1 % (c) 2021-2024 Lehrstuhl fuer Softwaretechnik und Programmiersprachen,
2 % Heinrich Heine Universitaet Duesseldorf
3 % This software is licenced under EPL 1.0 (http://www.eclipse.org/org/documents/epl-v10.html)
4 :- module(set_rewriter, [rewrite_set_to_list_of_asts/3,
5 rewrite_set_to_list_of_asts/4,
6 avl_list_to_list_of_asts/4,
7 rewrite_finite_card/3]).
8
9 :- use_module(library(avl), [avl_to_list/2]).
10
11 :- use_module(probsrc(b_global_sets), [enumerated_set/1,
12 all_elements_of_type/2]).
13 :- use_module(probsrc(preferences), [get_preference/2]).
14 :- use_module(probsrc(bsyntaxtree), [get_integer/2,
15 conjunct_predicates/2,
16 disjunct_predicates/2,
17 get_texpr_type/2,
18 get_texpr_expr/2,
19 safe_create_texpr/4]).
20
21 :- use_module(probsrc(performance_messages), [perfmessage/3]).
22
23 rewrite_set_to_list_of_asts(b(E,Type,Info), ScopeIds, L) :-
24 rewrite_set_aux(E, Type, Info, ScopeIds, [], L).
25
26 rewrite_set_to_list_of_asts(b(E,Type,Info), ScopeIds, Options, L) :-
27 rewrite_set_aux(E, Type, Info, ScopeIds, Options, L).
28
29 rewrite_set_aux(identifier(EnumSet), set(global(EnumSet)), Info, ScopeIds, _, SetAsts) :-
30 enumerated_set(EnumSet),
31 \+ memberchk(EnumSet, ScopeIds),
32 \+ memberchk(introduced_by(_), Info),
33 all_elements_of_type(EnumSet, SetValues),
34 !,
35 findall(b(value(Val),global(EnumSet),[]), member(Val, SetValues), SetAsts).
36 rewrite_set_aux(boolean_set, _, _, _, _, L) :-
37 !,
38 L = [b(boolean_true,boolean,[]), b(boolean_false,boolean,[])].
39 rewrite_set_aux(interval(From,To), _, Info, _, Options, L) :-
40 !,
41 get_integer_constant(From, FI),
42 get_integer_constant(To, TI),
43 check_limit(FI, TI, Info, Options),
44 !,
45 constant_interval_as_list(FI, TI, L).
46 rewrite_set_aux(set_extension(L), _, _, _, _, R) :-
47 !,
48 R = L.
49 rewrite_set_aux(value(Value), Type, _, _, Options, L) :- nonvar(Value),
50 !,
51 rewrite_value(Value, Type, Options, L).
52 rewrite_set_aux(cartesian_product(A,B), set(Type), _, ScopeIds, Options, L) :- !,
53 rewrite_set_to_list_of_asts(A, ScopeIds, Options, AL),
54 rewrite_set_to_list_of_asts(B, ScopeIds, Options, BL),
55 findall(b(couple(VA,VB),Type,[]), (member(VA,AL),member(VB,BL)), L).
56 %rewrite_set_aux(E, Type, _, L) :- write(impossible(E)), nl, fail.
57
58 rewrite_value(global_set(EnumSet), _, _, L) :-
59 enumerated_set(EnumSet),
60 all_elements_of_type(EnumSet, SetValues),
61 !,
62 findall(b(value(Val),global(EnumSet),[]), member(Val, SetValues), L).
63 rewrite_value(avl_set(AvlSet), Type, _, L) :-
64 !,
65 ( Type = set(InType)
66 ; Type = seq(SeqType),
67 InType = couple(integer,SeqType)
68 ),
69 avl_to_list(AvlSet, AvlList),
70 avl_list_to_list_of_asts(InType, AvlList, [], L).
71 rewrite_value(closure(P,T,B), _Type, Options, L) :-
72 custom_explicit_sets:is_interval_closure(P,T,B,FI,TI), integer(FI),integer(TI),
73 check_limit(FI, TI, B, Options),
74 !,
75 constant_interval_as_list(FI, TI, L).
