Proof Trace Export for
inv14/WD (true)
from
marsRover/Rover3.pl
Proof Steps
< Previous Step
Next Step >
Run Steps
1. reselect_hyp (radiation ∈ field → ℕ)
2. reselect_hyp ({rover} ⊆ field)
3. and_r
4. fun_goal
5. DERIV_DOM_TOTALREL (rover ∈ dom(radiation))
6. SIMP_SUBSETEQ_SING ({rover} ⊆ field)
7. hyp
ProB Version: 1.16.0-nightly (fc7197358de5296cb229afa2bb1fd93b8e64c2ca)
Generated on 25/01/2026 at 7:13
Proof Tree
prob_graph
dot_node_0
Select PO
dot_node_3
no hypotheses
radiation ∈ ℤ × ℤ ⇸ ℤ ∧ rover ∈ dom(radiation)
dot_node_0->dot_node_3
inv14/WD (true)
dot_node_1
Proven.
dot_node_2
Proven.
dot_node_4
radiation ∈ field → ℕ
radiation ∈ ℤ × ℤ ⇸ ℤ ∧ rover ∈ dom(radiation)
dot_node_3->dot_node_4
reselect_hyp (radiation ∈ field → ℕ)
dot_node_5
radiation ∈ field → ℕ
{rover} ⊆ field
radiation ∈ ℤ × ℤ ⇸ ℤ ∧ rover ∈ dom(radiation)
dot_node_4->dot_node_5
reselect_hyp ({rover} ⊆ field)
dot_node_6
radiation ∈ field → ℕ
{rover} ⊆ field
radiation ∈ ℤ × ℤ ⇸ ℤ
dot_node_5->dot_node_6
and_r
dot_node_7
radiation ∈ field → ℕ
{rover} ⊆ field
rover ∈ dom(radiation)
dot_node_5->dot_node_7
and_r
dot_node_6->dot_node_1
fun_goal
dot_node_8
radiation ∈ field → ℕ
{rover} ⊆ field
rover ∈ field
dot_node_7->dot_node_8
DERIV_DOM_TOTALREL (rover ∈ dom(radiation))
dot_node_9
radiation ∈ field → ℕ
rover ∈ field
rover ∈ field
dot_node_8->dot_node_9
SIMP_SUBSETEQ_SING ({rover} ⊆ field)
dot_node_9->dot_node_2
hyp
Reset View