Information

1. thm1/WD (true)

(start_xtl_system)
arr ∈ 1 ‥ n → ℕ1
mxi ∈ 1 ‥ n
n ∈ ℕ1
(∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi)))
---------------------
(∃b·(∀x·(x ∈ ran(arr) ⇒ x ≤ b))) ∧ arr ∈ ℤ ⇸ ℤ ∧ mxi ∈ dom(arr) ∧ ran(arr) ≠ ∅

2. and_r

arr ∈ 1 ‥ n → ℕ1 arr ∈ 1 ‥ n → ℕ1 arr ∈ 1 ‥ n → ℕ1 arr ∈ 1 ‥ n → ℕ1
mxi ∈ 1 ‥ n mxi ∈ 1 ‥ n mxi ∈ 1 ‥ n mxi ∈ 1 ‥ n
n ∈ ℕ1 n ∈ ℕ1 n ∈ ℕ1 n ∈ ℕ1
(∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi)))
--------------------- --------------------- --------------------- ---------------------
(∃b·(∀x·(x ∈ ran(arr) ⇒ x ≤ b))) arr ∈ ℤ ⇸ ℤ mxi ∈ dom(arr) ran(arr) ≠ ∅

3. upper_bound_r

arr ∈ 1 ‥ n → ℕ1 arr ∈ 1 ‥ n → ℕ1 arr ∈ 1 ‥ n → ℕ1 arr ∈ 1 ‥ n → ℕ1
mxi ∈ 1 ‥ n mxi ∈ 1 ‥ n mxi ∈ 1 ‥ n mxi ∈ 1 ‥ n
n ∈ ℕ1 n ∈ ℕ1 n ∈ ℕ1 n ∈ ℕ1
(∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi)))
--------------------- --------------------- --------------------- ---------------------
finite(ran(arr)) arr ∈ ℤ ⇸ ℤ mxi ∈ dom(arr) ran(arr) ≠ ∅

4. fin_rel_ran_r

arr ∈ 1 ‥ n → ℕ1 arr ∈ 1 ‥ n → ℕ1 arr ∈ 1 ‥ n → ℕ1 arr ∈ 1 ‥ n → ℕ1
mxi ∈ 1 ‥ n mxi ∈ 1 ‥ n mxi ∈ 1 ‥ n mxi ∈ 1 ‥ n
n ∈ ℕ1 n ∈ ℕ1 n ∈ ℕ1 n ∈ ℕ1
(∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi)))
--------------------- --------------------- --------------------- ---------------------
finite(arr) arr ∈ ℤ ⇸ ℤ mxi ∈ dom(arr) ran(arr) ≠ ∅

5. fin_fun1_r('1..n +-> NATURAL1')

arr ∈ 1 ‥ n → ℕ1 arr ∈ 1 ‥ n → ℕ1 arr ∈ 1 ‥ n → ℕ1 arr ∈ 1 ‥ n → ℕ1 arr ∈ 1 ‥ n → ℕ1
mxi ∈ 1 ‥ n mxi ∈ 1 ‥ n mxi ∈ 1 ‥ n mxi ∈ 1 ‥ n mxi ∈ 1 ‥ n
n ∈ ℕ1 n ∈ ℕ1 n ∈ ℕ1 n ∈ ℕ1 n ∈ ℕ1
(∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi)))
--------------------- --------------------- --------------------- --------------------- ---------------------
arr ∈ 1 ‥ n ⇸ ℕ1 finite(1 ‥ n) arr ∈ ℤ ⇸ ℤ mxi ∈ dom(arr) ran(arr) ≠ ∅

6. DEF_IN_TFCT (arr ∈ 1 ‥ n → ℕ1)

(simplify_hyp('DEF_IN_TFCT',member($(arr),total_function(interval(1,$(n)),'NATURAL1'))))
arr ∈ 1 ‥ n ⇸ ℕ1 ∧ dom(arr) = 1 ‥ n arr ∈ 1 ‥ n → ℕ1 arr ∈ 1 ‥ n → ℕ1 arr ∈ 1 ‥ n → ℕ1 arr ∈ 1 ‥ n → ℕ1
mxi ∈ 1 ‥ n mxi ∈ 1 ‥ n mxi ∈ 1 ‥ n mxi ∈ 1 ‥ n mxi ∈ 1 ‥ n
n ∈ ℕ1 n ∈ ℕ1 n ∈ ℕ1 n ∈ ℕ1 n ∈ ℕ1
(∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi)))
--------------------- --------------------- --------------------- --------------------- ---------------------
arr ∈ 1 ‥ n ⇸ ℕ1 finite(1 ‥ n) arr ∈ ℤ ⇸ ℤ mxi ∈ dom(arr) ran(arr) ≠ ∅

