1 % (c) 2019-2024 Lehrstuhl fuer Softwaretechnik und Programmiersprachen,
2 % Heinrich Heine Universitaet Duesseldorf
3 % This software is licenced under EPL 1.0 (http://www.eclipse.org/org/documents/epl-v10.html)
4 :- module(smt_symmetry_breaking, [init_graph/0,
5 get_top_level_symmetry_breaking_predicates/3,
6 get_top_level_symmetry_breaking_predicates_decomposed/2,
7 add_symmetry_breaking_predicates/2,
8 get_amount_of_found_sbps/1]).
9
10 :- use_module(library(plunit)).
11 :- use_module(library(codesio), [write_to_codes/2]).
12 :- use_module(library(samsort), [samsort/3]).
13 :- use_module(library(lists), [select/3, maplist/3]).
14 :- use_module(extension('bliss/bliss_interface')).
15 :- use_module(probsrc(b_global_sets), [b_get_global_enumerated_sets/1]).
16 :- use_module(probsrc(bmachine), [b_get_machine_set/1]).
17 :- use_module(probsrc(error_manager), [add_message/2,add_warning/3]).
18 :- use_module(probsrc(b_interpreter_check),[norm_pred_check/2,norm_expr_check/2]).
19 :- use_module(probsrc(tools_meta),[safe_time_out/3]).
20 :- use_module(probsrc(bsyntaxtree), [get_texpr_expr/2,
21 conjunct_predicates/2,
22 conjunction_to_list/2,
23 disjunction_to_list/2,
24 predicate_components_in_scope/3,
25 remove_all_infos_and_ground/2,
26 find_typed_identifier_uses/3,
27 safe_create_texpr/4]).
28
29 % Foundation: "SyMT: Finding Symmetries in SMT formulas" by Areces et al.
30 % Possible improvement (TODO): "Advances in Symmetry Breaking for SAT Modulo Theories" by Dinliwal et al.
31
32 :- dynamic next_color/1, color/2, seen_pred/2, seen_upred/2, seen_expr/2, seen_uexpr/2, node_id_to_ast/2, ast_to_node_id/3.
33 :- volatile next_color/1, color/2, seen_pred/2, seen_upred/2, seen_expr/2, seen_uexpr/2, node_id_to_ast/2, ast_to_node_id/3.
34
35 init_graph :-
36 bliss_interface:init_bliss_interface,
37 bliss_interface:init_directed_graph,
38 retractall(node_id_to_ast(_,_)),
39 retractall(ast_to_node_id(_,_,_)),
40 retractall(seen_pred(_,_)),
41 retractall(seen_upred(_,_)),
42 retractall(seen_expr(_,_)),
43 retractall(seen_uexpr(_,_)),
44 retractall(color(_,_)),
45 asserta(color(arg, 0)), % all argument nodes have the same unique color
46 retractall(next_color(_)),
47 asserta(next_color(1)).
48
49 get_texpr_expr_functor_and_type(b(Expr,Type,_), Expr, Type, Functor) :-
50 functor(Expr, Functor, _).
51
52 %% get_top_level_symmetry_breaking_predicates_decomposed(+SmtFormula, -SBPs).
53 % Decompose constraint into independent components and conjunct symmetry breaking predicates of each component.
54 get_top_level_symmetry_breaking_predicates_decomposed(SmtFormula, SBPs) :-
55 ( SmtFormula = b(truth,pred,_)
56 ; SmtFormula = b(falsity,pred,_)
57 ),
58 !,
59 SBPs = b(truth,pred,[]).
60 get_top_level_symmetry_breaking_predicates_decomposed(SmtFormula, SBPs) :-
61 findall(DeferredSetId, b_get_machine_set(DeferredSetId), DeferredSetIds),
62 predicate_components_in_scope(SmtFormula, DeferredSetIds, Components),
63 b_get_global_enumerated_sets(EnumeratedSets),
64 get_top_level_symmetry_breaking_predicates_from_components(Components, EnumeratedSets, SBPs).
65
66 get_top_level_symmetry_breaking_predicates_from_components([component(SingleComponent,_)|T], EnumeratedSets, SBPs) :-
67 reset_found_sbps,
68 get_top_level_symmetry_breaking_predicates(SingleComponent, EnumeratedSets, CSBPs),
69 log_found_sbps(CSBPs),
70 get_top_level_symmetry_breaking_predicates_from_components(T, CSBPs, EnumeratedSets, SBPs).
71
72 get_top_level_symmetry_breaking_predicates_from_components([], Acc, _, Acc).
73 get_top_level_symmetry_breaking_predicates_from_components([component(SingleComponent,_)|T], Acc, EnumeratedSets, SBPs) :-
74 get_top_level_symmetry_breaking_predicates(SingleComponent, EnumeratedSets, CSBPs),
75 log_found_sbps(CSBPs),
76 conjunct_predicates([Acc,CSBPs], NAcc),
77 get_top_level_symmetry_breaking_predicates_from_components(T, NAcc, EnumeratedSets, SBPs).
78
79 %% get_top_level_symmetry_breaking_predicates(+SmtFormula, +EnumeratedSets, -SBPs).
80 % Assuming that the AST has been normalized by B AST cleanup.
81 get_top_level_symmetry_breaking_predicates(SmtFormula, EnumeratedSets, SBPs) :-
82 get_top_level_symmetry_breaking_predicates(SmtFormula, EnumeratedSets, SBPs, _).
83
84 %% get_top_level_symmetry_breaking_predicates(+SmtFormula, -SBPs, -Generators).
85 get_top_level_symmetry_breaking_predicates(SmtFormula, EnumeratedSets, SBPs, Generators) :-
86 find_typed_identifier_uses(SmtFormula, [], UsedIds),
87 remove_all_infos_and_ground(SmtFormula, CSmtFormula),
88 order_variables(UsedIds, _TypeOrdering, VariableOrdering),
89 ( VariableOrdering == []
90 -> SBPs = b(truth,pred,[])
91 ; init_graph,
92 build_colored_graph(CSmtFormula),
93 %graph_to_dot_file('sym_graph.dot'),
94 !,
95 bliss_interface:find_automorphisms(TGenerators),
96 %nl, write('Generators: '), write(Generators),nl,
97 get_sbps_from_generators(TGenerators, VariableOrdering, EnumeratedSets, TSBPs),
98 !,
99 SBPs = TSBPs,
100 Generators = TGenerators
101 ).
102
103 get_amount_of_found_sbps(FoundSBPs) :-
104 found_sbps(FoundSBPs).
105
106 :- dynamic found_sbps/1.
107 :- volatile found_sbps/1.
108
109 found_sbps(0).
110
111 reset_found_sbps :-
112 retractall(found_sbps(_)),
113 asserta(found_sbps(0)).
114
115 log_found_sbps(SymBreakPs) :-
116 SymBreakPs \= b(truth,pred,_),
117 conjunction_to_list(SymBreakPs, L),
118 length(L, Len),
119 retract(found_sbps(FoundSBPs)),
120 NFoundSBPs is FoundSBPs + Len,
121 asserta(found_sbps(NFoundSBPs)).
122 log_found_sbps(_).
123
124 %% add_symmetry_breaking_predicates(+SmtFormula, -NSmtFormula).
125 % Adds symmetry breaking predicates to quantifiers as well.
126 add_symmetry_breaking_predicates(SmtFormula, NSmtFormula) :-
127 reset_found_sbps,
128 b_get_global_enumerated_sets(EnumeratedSets),
129 safe_time_out(add_symmetry_breaking_predicates(SmtFormula, EnumeratedSets, NSmtFormula), 10000, TORes),
130 ( TORes == time_out
131 -> NSmtFormula = SmtFormula
132 ; true
133 ).
134
135 %% add_symmetry_breaking_predicates(+SmtFormula, +EnumeratedSets, -NSmtFormula).
136 add_symmetry_breaking_predicates(SmtFormula, EnumeratedSets, NSmtFormula) :-
137 ( get_top_level_symmetry_breaking_predicates(SmtFormula, EnumeratedSets, SymBreakPs)
138 -> log_found_sbps(SymBreakPs)
139 ; add_message(smt_symmetry_breaking, 'Skip top-level symmetry breaking due to failure'),
140 SymBreakPs = b(truth,pred,[])
141 ),
142 add_sbps_to_quantifiers(SmtFormula, EnumeratedSets, TSmtFormula),
143 safe_create_texpr(conjunct(SymBreakPs,TSmtFormula), pred, [] ,NSmtFormula).
144
145 %% add_sbps_to_quantifiers(+Ast, +EnumeratedSets, -SmtFormula).
146 add_sbps_to_quantifiers(b(Expr,Type,Info), EnumeratedSets, NSmtFormula) :-
147 !,
148 add_sbps_to_quantifiers_expr(Expr, EnumeratedSets, NExpr),
149 safe_create_texpr(NExpr, Type, Info, NSmtFormula).
150 add_sbps_to_quantifiers(Formula, _, Formula).
151
152 add_sbps_to_quantifiers_expr(forall(Ids,Lhs,Rhs), EnumeratedSets, NExpr) :-
153 !,
154 get_top_level_symmetry_breaking_predicates(Rhs, EnumeratedSets, SBPs),
155 log_found_sbps(SBPs),
156 add_sbps_to_quantifiers(Rhs, EnumeratedSets, NRhs),
157 ( SBPs = b(truth,pred,_)
158 -> NExpr = forall(Ids,Lhs,NRhs)
159 ; safe_create_texpr(conjunct(SBPs,Lhs), pred, [], NLhs),
160 NExpr = forall(Ids,NLhs,NRhs)
161 ).
162 add_sbps_to_quantifiers_expr(exists(Ids,Body), EnumeratedSets, NExpr) :-
163 !,
164 get_top_level_symmetry_breaking_predicates(Body, EnumeratedSets, SBPs),
165 log_found_sbps(SBPs),
166 add_sbps_to_quantifiers(Body, EnumeratedSets, NBody),
167 ( SBPs = b(truth,pred,_)
168 -> NExpr = exists(Ids,NBody)
169 ; safe_create_texpr(conjunct(SBPs,NBody), pred, [], NNBody),
170 NExpr = exists(Ids,NNBody)
171 ).
172 add_sbps_to_quantifiers_expr(Expr, _, NExpr) :-
173 ( is_interpreted_symbol(Expr)
174 ; is_uninterpreted_symbol(Expr)
175 ),
176 !,
177 NExpr = Expr.
178 add_sbps_to_quantifiers_expr(Expr, EnumeratedSets, NExpr) :-
179 functor(Expr, Functor, 2),
180 !,
181 arg(1, Expr, Arg1),
182 arg(2, Expr, Arg2),
183 add_sbps_to_quantifiers(Arg1, EnumeratedSets, NArg1),
184 add_sbps_to_quantifiers(Arg2, EnumeratedSets, NArg2),
185 functor(NExpr, Functor, 2),
186 arg(1, NExpr, NArg1),
187 arg(2, NExpr, NArg2).
188 add_sbps_to_quantifiers_expr(Expr, EnumeratedSets, NExpr) :-
189 functor(Expr, Functor, 1),
190 !,
191 arg(1, Expr, Arg),
192 add_sbps_to_quantifiers(Arg, EnumeratedSets, NArg),
193 functor(NExpr, Functor, 1),
194 arg(1, NExpr, NArg).
195 add_sbps_to_quantifiers_expr(Expr, _, Expr).
196
197 %% get_sbps_from_generators(+Generators, +VariableOrdering, -SBPs).
198 get_sbps_from_generators(Generators, VariableOrdering, EnumeratedSets, SBPs) :-
199 add_sbps_from_generators(Generators, VariableOrdering, EnumeratedSets, b(truth,pred,[]), SBPs).
200
201 %% add_sbps_from_generators(+Generators, +VariableOrdering, +Acc, -SBPs).
202 add_sbps_from_generators([], _, _, Acc, Acc).
203 add_sbps_from_generators([Generator|T], VariableOrdering, EnumeratedSets, Acc, SBPs) :-
204 add_sbps_from_generator(VariableOrdering, Generator, EnumeratedSets, Acc , NAcc),
205 add_sbps_from_generators(T, VariableOrdering, EnumeratedSets, NAcc, SBPs).
206
207 %% add_sbps_from_generator(+Generators, +VariableOrdering, +Acc, -SBPs).
208 add_sbps_from_generator([], _, _, Acc, Acc).
