Information

1. step_neg/inv3/INV (true)

(start_xtl_system)
e ≤ 0 ∧ e ∈ elements
elements = ∅ ⇒ pos = {x·0 < x ∧ x ∈ ELEMENTS∣x}
---------------------
elements ∖ {e} = ∅ ⇒ pos = {x·0 < x ∧ x ∈ ELEMENTS∣x}

2. reselect_hyp (pos ⊆ ELEMENTS)

(reselect_hyp(subset($(pos),$('ELEMENTS'))))
e ≤ 0 ∧ e ∈ elements
elements = ∅ ⇒ pos = {x·0 < x ∧ x ∈ ELEMENTS∣x}
pos ⊆ ELEMENTS
---------------------
elements ∖ {e} = ∅ ⇒ pos = {x·0 < x ∧ x ∈ ELEMENTS∣x}

3. reselect_hyp (elements ⊆ ELEMENTS)

(reselect_hyp(subset($(elements),$('ELEMENTS'))))
e ≤ 0 ∧ e ∈ elements
elements = ∅ ⇒ pos = {x·0 < x ∧ x ∈ ELEMENTS∣x}
pos ⊆ ELEMENTS
elements ⊆ ELEMENTS
---------------------
elements ∖ {e} = ∅ ⇒ pos = {x·0 < x ∧ x ∈ ELEMENTS∣x}

4. reselect_hyp (ELEMENTS ⊂ ℤ)

(reselect_hyp(subset_strict($('ELEMENTS'),'INTEGER')))
e ≤ 0 ∧ e ∈ elements
elements = ∅ ⇒ pos = {x·0 < x ∧ x ∈ ELEMENTS∣x}
pos ⊆ ELEMENTS
elements ⊆ ELEMENTS
ELEMENTS ⊂ ℤ
---------------------
elements ∖ {e} = ∅ ⇒ pos = {x·0 < x ∧ x ∈ ELEMENTS∣x}

5. reselect_hyp (pos = {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x})

(reselect_hyp(equal($(pos),event_b_comprehension_set([$(x)],$(x),conjunct(less(0,$(x)),member($(x),set_subtraction($('ELEMENTS'),$(elements))))))))
e ≤ 0 ∧ e ∈ elements
elements = ∅ ⇒ pos = {x·0 < x ∧ x ∈ ELEMENTS∣x}
pos ⊆ ELEMENTS
elements ⊆ ELEMENTS
ELEMENTS ⊂ ℤ
pos = {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x}
---------------------
elements ∖ {e} = ∅ ⇒ pos = {x·0 < x ∧ x ∈ ELEMENTS∣x}

6. reselect_hyp (finite(ELEMENTS))

(reselect_hyp(finite($('ELEMENTS'))))
e ≤ 0 ∧ e ∈ elements
elements = ∅ ⇒ pos = {x·0 < x ∧ x ∈ ELEMENTS∣x}
pos ⊆ ELEMENTS
elements ⊆ ELEMENTS
ELEMENTS ⊂ ℤ
pos = {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x}
finite(ELEMENTS)
---------------------
elements ∖ {e} = ∅ ⇒ pos = {x·0 < x ∧ x ∈ ELEMENTS∣x}

7. imp_r

e ≤ 0 ∧ e ∈ elements
elements = ∅ ⇒ pos = {x·0 < x ∧ x ∈ ELEMENTS∣x}
pos ⊆ ELEMENTS
elements ⊆ ELEMENTS
ELEMENTS ⊂ ℤ
pos = {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x}
finite(ELEMENTS)
elements ∖ {e} = ∅
---------------------
pos = {x·0 < x ∧ x ∈ ELEMENTS∣x}

8. imp_case (elements = ∅ ⇒ pos = {x·0 < x ∧ x ∈ ELEMENTS∣x})

(imp_case(implication(equal($(elements),empty_set),equal($(pos),event_b_comprehension_set([$(x)],$(x),conjunct(less(0,$(x)),member($(x),$('ELEMENTS'))))))))
e ≤ 0 ∧ e ∈ elements e ≤ 0 ∧ e ∈ elements
pos ⊆ ELEMENTS pos ⊆ ELEMENTS
elements ⊆ ELEMENTS elements ⊆ ELEMENTS
ELEMENTS ⊂ ℤ ELEMENTS ⊂ ℤ
pos = {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} pos = {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x}
finite(ELEMENTS) finite(ELEMENTS)
elements ∖ {e} = ∅ elements ∖ {e} = ∅
¬(elements = ∅) pos = {x·0 < x ∧ x ∈ ELEMENTS∣x}
--------------------- ---------------------
pos = {x·0 < x ∧ x ∈ ELEMENTS∣x} pos = {x·0 < x ∧ x ∈ ELEMENTS∣x}

