backend for the PROB tool, which translates
B predicates to s(CASP), a form of Answer Set Programming. Furthermore, the presented frame-
work implements an interface enabling B predicates to be solved by the s(CASP) engine within
PROB.

This work particularly focuses on

• the implementation and overall design of the framework and

• on evaluating its performance by comparing it to the native, Kodkod and Z3 backend of PROB.

The implemented framework is capable of translating numerous B predicates to s(CASP) and is
able to find solutions in cases where Kodkod and Z3 are unable to follow. However, the work’s
empirical evaluation shows that this new approach is not quite on par with the other employed
backends in terms of performance. This is mainly due to the suboptimal implementation of predi-
cates computing functions in s(CASP). Nevertheless, in some cases the s(CASP) engine showed
promising performances.

This work poses a foundation for future development regarding the translation of B predicates to
Answer Set Programming and s(CASP) specifically. Further, this framework can be used to aid the
verification of other solvers’ correctness.
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1 Introduction

In today’s world software is prominently involved in everyday life. As a reason of that one wants to
ensure that computer systems related to a specification operate as intended. In that regard, it is
crucial for some applications to be verified in order to avoid severe damage when being deployed. A
program’s verification is achievable by using formal methods. Formal methods enable one to proof
via tool support some specified system’s correctness in a mathematical way, and thus validating its
desired behavior.

In this thesis I aim towards extending the existing base of constraint solvers for the B-Method [Abr96],
used in the PROB [LB03, LB08] tool, by providing an additional constraint solving backend. In par-
ticular, this work implements a Prolog [CR93] framework translating B predicates to Answer Set
Programming [LW92, Lif99, Lif19] to then be solved by s(CASP) [ACS+18] within PROB.

This thesis is structured as follows. Section 1.1 gives an overview of Prolog and Section 1.2
presents the concept of formal methods. Related work is discussed in Section 1.3. Furthermore, in
Section 1.4 I introduce Answer Set Programming and the chosen implementation for this translator
s(CASP). The main contribution of this work consists of Section 2 illustrating the translation pro-
cess and Section 3 empirically evaluating this new approach and comparing it to already employed
backends of PROB. Afterwards, future work is presented in Section 4 whereas Section 5 eventually
concludes the presented work.

1.1 Prolog

The translator presented in this thesis is implemented in Prolog [CR93], which is a logic pro-
gramming language. Prolog has been implemented in many dialects such as Ciao [BCC+97],
SICStus [CWA+88], SWI [WSTL12] and others. This framework specifically utilizes both Ciao
and SICStus Prolog. The following documentation regarding Prolog itself applies to either one of
the aforementioned dialects. Foremost, Section 1.1.1 gives a brief overview of Prolog’s general
syntax. Afterwards, the theoretical approach of searching for models in Prolog is introduced in
Section 1.1.2, which also constitutes the baseline for s(CASP).

1.1.1 Syntax

In Prolog there is just a single data type called term. A term can express several subtypes, which
are shown in Figure 1.
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Subtype Example
Atom hitchhiker
Number 42
Variable Var
Compound term hitchhiker(42, Var)

Figure 1: Subtypes of Prolog Terms.

Atoms are ground and immutable values. In general, atoms are merely words beginning with a
lowercase letter, for instance hitchhiker. However, various operators such as equality, the logi-
cal disjunction or character strings wrapped in single quotes, e.g. ’hello there’, are atoms too.
Numbers express the primitive types float and integer. Variables are immutable in Prolog. Usually
they begin with an uppercase letter. Though, a variable can be declared as anonymous by adding
an underscore to its designation before the first character. The sole underscore is the anonymous
variable which is always a singleton even if it is used multiple times in the same scope. Compound
terms consist of a functor, which is an atom, and an arbitrary amount of terms as arguments.
Therefore, an atom is also a compound term with arity 0, for instance hitchhiker/0. Compound
terms containing no variables are called ground.

Furthermore, lists are a frequently used in Prolog. A list is oftentimes denoted by [Head|Tail].
The empty list can be expressed by [].

A Prolog program consists of rules and facts. Rules or clauses of the form Head :- Body can be
viewed as a logic implication Body ⇒ Head, i.e. if the body is satisfied then the head is also true.
Facts are essentially rules with an empty body, meaning that the body is true. For example, the
first row of Figure 2 is a fact and rows two and three express a rule. Predicate calls are also called
goals. Goals in some body can be connected together with conjunctions or disjunctions denoted
by ,/2 and ;/2.

1: is_list([]).
2: is_list([_|T]) :-
3: is_list(T).

Figure 2: An Example for a Prolog Predicate.

Finally, a predicate as depicted in Figure 2 can be viewed as a collection of rules and facts which
all share the same functor and arity.

1.1.2 Semantics and Solving

Consider the following straightforward Prolog program portrayed in Figure 3.
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p :- a, b.
a :- b.
b.

Figure 3: A propositional logic Prolog program.

As mentioned above, a Prolog program consists of Prolog predicates. From a semantic perspective,
most Prolog predicates can be viewed as first-order logic predicates. Hence, the Prolog clause
p :- a, b. corresponds to the disjunction of literals

a ∧ b ⇒ p ≡ p ∨ ¬a ∨ ¬b (1)

in a pure logical sense. By virtue of just one literal being positive, the clause is called a Horn
clause [Hor51]. A Prolog program can hence be seen as a theory of horn clauses. Inference rules
can be applied to reach further conclusions on the base of a theory’s premises.

In general, inference rules take an arbitrary number of premises into account yielding a con-
clusion. For example, modus ponens is an inference rule from propositional logic, which takes two
premises of the form p ⇒ q; p and results in q. Another rule of inference utilized in propositional
as well as in predicate logic is resolution [DP60]. Resolution allows one to check whether a logic
formula is satisfiable or not by refutation. That is to say in a similar but more general way to modus
ponens, resolution combines two clauses and produces a new clause called resolvent. The resol-
vent contains all the literals of the two original clauses except for complementary ones, as depicted
in Figure 4. In case of being unable to eliminate complementary literals, resolution fails.

Clause 1 Clause 2 Resolvent
p ¬p success
¬p ¬p failure
¬p ∨ q p q
p ∨ q a ∨ b ∨ ¬q p ∨ a ∨ b

Figure 4: An Example for Resolution.

In the first example of Figure 4 the first clause corresponds to the theory p and the second one to
the denial ¬p, expressing ’does p hold?’. The resolution of those clauses begets success, hence
concluding that p indeed holds since the two complementary literals are eliminated. Failure is
shown in the second example, as no literal can be eliminated when applying resolution. By looking
at the third example one can see that modus ponens is, as a matter of fact, a special case of reso-
lution.

In logic programming the elemental rule of inference that is employed is SLD resolution [Kow74,
AVE82], a refinement of plain resolution. The acronym stands for Selection rule driven Linear reso-
lution for Definite clauses indicating that this approach uses a selection function for literal selection
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and operates on definite clauses, i.e. Horn clauses, in a linear manner. In the instance of Prolog,
the leftmost literal is always selected first, while backtracking is employed in case of failure. Fur-
thermore, linearity is generally comprehended as ’derive a new denial and forget the old one’. An
algorithm [ZS69, Lov70, Luc70] for linear resolution for some program or theory of Horn clauses in
conjunctive normal form (CNF) is given in Figure 5.

1. Select some denial ‹

2. Perform resolution on a clause ’query’ of
the theory and ‹ obtaining the resolvent ‹′

• If ‹′ = success then terminate

• Else set ‹ = ‹′ (forget the old denial)
and continue with step 2

Figure 5: An Algorithm for Linear Resolution [ZS69, Lov70, Luc70].

Anew consider the Prolog program in Figure 3. A query in Prolog consists of some goal which also
may be a compound of multiple goals. In order to illustrate the aforementioned concept, the Prolog
query ?- p., i.e. the denial ¬p or the question whether p is satisfiable given the knowledge base,
yields the SLD tree shown in Figure 6. Albeit Prolog actually uses an extension of regular SLD
resolution the following example still applies.

p :- a, b.
a :- b.
b.

Figure 6: The SLD Tree for the Prolog Program of Figure 3.

An SLD tree portrays the process of SLD resolution for some program, where its root marks the
initial denial. As the resolution of ¬b and b at the bottom node results in success, p holds. The
empty sets located at the tree’s arcs are the respective most general unifiers, which is discussed
subsequently.

Prolog programs in practice do not consist of propositional logic predicates only. Hence, first-order
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logic programs as shown in Figure 7 must also be supported by SLD resolution.

p(A) :- a(A), b(A).
a(0).
a(1).
b(1).

Figure 7: A predicate logic style Prolog program.

Before SLD resolution is applicable to the program of Figure 7 substitution and unification has to be
introduced. A substitution is a mapping of variables to terms. More precisely, some substitution
of the form {A1=t1; : : : ; An=tn} suggests that variable Ai is replaced by term ti ; i ∈ {1; : : : ; n}.
Furthermore, taff = tb denotes the application of some substitution ff to term ta yielding the
substituted term tb. A unifier of two terms tc ; td is a substitution ff so that tcff = tdff holds.
Examples for substitutions and unifiers are given in Figure 8.

Term 1 Term 2 Possible Unifier
p(A) p(a) {A=a}
p(X; Y ) p(q(a); B) {X=q(a); Y=B}
p(a) p(b) not unifiable

Figure 8: Examples for Substitutions and Unifiers.

A composition ff1ff2, with ff1 = {A1=a1; : : : ; An=an} and ff2 = {B1=b1; : : : ; Bn=bm}, of two
substitutions is defined as:

ff1ff2 = {A1=a1ff2} ∪ {Bi=bi |Bi =∈ {A1 : : : An}} (2)

An example for a composition is {A=B; C=c}{B=b;D=d} = {A=b;B=b; C=c;D=d}. Moreover, a
substitution ff1 is more general than ff2 if there is a third substitution  and ff1 = ff2. For instance,
ff1 = {A=a} is more general than ff2 = {A=a;B=b} due to  = {B=b} and ff1 = {A=B} is more
general than ff2 = {A=a;B=a} since there exists  = {B=a}.

In practice, one is interested in the most general unifier, mgu for short. Some substitution ’
is called an mgu for terms t1; t2 if ’ is a unifier and there is no other unifier that is more general
than ’. Robinson showed that if two terms are unifiable there always exists a unique mgu, which
can be computed in linear time [Rob65]. Further algorithms have been proposed throughout the
years [PW76, MM82]. However, this thesis does not focus on the peculiarities of unification. There-
fore, the foregoing algorithms are not discussed in detail.

By making use of unification one is able to perform resolution on terms and clauses in predicate
logic. An algorithm and an illustration is provided in Figure 9 [Rob65].
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1. Select query p(a1; : : : ; an) and denial
¬p(b1; : : : ; bn) of clauses Ca; Cb

2. In order to avoid clashes rename all vari-
ables of clause Ca

3. Compute mgu „ of the query and denial

4. Apply „ to clauses Ca; Cb

5. Execute resolution of proposi-
tional logic on Ca„ and Cb„
and set the resolvent to (Ca„ ∪
Cb„)\{p(a1; : : : ; an)„;¬p(b1; : : : ; bn)„}

Algorithm

1. Ca = p(A) ∨ q(A); Cb = ¬p(b) and se-
lect query p(A) and denial ¬p(b)

2. No clashes can occur in this case

3. mgu „ = {A=b}

4. Ca„ = p(b) ∨ q(b); Cb„ = ¬p(b)

5. Resolvent equals q(b)

Example

Figure 9: Resolution on Clauses of Predicates Logic using Unification [Rob65].

Recalling the Prolog program of Figure 7, one can now perform SLD resolution on predicate logic
programs. The SLD tree of Figure 10 shows the aforesaid mechanism with ?- p(X). as the initial
query. As one can see, failure is encountered in the left leaf, as the resolution of denial ¬b(0)
fails. Hence, the algorithm backtracks to the previous choice point continuing with the next possible
sub-query ¬b(1), which eventually leads to proving that the initial denial ¬p(X) holds.

p(A) :- a(A), b(A).
a(0).
a(1).
b(1).

Figure 10: The SLD Tree for the Prolog Program of Figure 7.

SLD resolution allows for deriving conclusions from a theory or program of Horn clauses in propo-
sitional as well as in predicate logic. Nevertheless, the restriction to Horn clauses restrains one to
use negated calls or literals in the body of a rule. Consequently, Prolog uses an enhanced version
of habitual SLD resolution called SLDNF resolution. Although the two approaches are sometimes
referred to as the same one they differ in reality.

