Information
- Trace generated on 26.1.2026 at 12:55
- Trace length: 48
- Specification file (xtl): GetPositiveElements/GetPositiveElements.pl
- Git revision of file: 100644 9a8cb7b5c62e23f9d739d9e7753a0415cd9479a6 0 GetPositiveElements.pl
- Git revision of repository HEAD: a129bd4b378f4883186191b9f02623d1059a2525
- ProB version: 1.16.0-nightly
- ProB revision: 25fadf907101913f4f3f41a98fdcdc96920fbb46 (Mon Jan 26 07:56:17 2026 +0100)
1. step_neg/inv3/INV (true)
(start_xtl_system)
| e ≤ 0 ∧ e ∈ elements |
| elements = ∅ ⇒ pos = {x·0 < x ∧ x ∈ ELEMENTS∣x} |
| --------------------- |
| elements ∖ {e} = ∅ ⇒ pos = {x·0 < x ∧ x ∈ ELEMENTS∣x} |
2. reselect_hyp (pos ⊆ ELEMENTS)
(reselect_hyp(subset($(pos),$('ELEMENTS'))))
| e ≤ 0 ∧ e ∈ elements |
| elements = ∅ ⇒ pos = {x·0 < x ∧ x ∈ ELEMENTS∣x} |
| pos ⊆ ELEMENTS |
| --------------------- |
| elements ∖ {e} = ∅ ⇒ pos = {x·0 < x ∧ x ∈ ELEMENTS∣x} |
3. reselect_hyp (elements ⊆ ELEMENTS)
(reselect_hyp(subset($(elements),$('ELEMENTS'))))
| e ≤ 0 ∧ e ∈ elements |
| elements = ∅ ⇒ pos = {x·0 < x ∧ x ∈ ELEMENTS∣x} |
| pos ⊆ ELEMENTS |
| elements ⊆ ELEMENTS |
| --------------------- |
| elements ∖ {e} = ∅ ⇒ pos = {x·0 < x ∧ x ∈ ELEMENTS∣x} |
4. reselect_hyp (ELEMENTS ⊂ ℤ)
(reselect_hyp(subset_strict($('ELEMENTS'),'INTEGER')))
| e ≤ 0 ∧ e ∈ elements |
| elements = ∅ ⇒ pos = {x·0 < x ∧ x ∈ ELEMENTS∣x} |
| pos ⊆ ELEMENTS |
| elements ⊆ ELEMENTS |
| ELEMENTS ⊂ ℤ |
| --------------------- |
| elements ∖ {e} = ∅ ⇒ pos = {x·0 < x ∧ x ∈ ELEMENTS∣x} |
5. reselect_hyp (pos = {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x})
(reselect_hyp(equal($(pos),event_b_comprehension_set([$(x)],$(x),conjunct(less(0,$(x)),member($(x),set_subtraction($('ELEMENTS'),$(elements))))))))
| e ≤ 0 ∧ e ∈ elements |
| elements = ∅ ⇒ pos = {x·0 < x ∧ x ∈ ELEMENTS∣x} |
| pos ⊆ ELEMENTS |
| elements ⊆ ELEMENTS |
| ELEMENTS ⊂ ℤ |
| pos = {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} |
| --------------------- |
| elements ∖ {e} = ∅ ⇒ pos = {x·0 < x ∧ x ∈ ELEMENTS∣x} |
6. reselect_hyp (finite(ELEMENTS))
(reselect_hyp(finite($('ELEMENTS'))))
| e ≤ 0 ∧ e ∈ elements |
| elements = ∅ ⇒ pos = {x·0 < x ∧ x ∈ ELEMENTS∣x} |
| pos ⊆ ELEMENTS |
| elements ⊆ ELEMENTS |
| ELEMENTS ⊂ ℤ |
| pos = {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} |
| finite(ELEMENTS) |
| --------------------- |
| elements ∖ {e} = ∅ ⇒ pos = {x·0 < x ∧ x ∈ ELEMENTS∣x} |
7. imp_r
| e ≤ 0 ∧ e ∈ elements |
| elements = ∅ ⇒ pos = {x·0 < x ∧ x ∈ ELEMENTS∣x} |
| pos ⊆ ELEMENTS |
| elements ⊆ ELEMENTS |
| ELEMENTS ⊂ ℤ |
| pos = {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} |
| finite(ELEMENTS) |
| elements ∖ {e} = ∅ |
| --------------------- |
| pos = {x·0 < x ∧ x ∈ ELEMENTS∣x} |
8. imp_case (elements = ∅ ⇒ pos = {x·0 < x ∧ x ∈ ELEMENTS∣x})
(imp_case(implication(equal($(elements),empty_set),equal($(pos),event_b_comprehension_set([$(x)],$(x),conjunct(less(0,$(x)),member($(x),$('ELEMENTS'))))))))