209 add_sbps_from_generator([FirstVarAst|T], Generator, EnumeratedSets, Acc, NAcc) :-
210 FirstVarAst = b(Node,_,_),
211 ast_to_node_id(Node, NType, FirstVarId), % use stored type since it can e.g. be either set(couple(integer,boolean)) or seq(boolean)
212 NFirstVarAst = b(Node,NType,[]),
213 !,
214 image_of_generator(Generator, FirstVarId, ImageId),
215 node_id_to_ast(ImageId, ImageAst),
216 get_texpr_expr(ImageAst, Id1),
217 ( Id1 == Node
218 -> % tautology
219 add_sbps_from_generator(T, Generator, EnumeratedSets, Acc, NAcc)
220 ; safe_create_texpr(equal(NFirstVarAst,ImageAst), pred, [], Eq),
221 ( (
222 \+ has_enumerated_set_type(NFirstVarAst, EnumeratedSets),
223 less_eq_for_type_except_enumerated_set(NFirstVarAst, ImageAst, LEq)
224 )
225 -> extend_conj_acc(Acc, LEq, NAcc1)
226 ; NAcc1 = Acc
227 ),
228 add_sbps_from_generator_eq_acc(T, Generator, Eq, EnumeratedSets, NAcc1, NAcc)
229 ).
230 add_sbps_from_generator([FirstVarAst|_], _, _, _, _) :-
231 add_warning(smt_symmetry_breaking, 'Missing node id in symmetry breaking graph for AST ', [FirstVarAst]), !,
232 fail.
233
234 %% image_of_generator(+Generator, +Id, -ImageId).
235 image_of_generator([], Id, Id). % identity
236 image_of_generator([Cycle|_], Id, ImageId) :-
237 image_of_cycle(false, Cycle, Id, TImageId),
238 !,
239 ImageId = TImageId.
240 image_of_generator([_|T], Id, ImageId) :-
241 image_of_generator(T, Id, ImageId).
242
243 image_of_cycle(MapLastToFirst, [FirstCycleId|T], Id, ImageId) :-
244 image_of_cycle(MapLastToFirst, [FirstCycleId|T], FirstCycleId, Id, ImageId).
245
246 %% image_of_cycle(+MapLastToFirst, +FirstCycleId, +Id, -ImageId).
247 % Tautologies are generated in symmetry breaking if last element maps to first.
248 image_of_cycle(true, [Id], ImageId, Id, ImageId).
249 image_of_cycle(false, [Id], _, Id, Id).
250 image_of_cycle(_, [Id,TImageId|_], _, Id, ImageId) :-
251 ImageId = TImageId.
252 image_of_cycle(MapLastToFirst, [_|T], FirstCycleId, Id, ImageId) :-
253 image_of_cycle(MapLastToFirst, T, FirstCycleId, Id, ImageId).
254
255 %% add_sbps_from_generator(+VariableOrdering, +Generator, +EqAcc, +EnumeratedSets, +Acc, -NAcc).
256 add_sbps_from_generator_eq_acc([], _, _, _, Acc, Acc).
257 add_sbps_from_generator_eq_acc([VarAst|T], Generator, EqAcc, EnumeratedSets, Acc, NAcc) :-
258 VarAst = b(Node,_,_),
259 ast_to_node_id(Node, NType, VarId),
260 NVarAst = b(Node,NType,[]),
261 image_of_generator(Generator, VarId, ImageId),
262 node_id_to_ast(ImageId, ImageAst),
263 get_texpr_expr(ImageAst, Id1),
264 ( Id1 == Node
265 -> % tautology
266 add_sbps_from_generator_eq_acc(T, Generator, EqAcc, EnumeratedSets, Acc, NAcc)
267 ; safe_create_texpr(equal(NVarAst,ImageAst), pred, [], Eq),
268 ( (
269 \+ has_enumerated_set_type(NVarAst, EnumeratedSets),
270 less_eq_for_type_except_enumerated_set(NVarAst, ImageAst, LEq)
271 )
272 -> safe_create_texpr(negation(EqAcc), pred, [], NegEqAcc),
273 safe_create_texpr(disjunct(NegEqAcc,LEq), pred, [], Impl),
274 extend_conj_acc(Acc, Impl, NAcc1),
275 safe_create_texpr(conjunct(EqAcc,Eq), pred, [], NEqAcc)
276 ; NAcc1 = Acc,
277 NEqAcc = EqAcc
278 ),
279 add_sbps_from_generator_eq_acc(T, Generator, NEqAcc, EnumeratedSets, NAcc1, NAcc)
280 ).
281
282 % Enumerated sets are already ordered in ProB and thus do not contain any symmetries.
283 % In fact, when breaking symmetries for enumerated sets again we'd need to respect the internal ordering of ProB! (see get_ordering_for_enumerated_set_elements/4)
284 has_enumerated_set_type(b(_,Type,_), EnumeratedSets) :-
285 Type = global(EnumSet),
286 member(EnumSet, EnumeratedSets).
287
288 %% less_eq_for_type_except_enumerated_set(+VarAst, +ImageAst, -LEq).
289 less_eq_for_type_except_enumerated_set(VarAst, ImageAst, LEq) :-
290 OrderedList = [VarAst,ImageAst],
291 LEq = b(external_pred_call('LEQ_SYM', OrderedList),pred,[]).
292 less_eq_for_type_except_enumerated_set(VarAst, ImageAst, _) :-
293 VarAst = b(_,TypeA,_),
294 ImageAst = b(_,TypeB,_),
295 TypeA \== TypeB,
296 % don't throw an error here since we fail and CDCL(T) can try to solve without symmetry breaking
297 add_warning(less_eq_for_type_except_enumerated_set, 'Differently typed permutation mapping. Encoding for SMT symmetry breaking is defective.', [VarAst,ImageAst]), !,
298 fail.
299
300 %% extend_conj_acc(+Acc, +TConj, -Acc).
301 extend_conj_acc(b(truth,pred,[]), TConj, Conj) :-
302 !,
303 Conj = TConj.
304 extend_conj_acc(Acc, Conj, b(conjunct(Acc,Conj),pred,[])).
305
306 add_nodes_from_ast_list_commutative(_, []).
307 add_nodes_from_ast_list_commutative(RootNodeId, [Id|T]) :-
308 get_texpr_expr_functor_and_type(Id, IdExpr, IdType, IdFunctor),
309 add_term_and_symbol_nodes_to_graph(IdExpr, IdType, IdFunctor, IdRootNodeId),
310 add_node_to_colored_graph(arg, IdExpr, IdType, IdNodeId),
311 bliss_interface:add_edge(IdNodeId, IdRootNodeId),
312 bliss_interface:add_edge(RootNodeId, IdNodeId),
313 build_colored_graph(IdExpr, IdType, IdRootNodeId),
314 add_nodes_from_ast_list_commutative(RootNodeId, T).
315
316 split_associative_node(conjunct(A,B), AstList) :-
317 !,
318 conjunction_to_list(b(conjunct(A,B),pred,[]), AstList).
319 split_associative_node(disjunct(A,B), AstList) :-
320 !,
321 disjunction_to_list(b(disjunct(A,B),pred,[]), AstList).
322 split_associative_node(Expr, AstList) :-
323 functor(Expr, Functor, 2),
324 member(Functor, [add,multiplication,union,intersection]),
325 associative_ast_to_list(Functor, b(Expr,_,_), AstList).
326
327 associative_ast_to_list(Functor, Expr, AstList) :-
328 associative_ast_to_list(Functor, Expr, [], AstList).
329
330 associative_ast_to_list(Functor, b(Expr,_,_), Acc, AstList) :-
331 functor(Expr, Functor, 2),
332 !,
333 arg(1, Expr, Arg1),
334 arg(2, Expr, Arg2),
335 associative_ast_to_list(Functor, Arg1, Acc, NAcc),
336 associative_ast_to_list(Functor, Arg2, NAcc, AstList).
337 associative_ast_to_list(_, Ast, Acc, [Ast|Acc]).
338
339 %% build_colored_graph(+SmtFormula).
340 build_colored_graph(SmtFormula) :-
341 get_texpr_expr_functor_and_type(SmtFormula, Expr, Type, ExprFunctor),
342 add_term_and_symbol_nodes_to_graph(Expr, Type, ExprFunctor, RootNodeId),
343 build_colored_graph(Expr, Type, RootNodeId).
344
345 %% build_colored_graph(+Term, +TermRootNodeId).
346 build_colored_graph(truth, pred, _) :-
347 !.
348 build_colored_graph(falsity, pred, _) :-
349 !.
350 build_colored_graph(Expr, _, RootNodeId) :-
351 ( Expr = set_extension(List)
352 ; Expr = sequence_extension(List)
353 ; Expr = rec(List)
354 ),
355 !,
356 build_colored_graph_from_set(List, RootNodeId).
357 build_colored_graph(Expr, Type, RootNodeId) :-
358 ( Expr = let_predicate(Ids, EqVals, Body)
359 ; Expr = let_expression(Ids, EqVals, Body)
360 ; Expr = lazy_let_pred(Ids, EqVals, Body)
361 ),
362 !,
363 % non-commutative
364 zip_to_equalities_conj(Ids, EqVals, EqsConj),
365 get_texpr_expr_functor_and_type(EqsConj, EqsExpr, EqsType, EqsFunctor),
366 get_texpr_expr_functor_and_type(Body, BodyExpr, BodyType, BodyFunctor),
367 add_term_and_symbol_nodes_to_graph(EqsExpr, EqsType, EqsFunctor, EqsRootNodeId),
368 add_term_and_symbol_nodes_to_graph(BodyExpr, BodyType, BodyFunctor, BodyRootNodeId),
369 add_node_to_colored_graph(arg, EqsExpr, EqsType, EqsNodeId),
370 add_node_to_colored_graph(arg, BodyExpr, BodyType, BodyNodeId),
371 bliss_interface:add_edge(EqsNodeId, EqsRootNodeId),
372 bliss_interface:add_edge(BodyNodeId, BodyRootNodeId),
373 bliss_interface:add_edge(EqsNodeId, BodyNodeId),
374 bliss_interface:add_edge(RootNodeId, EqsNodeId),
375 build_colored_graph(EqsExpr, EqsType, EqsRootNodeId),
376 build_colored_graph(BodyExpr, Type, BodyRootNodeId).
377 build_colored_graph(partition(Set,AstList), _, RootNodeId) :-
378 !,
379 get_texpr_expr_functor_and_type(Set, SetExpr, SetType, SetFunctor),
380 add_term_and_symbol_nodes_to_graph(SetExpr, SetType, SetFunctor, SetRootNodeId),
381 add_nodes_from_ast_list_commutative(RootNodeId, AstList),
382 add_node_to_colored_graph(arg, SetExpr, SetType, SetNodeId),
383 bliss_interface:add_edge(SetNodeId, SetRootNodeId),
384 bliss_interface:add_edge(RootNodeId, SetNodeId),
385 build_colored_graph(SetExpr, SetType, SetRootNodeId).
386 build_colored_graph(if_then_else(Cond,If,Else), _, RootNodeId) :-
387 % non-commutative
388 !,
389 get_texpr_expr_functor_and_type(Cond, CondExpr, CondType, CondFunctor),
390 get_texpr_expr_functor_and_type(If, IfExpr, IfType, IfFunctor),
391 get_texpr_expr_functor_and_type(Else, ElseExpr, ElseType, ElseFunctor),
392 add_term_and_symbol_nodes_to_graph(CondExpr, CondType, CondFunctor, CondRootNodeId),
393 add_term_and_symbol_nodes_to_graph(IfExpr, IfType, IfFunctor, IfRootNodeId),
394 add_term_and_symbol_nodes_to_graph(ElseExpr, ElseType, ElseFunctor, ElseRootNodeId),
395 add_node_to_colored_graph(arg, CondExpr, CondType, CondNodeId),
396 add_node_to_colored_graph(arg, IfExpr, IfType, IfNodeId),
397 add_node_to_colored_graph(arg, ElseExpr, ElseType, ElseNodeId),
398 bliss_interface:add_edge(CondNodeId, CondRootNodeId),
399 bliss_interface:add_edge(IfNodeId, IfRootNodeId),
400 bliss_interface:add_edge(ElseNodeId, ElseRootNodeId),
401 bliss_interface:add_edge(CondNodeId, IfNodeId),
402 bliss_interface:add_edge(IfNodeId, ElseNodeId),
403 bliss_interface:add_edge(RootNodeId, CondNodeId),
404 build_colored_graph(CondExpr, CondType, CondRootNodeId),
405 build_colored_graph(IfExpr, IfType, IfRootNodeId),
406 build_colored_graph(ElseExpr, ElseType, ElseRootNodeId).
407 build_colored_graph(assertion_expression(Cond,_ErrMsg,Expr), _, RootNodeId) :-
408 % non-commutative
409 !,
410 get_texpr_expr_functor_and_type(Cond, CondExpr, CondType, CondFunctor),
411 get_texpr_expr_functor_and_type(Expr, ExprExpr, ExprType, ExprFunctor),
412 add_term_and_symbol_nodes_to_graph(CondExpr, CondType, CondFunctor, CondRootNodeId),
413 add_term_and_symbol_nodes_to_graph(ExprExpr, ExprType, ExprFunctor, ExprRootNodeId),
414 add_node_to_colored_graph(arg, CondExpr, CondType, CondNodeId),
415 add_node_to_colored_graph(arg, ExprExpr, ExprType, ExprNodeId),
416 bliss_interface:add_edge(CondNodeId, CondRootNodeId),
417 bliss_interface:add_edge(ExprNodeId, ExprRootNodeId),
418 bliss_interface:add_edge(CondNodeId, ExprNodeId),
419 bliss_interface:add_edge(RootNodeId, CondNodeId),
420 build_colored_graph(CondExpr, CondType, CondRootNodeId),
421 build_colored_graph(ExprExpr, ExprType, ExprRootNodeId).
