| 1 | % (c) 2009-2022 Lehrstuhl fuer Softwaretechnik und Programmiersprachen, | |
| 2 | % Heinrich Heine Universitaet Duesseldorf | |
| 3 | % This software is licenced under EPL 1.0 (http://www.eclipse.org/org/documents/epl-v10.html) | |
| 4 | ||
| 5 | :- module(static_symmetry_reduction, [static_symmetry_reduction_possible/5, perform_ssr/8]). | |
| 6 | ||
| 7 | :- use_module(module_information,[module_info/2]). | |
| 8 | :- module_info(group,kernel). | |
| 9 | :- module_info(description,'This module provides support for symmetry reduction on deferred sets.'). | |
| 10 | ||
| 11 | :- use_module(library(lists)). | |
| 12 | :- use_module(library(ordsets)). | |
| 13 | :- use_module(debug,[debug_println/2]). | |
| 14 | ||
| 15 | ||
| 16 | ||
| 17 | % peform MACE style static symmetry reduction for those global constants | |
| 18 | % that have not already been fixed | |
| 19 | % e.g., for constants aa,bb,cc,dd of type ID and bb/=cc --> nrs of bb,cc will be fixed as 1 and 2; we will ensure that numbers of aa:1..3 and dd:1..4 and that dd=4 only if aa=3 | |
| 20 | % TO DO: extend this kind of symmetry reduction to other constants (e.g., total fun over fixed domain f: ... --> ID) | |
| 21 | % TO DO: ensure this is also used in enabling analysis, symbolic_model checker, ... | |
| 22 | % TO DO: support detection of injections | |
| 23 | ||
| 24 | ||
| 25 | :- use_module(b_global_sets,[b_get_fd_type_bounds/3, is_b_global_constant/3, b_global_set/1]). | |
| 26 | :- use_module(bmachine,[b_get_properties_from_machine/1, b_get_disjoint_constants_of_type/3]). | |
| 27 | ||
| 28 | ||
| 29 | % check if we can apply static symmetry reduction for a global deferred set GS | |
| 30 | % means we have a deferred set GS with fixed elements (DisjointConstants) | |
| 31 | % and some remaining deferred set elements (Other) whose index starts at FirstAvailableNewIdx | |
| 32 | static_symmetry_reduction_possible(GS,FirstAvailableNewIdx,Low,Up,Other) :- | |
| 33 | b_global_set(GS), | |
| 34 | b_get_fd_type_bounds(GS,Low,Up), | |
| 35 | (b_get_disjoint_constants_of_type(GS, DisjointConstants, AllConstantsIDs) -> true | |
| 36 | ; DisjointConstants=[], % find_constants_of_type(Constants,GS,AllConstantsIDs,_GSConstants) | |
| 37 | AllConstantsIDs=[] % otherwise at least one disjoint constant would have been returned | |
| 38 | ), | |
| 39 | % Note: the disjoint constants will have been asserted by add_named_constants_to_global_set | |
| 40 | findall(Nr,is_b_global_constant(GS,Nr,_Cst),Ns), | |
| 41 | (Ns=[] -> FirstAvailableNewIdx=1 | |
| 42 | ; max_member(Max,Ns), | |
| 43 | length(Ns,Max), % check contiguous, DisjointConstants are numbered 1..Max | |
| 44 | FirstAvailableNewIdx is Max+1 | |
| 45 | ), | |
| 46 | sort(AllConstantsIDs,SAll), | |
| 47 | sort(DisjointConstants,SDis), | |
| 48 | ord_subtract(SAll,SDis,Other), | |
| 49 | % Other \= [], % If Other = [] one could still use partition symmetry reduction | |
| 50 | debug_println(4,static_symmetry_possible(GS,FirstAvailableNewIdx,Up,Other,SDis)). | |
| 51 | ||
| 52 | ||
| 53 | ||
| 54 | % ----------------------------- | |
| 55 | ||