SLDNF resolution enables one to incorporate negation, more precisely Negation as Failure (NF)
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literals, in a rule’s body additional to SLD semantics [CL89, AD94]. Negation as Failure is a non-
monotonic [MD80] inference rule which amounts to declaring a negated ground literal not(p), or
in case of Prolog \+p, as false if the engine is unable to prove that p is true given the knowledge
base [Cla78]. When a negated literal, not(p) for instance, is encountered in the SLDNF inference
process, the solver deploys a new SLDNF computation with not(p) as the initial denial returning
true if the subproof p fails or false in case of success. In some cases not(p) might be semantically
unequal to the logical negation ¬p with respect to NF, as SLDNF resolution is incomplete given an
arbitrary Prolog program [Llo12]. Furthermore, in case of NF deriving failure for a negated goal of
the form not(p(t1; : : : ; tn)) no bindings for variables located in t1; : : : ; tn are returned.

The concept of NF is closely related to the closed-world assumption stating that a truthful state-
ment is known to be true, whereas unknown knowledge is deemed to be false [Rei81]. On the other
hand, there is also the converse open-world assumption, which suggests that some statement
irrespective of knowing its truthfulness may still be true [DS06]. In perspective of actual program-
ming, an open-world assumption system may return unknown for some query indicating a lack of
knowledge for which a system using the close-world assumption would return false disregarding its
dependence to the possibly limited amount of knowledge.

p(A) :- a(A), \+b(A).
a(0).
a(1).
b(1).

Figure 11: An Example for a SLD(NF) Tree.

By slightly altering the program of Figure 7 one can demonstrate the way SLDNF resolution oper-
ates. The SLD(NF) tree of Figure 11 shows how SLDNF resolution obtains the result for a negated
goal by emitting a sub-branch in the derivation.

As a general remark, SLD(NF) resolution per se does not come with any precautions regarding
maintaining consistency with respect to infinite loops or non-termination. Consider Figure 12’s
SLD(NF) cycle, since in this case the depicted graph is not a tree anymore, where it is shown that
for the query ?- p. SLDNF resolution is unable to derive a terminating solution. The graph shows
the first derivation cycle. However, the emitted sub-branch invokes at its core ¬p yielding an infinite
loop.
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p :- \+q.
q :- \+p.

Figure 12: An Example for non-termination for SLD(NF) resolution.

Finally, Prolog implementations are inter alia known for providing an interface to Constraint Logic
Programming (CLP). CLP enables for reasoning with and about constraints in logic program-
ming [JL87]. SICStus Prolog, for instance, includes the CLP(FD) [COC97] library. CLP(FD) allows
for defining constraints over finite domain integers. In particular, integer variables are bound to
an interval which is propagated throughout the program considering all other reciprocal variable
relations. Thus, the initial domain gets continuously restricted to a final interval from which a legal
assignment is available satisfying the underlying constraint or otherwise resulting in a contradiction.
Moreover, the major use cases of constraint logic reasoning over integers or numerical values in
general are declarative arithmetics and solving combinatorial problems. Arithmetical CLP opera-
tions, for instance, are generally designated by adding # as a prefix to ordinary operators. Fur-
thermore, ideas of CLP regarding rationals and reals have been suggested by Holzbaur [Hol95].
Figure 13 shows CLP’s fundamental advantage over standard arithmetic reasoning. The program
on the left hand side throws an instantiation error, whereas the one on the right hand side succeeds
with correct bindings for all variables.

p :-
A = 1,
C is A + B,
B = 2.

Instantiation Error

p :-
A = 1,
C #= A + B,
B = 2.

Succeeding

Figure 13: An Example for CLP(FD) in Prolog.

1.2 The B-Method and PROB

This section is structured as follows. Formal methods are introduced in Section 1.2.1. Section 1.2.2
highlights the B-method, which is incorporated in the PROB tool. PROB, a model checker and
disprover for the B-method, is eventually discussed in Section 1.2.3. The layout of this introduction
is partially inspired by Dunkelau [Dun17].
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1.2.1 Formal Methods

In practical and industrial use cases software testing is prominently involved in order to verify soft-
ware’s correctness. However, it may prove difficult debugging code in a mature state when not
taking any precautions regarding validating correctness during implementation. Therefore, a way
to counter this issue is making use of a specification or requirements describing desired structural
and behavioral properties for some piece of software before beginning with the actual implementa-
tion phase. This can be achieved by employing formal methods.

Formal methods are mathematically based techniques describing system specifications in the field
of software and requirements engineering [Win90, WLBF09, Gho00]. They aim towards designing
zero defect software typically by providing the means of precise requirements definition regarding
implementation, consistency, completeness and correctness [Mil93]. The relation between client
and implementor is often called design by contract [Mey92], i.e. a software’s realization must sat-
isfy its specification.

In general, a desired specification within the realm of formal methods is expressed by a formal spec-
ification language. A formal specification language provides mathematical notions for meticulous
articulation and representation with respect to specifying software’s behavior. Hence, the pairing
of implementation and specification serves as a correctness theorem. Examples for languages are
ASM [Bör03] or the B-method [Abr96].

A formal method solely cannot prove a software’s correctness. Hence, they primarily come with
tool support for validating formulae expressed by formal specification languages. Thereby, formal
methods are able to actively aid the development process.

In practice, formal methods and their application address a broad verity of pragmatic considera-
tions [Win90]. During the development phase formal methods provide means for revealing ambigu-
ities, inconsistencies and incompleteness. Therefore, if used in an early stage, they disclose design
flaws without even necessarily running the underlying application that otherwise may be discovered
during testing yielding a costly production. Furthermore, if used later, the intended behavior of the
underlying software is thereby confirmable for a stable release.

1.2.2 The B-Method

The B-Method is a formal method and contains B, a formal specification language, for development
and verification of software systems [Abr96]. B offers expressive capabilities for software reasoning
and is based on the following three subjects [CM03, Hoa05]:

1. Sets are used for data modeling, which are expressed by the Zermelo-Fraenkel set theory
with the axiom of choice [FBHL73],
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2. state modifications are characterized by general substitutions [Abr96], which allows for de-
terministic and nondeterministic transition and

3. models at different levels of abstraction are denoted by the refinement calculus [BW12].

Two instances for tool support are Atelier B [Ste] and PROB [LB03, LB08]. The latter is further
discussed in Section 1.2.3.

Apart from classical B, the B-method offers additionally Event-B, which serves as an extension
to the traditional formalism [Abr10]. However, in the scope of this work discussing classical B suf-
fices. Therefore, the peculiarities of Event-B are not further considered.

Furthermore, the B-Method provides the means for expressing a system in a theoretical way, called
abstract machines. Abstract machines are generally used to describe specifications or implemen-
tations by providing a space of state and means for transitions (operations).

As a general remark, since this thesis is primarily concerned with translating B predicates to Answer
Set Programming the focus lays more towards expressing predicates than machines. Therefore,
their layout and syntax are merely covered briefly.

Figure 14 shows the basic layout of an abstract machine and provides a simplistic example. An
abstract machine comprises of clauses specifying the machine’s behavior. An arbitrary machine
is structured as follows. Note that the presented structure is incomplete, however sufficient for
introductory purposes. Consider ’The B-book’ by Abrial for further reading [Abr96]. MACHINE
contains the abstract machine’s designation. The clause SETS expresses set definitions, thus con-
structing custom data structures. CONSTANTS and VARIABLES are lists of identifiers, which are
respectively set in PROPERTIES and INITIALISATION. INVARIANT constraints a machine’s state.
Formally, an invariant I is a conjunction of the form I = i1 ∧ · · · ∧ in with ij denoting predicates. An
invariant is intended to be satisfied in every reachable state. Finally, OPERATIONS defines all pos-
sible transitions available. Altering the state when executing a transition may lead to a violation of
the invariant, as variables can possibly be assigned to invalid values. Hence, operations constitute
proof obligations, which need to be satisfied either automatically or interactively supported by the
underlying proof engine [CM03]. In perspective of a machine’s consistency, one is concerned with
the establishment of its invariant. That is to say, for an invariant I applying the general substitution
S, emitted by some operation, the invariant preservation predicate states that the invariant must
still hold, thus expressed formally by

I ⇒ [S]I (3)

declaring S establishes I.

Considering the depicted example in Figure 14 one is able to get a first glance of how abstract
machines are defined in practice. This particular machine specifies a simplistic instance of an elec-
tric car. The only variable in its realm is the battery charge status, which is initially set to 5. The
car possesses just two operations enabling it to move and recharge a battery unit respectively at
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MACHINE
header

SETS
sets

CONSTANTS
identifiers

PROPERTIES
predicate

VARIABLES
identifiers

INVARIANT
predicate

INITIALISATION
substitution

OPERATIONS
operations

Layout

MACHINE
electric_car

VARIABLES
battery

INVARIANT
battery : NATURAL

INITIALISATION
battery := 5

OPERATIONS
move =
BEGIN
battery := battery - 1
END;

recharge =
PRE
battery < 5
THEN
battery := battery + 1
END

END

Example

Figure 14: An Example for basic B-Machines.
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a time. When executing a transition with the operation move the battery variable gets substituted
by its original value decremented by one. It is evident that at some point after repeatedly executing
move the invariant is violated due to battery leaving the space of natural numbers. In order to
counter this imminent violation, the car features a way to recharge its battery with the operation
recharge. However, in contrast to the previous operation this one contains a precondition denoted
by PRE. Essentially, it states that some condition has to be satisfied for state to be modified.

1.2.3 PROB

PROB is an automated analysis toolkit for the B-method enabling for animation, model checking
and constraint solving [LB03, LB08]. PROB allows for unveiling possible errors of the underlying
specification. The tool is used in a broad field of industrial applications, most notably in railway
control. Since its launch in 2003 PROB has been developed further to a large extent. In order to
clarify some of PROB’s most important features, model checking is briefly introduced.

Model checking is an automated technique used to verify program properties and thereby find vi-
olations for a model’s specification by traversing the reachable space of states [CJGK+18, CES86,
QS82]. Usually, model checking is applied in an exhaustive manner. In particular, the entire reach-
able state space outgoing from an initial state is visited by transitioning consecutively to the next
available one(s). The concern of consistency may vary depending on the use case. For instance,
one could show interest in checking wether specific properties, such as an invariant, hold for the
underlying model or in looking for dead-locks.

PROB is capable of deploying two major approaches for automated consistency checking:

1. Model checking allows for invariant violation detection, which is utilized exhaustively in
PROB. However, in order for this approach to succeed sets and integer variables need to be
restricted to small domains or cardinalities [LB03]. Thereby, it is feasible to indeed traverse
every possible state of the model’s respective space of states. Nonetheless, this feature also
provides the means for sophisticated debugging and testing with a non-exhaustive execution.
The user is able to set upper bounds for state traversing.

2. Constraint-based checking on the other hand, instead of sequentially visiting every possi-
ble state this approach analyzes each transitional operation on its own validating whether it
may cause an invariant to be violated irrespective of the initial state. Inspired by the ALLOY
analyzer [Jac02, JSS01], the engine interprets the invariant preservation predicate as a con-
straint over all possible substitutions applicable. That is to say, by using the constraint-based
checker as a disprover one desires to refute the constraint for a fix invariant I

¬(∃S : I ⇒ [S]I) ≡ ∀S : I ∧ ¬[S]I (4)

thus showing whether I can be established by at least one general substitution S.
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Furthermore, PROB supports refinement checking [LB05], LTL model checking [Pnu77] and bounded
model checking [BCC+03]. However, in the scope of this thesis I do not dig deeper into these top-
ics. As pointed out in Section 1.2.2, I further focus on B predicates met by the constraint-based
checker rather on the model checker.

1.3 Related Work

This section presents related work, which essentially consists of the variety of the constraint solving
backends offered by PROB.

The core of the PROB kernel is implemented in SICStus Prolog [CWA+88] with the incorpora-
tion of co-routines and CLP(FD) [COC97] as its interface to CLP. Vanilla PROB seems to thrive
when solving enumerable problems [KBL14]. This is perhaps due to CLP(FD) featuring the means
for providing enumeration over variables in form of integer intervals. However, in some cases the
native PROB backend poses a suboptimal option regarding time consumption and decidability. For
instance, when encountering a predicate containing variables restraining one to use enumeration,
native PROB might struggle to find a solution [KBL14]. An example for this certain instance is
dealing with variables bound to infinite domains. Consider the predicate

a; b ∈ N ∧ a < b ∧ b < a (5)

which is obviously false. In this case, native PROB is unable to find the contradiction [DKS19].
Since the nature of native PROB is applying enumeration to the underlying problem, the solver as-
signs the interval [1;∞) to the variables a; b. Therefore, the engine tries to compute every value
pair assignment determined to find the one satisfying the constraint.

Consequently, PROB provides additional constraint solving backends to remedy those instances
where the native backend might encounter difficulties. The two major engines Kodkod and Z3 are
presented. Both of them come with their respective strengths, weaknesses, special properties and
deficiencies.