| e ≤ 0 ∧ e ∈ elements |
e ≤ 0 ∧ e ∈ elements |
| pos ⊆ ELEMENTS |
pos ⊆ ELEMENTS |
| elements ⊆ ELEMENTS |
elements ⊆ ELEMENTS |
| ELEMENTS ⊂ ℤ |
ELEMENTS ⊂ ℤ |
| pos = {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} |
pos = {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} |
| finite(ELEMENTS) |
finite(ELEMENTS) |
| elements ∖ {e} = ∅ |
elements ∖ {e} = ∅ |
| ¬(elements = ∅) |
pos = {x·0 < x ∧ x ∈ ELEMENTS∣x} |
| --------------------- |
--------------------- |
| pos = {x·0 < x ∧ x ∈ ELEMENTS∣x} |
pos = {x·0 < x ∧ x ∈ ELEMENTS∣x} |
9. skip_to_cont
| e ≤ 0 ∧ e ∈ elements |
e ≤ 0 ∧ e ∈ elements |
| pos ⊆ ELEMENTS |
pos ⊆ ELEMENTS |
| elements ⊆ ELEMENTS |
elements ⊆ ELEMENTS |
| ELEMENTS ⊂ ℤ |
ELEMENTS ⊂ ℤ |
| pos = {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} |
pos = {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} |
| finite(ELEMENTS) |
finite(ELEMENTS) |
| elements ∖ {e} = ∅ |
elements ∖ {e} = ∅ |
| pos = {x·0 < x ∧ x ∈ ELEMENTS∣x} |
¬(elements = ∅) |
| --------------------- |
--------------------- |
| pos = {x·0 < x ∧ x ∈ ELEMENTS∣x} |
pos = {x·0 < x ∧ x ∈ ELEMENTS∣x} |
10. hyp
| e ≤ 0 ∧ e ∈ elements |
| pos ⊆ ELEMENTS |
| elements ⊆ ELEMENTS |
| ELEMENTS ⊂ ℤ |
| pos = {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} |
| finite(ELEMENTS) |
| elements ∖ {e} = ∅ |
| ¬(elements = ∅) |
| --------------------- |
| pos = {x·0 < x ∧ x ∈ ELEMENTS∣x} |
11. eq (lr,pos = {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x})
(eq(lr,$(pos),event_b_comprehension_set([$(x)],$(x),conjunct(less(0,$(x)),member($(x),set_subtraction($('ELEMENTS'),$(elements)))))))
| e ≤ 0 ∧ e ∈ elements |
| {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS |
| elements ⊆ ELEMENTS |
| ELEMENTS ⊂ ℤ |
| finite(ELEMENTS) |
| elements ∖ {e} = ∅ |
| ¬(elements = ∅) |
| --------------------- |
| {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} = {x·0 < x ∧ x ∈ ELEMENTS∣x} |
12. DERIV_EQUAL ({x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} = {x·0 < x ∧ x ∈ ELEMENTS∣x})
(simplify_goal('DERIV_EQUAL'))
| e ≤ 0 ∧ e ∈ elements |
| {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS |
| elements ⊆ ELEMENTS |
| ELEMENTS ⊂ ℤ |
| finite(ELEMENTS) |
| elements ∖ {e} = ∅ |
| ¬(elements = ∅) |
| --------------------- |
| {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ {x·0 < x ∧ x ∈ ELEMENTS∣x} ∧ {x·0 < x ∧ x ∈ ELEMENTS∣x} ⊆ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} |
13. and_r
| e ≤ 0 ∧ e ∈ elements |
e ≤ 0 ∧ e ∈ elements |
| {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS |
{x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS |
| elements ⊆ ELEMENTS |
elements ⊆ ELEMENTS |
| ELEMENTS ⊂ ℤ |
ELEMENTS ⊂ ℤ |
| finite(ELEMENTS) |
finite(ELEMENTS) |
| elements ∖ {e} = ∅ |
elements ∖ {e} = ∅ |
| ¬(elements = ∅) |
¬(elements = ∅) |
| --------------------- |
--------------------- |
| {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ {x·0 < x ∧ x ∈ ELEMENTS∣x} |
