1 % (c) 2009-2013 Lehrstuhl fuer Softwaretechnik und Programmiersprachen,
2 % Heinrich Heine Universitaet Duesseldorf
3 % This software is licenced under EPL 1.0 (http://www.eclipse.org/org/documents/epl-v10.html)
4
5 :- module(units_domain, [ same_units/1,
6 same_units/2,
7 lub/3,
8 units_domain_multiplication/3,
9 units_domain_multiplication_conversion/3,
10 units_domain_division/3,
11 units_domain_division_conversion/3,
12 units_domain_subtraction_conversion/3,
13 units_domain_addition_conversion/3,
14 units_domain_power_of/3,
15 units_domain_member/2,
16 units_domain_relation/3,
17 involved_in_constraint/1,
18 power_of_multiply_units/3
19 ]).
20
21 :- use_module(library(lists)).
22 :- use_module(library(clpfd)).
23 :- use_module(library(sets)).
24 :- use_module(library(atts)).
25
26
27 :- use_module(probsrc(self_check)).
28
29 :- use_module(units_conversions).
30
31 :- use_module(probsrc(module_information)).
32 :- module_info(group,plugin_units).
33 :- module_info(description,'Units Plugin: The abstract Domain.').
34
35 :- attribute mfactors/2, dfactors/2, pfactors/2, constraint/0.
36
37 involved_in_constraint(X) :- var(X), !, get_atts(X, constraint).
38 involved_in_constraint([H|T]) :-
39 !, (involved_in_constraint(H) ; involved_in_constraint(T)).
40 involved_in_constraint(Pred) :-
41 !, Pred =.. [Head|Tail],
42 Tail = [_|_],
43 (involved_in_constraint(Head) ; involved_in_constraint(Tail)).
44
45 add_constraint_marker(A,B) :-
46 (var(A) -> put_atts(A, constraint) ; true),
47 (var(B) -> put_atts(B, constraint) ; true).
48
49 verify_attributes(Var, Value, Goal) :-
50 % the variable might be the result of a multiplication
51 % -> propagate inwards
52 get_atts(Var, mfactors(A,B)), !,
53 (var(Value) -> Goal = [] ;
54 (A==B, var(A)) -> Goal=[power_of_multiply_units(2,A,Value)] ;
55 (var(A), nonvar(B)) -> Goal=[units_domain_division(Value,B,A)] ;
56 (var(B), nonvar(A)) -> Goal=[units_domain_division(Value,A,B)] ;
57 otherwise -> Goal=[]).
58 verify_attributes(Var, Value, Goal) :-
59 % the variable might be the result of a division
60 % -> propagate inwards
61 get_atts(Var, dfactors(A,B)), !,
62 (var(Value) -> Goal=[] ;
63 (var(A), nonvar(B)) -> Goal=[units_domain_multiplication(Value,B,A)] ;
64 (var(B), nonvar(A)) -> Goal=[units_domain_division(A,Value,B)] ;
65 otherwise -> Goal=[]).
66 verify_attributes(Var, Value, Goal) :-
67 % the variable might be the result of a exponentiation
68 % -> propagate inwards
69 get_atts(Var, pfactors(A,B)), !,
70 (var(Value) -> Goal=[] ;
71 (var(A), nonvar(B)) -> Goal=[power_of_multiply_units(B,A,Value)] ;
72 otherwise -> Goal=[]).
73 % rescue constraint attribute when unifying
74 verify_attributes(Var, Value, []) :-
75 get_atts(Var, constraint), !,
76 (var(Value) -> put_atts(Value, constraint) ; true).
77 %verify_attributes(Var, Value, []) :-
78 % not a result of multiplication or division
79 % true.
80
81 ?one_is_var(A,B) :- var(A) ; var(B).
82
83 % special case "power_of":
84 % A is the unit part of an integer. This might be a variable.
85 units_domain_power_of(A,b(integer(B,_,_)),C) :- var(A), put_atts(A,constraint), put_atts(C, pfactors(A,B)), !.
86 % B is a raw syntax element. if it is a known integer literal, compute exponent
87 units_domain_power_of(A, b(integer(X),_,_),C) :-
88 power_of_multiply_units(X,A,C), !.
89 % A might be top containing a list of known units
90 units_domain_power_of(top(A), b(integer(X),_,_),top(C)) :-
91 maplist(power_of_multiply_units(X),A,C), !.
92 % otherwise, we can not infer the unit anymore
93 units_domain_power_of(_A,_B,top([])) :- !.
