NonExecutableSpecs

March 1, 2024

0.1 Non-Executable Specifications

Examples from "Specifications are not (necessarily) executabe" by Hayes and Jones [19] Notebook acompanying a submitted paper.

0.2 Section 2.1

Section 2.1 of [19] discusses the use of known partial functions and the issue of dealing with preconditions. The first example is a function update (f, d, a) which takes a file f represented as a sequence of lines and applies a set of deletions d and set of insertions a. Listing 1.1 below contains a B translation of the update function on line 6, along with example uses of the function within the properties and a B operation.
[4]:

```
::load
MACHINE UpdateFunction
// B encoding of the update function specification by Hayes Jones
DEFINITIONS
    Line == STRING;
    Lines == seq(Line);
    update(f,d,a) == a(0) ~ conc(n.(n dom(f)| IF n d THEN [] ELSE [f(n)] END ~ 
    a(n)));
CONSTANTS file, del, add, newfile1, newfile2
PROPERTIES
    file Lines del (NATURAL1) add Lines
    file = [ "Line1", "Line2", "Line3"]
    del = {2,3}
    add = {0 [">ins0"] } [ [], [">ins2a",">ins2b"], []]
    newfile1 = update(file,del,add) newfile2 = update(file, ,add)
OPERATIONS
    f <-- UpdateFile(d,a) = PRE d dom(file) a ({0} dom(file))-> Lines THEN
        f := update(file,d,a)
    END
END
```

[4]: Loaded machine: UpdateFunction
[5]:

```
:init
```

[5]: Machine constants were not set up yet. Automatically set up constants using arbitrary transition: SETUP_CONSTANTS()
Executed operation: INITIALISATION()

Let us apply the update function to file consisting of two lines and deleting the first line:
[7]: update(["line1","line2"],\{1\},\{0|->[],1|-> [],2|-> []\})
[7]: $\{(1 \mapsto$ "line $2 ")\}$
We can insert a lines as follows:
[8]: update(["line1","line2"],\{\},\{0|->["prelude"],1|->[" l1a", "ь l1b"],2|->["postlude"]\})
[8]: $\{(1 \mapsto " p r e l u d e "),(2 \mapsto " l i n e 1 "),(3 \mapsto " 11 a "),(4 \mapsto " 11 b "),(5 \mapsto " l i n e 2 "),(6 \mapsto " p o s t l u d e ")\}$
The following, however, is not well-defined. We cannot leave the additions a empty, as update accesses a(0) and a(n)
[11]:

```
update(file,{},{})
```


Error from ProB: UNKNOWN

0.3 Section 2.2. Specifying by Inverse

Section 2.2 of [19] discusses specifying concepts indirectly by providing an inverse function. This is often the most natural way of defining a concept. The first example is defining the (largest) integer square root r of an integer n as follows: $r^{2} \leq n<(r+1)^{2}$ We need to slightly rewrite the predicate for B, as we cannot chain the comparison operators:
[12]: $\mathrm{r} 2 \mathrm{n} \quad \mathrm{n}<(\mathrm{r}+1) 2$
[12]:
TRUE
Solution: * $r=0{ }^{*} n=0$
As you can see, ProB found a simple solution. We can compute specific integer square roots by specifying n :
[13](TRUE):

```
n = 101 r 2n n< (r+1) 2
```

Solution: * $r=10 * n=101$
We can also compute the integer square root for a variety of values:
[14]:
$\{n, r \bullet n: 1 \ldots 100 \quad r 2 n \quad n<(r+1) 2 \mid r\}$
[14]:
$\{1,2,3,4,5,6,7,8,9,10\}$
[15]:

```
{n,r|n:80..100 r 2n n< (r+1) 2}
```