{x·0 < x ∧ x ∈ ELEMENTS∣x} ⊆ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} |
14. DEF_SUBSETEQ ({x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS)
(simplify_hyp('DEF_SUBSETEQ',subset(event_b_comprehension_set([$(x)],$(x),conjunct(less(0,$(x)),member($(x),set_subtraction($('ELEMENTS'),$(elements))))),$('ELEMENTS'))))
| e ≤ 0 ∧ e ∈ elements |
e ≤ 0 ∧ e ∈ elements |
| (∀y·(y ∈ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⇒ y ∈ ELEMENTS)) |
{x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS |
| elements ⊆ ELEMENTS |
elements ⊆ ELEMENTS |
| ELEMENTS ⊂ ℤ |
ELEMENTS ⊂ ℤ |
| finite(ELEMENTS) |
finite(ELEMENTS) |
| elements ∖ {e} = ∅ |
elements ∖ {e} = ∅ |
| ¬(elements = ∅) |
¬(elements = ∅) |
| --------------------- |
--------------------- |
| {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ {x·0 < x ∧ x ∈ ELEMENTS∣x} |
{x·0 < x ∧ x ∈ ELEMENTS∣x} ⊆ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} |
15. DEF_SUBSETEQ ({x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ {x·0 < x ∧ x ∈ ELEMENTS∣x})
(simplify_goal('DEF_SUBSETEQ'))
| e ≤ 0 ∧ e ∈ elements |
e ≤ 0 ∧ e ∈ elements |
| (∀y·(y ∈ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⇒ y ∈ ELEMENTS)) |
{x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS |
| elements ⊆ ELEMENTS |
elements ⊆ ELEMENTS |
| ELEMENTS ⊂ ℤ |
ELEMENTS ⊂ ℤ |
| finite(ELEMENTS) |
finite(ELEMENTS) |
| elements ∖ {e} = ∅ |
elements ∖ {e} = ∅ |
| ¬(elements = ∅) |
¬(elements = ∅) |
| --------------------- |
--------------------- |
| (∀y·(y ∈ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⇒ y ∈ {x·0 < x ∧ x ∈ ELEMENTS∣x})) |
{x·0 < x ∧ x ∈ ELEMENTS∣x} ⊆ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} |
16. all_r
| e ≤ 0 ∧ e ∈ elements |
e ≤ 0 ∧ e ∈ elements |
| (∀y·(y ∈ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⇒ y ∈ ELEMENTS)) |
{x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS |
| elements ⊆ ELEMENTS |
elements ⊆ ELEMENTS |
| ELEMENTS ⊂ ℤ |
ELEMENTS ⊂ ℤ |
| finite(ELEMENTS) |
finite(ELEMENTS) |
| elements ∖ {e} = ∅ |
elements ∖ {e} = ∅ |
| ¬(elements = ∅) |
¬(elements = ∅) |
| --------------------- |
--------------------- |
| y ∈ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⇒ y ∈ {x·0 < x ∧ x ∈ ELEMENTS∣x} |
{x·0 < x ∧ x ∈ ELEMENTS∣x} ⊆ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} |
17. imp_r
| e ≤ 0 ∧ e ∈ elements |
e ≤ 0 ∧ e ∈ elements |
| (∀y·(y ∈ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⇒ y ∈ ELEMENTS)) |
{x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS |
| elements ⊆ ELEMENTS |
elements ⊆ ELEMENTS |
| ELEMENTS ⊂ ℤ |
ELEMENTS ⊂ ℤ |
| finite(ELEMENTS) |
finite(ELEMENTS) |
| elements ∖ {e} = ∅ |
elements ∖ {e} = ∅ |
| ¬(elements = ∅) |
¬(elements = ∅) |
| y ∈ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} |
--------------------- |
| --------------------- |
{x·0 < x ∧ x ∈ ELEMENTS∣x} ⊆ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} |