1. Kodkod is a constraint solver for first-order logic based on SAT and supports relations, tran-
sitive closure and partial models [TJ07, Tor09]. However, KodKod within PROB does not
support operations on sequences and higher-order types, such as sets of sets. Depending
on the problem or even the way of expressing it, Kodkod is able to outperform PROB’s native
backend noticeably, for instance when relational operators and universal quantification are
used to find solutions for sets [PL12]. Contrarily, native PROB operates much faster for arith-
metical problem instances which is one of Kodkod’s weakest points [PL12]. Furthermore,
due to Kodkod’s underlying SAT nature it is unable to handle infinite domains in contrast to
PROB.

2. Z3 is an SMT solver employing the DPLL(T) algorithm [DMB08, GHN+04]. Similar to Kod-
kod, some B predicates and expressions cannot be translated efficiently to SMT-LIB [RT06,
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BST+10], and are thus not supported by the integrated translation of PROB. Empirical evalu-
ation shows that neither of the two solvers outperforms the other, rather there exist numerous
instances where just one of them is capable of deciding whether the given formula is satis-
fiable [KL16]. In order to illustrate the aforementioned insight, PROB performs better on
higher-order operations, such as set comprehensions, whereas Z3 decides with ease that
the predicate of Equation (5) is not satisfiable [KL16].

1.4 Answer Set Programming

This section is devoted to the introduction of Answer Set Programming. In Section 1.4.1 I give an
overview of Answer Set Programming in general. Further, I point out some of its implementations
and dialects in Section 1.4.2. Lastly, Section 1.4.3 presents s(CASP), the chosen dialect for this
thesis.

1.4.1 What is Answer Set Programming?

As the title of this section suggests, this segment is prominently inspired by the work ’What is An-
swer Set Programming?’ by Lifschitz, wherein an exceedingly perspicuous introduction to Answer
Set Programming is given [Lif19].

’Answer Set Programming (ASP) is a form of declarative programming oriented to-
wards, primarily NP-hard, search problems.’–[Lif19]

Generally, ASP is concerned with finding stable models also referred to as answer sets for the un-
derlying problem. This approach is originally based on the application of non-monotonic reasoning
incorporating ideas of default logic [Rei80] and autoepistemic logic [Moo84] to negation as failure.

An ASP program P is a finite set of clauses, where each rule r ∈ P is of the form

r = h← t1 ∧ · · · ∧ tm ∧ neg tm+1 ∧ · · · ∧ neg tn (6)

with the head h and the body’s literals t1; : : : ; tn being compound terms [Lif19, Fit92, BET11].

Most ASP dialects share syntactical similarities with Prolog and therefore, at first glance, look
somewhat alike. Nevertheless, their semantics noticeably diverge. This design of logic program-
ming is motivated by the incompleteness of SLDNF resolution regarding negation as failure [Llo12].
In order to remedy that restraint, one desires the introduction of classic or also called strong nega-
tion. In particular, the keyword neg may express NF as well as strong negation in ASP.

Michael
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1: cross :- not train.
2: cross :- -train.

Figure 15: An Example for NF vs. strong negation [Lif19].

Assuming one wants to cross a railway, it is naturally a case of imperative importance that a train is
not crossing that certain railway at the same time. Figure 15 demonstrates the way strong negation
may be useful in practice where the first row is representing NF and the second row represents
strong negation. When asserting the first row, it is stated that one is clear for crossing while being
in disregard of actually knowing whether a train passes the railway. In other words, if the program
lacks the information whether a train is passing, then NF yields the same conclusion as knowing
that the tracks are clear. However, the second row represents the aforementioned assumption in
a more accurate way. The second row states that when indeed knowing about the train’s absence
the railway is safe to cross. Hence, NF and strong negation behave differently in case of insufficient
knowledge. Consequently, ASP systems enable one to express knowledge in the close-world as-
sumption as well as simultaneously leaving some other predicates in the realm of the open-world
assumption, in contrast to Prolog.

Furthermore, an interesting property of all kinds of ASP systems is that the process of finding
answer sets, unlike SLDNF resolution utilized by Prolog, in principle always terminates [Lif19]. In
most of ASP’s implementations this feature is due to the employment of an enhanced version of the
DPLL algorithm for finding solutions, hence stable models [DP60, DLL62]. These approaches are
somewhat similar to some SAT solvers as proposed in the work of Gomes et al. [GKSS08]. The
DPLL algorithm is essentially a complete procedure (SAT solver) for proving or refuting a proposi-
tional logic formula’s satisfiability in CNF. It is safe with respect to non-termination, i.e. it terminates
for n Boolean values in O(2n). However, some dialects employ other methodologies while main-
taining the overall intended ASP conduct.

As previously stated, ASP solvers endeavor to find stable models as the solution for some ASP
program. Let F be some propositional formula and M be a set of literals, which appear in F . Now
truth is assigned to the literals in M and false to the rest of F ’s literals. The so-called reduct FM is
the formula obtained by replacing each maximal sub-formula not satisfied by M with falsity [Fer05].
If the reduct FM is satisfied, then M is a model of F . Furthermore, a model M is called stable if
there exists no proper subset of M satisfying FM . It is straightforward that every stable model is
also a model relative to some formula F . Also, if F is not satisfied by M, then FM = ⊥ holds. In
essence, a stable model is a minimal model satisfying a propositional logic formula [Fit92].

The tabular of Figure 16 highlights the differences between models and stable models for propo-
sitional formulae in CNF. The third example depicts the set M = {p; q; s}, which is a model of
F = p ∧ (q ⇒ (s ∧ ¬t)). However, since there exists a proper subset {p; s} satisfying F , it is not
a stable model.

In order to find stable models in practice for an ASP program P one needs to agree to the fol-
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Formula F Truth value set M Reduct FM Classification
p ∧ q {p} p ∧ ⊥ = ⊥ no model
p ∧ q {p; q} p ∧ q = > stable model
p ∧ (q ⇒ (s ∧¬t)) {p; q; s} p∧(q ⇒ (s∧¬⊥)) ≡ p∧s = > stable model
p ∧ (q ⇒ (s ∧¬t)) {p; s} p∧(⊥ ⇒ (s∧¬⊥)) ≡ p∧s = > stable model

Figure 16: An Example for Stable Models.

domain(1).
domain(2).
inc1(A,B) :-
domain(A),
B is A + 1.
inc2(A,B) :-
B is A + 1.

Figure 17: An Example for safe and unsafe rules.

lowing convention. Assuming a classical ASP implementation, thus deploying a form of the DPLL
algorithm, one may view P ’s clauses as a collection of propositional logic formulae in CNF. How-
ever, analogous to Prolog ASP programs oftentimes do not come with propositional rules only. As
a result, ASP systems typically introduce an initial grounding phase replacing P by all the ground
instances of its clauses with respect to all variables’ related domains yielding the substituted ground
program PG . However, the grounding phase succeeds only if every clause of P is safe. A rule is
considered as safe in case every variable in its body occurs in some positive literal (compound
term) thereby specifying the variable’s finite domain. A rule is deemed unsafe otherwise. For in-
stance, inc1/2 of Figure 17 is safe, whereas inc2/2 is unsafe due to not specifying A’s, and
thereby B’s, domain. Finally, the computation of a stable model for the grounded program PG may
be attempted.

1.4.2 Implementations of Answer Set Programming

In the course of recent years various dialects of the ASP paradigm have been proposed. This sec-
tion briefly presents some of ASP’s available implementations and highlights their peculiarities and
weak spots.

Classical implementations, as pointed out in Section 1.4, usually involve a grounding front-end
producing a ground program, which is solvable by an ASP engine. Lparse [Syr00] is a popular
grounder for ASP originally designed for Smodels [SN01] but is used by numerous ensuing solvers,
such as ASSAT [LZ04], Cmodels [LM04], gNt [JN04], nomore++ [AGL+05a, AGL+05b] and fur-
ther implementations. A more recent design, extending Lparse by inter alia adding aggregation
functions, is the grounding tool gringo [GST07]. The answer sets of gringo’s output program are
computed by the solver clasp [GKNS07]. Moreover, both mechanisms have been integrated into
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one monolithic tool called clingo [GKK+08], thus making the entire process more user friendly.

However, traditional approaches come with several disadvantages. Smodels or clingo, for instance,
do not support explicit data structures such as lists, which are used on a regular basis in logic pro-
gramming. Although lists may be expressed by compound terms indirectly, their absence impairs
the programmer’s convenience. Another and certainly more impactful drawback is the general re-
straint of free variable usage. Since every rule needs to be safe, one is restricted to finite domains
in the sense of every possible value has to be included in the grounded program. For problems
with vast domains this may lead to the instance that no suitable ASP program is reasonably obtain-
able for the underlying program or to the case of a combinatorial explosion regarding the program’s
size [ACS+18]. To illustrate this issue one may consider the results of the fifth Answer Set Pro-
gramming competition [CGMR16]. As an example, a 5GB ground file was generated for a 60 job
incremental scheduling problem, whereas the size soared to 50GB when doubling the job amount.
Given that industrial applications have oftentimes to deal with instances multiple orders of mag-
nitude larger with a superlinear increase of memory than the example above, it is evident that a
ground-and-slove approach is not always appropriate [FFS+18]. This concern is also called the
grounding bottleneck [BLS13].

In order to tackle the aforementioned matter, one may employ lazy-grounding to avoid a possi-
bly immense grounding phase. The idea behind lazy-grounding is to calculate a desired ground
instance for further computation when they are needed during runtime instead of grounding the
entire original program. For instance, Alpha [Wei17], ASPeRiX [LN09], GASP [DPDPR09] and
Omiga [DTEF+12] incorporate this idea. Additionally, some of these more recent implementa-
tions, for example GASP, support some built-in data structures, such as lists, and outperform prior
presented designs, lparse + smodels in particular, for some benchmarks [DPDPR09]. While the
utilization of tools using lazy-grounding is beneficial regarding memory size they, nevertheless, un-
derperform in terms of time consumption in most practical cases [FFS+18]. Hence, deciding which
ASP strategy to deploy for some arbitrary problem could cause a dilemma.

However, in order to be more flexible with respect to problem declaration one may lean towards
choosing a lazy-grounding paradigm with built-in explicit data structures. Furthermore, an addi-
tional extension to ASP incorporating CLP may be desirable to broaden its expressiveness. A
recently implemented dialect of ASP introduces CLP to ASP, also called CASP [MGZ08], with no
grounding discussed below in Section 1.4.3.

1.4.3 s(CASP)

s(CASP)1 is a novel Answer Set Programming implementation coalescing stable model semantics
and Constraint Logic Programming [ACS+18]. It is build upon the s(ASP) execution model, an ASP
interpreter written in Prolog. s(CASP) inherits and generalizes s(ASP) while remaining parametric
with respect to CLP.

1https://gitlab.software.imdea.org/ciao-lang/sCASP

https://gitlab.software.imdea.org/ciao-lang/sCASP
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s(ASP) is a recently developed query-driven implementation of Answer Set Programming [MSCG17].
Unlike ordinary ASP systems, s(ASP) does not employ any SAT based methodology and, due to its
Prolog heritage, does not rely on a grounding phase either prior or during execution. Hence, s(ASP)
admits the usage of variables without specifying their respective domains, whereas classical ASP
approaches would consider the program as unsafe. s(ASP) deploys a top-down, query-driven
procedure virtually an extended version of SLDNF resolution for evaluating programs under the
ASP semantics. By virtue of s(ASP) being goal-directed, the engine just computes a partial stable
model, which is the portion required for answering the underlying query. Partial stable models are
also further referred to as stable models for simplicity. In essence, this approach can be thought of
Prolog with complementary properties supporting ASP.

s(ASP) provides four relevant attributes deviating from Prolog including [MSCG17]:

1. The assumption of an extended Herbrand universe,

2. the computation of a dual program,

3. the involvement of constructive negation and

4. the incorporation of coinduction.

These properties deal with subsuming ASP semantics, i.e. negation and precautions for infinite
loops.

s(ASP) assumes that variables of unsafe rules, hence variables without any specified domain,
take values in an extended Herbrand universe. An extended Herbrand universe hereby implies
that for a global constraint expressed by s(ASP)’s negated existential quantifier :-, equivalent to
¬∃, the program demands knowledge regarding the quantified goal in order to be satisfied. Global
constraints can be placed manually and are asserted by the engine in some cases. They es-
sentially imitate and, thus ensure a correct behavior regarding negation in ASP [ACCG20]. A
meta-interpreter executes the global constraints after the query. Figure 18 demonstrates that both
shown programs are semantically equivalent with respect to first-order logic. The first program is
comprehended in the same way a regular Prolog program is evaluated. Thus, the goal of the form
married(A) succeeds for any A. However, in the second example the interpreter needs to have
evidence that every single possible instance of A satisfies the call married(A). Clearly, the amount
of instances is infinite. Therefore, the second program possesses no stable model. Combining both
statements yields a program, which is semantically equivalent to married(A) regarding satisfac-
tion. Yet, the stable models diverge. For instance, the query ?- married(john). resolved by the
original program returns the stable model {married(john)} and alternatively {married(john),
married(Var)} for the combined version.

Negation in s(ASP) is generally treated differently compared to Prolog, and to negation as failure
in particular. s(ASP)’s interpreter resolves negated goals of the form not p against dual rules.
Dual rules allow for non-ground negated calls, not p(A) for example, to return variable bindings
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s(ASP) Program Semantics
married(A). ∀A : married(A)
:- not married(A). ¬∃A : ¬married(A) ≡ ∀A : married(A)

Figure 18: An Example for Differences between Prolog and s(ASP) under the extended Herbrand
Universe semantics [ACS+18].

1. Let −→x = x1 : : : xn be a tuple of n fresh variables for each predicate p=n.

2. For each i -th rule pi (
−→
ti )← Bi with i = 1 : : : k , let−→yi be the tuple comprising of all variables

occurring in Bi but not in
−→
ti and alter pi=n representing ∀−→x : (pi (

−→x ) ← ∃−→yi : Bi ) by
renaming the variables of

−→
ti with −→x .

3. Each predicate and its clauses is transformed by applying Clark’s completion [Cla78] to:

• ∀−→x : (p(−→x )↔ p1(−→x ) ∨ · · · ∨ pk(−→x ))

• ∀−→x : (pi (
−→x )← ∃−→yi : bi 1 ∧ · · · ∧ bim ∧ ¬bim+1 ∧ · · · ∧ ¬bi n).

4. By definition the predicates semantically equivalent duals are:

• ∀−→x : (¬p(−→x )↔ ¬(p1(−→x ) ∨ · · · ∨ pk(−→x )))

• ∀−→x : (¬pi (−→x )← ¬(∃−→yi : bi 1 ∧ · · · ∧ bim ∧ ¬bim+1 ∧ · · · ∧ ¬bi n)).

5. Finally, the result is obtained by applying De Morgan’s laws:

• ∀−→x : (¬p(−→x )↔ ¬p1(−→x ) ∧ · · · ∧ ¬pk(−→x ))

• ∀−→x : (¬pi (−→x )← ∀−→yi : ¬bi 1 ∨ · · · ∨ ¬bim ∨ bim+1 ∨ · · · ∨ bi n).

Figure 19: The Algorithm for the Computation of Dual Programs [ACS+18].

regardless of the positive goal p(A) succeeding [APS04]. The idea is to thereby emulate the
computation of stable models as in a conventional ASP system, where everything is ground from
the beginning. An algorithm computes the dual program prior to executing the query. Hence, the
later evaluated program is actually the union of the original and the dual program. Furthermore,
the dual program is also not resolved under plain SLDNF semantics. Some coinductive additions
to SLDNF resolution are introduced related to the treatment of loops, discussed afterwards.

As elaborated in Figure 19, synthesizing a dual program is accomplished by first computing Clarke’s
completion, which assumes that the set of predicates completely captures the entire space for
atomic formulae to be satisfied [Cla78]. Afterwards a definition for each dual predicate ¬p(−→x ) is
obtained by applying De Morgan’s laws. Figure 20 illustrates the algorithms functionality. The built-
in predicate forall/2 handles the evaluation of the universal quantifier which checks for the call
forall(V, G) whether the goal G is satisfiable for all possible values of V. However, forall/2
cannot be invoked in source code by the programmer.
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a(A) :- A \= 1.

Figure 21: An exemplary s(ASP) program for Constructive Negation.

p(A) :- a(A), not b(A,B).
a(0).
b(1,1).

not p(A) :- not p1(A).
not p1(A) :- forall(B, not p1(A,B)).
not p1(A,B) :- not a(A).
not p1(A,B) :- a(A), b(A,B).
not a(A) :- not a1(A).
not a1(A) :- A \= 0.
not b(A,B) :- not b1(A,B).
not b1(A,B) :- A \= 1.
not b1(A,B) :- A = 1, B \= 1.

Figure 20: A exemplary s(ASP) program (left) and its respective Dual Code.

Furthermore, s(ASP) extends the common unification algorithm with constructive negation. Con-
structive negation is denoted by \=, intuitively expressing that for A \= b, A may be unified with
any term except for b [MSCG17, ACS+18]. Thereby, the interpreter keeps track of which values for
each variable are not unifiable, and thus allowing (dual) rules with negated equality to succeed with
correct bindings. Since traditional ASP programs are completely ground ab initio, it is straightfor-
ward that within the program’s finite realm an answer, regardless of the involvement of negation, is
obtainable. Hence, constructive negation is essentially a feature mimicking this behavioral property
of conventional ASP approaches. However, this subject poses a more challenging task in environ-
ments where variable domains are first off unrestricted. s(ASP) is able to compute a set of terms,
which cannot be unified with the respective variable. Nevertheless, the engine is not capable of
providing a concrete binding in contrast to classical ASP due to the absence of explicit domains.
For instance, the query a(A) returns the binding A \= 1 for the program of Figure 21. Moreover,
constructive negation comes with some restrictions. Variables can only be constrained against
ground terms with constructive negation. The disequality constraint fails otherwise.

Top-down execution models may suffer from non-termination in practice. Techniques such as
tabling have been proposed for prototype systems to enhance termination properties [MG12].
However, the presence of constructive negated calls introduces further challenges. In s(ASP)
non-monotonic checking rules are latently deployed during the execution. Thus, the process
maintains consistency concerning global constraints and infinite loops. s(ASP)’s non-monotonic
checking rules are rooted in coinduction, more precisely in coinductive SLD resolution [SMBG06,
SBMG07]. The following precautions are taken to deal with breaking infinite loops over negation.
Three kinds of non-termination are considered, i.e. even, odd and positive loops. The implemented
procedures are briefly exhibited subsequently.

Odd loops occur when the call graph contains a cycle with an odd number of intervening negated
goals, where the encountered goal closing the cycle unifies with an ancestor call [ACS+18]. Odd
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loops yield global constraints restricting the stable model. Hence, in order to avoid contradictions
and to satisfy the induced global constraints, s(ASP) introduces non-monotonic checking rules. For
every clause or global constraint of the form

∀−→x : (pi (
−→x )← ∃−→yi : Bi ∧ ¬pi (−→x )) (7)

either ¬Bi or the query pi (
−→x ) using another rule must hold. Therefore, for each of the aforemen-

tioned clauses, a rule of the form

∀−→x : (chki (
−→x )↔ ∀−→yi : (¬Bi ∨ p(−→x ))) (8)

is synthesized. Figure 22 shows an example for a global constraint and clauses featuring an odd
loop. This idea is realized by deploying a static analysis of the call graph, which evaluates the
number of negated calls throughout recursion. However, during run time when a call unifies with its
respective negated representation, the execution fails and backtracks since the call is contradictory.

:- not q(A).
p(A) :- q(A), not p(A).

nmr_check :- chk1, forall(A, chk2(A)).
chk1 :- forall(A, q(A)).
chk2(A) :- not q(A).
chk2(A) :- q(A), p(A).

Figure 22: An exemplary s(ASP) program without a Stable Model (left) and its corresponding
non-monotonic Checking Rules.

Even loops are essentially the same kind of odd loops but with an even amount of intervening
negated goals [ACS+18]. Recalling the Prolog program shown in Figure 12, it is evident that the
execution does not terminate under SLDNF semantics, whereas the syntactically equivalent s(ASP)
program of Figure 23 indeed terminates.

p :- not q.
q :- not p.

Figure 23: The s(ASP) program equivalent to Figure 12.

Positive loops arise when a call unifies with an ancestor similar to the previous two kinds. How-
ever, in this case there are no intervening negative calls along the call graph [ACS+18]. Consider
the example shown in Figure 24, which for the query ?- nat(A). returns an infinite amount of
results. s(ASP) identifies the underlying construct as a positive loop, and thus fails. Nevertheless,
this behavior compromises completeness and soundness. Therefore, s(CASP) somewhat restores
the aforementioned properties by investigating whether the encountered goal and its respective an-
cestor call are equal. In that instance, s(CASP) returns the first applicable answer, hence unifying
A with 0 in the example.
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nat(0).
nat(A) :- nat(B), A is B+1.

Figure 24: An Example for Positive Loops in s(ASP) [ACS+18].

Finally, s(CASP) can be thought of an extension and even an improvement to s(ASP). s(CASP) in-
herits parts of s(ASP) and its aforementioned properties, yet offers new features and reimplements
a considerable amount in Ciao Prolog [BCC+97]. Since Prolog and s(ASP) share a lot of char-
acteristics regarding variable treatment, s(CASP) lets the Ciao engine take care of all operations
Prolog is able to handle natively instead of leaving them to the s(CASP) interpreter. Furthermore,
s(CASP) introduces CLP in the form of Holzbaur’s CLP(Q), which admits declaring constraints over
rationals and integers [Hol95]. CLP(Q) is further used internally for an improved version of the in-
terpreter. Additionally, s(CASP)’s constructive negation solver is a reimplementation of s(ASP)’s
version, called CLP(6=), to cope with CLP(Q) constraints. The authors emphasize that s(CASP)
easily outperforms s(ASP) by providing some prevalent benchmarks [ACS+18].

1.5 Motivation and Goals

As stated at the beginning of this thesis, the fundamental motivation is to develop zero-defect soft-
ware with the help of formal methods. For instance, this is achievable by specifying a system’s
desired behavior with B abstract machines to then be validated by a software verification tool such
as PROB. In order to model check a machine and verify its correctness, predicates are evaluated
along the way. For instance, predicates in the B-method express a machine’s properties, invariants
and its initialization. Therefore, constraint solvers such as native PROB, Kodkod and Z3 are em-
ployed to support the overall verification process. As they all come with their respective strengths
and weaknesses it seems natural to explore further options.

Answer Set Programming is a paradigm of growing interest in the recent years. Due to its declar-
ative nature ASP poses an attractive alternative to already well-established constraint solving ori-
ented methodologies. However, for this work an unconventional approach is chosen compared to
traditional ASP. s(CASP) is independent of an initial grounding phase, and hence offers remark-
able freedom in terms of expressiveness regarding variable’s domains similar to Prolog. Moreover,
s(CASP) provides supplementary features, such as constructive negation, which may prove bene-
ficial in constraint solving.

Consequently, the following two subjects constitute the main contribution of this work:

• In this thesis I develop a Prolog framework that translates B predicates to s(CASP). Besides,
I implement an interface integrating the translator in PROB. Thus, it enables one to call the
s(CASP) engine within PROB, and hence to harness s(CASP)’s capabilities.
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• Furthermore, I aspire to investigate s(CASP)’s performance via benchmark evaluation cov-
ering numerous varieties of predicates. The performance measurements are compared to
the aforementioned already employed backends of PROB. Thereby, the grasp of s(CASP)’s
proficiencies is ameliorated.

However, formulating a complete translation of the entire B realm presumably goes beyond the
scope of a single master’s thesis. Therefore, this work excludes the subsequent criteria:

• Infinite domains are not translated to s(CASP). Particularly, expressions such as a ∈ N or
b ∈ Z are not considered. The task of incorporating CLP(Q) constraints in s(CASP) to
enumerate over possible instances for numerical domains comparable to PROB’s CLP(FD)
backend may be subject to future work. Nevertheless, statements as a = 1 for example
generally imply in computer systems that the variable a is associated with integer. In that
regard, s(CASP) advantages related to unrestricted variable usage do not elapse.

• Lastly, the vast majority of B predicates is covered in the translation framework. Yet, some of
them are not incorporated, such as set summation, set product, iteration, closure, projection,
lambda abstraction and the support of sequences.

The presented framework and its evaluation are thoroughly discussed in Section 2 and Section 3
respectively.

2 Translating B Predicates to s(CASP)

In the following, I elaborate on the developed translation framework. Foremost, Section 2.1 outlines
the framework as a whole and illustrates it with a graphical sketch. Section 2.2 presents some
examples and, finally, Section 2.3 provides a detailed description of the translation process.

2.1 Design and Workflow

This framework2 consists of two major parts:

1. The translator obtains a (typed) abstract syntax tree (AST) representing a B predicate emit-
ted by PROB and generates semantically equivalent s(CASP) code. It is written in SICStus
Prolog to ensure compatibility and is constructed as a loadable extension package of PROB

2. The interface establishes the connection between the translator and the s(CASP) engine.
Since s(CASP) is written in Ciao Prolog, a C interface links the two Prolog implementations
together, thus enabling for solving a B predicate by s(CASP) within PROB.