94
95 power_of_multiply_units(_,[],[]).
96 power_of_multiply_units(X,[[Factor1,Unit,Pow1]|T1],[[Factor2,Unit,Pow2]|T2]) :-
97 Factor2 #= Factor1 * X, Pow2 #= Pow1 * X,
98 power_of_multiply_units(X,T1,T2).
99
100 % Conversions between units. Conversion_factor and conversion_add is supplied in its own module.
101
102 units_domain_addition_conversion(_, X, _) :- var(X), !.
103 units_domain_addition_conversion(b(integer(X),_,_), [Unit|Units], [Unit2|Units]) :-
104 repeat_conversion_add(X,Unit2,Unit).
105 units_domain_addition_conversion(BInt,[Unit|Units],[Unit|Units2]) :-
106 units_domain_addition_conversion(BInt,Units,Units2).
107
108 units_domain_subtraction_conversion(_, X, _) :- var(X), !.
109 units_domain_subtraction_conversion(b(integer(X),_,_), [Unit|Units], [Unit2|Units]) :-
110 repeat_conversion_add(X,Unit,Unit2).
111 units_domain_subtraction_conversion(BInt,[Unit|Units],[Unit|Units2]) :-
112 units_domain_subtraction_conversion(BInt,Units,Units2).
113
114 :- assert_must_succeed((units_domain_multiplication_conversion(b(integer(10),_,_),
115 _,X),var(X))).
116 :- assert_must_succeed((units_domain_multiplication_conversion(b(integer(10),_,_),
117 [[1,m,1]],X),X=[[0,m,1]])).
118 :- assert_must_succeed((units_domain_multiplication_conversion(b(integer(60),_,_),
119 [[1,mins,1]],X),X=[[1,s,1]])).
120 :- assert_must_succeed((units_domain_multiplication_conversion(b(integer(10),_,_),
121 [[1,m,1],[1,s,1]],X),X=[[0,m,1],[1,s,1]])).
122 :- assert_must_succeed((units_domain_multiplication_conversion(b(integer(10),_,_),
123 [[1,s,1],[1,m,1]],X),X=[[1,s,1],[0,m,1]])).
124 :- assert_must_succeed((units_domain_multiplication_conversion(b(integer(60),_,_),
125 [[1,m,1],[1,mins,1]],X),X=[[1,m,1],[1,s,1]])).
126 :- assert_must_succeed((units_domain_multiplication_conversion(b(integer(60),_,_),
127 [[1,mins,1],[1,m,1]],X),X=[[1,s,1],[1,m,1]])).
128 units_domain_multiplication_conversion(_, X, _) :- var(X), !.
129 units_domain_multiplication_conversion(b(integer(X),_,_), [Unit|Units], [Unit2|Units]) :-
130 ? repeat_conversion_factor(X,Unit,Unit2).
131 units_domain_multiplication_conversion(BInt,[Unit|Units],[Unit|Units2]) :-
132 ? units_domain_multiplication_conversion(BInt,Units,Units2).
133
134 :- assert_must_succeed((units_domain_division_conversion(b(integer(10),_,_),
135 _,X),var(X))).
136 :- assert_must_succeed((units_domain_division_conversion(b(integer(10),_,_),
137 [[1,m,1]],X),X=[[2,m,1]])).
138 units_domain_division_conversion(_, X, _) :- var(X), !.
139 units_domain_division_conversion(b(integer(X),_,_), [Unit|Units], [Unit2|Units]) :-
140 ? repeat_conversion_factor(X,Unit2,Unit).
141 units_domain_division_conversion(BInt,[Unit|Units],[Unit|Units2]) :-
142 units_domain_division_conversion(BInt,Units,Units2).
143
144 repeat_conversion_factor(X,_,_) :- X < 1, !, fail.
145 repeat_conversion_factor(1.0,Unit,Unit).
146 repeat_conversion_factor(Factor,Unit,UnitOut) :-
147 ? var(UnitOut)
148 ? -> conversion_factor(Unit2,Factor2,Unit),
149 ? FactorOut is Factor / Factor2,
150 ? repeat_conversion_factor(FactorOut,Unit2,UnitOut)
151 ? ; conversion_factor(UnitOut,Factor2,Unit2),
152 ? FactorOut is Factor / Factor2,
153 ? repeat_conversion_factor(FactorOut, Unit, Unit2).
154
155 repeat_conversion_add(X,_,_) :- X < 0, !, fail.
156 repeat_conversion_add(0,Unit,Unit).