| y ∈ {x·0 < x ∧ x ∈ ELEMENTS∣x} |
|
18. SIMP_IN_COMPSET_ONEPOINT (y ∈ {x·0 < x ∧ x ∈ ELEMENTS∣x})
(simplify_goal('SIMP_IN_COMPSET_ONEPOINT'))
| e ≤ 0 ∧ e ∈ elements |
e ≤ 0 ∧ e ∈ elements |
| (∀y·(y ∈ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⇒ y ∈ ELEMENTS)) |
{x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS |
| elements ⊆ ELEMENTS |
elements ⊆ ELEMENTS |
| ELEMENTS ⊂ ℤ |
ELEMENTS ⊂ ℤ |
| finite(ELEMENTS) |
finite(ELEMENTS) |
| elements ∖ {e} = ∅ |
elements ∖ {e} = ∅ |
| ¬(elements = ∅) |
¬(elements = ∅) |
| y ∈ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} |
--------------------- |
| --------------------- |
{x·0 < x ∧ x ∈ ELEMENTS∣x} ⊆ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} |
| 0 < y ∧ y ∈ ELEMENTS |
|
19. SIMP_IN_COMPSET_ONEPOINT (y ∈ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x})
(simplify_hyp('SIMP_IN_COMPSET_ONEPOINT',member($(y),event_b_comprehension_set([$(x)],$(x),conjunct(less(0,$(x)),member($(x),set_subtraction($('ELEMENTS'),$(elements))))))))
| e ≤ 0 ∧ e ∈ elements |
e ≤ 0 ∧ e ∈ elements |
| (∀y·(y ∈ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⇒ y ∈ ELEMENTS)) |
{x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS |
| elements ⊆ ELEMENTS |
elements ⊆ ELEMENTS |
| ELEMENTS ⊂ ℤ |
ELEMENTS ⊂ ℤ |
| finite(ELEMENTS) |
finite(ELEMENTS) |
| elements ∖ {e} = ∅ |
elements ∖ {e} = ∅ |
| ¬(elements = ∅) |
¬(elements = ∅) |
| 0 < y ∧ y ∈ ELEMENTS ∖ elements |
--------------------- |
| --------------------- |
{x·0 < x ∧ x ∈ ELEMENTS∣x} ⊆ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} |
| 0 < y ∧ y ∈ ELEMENTS |
|
20. and_l (0 < y ∧ y ∈ ELEMENTS ∖ elements)
(and_l(conjunct(less(0,$(y)),member($(y),set_subtraction($('ELEMENTS'),$(elements))))))
| e ≤ 0 ∧ e ∈ elements |
e ≤ 0 ∧ e ∈ elements |
| (∀y·(y ∈ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⇒ y ∈ ELEMENTS)) |
{x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS |
| elements ⊆ ELEMENTS |
elements ⊆ ELEMENTS |
| ELEMENTS ⊂ ℤ |
ELEMENTS ⊂ ℤ |
| finite(ELEMENTS) |
finite(ELEMENTS) |
| elements ∖ {e} = ∅ |
elements ∖ {e} = ∅ |
| ¬(elements = ∅) |
¬(elements = ∅) |
| 0 < y |
--------------------- |
| y ∈ ELEMENTS ∖ elements |
{x·0 < x ∧ x ∈ ELEMENTS∣x} ⊆ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} |
| --------------------- |
|
| 0 < y ∧ y ∈ ELEMENTS |
|
21. and_r
| e ≤ 0 ∧ e ∈ elements |
e ≤ 0 ∧ e ∈ elements |
e ≤ 0 ∧ e ∈ elements |
| (∀y·(y ∈ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⇒ y ∈ ELEMENTS)) |
(∀y·(y ∈ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⇒ y ∈ ELEMENTS)) |
{x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS |
| elements ⊆ ELEMENTS |
elements ⊆ ELEMENTS |
elements ⊆ ELEMENTS |
| ELEMENTS ⊂ ℤ |
ELEMENTS ⊂ ℤ |
ELEMENTS ⊂ ℤ |
| finite(ELEMENTS) |
finite(ELEMENTS) |
finite(ELEMENTS) |
| elements ∖ {e} = ∅ |
elements ∖ {e} = ∅ |
elements ∖ {e} = ∅ |
| ¬(elements = ∅) |
¬(elements = ∅) |
¬(elements = ∅) |
| 0 < y |
0 < y |
