1 % (c) 2009-2015 Lehrstuhl fuer Softwaretechnik und Programmiersprachen,
2 % Heinrich Heine Universitaet Duesseldorf
3 % This software is licenced under EPL 1.0 (http://www.eclipse.org/org/documents/epl-v10.html)
4
5 :- module(unit_parser, [
6 unit_args_to_list/2
7 ]).
8
9 :- use_module(library(lists)).
10
11 :- use_module(probsrc(self_check), [assert_must_succeed/1]).
12 :- use_module(probsrc(parsercall), [parse_formula/2]).
13 :- use_module(probsrc(error_manager), [add_error/3]).
14
15 :- use_module(units_alias).
16 :- use_module(units_domain, [units_domain_division/3,power_of_multiply_units/3]).
17
18 :- use_module(probsrc(module_information), [module_info/2]).
19 :- module_info(group,plugin_units).
20 :- module_info(description,'Units Plugin: Parsing unit expressions inside pragmas to internal representation of units.').
21
22 %unit_args_to_list(X,_) :- format('Input unit argument: ~w~n', [X]), nl, fail.
23 :- assert_must_succeed(unit_args_to_list("m",[[0,m,1]])).
24 :- assert_must_succeed(unit_args_to_list("degC",[[0,degC,1]])).
25 :- assert_must_succeed(unit_args_to_list("cm",[[-2,m,1]])).
26 :- assert_must_succeed(unit_args_to_list("10*m**1",[[1,m,1]])).
27 :- assert_must_succeed(unit_args_to_list("10**-1 * m**1",[[-1,m,1]])).
28 :- assert_must_succeed(unit_args_to_list("10 * m",[[1,m,1]])).
29 :- assert_must_succeed(unit_args_to_list("m * 10",[[1,m,1]])).
30 :- assert_must_succeed(unit_args_to_list("km/h",[[3,m,1],[0,h,-1]])).
31 unit_args_to_list(Arg,O) :-
32 catch(parse_formula(Arg,Expression),_Exception, fail),
33 expression_to_unit(Expression,O), correct_unit(O), !.
34 unit_args_to_list(Arg,_) :-
35 atom_codes(ArgAtom,Arg),
36 add_error(incorrect_unit_definition, 'Incorrect unit definition: ', ArgAtom).
37
38 %expression_to_unit(Expr,_) :- format('Input unit expression: ~w~n', [Expr]), nl, fail.
39 :- assert_must_succeed(expression_to_unit(identifier(pos(9,1,4,1,4,1),m),[[0,m,1]])).
40 :- assert_must_succeed(expression_to_unit(mult_or_cart(pos,power_of(pos,integer(pos,10),unary_minus(pos,integer(pos,1))),power_of(pos,identifier(pos,m),integer(pos,1))),[[-1,m,1]])).
41 expression_to_unit(identifier(_Pos,Name),Out) :-
42 unit_alias(Name,AliasDef)
43 -> Out = AliasDef
44 ; valid_unit_symbol(Name),
45 Out = [[0,Name,1]].
46 expression_to_unit(power_of(_Pos,identifier(Pos,Name),Exponent),Unit) :- !,
47 expression_to_unit(identifier(Pos,Name),UnitOfIdentifier),
48 unary_minus_exponent(Exponent,NumericExponent),
49 power_of_multiply_units(NumericExponent,UnitOfIdentifier,Unit).
50 expression_to_unit(power_of(_Pos,integer(_Pos2,10),Exponent),Unit) :- !,
51 unary_minus_exponent(Exponent,NumericExponent),
52 Unit = [[NumericExponent,na,na]].
53 expression_to_unit(mult_or_cart(_Pos,Arg1,Arg2),Unit) :- !,
54 expression_to_unit(Arg1,Unit1), expression_to_unit(Arg2,Unit2),
55 multiply_units(Unit1,Unit2,Unit).
56 expression_to_unit(div(_Pos,Arg1,Arg2),Unit) :- !,
57 expression_to_unit(Arg1,Unit1), expression_to_unit(Arg2,Unit2),
58 units_domain_division(Unit1,Unit2,Unit).
59 expression_to_unit(integer(_Pos,10),[[1,na,na]]) :- !.
60
61 unary_minus_exponent(unary_minus(_Pos,integer(_Pos2,X)), MX) :- !, MX is -X.
62 unary_minus_exponent(integer(_Pos,X), X) :- !.
63
64 multiply_units([[X,na,na]],[[0,Unit,X2]],[[X,Unit,X2]]) :- !, Unit \= na, X2 \= na.
65 multiply_units([[0,Unit,X2]],[[X,na,na]],[[X,Unit,X2]]) :- !, Unit \= na, X2 \= na.
66 multiply_units(U1,U2,U) :- !, append(U1,U2,U).
67
68 correct_unit(ListOfUnits) :-
69 maplist(nafree,ListOfUnits).
70
71 nafree([A,B,C]) :- A \= na, B \= na, C \= na.
72
73 valid_unit_symbol(m).
74 valid_unit_symbol(kg).
75 valid_unit_symbol(s).
76 valid_unit_symbol('A').
77 valid_unit_symbol('K').
78 valid_unit_symbol(mol).
79 valid_unit_symbol(cd).