422 build_colored_graph(forall(Ids,Lhs,Rhs), pred, RootNodeId) :-
423 !,
424 ( Lhs = b(truth,pred,_) % typing information might have been removed
425 -> Body = Rhs
426 ; Body = b(implication(Lhs,Rhs),pred,[])
427 ),
428 create_nodes_for_ids(Ids),
429 get_texpr_expr_functor_and_type(Body, BodyExpr, BodyType, BodyFunctor),
430 add_term_and_symbol_nodes_to_graph(BodyExpr, BodyType, BodyFunctor, ArgRootNodeId),
431 add_node_to_colored_graph(arg, BodyExpr, BodyType, ArgNodeId),
432 bliss_interface:add_edge(ArgNodeId, ArgRootNodeId),
433 bliss_interface:add_edge(RootNodeId, ArgNodeId),
434 build_colored_graph(BodyExpr, BodyType, ArgRootNodeId).
435 build_colored_graph(Expr, _, RootNodeId) :-
436 ( Expr = comprehension_set(Ids,Body)
437 ; Expr = exists(Ids,Body)
438 ),
439 !,
440 create_nodes_for_ids(Ids),
441 get_texpr_expr_functor_and_type(Body, BodyExpr, BodyType, BodyFunctor),
442 add_term_and_symbol_nodes_to_graph(BodyExpr, BodyType, BodyFunctor, ArgRootNodeId),
443 add_node_to_colored_graph(arg, BodyExpr, BodyType, ArgNodeId),
444 bliss_interface:add_edge(ArgNodeId, ArgRootNodeId),
445 bliss_interface:add_edge(RootNodeId, ArgNodeId),
446 build_colored_graph(BodyExpr, BodyType, ArgRootNodeId).
447 build_colored_graph(Fun, _, RootNodeId) :-
448 functor(Fun, Functor, 3),
449 member(Functor, [lambda,general_sum,general_product,quantified_union,quantified_intersection]),
450 arg(2, Fun, Pred),
451 arg(3, Fun, LExpr),
452 % non-commutative
453 !,
454 get_texpr_expr_functor_and_type(LExpr, LExprExpr, LExprType, LExprFunctor),
455 get_texpr_expr_functor_and_type(Pred, PredExpr, PredType, PredFunctor),
456 add_term_and_symbol_nodes_to_graph(LExpr, LExprExpr, LExprFunctor, LExprRootNodeId),
457 add_term_and_symbol_nodes_to_graph(Pred, PredType, PredFunctor, PredRootNodeId),
458 add_node_to_colored_graph(arg, LExprExpr, LExprType, LExprNodeId),
459 add_node_to_colored_graph(arg, PredExpr, PredType, PredNodeId),
460 bliss_interface:add_edge(LExprNodeId, LExprRootNodeId),
461 bliss_interface:add_edge(PredNodeId, PredRootNodeId),
462 bliss_interface:add_edge(LExprNodeId, PredNodeId),
463 bliss_interface:add_edge(RootNodeId, LExprNodeId),
464 build_colored_graph(LExprExpr, LExprType, LExprRootNodeId),
465 build_colored_graph(PredExpr, PredType, PredRootNodeId).
466 build_colored_graph(record_field(Record, FieldName), Type, RootNodeId) :-
467 % treated as a non-commutative operator but needs special case since the field name is just a Prolog atom and no B AST node
468 !,
469 get_texpr_expr_functor_and_type(Record, RecordExpr, RecordType, RecordFunctor),
470 add_term_and_symbol_nodes_to_graph(RecordExpr, RecordType, RecordFunctor, RecordRootNodeId),
471 ( have_seen_expr(FieldName, Type, TNodeId)
472 -> FieldNameRootNodeId = TNodeId
473 ; get_next_color(Color),
474 bliss_interface:add_node(FieldName, Color, FieldNameRootNodeId),
475 log_seen_expr(FieldName, Type, FieldNameRootNodeId)
476 %asserta(ast_to_node_id(Term,Type,RootNodeId))
477 %asserta(node_id_to_ast(RootNodeId,b(Term,Type,[])))
478 ),
479 add_node_to_colored_graph(arg, RecordExpr, RecordType, RecordNodeId),
480 add_node_to_colored_graph(arg, FieldName, record_key, FieldNameNodeId), % use an artificial type record_key
481 % one edge from the argument node to the argument's root node
482 bliss_interface:add_edge(RecordNodeId, RecordRootNodeId),
483 bliss_interface:add_edge(FieldNameNodeId, FieldNameRootNodeId),
484 % edge from first to second argument to represent the ordering
485 bliss_interface:add_edge(RecordNodeId, FieldNameNodeId),
486 % add an edge from the root node to the first argument's argument node
487 bliss_interface:add_edge(RootNodeId, RecordNodeId),
488 build_colored_graph(RecordExpr, RecordType, RecordRootNodeId).
489 build_colored_graph(Binary, _Type, RootNodeId) :-
490 functor(Binary, Functor, Arity),
491 Arity == 2,
492 is_associative(Functor),
493 !,
494 split_associative_node(Binary, AstList),
495 add_nodes_from_ast_list_commutative(RootNodeId, AstList).
496 build_colored_graph(Binary, _Type, RootNodeId) :-
497 functor(Binary, Functor, Arity),
498 Arity == 2,
499 \+ is_binary_interpreted_symbol(Binary),
500 !,
501 arg(1, Binary, Arg1),
502 arg(2, Binary, Arg2),
503 get_texpr_expr_functor_and_type(Arg1, Arg1Expr, Arg1Type, Arg1Functor),
504 get_texpr_expr_functor_and_type(Arg2, Arg2Expr, Arg2Type, Arg2Functor),
505 % root nodes for arguments
506 add_term_and_symbol_nodes_to_graph(Arg1Expr, Arg1Type, Arg1Functor, Arg1RootNodeId),
507 add_term_and_symbol_nodes_to_graph(Arg2Expr, Arg2Type, Arg2Functor, Arg2RootNodeId),
508 ( is_commutative_but_not_associative(Functor)
509 -> % add an edge from the root node to the root node of each argument
510 bliss_interface:add_edge(RootNodeId, Arg1RootNodeId),
511 bliss_interface:add_edge(RootNodeId, Arg2RootNodeId)
512 ; % special argument node for each argument
513 add_node_to_colored_graph(arg, Arg1Expr, Arg1Type, Arg1NodeId),
514 add_node_to_colored_graph(arg, Arg2Expr, Arg2Type, Arg2NodeId),
515 % one edge from the argument node to the argument's root node
516 bliss_interface:add_edge(Arg1NodeId, Arg1RootNodeId),
517 bliss_interface:add_edge(Arg2NodeId, Arg2RootNodeId),
518 % edge from first to second argument to represent the ordering
519 bliss_interface:add_edge(Arg1NodeId, Arg2NodeId),
520 % add an edge from the root node to the first argument's argument node
521 bliss_interface:add_edge(RootNodeId, Arg1NodeId)
522 ),
523 build_colored_graph(Arg1Expr, Arg1Type, Arg1RootNodeId),
524 build_colored_graph(Arg2Expr, Arg2Type, Arg2RootNodeId).
525 build_colored_graph(Term, _, _) :-
526 ( is_interpreted_symbol(Term)
527 ; is_uninterpreted_symbol(Term)
528 ),
529 !.
530 build_colored_graph(Unary, _Type, RootNodeId) :-
531 functor(Unary, _Functor, Arity),
532 Arity == 1,
533 !,
534 arg(1, Unary, Arg),
535 get_texpr_expr_functor_and_type(Arg, ArgExpr, ArgType, ArgFunctor),
536 % root node for argument
537 add_term_and_symbol_nodes_to_graph(ArgExpr, ArgType, ArgFunctor, ArgRootNodeId),
538 % special argument node for each argument
539 add_node_to_colored_graph(arg, ArgExpr, ArgType, ArgNodeId),
540 % one edge from the argument node to the argument's root node
541 bliss_interface:add_edge(ArgNodeId, ArgRootNodeId),
542 % add an edge from the root node to the first argument's argument node
543 bliss_interface:add_edge(RootNodeId, ArgNodeId),
544 build_colored_graph(ArgExpr, ArgType, ArgRootNodeId).
545 build_colored_graph(Expr, _Type, _ExprRootNodeId) :-
546 add_warning(smt_symmetry_breaking, 'Missing implementation in build_colored_graph/3 for: ', [Expr]), !,
547 fail.
548
549 %% build_colored_graph_from_set(+List, +RootNodeId).
550 build_colored_graph_from_set([], _).
551 build_colored_graph_from_set([Elm|T], RootNodeId) :-
552 % commutative
553 ( Elm = field(_,FieldElm) % Note: we treat records as sets for symmetry breaking, i.e., it's just a collection with no order
554 -> get_texpr_expr_functor_and_type(FieldElm, ElmExpr, ElmType, ElmFunctor)
555 ; get_texpr_expr_functor_and_type(Elm, ElmExpr, ElmType, ElmFunctor)
556 ),
557 add_term_and_symbol_nodes_to_graph(ElmExpr, ElmType, ElmFunctor, ElmRootNodeId),
558 bliss_interface:add_edge(RootNodeId, ElmRootNodeId),
559 build_colored_graph(ElmExpr, ElmType, ElmRootNodeId),
560 build_colored_graph_from_set(T, RootNodeId).
561
562 create_nodes_for_ids([]).
563 create_nodes_for_ids([b(identifier(Id),Type,_)|T]) :-
564 add_term_and_symbol_nodes_to_graph(identifier(Id), Type, identifier, _),
565 create_nodes_for_ids(T).
566
567 have_seen_expr(Term, Type, NodeId) :-
568 norm_expr_check(b(Term,Type,[]), Norm),
569 seen_expr(Norm, NodeId).
570
571 have_seen_pred(Term, NodeId) :-
572 norm_pred_check(b(Term,pred,[]), Norm),
573 seen_pred(Norm, NodeId).
574
575 log_seen_expr(Term, Type, RootNodeId) :-
576 norm_expr_check(b(Term,Type,[]), Norm),
577 asserta(seen_expr(Norm, RootNodeId)).
578
579 log_seen_pred(Term, RootNodeId) :-
580 norm_pred_check(b(Term,pred,[]), Norm),
581 asserta(seen_pred(Norm, RootNodeId)).
582
583 %% add_term_and_symbol_nodes_to_graph(+Term, +Type, +Functor, -RootNodeId).
584 % Add a root node for compound term f(t1,...,tn). Add an edge from the root node to the (unique) symbol node for f.
585 % Add a node for (un)interpreted symbols.
586 add_term_and_symbol_nodes_to_graph(Term, Type, _, RootNodeId) :-
587 is_interpreted_symbol(Term),
588 ( have_seen_expr(Term, Type, TNodeId)
589 -> TRootNodeId = TNodeId
590 ; get_next_color(Color),
591 term_to_label(Term, ATerm),
592 bliss_interface:add_node(ATerm, Color, RootNodeId),
593 log_seen_expr(Term, Type, RootNodeId)
594 %asserta(ast_to_node_id(Term,Type,RootNodeId))
595 %asserta(node_id_to_ast(RootNodeId,b(Term,Type,[])))
596 ), !,
597 RootNodeId = TRootNodeId.
598 add_term_and_symbol_nodes_to_graph(Term, Type, _, RootNodeId) :-
599 is_uninterpreted_symbol(Term),
600 ( have_seen_expr(Term, Type, TNodeId)
601 -> TRootNodeId = TNodeId
602 ; get_color_for_type(Type, Term, Color),
603 term_to_label(Term, ATerm),
604 bliss_interface:add_node(ATerm, Color, RootNodeId),
605 log_seen_expr(Term, Type, RootNodeId),
606 asserta(ast_to_node_id(Term,Type,RootNodeId)),
607 asserta(node_id_to_ast(RootNodeId,b(Term,Type,[])))
608 ), !,
609 RootNodeId = TRootNodeId.
610 add_term_and_symbol_nodes_to_graph(Term, Type, Functor, RootNodeId) :-
611 categorize_type(Type, Category, SymbolCategory),
612 add_node_to_colored_graph(SymbolCategory, Functor, Type, SymbolNodeId),
613 add_node_to_colored_graph(Category, Term, Type, RootNodeId),
614 % add an edge from the root node to the symbol node
615 bliss_interface:add_edge(RootNodeId, SymbolNodeId).
616
617 %% add_node_to_colored_graph(+Category, +Symbol, +Type, -NodeId).
618 % Symbol can be a compound term like conjunct(_,_) or uninterpreted symbol like conjunct.
619 % Argument nodes are assigned a specific, unique color.
620 % Uninterpreted symbol nodes and root nodes are assigned a color based on their type.
621 % Each interpreted symbol such as the integer 1 is assigned a unique color.
622 add_node_to_colored_graph(arg, _, _, ArgNodeId) :-
623 color(arg, Color),
624 bliss_interface:add_node('arg', Color, ArgNodeId), !.
625 %asserta(node_id_to_ast(ArgNodeId,b(Symbol,pred,[]))).
626 add_node_to_colored_graph(Category, Symbol, Type, NodeId) :-
627 ( Category == pred, IsPred = true, IsExpr = false
628 ; Category == expr, IsExpr = true, IsPred = false
629 ),
630 ( ( (IsPred, have_seen_pred(Symbol, TNodeId))
631 ; (IsExpr, have_seen_expr(Symbol, Type, TNodeId))
632 )
633 -> NodeId = TNodeId
634 ; get_color_for_type(Type, Symbol, Color),
635 term_to_label(Symbol, ASymbol),
636 bliss_interface:add_node(ASymbol, Color, NodeId),
637 ( IsExpr
638 -> log_seen_expr(Symbol, Type, NodeId)
639 ; log_seen_pred(Symbol, NodeId)
640 )
641 %asserta(node_id_to_ast(NodeId,b(Symbol,Type,[])))
642 ), !.
643 add_node_to_colored_graph(upred, USymbol, pred, NodeId) :-
644 seen_upred(USymbol, TNodeId),
645 !,
646 NodeId = TNodeId.
647 add_node_to_colored_graph(upred, USymbol, pred, NodeId) :-
648 get_next_color(Color),
649 bliss_interface:add_node(USymbol, Color, NodeId),
650 asserta(seen_upred(USymbol,NodeId)), !.
651 add_node_to_colored_graph(uexpr, USymbol, _, NodeId) :-
652 seen_uexpr(USymbol, TNodeId),
653 !,
654 NodeId = TNodeId.
655 add_node_to_colored_graph(uexpr, USymbol, _, NodeId) :-
656 get_next_color(Color),
657 bliss_interface:add_node(USymbol, Color, NodeId),
658 asserta(seen_uexpr(USymbol,NodeId)), !.
659
660 expr_functor(b(Expr,_,_), Functor) :-
661 !,
662 functor(Expr, Functor, _).
663 expr_functor(Expr, Functor) :-
664 functor(Expr, Functor, _).
665
666 term_to_label(Term, Atom) :-
667 Term =.. [Functor|Args],
668 maplist(expr_functor, Args, ArgFunctors),
669 NTerm =.. [Functor|ArgFunctors],
670 write_to_codes(NTerm, Codes),
671 atom_codes(Atom, Codes).
672
673 %% get_color_for_type(+Type, +Symbol, -Color).
674 get_color_for_type(Type, _, Color) :-
675 color(Type, TColor),
676 !,
677 Color = TColor.
678 get_color_for_type(Type, _, Color) :-
679 get_next_color(Color),
680 asserta(color(Type,Color)).
681
682 %% get_next_color(-Color).
683 get_next_color(Color) :-
684 retract(next_color(Color)),
685 Color1 is Color + 1,
686 asserta(next_color(Color1)).
687
688 %% categorize_type(+Type, -Category, -SymbolCategory).
689 % Only used for a faster lookup of asserted facts.
690 categorize_type(Type, Category, SymbolCategory) :-
691 Type == pred,
692 !,
693 Category = pred,
694 SymbolCategory = upred.
695 categorize_type(_, expr, uexpr).
696
697 %% is_associative(+Term).
698 is_associative(conjunct).
699 is_associative(disjunct).
700 is_associative(add).
701 is_associative(multiplication).
702 is_associative(union).
703 is_associative(intersection).
704
705 %% is_commutative_but_not_associative(+Term).
706 is_commutative_but_not_associative(equivalence).
707 is_commutative_but_not_associative(equal).
708 is_commutative_but_not_associative(not_equal).
709
710 is_uninterpreted_symbol(identifier(_)).
711 %is_uninterpreted_symbol(record_field(_,_)).
712
713 is_interpreted_symbol(Symbol) :-
714 is_binary_interpreted_symbol(Symbol).
715 is_interpreted_symbol(boolean_true).
716 is_interpreted_symbol(boolean_false).
717 is_interpreted_symbol(max_int).
718 is_interpreted_symbol(min_int).
719 is_interpreted_symbol(empty_set).
720 is_interpreted_symbol(empty_sequence).
721 is_interpreted_symbol(bool_set).
722 is_interpreted_symbol(real_set).
723 is_interpreted_symbol(float_set).
724 is_interpreted_symbol(string_set).
725 is_interpreted_symbol(real(_)).
726 is_interpreted_symbol(integer(_)).
727 is_interpreted_symbol(string(_)).
728 is_interpreted_symbol(value(_)).
729 is_interpreted_symbol(integer_set(_)).
730 is_interpreted_symbol(event_b_identity).
731
732 is_binary_interpreted_symbol(interval(A,B)) :-
733 is_interpreted_symbol(A),
734 is_interpreted_symbol(B).
735
736 %% zip_to_equalities_conj(+Ids, +EqVals, -Eqs).
737 zip_to_equalities_conj([Id|T], [EqVal|VT], Eqs) :-
738 zip_to_equalities_conj(T, VT, b(equal(Id,EqVal),pred,[]), Eqs).
739
740 zip_to_equalities_conj([], [], Acc, Acc).
741 zip_to_equalities_conj([Id|T], [EqVal|VT], Acc, Eqs) :-
742 safe_create_texpr(conjunct(b(equal(Id,EqVal),pred,[]),Acc), pred, [], NAcc),
743 zip_to_equalities_conj(T, VT, NAcc, Eqs).
744
745 %% order_variables(+TypedVars, -TypeOrdering, -VariableOrdering).
746 % Assume that the variable set used in the SMT formula is an ordered set.
747 % Assume that there is some pre-defined ordering over types, and all the
748 % variables of a certain type ti appear before all the variables of another
749 % type tj in the variable ordering if type ti appears before type tj in the type ordering.
750 order_variables(TypedVars, TypeOrdering, VariableOrdering) :-
751 order_variables_by_type(TypedVars, [], VarsOrderedByType),
752 order_variables_within_typed_group(VarsOrderedByType, [], [], TypeOrdering, VariableOrdering).
753
754 %% order_variables_by_type(+TypedVars, +Acc, -VarsOrderedByType).