--------------------- |
| y ∈ ELEMENTS ∖ elements |
y ∈ ELEMENTS ∖ elements |
{x·0 < x ∧ x ∈ ELEMENTS∣x} ⊆ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} |
| --------------------- |
--------------------- |
|
| 0 < y |
y ∈ ELEMENTS |
|
22. hyp
| e ≤ 0 ∧ e ∈ elements |
e ≤ 0 ∧ e ∈ elements |
| (∀y·(y ∈ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⇒ y ∈ ELEMENTS)) |
{x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS |
| elements ⊆ ELEMENTS |
elements ⊆ ELEMENTS |
| ELEMENTS ⊂ ℤ |
ELEMENTS ⊂ ℤ |
| finite(ELEMENTS) |
finite(ELEMENTS) |
| elements ∖ {e} = ∅ |
elements ∖ {e} = ∅ |
| ¬(elements = ∅) |
¬(elements = ∅) |
| 0 < y |
--------------------- |
| y ∈ ELEMENTS ∖ elements |
{x·0 < x ∧ x ∈ ELEMENTS∣x} ⊆ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} |
| --------------------- |
|
| y ∈ ELEMENTS |
|
23. DEF_IN_SETMINUS (y ∈ ELEMENTS ∖ elements)
(simplify_hyp('DEF_IN_SETMINUS',member($(y),set_subtraction($('ELEMENTS'),$(elements)))))
| e ≤ 0 ∧ e ∈ elements |
e ≤ 0 ∧ e ∈ elements |
| (∀y·(y ∈ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⇒ y ∈ ELEMENTS)) |
{x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS |
| elements ⊆ ELEMENTS |
elements ⊆ ELEMENTS |
| ELEMENTS ⊂ ℤ |
ELEMENTS ⊂ ℤ |
| finite(ELEMENTS) |
finite(ELEMENTS) |
| elements ∖ {e} = ∅ |
elements ∖ {e} = ∅ |
| ¬(elements = ∅) |
¬(elements = ∅) |
| 0 < y |
--------------------- |
| y ∈ ELEMENTS ∧ ¬(y ∈ elements) |
{x·0 < x ∧ x ∈ ELEMENTS∣x} ⊆ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} |
| --------------------- |
|
| y ∈ ELEMENTS |
|
24. and_l (y ∈ ELEMENTS ∧ ¬(y ∈ elements))
(and_l(conjunct(member($(y),$('ELEMENTS')),negation(member($(y),$(elements))))))
| e ≤ 0 ∧ e ∈ elements |
e ≤ 0 ∧ e ∈ elements |
| (∀y·(y ∈ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⇒ y ∈ ELEMENTS)) |
{x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS |
| elements ⊆ ELEMENTS |
elements ⊆ ELEMENTS |
| ELEMENTS ⊂ ℤ |
ELEMENTS ⊂ ℤ |
| finite(ELEMENTS) |
finite(ELEMENTS) |
| elements ∖ {e} = ∅ |
elements ∖ {e} = ∅ |
| ¬(elements = ∅) |
¬(elements = ∅) |
| 0 < y |
--------------------- |
| y ∈ ELEMENTS |
{x·0 < x ∧ x ∈ ELEMENTS∣x} ⊆ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} |
| ¬(y ∈ elements) |
|
| --------------------- |
|
| y ∈ ELEMENTS |
|
25. hyp
| e ≤ 0 ∧ e ∈ elements |
| {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS |
| elements ⊆ ELEMENTS |
| ELEMENTS ⊂ ℤ |
| finite(ELEMENTS) |
| elements ∖ {e} = ∅ |
| ¬(elements = ∅) |
| --------------------- |
| {x·0 < x ∧ x ∈ ELEMENTS∣x} ⊆ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} |
26. DEF_SUBSETEQ ({x·0 < x ∧ x ∈ ELEMENTS∣x} ⊆ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x})
(simplify_goal('DEF_SUBSETEQ'))
| e ≤ 0 ∧ e ∈ elements |
| {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS |
| elements ⊆ ELEMENTS |
| ELEMENTS ⊂ ℤ |
| finite(ELEMENTS) |
| elements ∖ {e} = ∅ |
| ¬(elements = ∅) |
| --------------------- |