7. and_l (arr ∈ 1 ‥ n ⇸ ℕ1 ∧ dom(arr) = 1 ‥ n)

(and_l(conjunct(member($(arr),partial_function(interval(1,$(n)),'NATURAL1')),equal(domain($(arr)),interval(1,$(n))))))
mxi ∈ 1 ‥ n arr ∈ 1 ‥ n → ℕ1 arr ∈ 1 ‥ n → ℕ1 arr ∈ 1 ‥ n → ℕ1 arr ∈ 1 ‥ n → ℕ1
n ∈ ℕ1 mxi ∈ 1 ‥ n mxi ∈ 1 ‥ n mxi ∈ 1 ‥ n mxi ∈ 1 ‥ n
(∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) n ∈ ℕ1 n ∈ ℕ1 n ∈ ℕ1 n ∈ ℕ1
arr ∈ 1 ‥ n ⇸ ℕ1 (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi)))
dom(arr) = 1 ‥ n --------------------- --------------------- --------------------- ---------------------
--------------------- finite(1 ‥ n) arr ∈ ℤ ⇸ ℤ mxi ∈ dom(arr) ran(arr) ≠ ∅
arr ∈ 1 ‥ n ⇸ ℕ1

8. hyp

arr ∈ 1 ‥ n → ℕ1 arr ∈ 1 ‥ n → ℕ1 arr ∈ 1 ‥ n → ℕ1 arr ∈ 1 ‥ n → ℕ1
mxi ∈ 1 ‥ n mxi ∈ 1 ‥ n mxi ∈ 1 ‥ n mxi ∈ 1 ‥ n
n ∈ ℕ1 n ∈ ℕ1 n ∈ ℕ1 n ∈ ℕ1
(∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi)))
--------------------- --------------------- --------------------- ---------------------
finite(1 ‥ n) arr ∈ ℤ ⇸ ℤ mxi ∈ dom(arr) ran(arr) ≠ ∅

9. Evaluate tautology (finite(1 ‥ n))

(simplify_goal('Evaluate tautology'))
arr ∈ 1 ‥ n → ℕ1 arr ∈ 1 ‥ n → ℕ1 arr ∈ 1 ‥ n → ℕ1 arr ∈ 1 ‥ n → ℕ1
mxi ∈ 1 ‥ n mxi ∈ 1 ‥ n mxi ∈ 1 ‥ n mxi ∈ 1 ‥ n
n ∈ ℕ1 n ∈ ℕ1 n ∈ ℕ1 n ∈ ℕ1
(∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi)))
--------------------- --------------------- --------------------- ---------------------
arr ∈ ℤ ⇸ ℤ mxi ∈ dom(arr) ran(arr) ≠ ∅

10. true_goal

arr ∈ 1 ‥ n → ℕ1 arr ∈ 1 ‥ n → ℕ1 arr ∈ 1 ‥ n → ℕ1
mxi ∈ 1 ‥ n mxi ∈ 1 ‥ n mxi ∈ 1 ‥ n
n ∈ ℕ1 n ∈ ℕ1 n ∈ ℕ1
(∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi)))
--------------------- --------------------- ---------------------
arr ∈ ℤ ⇸ ℤ mxi ∈ dom(arr) ran(arr) ≠ ∅

11. fun_goal

arr ∈ 1 ‥ n → ℕ1 arr ∈ 1 ‥ n → ℕ1
mxi ∈ 1 ‥ n mxi ∈ 1 ‥ n
n ∈ ℕ1 n ∈ ℕ1
(∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi)))
--------------------- ---------------------
mxi ∈ dom(arr) ran(arr) ≠ ∅