| 56 | :- use_module(store,[lookup_value_for_existing_id/3]). | |
| 57 | :- use_module(bsyntaxtree,[member_in_conjunction/2, get_texpr_expr/2,get_texpr_id/2]). | |
| 58 | :- use_module(fd_utils_clpfd,[in_fd/3]). | |
| 59 | :- use_module(library(clpfd), [(#<=>)/2]). | |
| 60 | :- use_module(clpfd_interface,[force_post_constraint/1, force_clpfd_inlist/2]). | |
| 61 | :- use_module(tools,[exact_member/2]). | |
| 62 | ||
| 63 | % perform_ssr(ConstatsOfTypeGSNotAssignedYet, ...) | |
| 64 | perform_ssr([],_PrevNrs,_InitialF,FirstNew,GS,_Low,Up,ConstantsState) :- less_than_inf(FirstNew,Up), | |
| 65 | % if partition exists -> we could enforce order on partitions for Indexes in FirstAvailableNewIdx..Up | |
| 66 | b_get_properties_from_machine(Properties), | |
| 67 | member_in_conjunction(C,Properties), | |
| 68 | get_texpr_expr(C,partition(Set,DisjSets)), | |
| 69 | global_set_identifier(Set,GS), | |
| 70 | maplist(get_value_for_constant(ConstantsState),DisjSets,DisjSetVals), | |
| 71 | % TO DO: try and evaluate at runtime in case DisjSets are not all identifiers but expressions such as {aa,bb} | |
| 72 | !, | |
| 73 | debug_println(19,partition_symmetry_reduction(DisjSetVals,FirstNew,GS,Up)), | |
| 74 | % when(ground(DisjSetVals), format('SETS=~w~n',[DisjSetVals])), | |
| 75 | partition_sym_reduction(DisjSetVals,FirstNew). | |
| 76 | perform_ssr([],PrevNrs,InitialF,FirstNew,GS,_,_,_) :- | |
| 77 | debug_println(4,done_ssr(GS,PrevNrs,InitialF,FirstNew)). | |
| 78 | perform_ssr([OtherID|T],PrevNrs,InitialF,FirstNew,GS,Low,Up,ConstantsState) :- | |
| 79 | % adding static symmetry breaking constraints for OtherID of type GS | |
| 80 | lookup_value_for_existing_id(OtherID,ConstantsState,fd(Nr,GS)), | |
| 81 | debug_println(4,ssr(OtherID,Nr,FirstNew,Up)), | |
| 82 | in_fd(Nr,Low,FirstNew), | |
| 83 | force_post_constraint((Nr#>InitialF) #<=> Trigger), | |
| 84 | check_contiguous(Trigger,Nr,PrevNrs), | |
| 85 | (less_than_inf(FirstNew,Up) -> F1 is FirstNew+1 ; F1=Up), | |
| 86 | perform_ssr(T,[Nr|PrevNrs],InitialF,F1,GS,Low,Up,ConstantsState). | |
| 87 | ||
| 88 | less_than_inf(X,Up) :- (Up=inf -> true ; X < Up). | |
| 89 | ||
| 90 | ||
| 91 | get_value_for_constant(ConstantsState,TID,DisjSetVals) :- | |
| 92 | get_texpr_id(TID,ID), | |
| 93 | lookup_value_for_existing_id(ID,ConstantsState,DisjSetVals). | |
| 94 | ||
| 95 | :- block check_contiguous(-,?,?),check_contiguous(?,-,?). % to do: do not delay on Nr | |
| 96 | check_contiguous(0,_Nr,_PrevNrs). % we have not used a new deferred set number | |
| 97 | check_contiguous(1,Nr,PrevNrs) :- % we have used a new number, check that previous number also used | |
| 98 | %print(check_used(Nr,PrevNrs)),nl, | |
| 99 | N1 is Nr-1, | |
| 100 | (exact_member(N1,PrevNrs) -> true | |
| 101 | ; when(ground(PrevNrs),force_clpfd_inlist(N1,PrevNrs))). | |
| 102 | ||
| 103 | ||
| 104 | global_set_identifier(C,GS) :- get_texpr_expr(C,BE), global_set_identifier2(BE,GS). | |
| 105 | global_set_identifier2(identifier(GlobalSet),GlobalSet). | |
| 106 | global_set_identifier2(value(global_set(GlobalSet)),GlobalSet). % generated by Z | |