2https://gitlab.cs.uni-duesseldorf.de/efraimidis/b-to-asp

https://gitlab.cs.uni-duesseldorf.de/efraimidis/b-to-asp
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The overall workflow is illustrated in Figure 25. An AST is expected as input by the framework,
hence PROB parses the predicate prior to translating. This initial process is depicted as a black
box in the flowchart. Thereafter, the translator generates a s(CASP) file containing executable
code. When the translation is completed, the interface calls the s(CASP) engine and obtains the
result. Lastly, some post-processing is applied and the result is returned back to PROB.

Figure 25: The framework’s general workflow.

The translator gradually walks over the AST and computes for each encountered B node a se-
mantically equivalent s(CASP) component. Through this process a s(CASP) program is recursively
build. Examples in Section 2.2 portray the translation procedure in more depth.

Both Ciao3 and SICStus4 Prolog provide a native bi-directional C interface capable of convert-
ing Prolog terms to C structures and vice versa [Rit93]. Besides that, s(CASP) offers an interior
interface allowing for calling the s(CASP) engine via Ciao Prolog. However, the crucial interface
between the two Prolog dialects is missing. Hence, this work implements a Ciao/SICStus interface.
By means of the native Ciao interface, the obtained result for the underlying predicate is translated
to a C structure representing a Ciao term. The new developed fragment, linking Ciao and SICS-
tus together, converts the Ciao representation to a custom C struct, which is used to generate an
equivalent representation of a SICStus term in C. The native SICStus interface then transforms the
acquired C term to a SICStus term in Prolog. Thus, the framework is able to process and pass the
answer back to PROB.

2.2 Translation Example

In this subsection I illustrate how the framework operates for exemplary predicates.

3https://ciao-lang.org/ciao/build/doc/ciao.html/foreign_interface_doc.html
4https://sicstus.sics.se/sicstus/docs/3.7.1/html/sicstus_11.html#SEC128

https://ciao-lang.org/ciao/build/doc/ciao.html/foreign_interface_doc.html
https://sicstus.sics.se/sicstus/docs/3.7.1/html/sicstus_11.html#SEC128
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Consider the B predicate of Equation (9).

a = 1 ∧ b = a + 2 (9)

Figure 26 demonstrates the sequential translation procedure for the aforementioned predicate.
More specifically, the translation tree shows the generated s(CASP) code for the B predicate in
form of an AST.

Figure 26: An Example for the Translation of a B predicate to s(CASP).

1: #include ’preliminaries.pl’.
2:
3: constraint(B, A) :-
4: A = 1,
5: Tmp #= A + 2,
6: B = Tmp.
7:
8: ?- constraint(B, A).

Figure 27: The generated s(CASP) program for the Predicate a = 1 ∧ b = a + 2.

The actual generated s(CASP) code is shown in Figure 27. Due to s(CASP)’s query-driven nature,
the predicate is wrapped in the body of the constraint/2 predicate. Thus, the solver executes
the query ?- constraint(B, A), indicated by row eight. The first row imports preliminary pred-
icates, primarily containing s(CASP) representations of B predicates, which are further described
in Section 2.3. Since s(CASP) comes with virtually no built-in predicates, the preliminaries.pl

file contains inherent predicate implementations, such as member/2 and append/2, which are gen-
erally used on a regular basis in logic programming. The s(CASP) engine returns the in Figure 28
shown answer for the program of Figure 27.
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typedef struct {
int type;
char* term_atom;
int term_int;
float term_float;
struct term_node* next_element;
struct term_node* sub_list;
int arity;
struct term_node* next_argument;
struct term_node* sub_structure;
} term_node;

Figure 29: The custom C Struct used to represent a generic Prolog Term.

QUERY:?- constraint(B,A).

ANSWER: 1 (in 0.359 ms)

MODEL:
{ constraint(3,1) }

BINDINGS:
B = 3
A = 1 ?

Figure 28: The Answer for the s(CASP) program of Figure 27.

However, a printed answer is disadvantageous for further processing. The Ciao/s(CASP) interface
returns a Prolog list containing the data of Figure 28. Amongst other things, a term is located in
the list including the bindings. The partial stable model and further data except for the bindings are
dispensable for the constraint solving task. For this particular instance, the term representing the
bindings is of the form

[[B,A],[3,1]] (10)

which requires further manual treatment to assemble an answer processable by PROB.

The two final steps before the answer is returned to PROB are firstly passing the bindings from
Ciao to SICStus Prolog and afterwards employing some post-processing on the provided term.
Since the interface’s peculiarities regarding the overall converting process are inessential to de-
scribe in detail, merely the custom C struct representing a generic Prolog term is further discussed.
As one can see in Figure 29, the struct features members to represent primitive data as well as
lists and compound terms. Consider the interface’s program files for more elaboration.

Depending on the underlying term to be translated, different values are set for a term_node. For ex-
ample, an integer is denoted by assigning its value to the member term_int and setting type = 1,
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which internally proclaims that the struct embodies an integer. The term of Equation (10) is trans-
formed to the C struct illustrated in Figure 30. The unused members for each individual struct are
omitted for simplicity.

Figure 30: The illustrated custom C struct for the Bindings [[B,A],[3,1]].

Afterwards, the aspired bindings are returned to the framework via the interface as a SICStus
term. Finally, some post-processing is performed, which mainly serves the purpose of producing a
syntactically suitable answer for PROB. In this occasion, the final result is of the form:

solution([binding(a,int(1),1), binding(b,int(3),3)]) (11)

Furthermore, the framework’s post-processing handles computing solutions out of constructive
negation terms. This feature excels the inherent capabilities of common logic programming lan-
guages limited to negation as failure, such as Prolog.

Consider the predicate

a 6= {(2; 4)} ∧ a 6= {(1; 3); (2; 5)} (12)

for which the technical details regarding translation are not repeatedly outlined. The s(CASP)
interpreter’s output merely expresses the disequality constraints but neglects to calculate a binding
for a, as can be seen in Figure 31.
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QUERY:?- constraint(A).

ANSWER: 1 (in 0.206 ms)

MODEL:
{ constraint(A | {A \= [t(2,4)],

A \= [t(2,5),t(1,3)]}) }

BINDINGS:
A \= [t(2,4)], A \= [t(2,5),t(1,3)] ?

Figure 31: The s(CASP) Answer for the predicate of Equation (12).

Since ProB expects a concrete binding for variables, a solution for the given constructive nega-
tion constraint has to be found. Accordingly, the post-processing component executes an intuitive
algorithm, which receives a conjunction of disequality terms and computes a candidate satisfying
the underlying disequality constraint. However, this method works on data structures for which at
least one variable is bound to an integer only. Supporting booleans and especially strings requires
greater effort, which may be subject to future work. As stated in Section 1.5, the only supported
infinite data structure is implicitly denoted integers, e.g. a = 1, implying that a ∈ Z. Hence, by
agreeing to the convention that for the predicate a 6= 1 any other integer is a valid assignment for
a, the following algorithm depicted in Algorithm 1 is applicable to any data structure containing one
integer at a minimum.

Algorithm 1 A pseudo algorithm for computing constructive negation bindings.
Require: a conjunction of disequality terms C

1: find a term t ∈ C containing an integer
2: replace all integers in t with the same fresh variable v obtaining t ′

3: find the minimum m of all integers appearing in every c ∈ C
4: set v = m − 1
5: return t ′

Since B is strictly typed, the predicate a 6= {(2; 4)} ∧ a 6= {(1; 3); (2; 5)} indicates that a’s type is
a set of integer tuples, whereas in pure logic it remains uncertain. Therefore, the aforementioned
algorithm is able to use an arbitrary disequality term containing at least one integer as a template.
For the predicate of Equation (12), the algorithm consequently computes the binding a = {(0; 0)}.

2.3 Formal Description of the Translation

In this subsection I focus on the syntactical and semantical details of the translation. I cover the
B predicates that are included in this translation in a gradual manner by generally following the
order of a summary of the B toolkit by Robinson [Rob05]. For each of the supported predicates, I
devise an equivalent s(CASP) representation. If necessary, I give a formal definition along with its
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respective counterpart in B.

Throughout this section the following designations are used: P;Q denote predicates; E; F denote
expressions; x; y denote single variables; z denotes a list of variables; S;D denote set expres-
sions; U denotes a set of sets; m; n denote integer expressions; r denotes a relation and f a
function. Furthermore, for any B code b, Tb denotes the translation of b in s(CASP). However,
for the sake of simplicity the designations of B identifiers are also used for their representatives in
s(CASP). For a B expression e the variable Ve denotes the desired result for code Te . The exact
process of generating Tb; Te and obtaining Ve is further discussed subsequently.

2.3.1 Translation of Primitive Values

Foremost, I define in Figure 32 the way primitive values, i.e. an identifier or a ground boolean,
number or string, originating from B are translated to s(CASP). However, these translation rules
place some restrictions. Variables’ designations in s(CASP) begin with an uppercase character.
To simplify the translation process every character is converted to its uppercase representative,
which somewhat restrains the freedom of variable names. Furthermore, variables beginning with
Tmp denote internal temporary variables. However, one is not obliged to avoid using variables of
the form Tmp as it is translated to TMP anyway.

Type B s(CASP)
Identifier id ID

Boolean TRUE true

Boolean FALSE false

Integer 123 123

String "string" ’string’

Figure 32: The Translation of Primitive Values.

2.3.2 Translation of Predicates

1. Conjunction

B s(CASP)
P & Q TP ; TQ

Figure 33: The Translation of Conjunction.

Although this translation depicted in Figure 33 seems lucid, one needs to consider a draw-
back of s(CASP). In pure logic the order of P and Q is irrelevant for the conjunction’s seman-
tics. However, the order matters in s(CASP) as TP and TQ have to be evaluated sequentially.
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If a ground value is needed for evaluating TP , which remains unbound until TQ is evaluated,
the evaluation of the code TP ; TQ throws an instantiation error. Nevertheless, a considerable
amount of cases where this issue occurs is dealt with s(CASP)’s CLP library.

2. Disjunction
Let x1; : : : ; xk be the variables occurring in P and Q.

B s(CASP)
P or Q subconst(x1 ; : : : ; xk)

Figure 34: The Translation of Disjunction.

For both predicates a new rule (sub-constraint) is introduced in the code. Hence, the predi-
cate call subconst(x1 ; : : : ; xk) establishes a choice point, effectively creating a disjunction.
Figure 35 shows a generic example.

subconst(x1 ; : : : ; xk) :- TP.
subconst(x1 ; : : : ; xk) :- TQ.

Figure 35: The introduced Sub-Constraint for a Disjunction.

3. Negation
Let x1; : : : ; xk be the list of variables occurring in P.

B s(CASP)
not P not subconst(x1 ; : : : ; xk)

Figure 36: The Translation of Negation.

In order to simplify the matter of dealing with negated portions of code, a new sub-constraint
is added which is called by its parent predicate with negation. Figure 37 shows a generic
example.

subconst(x1 ; : : : ; xk) :- TP.

Figure 37: The introduced Sub-Constraint for the case of Negation.

4. Implication

B s(CASP)
P => Q resolve as: not P or Q

Figure 38: The Translation of Implication.

Michael

Michael
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5. Equivalence

B s(CASP)
P <=> Q resolve as: P => Q & Q => P

Figure 39: The Translation of Equivalence.

6. Existential quantification

B s(CASP)
#(z).(P & Q) TP ; TQ

Figure 40: The Translation of Existential Quantification.

By virtue of s(CASP) operating query-driven, simply the conjunction TP ; TQ is sufficient for
expressing whether there exists some values of z satisfying TP for which TQ .

Unfortunately, s(CASP) does not provide any inherent predicate for the universal quanti-
fier. However, by using set comprehensions it is possible to express the universal quantifier
manually. This approach is further discussed in Section 2.3.3.

7. Equality, inequality and comparison operators
This translation applies to the operators =; 6=; <;>;≤;≥. Without loss of generality, equal-
ity is selected to describe how the aforementioned operators are translated.

At first glance, the translation of E = F seems straightforward. However, various precau-
tions are taken to deal with predicate calls and arithmetical evaluation. The B expression
a = f(0), intuitively translated to s(CASP), yields a semantically invalid term A = f(0).
Hence, the translator analyzes the AST to gather information about E’s and F’s types of ex-
pression in order to produce a semantically correct translation.

The framework distinguishes between four cases:

(a) If E and F express primitive values, then: TE = TF .

(b) If E is primitive and F is not, then: TF ; TE = VF .

(c) If E is non-primitive and F is primitive, then: TE ; VE = TF .

(d) If E and F are both non-primitive, then: TE ; TF ; VE = VF .