| (∀y·(y ∈ {x·0 < x ∧ x ∈ ELEMENTS∣x} ⇒ y ∈ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x})) |
27. all_r
| e ≤ 0 ∧ e ∈ elements |
| {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS |
| elements ⊆ ELEMENTS |
| ELEMENTS ⊂ ℤ |
| finite(ELEMENTS) |
| elements ∖ {e} = ∅ |
| ¬(elements = ∅) |
| --------------------- |
| y ∈ {x·0 < x ∧ x ∈ ELEMENTS∣x} ⇒ y ∈ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} |
28. imp_r
| e ≤ 0 ∧ e ∈ elements |
| {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS |
| elements ⊆ ELEMENTS |
| ELEMENTS ⊂ ℤ |
| finite(ELEMENTS) |
| elements ∖ {e} = ∅ |
| ¬(elements = ∅) |
| y ∈ {x·0 < x ∧ x ∈ ELEMENTS∣x} |
| --------------------- |
| y ∈ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} |
29. SIMP_IN_COMPSET_ONEPOINT (y ∈ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x})
(simplify_goal('SIMP_IN_COMPSET_ONEPOINT'))
| e ≤ 0 ∧ e ∈ elements |
| {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS |
| elements ⊆ ELEMENTS |
| ELEMENTS ⊂ ℤ |
| finite(ELEMENTS) |
| elements ∖ {e} = ∅ |
| ¬(elements = ∅) |
| y ∈ {x·0 < x ∧ x ∈ ELEMENTS∣x} |
| --------------------- |
| 0 < y ∧ y ∈ ELEMENTS ∖ elements |
30. SIMP_IN_COMPSET_ONEPOINT (y ∈ {x·0 < x ∧ x ∈ ELEMENTS∣x})
(simplify_hyp('SIMP_IN_COMPSET_ONEPOINT',member($(y),event_b_comprehension_set([$(x)],$(x),conjunct(less(0,$(x)),member($(x),$('ELEMENTS')))))))
| e ≤ 0 ∧ e ∈ elements |
| {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS |
| elements ⊆ ELEMENTS |
| ELEMENTS ⊂ ℤ |
| finite(ELEMENTS) |
| elements ∖ {e} = ∅ |
| ¬(elements = ∅) |
| 0 < y ∧ y ∈ ELEMENTS |
| --------------------- |
| 0 < y ∧ y ∈ ELEMENTS ∖ elements |
31. and_l (0 < y ∧ y ∈ ELEMENTS)
(and_l(conjunct(less(0,$(y)),member($(y),$('ELEMENTS')))))
| e ≤ 0 ∧ e ∈ elements |
| {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS |
| elements ⊆ ELEMENTS |
| ELEMENTS ⊂ ℤ |
| finite(ELEMENTS) |
| elements ∖ {e} = ∅ |
| ¬(elements = ∅) |
| 0 < y |
| y ∈ ELEMENTS |
| --------------------- |
| 0 < y ∧ y ∈ ELEMENTS ∖ elements |
32. and_r
| e ≤ 0 ∧ e ∈ elements |
e ≤ 0 ∧ e ∈ elements |
| {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS |
{x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS |
| elements ⊆ ELEMENTS |
elements ⊆ ELEMENTS |
| ELEMENTS ⊂ ℤ |
ELEMENTS ⊂ ℤ |
| finite(ELEMENTS) |
finite(ELEMENTS) |
| elements ∖ {e} = ∅ |
elements ∖ {e} = ∅ |
| ¬(elements = ∅) |
¬(elements = ∅) |
| 0 < y |
0 < y |
| y ∈ ELEMENTS |
y ∈ ELEMENTS |
| --------------------- |
--------------------- |
| 0 < y |
y ∈ ELEMENTS ∖ elements |
33. hyp
| e ≤ 0 ∧ e ∈ elements |
| {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS |
| elements ⊆ ELEMENTS |
| ELEMENTS ⊂ ℤ |
| finite(ELEMENTS) |
| elements ∖ {e} = ∅ |
| ¬(elements = ∅) |
| 0 < y |
| y ∈ ELEMENTS |
| --------------------- |
| y ∈ ELEMENTS ∖ elements |
34. SIMP_SETMINUS_EQUAL_EMPTY (elements ∖ {e} = ∅)
(simplify_hyp('SIMP_SETMINUS_EQUAL_EMPTY',equal(set_subtraction($(elements),set_extension([$(e)])),empty_set)))
