Proof Trace Export for
inv14/WD (true)
from
marsRover/Rover3.pl
Proof Steps
< Previous Step
Next Step >
Run Steps
1. reselect_hyp (radiation ∈ field → ℕ)
2. reselect_hyp ({rover} ⊆ field)
3. reselect_hyp (radiation ∈ ℤ × ℤ ⇸ ℤ)
4. and_r
5. hyp
6. DEF_IN_TFCT (radiation ∈ field → ℕ)
7. and_l (radiation ∈ field ⇸ ℕ ∧ dom(radiation) = field)
8. eq (lr,dom(radiation) = field)
9. SIMP_SUBSETEQ_SING ({rover} ⊆ field)
10. hyp
ProB Version: 1.16.0-nightly (fc7197358de5296cb229afa2bb1fd93b8e64c2ca)
Generated on 25/01/2026 at 7:13
Proof Tree
prob_graph
dot_node_0
Select PO
dot_node_3
no hypotheses
radiation ∈ ℤ × ℤ ⇸ ℤ ∧ rover ∈ dom(radiation)
dot_node_0->dot_node_3
inv14/WD (true)
dot_node_1
Proven.
dot_node_2
Proven.
dot_node_4
radiation ∈ field → ℕ
radiation ∈ ℤ × ℤ ⇸ ℤ ∧ rover ∈ dom(radiation)
dot_node_3->dot_node_4
reselect_hyp (radiation ∈ field → ℕ)
dot_node_5
radiation ∈ field → ℕ
{rover} ⊆ field
radiation ∈ ℤ × ℤ ⇸ ℤ ∧ rover ∈ dom(radiation)
dot_node_4->dot_node_5
reselect_hyp ({rover} ⊆ field)
dot_node_6
radiation ∈ field → ℕ
{rover} ⊆ field
radiation ∈ ℤ × ℤ ⇸ ℤ
radiation ∈ ℤ × ℤ ⇸ ℤ ∧ rover ∈ dom(radiation)
dot_node_5->dot_node_6
reselect_hyp (radiation ∈ ℤ × ℤ ⇸ ℤ)
dot_node_7
radiation ∈ field → ℕ
{rover} ⊆ field
radiation ∈ ℤ × ℤ ⇸ ℤ
radiation ∈ ℤ × ℤ ⇸ ℤ
dot_node_6->dot_node_7
and_r
dot_node_8
radiation ∈ field → ℕ
{rover} ⊆ field
radiation ∈ ℤ × ℤ ⇸ ℤ
rover ∈ dom(radiation)
dot_node_6->dot_node_8
and_r
dot_node_7->dot_node_1
hyp
dot_node_9
radiation ∈ field ⇸ ℕ ∧ dom(radiation) = field
{rover} ⊆ field
radiation ∈ ℤ × ℤ ⇸ ℤ
rover ∈ dom(radiation)
dot_node_8->dot_node_9
DEF_IN_TFCT (radiation ∈ field → ℕ)
dot_node_10
{rover} ⊆ field
radiation ∈ ℤ × ℤ ⇸ ℤ
radiation ∈ field ⇸ ℕ
dom(radiation) = field
rover ∈ dom(radiation)
dot_node_9->dot_node_10
and_l (radiation ∈ field ⇸ ℕ ∧ dom(radiation) = field)
dot_node_11
{rover} ⊆ field
radiation ∈ ℤ × ℤ ⇸ ℤ
radiation ∈ field ⇸ ℕ
rover ∈ field
dot_node_10->dot_node_11
eq (lr,dom(radiation) = field)
dot_node_12
rover ∈ field
radiation ∈ ℤ × ℤ ⇸ ℤ
radiation ∈ field ⇸ ℕ
rover ∈ field
dot_node_11->dot_node_12
SIMP_SUBSETEQ_SING ({rover} ⊆ field)
dot_node_12->dot_node_2
hyp
Reset View