As it were, the translator operates with a look-ahead of one to generate appropriate s(CASP)
code. Non-primitive B expressions e generate an internal temporary variable, expressed by
Ve . This prophylactic approach allows for a sound translation while being independent of
analyzing larger portions of the underlying AST.
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As mentioned when discussing the translation of B’s conjunction, s(CASP) is unable to cope
with expressions, for instance 0 < x, x = 1, where required chunks of code are evaluated
at a later point in time by the engine. Hence, the translator employs s(CASP)’s paramet-
ric CLP capabilities, more precisely CLP(6=) and CLP(Q). The operators 6=; <;>;≤;≥ are
translated to \=, #<, #>, #=<, #>= respectively. Thus, the CLP backend takes care of
all the aforementioned temporal challenges related to arithmetics. However, the operator \=
also expresses constructive negation besides arithmetical inequality compared to operators
#<, #>, #=<, #>=, which are solely handled by CLP(Q). Consequently, the interpreter
decides at runtime whether CLP(6=) or CLP(Q) is applicable [ACS+18].

2.3.3 Translation of Sets

1. Empty set

B s(CASP)
{} [ ]

Figure 41: The Translation of an Empty Set.

Since s(CASP) does not support sets inherently, they are expressed by lists. This approach
does not clash with confounding lists and sets within s(CASP), as B is not offering a list data
structure.

2. Singleton set
Similar to equality, for a singleton set of the form {E} the translator analyzes E to decide
whether the expression is primitive. For instance, the B expression x = {1+1} cannot be
straightforwardly translated to X = [1+1], as in s(CASP) the term 1+1 expresses the com-
pound term ’+’(1,1) and not its arithmetical evaluation.

Consequently, the framework distinguishes between two cases:

(a) If E is primitive, then: Tmp = [TE ].

(b) If E is non-primitive, then: TE ; Tmp = [VE ].

The freshly introduced internal temporary variable Tmp denotes the link to a non-primitive
expression. The framework takes care to properly join the temporary variables together with
the identifiers and expressions they are meant to be assigned to.

3. Set enumeration
A set of arbitrary cardinality of the form {E, F, ...} follows the pattern of the singleton set,
which is expressed by recursive application.
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4. Ordered pair
Definition:
E 7→ F = (E; F ).

For an ordered pair E|->F, the framework distinguishes between four cases:

(a) If E and F express primitive values, then: Tmp = t(TE ; TF ).

(b) If E is primitive and F is not, then: TF ; Tmp = t(TE ; VF ).

(c) If E is non-primitive and F is primitive, then: TE ; Tmp = t(VE ; TF ).

(d) If E and F are both non-primitive, then: TE ; TF ; Tmp = t(VE ; VF ).

5. Set comprehension
Let x1; : : : ; xi be all variables occurring in P and let z = z1; : : : ; zj be the list of variables
constrained by P . Let y1; : : : ; yk with i = j + k denote external variables that occur in P but
not in z . The set comprehension {z |P} is the set of every value of z that satisfies P .

B s(CASP)
{z|P} subconst1(Tmp, y1 ; : : : ; yk)

Figure 42: The Translation of a Set Comprehension.

Figure 43 shows how the introduced sub-constraint subconst1(Tmp, y1 ; : : : ; yk) of Fig-
ure 42 creates a local scope, where the variables of z , which merely serve the purpose of
defining the underlying set, are unable to clash with the variables of the parent scope.

subconst1(Tmp, y1 ; : : : ; yk) :-
findall(Ψ, subconst2(x1 ; : : : ; xi), Tmp).

Figure 43: The firstly introduced Sub-Constraint for a Set Comprehension.

The built-in predicate findall/3 is used to store in Tmp every instance of Ψ, which satis-
fies subconst2(x1 ; : : : ; xi) expressing TP . The variable Ψ embodies z , if |z | = 1, and
an ordered pair of the form t(z1 ; t(z2 ; t(: : : ; zj))) otherwise. Finally, Figure 44 shows the
translation of P .

subconst2(x1 ; : : : ; xi) :- TP .

Figure 44: The secondly introduced Sub-Constraint for a Set Comprehension.

6. Universal quantification
Let z = z1; : : : ; zk be the list of variables constrained by P . Further, let p1; : : : ; pi and
q1; : : : ; qj be the external variables that occur in P and Q respectively but do not occur in z .
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B s(CASP)
!(z).(P => Q) subconst1(p1 ; : : : ; pi ; q1 ; : : : ; qj)

Figure 45: The Translation of the Universal Quantification.

Since the built-in forall/2 predicate unfortunately cannot be invoked in source code, a
manual solution is necessary. As this framework is restricted to finite domain declarations, it
allows for using set comprehensions to express that Q is true for each value of z satisfying
P . Figure 45 depicts the introduced call to the predicate that resolves the universal quantifier.
Thereby, the set comprehension {z |P} is computed and produces additional code for verify-
ing that Q also holds, illustrated in Figure 46. The variable Ψ again embodies z , if |z | = 1,
and an ordered pair t(z1 ; t(z2 ; t(: : : ; zk))) otherwise.

subconst1(p1 ; : : : ; pi ; q1 ; : : : ; qj) :-
findall(Ψ;subconst2(p1 ; : : : ; pi ; z1 ; : : : ; zk);Tmp);
for_all(Tmp; q1 ; : : : ; qj).

subconst2(p1 ; : : : ; pi ; z1 ; : : : ; zk) :- TP.

for_all([]; q1 ; : : : ; qj).
for_all([Ψ|Tmp]; q1 ; : : : ; qj) :-
TQ ;
for_all(Tmp; q1 ; : : : ; qj).

Figure 46: The produced Code for the Universal Quantifier.

7. Union

B s(CASP)
S \/ D TS; TD; union(VS; VD; Tmp)

Figure 47: The Translation of a Union.

Figure 47 depicts the predicate union/3, which expects two ground sets and computes their
respective union Tmp. Since S and D are sets and, hence, non-primitive values, the trans-
lator resolves them in TS; TD to obtain their corresponding links VS; VD. In the following, I
do not repeatedly emphasize in detail the way custom predicates for non-primitive data are
resolved, as it is analogous to how union/3 is handled. For predicates of arity two, merely
the translation of D is omitted.

By virtue of restricting this operation to ground instances, limitations are placed on the way of
expressing a union. For example, the engine is unable to calculate the result of the expres-
sion S = {1,2} & x = S \/ D & D = {2,3}. This restraint applies to all of the following
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predicates involving non-primitive data structures. In future work this issue could be coun-
tered by analyzing the AST so that generated code is solely reliant on already translated
expressions.

As posting code of every of the following predicates would yield a too cluttered thesis,
the predicates’ respective code snippets are included in the preliminaries.pl file of this
project5. Further, the predicates of preliminaries.pl are also referred to as preliminary
predicates.

8. Intersection

B s(CASP)
S /\ D TS; TD; inter(VS; VD; Tmp)

Figure 48: The Translation of an Intersection.

9. Difference
Definition:
S −D = {x |x ∈ S ∧ x =∈ D}.

B s(CASP)
S-D TS; TD; subtract(VS; VD; Tmp)

Figure 49: The Translation of a Difference.

10. Cartesian product
Definition:
S ×D = {(x; y)|x ∈ S ∧ y ∈ D}.

B s(CASP)
S * D TS; TD; cartesian(VS; VD; Tmp)

Figure 50: The Translation of a Cartesian Product.

11. Powerset
Definition:
P(S) = {x |x ⊆ S} and the non-empty subset P1(S) = P(S)− {{}}.

B s(CASP)
POW(S) TS; pow(VS; Tmp)

Figure 51: The Translation of a Powerset.

5https://gitlab.cs.uni-duesseldorf.de/stups/prob/prob_prolog/-/blob/feature/btoasp/
extensions/btoasp/preliminaries.pl

https://gitlab.cs.uni-duesseldorf.de/stups/prob/prob_prolog/-/blob/feature/btoasp/extensions/btoasp/preliminaries.pl
https://gitlab.cs.uni-duesseldorf.de/stups/prob/prob_prolog/-/blob/feature/btoasp/extensions/btoasp/preliminaries.pl
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Since this translation considers finite sets only, the translation of finite subsets FIN(S) and
FIN1(S) is the same as POW(S) and POW1(S) respectively.

12. Cardinality
Definition:
card(S) = |S| is defined on finite sets only.

B s(CASP)
card(S) TS; card(VS; Tmp)

Figure 52: The Translation of a Set’s Cardinality.

13. Set predicates

Operator B s(CASP)
E ∈ S E : S TE ; TS; member(VE ; VS)

E =∈ S E /: S TE ; TS; not member(VE ; VS)

E ⊆ S E <: S TE ; TS; subset(VE ; VS)

E * S E /<: S TE ; TS; not subset(VE ; VS)

E ⊂ S E <<: S TE ; TS; strsubset(VE ; VS)

E 6⊂ S E /<<: S TE ; TS; not strsubset(VE ; VS)

Figure 53: The Translation of Set Predicates.

14. Generalized union
Definition: union(U) =

Sn
i=1 Si with Si ∈ U and |U| = n.

Essentially, the translator stacks successively as many union/3 calls as necessary to com-
pute the generalized union of the form union(U).

The framework distinguishes between three cases:

(a) If U = {S}, then resolve S as a singleton set.

(b) If U = {S, D}, then treat it as S \/ D.

(c) If n ≥ 3, then resolve S1; S2 ∈ U as S1 \/ S2 obtaining Tmp1 and continue resolving
Tmpi and the next set Si+2 with i < n − 1 as

TSi+2; union(Tmpi ; VSi+2; Tmpi+1) (13)

until the final result Tmpn−1 is computed.

15. Generalized intersection
Definition:
inter(U) =

Tn
i=1 Si with Si ∈ U and |U| = n.
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The code for a general intersection inter(U) is generated analogously to how a gener-
alized union is treated.

2.3.4 Translation of Numbers

1. Minimum and maximum

B s(CASP)
min(S) TS; min(VS; Tmp)

max(S) TS; max(VS; Tmp)

Figure 54: The Translation of Minimum and Maximum.

2. Arithmetical evaluations
This translation applies to the arithmetical operators +;−; ∗; =;mod . Without loss of gen-
erality, addition is selected to describe how the aforementioned operators are translated.
CLP(Q) is employed to handle arithmetical operations, thereby omitting temporal restraints
of arithmetical evaluation in s(CASP). The CLP(Q) counterpart #=/2, which subsumes and
extends is/2, is used instead. However, the Euclidean division is in s(CASP) expressed by
A is mod(m,n), thus restricting m and n to be ground prior to its call. The translator exam-
ines the ASTs of B expressions m and n and provides their respective evaluations.

The framework distinguishes between four cases for m+n:

(a) If m and n express primitive values, then: Tmp #= Tm+Tn.

(b) If m is primitive and n is not, then: Tn; Tmp #= Tm+Vn.

(c) If m is non-primitive and n is primitive, then: Tm; Tmp #= Vm+Tn.

(d) If m and n are both non-primitive, then: Tm; Tn; Tmp #= Vm+Vn.

3. Interval
Definition:
m::n = {i |m ≤ i ≤ n}

The framework distinguishes between two cases in order to enhance performance:

(a) If m,n are primitive, then let the framework directly compute: Tmp = [Tm; : : : ; Tn].

(b) If m,n are non-primitive, then: Tm; Tn; range(Vm; Vn; Tmp).
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2.3.5 Translation of Relations

A relation r is a set of ordered pairs.

1. Relations
Definition:
S ↔ D = P(S ×D)

B s(CASP)
S <-> D TS; TD; relation(VS; VD; Tmp)

Figure 55: The Translation of a set of Relations.

2. Domain and range
Definition of a domain:
dom(r) = {x |∃y : x 7→ y ∈ r}

Definition of a range:
ran(r) = {y |∃x : x 7→ y ∈ r}

B s(CASP)
dom(r) Tr ; dom(Vr ; Tmp)

ran(r) Tr ; ran(Vr ; Tmp)

Figure 56: The Translation of a Domain and Range.

3. Composition
Definition:
r1; r2 = {(x; y)|∃z : x 7→ z ∈ r1 ∧ z 7→ y ∈ r2}

B s(CASP)
r1;r2 Tr1; Tr2; comp(Vr1; Vr2; Tmp)

Figure 57: The Translation of a Composition.