9. skip_to_cont

e ≤ 0 ∧ e ∈ elements e ≤ 0 ∧ e ∈ elements
pos ⊆ ELEMENTS pos ⊆ ELEMENTS
elements ⊆ ELEMENTS elements ⊆ ELEMENTS
ELEMENTS ⊂ ℤ ELEMENTS ⊂ ℤ
pos = {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} pos = {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x}
finite(ELEMENTS) finite(ELEMENTS)
elements ∖ {e} = ∅ elements ∖ {e} = ∅
pos = {x·0 < x ∧ x ∈ ELEMENTS∣x} ¬(elements = ∅)
--------------------- ---------------------
pos = {x·0 < x ∧ x ∈ ELEMENTS∣x} pos = {x·0 < x ∧ x ∈ ELEMENTS∣x}

10. hyp

e ≤ 0 ∧ e ∈ elements
pos ⊆ ELEMENTS
elements ⊆ ELEMENTS
ELEMENTS ⊂ ℤ
pos = {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x}
finite(ELEMENTS)
elements ∖ {e} = ∅
¬(elements = ∅)
---------------------
pos = {x·0 < x ∧ x ∈ ELEMENTS∣x}

11. eq (lr,pos = {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x})

(eq(lr,$(pos),event_b_comprehension_set([$(x)],$(x),conjunct(less(0,$(x)),member($(x),set_subtraction($('ELEMENTS'),$(elements)))))))
e ≤ 0 ∧ e ∈ elements
{x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS
elements ⊆ ELEMENTS
ELEMENTS ⊂ ℤ
finite(ELEMENTS)
elements ∖ {e} = ∅
¬(elements = ∅)
---------------------
{x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} = {x·0 < x ∧ x ∈ ELEMENTS∣x}

12. DERIV_EQUAL ({x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} = {x·0 < x ∧ x ∈ ELEMENTS∣x})

(simplify_goal('DERIV_EQUAL'))
e ≤ 0 ∧ e ∈ elements
{x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS
elements ⊆ ELEMENTS
ELEMENTS ⊂ ℤ
finite(ELEMENTS)
elements ∖ {e} = ∅
¬(elements = ∅)
---------------------
{x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ {x·0 < x ∧ x ∈ ELEMENTS∣x} ∧ {x·0 < x ∧ x ∈ ELEMENTS∣x} ⊆ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x}

13. and_r

e ≤ 0 ∧ e ∈ elements e ≤ 0 ∧ e ∈ elements
{x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS
elements ⊆ ELEMENTS elements ⊆ ELEMENTS
ELEMENTS ⊂ ℤ ELEMENTS ⊂ ℤ
finite(ELEMENTS) finite(ELEMENTS)
elements ∖ {e} = ∅ elements ∖ {e} = ∅
¬(elements = ∅) ¬(elements = ∅)
--------------------- ---------------------
{x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ {x·0 < x ∧ x ∈ ELEMENTS∣x} {x·0 < x ∧ x ∈ ELEMENTS∣x} ⊆ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x}

14. DEF_SUBSETEQ ({x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS)

(simplify_hyp('DEF_SUBSETEQ',subset(event_b_comprehension_set([$(x)],$(x),conjunct(less(0,$(x)),member($(x),set_subtraction($('ELEMENTS'),$(elements))))),$('ELEMENTS'))))
e ≤ 0 ∧ e ∈ elements e ≤ 0 ∧ e ∈ elements
(∀y·(y ∈ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⇒ y ∈ ELEMENTS)) {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS
elements ⊆ ELEMENTS elements ⊆ ELEMENTS
ELEMENTS ⊂ ℤ ELEMENTS ⊂ ℤ
finite(ELEMENTS) finite(ELEMENTS)
elements ∖ {e} = ∅ elements ∖ {e} = ∅
¬(elements = ∅) ¬(elements = ∅)
--------------------- ---------------------
{x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ {x·0 < x ∧ x ∈ ELEMENTS∣x} {x·0 < x ∧ x ∈ ELEMENTS∣x} ⊆ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x}

15. DEF_SUBSETEQ ({x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ {x·0 < x ∧ x ∈ ELEMENTS∣x})

(simplify_goal('DEF_SUBSETEQ'))
e ≤ 0 ∧ e ∈ elements e ≤ 0 ∧ e ∈ elements
(∀y·(y ∈ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⇒ y ∈ ELEMENTS)) {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS
elements ⊆ ELEMENTS elements ⊆ ELEMENTS
ELEMENTS ⊂ ℤ ELEMENTS ⊂ ℤ
finite(ELEMENTS) finite(ELEMENTS)
elements ∖ {e} = ∅ elements ∖ {e} = ∅
¬(elements = ∅) ¬(elements = ∅)
--------------------- ---------------------
(∀y·(y ∈ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⇒ y ∈ {x·0 < x ∧ x ∈ ELEMENTS∣x})) {x·0 < x ∧ x ∈ ELEMENTS∣x} ⊆ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x}

16. all_r

e ≤ 0 ∧ e ∈ elements e ≤ 0 ∧ e ∈ elements
(∀y·(y ∈ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⇒ y ∈ ELEMENTS)) {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS
elements ⊆ ELEMENTS elements ⊆ ELEMENTS
ELEMENTS ⊂ ℤ ELEMENTS ⊂ ℤ
finite(ELEMENTS) finite(ELEMENTS)
elements ∖ {e} = ∅ elements ∖ {e} = ∅
¬(elements = ∅) ¬(elements = ∅)
--------------------- ---------------------
y ∈ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⇒ y ∈ {x·0 < x ∧ x ∈ ELEMENTS∣x} {x·0 < x ∧ x ∈ ELEMENTS∣x} ⊆ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x}

17. imp_r

e ≤ 0 ∧ e ∈ elements e ≤ 0 ∧ e ∈ elements
(∀y·(y ∈ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⇒ y ∈ ELEMENTS)) {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS
elements ⊆ ELEMENTS elements ⊆ ELEMENTS
ELEMENTS ⊂ ℤ ELEMENTS ⊂ ℤ
finite(ELEMENTS) finite(ELEMENTS)
elements ∖ {e} = ∅ elements ∖ {e} = ∅
¬(elements = ∅) ¬(elements = ∅)
y ∈ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ---------------------
--------------------- {x·0 < x ∧ x ∈ ELEMENTS∣x} ⊆ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x}
y ∈ {x·0 < x ∧ x ∈ ELEMENTS∣x}

18. SIMP_IN_COMPSET_ONEPOINT (y ∈ {x·0 < x ∧ x ∈ ELEMENTS∣x})

(simplify_goal('SIMP_IN_COMPSET_ONEPOINT'))
e ≤ 0 ∧ e ∈ elements e ≤ 0 ∧ e ∈ elements
(∀y·(y ∈ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⇒ y ∈ ELEMENTS)) {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS
elements ⊆ ELEMENTS elements ⊆ ELEMENTS
ELEMENTS ⊂ ℤ ELEMENTS ⊂ ℤ
finite(ELEMENTS) finite(ELEMENTS)
elements ∖ {e} = ∅ elements ∖ {e} = ∅
¬(elements = ∅) ¬(elements = ∅)
y ∈ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ---------------------
--------------------- {x·0 < x ∧ x ∈ ELEMENTS∣x} ⊆ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x}
0 < y ∧ y ∈ ELEMENTS

19. SIMP_IN_COMPSET_ONEPOINT (y ∈ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x})

(simplify_hyp('SIMP_IN_COMPSET_ONEPOINT',member($(y),event_b_comprehension_set([$(x)],$(x),conjunct(less(0,$(x)),member($(x),set_subtraction($('ELEMENTS'),$(elements))))))))
e ≤ 0 ∧ e ∈ elements e ≤ 0 ∧ e ∈ elements
(∀y·(y ∈ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⇒ y ∈ ELEMENTS)) {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS
elements ⊆ ELEMENTS elements ⊆ ELEMENTS
ELEMENTS ⊂ ℤ ELEMENTS ⊂ ℤ
finite(ELEMENTS) finite(ELEMENTS)
elements ∖ {e} = ∅ elements ∖ {e} = ∅
¬(elements = ∅) ¬(elements = ∅)
0 < y ∧ y ∈ ELEMENTS ∖ elements ---------------------
--------------------- {x·0 < x ∧ x ∈ ELEMENTS∣x} ⊆ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x}
0 < y ∧ y ∈ ELEMENTS

20. and_l (0 < y ∧ y ∈ ELEMENTS ∖ elements)

(and_l(conjunct(less(0,$(y)),member($(y),set_subtraction($('ELEMENTS'),$(elements))))))
e ≤ 0 ∧ e ∈ elements e ≤ 0 ∧ e ∈ elements
(∀y·(y ∈ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⇒ y ∈ ELEMENTS)) {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS
elements ⊆ ELEMENTS elements ⊆ ELEMENTS
ELEMENTS ⊂ ℤ ELEMENTS ⊂ ℤ
finite(ELEMENTS) finite(ELEMENTS)
elements ∖ {e} = ∅ elements ∖ {e} = ∅
¬(elements = ∅) ¬(elements = ∅)
0 < y ---------------------
y ∈ ELEMENTS ∖ elements {x·0 < x ∧ x ∈ ELEMENTS∣x} ⊆ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x}
---------------------
0 < y ∧ y ∈ ELEMENTS

21. and_r

e ≤ 0 ∧ e ∈ elements e ≤ 0 ∧ e ∈ elements e ≤ 0 ∧ e ∈ elements
(∀y·(y ∈ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⇒ y ∈ ELEMENTS)) (∀y·(y ∈ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⇒ y ∈ ELEMENTS)) {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS
elements ⊆ ELEMENTS elements ⊆ ELEMENTS elements ⊆ ELEMENTS
ELEMENTS ⊂ ℤ ELEMENTS ⊂ ℤ ELEMENTS ⊂ ℤ
finite(ELEMENTS) finite(ELEMENTS) finite(ELEMENTS)
elements ∖ {e} = ∅ elements ∖ {e} = ∅ elements ∖ {e} = ∅
¬(elements = ∅) ¬(elements = ∅) ¬(elements = ∅)
0 < y 0 < y ---------------------
y ∈ ELEMENTS ∖ elements y ∈ ELEMENTS ∖ elements {x·0 < x ∧ x ∈ ELEMENTS∣x} ⊆ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x}
--------------------- ---------------------
0 < y y ∈ ELEMENTS

22. hyp

e ≤ 0 ∧ e ∈ elements e ≤ 0 ∧ e ∈ elements
(∀y·(y ∈ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⇒ y ∈ ELEMENTS)) {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS
elements ⊆ ELEMENTS elements ⊆ ELEMENTS
ELEMENTS ⊂ ℤ ELEMENTS ⊂ ℤ
finite(ELEMENTS) finite(ELEMENTS)
elements ∖ {e} = ∅ elements ∖ {e} = ∅
¬(elements = ∅) ¬(elements = ∅)
0 < y ---------------------
y ∈ ELEMENTS ∖ elements {x·0 < x ∧ x ∈ ELEMENTS∣x} ⊆ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x}
---------------------
y ∈ ELEMENTS

23. DEF_IN_SETMINUS (y ∈ ELEMENTS ∖ elements)

(simplify_hyp('DEF_IN_SETMINUS',member($(y),set_subtraction($('ELEMENTS'),$(elements)))))
e ≤ 0 ∧ e ∈ elements e ≤ 0 ∧ e ∈ elements
(∀y·(y ∈ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⇒ y ∈ ELEMENTS)) {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS
elements ⊆ ELEMENTS elements ⊆ ELEMENTS
ELEMENTS ⊂ ℤ ELEMENTS ⊂ ℤ
finite(ELEMENTS) finite(ELEMENTS)
elements ∖ {e} = ∅ elements ∖ {e} = ∅
¬(elements = ∅) ¬(elements = ∅)
0 < y ---------------------
y ∈ ELEMENTS ∧ ¬(y ∈ elements) {x·0 < x ∧ x ∈ ELEMENTS∣x} ⊆ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x}
---------------------
y ∈ ELEMENTS

24. and_l (y ∈ ELEMENTS ∧ ¬(y ∈ elements))

(and_l(conjunct(member($(y),$('ELEMENTS')),negation(member($(y),$(elements))))))
e ≤ 0 ∧ e ∈ elements e ≤ 0 ∧ e ∈ elements
(∀y·(y ∈ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⇒ y ∈ ELEMENTS)) {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS
elements ⊆ ELEMENTS elements ⊆ ELEMENTS
ELEMENTS ⊂ ℤ ELEMENTS ⊂ ℤ
finite(ELEMENTS) finite(ELEMENTS)
elements ∖ {e} = ∅ elements ∖ {e} = ∅
¬(elements = ∅) ¬(elements = ∅)
0 < y ---------------------
y ∈ ELEMENTS {x·0 < x ∧ x ∈ ELEMENTS∣x} ⊆ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x}
¬(y ∈ elements)
---------------------
y ∈ ELEMENTS

25. hyp

e ≤ 0 ∧ e ∈ elements
{x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS
elements ⊆ ELEMENTS
ELEMENTS ⊂ ℤ
finite(ELEMENTS)
elements ∖ {e} = ∅
¬(elements = ∅)
---------------------
{x·0 < x ∧ x ∈ ELEMENTS∣x} ⊆ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x}

26. DEF_SUBSETEQ ({x·0 < x ∧ x ∈ ELEMENTS∣x} ⊆ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x})

(simplify_goal('DEF_SUBSETEQ'))
e ≤ 0 ∧ e ∈ elements
{x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS
elements ⊆ ELEMENTS
ELEMENTS ⊂ ℤ
finite(ELEMENTS)
elements ∖ {e} = ∅
¬(elements = ∅)
---------------------
(∀y·(y ∈ {x·0 < x ∧ x ∈ ELEMENTS∣x} ⇒ y ∈ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x}))

27. all_r

e ≤ 0 ∧ e ∈ elements
{x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS
elements ⊆ ELEMENTS
ELEMENTS ⊂ ℤ
finite(ELEMENTS)
elements ∖ {e} = ∅
¬(elements = ∅)
---------------------
y ∈ {x·0 < x ∧ x ∈ ELEMENTS∣x} ⇒ y ∈ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x}

28. imp_r

e ≤ 0 ∧ e ∈ elements
{x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS
elements ⊆ ELEMENTS
ELEMENTS ⊂ ℤ
finite(ELEMENTS)
elements ∖ {e} = ∅
¬(elements = ∅)
y ∈ {x·0 < x ∧ x ∈ ELEMENTS∣x}
---------------------
y ∈ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x}

29. SIMP_IN_COMPSET_ONEPOINT (y ∈ {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x})

(simplify_goal('SIMP_IN_COMPSET_ONEPOINT'))
e ≤ 0 ∧ e ∈ elements
{x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS
elements ⊆ ELEMENTS
ELEMENTS ⊂ ℤ
finite(ELEMENTS)
elements ∖ {e} = ∅
¬(elements = ∅)
y ∈ {x·0 < x ∧ x ∈ ELEMENTS∣x}
---------------------
0 < y ∧ y ∈ ELEMENTS ∖ elements

30. SIMP_IN_COMPSET_ONEPOINT (y ∈ {x·0 < x ∧ x ∈ ELEMENTS∣x})

(simplify_hyp('SIMP_IN_COMPSET_ONEPOINT',member($(y),event_b_comprehension_set([$(x)],$(x),conjunct(less(0,$(x)),member($(x),$('ELEMENTS')))))))
e ≤ 0 ∧ e ∈ elements
{x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS
elements ⊆ ELEMENTS
ELEMENTS ⊂ ℤ
finite(ELEMENTS)
elements ∖ {e} = ∅
¬(elements = ∅)
0 < y ∧ y ∈ ELEMENTS
---------------------
0 < y ∧ y ∈ ELEMENTS ∖ elements

31. and_l (0 < y ∧ y ∈ ELEMENTS)

(and_l(conjunct(less(0,$(y)),member($(y),$('ELEMENTS')))))
e ≤ 0 ∧ e ∈ elements
{x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS
elements ⊆ ELEMENTS
ELEMENTS ⊂ ℤ
finite(ELEMENTS)
elements ∖ {e} = ∅
¬(elements = ∅)
0 < y
y ∈ ELEMENTS
---------------------
0 < y ∧ y ∈ ELEMENTS ∖ elements

32. and_r

e ≤ 0 ∧ e ∈ elements e ≤ 0 ∧ e ∈ elements
{x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS
elements ⊆ ELEMENTS elements ⊆ ELEMENTS
ELEMENTS ⊂ ℤ ELEMENTS ⊂ ℤ
finite(ELEMENTS) finite(ELEMENTS)
elements ∖ {e} = ∅ elements ∖ {e} = ∅
¬(elements = ∅) ¬(elements = ∅)
0 < y 0 < y
y ∈ ELEMENTS y ∈ ELEMENTS
--------------------- ---------------------
0 < y y ∈ ELEMENTS ∖ elements

33. hyp

e ≤ 0 ∧ e ∈ elements
{x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS
elements ⊆ ELEMENTS
ELEMENTS ⊂ ℤ
finite(ELEMENTS)
elements ∖ {e} = ∅
¬(elements = ∅)
0 < y
y ∈ ELEMENTS
---------------------
y ∈ ELEMENTS ∖ elements

34. SIMP_SETMINUS_EQUAL_EMPTY (elements ∖ {e} = ∅)

(simplify_hyp('SIMP_SETMINUS_EQUAL_EMPTY',equal(set_subtraction($(elements),set_extension([$(e)])),empty_set)))
e ≤ 0 ∧ e ∈ elements
{x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS
elements ⊆ ELEMENTS
ELEMENTS ⊂ ℤ
finite(ELEMENTS)
elements ⊆ {e}
¬(elements = ∅)
0 < y
y ∈ ELEMENTS
---------------------
y ∈ ELEMENTS ∖ elements

35. DEF_SUBSETEQ (elements ⊆ {e})

(simplify_hyp('DEF_SUBSETEQ',subset($(elements),set_extension([$(e)]))))
e ≤ 0 ∧ e ∈ elements
{x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS
elements ⊆ ELEMENTS
ELEMENTS ⊂ ℤ
finite(ELEMENTS)
(∀x·(x ∈ elements ⇒ x ∈ {e}))
¬(elements = ∅)
0 < y
y ∈ ELEMENTS
---------------------
y ∈ ELEMENTS ∖ elements

36. ∀ instantiation in hyp 6 for ID x: 'y'

(forall_inst(6,y))
e ≤ 0 ∧ e ∈ elements
{x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS
elements ⊆ ELEMENTS
ELEMENTS ⊂ ℤ
finite(ELEMENTS)
y ∈ elements ⇒ y ∈ {e}
¬(elements = ∅)
0 < y
y ∈ ELEMENTS
---------------------
y ∈ ELEMENTS ∖ elements

37. imp_case (y ∈ elements ⇒ y ∈ {e})

(imp_case(implication(member($(y),$(elements)),member($(y),set_extension([$(e)])))))
e ≤ 0 ∧ e ∈ elements e ≤ 0 ∧ e ∈ elements
{x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS
elements ⊆ ELEMENTS elements ⊆ ELEMENTS
ELEMENTS ⊂ ℤ ELEMENTS ⊂ ℤ
finite(ELEMENTS) finite(ELEMENTS)
¬(elements = ∅) ¬(elements = ∅)
0 < y 0 < y
y ∈ ELEMENTS y ∈ ELEMENTS
¬(y ∈ elements) y ∈ {e}
--------------------- ---------------------
y ∈ ELEMENTS ∖ elements y ∈ ELEMENTS ∖ elements

38. DEF_IN_SETMINUS (y ∈ ELEMENTS ∖ elements)

(simplify_goal('DEF_IN_SETMINUS'))
e ≤ 0 ∧ e ∈ elements e ≤ 0 ∧ e ∈ elements
{x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS
elements ⊆ ELEMENTS elements ⊆ ELEMENTS
ELEMENTS ⊂ ℤ ELEMENTS ⊂ ℤ
finite(ELEMENTS) finite(ELEMENTS)
¬(elements = ∅) ¬(elements = ∅)
0 < y 0 < y
y ∈ ELEMENTS y ∈ ELEMENTS
¬(y ∈ elements) y ∈ {e}
--------------------- ---------------------
y ∈ ELEMENTS ∧ ¬(y ∈ elements) y ∈ ELEMENTS ∖ elements

39. and_r

e ≤ 0 ∧ e ∈ elements e ≤ 0 ∧ e ∈ elements e ≤ 0 ∧ e ∈ elements
{x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS
elements ⊆ ELEMENTS elements ⊆ ELEMENTS elements ⊆ ELEMENTS
ELEMENTS ⊂ ℤ ELEMENTS ⊂ ℤ ELEMENTS ⊂ ℤ
finite(ELEMENTS) finite(ELEMENTS) finite(ELEMENTS)
¬(elements = ∅) ¬(elements = ∅) ¬(elements = ∅)
0 < y 0 < y 0 < y
y ∈ ELEMENTS y ∈ ELEMENTS y ∈ ELEMENTS
¬(y ∈ elements) ¬(y ∈ elements) y ∈ {e}
--------------------- --------------------- ---------------------
y ∈ ELEMENTS ¬(y ∈ elements) y ∈ ELEMENTS ∖ elements

40. hyp

e ≤ 0 ∧ e ∈ elements e ≤ 0 ∧ e ∈ elements
{x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS
elements ⊆ ELEMENTS elements ⊆ ELEMENTS
ELEMENTS ⊂ ℤ ELEMENTS ⊂ ℤ
finite(ELEMENTS) finite(ELEMENTS)
¬(elements = ∅) ¬(elements = ∅)
0 < y 0 < y
y ∈ ELEMENTS y ∈ ELEMENTS
¬(y ∈ elements) y ∈ {e}
--------------------- ---------------------
¬(y ∈ elements) y ∈ ELEMENTS ∖ elements

41. hyp

e ≤ 0 ∧ e ∈ elements
{x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS
elements ⊆ ELEMENTS
ELEMENTS ⊂ ℤ
finite(ELEMENTS)
¬(elements = ∅)
0 < y
y ∈ ELEMENTS
y ∈ {e}
---------------------
y ∈ ELEMENTS ∖ elements

42. DEF_IN_SETMINUS (y ∈ ELEMENTS ∖ elements)

(simplify_goal('DEF_IN_SETMINUS'))
e ≤ 0 ∧ e ∈ elements
{x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS
elements ⊆ ELEMENTS
ELEMENTS ⊂ ℤ
finite(ELEMENTS)
¬(elements = ∅)
0 < y
y ∈ ELEMENTS
y ∈ {e}
---------------------
y ∈ ELEMENTS ∧ ¬(y ∈ elements)

43. and_r

e ≤ 0 ∧ e ∈ elements e ≤ 0 ∧ e ∈ elements
{x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS {x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS
elements ⊆ ELEMENTS elements ⊆ ELEMENTS
ELEMENTS ⊂ ℤ ELEMENTS ⊂ ℤ
finite(ELEMENTS) finite(ELEMENTS)
¬(elements = ∅) ¬(elements = ∅)
0 < y 0 < y
y ∈ ELEMENTS y ∈ ELEMENTS
y ∈ {e} y ∈ {e}
--------------------- ---------------------
y ∈ ELEMENTS ¬(y ∈ elements)

44. hyp

e ≤ 0 ∧ e ∈ elements
{x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS
elements ⊆ ELEMENTS
ELEMENTS ⊂ ℤ
finite(ELEMENTS)
¬(elements = ∅)
0 < y
y ∈ ELEMENTS
y ∈ {e}
---------------------
¬(y ∈ elements)

45. and_l (e ≤ 0 ∧ e ∈ elements)

(and_l(conjunct(less_equal($(e),0),member($(e),$(elements)))))
{x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS
elements ⊆ ELEMENTS
ELEMENTS ⊂ ℤ
finite(ELEMENTS)
¬(elements = ∅)
0 < y
y ∈ ELEMENTS
y ∈ {e}
e ≤ 0
e ∈ elements
---------------------
¬(y ∈ elements)

46. SIMP_IN_SING (y ∈ {e})

(simplify_hyp('SIMP_IN_SING',member($(y),set_extension([$(e)]))))
{x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS
elements ⊆ ELEMENTS
ELEMENTS ⊂ ℤ
finite(ELEMENTS)
¬(elements = ∅)
0 < y
y ∈ ELEMENTS
y = e
e ≤ 0
e ∈ elements
---------------------
¬(y ∈ elements)

47. eq (rl,y = e)

(eq(rl,$(y),$(e)))
{x·0 < x ∧ x ∈ ELEMENTS ∖ elements∣x} ⊆ ELEMENTS
elements ⊆ ELEMENTS
ELEMENTS ⊂ ℤ
finite(ELEMENTS)
¬(elements = ∅)
0 < y
y ∈ ELEMENTS
y ≤ 0
y ∈ elements
---------------------
¬(y ∈ elements)

48. cntr

Proof of step_neg/inv3/INV (true) succeeded.