[15] :
$\{(80 \mapsto 8),(81 \mapsto 9),(82 \mapsto 9),(83 \mapsto 9),(84 \mapsto 9),(85 \mapsto 9),(86 \mapsto 9),(87 \mapsto 9),(88 \mapsto 9),(89 \mapsto$ $9),(90 \mapsto 9),(91 \mapsto 9),(92 \mapsto 9),(93 \mapsto 9),(94 \mapsto 9),(95 \mapsto 9),(96 \mapsto 9),(97 \mapsto 9),(98 \mapsto 9),(99 \mapsto$ $9),(100 \mapsto 10)\}$
[16]:

```
isqre = {n,r|n:80..100 r 2n n< (r+1) 2} &
isqrt(n) = r &
isqrt(n+10) = r
```

[16]:

TRUE

Solution: ${ }^{*} r=9 *$ isqrt $=\{(80 \mapsto 8),(81 \mapsto 9),(82 \mapsto 9),(83 \mapsto 9),(84 \mapsto 9),(85 \mapsto 9),(86 \mapsto$ $9),(87 \mapsto 9),(88 \mapsto 9),(89 \mapsto 9),(90 \mapsto 9),(91 \mapsto 9),(92 \mapsto 9),(93 \mapsto 9),(94 \mapsto 9),(95 \mapsto 9),(96 \mapsto$ $9),(97 \mapsto 9),(98 \mapsto 9),(99 \mapsto 9),(100 \mapsto 10)\}^{*} n=81$

0.4 Section 2.3 Combining Clauses in a Specification

Section 2.3 of [19] is concerned with specifying by combining properties, e.g., via the logical conjunction. The first example is the specification of a sorting algorithm, which is a combination of specifying that the result must a) be sorted and b) be a permutation of the input. The Listing 1.3 below contains a faithful translation of the example from [19].
[21]:

```
::load
MACHINE PermutationSort_v2
    // example from HayesJones for sorting sequence without duplicates
// v2 using B's perm operator
DEFINITIONS
    is_ordered(s) == (i,j).(i dom(s) j dom(s) i<j s(i) < s(j));
    is_permutation(s1,s2) == s2:perm(ran(s1))
CONSTANTS in,out
PROPERTIES
        in = [10, 5, 3,4,1,20,11,33,0,6,88,100,2,7,19,13]
        is_ordered(out) is_permutation(in,out)
END
```

[21]: Loaded machine: PermutationSort_v2
[]:

```
:init
```

[24]:

```
out
```

$\{(1 \mapsto 0),(2 \mapsto 1),(3 \mapsto 2),(4 \mapsto 3),(5 \mapsto 4),(6 \mapsto 5),(7 \mapsto 6),(8 \mapsto 7),(9 \mapsto 10),(10 \mapsto 11),(11 \mapsto$ $13),(12 \mapsto 19),(13 \mapsto 20),(14 \mapsto 33),(15 \mapsto 88),(16 \mapsto 100)\}$
[29]:

```
is_ordered(res) is_permutation([3,1000,20,2**50,16],res)
```

[29]:

TRUE

Solution: * res $=\{(1 \mapsto 3),(2 \mapsto 16),(3 \mapsto 20),(4 \mapsto 1000),(5 \mapsto 1125899906842624)\}$
Below is a lambda abstraction defining unsorted input sequences that can be used for benchmarking:
[32]:

```
n=50 & in1 = %i.(i:1..n| (i mod 2)*(n+1)+i) &
is_ordered(res) is_permutation(in1,res)
```

[32]:

TRUE

Solution: * res $=\{(1 \mapsto 2),(2 \mapsto 4),(3 \mapsto 6),(4 \mapsto 8),(5 \mapsto 10),(6 \mapsto 12),(7 \mapsto 14),(8 \mapsto$ 16), $(9 \mapsto 18),(10 \mapsto 20),(11 \mapsto 22),(12 \mapsto 24),(13 \mapsto 26),(14 \mapsto 28),(15 \mapsto 30),(16 \mapsto 32),(17 \mapsto$ $34),(18 \mapsto 36),(19 \mapsto 38),(20 \mapsto 40),(21 \mapsto 42),(22 \mapsto 44),(23 \mapsto 46),(24 \mapsto 48),(25 \mapsto 50),(26 \mapsto$ $52),(27 \mapsto 54),(28 \mapsto 56),(29 \mapsto 58),(30 \mapsto 60),(31 \mapsto 62),(32 \mapsto 64),(33 \mapsto 66),(34 \mapsto 68),(35 \mapsto$ $70),(36 \mapsto 72),(37 \mapsto 74),(38 \mapsto 76),(39 \mapsto 78),(40 \mapsto 80),(41 \mapsto 82),(42 \mapsto 84),(43 \mapsto 86),(44 \mapsto$ 88), $(45 \mapsto 90),(46 \mapsto 92),(47 \mapsto 94),(48 \mapsto 96),(49 \mapsto 98),(50 \mapsto 100)\}^{*}$ in $1=\{(1 \mapsto 52),(2 \mapsto$ $2),(3 \mapsto 54),(4 \mapsto 4),(5 \mapsto 56),(6 \mapsto 6),(7 \mapsto 58),(8 \mapsto 8),(9 \mapsto 60),(10 \mapsto 10),(11 \mapsto 62),(12 \mapsto$ 12), $(13 \mapsto 64),(14 \mapsto 14),(15 \mapsto 66),(16 \mapsto 16),(17 \mapsto 68),(18 \mapsto 18),(19 \mapsto 70),(20 \mapsto 20),(21 \mapsto$ $72),(22 \mapsto 22),(23 \mapsto 74),(24 \mapsto 24),(25 \mapsto 76),(26 \mapsto 26),(27 \mapsto 78),(28 \mapsto 28),(29 \mapsto 80),(30 \mapsto$ $30),(31 \mapsto 82),(32 \mapsto 32),(33 \mapsto 84),(34 \mapsto 34),(35 \mapsto 86),(36 \mapsto 36),(37 \mapsto 88),(38 \mapsto 38),(39 \mapsto$ $90),(40 \mapsto 40),(41 \mapsto 92),(42 \mapsto 42),(43 \mapsto 94),(44 \mapsto 44),(45 \mapsto 96),(46 \mapsto 46),(47 \mapsto 98),(48 \mapsto$ 48), $(49 \mapsto 100),(50 \mapsto 50)\}^{*} n=50$

0.5 Section 2.4 Negation in Specifications

Section 2.4 of [19] deals with specification by negation, which is an extremely interesting topic. While the conjunction seen in permutation sort can be dealt with by Prolog, negation is a more tricky issue. Indeed, Prolog's negation-as- failure [7] cannot be used to generate solutions, only prune them. Constraint logic programming, however, can provide a constructive version of negation $[36,11]$ which is also implemented in ProB.

0.5.1 GCD (Greatest Common Divisor)

Example Listing 1.11 contains a trans- lation of the greatest common divisor (GCD) example from [19]. We have to provide a definition of divides, as it is not built-in in B. In the properties section we use our gcd definition to compute the GCD for two examples and in the assertions we check that the results are correct.
[17]:

```
::load
MACHINE GCD
    // Example from Section 2.4 of "Specifications are not (necessarily) executable"
DEFINITIONS
    divides(d,i) == (i mod d = 0) & d>0 & d <= i;
    is_cd(d,i,j) == divides(d,i) & divides(d,j);
    gcd(d,i,j) == is_cd(d,i,j) & not(#e.(e:NATURAL1 & is_cd(e,i,j) & e>d))
CONSTANTS g1, g2
PROPERTIES
    gcd(g1,12,8) &
    gcd(g2,100,60)
```

```
ASSERTIONS
    g1=4; g2=20
END
```

[17]: Loaded machine: GCD
[18]: :init
[18]: Machine constants were not set up yet. Automatically set up constants using arbitrary transition: SETUP_CONSTANTS()
Executed operation: INITIALISATION()
[19]: $\operatorname{gcd}(x, 300,77)$
[19]:
$T R U E$
Solution: ${ }^{*} x=1$
[20]: $\operatorname{gcd}(x, 155,70)$
[20]:
$T R U E$
Solution: ${ }^{*} x=5$
[]:

