1 | % (c) 2017 Lehrstuhl fuer Softwaretechnik und Programmiersprachen, | |
2 | % Heinrich Heine Universitaet Duesseldorf | |
3 | % This software is licenced under EPL 1.0 (http://www.eclipse.org/org/documents/epl-v10.html) | |
4 | :- module(symmetry_reduction,[get_preliminary_symmetry_reduction_constraint/4, | |
5 | get_post_symmetry_reduction_constraint/5]). | |
6 | ||
7 | :- use_module(probsrc(module_information),[module_info/2]). | |
8 | :- module_info(group,synthesis). | |
9 | :- module_info(description,'Symmetry reduction for synthesis'). | |
10 | ||
11 | :- use_module(library(lists)). | |
12 | :- use_module(library(sets),[subtract/3]). | |
13 | :- use_module(probsrc(bsyntaxtree)). | |
14 | ||
15 | % Symmetry reduction when searching for another semantically different program. That means, we are given a solution for the location variables. | |
16 | % The preliminary symmetry reduction is to weak when we are already given a solution, especially to prevent symmetric changes between | |
17 | % equivalent components. | |
18 | get_post_symmetry_reduction_constraint(Components,Solution,LocationVarsIn,LocationVarsOut,SymmetryReduction) :- | |
19 | get_symmetric_components(Components,SymmetricComponents) , | |
20 | (SymmetricComponents = [] | |
21 | -> ! , SymmetryReduction = b(truth,pred,[]) | |
22 | ; get_post_symmetry_reduction_constraint_aux(SymmetricComponents,Solution,LocationVarsIn,LocationVarsOut,SymmetryReduction)). | |
23 | ||
24 | get_post_symmetry_reduction_constraint_aux(SymmetricComponents,Solution,LocationVarsIn,LocationVarsOut,SymmetryReduction) :- | |
25 | get_single_operator_post_symmetry_reduction(SymmetricComponents,Solution,LocationVarsIn,LocationVarsOut,SingleOperatorReduction) , | |
26 | get_equivalent_operators_post_symmetry_reduction(Solution,SymmetricComponents,LocationVarsOut,EquivalentOperatorsReduction) , | |
27 | create_texpr(conjunct(SingleOperatorReduction,EquivalentOperatorsReduction),pred,[],SymmetryReduction). | |
28 | ||
29 | get_equivalent_operators_post_symmetry_reduction(Solution,SymmetricComponents,LocationVarsOut,EquivalentOperatorsReduction) :- | |
30 | split_equivalent_components(SymmetricComponents,[],EquivalentComponents) , | |
31 | maplist(get_equivalent_operators_post_symmetry_reduction_aux(Solution,LocationVarsOut),EquivalentComponents,EquivalentOperatorsReductions) , | |
32 | conjunct_predicates(EquivalentOperatorsReductions,EquivalentOperatorsReduction). | |
33 | ||
34 | get_equivalent_operators_post_symmetry_reduction_aux(Solution,LocationVarsOut,EquivalentComponents,EquivalentOperatorsReductions) :- | |
35 | findall((C1,C2),(member(C1,EquivalentComponents) , member(C2,EquivalentComponents) , C1 \= C2),EquivalentComponentPairs) , | |
36 | get_equivalent_operators_post_symmetry_reduction_aux2(Solution,LocationVarsOut,EquivalentComponentPairs,EquivalentOperatorsReductions). | |
37 | ||
38 | get_equivalent_operators_post_symmetry_reduction_aux2(Solution,LocationVarsOut,[EquivalentComponentPair|T],EquivalentOperatorsReductions) :- | |
39 | get_operators_post_symmetry_reduction_for_pair(EquivalentComponentPair,Solution,LocationVarsOut,PairReduction) , | |
40 | get_equivalent_operators_post_symmetry_reduction_aux2(Solution,LocationVarsOut,T,PairReduction,EquivalentOperatorsReductions). | |
41 | ||
42 | get_equivalent_operators_post_symmetry_reduction_aux2(_,_,[],Acc,Acc). | |
43 | get_equivalent_operators_post_symmetry_reduction_aux2(Solution,LocationVarsOut,[EquivalentComponentPair|T],Acc,EquivalentOperatorsReductions) :- | |
44 | get_operators_post_symmetry_reduction_for_pair(EquivalentComponentPair,Solution,LocationVarsOut,PairReduction) , | |
45 | create_texpr(conjunct(PairReduction,Acc),pred,[],NewAcc) , | |
46 | get_equivalent_operators_post_symmetry_reduction_aux2(Solution,LocationVarsOut,T,NewAcc,EquivalentOperatorsReductions). | |
47 | ||
48 | get_operators_post_symmetry_reduction_for_pair((ComponentName1,ComponentName2),Solution,LocationVarsOut,PairReduction) :- | |
49 | % get the output location variables that are mapped to left and right input of the component | |
50 | % the components are symmetric and thus have two inputs | |
51 | get_location_var_from_list(ComponentName1,left_input,LocationVarsOut,b(identifier(C1LeftLocationVarName),_,_)) , | |
52 | get_mapped_output_location(C1LeftLocationVarName,Solution,C1LeftMappedOutputLocationName) , | |
53 | get_location_var_from_list(ComponentName1,right_input,LocationVarsOut,b(identifier(C1RightLocationVarName),_,_)) , | |
54 | get_mapped_output_location(C1RightLocationVarName,Solution,C1RightMappedOutputLocationName) , | |
55 | C1LeftMappedOutputLocationName \= C1RightMappedOutputLocationName , % not the same operator mapped to both locations, otherwise we may loose solutions | |
56 | % create inequality with the input locations of the equivalent symmetric component | |
57 | get_location_var_from_list(ComponentName2,left_input,LocationVarsOut,C2LeftLocationVar) , | |
58 | get_location_var_from_list(ComponentName2,right_input,LocationVarsOut,C2RightLocationVar) , | |
59 | create_texpr(not_equal(b(identifier(C1LeftMappedOutputLocationName),integer,[]),C2RightLocationVar),pred,[],C1LOutC2RInReduction) , | |
60 | create_texpr(not_equal(b(identifier(C1RightMappedOutputLocationName),integer,[]),C2LeftLocationVar),pred,[],C1ROutC2LInReduction) , | |
61 | create_texpr(conjunct(C1LOutC2RInReduction,C1ROutC2LInReduction),pred,[],PairReduction). | |
62 | get_operators_post_symmetry_reduction_for_pair(_,_,_,b(truth,pred,[])). | |
63 | ||
64 | get_single_operator_post_symmetry_reduction([(_,InternalName)|T],Solution,LocationVarsIn,LocationVarsOut,SingleOperatorReductionConj) :- | |
65 | get_single_operator_post_symmetry_reduction_aux(InternalName,Solution,LocationVarsIn,LocationVarsOut,SingleOperatorReduction) , | |
66 | get_single_operator_post_symmetry_reduction(T,Solution,LocationVarsIn,LocationVarsOut,SingleOperatorReduction,SingleOperatorReductionConj). | |
67 | ||
68 | get_single_operator_post_symmetry_reduction([],_,_,_,Acc,Acc). | |
69 | get_single_operator_post_symmetry_reduction([(_,InternalName)|T],Solution,LocationVarsIn,LocationVarsOut,Acc,SingleOperatorReductionConj) :- | |
70 | get_single_operator_post_symmetry_reduction_aux(InternalName,Solution,LocationVarsIn,LocationVarsOut,SingleOperatorReduction) , | |
71 | create_texpr(conjunct(Acc,SingleOperatorReduction),pred,[],NewAcc) , | |
72 | get_single_operator_post_symmetry_reduction(T,Solution,LocationVarsIn,LocationVarsOut,NewAcc,SingleOperatorReductionConj). | |
73 | ||
74 | % All symmetric components have two inputs. We have to exclude left right and vice versa since we refer to explicit location values, i.e., | |
75 | % the locations of the mapped outputs. | |
76 | get_single_operator_post_symmetry_reduction_aux(InternalName,Solution,LocationVarsIn,_LocationVarsOut,SingleOperatorReduction) :- | |
