
NonExecutableSpecs

March 1, 2024

0.1 Non-Executable Specifications

Examples from “Specifications are not (necessarily) executabe” by Hayes and Jones [19] Notebook
acompanying a submitted paper.

0.2 Section 2.1

Section 2.1 of [19] discusses the use of known partial functions and the issue of dealing with pre-
conditions. The first example is a function update(f, d, a) which takes a file f represented as a
sequence of lines and applies a set of deletions d and set of insertions a. Listing 1.1 below contains
a B translation of the update function on line 6, along with example uses of the function within
the properties and a B operation.

[4]: ::load
MACHINE UpdateFunction
// B encoding of the update function specification by Hayes � Jones
DEFINITIONS

Line == STRING;
Lines == seq(Line);
update(f,d,a) == a(0) ^ conc(�n.(n�dom(f)| IF n�d THEN [] ELSE [f(n)] END ^␣

↪a(n)));
CONSTANTS file, del, add, newfile1, newfile2
PROPERTIES

file � Lines � del � �(NATURAL1) � add � � � Lines �
file = ["Line1", "Line2", "Line3"] �
del = {2,3} �
add = {0� [">ins0"] } � [[], [">ins2a",">ins2b"], []] �
newfile1 = update(file,del,add) � newfile2 = update(file,�,add)

OPERATIONS
f <-- UpdateFile(d,a) = PRE d � dom(file) � a� ({0}�dom(file))→ Lines THEN
f := update(file,d,a)

END
END

[4]: Loaded machine: UpdateFunction

[5]: :init

1

[5]: Machine constants were not set up yet. Automatically set up constants using
arbitrary transition: SETUP_CONSTANTS()
Executed operation: INITIALISATION()

Let us apply the update function to file consisting of two lines and deleting the first line:

[7]: update(["line1","line2"],{1},{0|->[],1|->[],2|->[]})

[7]: {(1 ↦ ”line2”)}
We can insert a lines as follows:

[8]: update(["line1","line2"],{},{0|->["prelude"],1|->[" l1a", "␣
↪l1b"],2|->["postlude"]})

[8]: {(1 ↦ ”prelude”), (2 ↦ ”line1”), (3 ↦ ” l1a”), (4 ↦ ” l1b”), (5 ↦ ”line2”), (6 ↦ ”postlude”)}
The following, however, is not well-defined. We cannot leave the additions a empty, as update
accesses a(0) and a(n)

[11]: update(file,{},{})

Error from ProB: UNKNOWN

0.3 Section 2.2. Specifying by Inverse

Section 2.2 of [19] discusses specifying concepts indirectly by providing an inverse function. This is
often the most natural way of defining a concept. The first example is defining the (largest) integer
square root r of an integer n as follows: 𝑟2 ≤ 𝑛 < (𝑟 + 1)2 We need to slightly rewrite the predicate
for B, as we cannot chain the comparison operators:

[12]: r�2�n � n<(r+1)�2

[12]:
TRUE

Solution: * r = 0 * n = 0
As you can see, ProB found a simple solution. We can compute specific integer square roots by
specifying n:

[13]: n = 101 � r�2�n � n<(r+1)�2

[13]:
TRUE

Solution: * r = 10 * n = 101
We can also compute the integer square root for a variety of values:

[14]: {n,r•n:1..100 � r�2�n � n<(r+1)�2| r}

[14]: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

2

[15]: {n,r|n:80..100 � r�2�n � n<(r+1)�2}

[15]: {(80 ↦ 8), (81 ↦ 9), (82 ↦ 9), (83 ↦ 9), (84 ↦ 9), (85 ↦ 9), (86 ↦ 9), (87 ↦ 9), (88 ↦ 9), (89 ↦
9), (90 ↦ 9), (91 ↦ 9), (92 ↦ 9), (93 ↦ 9), (94 ↦ 9), (95 ↦ 9), (96 ↦ 9), (97 ↦ 9), (98 ↦ 9), (99 ↦
9), (100 ↦ 10)}

[16]: isqrt = {n,r|n:80..100 � r�2�n � n<(r+1)�2} &
isqrt(n) = r &
isqrt(n+10) = r

[16]:
TRUE

Solution: * r = 9 * isqrt = {(80 ↦ 8), (81 ↦ 9), (82 ↦ 9), (83 ↦ 9), (84 ↦ 9), (85 ↦ 9), (86 ↦
9), (87 ↦ 9), (88 ↦ 9), (89 ↦ 9), (90 ↦ 9), (91 ↦ 9), (92 ↦ 9), (93 ↦ 9), (94 ↦ 9), (95 ↦ 9), (96 ↦
9), (97 ↦ 9), (98 ↦ 9), (99 ↦ 9), (100 ↦ 10)} * n = 81

0.4 Section 2.3 Combining Clauses in a Specification

Section 2.3 of [19] is concerned with specifying by combining properties, e.g., via the logical con-
junction. The first example is the specification of a sorting algorithm, which is a combination of
specifying that the result must a) be sorted and b) be a permutation of the input. The Listing 1.3
below contains a faithful translation of the example from [19].

[21]: ::load
MACHINE PermutationSort_v2
// example from HayesJones for sorting sequence without duplicates
// v2 using B's perm operator
DEFINITIONS
is_ordered(s) == �(i,j).(i�dom(s) � j� dom(s) � i<j � s(i) < s(j));
is_permutation(s1,s2) == s2:perm(ran(s1))
CONSTANTS in,out
PROPERTIES

in = [10,5,3,4,1,20,11,33,0,6,88,100,2,7,19,13] �
is_ordered(out) � is_permutation(in,out)

END

[21]: Loaded machine: PermutationSort_v2

[]: :init

[24]: out

[24]: {(1 ↦ 0), (2 ↦ 1), (3 ↦ 2), (4 ↦ 3), (5 ↦ 4), (6 ↦ 5), (7 ↦ 6), (8 ↦ 7), (9 ↦ 10), (10 ↦ 11), (11 ↦
13), (12 ↦ 19), (13 ↦ 20), (14 ↦ 33), (15 ↦ 88), (16 ↦ 100)}

[29]: is_ordered(res) � is_permutation([3,1000,20,2**50,16],res)

[29]:
TRUE

3

Solution: * res = {(1 ↦ 3), (2 ↦ 16), (3 ↦ 20), (4 ↦ 1000), (5 ↦ 1125899906842624)}
Below is a lambda abstraction defining unsorted input sequences that can be used for benchmarking:

[32]: n=50 & in1 = %i.(i:1..n| (i mod 2)*(n+1)+i) &
is_ordered(res) � is_permutation(in1,res)

[32]:
TRUE

Solution: * res = {(1 ↦ 2), (2 ↦ 4), (3 ↦ 6), (4 ↦ 8), (5 ↦ 10), (6 ↦ 12), (7 ↦ 14), (8 ↦
16), (9 ↦ 18), (10 ↦ 20), (11 ↦ 22), (12 ↦ 24), (13 ↦ 26), (14 ↦ 28), (15 ↦ 30), (16 ↦ 32), (17 ↦
34), (18 ↦ 36), (19 ↦ 38), (20 ↦ 40), (21 ↦ 42), (22 ↦ 44), (23 ↦ 46), (24 ↦ 48), (25 ↦ 50), (26 ↦
52), (27 ↦ 54), (28 ↦ 56), (29 ↦ 58), (30 ↦ 60), (31 ↦ 62), (32 ↦ 64), (33 ↦ 66), (34 ↦ 68), (35 ↦
70), (36 ↦ 72), (37 ↦ 74), (38 ↦ 76), (39 ↦ 78), (40 ↦ 80), (41 ↦ 82), (42 ↦ 84), (43 ↦ 86), (44 ↦
88), (45 ↦ 90), (46 ↦ 92), (47 ↦ 94), (48 ↦ 96), (49 ↦ 98), (50 ↦ 100)} * in1 = {(1 ↦ 52), (2 ↦
2), (3 ↦ 54), (4 ↦ 4), (5 ↦ 56), (6 ↦ 6), (7 ↦ 58), (8 ↦ 8), (9 ↦ 60), (10 ↦ 10), (11 ↦ 62), (12 ↦
12), (13 ↦ 64), (14 ↦ 14), (15 ↦ 66), (16 ↦ 16), (17 ↦ 68), (18 ↦ 18), (19 ↦ 70), (20 ↦ 20), (21 ↦
72), (22 ↦ 22), (23 ↦ 74), (24 ↦ 24), (25 ↦ 76), (26 ↦ 26), (27 ↦ 78), (28 ↦ 28), (29 ↦ 80), (30 ↦
30), (31 ↦ 82), (32 ↦ 32), (33 ↦ 84), (34 ↦ 34), (35 ↦ 86), (36 ↦ 36), (37 ↦ 88), (38 ↦ 38), (39 ↦
90), (40 ↦ 40), (41 ↦ 92), (42 ↦ 42), (43 ↦ 94), (44 ↦ 44), (45 ↦ 96), (46 ↦ 46), (47 ↦ 98), (48 ↦
48), (49 ↦ 100), (50 ↦ 50)} * n = 50

0.5 Section 2.4 Negation in Specifications

Section 2.4 of [19] deals with specification by negation, which is an extremely interesting topic.
While the conjunction seen in permutation sort can be dealt with by Prolog, negation is a more
tricky issue. Indeed, Prolog’s negation-as- failure [7] cannot be used to generate solutions, only
prune them. Constraint logic programming, however, can provide a constructive version of negation
[36, 11] which is also implemented in ProB.

0.5.1 GCD (Greatest Common Divisor)

Example Listing 1.11 contains a trans- lation of the greatest common divisor (GCD) example from
[19]. We have to provide a definition of divides, as it is not built-in in B. In the properties section
we use our gcd definition to compute the GCD for two examples and in the assertions we check
that the results are correct.

[17]: ::load
MACHINE GCD
// Example from Section 2.4 of "Specifications are not (necessarily) executable"
DEFINITIONS
divides(d,i) == (i mod d = 0) & d>0 & d <= i;
is_cd(d,i,j) == divides(d,i) & divides(d,j);
gcd(d,i,j) == is_cd(d,i,j) & not(#e.(e:NATURAL1 & is_cd(e,i,j) & e>d))
CONSTANTS g1, g2
PROPERTIES

gcd(g1,12,8) &
gcd(g2,100,60)

4

ASSERTIONS
g1=4; g2=20

END

[17]: Loaded machine: GCD

[18]: :init

[18]: Machine constants were not set up yet. Automatically set up constants using
arbitrary transition: SETUP_CONSTANTS()
Executed operation: INITIALISATION()

[19]: gcd(x,300,77)

[19]:
TRUE

Solution: * x = 1
[20]: gcd(x,155,70)

[20]:
TRUE

Solution: * x = 5
[]:

5

	Non-Executable Specifications
	Section 2.1
	Section 2.2. Specifying by Inverse
	Section 2.3 Combining Clauses in a Specification
	Section 2.4 Negation in Specifications
	GCD (Greatest Common Divisor)