12. DEF_IN_TFCT (arr ∈ 1 ‥ n → ℕ1)

(simplify_hyp('DEF_IN_TFCT',member($(arr),total_function(interval(1,$(n)),'NATURAL1'))))
arr ∈ 1 ‥ n ⇸ ℕ1 ∧ dom(arr) = 1 ‥ n arr ∈ 1 ‥ n → ℕ1
mxi ∈ 1 ‥ n mxi ∈ 1 ‥ n
n ∈ ℕ1 n ∈ ℕ1
(∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi)))
--------------------- ---------------------
mxi ∈ dom(arr) ran(arr) ≠ ∅

13. and_l (arr ∈ 1 ‥ n ⇸ ℕ1 ∧ dom(arr) = 1 ‥ n)

(and_l(conjunct(member($(arr),partial_function(interval(1,$(n)),'NATURAL1')),equal(domain($(arr)),interval(1,$(n))))))
mxi ∈ 1 ‥ n arr ∈ 1 ‥ n → ℕ1
n ∈ ℕ1 mxi ∈ 1 ‥ n
(∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) n ∈ ℕ1
arr ∈ 1 ‥ n ⇸ ℕ1 (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi)))
dom(arr) = 1 ‥ n ---------------------
--------------------- ran(arr) ≠ ∅
mxi ∈ dom(arr)

14. eq (lr,dom(arr) = 1 ‥ n)

(eq(lr,domain($(arr)),interval(1,$(n))))
mxi ∈ 1 ‥ n arr ∈ 1 ‥ n → ℕ1
n ∈ ℕ1 mxi ∈ 1 ‥ n
(∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) n ∈ ℕ1
arr ∈ 1 ‥ n ⇸ ℕ1 (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi)))
--------------------- ---------------------
mxi ∈ 1 ‥ n ran(arr) ≠ ∅

15. hyp

arr ∈ 1 ‥ n → ℕ1
mxi ∈ 1 ‥ n
n ∈ ℕ1
(∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi)))
---------------------
ran(arr) ≠ ∅

16. SIMP_NOTEQUAL (ran(arr) ≠ ∅)

(simplify_goal('SIMP_NOTEQUAL'))
arr ∈ 1 ‥ n → ℕ1
mxi ∈ 1 ‥ n
n ∈ ℕ1
(∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi)))
---------------------
¬(ran(arr) = ∅)

17. DEF_SPECIAL_NOT_EQUAL (¬(ran(arr) = ∅))

(simplify_goal('DEF_SPECIAL_NOT_EQUAL'))
arr ∈ 1 ‥ n → ℕ1
mxi ∈ 1 ‥ n
n ∈ ℕ1
(∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi)))
---------------------
(∃x·x ∈ ran(arr))

18. exists_inst('arr(1)')

arr ∈ 1 ‥ n → ℕ1 arr ∈ 1 ‥ n → ℕ1 arr ∈ 1 ‥ n → ℕ1
mxi ∈ 1 ‥ n mxi ∈ 1 ‥ n mxi ∈ 1 ‥ n
n ∈ ℕ1 n ∈ ℕ1 n ∈ ℕ1
(∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi)))
--------------------- --------------------- ---------------------
1 ∈ dom(arr) arr ∈ ℤ ⇸ ℤ arr(1) ∈ ran(arr)

19. DERIV_DOM_TOTALREL (1 ∈ dom(arr))

(simplify_goal('DERIV_DOM_TOTALREL'(interval(1,$(n)))))
arr ∈ 1 ‥ n → ℕ1 arr ∈ 1 ‥ n → ℕ1 arr ∈ 1 ‥ n → ℕ1
mxi ∈ 1 ‥ n mxi ∈ 1 ‥ n mxi ∈ 1 ‥ n
n ∈ ℕ1 n ∈ ℕ1 n ∈ ℕ1
(∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi)))
--------------------- --------------------- ---------------------
1 ∈ 1 ‥ n arr ∈ ℤ ⇸ ℤ arr(1) ∈ ran(arr)

20. DEF_IN_UPTO (1 ∈ 1 ‥ n)

(simplify_goal('DEF_IN_UPTO'))
arr ∈ 1 ‥ n → ℕ1 arr ∈ 1 ‥ n → ℕ1 arr ∈ 1 ‥ n → ℕ1
mxi ∈ 1 ‥ n mxi ∈ 1 ‥ n mxi ∈ 1 ‥ n
n ∈ ℕ1 n ∈ ℕ1 n ∈ ℕ1
(∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi)))
--------------------- --------------------- ---------------------
1 ≤ 1 ∧ 1 ≤ n arr ∈ ℤ ⇸ ℤ arr(1) ∈ ran(arr)

21. SIMP_LIT_LE (1 ≤ 1)

(simplify_goal('SIMP_LIT_LE'))
arr ∈ 1 ‥ n → ℕ1 arr ∈ 1 ‥ n → ℕ1 arr ∈ 1 ‥ n → ℕ1
mxi ∈ 1 ‥ n mxi ∈ 1 ‥ n mxi ∈ 1 ‥ n
n ∈ ℕ1 n ∈ ℕ1 n ∈ ℕ1
(∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi)))
--------------------- --------------------- ---------------------
⊤ ∧ 1 ≤ n arr ∈ ℤ ⇸ ℤ arr(1) ∈ ran(arr)

22. SIMP_SPECIAL_AND_BTRUE (⊤ ∧ 1 ≤ n)

(simplify_goal('SIMP_SPECIAL_AND_BTRUE'))
arr ∈ 1 ‥ n → ℕ1 arr ∈ 1 ‥ n → ℕ1 arr ∈ 1 ‥ n → ℕ1
mxi ∈ 1 ‥ n mxi ∈ 1 ‥ n mxi ∈ 1 ‥ n
n ∈ ℕ1 n ∈ ℕ1 n ∈ ℕ1
(∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi)))
--------------------- --------------------- ---------------------
1 ≤ n arr ∈ ℤ ⇸ ℤ arr(1) ∈ ran(arr)

23. DEF_IN_NATURAL1 (n ∈ ℕ1)

(simplify_hyp('DEF_IN_NATURAL1',member($(n),'NATURAL1')))
arr ∈ 1 ‥ n → ℕ1 arr ∈ 1 ‥ n → ℕ1 arr ∈ 1 ‥ n → ℕ1
mxi ∈ 1 ‥ n mxi ∈ 1 ‥ n mxi ∈ 1 ‥ n
1 ≤ n n ∈ ℕ1 n ∈ ℕ1
(∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi)))
--------------------- --------------------- ---------------------
1 ≤ n arr ∈ ℤ ⇸ ℤ arr(1) ∈ ran(arr)

24. hyp

arr ∈ 1 ‥ n → ℕ1 arr ∈ 1 ‥ n → ℕ1
mxi ∈ 1 ‥ n mxi ∈ 1 ‥ n
n ∈ ℕ1 n ∈ ℕ1
(∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi))) (∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi)))
--------------------- ---------------------
arr ∈ ℤ ⇸ ℤ arr(1) ∈ ran(arr)

25. fun_goal

arr ∈ 1 ‥ n → ℕ1
mxi ∈ 1 ‥ n
n ∈ ℕ1
(∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi)))
---------------------
arr(1) ∈ ran(arr)

26. DEF_IN_RAN (arr(1) ∈ ran(arr))

(simplify_goal('DEF_IN_RAN'))
arr ∈ 1 ‥ n → ℕ1
mxi ∈ 1 ‥ n
n ∈ ℕ1
(∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi)))
---------------------
(∃x·x ↦ arr(1) ∈ arr)

27. exists_inst('1')

arr ∈ 1 ‥ n → ℕ1
mxi ∈ 1 ‥ n
n ∈ ℕ1
(∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi)))
---------------------
1 ↦ arr(1) ∈ arr

28. SIMP_IN_FUNIMAGE (1 ↦ arr(1) ∈ arr)

(simplify_goal('SIMP_IN_FUNIMAGE'))
arr ∈ 1 ‥ n → ℕ1
mxi ∈ 1 ‥ n
n ∈ ℕ1
(∀j·(j ∈ 1 ‥ n ⇒ arr(j) ≤ arr(mxi)))
---------------------

29. true_goal

Proof of thm1/WD (true) succeeded.