76
77
78 check_limit(FI, TI, Info, Options) :-
79 Card is TI - FI,
80 ( ( memberchk(instantiate_sets_limit(SetLimit), Options) -> true
81 ; memberchk(instantiate_quantifier_limit(SetLimit), Options)
82 )
83 -> ( Card =< SetLimit
84 -> true
85 ; perfmessage(quantifier,not_expanding_interval_in_quantifier(FI,TI,limit(SetLimit)),Info),
86 fail
87 )
88 ; true
89 ).
90
91
92 avl_list_to_list_of_asts(_, [], Acc, Acc).
93 avl_list_to_list_of_asts(InType, [Val-_|T], Acc, L) :-
94 avl_list_to_list_of_asts(InType, T, [b(value(Val),InType,[])|Acc], L).
95
96 get_integer_constant(Ast, IntConst) :-
97 get_integer(Ast, IntConst).
98 get_integer_constant(b(min_int,integer,_), MinInt) :-
99 get_preference(minint, MinInt).
100 get_integer_constant(b(max_int,integer,_), MaxInt) :-
101 get_preference(maxint, MaxInt).
102
103 %% constant_interval_as_list(+Lower, +Upper, -List).
104 constant_interval_as_list(FI,TI,[]) :-
105 FI > TI.
106 constant_interval_as_list(FI,FI,[BI]) :-
107 !, %safe_create_texpr(integer(FI), integer, [], BI).
108 BI = b(value(int(FI)),integer,[]).
109 constant_interval_as_list(FI,TI,[BI|BIs]) :-
110 %safe_create_texpr(integer(FI), integer, [], BI),
111 BI = b(value(int(FI)),integer,[]),
112 NFI is FI + 1,
113 constant_interval_as_list(NFI,TI,BIs).
114
115 %% rewrite_finite_card(+GL, -Res, -RuleDescr).
116 % Rewrite some cardinality constraints on finite sets to prevent the translation to SMT-LIB using quantifiers.
117 % TODO: card({a1,..,ak}) > j where j < k --> at least j equalities (watch out for exponential blowup)
118 % TODO: card({a1,..,ak}) = k - 1 (watch out for exponential blowup)
119 rewrite_finite_card(less(Card,Integer), Res, card_to_at_least_one_eq) :-
120 % card({a1,..,ak}) < k --> at least one eq (has n*log(n) disjuncts)
121 rewrite_finite_card_k_less_k(Card, Integer, Res).
122 rewrite_finite_card(greater(Integer,Card), Res, card_to_at_least_one_eq) :-
123 % k > card({a1,..,ak}) --> at least one eq (has n*log(n) disjuncts)
124 rewrite_finite_card_k_less_k(Card, Integer, Res).
125 rewrite_finite_card(less_equal(Card,Integer), Res, card_to_at_least_one_eq) :-
126 % card({a1,..,ak}) <= k - 1 --> at least one eq (has n*log(n) disjuncts)
127 rewrite_finite_card_k_leq_k_minus_1(Card, Integer, Res).
128 rewrite_finite_card(greater_equal(Integer,Card), Res, card_to_at_least_one_eq) :-
129 % k - 1 >= card({a1,..,ak}) --> at least one eq (has n*log(n) disjuncts)
130 rewrite_finite_card_k_leq_k_minus_1(Card, Integer, Res).
131 rewrite_finite_card(less_equal(Card,Integer), Res, card_to_truth_leq_k) :-
132 % card({a1,..,ak}) <= k --> truth
133 rewrite_finite_card_k_leq_k(Card, Integer, Res).
134 rewrite_finite_card(greater_equal(Integer,Card), Res, card_to_truth_leq_k) :-
135 % k >= card({a1,..,ak}) --> truth
136 rewrite_finite_card_k_leq_k(Card, Integer, Res).
137 rewrite_finite_card(less(Card,Integer), Res, card_to_truth_leq_k1) :-
138 % card({a1,..,ak}) < k + 1 --> truth
139 rewrite_finite_card_k_leq_k_plus_1(Card, Integer, Res).
140 rewrite_finite_card(greater(Integer,Card), Res, card_to_truth_leq_k1) :-
141 % k + 1 > card({a1,..,ak}) --> truth
142 rewrite_finite_card_k_leq_k_plus_1(Card, Integer, Res).