| e ≤ 0 ∧ e ∈ elements |
| {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS |
| elements ⊆ ELEMENTS |
| ELEMENTS ⊂ ℤ |
| finite(ELEMENTS) |
| elements ⊆ {e} |
| ¬(elements = ∅) |
| 0 < y |
| y ∈ ELEMENTS |
| --------------------- |
| y ∈ ELEMENTS ∖ elements |
35. DEF_SUBSETEQ (elements ⊆ {e})
(simplify_hyp('DEF_SUBSETEQ',subset($(elements),set_extension([$(e)]))))
| e ≤ 0 ∧ e ∈ elements |
| {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS |
| elements ⊆ ELEMENTS |
| ELEMENTS ⊂ ℤ |
| finite(ELEMENTS) |
| (∀x·(x ∈ elements ⇒ x ∈ {e})) |
| ¬(elements = ∅) |
| 0 < y |
| y ∈ ELEMENTS |
| --------------------- |
| y ∈ ELEMENTS ∖ elements |
36. ∀ instantiation in hyp 6 for ID x: 'y'
(forall_inst(6,y))
| e ≤ 0 ∧ e ∈ elements |
| {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS |
| elements ⊆ ELEMENTS |
| ELEMENTS ⊂ ℤ |
| finite(ELEMENTS) |
| y ∈ elements ⇒ y ∈ {e} |
| ¬(elements = ∅) |
| 0 < y |
| y ∈ ELEMENTS |
| --------------------- |
| y ∈ ELEMENTS ∖ elements |
37. imp_case (y ∈ elements ⇒ y ∈ {e})
(imp_case(implication(member($(y),$(elements)),member($(y),set_extension([$(e)])))))
| e ≤ 0 ∧ e ∈ elements |
e ≤ 0 ∧ e ∈ elements |
| {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS |
{x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS |
| elements ⊆ ELEMENTS |
elements ⊆ ELEMENTS |
| ELEMENTS ⊂ ℤ |
ELEMENTS ⊂ ℤ |
| finite(ELEMENTS) |
finite(ELEMENTS) |
| ¬(elements = ∅) |
¬(elements = ∅) |
| 0 < y |
0 < y |
| y ∈ ELEMENTS |
y ∈ ELEMENTS |
| ¬(y ∈ elements) |
y ∈ {e} |
| --------------------- |
--------------------- |
| y ∈ ELEMENTS ∖ elements |
y ∈ ELEMENTS ∖ elements |
38. DEF_IN_SETMINUS (y ∈ ELEMENTS ∖ elements)
(simplify_goal('DEF_IN_SETMINUS'))
| e ≤ 0 ∧ e ∈ elements |
e ≤ 0 ∧ e ∈ elements |
| {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS |
{x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS |
| elements ⊆ ELEMENTS |
elements ⊆ ELEMENTS |
| ELEMENTS ⊂ ℤ |
ELEMENTS ⊂ ℤ |
| finite(ELEMENTS) |
finite(ELEMENTS) |
| ¬(elements = ∅) |
¬(elements = ∅) |
| 0 < y |
0 < y |
| y ∈ ELEMENTS |
y ∈ ELEMENTS |
| ¬(y ∈ elements) |
y ∈ {e} |
| --------------------- |
--------------------- |
| y ∈ ELEMENTS ∧ ¬(y ∈ elements) |
y ∈ ELEMENTS ∖ elements |
39. and_r
| e ≤ 0 ∧ e ∈ elements |
e ≤ 0 ∧ e ∈ elements |
e ≤ 0 ∧ e ∈ elements |
| {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS |
{x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS |
{x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS |
| elements ⊆ ELEMENTS |
elements ⊆ ELEMENTS |
elements ⊆ ELEMENTS |
| ELEMENTS ⊂ ℤ |
ELEMENTS ⊂ ℤ |
ELEMENTS ⊂ ℤ |
| finite(ELEMENTS) |
finite(ELEMENTS) |
finite(ELEMENTS) |
| ¬(elements = ∅) |
¬(elements = ∅) |
¬(elements = ∅) |
| 0 < y |
0 < y |
0 < y |
| y ∈ ELEMENTS |
y ∈ ELEMENTS |
y ∈ ELEMENTS |
| ¬(y ∈ elements) |
¬(y ∈ elements) |
y ∈ {e} |
| --------------------- |
--------------------- |
--------------------- |
| y ∈ ELEMENTS |