755 % Deterministic ordering of variables and corresponding types. The variables within the group of a type
756 % are sorted by their name using @<.
757 order_variables_by_type([], Acc, Acc).
758 order_variables_by_type([TypedVar|T], Acc, VarsOrderedByType) :-
759 TypedVar = b(_,Type,_),
760 extend_type_acc(Acc, Type, TypedVar, NAcc),
761 order_variables_by_type(T, NAcc, VarsOrderedByType).
762
763 %% order_variables_within_typed_group(+TypeVarsTuples, +VarAcc, +TypeAcc, -TypeOrdering, -VariableOrdering).
764 order_variables_within_typed_group([], VAcc, TAcc, TAcc, VAcc).
765 order_variables_within_typed_group([(Type,TypeVars)|T], VAcc, TAcc, TypeOrdering, VariableOrdering) :-
766 samsort(cmp_typed_identifier, TypeVars, STypeVars),
767 append(STypeVars, VAcc, NVAcc),
768 order_variables_within_typed_group(T, NVAcc, [Type|TAcc], TypeOrdering, VariableOrdering).
769
770 cmp_typed_identifier(b(identifier(Id1),_,_), b(identifier(Id2),_,_)) :-
771 Id1 @< Id2.
772
773 %% extend_type_acc(+Acc, +Type, +TypedVar, -NAcc).
774 % Acc is a list of tuples (Type,TypeVars).
775 extend_type_acc(Acc, Type, TypedVar, NAcc) :-
776 select((Type,TypedVars), Acc, RAcc),
777 !,
778 NAcc = [(Type,[TypedVar|TypedVars])|RAcc].
779 extend_type_acc(Acc, Type, TypedVar, NAcc) :-
780 NAcc = [(Type,[TypedVar])|Acc].
781
782 :- begin_tests(order_variables).
783
784 test(order_variables_empty, [true((VariableOrdering == ExpectedVars, TypeOrdering == ExpectedTypes))]) :-
785 Variables = [],
786 order_variables(Variables, TypeOrdering, VariableOrdering),
787 ExpectedVars = [],
788 ExpectedTypes = [].
789
790 test(order_variables_single_type, [true((VariableOrdering == ExpectedVars, TypeOrdering == ExpectedTypes))]) :-
791 Variables = [b(identifier(c),integer,[]),b(identifier(a),integer,[]),b(identifier(b),integer,[])],
792 order_variables(Variables, TypeOrdering, VariableOrdering),
793 ExpectedVars = [b(identifier(a),integer,[]),b(identifier(b),integer,[]),b(identifier(c),integer,[])],
794 ExpectedTypes = [integer].
795
796 test(order_variables_two_types, [true((VariableOrdering == ExpectedVars, TypeOrdering == ExpectedTypes))]) :-
797 Variables = [b(identifier(c),integer,[]),b(identifier(d),set(integer),[]),b(identifier(a),integer,[]),b(identifier(e),set(integer),[]),b(identifier(b),integer,[]),b(identifier(f),set(integer),[])],
798 order_variables(Variables, TypeOrdering, VariableOrdering),
799 ExpectedVars = [b(identifier(a),integer,[]),b(identifier(b),integer,[]),b(identifier(c),integer,[]),b(identifier(d),set(integer),[]),b(identifier(e),set(integer),[]),b(identifier(f),set(integer),[])],
800 ExpectedTypes = [integer,set(integer)].
801
802 test(order_variables_two_types_set_first, [true((VariableOrdering == ExpectedVars, TypeOrdering == ExpectedTypes))]) :-
803 Variables = [b(identifier(d),set(integer),[]),b(identifier(a),integer,[])],
804 order_variables(Variables, TypeOrdering, VariableOrdering),
805 ExpectedVars = [b(identifier(d),set(integer),[]),b(identifier(a),integer,[])],
806 ExpectedTypes = [set(integer),integer].
807
808 test(order_variables_two_types_integer_first, [true((VariableOrdering == ExpectedVars, TypeOrdering == ExpectedTypes))]) :-
809 Variables = [b(identifier(a),integer,[]),b(identifier(d),set(integer),[])],
810 order_variables(Variables, TypeOrdering, VariableOrdering),
811 ExpectedVars = [b(identifier(a),integer,[]),b(identifier(d),set(integer),[])],
812 ExpectedTypes = [integer,set(integer)].
813
814 test(order_variables_three_types, [true((VariableOrdering == ExpectedVars, TypeOrdering == ExpectedTypes))]) :-
815 Variables = [b(identifier(c),integer,[]),b(identifier(d),set(integer),[]),b(identifier(a),integer,[]),b(identifier(e),set(integer),[]),b(identifier(b),integer,[]),b(identifier(f),set(set(string)),[])],
816 order_variables(Variables, TypeOrdering, VariableOrdering),
817 ExpectedVars = [b(identifier(d),set(integer),[]),b(identifier(e),set(integer),[]),b(identifier(a),integer,[]),b(identifier(b),integer,[]),b(identifier(c),integer,[]),b(identifier(f),set(set(string)),[])],
818 ExpectedTypes = [set(integer),integer,set(set(string))].
819
820 :- end_tests(order_variables).
821
822
823 % The elements of enumerated sets already impose an order which has to be respected for symmetry breaking using the external prediate call LEQ_SYM.
824 %get_ordering_for_enumerated_set_elements(GlobalType, Ast1, Ast2, OrderedList) :-
825 % b_get_named_machine_set(GlobalType, EnumElements),
826 % Ast1 = b(identifier(Var1),global(GlobalType),_),
827 % Ast2 = b(identifier(Var2),global(GlobalType),_),
828 % nth0(Pos1, EnumElements, Var1),
829 % nth0(Pos2, EnumElements, Var2),
830 % % TODO: improve for "transitive" symmetries with non-static enumerated set elements
831 % ( Pos1 =< Pos2
832 % -> OrderedList = [Ast1,Ast2]
833 % ; OrderedList = [Ast2,Ast1]
834 % ).
835
836 %% get_equality_from_cycle(+Cycle, -Eq).
837 % Pairwise equality.
838 %get_equality_from_cycle([A,B|T], Eq) :-
839 % EqAcc = b(equal(A,B),pred,[]),
840 % get_equality_from_cycle([B|T], EqAcc, Eq).
841 %
842 %get_equality_from_cycle([_], EqAcc, EqAcc).
843 %get_equality_from_cycle([A,B|T], EqAcc, Eq) :-
844 % NEqAcc = b(conjunct(b(equal(A,B),pred,[]),EqAcc),pred,[]),
845 % get_equality_from_cycle([B|T], NEqAcc, Eq).