77 | get_single_operator_post_symmetry_reduction_aux2(left_input,right_input,InternalName,Solution,LocationVarsIn,LRReduction) , | |
78 | get_single_operator_post_symmetry_reduction_aux2(right_input,left_input,InternalName,Solution,LocationVarsIn,RLReduction) , | |
79 | create_texpr(conjunct(LRReduction,RLReduction),pred,[],SingleOperatorReduction). | |
80 | ||
81 | get_single_operator_post_symmetry_reduction_aux2(I1,I2,InternalName,Solution,LocationVarsIn,Reduction) :- | |
82 | get_location_var_from_list(InternalName,I1,LocationVarsIn,Input1LocationVar) , | |
83 | Input1LocationVar = b(identifier(Input1LocationName),_,_) , | |
84 | get_mapped_output_location(Input1LocationName,Solution,MappedOutputLocationName) , | |
85 | get_location_var_from_list(InternalName,I2,LocationVarsIn,Input2LocationVar) , | |
86 | create_texpr(not_equal(b(identifier(MappedOutputLocationName),integer,[]),Input2LocationVar),pred,[],Reduction). | |
87 | ||
88 | get_mapped_output_location(InputLocation,Solution,OutputLocation) :- | |
89 | member(binding(InputLocation,_,InputLocationValue),Solution) , | |
90 | get_mapped_output_location_by_value(InputLocationValue,Solution,OutputLocation). | |
91 | ||
92 | get_mapped_output_location_by_value(InputLocationValue,Solution,OutputLocation) :- | |
93 | member(binding(OutputLocation,_,InputLocationValue),Solution) , | |
94 | (atom_concat(lo,_,OutputLocation) ; atom_concat(linput,_,OutputLocation)). | |
95 | ||
96 | % Exclude symmetric changes. | |
97 | % These are the restrictions we can make without a given previous solution for the location variables. | |
98 | % Components are tuples of raw component name and internal component name like (add,add1). | |
99 | get_preliminary_symmetry_reduction_constraint(Components,LocationVarsIn,LocationVarsOut,SymmetryReduction) :- | |
100 | get_symmetric_components(Components,SymmetricComponents) , | |
101 | maplist(get_single_operand_symmetry_reduction(LocationVarsIn),SymmetricComponents,OperandExclusionList) , | |
102 | get_operator_symmetry_reduction(Components,LocationVarsOut,OperatorReductionPredicate) , | |
103 | conjunct_predicates([OperatorReductionPredicate|OperandExclusionList],SymmetryReduction). | |
104 | ||
105 | get_symmetric_components(Components,SymmetricComponents) :- | |
106 | get_symmetric_components(Components,[],SymmetricComponents). | |
107 | ||
108 | get_symmetric_components([],Acc,Acc). | |
109 | get_symmetric_components([(Name,InternalName)|T],Acc,SymmetricComponents) :- | |
110 | Name \= constant-_ , | |
111 | is_symmetric(Name) , | |
112 | get_symmetric_components(T,[(Name,InternalName)|Acc],SymmetricComponents). | |
113 | get_symmetric_components([_|T],Acc,SymmetricComponents) :- | |
114 | get_symmetric_components(T,Acc,SymmetricComponents). | |
115 | ||
116 | % Exclude symmetric changes within a component by asserting L(i1) < L(i2). | |
117 | get_single_operand_symmetry_reduction(LocationVarsIn,Expression,SymmetryReduction) :- | |
118 | Expression = (_,InternalName) , | |
119 | get_location_var_from_list(InternalName,left_input,LocationVarsIn,LeftLocationVarIn) , | |
120 | get_location_var_from_list(InternalName,right_input,LocationVarsIn,RightLocationVarIn) , | |
121 | SymmetryReduction = b(less_equal(LeftLocationVarIn,RightLocationVarIn),pred,[]). | |
122 | ||
123 | % Exclude symmetric changes of operands (components). E.g., given three additions add1,add2,add3 we assert | |