157 repeat_conversion_add(Factor,Unit,UnitOut) :-
158 var(UnitOut)
159 -> conversion_add(Unit2,Factor2,Unit),
160 FactorOut is Factor - Factor2,
161 repeat_conversion_add(FactorOut,Unit2,UnitOut)
162 ; conversion_add(UnitOut,Factor2,Unit2),
163 FactorOut is Factor - Factor2,
164 repeat_conversion_add(FactorOut, Unit, Unit2).
165
166
167 % Operations on Integers
168 :- assert_must_succeed(units_domain_multiplication(top([]),[[1,m,1]],top([]))).
169 :- assert_must_succeed(units_domain_multiplication(top([[[1,m,1]],[[2,m,1]]]),[[1,m,1]],top([[[2,m,2]],[[3,m,2]]]))).
170 :- assert_must_succeed(units_domain_multiplication(top([[[1,m,1]],[[2,m,1]]]),top([[[1,m,1]],[[2,m,1]]]),
171 top([[[2,m,2]],[[3,m,2]],[[3,m,2]],[[4,m,2]]]))).
172 :- assert_must_succeed(units_domain_multiplication([[1,m,1]],[[1,m,1]],[[2,m,2]])).
173 :- assert_must_succeed((units_domain_multiplication(A,B,C),var(A),var(B),var(C))).
174 :- assert_must_succeed((units_domain_multiplication(_,[[1,m,1]],Y), var(Y))).
175 :- assert_must_succeed((units_domain_multiplication([[1,m,1]],_,Y), var(Y))).
176 :- assert_must_succeed(units_domain_multiplication([[1,m,1],[1,a,2]],[[1,m,1]],[[2,m,2],[1,a,2]])).
177 :- assert_must_succeed((units_domain_multiplication([[0,m,1],[0,s,-1]],[[0,s,1]],Res), Res = [[0,m,1]])).
178 ?units_domain_multiplication(A,B,C) :- one_is_var(A,B), !, add_constraint_marker(A,B), put_atts(C, mfactors(A,B)).
179 units_domain_multiplication(top(A),top(B),top(C)) :- !,
180 map_product(units_domain_multiplication,A,B,C).
181 units_domain_multiplication(top(A),B,top(C)) :- !,
182 maplist(units_domain_multiplication(B),A,C).
183 units_domain_multiplication(A,top(B),top(C)) :- !,
184 maplist(units_domain_multiplication(A),B,C).
185 units_domain_multiplication(Op1,[],Op1) :- !.
186 units_domain_multiplication([],Op2,Op2) :- !.
187 units_domain_multiplication([[Factor1,Unit1,Pow1]|Units], UnitsOp2, Res2) :- !,
188 (selectchk([Factor2,Unit1,Pow2],UnitsOp2,UnitsOp22)
189 -> Factor3 is Factor1+Factor2, Pow3 is Pow1+Pow2,
190 Res1 = [Factor3,Unit1,Pow3], units_domain_multiplication(Units,UnitsOp22,UnitsResult)
191 ; Res1 = [Factor1,Unit1,Pow1], units_domain_multiplication(Units,UnitsOp2,UnitsResult)
192 ),
193 (Res1 = [0,_,0] -> Res2 = UnitsResult ; Res2 = [Res1|UnitsResult]).
194
195 :- assert_must_succeed(units_domain_division(top([]),[[1,m,1]],top([]))).
196 :- assert_must_succeed(units_domain_division([[1,m,1]],top([]),top([]))).
197 :- assert_must_succeed(units_domain_division(top([[[1,m,1],[1,a,2]],[[1,m,1],[2,a,2]]]),[[1,m,1]],top([[[1,a,2]],[[2,a,2]]]))).
198 :- assert_must_succeed(units_domain_division([[1,m,1]],top([[[1,m,2]],[[1,m,3]]]),top([[[0,m,-1]],[[0,m,-2]]]))).
199 :- assert_must_succeed(units_domain_division(top([[[1,m,1]],[[2,m,1]]]),top([[[1,m,2]],[[1,m,3]]]),
200 top([[[0,m,-1]],[[0,m,-2]],[[1,m,-1]],[[1,m,-2]]]))).
201 :- assert_must_succeed(units_domain_division([[1,m,1]],[[1,m,1]],[])).
202 :- assert_must_succeed(units_domain_division([[1,m,1],[1,a,2]],[[1,m,1]],[[1,a,2]])).