4. Identity
Definition:
id(S) = {(x; x)|x ∈ S}

B s(CASP)
id(S) TS; id(VS; Tmp)

Figure 58: The Translation of the Identity.
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5. Restriction and subtraction
Definition of a domain restriction:
S C r = {(x; y)|x 7→ y ∈ r ∧ x ∈ S}

Definition of a domain subtraction:
S C− r = {(x; y)|x 7→ y ∈ r ∧ x =∈ S}

Definition of a range restriction:
r BD = {(x; y)|x 7→ y ∈ r ∧ y ∈ D}

Definition of a range subtraction:
r B−D = {(x; y)|x 7→ y ∈ r ∧ y =∈ D}

Operator B s(CASP)
S C r S <| r TS; Tr ; domres(VS; Vr ; Tmp)

S C− r S <<| r TS; Tr ; domsub(VS; Vr ; Tmp)

r BD r |> D TS; Tr ; ranres(VS; Vr ; Tmp)

r B−D r |>> D TS; Tr ; ransub(VS; Vr ; Tmp)

Figure 59: The Translation of a Restriction and a Subtraction for Domains and Ranges.

6. Inverse
Definition:
r−1 = {(y; x)|x 7→ y ∈ r}

B s(CASP)
r˜ Tr ; inverse(Vr ; Tmp)

Figure 60: The Translation of an Inverse Relation.

7. Relational image
Definition:
r [S] = {y |∃x : x ∈ S ∧ x 7→ y ∈ r}

B s(CASP)
r[S] TS; Tr ; image(VS; Vr ; Tmp)

Figure 61: The Translation of an Relational Image.

8. Overriding
Definition:
r1 C− r2 = r2 ∪ (dom(r2)C− r1)
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B s(CASP)
r1 <+ r2 Tr1; Tr2; override(Vr1; Vr2; Tmp)

Figure 62: The Translation of Overriding.

9. Direct product
Definition:
r1 ⊗ r2 = {(x; (y; z))|x 7→ y ∈ r1 ∧ x 7→ z ∈ r2}

B s(CASP)
r1 >< r2 Tr1; Tr2; dpro(Vr1; Vr2; Tmp)

Figure 63: The Translation of a Direct Product.

10. Parallel product
Definition:
r1 ‖ r2 = {(x; y); (m; n)|x 7→ m ∈ r1 ∧ y 7→ n ∈ rca}

B s(CASP)
r1 || r2 Tr1; Tr2; ppro(Vr1; Vr2; Tmp)

Figure 64: The Translation of a Parallel Product.

2.3.6 Translation of Functions

A function f is a relation for which holds that for each element x of f ’s domain there is exactly one
ordered pair x → y ∈ f .

1. Partial functions
Definition :
S 7→D = {r |r ∈ S ↔ D ∧ r−1; r ⊆ id(D)}

B s(CASP)
S +-> D TS; TD; pfun(VS; VD; Tmp)

Figure 65: The Translation of Partial Functions.

2. Total functions
Definition :
S → D = {f |f ∈ S 7→D ∧ dom(f ) = S)}
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B s(CASP)
S --> D TS; TD; tfun(VS; VD; Tmp)

Figure 66: The Translation of Total Functions.

3. Partial injections
Definition :
S 7D = {f |f ∈ S 7→D ∧ f −1 ∈ D 7→ S}

B s(CASP)
S >+> D TS; TD; pinj(VS; VD; Tmp)

Figure 67: The Translation of Partial Injections.

4. Total injections
Definition :
SD = S 7D ∩ S → D

B s(CASP)
S >-> D TS; TD; tinj(VS; VD; Tmp)

Figure 68: The Translation of Total Injections.

5. Partial surjections
Definition :
S 7“D = {f |f ∈ S 7→D ∧ ran(f ) = D}

B s(CASP)
S +->> D TS; TD; psur(VS; VD; Tmp)

Figure 69: The Translation of Partial Surjections.

6. Total surjections
Definition :
S“D = S 7“D ∩ S → D

B s(CASP)
S -->> D TS; TD; tsur(VS; VD; Tmp)

Figure 70: The Translation of Total Surjections.

7. Bijections
Definition :
S“D = SD ∩ S“D



42 3 EMPIRICAL EVALUATION

B s(CASP)
S >->> D TS; TD; tbij(VS; VD; Tmp)

Figure 71: The Translation of Bijections.

8. Function application
Definition :
E 7→ y ∈ f ⇒ f (E) = y

Formal B s(CASP)
f (E) f(E) TE ;Tf ; fun(Tmpf ;TmpE ;Tmp)

Figure 72: The Translation of a Function Application.

Note that the framework expects a call for fun/3 to be well-defined.

3 Empirical Evaluation

In this section I aim towards empirically evaluating the presented framework’s capabilities by eval-
uating its correctness and comparing benchmark performances of s(CASP) to the native PROB,
Kodkod and Z3 backend. Furthermore as s(CASP) is a novel execution model and, as the authors
state, lacks a well rounded evaluation via benchmarking itself, this examination serves as a closer
analysis of s(CASP) as well [ACS+18]. Foremost, in Section 3.1 the framework’s correctness is
investigated. Section 3.2 focuses on runtime performance of individual predicates using artificial
benchmarks. Further, in Section 3.3 the computation of answers for variables bound to constructive
disequalities is investigated. Finally, Section 3.4 concludes with the evaluation of some real-world
examples.

3.1 Evaluation of Correctness

As this thesis implements a constraint solving backend, it is naturally imperative to ensure its cor-
rectness. Therefore, test cases6 are embedded in PROB consisting of numerous exemplary ex-
pressions, which cover the supported predicates. For each test, the s(CASP) backend first solves
the underlying predicate obtaining a result, which is afterwards validated by PROB. Of course, this
evaluation does not prove the backend’s correctness. However, this allows for a better insight into
its possible flaws and aids further development.

6https://gitlab.cs.uni-duesseldorf.de/stups/prob/prob_prolog/-/blob/feature/btoasp/src/
testcases.pl

https://gitlab.cs.uni-duesseldorf.de/stups/prob/prob_prolog/-/blob/feature/btoasp/src/testcases.pl
https://gitlab.cs.uni-duesseldorf.de/stups/prob/prob_prolog/-/blob/feature/btoasp/src/testcases.pl
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3.2 Performance Evaluation of Individual Predicates

This evaluation is split into three parts. I focus on evaluating the performance of predicates for sets
in Section 3.2.1, relations in Section 3.2.2 and functions in Section 3.2.3. The evaluation of primitive
values, numbers and logic expressions is covered in Section 3.4, as they appear on a regular basis
in real-world problems. Furthermore as sets, relations and functions are build upon each other, the
evaluation of the latter predicates indirectly includes the prior ones.

In the following, I present tables showing the runtime performances for each predicate of the afore-
mentioned predicates classes. The empirical result for a predicate is gathered by solving and
measuring the runtime of three separate synthetic B expressions on each backend (if available)
via the PROB REPL. Additionally, the runtime of the plain s(CASP) engine is measured to gain
more insight into s(CASP)’s performance by omitting the surrounding overhead introduced by the
framework’s processes. Each computation is executed three times with a one minute threshold on
a freshly initialized REPL to counter inaccuracies in the measurements. The environment of this
evaluation is a macOS 10.14.6 machine operating on a 7th generation i5 Intel processor at 3.1GHz.
The displayed value representing a predicate’s performance in milliseconds is obtained by averag-
ing over the results of all three exemplary expressions where every individual value is rounded half
away from zero. The designation n.a. indicates that either a timeout or an unsupported predicate
exception occurred. The benchmarks along with all performance measures for each run can be
found on GitLab7.

3.2.1 Performance Evaluation of Sets

Predicate Native PROB Kodkod Z3 s(CASP) Plain s(CASP)
Set Comp. 78 39 n.a. 263 16
Univ. Quantifier 96 40 82 257 2
Union 67 53 101 310 47
Intersection 70 52 103 323 38
Difference 72 54 108 319 42
Cart. Product 76 40 n.a. 293 5
Powerset 74 n.a. n.a. 1820 88
Cardinality 50 n.a. n.a. 241 1
Gen. Union 55 42 94 302 52
Gen. Inter. 56 50 99 311 61

Figure 73: Comparison of Set Predicate Performances measured in Milliseconds.

The table of Figure 73 indicates at first glance that the s(CASP) backend performs rather poorly
compared to the other three employed backends, as its runtimes are noticeably higher. The pred-

7https://gitlab.cs.uni-duesseldorf.de/efraimidis/b-to-asp/-/blob/master/thesis/MA/eval.md

https://gitlab.cs.uni-duesseldorf.de/efraimidis/b-to-asp/-/blob/master/thesis/MA/eval.md
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icates union, intersection, difference, powerset, general union and general intersection consume
visibly more time than the remaining ones. I noticed that particularly the execution time of the
largest expression of the powerset benchmarks is significantly extensive compared to the other
ones. This may be caused by the incorporation of the built-in findall/3 predicate for comput-
ing a powerset. The rest of the aforementioned predicates strikingly often invoke member/2. As
s(CASP) lacks a cut operator contrary to Prolog, additional rules containing the call not member/2

are needed to correctly express the predicate’s behavior. Consequently, in the instance of an ele-
ment not being a member of a list the dual rule resolving the negated goal is called nevertheless.
This may induce further loss of time, especially for large lists.

However, s(CASP) is able to obtain a result in some cases where Kodkod and Z3 are unable to fol-
low. Furthermore, the performances of executing the plain s(CASP) engine seem to be reasonable,
as the corresponding runtimes are noticeably low. Especially the predicates set comprehension,
universal quantifier, cartesian product and cardinality stand out. Cartesian product and cardinal-
ity essentially iterate over a list without having to compute any other complex side task. On the
other hand, set comprehension and universal quantifier work similarly but are also dependent on
the findall/3 constraint’s complexity. Therefore, I assume that the specific constraints stated in
these benchmarks are not particularly challenging. Yet, the respective runtimes for the s(CASP)
backend are perceptibly slower compared to the other ones. This occurrence suggests that the
framework’s overhead is considerably prevalent.

Figure 74 depicts a distribution of time for a solve process within the PROB REPL for the s(CASP)
backend. This data is obtained by computing the sum of the averaged runtimes for each sub task
of the largest expressions of the benchmarks for the predicates that are shown in Figure 73. Note
that these percentages merely pose an estimate on how the framework performs for any given
expression.

Total Trans. File Init. Inter. Exec. Inter. Solve P. Process Rest
8527 104 12 10 2387 5659 93 262
100% 1.3% 0.1% 0.1% 28% 66.4% 1% 3.1%

Figure 74: Time Distribution of the s(CASP) Solve Process measured in Milliseconds.

According to the data of Figure 74, the framework spends 28% of the time communicating with
SICStus and Ciao Prolog via the interface, which is a considerable amount relative to the actual
solving time of 66.4%. This loss of time is caused by having to start the Ciao engine, which con-
sequently initializes the s(CASP) interpreter before a solution can be computed. On my machine
I recorded an average startup time of 130ms for the Ciao engine. In perspective of the times re-
garding s(CASP) displayed in Figure 73, the time of initialization renders roughly half of the entire
process. However, these benchmarks are rather small compared to real-world examples. Hence,
the time loss of the Ciao engine’s initialization is here more apparent. Note that the spike of the
powerset’s runtime lowers the overall percentage of the interface’s workload, as the startup time of
the Ciao engine remains constant irrespective of the given problem. Nevertheless, this poses an
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unsatisfying persistent weakness of the framework.

The percentages of the remaining tasks, i.e. translation, file generation, post-processing and the
internal processes of PROB , referred to as rest, are not standing out compared to the other ones.
However, this data is insufficient to judge whether the runtimes of the aforementioned tasks remain
unnoticeable for any other arbitrary predicate.

3.2.2 Performance Evaluation of Relations

Predicate Native PROB Kodkod Z3 s(CASP) Plain s(CASP)
Relations 94 n.a. n.a. 698 39
Domain/Range 55 31 132 260 15
Composition 55 30 n.a. 245 1
Identity 67 n.a. n.a. 249 0
Restrict/Subtract 54 30 98 256 14
Inverse 54 41 89 244 0
Rel. Image 56 42 102 245 4
Override 54 n.a. n.a. 7639 7327
Direct Product 54 n.a. n.a. 249 6
Parallel Prod. 55 n.a. n.a. 280 12

Figure 75: Comparison of Relation Performances measured in Milliseconds.

The results of Figure 75 are generally reminiscent of the well performing predicates regarding sets.
The predicates composition, identity, inverse, relational image, direct product and parallel product
are noticeably efficient due to being facile in the sense that they all merely iterate over a list with-
out any demanding sub task along the way. On the other hand, the predicates domain, range,
domain/range restriction/subtraction and override are using member/2 of which the entirety, except
for override, also performs solidly. However, the presence of the framework’s overhead somewhat
discards the gained efficiency.

Interestingly, the largest expression of the override benchmarks consumes a significantly substan-
tial amount of time, which leads to the spike of 7639ms. Since override calls the domain, domain
subtraction and union predicate, which all invoke member/2, the earlier assumption that this could
prove problematic for large lists is supported. Nevertheless, the other ones perform solidly, which
could be due to coincidentally advantageous benchmarks or vice versa in the case of override.