143 rewrite_finite_card(greater_equal(Card,Integer), Res, card_to_all_different_greater_eq) :-
144 % card({a1,..,ak}) >= k --> all_different
145 rewrite_finite_card_k_eq_k(Card, Integer, Res).
146 rewrite_finite_card(less_equal(Integer,Card), Res, card_to_all_different_greater_eq) :-
147 % k <= card({a1,..,ak}) --> all_different
148 rewrite_finite_card_k_eq_k(Card, Integer, Res).
149 rewrite_finite_card(greater(Card,Integer), Res, card_to_falsity) :-
150 % card({a1,..,ak}) > n --> falsity if n>=k
151 rewrite_finite_card_greater_less_k(Card, Integer, Res).
152 rewrite_finite_card(less(Integer,Card), Res, card_to_falsity) :-
153 % n < card({a1,..,ak}) --> falsity if n>=k
154 rewrite_finite_card_greater_less_k(Card, Integer, Res).
155 rewrite_finite_card(greater_equal(Card,Integer), Res, card_to_falsity) :-
156 % card({a1,..,ak}) >= n --> falsity if n>k
157 rewrite_finite_card_greatereq_lesseq_n(Card, Integer, Res).
158 rewrite_finite_card(less_equal(Integer,Card), Res, card_to_falsity) :-
159 % n <= card({a1,..,ak}) --> falsity if n>k
160 rewrite_finite_card_greatereq_lesseq_n(Card, Integer, Res).
161 rewrite_finite_card(greater(Card,Integer), Res, card_to_all_different_greater) :-
162 % card({a1,..,ak}) > k - 1 --> all different
163 rewrite_finite_card_greater_less_k1(Card, Integer, Res).
164 rewrite_finite_card(less(Integer,Card), Res, card_to_all_different_greater) :-
165 % k - 1 < card({a1,..,ak}) --> all different
166 rewrite_finite_card_greater_less_k1(Card, Integer, Res).
167 rewrite_finite_card(greater_equal(Card,Integer1), Res, card_to_truth) :-
168 % card({a1,..,ak}) >= 1 --> truth
169 rewrite_finite_card_geq_leq_1(Card, Integer1, Res).
170 rewrite_finite_card(less_equal(Integer1,Card), Res, card_to_truth) :-
171 % 1 <= card({a1,..,ak}) --> truth
172 rewrite_finite_card_geq_leq_1(Card, Integer1, Res).
173 rewrite_finite_card(equal(Card,Integer), Res, card_to_single_equality) :-
174 % card({a1,a2}) = 1 --> a1=a2
175 rewrite_finite_card_2_eq_1(Card, Integer, Res).
176 rewrite_finite_card(equal(Integer,Card), Res, card_to_single_equality) :-
177 % 1 = card({a1,a2}) --> a1=a2
178 rewrite_finite_card_2_eq_1(Card, Integer, Res).
179 rewrite_finite_card(not_equal(Card,Integer), Res, card_to_single_non_equality) :-
180 % card({a1,a2}) /= 1 --> a1/=a2
181 rewrite_finite_card_2_neq_1(Card, Integer, Res).
182 rewrite_finite_card(not_equal(Integer,Card), Res, card_to_single_non_equality) :-
183 % 1 /= card({a1,a2}) --> a1/=a2
184 rewrite_finite_card_2_neq_1(Card, Integer, Res).
185 rewrite_finite_card(equal(Card,Integer), Res, card_to_falsity_nonempty_eq_zero) :-
186 % card({a1,..,ak}) = 0 --> falsity
187 rewrite_finite_card_eq_0(Card, Integer, Res).
188 rewrite_finite_card(equal(Integer,Card), Res, card_to_falsity_nonempty_eq_zero) :-
189 % card({a1,..,ak}) = 0 --> falsity
190 rewrite_finite_card_eq_0(Card, Integer, Res).
191 rewrite_finite_card(equal(Card,Integer), Res, card_to_all_different_eq_k) :-
192 % card({a1,..,ak}) = k --> all different
193 rewrite_finite_card_k_eq_k(Card, Integer, Res).
194 rewrite_finite_card(equal(Integer,Card), Res, card_to_all_different_eq_k) :-
195 % k = card({a1,..,ak}) --> all different
196 rewrite_finite_card_k_eq_k(Card, Integer, Res).
197 rewrite_finite_card(greater_equal(Card,Integer), Res, card_to_all_different_geq_k) :-
198 % card({a1,..,ak}) >= k --> all different
199 rewrite_finite_card_k_eq_k(Card, Integer, Res).
200 rewrite_finite_card(less_equal(Integer,Card), Res, card_to_all_different_geq_k) :-
201 % k >= card({a1,..,ak}) --> all different
202 rewrite_finite_card_k_eq_k(Card, Integer, Res).
203
204 rewrite_finite_card_k_less_k(Card, Integer, Res) :-
205 Card = b(card(SetExtension),integer,_),
206 (Integer = b(integer(ICard),integer,_); Integer = b(value(int(ICard)),integer,_)),
207 SetExtension = b(set_extension(L),_,_),
208 length(L, Len),
209 ICard =:= Len,
210 !,
211 create_at_least_one_eq(L, AtLeastOneEqAst),
212 get_texpr_expr(AtLeastOneEqAst, Res).
213
214 rewrite_finite_card_k_leq_k_minus_1(Card, Integer, Res) :-
215 Card = b(card(SetExtension),integer,_),
216 (Integer = b(integer(ICard),integer,_); Integer = b(value(int(ICard)),integer,_)),
217 SetExtension = b(set_extension(L),_,_),
218 length(L, Len),
219 ICard =:= Len - 1,
220 !,
221 create_at_least_one_eq(L, AtLeastOneEqAst),
222 get_texpr_expr(AtLeastOneEqAst, Res).
223
224 rewrite_finite_card_k_leq_k(Card, Integer, Res) :-
225 Card = b(card(SetExtension),integer,_),
226 (Integer = b(integer(ICard),integer,_); Integer = b(value(int(ICard)),integer,_)),
227 SetExtension = b(set_extension(L),_,_),
228 length(L, Len),
229 ICard >= Len,
230 !,
231 get_texpr_type(SetExtension, SetType),
232 % don't create simple truth to keep variables in scope, could be the only occurrence
233 Res = not_equal(SetExtension,b(empty_set,SetType,[])).
234
235 rewrite_finite_card_k_leq_k_plus_1(Card, Integer, Res) :-
236 Card = b(card(SetExtension),integer,_),
237 (Integer = b(integer(ICard),integer,_); Integer = b(value(int(ICard)),integer,_)),
238 SetExtension = b(set_extension(L),_,_),
239 length(L, Len),
240 ICard1 is ICard + 1,
241 ICard1 >= Len,
242 !,
243 get_texpr_type(SetExtension, SetType),
244 % don't create simple truth to keep variables in scope, could be the only occurrence
245 Res = not_equal(SetExtension,b(empty_set,SetType,[])).
246
247 rewrite_finite_card_geq_leq_k(Card, Integer, Res) :-
248 Card = b(card(SetExtension),integer,_),
249 (Integer = b(integer(ICard),integer,_); Integer = b(value(int(ICard)),integer,_)),
250 SetExtension = b(set_extension(L),_,_),
251 length(L, Len),
252 ICard > Len,
253 !,
254 Res = falsity.
255
256 rewrite_finite_card_greatereq_lesseq_n(Card, Integer, Res) :-
257 Card = b(card(SetExtension),integer,_),
258 (Integer = b(integer(ICard),integer,_); Integer = b(value(int(ICard)),integer,_)),
259 SetExtension = b(set_extension(L),_,_),
260 length(L, Len),
261 ICard > Len,
262 !,
263 Res = falsity.
264
265 rewrite_finite_card_greater_less_k(Card, Integer, Res) :-
266 Card = b(card(SetExtension),integer,_),
267 (Integer = b(integer(ICard),integer,_); Integer = b(value(int(ICard)),integer,_)),
268 SetExtension = b(set_extension(L),_,_),
269 length(L, Len),
270 ICard >= Len,
271 !,
272 Res = falsity.
273
274 rewrite_finite_card_greater_less_k1(Card, Integer, Res) :-
275 Card = b(card(SetExtension),integer,_),
276 (Integer = b(integer(ICard),integer,_); Integer = b(value(int(ICard)),integer,_)),
277 SetExtension = b(set_extension(L),_,_),
278 length(L, Len),
279 ICard =:= Len - 1,
280 !,
281 create_all_different(L, AllDiffAst),
282 get_texpr_expr(AllDiffAst, Res).