203 :- assert_must_succeed(units_domain_division([[1,m,1]],[[1,m,1],[1,a,2]],[[-1,a,-2]])).
204 :- assert_must_succeed((units_domain_division(A,B,C),var(A),var(B),var(C))).
205 :- assert_must_succeed((units_domain_division(A,A,C),var(A),C==[])).
206 :- assert_must_succeed((units_domain_division(_,[[1,m,1]],Y), var(Y))).
207 :- assert_must_succeed((units_domain_division([[1,m,1]],_,Y), var(Y))).
208 :- assert_must_succeed((units_domain_division([[0,m,1],[0,s,1]],[[0,s,1]],Res), Res = [[0,m,1]])).
209 units_domain_division(A,B,C) :- var(A), A==B, !, C=[].
210 ?units_domain_division(A,B,C) :- one_is_var(A,B), !, add_constraint_marker(A,B), put_atts(C, dfactors(A,B)).
211 units_domain_division(top(A),top(B),top(C)) :-
212 !, map_product(units_domain_division,A,B,C).
213 units_domain_division(top(A),B,top(C)) :-
214 !, maplist(units_domain_division_reversed_arguments(B),A,C).
215 units_domain_division(A,top(B),top(C)) :-
216 !, maplist(units_domain_division(A),B,C).
217 units_domain_division(Op1,[],Op1) :- !.
218 units_domain_division([],Op2,Op3) :- !,
219 division_reverse_signs(Op2,Op3).
220 units_domain_division([[Factor1,Unit1,Pow1]|Units], UnitsOp2, Res2) :- !,
221 (selectchk([Factor2,Unit1,Pow2],UnitsOp2,UnitsOp22)
222 -> Factor3 is Factor1-Factor2, Pow3 is Pow1-Pow2,
223 Res1 = [Factor3,Unit1,Pow3], units_domain_division(Units,UnitsOp22,UnitsResult)
224 ; Res1 = [Factor1,Unit1,Pow1], units_domain_division(Units,UnitsOp2,UnitsResult)
225 ),
226 (Res1 = [0,_,0] -> Res2 = UnitsResult ; Res2 = [Res1|UnitsResult]).
227
228 division_reverse_signs([],[]).
229 division_reverse_signs([[Factor,Unit,Pow]|T],[[Factor2,Unit,Pow2]|T2]) :-
230 Factor2 is -Factor, Pow2 is -Pow,
231 division_reverse_signs(T,T2).
232
233 % reverse argument order - for maplist
234 units_domain_division_reversed_arguments(A,B,C) :-
235 units_domain_division(B,A,C).
236
237 % Operations on Sets
238 :- assert_must_succeed(units_domain_member(type,set(type))).
239 :- assert_must_fail(units_domain_member(integer([[1,m,1]]), set(integer([[2,m,1]])))).
240 units_domain_member(A,B) :- set(A) = B, !.
241 units_domain_member(rec(FieldsA),set(rec(FieldsB))) :- !,
242 maplist(units_domain_member,FieldsA,FieldsB).
243 units_domain_member(field(Name,A),field(Name,B)) :- !,
244 units_domain_member(A,B).
245
246 :- assert_must_succeed(units_domain_relation(set(type),set(type2),set(set(couple(type,type2))))).
247 units_domain_relation(set(A),set(B),set(set(couple(A,B)))).
248
249
250
251 % COMPARISON OF UNITS
252 % same_units/1 checks if a list of units are equal
253 % same_units/2 checks if two units are equal
254 % lub/3 infers least upper bound - a common unit higher in the lattice than the first ones
255
256 % same_units/2 - test cases
257 :- assert_must_fail(same_units(type(_), other_type)).
258 :- assert_must_fail(same_units(type(type2(_)), type(type3(_)))).
259 :- assert_must_succeed(same_units(type([[1,m,1],[1,s,2]]), type([[1,s,2],[1,m,1]]))).
260 :- assert_must_succeed(same_units(type([[-1,m,1],[1,s,2]]), type([[-1,s,2],[1,m,1]]))).
261 :- assert_must_succeed(same_units(type([[2,m,1],[1,s,2]]), type([[2,s,2],[1,m,1]]))).
262 :- assert_must_succeed(same_units(type([[-1,m,1],[0,s,2]]), type([[-2,s,2],[1,m,1]]))).
263 :- assert_must_succeed(same_units(type(top([])), type(top([])))).
264 :- assert_must_succeed(same_units(type(X), type(X))).
