Information
- Trace generated on 26.1.2026 at 14:57
- Trace length: 27
- Specification file (xtl): find_ctx/find_ctx.pl
- Git revision of file: 100644 aeb1dc7ff1e00a21f6b0f79d11df91ccc64a31bf 0 find_ctx.pl
- Git revision of repository HEAD: cd19d00422d82514eec2f9464304c1349a4c362b
- ProB version: 1.16.0-nightly
- ProB revision: 25fadf907101913f4f3f41a98fdcdc96920fbb46 (Mon Jan 26 07:56:17 2026 +0100)
1. thm1/WD (true)
(start_xtl_system)
| arr ∈ 1 ‥ n → ℕ1 |
| mxi ∈ 1 ‥ n |
| n ∈ ℕ1 |
| (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) |
| --------------------- |
| (∃b·(∀x·(x ∈ ran(arr) ⇒ x ≤ b))) ∧ arr ∈ ℤ ⇸ ℤ ∧ mxi ∈ dom(arr) ∧ ran(arr) ≠ ∅ |
2. and_r
| arr ∈ 1 ‥ n → ℕ1 |
arr ∈ 1 ‥ n → ℕ1 |
arr ∈ 1 ‥ n → ℕ1 |
arr ∈ 1 ‥ n → ℕ1 |
| mxi ∈ 1 ‥ n |
mxi ∈ 1 ‥ n |
mxi ∈ 1 ‥ n |
mxi ∈ 1 ‥ n |
| n ∈ ℕ1 |
n ∈ ℕ1 |
n ∈ ℕ1 |
n ∈ ℕ1 |
| (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) |
(∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) |
(∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) |
(∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) |
| --------------------- |
--------------------- |
--------------------- |
--------------------- |
| (∃b·(∀x·(x ∈ ran(arr) ⇒ x ≤ b))) |
arr ∈ ℤ ⇸ ℤ |
mxi ∈ dom(arr) |
ran(arr) ≠ ∅ |
3. upper_bound_r
| arr ∈ 1 ‥ n → ℕ1 |
arr ∈ 1 ‥ n → ℕ1 |
arr ∈ 1 ‥ n → ℕ1 |
arr ∈ 1 ‥ n → ℕ1 |
| mxi ∈ 1 ‥ n |
mxi ∈ 1 ‥ n |
mxi ∈ 1 ‥ n |
mxi ∈ 1 ‥ n |
| n ∈ ℕ1 |
n ∈ ℕ1 |
n ∈ ℕ1 |
n ∈ ℕ1 |
| (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) |
(∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) |
(∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) |
(∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) |
| --------------------- |
--------------------- |
--------------------- |
--------------------- |
| finite(ran(arr)) |
arr ∈ ℤ ⇸ ℤ |
mxi ∈ dom(arr) |
ran(arr) ≠ ∅ |
4. fin_rel_ran_r
| arr ∈ 1 ‥ n → ℕ1 |
arr ∈ 1 ‥ n → ℕ1 |
arr ∈ 1 ‥ n → ℕ1 |
arr ∈ 1 ‥ n → ℕ1 |
| mxi ∈ 1 ‥ n |
mxi ∈ 1 ‥ n |
mxi ∈ 1 ‥ n |
mxi ∈ 1 ‥ n |
| n ∈ ℕ1 |
n ∈ ℕ1 |
n ∈ ℕ1 |
n ∈ ℕ1 |
| (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) |
(∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) |
(∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) |
(∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) |
| --------------------- |
--------------------- |
--------------------- |
--------------------- |
| finite(arr) |
arr ∈ ℤ ⇸ ℤ |
mxi ∈ dom(arr) |
ran(arr) ≠ ∅ |
5. fin_fun_dom
| arr ∈ 1 ‥ n → ℕ1 |
arr ∈ 1 ‥ n → ℕ1 |
arr ∈ 1 ‥ n → ℕ1 |
arr ∈ 1 ‥ n → ℕ1 |
arr ∈ 1 ‥ n → ℕ1 |
| mxi ∈ 1 ‥ n |
mxi ∈ 1 ‥ n |
mxi ∈ 1 ‥ n |
mxi ∈ 1 ‥ n |
mxi ∈ 1 ‥ n |
| n ∈ ℕ1 |
n ∈ ℕ1 |
n ∈ ℕ1 |
n ∈ ℕ1 |
n ∈ ℕ1 |
| (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) |
(∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) |
(∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) |
(∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) |
(∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) |
| --------------------- |
--------------------- |
--------------------- |
--------------------- |
--------------------- |
| ⊤ |
finite(1 ‥ n) |
arr ∈ ℤ ⇸ ℤ |
mxi ∈ dom(arr) |
ran(arr) ≠ ∅ |
6. true_goal
| arr ∈ 1 ‥ n → ℕ1 |
arr ∈ 1 ‥ n → ℕ1 |
arr ∈ 1 ‥ n → ℕ1 |
arr ∈ 1 ‥ n → ℕ1 |
| mxi ∈ 1 ‥ n |
mxi ∈ 1 ‥ n |
mxi ∈ 1 ‥ n |
mxi ∈ 1 ‥ n |
| n ∈ ℕ1 |
n ∈ ℕ1 |
n ∈ ℕ1 |
n ∈ ℕ1 |
| (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) |
(∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) |
(∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) |
(∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) |
| --------------------- |
--------------------- |
--------------------- |
--------------------- |
| finite(1 ‥ n) |
arr ∈ ℤ ⇸ ℤ |
mxi ∈ dom(arr) |
ran(arr) ≠ ∅ |
7. Evaluate tautology (finite(1 ‥ n))
(simplify_goal('Evaluate tautology'))
| arr ∈ 1 ‥ n → ℕ1 |
arr ∈ 1 ‥ n → ℕ1 |
arr ∈ 1 ‥ n → ℕ1 |
arr ∈ 1 ‥ n → ℕ1 |
| mxi ∈ 1 ‥ n |
mxi ∈ 1 ‥ n |
mxi ∈ 1 ‥ n |
mxi ∈ 1 ‥ n |
| n ∈ ℕ1 |
n ∈ ℕ1 |
n ∈ ℕ1 |
n ∈ ℕ1 |
| (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) |
(∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) |
(∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) |
(∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) |
| --------------------- |
--------------------- |
--------------------- |
--------------------- |
| ⊤ |
arr ∈ ℤ ⇸ ℤ |
mxi ∈ dom(arr) |
ran(arr) ≠ ∅ |
8. true_goal
| arr ∈ 1 ‥ n → ℕ1 |
arr ∈ 1 ‥ n → ℕ1 |
arr ∈ 1 ‥ n → ℕ1 |
| mxi ∈ 1 ‥ n |
mxi ∈ 1 ‥ n |
mxi ∈ 1 ‥ n |
| n ∈ ℕ1 |
n ∈ ℕ1 |
n ∈ ℕ1 |
| (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) |
(∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) |
(∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) |
| --------------------- |
--------------------- |
--------------------- |
| arr ∈ ℤ ⇸ ℤ |
mxi ∈ dom(arr) |
ran(arr) ≠ ∅ |
9. fun_goal
| arr ∈ 1 ‥ n → ℕ1 |
arr ∈ 1 ‥ n → ℕ1 |
| mxi ∈ 1 ‥ n |
mxi ∈ 1 ‥ n |
| n ∈ ℕ1 |
n ∈ ℕ1 |
| (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) |
(∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) |
| --------------------- |
--------------------- |
| mxi ∈ dom(arr) |
ran(arr) ≠ ∅ |
10. DEF_IN_TFCT (arr ∈ 1 ‥ n → ℕ1)
(simplify_hyp('DEF_IN_TFCT',member($(arr),total_function(interval(1,$(n)),'NATURAL1'))))
| arr ∈ 1 ‥ n ⇸ ℕ1 ∧ dom(arr) = 1 ‥ n |
arr ∈ 1 ‥ n → ℕ1 |
| mxi ∈ 1 ‥ n |
mxi ∈ 1 ‥ n |
| n ∈ ℕ1 |
n ∈ ℕ1 |
| (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) |
(∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) |
| --------------------- |
--------------------- |
| mxi ∈ dom(arr) |
ran(arr) ≠ ∅ |
11. and_l (arr ∈ 1 ‥ n ⇸ ℕ1 ∧ dom(arr) = 1 ‥ n)
(and_l(conjunct(member($(arr),partial_function(interval(1,$(n)),'NATURAL1')),equal(domain($(arr)),interval(1,$(n))))))
| mxi ∈ 1 ‥ n |
arr ∈ 1 ‥ n → ℕ1 |
| n ∈ ℕ1 |
mxi ∈ 1 ‥ n |
| (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) |
n ∈ ℕ1 |
| arr ∈ 1 ‥ n ⇸ ℕ1 |
(∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) |
| dom(arr) = 1 ‥ n |
--------------------- |
| --------------------- |
ran(arr) ≠ ∅ |
| mxi ∈ dom(arr) |
|
12. eq (lr,dom(arr) = 1 ‥ n)
(eq(lr,domain($(arr)),interval(1,$(n))))
| mxi ∈ 1 ‥ n |
arr ∈ 1 ‥ n → ℕ1 |
| n ∈ ℕ1 |
mxi ∈ 1 ‥ n |
| (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) |
n ∈ ℕ1 |
| arr ∈ 1 ‥ n ⇸ ℕ1 |
(∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) |
| --------------------- |
--------------------- |
| mxi ∈ 1 ‥ n |
ran(arr) ≠ ∅ |
13. hyp
| arr ∈ 1 ‥ n → ℕ1 |
| mxi ∈ 1 ‥ n |
| n ∈ ℕ1 |
| (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) |
| --------------------- |
| ran(arr) ≠ ∅ |
14. SIMP_NOTEQUAL (ran(arr) ≠ ∅)
(simplify_goal('SIMP_NOTEQUAL'))
| arr ∈ 1 ‥ n → ℕ1 |
| mxi ∈ 1 ‥ n |
| n ∈ ℕ1 |
| (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) |
| --------------------- |
| ¬(ran(arr) = ∅) |
15. DEF_SPECIAL_NOT_EQUAL (¬(ran(arr) = ∅))
(simplify_goal('DEF_SPECIAL_NOT_EQUAL'))
| arr ∈ 1 ‥ n → ℕ1 |
| mxi ∈ 1 ‥ n |
| n ∈ ℕ1 |
| (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) |
| --------------------- |
| (∃x·x ∈ ran(arr)) |
16. exists_inst('arr(1)')
| arr ∈ 1 ‥ n → ℕ1 |
arr ∈ 1 ‥ n → ℕ1 |
arr ∈ 1 ‥ n → ℕ1 |
| mxi ∈ 1 ‥ n |
mxi ∈ 1 ‥ n |
mxi ∈ 1 ‥ n |
| n ∈ ℕ1 |
n ∈ ℕ1 |
n ∈ ℕ1 |
| (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) |
(∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) |
(∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) |
| --------------------- |
--------------------- |
--------------------- |
| 1 ∈ dom(arr) |
arr ∈ ℤ ⇸ ℤ |
arr(1) ∈ ran(arr) |
17. DERIV_DOM_TOTALREL (1 ∈ dom(arr))
(simplify_goal('DERIV_DOM_TOTALREL'(interval(1,$(n)))))
| arr ∈ 1 ‥ n → ℕ1 |
arr ∈ 1 ‥ n → ℕ1 |
arr ∈ 1 ‥ n → ℕ1 |
| mxi ∈ 1 ‥ n |
mxi ∈ 1 ‥ n |
mxi ∈ 1 ‥ n |
| n ∈ ℕ1 |
n ∈ ℕ1 |
n ∈ ℕ1 |
| (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) |
(∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) |
(∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) |
| --------------------- |
--------------------- |
--------------------- |
| 1 ∈ 1 ‥ n |
arr ∈ ℤ ⇸ ℤ |
arr(1) ∈ ran(arr) |
18. DEF_IN_UPTO (1 ∈ 1 ‥ n)
(simplify_goal('DEF_IN_UPTO'))
| arr ∈ 1 ‥ n → ℕ1 |
arr ∈ 1 ‥ n → ℕ1 |
arr ∈ 1 ‥ n → ℕ1 |
| mxi ∈ 1 ‥ n |
mxi ∈ 1 ‥ n |
mxi ∈ 1 ‥ n |
| n ∈ ℕ1 |
n ∈ ℕ1 |
n ∈ ℕ1 |
| (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) |
(∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) |
(∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) |
| --------------------- |
--------------------- |
--------------------- |
| 1 ≤ 1 ∧ 1 ≤ n |
arr ∈ ℤ ⇸ ℤ |
arr(1) ∈ ran(arr) |
19. SIMP_LIT_LE (1 ≤ 1)
(simplify_goal('SIMP_LIT_LE'))
| arr ∈ 1 ‥ n → ℕ1 |
arr ∈ 1 ‥ n → ℕ1 |
arr ∈ 1 ‥ n → ℕ1 |
| mxi ∈ 1 ‥ n |
mxi ∈ 1 ‥ n |
mxi ∈ 1 ‥ n |
| n ∈ ℕ1 |
n ∈ ℕ1 |
n ∈ ℕ1 |
| (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) |
(∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) |
(∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) |
| --------------------- |
--------------------- |
--------------------- |
| ⊤ ∧ 1 ≤ n |
arr ∈ ℤ ⇸ ℤ |
arr(1) ∈ ran(arr) |
20. SIMP_SPECIAL_AND_BTRUE (⊤ ∧ 1 ≤ n)
(simplify_goal('SIMP_SPECIAL_AND_BTRUE'))
| arr ∈ 1 ‥ n → ℕ1 |
arr ∈ 1 ‥ n → ℕ1 |
arr ∈ 1 ‥ n → ℕ1 |
| mxi ∈ 1 ‥ n |
mxi ∈ 1 ‥ n |
mxi ∈ 1 ‥ n |
| n ∈ ℕ1 |
n ∈ ℕ1 |
n ∈ ℕ1 |
| (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) |
(∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) |
(∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) |
| --------------------- |
--------------------- |
--------------------- |
| 1 ≤ n |
arr ∈ ℤ ⇸ ℤ |
arr(1) ∈ ran(arr) |
21. DEF_IN_NATURAL1 (n ∈ ℕ1)
(simplify_hyp('DEF_IN_NATURAL1',member($(n),'NATURAL1')))
| arr ∈ 1 ‥ n → ℕ1 |
arr ∈ 1 ‥ n → ℕ1 |
arr ∈ 1 ‥ n → ℕ1 |
| mxi ∈ 1 ‥ n |
mxi ∈ 1 ‥ n |
mxi ∈ 1 ‥ n |
| 1 ≤ n |
n ∈ ℕ1 |
n ∈ ℕ1 |
| (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) |
(∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) |
(∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) |
| --------------------- |
--------------------- |
--------------------- |
| 1 ≤ n |
arr ∈ ℤ ⇸ ℤ |
arr(1) ∈ ran(arr) |
22. hyp
| arr ∈ 1 ‥ n → ℕ1 |
arr ∈ 1 ‥ n → ℕ1 |
| mxi ∈ 1 ‥ n |
mxi ∈ 1 ‥ n |
| n ∈ ℕ1 |
n ∈ ℕ1 |
| (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) |
(∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) |
| --------------------- |
--------------------- |
| arr ∈ ℤ ⇸ ℤ |
arr(1) ∈ ran(arr) |
23. fun_goal
| arr ∈ 1 ‥ n → ℕ1 |
| mxi ∈ 1 ‥ n |
| n ∈ ℕ1 |
| (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) |
| --------------------- |
| arr(1) ∈ ran(arr) |
24. DEF_IN_RAN (arr(1) ∈ ran(arr))
(simplify_goal('DEF_IN_RAN'))
| arr ∈ 1 ‥ n → ℕ1 |
| mxi ∈ 1 ‥ n |
| n ∈ ℕ1 |
| (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) |
| --------------------- |
| (∃x·x ↦ arr(1) ∈ arr) |
25. exists_inst('1')
| arr ∈ 1 ‥ n → ℕ1 |
| mxi ∈ 1 ‥ n |
| n ∈ ℕ1 |
| (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) |
| --------------------- |
| 1 ↦ arr(1) ∈ arr |
26. SIMP_IN_FUNIMAGE (1 ↦ arr(1) ∈ arr)
(simplify_goal('SIMP_IN_FUNIMAGE'))
| arr ∈ 1 ‥ n → ℕ1 |
| mxi ∈ 1 ‥ n |
| n ∈ ℕ1 |
| (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) |
| --------------------- |
| ⊤ |
27. true_goal
| Proof of thm1/WD (true) succeeded. |