283
284 rewrite_finite_card_geq_leq_1(Card, Integer1, Res) :-
285 Card = b(card(SetExtension),integer,_),
286 (Integer1 = b(integer(1),integer,_); Integer1 = b(value(int(1)),integer,_)),
287 SetExtension = b(set_extension(L),_,_),
288 L \== [],
289 !,
290 get_texpr_type(SetExtension, SetType),
291 % don't create simple truth to keep variables in scope, could be the only occurrence
292 Res = not_equal(SetExtension,b(empty_set,SetType,[])).
293
294 rewrite_finite_card_2_eq_1(Card, Integer, Res) :-
295 Card = b(card(SetExtension),integer,_),
296 (Integer = b(integer(1),integer,_); Integer = b(value(int(1)),integer,_)),
297 SetExtension = b(set_extension([A1,A2]),_,_),
298 !,
299 Res = equal(A1,A2).
300
301 rewrite_finite_card_2_neq_1(Card, Integer, Res) :-
302 Card = b(card(SetExtension),integer,_),
303 (Integer = b(integer(1),integer,_); Integer = b(value(int(1)),integer,_)),
304 SetExtension = b(set_extension([A1,A2]),_,_),
305 !,
306 Res = not_equal(A1,A2).
307
308 rewrite_finite_card_eq_0(Card, Integer, Res) :-
309 Card = b(card(SetExtension),integer,_),
310 (Integer = b(integer(0),integer,_); Integer = b(value(int(0)),integer,_)),
311 SetExtension = b(set_extension(L),_,_),
312 L \== [],
313 !,
314 Res = falsity.
315
316 rewrite_finite_card_k_eq_k(Card, Integer, Res) :-
317 Card = b(card(SetExtension),integer,_),
318 (Integer = b(integer(ICard),integer,_); Integer = b(value(int(ICard)),integer,_)),
319 SetExtension = b(set_extension(L),_,_),
320 length(L, Len),
321 ICard == Len,
322 !,
323 create_all_different(L, AllDiffAst),
324 get_texpr_expr(AllDiffAst, Res).
325
326 % {x1,..,xk} -> x1 = x2 or ... or xk-1 = xk
327 create_at_least_one_eq(L, AtLeastOneEq) :-
328 create_at_least_one_eq(L, [], Eqs),
329 disjunct_predicates(Eqs, AtLeastOneEq).
330
331 create_at_least_one_eq([], Acc, Acc).
332 create_at_least_one_eq([A|T], Acc, List) :-
333 create_all_same_fixed(A, T, Acc, NAcc),
334 create_at_least_one_eq(T, NAcc, List).
335
336 create_all_different(Asts, AllDiffAst) :-
337 create_all_different(Asts, [], InEqs),
338 conjunct_predicates(InEqs, AllDiffAst).
339
340 create_all_different([], Acc, Acc).
341 create_all_different([A|T], Acc, InEqs) :-
342 create_all_different_fixed(A, T, Acc, NAcc),
343 create_all_different(T, NAcc, InEqs).
344
345 create_all_different_fixed(_, [], Acc, Acc).
346 create_all_different_fixed(A, [B|T], Acc, InEqs) :-
347 safe_create_texpr(not_equal(A,B), pred, [], InEq),
348 NAcc = [InEq|Acc],
349 create_all_different_fixed(A, T, NAcc, InEqs).
350
351 create_all_same_fixed(_, [], Acc, Acc).
352 create_all_same_fixed(A, [B|T], Acc, InEqs) :-
353 safe_create_texpr(equal(A,B), pred, [], InEq),
354 NAcc = [InEq|Acc],
355 create_all_same_fixed(A, T, NAcc, InEqs).