265
266 % lub/3 - test cases
267 :- assert_must_succeed(lub(type([[1,m,1],[1,s,2]]), type([[1,s,2],[1,m,1]]), type([[1,m,1],[1,s,2]]))).
268 :- assert_must_succeed(lub(type([[-1,m,1],[1,s,2]]), type([[-1,s,2],[1,m,1]]), type([[-1,m,1],[1,s,2]]))).
269 :- assert_must_succeed(lub(type(top([])), type([[1,m,1]]), type(top([[[1,m,1]]])))).
270 :- assert_must_succeed(lub(type(top([])), type([[1,s,2],[1,m,1]]), type(top([[[1,s,2],[1,m,1]]])))).
271 :- assert_must_succeed(lub(type([[1,m,1],[5,s,2]]), type(top([[[1,m,1]]])), type(top([[[1,m,1],[5,s,2]],[[1,m,1]]])))).
272 :- assert_must_succeed(lub(type(X), type(X), type(X))).
273 :- assert_must_succeed(lub([[3,m,1]],[[3,m,1],[0,h,-1]],top([[[3,m,1]],[[3,m,1],[0,h,-1]]]))).
274 :- assert_must_succeed(lub(integer(_),integer(top([[[0,m,1]],[[0,m,1],[0,s,-1]],[[0,m,1]]])),
275 integer(top([[[0,m,1]],[[0,m,1],[0,s,-1]],[[0,m,1]]])))).
276 :- assert_must_succeed(lub(integer(top([[[0,m,1]],[[0,m,1],[0,s,-1]],[[0,m,1]]])),integer(_),
277 integer(top([[[0,m,1]],[[0,m,1],[0,s,-1]],[[0,m,1]]])))).
278 :- assert_must_succeed(lub(top([[[0,m,1]],[[0,m,1],[0,s,-1]]]),[[0,m,1],[0,s,-1]],
279 top([[[0,m,1]],[[0,m,1],[0,s,-1]]]))).
280 :- assert_must_succeed(lub([[0,m,1],[0,s,-1]],top([[[0,m,1]],[[0,m,1],[0,s,-1]]]),
281 top([[[0,m,1]],[[0,m,1],[0,s,-1]]]))).
282 :- assert_must_succeed(lub(top([[[0,m,1]],[[0,m,1],[0,s,-1]]]),top([[[0,m,1],[0,s,-1]],[[0,m,1]]]),
283 top([[[0,m,1],[0,s,-1]],[[0,m,1]]]))).
284
285 same_units([]).
286 same_units([_]).
287 same_units([A,B|T]) :- same_units(A,B), same_units([B|T]).
288 % two units are identical, if the lub is again one of the two units
289 ?same_units(A,B) :- lub(A,B,C), !, (A=C ; B=C).
290
291 % lub/3 - implementation
292 lub(A,B,C) :- A=B, !, B=C.
293 lub(A,B,C) :- lub_domain_level(A,B,C), !.
294 lub(top(A),top(B),top(C)) :-
295 !, union(A,B,C).
296 lub(top(A),B,top(C)) :-
297 !, union(A,[B],C).
298 lub(A,top(B),top(C)) :-
299 !, union([A],B,C).
300 lub(A,B,C) :-
301 \+ is_list(A), \+ is_list(B), \+ is_list(C),
302 A =.. [Type|ArgsA],
303 B =.. [Type|ArgsB],
304 lub_list(ArgsA,ArgsB,ArgsC), !,
305 C =.. [Type|ArgsC].
306 lub(A,B,top([A,B])) :- !.
307
308 lub_list([],[],[]).
309 lub_list([H1|T1],[H2|T2],[H3|T3]) :-
310 lub(H1,H2,H3), !,
311 lub_list(T1,T2,T3).
312
313 lub_domain_level(U1,U2,U3) :-
314 check_factor(U1,U2,0,0),
315 lub_domain_level2(U1,U2,U3).
316
317 lub_domain_level2([],[],[]) :- !.
318 lub_domain_level2([[Factor1,Unit1,Pow1]|Units], UnitsOp2,[[Factor1,Unit1,Pow1]|ResUnits]) :-
319 selectchk([_Factor1,Unit1,Pow1],UnitsOp2,UnitsOp22), !,
320 lub_domain_level2(Units,UnitsOp22,ResUnits).
321
322 check_factor([],[],X,X).
323 check_factor([[Factor1,_,_]|T1], [[Factor2,_,_]|T2],X,Y) :-
324 !, X2 is X + Factor1, Y2 is Y + Factor2, check_factor(T1,T2,X2,Y2).