| 107 | ||
| 108 | % -------------------- | |
| 109 | ||
| 110 | ||
| 111 | % This predicate implements a symmetry reduction on a partition of the deferred sets | |
| 112 | % DS = P1 \/ P2 ... Pn & P1 /\ P2 = {} ... | |
| 113 | % where we may have some constants already allocated fixed numbers (1..n) | |
| 114 | % and other constants ranging from 1..(n+m) and where n+m+1 is the FirstFreelyChoosableIndex | |
| 115 | % for any index >= FirstFreelyChoosableIndex we impose that these must be allocated in order to | |
| 116 | % the partitions | |
| 117 | ||
| 118 | % For example: if FirstFreelyChoosableIndex 1 and we have two sets, then we will only allow: | |
| 119 | % {}, {1,2,3} ; {1}, {2,3} ; {1,2}, {3} ; {1,2,3} , {} as partitions and not e.g. | |
| 120 | % {2}, {1,3} ... | |
| 121 | % Idea: if fd(Nr,_) appears in partition k, then all numbers from FirstFreelyChoosableIndex..Nr are prohibited in later partitions | |
| 122 | ||
| 123 | % partition_sym_reduction(List of Sets, FirstFreelyChoosableIndex) | |
| 124 | ||
| 125 | partition_sym_reduction([],_). | |
| 126 | partition_sym_reduction([PSet1|OtherPSets],FirstNew) :- | |
| 127 | check_partition_order(PSet1,OtherPSets,FirstNew), | |
| 128 | partition_sym_reduction(OtherPSets,FirstNew). | |
| 129 | ||
| 130 | :- block check_partition_order(-,?,?). | |
| 131 | check_partition_order([],_,_) :- !. | |
| 132 | check_partition_order([H|T],OtherSets,FirstNew) :- (T,OtherSets) \== ([],[]), | |
| 133 | !, | |
| 134 | check_partition_order_for_el(H,[T|OtherSets],FirstNew), | |
| 135 | check_partition_order(T,OtherSets,FirstNew). | |
| 136 | check_partition_order(global_set(_),_,_) :- !. % all other sets will be forced to be empty | |
| 137 | %check_partition_order(A,_,_) :- print(uncov_pset(A)),nl,fail. % TO DO: treat avl_set .. | |
| 138 | check_partition_order(_,_,_). | |
| 139 | ||
| 140 | :- block check_partition_order_for_el(-,?,?). | |
| 141 | check_partition_order_for_el(fd(Nr,_),OtherSets,FirstNew) :- | |
| 142 | check_partition_order_for_el2(Nr,OtherSets,FirstNew). | |
| 143 | :- block check_partition_order_for_el2(-,?,?). | |
| 144 | check_partition_order_for_el2(Nr,OtherSets,FirstNew) :- % print(sym_red(Nr,FirstNew,OtherSets)),nl, | |
| 145 | Nr > FirstNew,!, % sym. reduction applicable | |
| 146 | maplist(prohibit_indices(FirstNew,Nr),OtherSets). | |
| 147 | check_partition_order_for_el2(_,_,_). | |
| 148 | ||
| 149 | :- use_module(library(clpfd),[fdset_interval/3, fdset_complement/2, in_set/2]). | |
| 150 | prohibit_indices(FirstNew,Nr,Set) :- | |
| 151 | fdset_interval(Int,FirstNew,Nr), | |
| 152 | fdset_complement(Int,NotInt), | |
| 153 | %print(prohibit2(Set,NotInt)),nl, | |
| 154 | prohibit_indices2(Set,NotInt). | |
| 155 | :- block prohibit_indices2(-,?). | |
| 156 | prohibit_indices2([],_) :- !. | |
| 157 | prohibit_indices2([H|T],NotInt) :- !, %print(prohibit(H,T,NotInt)),nl, | |
| 158 | H = fd(Nr,_), | |
| 159 | Nr in_set NotInt, | |
| 160 | prohibit_indices2(T,NotInt). | |
| 161 | prohibit_indices2(A,_) :- % TO DO: treat avl_set, .. | |
| 162 | print(uncov_prohibit_indices2(A)),nl. |