The computation of a set of relations requires to compute the powerset of the underlying carte-
sian product. Hence, the runtime of the relations predicate presumably suffers from the poor per-
formance of the powerset computation. Yet, for these benchmarks the performance of the plain
engine is acceptable.
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3.2.3 Performance Evaluation of Functions

Predicate Native PROB s(CASP) Plain s(CASP)
Partial Functions 76 885* 333*
Total Functions 75 414* 161*
Partial Injections 83 537* 311*
Total Injections 77 1639* 1354*
Partial Surjections 77 379* 142*
Total Surjections 78 496* 256*
Bijections 76 2402* 2246*
Function Application 54 241 0

Figure 76: Comparison of Function Performances measured in Milliseconds.

The performance measurements for functions of Figure 76 emphasize an overall weak performance
for the s(CASP) backend. The asterisk indicates that the largest expression of the benchmarks is
not succeeding for the given threshold of one minute. Therefore, the displayed values express
just the average of the two smaller expressions, including PROB. Furthermore, it seems that the
plain computation time is also underwhelming in contrast to the majority of the previously covered
predicates. The comparison of PROB to s(CASP) alone is sufficient to demonstrate that s(CASP)
is clearly underperforming, thus is not posing a sensible option for computing functions. However,
the function application predicate appears to perform efficiently, which is merely a member/2 call.

The rest of the predicates rely on findall/3. This supports the assumption of Section 3.2.1 and
Section 3.2.2 that similar to the computation of a powerset the deployment of findall/3 poses a
considerable bottleneck.

Certainly, the implementation of the preliminary predicates can be enhanced. However, the frame-
work offers a run option called optimize. A ground B expression, x = {1,2,3} --> {4,5,6}

for instance, is then computed by PROB before being passed to the framework. In this case, the
resolved set of total functions is translated to ground s(CASP) code, which prevents an inferior
computation by the s(CASP) engine.

Moreover, as s(CASP) is not employing laziness the engine tries to compute a set of functions
regardless of its use and size contrary to PROB. Thus, even given a more sophisticated implemen-
tation of preliminary predicates without the involvement of findall/3, the process would presum-
ably still lack efficiency in some cases.

3.3 Performance Evaluation of Constructive Negation

In this subsection I analyze the efficiency of computing an answer out of a constructive negation
term. Since the aim is to focus on the post processing, I evaluate the runtimes of ground inequali-
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ties. Note that the evaluation of the Kodkod backend is omitted, as it does not offer this feature.

Native PROB Z3 s(CASP) Post Processing
67 84* 252 2

Figure 77: Comparison of Generating Answers out of Constructive Negation Terms Performances
measured in Milliseconds.

The table of Figure 77 expresses the average runtimes for the three backends to return a result
for exemplary inequalities. The data is gathered by averaging over different types of expressions.
Inequalities of integers, ordered pairs, sets, sets of ordered pairs and sets of sets are considered
in this analysis. The asterisk indicates that the Z3 backend is unable to compute an answer for one
of the benchmarks.

Generally, the average time of 2ms resolving constructive negation terms with s(CASP) seems
to be acceptable. However, regardless of the actual solving time of 2ms the framework’s overhead
is still present. Furthermore, this evaluation includes structures containing at least one integer only,
as data without integers is not supported. Therefore, one needs to consider the s(CASP) backend’s
limitations.

3.4 Performance Evaluation of Real-World Examples

In the following, I evaluate the s(CASP) backend by measuring performances of real-world exam-
ples.

Predicate N. PROB Kodkod Z3 s(CASP) P. s(CASP) Translation
4-Queens 115 36 126 369 31 78
5-Queens 112 36 151 438 37 85
6-Queens 117 37 314 4927 3101 225
7-Queens 107 39 985 30507 5190 7092

Figure 78: Comparison of N-Queens Performances measured in Milliseconds.

Figure 78 shows the performances of various PROB backends dealing with different sizes of the n-
queens problem8. Note that the performance measurements of s(CASP) are supported by PROB.
That is, the tool makes use of the run option optimize, hence ground instances are computed by
PROB first. The reason is that this implementation seems to struggle with the computation of func-
tions. Consequently, the raw evaluation of the aforementioned predicates does not succeed in the
predefined time window of one minute. Furthermore, the s(CASP) backend is unfortunately unable

8https://gitlab.cs.uni-duesseldorf.de/stups/prob/prob_examples/-/blob/master/public_

examples/Eval/NQueens.eval

https://gitlab.cs.uni-duesseldorf.de/stups/prob/prob_examples/-/blob/master/public_examples/Eval/NQueens.eval
https://gitlab.cs.uni-duesseldorf.de/stups/prob/prob_examples/-/blob/master/public_examples/Eval/NQueens.eval
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to resolve other real-world examples, such as sudoku, graph coloring and who killed Agatha9, as
they are all defined using functions. Therefore, they are not included in the table of Figure 78.

The s(CASP) backend is slower than the other solvers for n = 4 and n = 5, however it still seems
to perform quite reasonable. Interestingly, the runtimes rise very rapidly for an increasing amount of
queens. Especially the recorded time for n = 7 appears to be extraordinary high. As the evaluated
set of total functions for 1..7 >-> 1..7 has to be printed entirely, it causes the translator to gen-
erate a large portion of extra code resulting in total time of 7092ms for the task. Though, combined
with the actual solving time of 5190ms there is a close to 20 second time gap left. This is due to
having to compute and generate a stable model, which is extremely large compared to the smaller
problem instances, and having to synthesize a dual program before the query can be resolved.
For this problem, I recorded an average time of roughly four seconds after invoking the engine and
before the query was resolved. This suggests that for especially large problem instances perhaps
the initial computation of the dual program might be considerable as well.

One needs to consider that this translation hardly incorporates any optimizations. Predicates are in
that sense straightforwardly translated. Therefore, it is plausible that the backend’s performance is
also dependent on how suitable the problem definition is for the s(CASP) methodology. However,
this is subject to future work.

Overall, the results are underwhelming. The s(CASP) backend seems to perform passable for
smaller predicates. Nevertheless, for larger instances the backend generally experiences consider-
able difficulties to obtain an answer. In particular, the s(CASP) backend is outclassed by the native
PROB, Kodkod and Z3 backend for every single benchmark. In some few cases, however, Kodkod
and Z3 are unable to find a solution where s(CASP) succeeds. Yet, even in those instances native
PROB poses a superior option. Thus, the s(CASP) backend is hardly recommendable. The gath-
ered results suggest that parts of the preliminary predicates are underperforming due to invoking
findall/3 as well as the s(CASP) engine itself. By virtue of having to unnecessarily resolve some
predicate’s respective negated call owing to the cut operator’s absence, the solver clearly lacks
efficiency in several cases. However, with sophisticated refinement this backend could be rendered
more beneficial.

4 Future Work

Completeness Even though the presented framework is capable of translating a large portion of
the B realm to s(CASP), there are some predicates left to be supported. Predicates such as iter-
ation, closure, projection, lambda abstraction and the coverage of sequences should be included
for broadening the range of legal predicates to be translated. Enabling one to assign variables to
infinite domains, for example the B expression n:NAT, is decisive to be able to express more com-
plex problems. As s(CASP) offers a CLP backend and shares similarities with Prolog, this probably

9https://gitlab.cs.uni-duesseldorf.de/stups/prob/prob_examples/-/blob/master/public_

examples/Eval

https://gitlab.cs.uni-duesseldorf.de/stups/prob/prob_examples/-/blob/master/public_examples/Eval
https://gitlab.cs.uni-duesseldorf.de/stups/prob/prob_examples/-/blob/master/public_examples/Eval
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could be done similarly to how PROB handles those instances [KL17]. Further, the approach of
computing answers out of constructive negation terms is unable to handle expressions without in-
tegers. Since PROB is capable of coping with resolving inequalities, it should be possible to let
PROB handle this task. Furthermore, the framework could be enhanced to deal with predicates of
the form a = {1,2} & x = a \/ b & b = {2,3}, where variables are used prior to their dec-
laration. Arithmetical instances of the form a = b+1 & b = 1 are covered by s(CASP)’s CLP(Q)
solver. However, this feature should be enabled for all predicates. This could be done by analyzing
the underlying AST within the framework, and thus generate appropriate code that is solely reliant
on already evaluated data.

Efficiency Considering the empirical evaluation’s results of Section 3, it is incontrovertible that the
presented backend is not on par with the other ones employed by PROB. The translation process
can certainly be enhanced as for very large programs a considerable amount of time is consumed.
That is, the generated program containing a set of over 5000 ordered pairs for the evaluated ex-
pression 1..7 >-> 1..7 took significantly longer than generating code for the smaller n-queens
instances. The translator gradually generates a list of atoms when walking over the AST. Hence,
the framework could gain performance by expressing the s(CASP) code as a difference list of
atoms to escape linearity when concatenating. Reimplementing parts of the preliminary predicates
that utilize findall/3 in a more efficient way should also lead to a noticeable performance boost.
Additionally, research could be done on how problem instances are properly defined in order to
be solved more efficiently. Furthermore, the evaluation of Section 3.2.2 suggests that s(CASP)
itself seems to be immature to deal with some problem instances due to the involvement of dual
rules. The engine is under continuous development lead by Arias and Carro. During my work,
I encountered a few bugs and purposed some suggestions to enhance parts of s(CASP), which
were incorporated into the engine. Yet, considering the current state of s(CASP) it seems sensible
to explore further options.

Alternatives This work presents a framework translating B predicates to s(CASP), which is an
implementation of the Answer Set Programming formalism. However, there are numerous other
dialects of ASP available, which are covered in Section 1.4.2. Perhaps choosing a classical ASP
implementation may lead to more promising performances. On the other hand, the grounding bot-
tleneck is then to consider [BLS13]. Furthermore, opting for a classical approach would erase the
freedom regarding variables’ domains that s(CASP) is offering.

More sophisticated performance evaluation Lastly, this work could be incorporated in the anal-
ysis of automatically selecting a suitable backend for PROB, researched by Dunkelau [Dun17].
Thereby, methods of deep learning decide which backend is most suitable for the underlying prob-
lem [LBH15, GBCB16]. Considering this empirical evaluation, such research is presumably more
sensible for an already enhanced and better performing backend.
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5 Conclusion

In this thesis I developed an additional constraint solving backend for PROB, which translates B
predicates to s(CASP). The presented framework enables predicates to be solved by the s(CASP)
engine within PROB via the implemented Ciao/SICStus Prolog interface. Special attention has been
paid to the framework’s design and implementation and to evaluate its performance by comparing
it to the native, Kodkod and Z3 backend of PROB.

In conclusion, this work poses a foundation for an s(CASP) backend. In particular, the framework is
capable of translating a considerable amount of B predicates to s(CASP). However, this work’s em-
pirical results of Section 3 indicate weaknesses of the implemented backend for some predicates,
especially for functions. Therefore, I suggest to build upon the proposed work. Particularly, the im-
plementation of the preliminary predicates are to be enhanced in order to gain more performance.
As the computation of functions seems to be the main bottleneck, I assume that improving their
implementation would yield the most notable results. Concurrently, the empirical evaluation shows
that the plain s(CASP) engine performs noticeably well for some of the benchmarks, which do
not incorporate findall/3. Specifically, efficient runtimes have been recorded for the predicates
cartesian product, cardinality, composition, identity, inverse, relational image, direct product and
function application, which all succeeded on average in less than ten milliseconds. This evaluation
indicates that improving the framework as a whole to reduce its surrounding overhead may also
lead to better performances and to a more promising backend in general. Furthermore, the pre-
sented backend can be used for verification of other employed solvers. Similar to how the s(CASP)
backend is tested by PROB, PROB’s and other solver’s answers could thus be verified by s(CASP).
Especially, for predicates that are solely supported by the native backend, the s(CASP) backend
can be applied. For instance, the Kodkod and Z3 backend do not support predicates such as direct
and parallel product, which can be solved by s(CASP). Yet, this kind of employment merely poses
a sensible option in cases where the underlying predicate is solvable by the s(CASP) engine in a
reasonable amount of time.

In retrospective, I would have approached this work oppositely. Instead of focusing on translat-
ing a large portion of B predicates, I could have aimed towards a more sophisticated and optimized
framework. However, this presumably would have induced a more narrow backend regarding sup-
ported predicates. Nevertheless, I am of the opinion that prioritizing a more efficient solver would
have yielded more satisfying results.

Overall, I consider Answer Set Programming, and more specifically s(CASP), to have potential
to improve the field of formal methods and think that this thesis constitutes the foundation towards
this direction.
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