¬(y ∈ elements) |
y ∈ ELEMENTS ∖ elements |
40. hyp
| e ≤ 0 ∧ e ∈ elements |
e ≤ 0 ∧ e ∈ elements |
| {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS |
{x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS |
| elements ⊆ ELEMENTS |
elements ⊆ ELEMENTS |
| ELEMENTS ⊂ ℤ |
ELEMENTS ⊂ ℤ |
| finite(ELEMENTS) |
finite(ELEMENTS) |
| ¬(elements = ∅) |
¬(elements = ∅) |
| 0 < y |
0 < y |
| y ∈ ELEMENTS |
y ∈ ELEMENTS |
| ¬(y ∈ elements) |
y ∈ {e} |
| --------------------- |
--------------------- |
| ¬(y ∈ elements) |
y ∈ ELEMENTS ∖ elements |
41. hyp
| e ≤ 0 ∧ e ∈ elements |
| {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS |
| elements ⊆ ELEMENTS |
| ELEMENTS ⊂ ℤ |
| finite(ELEMENTS) |
| ¬(elements = ∅) |
| 0 < y |
| y ∈ ELEMENTS |
| y ∈ {e} |
| --------------------- |
| y ∈ ELEMENTS ∖ elements |
42. DEF_IN_SETMINUS (y ∈ ELEMENTS ∖ elements)
(simplify_goal('DEF_IN_SETMINUS'))
| e ≤ 0 ∧ e ∈ elements |
| {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS |
| elements ⊆ ELEMENTS |
| ELEMENTS ⊂ ℤ |
| finite(ELEMENTS) |
| ¬(elements = ∅) |
| 0 < y |
| y ∈ ELEMENTS |
| y ∈ {e} |
| --------------------- |
| y ∈ ELEMENTS ∧ ¬(y ∈ elements) |
43. and_r
| e ≤ 0 ∧ e ∈ elements |
e ≤ 0 ∧ e ∈ elements |
| {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS |
{x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS |
| elements ⊆ ELEMENTS |
elements ⊆ ELEMENTS |
| ELEMENTS ⊂ ℤ |
ELEMENTS ⊂ ℤ |
| finite(ELEMENTS) |
finite(ELEMENTS) |
| ¬(elements = ∅) |
¬(elements = ∅) |
| 0 < y |
0 < y |
| y ∈ ELEMENTS |
y ∈ ELEMENTS |
| y ∈ {e} |
y ∈ {e} |
| --------------------- |
--------------------- |
| y ∈ ELEMENTS |
¬(y ∈ elements) |
44. hyp
| e ≤ 0 ∧ e ∈ elements |
| {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS |
| elements ⊆ ELEMENTS |
| ELEMENTS ⊂ ℤ |
| finite(ELEMENTS) |
| ¬(elements = ∅) |
| 0 < y |
| y ∈ ELEMENTS |
| y ∈ {e} |
| --------------------- |
| ¬(y ∈ elements) |
45. and_l (e ≤ 0 ∧ e ∈ elements)
(and_l(conjunct(less_equal($(e),0),member($(e),$(elements)))))
| {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS |
| elements ⊆ ELEMENTS |
| ELEMENTS ⊂ ℤ |
| finite(ELEMENTS) |
| ¬(elements = ∅) |
| 0 < y |
| y ∈ ELEMENTS |
| y ∈ {e} |
| e ≤ 0 |
| e ∈ elements |
| --------------------- |
| ¬(y ∈ elements) |
46. SIMP_IN_SING (y ∈ {e})
(simplify_hyp('SIMP_IN_SING',member($(y),set_extension([$(e)]))))
| {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS |
| elements ⊆ ELEMENTS |
| ELEMENTS ⊂ ℤ |
| finite(ELEMENTS) |
| ¬(elements = ∅) |
| 0 < y |
| y ∈ ELEMENTS |
| y = e |
| e ≤ 0 |
| e ∈ elements |
| --------------------- |
| ¬(y ∈ elements) |
47. eq (rl,y = e)
(eq(rl,$(y),$(e)))
| {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS |
| elements ⊆ ELEMENTS |
| ELEMENTS ⊂ ℤ |
| finite(ELEMENTS) |
| ¬(elements = ∅) |
| 0 < y |
| y ∈ ELEMENTS |
| y ≤ 0 |
| y ∈ elements |
| --------------------- |
| ¬(y ∈ elements) |
48. cntr
| Proof of step_neg/inv3/INV (true) succeeded. |