124 | % L(add1) < L(add2) < L(add3) to hold, where L(add_) is the corresponding output location of the component. | |
125 | get_operator_symmetry_reduction(Components,LocationVarsOut,SymmetryReduction) :- | |
126 | split_equivalent_components(Components,[],EquivalentComponents) , | |
127 | maplist(get_operator_symmetry_reduction_aux(LocationVarsOut,[]),EquivalentComponents,SymmetryExclusionList) , | |
128 | conjunct_predicates(SymmetryExclusionList,SymmetryReduction). | |
129 | ||
130 | get_operator_symmetry_reduction_aux(_,Acc,[],SymmetryReduction) :- | |
131 | conjunct_predicates(Acc,SymmetryReduction). | |
132 | get_operator_symmetry_reduction_aux(LocationVarsOut,Acc,[Components|T],SymmetryReduction) :- | |
133 | % skip single components | |
134 | length(Components,Length) , | |
135 | Length > 1 , !, | |
136 | get_operator_symmetry_reduction_aux2(Components,LocationVarsOut,[],OperatorReduction) , | |
137 | get_operator_symmetry_reduction_aux(LocationVarsOut,[OperatorReduction|Acc],T,SymmetryReduction). | |
138 | get_operator_symmetry_reduction_aux(LocationVarsOut,Acc,[_|T],SymmetryReduction) :- | |
139 | get_operator_symmetry_reduction_aux(LocationVarsOut,Acc,T,SymmetryReduction). | |
140 | ||
141 | % Components are all equivalent like [add1,add2,add3] and the list has a minimum length of 2. | |
142 | % For just one component we don't need symmetry reduction on the level of operators. | |
143 | get_operator_symmetry_reduction_aux2([_],_,Acc,OperatorReduction) :- | |
144 | conjunct_predicates(Acc,OperatorReduction). | |
145 | get_operator_symmetry_reduction_aux2([(_,InternalName1),(Name,InternalName2)|T],LocationVarsOut,Acc,OperatorReduction) :- | |
146 | get_location_var_from_list(InternalName1,output,LocationVarsOut,LocationVarOutComp1) , | |
147 | get_location_var_from_list(InternalName2,output,LocationVarsOut,LocationVarOutComp2) , | |
148 | NewAcc = [b(less_equal(LocationVarOutComp1,LocationVarOutComp2),pred,[])|Acc] , | |
149 | get_operator_symmetry_reduction_aux2([(Name,InternalName2)|T],LocationVarsOut,NewAcc,OperatorReduction). | |
150 | ||
151 | % Find all equivalent components like [add1,add2,add3]. | |
152 | split_equivalent_components([],Acc,Acc). | |
153 | split_equivalent_components([(Name,InternalName)|T],Acc,EquivalentComponentsList) :- | |
154 | Name \= constant-_ , | |
155 | findall(EquiInternalName,(member((_,EquiInternalName),T) , EquiInternalName = InternalName),EquivalentComponents) , | |
156 | subtract(T,EquivalentComponents,NT) , | |
157 | split_equivalent_components(NT,[(Name,InternalName)|Acc],EquivalentComponentsList). | |
158 | split_equivalent_components([_|T],Acc,EquivalentComponentsList) :- | |
159 | split_equivalent_components(T,Acc,EquivalentComponentsList). | |
160 | ||
161 | % Search a location variable for a given tuple of component name and internal name (like add1) | |
162 | % and a component type (i.e., one of [left_input, right_input, output]). | |
163 | get_location_var_from_list(InternalName,ComponentType,LocationVars,LocationVar) :- | |
164 | member(LocationVar,LocationVars) , | |
165 | get_texpr_info(LocationVar,Info) , | |
166 | member(synthesis(InternalName,ComponentType),Info). | |
167 | ||
168 | is_symmetric(not_equal). | |
169 | is_symmetric(equal). | |
170 | is_symmetric(conjunct). | |
171 | is_symmetric(disjunct). | |
172 | is_symmetric(equivalence). | |
173 | is_symmetric(add). | |
174 | is_symmetric(multiplication). | |
175 | is_symmetric(union). | |
176 | is_symmetric(intersection). |