1 % (c) 2009-2024 Lehrstuhl fuer Softwaretechnik und Programmiersprachen,
2 % Heinrich Heine Universitaet Duesseldorf
3 % This software is licenced under EPL 1.0 (http://www.eclipse.org/org/documents/epl-v10.html)
4
5 :- module(ltlc, [ltlc_init/0,c_ltl_modelcheck/4,c_ltl_modelcheck/9,c_ltl_aptp/2]).
6
7 :- use_module(library(lists)).
8 :- use_module('../../src/module_information.pl').
9 :- use_module('../../src/debug.pl').
10 :- use_module('../../src/error_manager.pl').
11
12 :- module_info(group,ltl).
13 :- module_info(description,'This is the interface to the LTL model checker\'s C code.').
14
15 :- meta_predicate c_ltl_modelcheck(-,-,-,5).
16
17 /* the C interface */
18 foreign_resource(ltlc, [ltlc_modelcheck]).
19 foreign(ltlc_modelcheck,ltlc_modelcheck(+term,+term,+term,+term,+term,+term,+term,+term,+term,-term)).
20
21
22 :- dynamic loaded/0.
23
24 ltlc_init :- loadfr.
25
26 loadfr :- (loaded -> true
27 ; (assertz(loaded),
28 load_foreign_resource(library(ltlc)))
29 ).
30
31
32 /* The central predicate */
33 c_ltl_modelcheck(Formula, Startnodes, Result, CModule:Callback) :-
34 c_ltl_modelcheck(Formula, Startnodes, Result, CModule:Callback, none, none, none, [], []).
35
36 c_ltl_modelcheck(Formula, Startnodes, Result, Callback,
37 Update, GetTransIdsPred, GetEnabledActionsPred, WeakFairnessArgs, StrongFairnessArgs) :-
38 c_ltl_closure(Formula,Closure,Main,_),
39 debug_println(9,closure(Formula,Closure,Main)),
40 debug_println(9,fairness(GetTransIdsPred, WeakFairnessArgs, StrongFairnessArgs)),
41 ltlc_modelcheck(Closure, Startnodes, Callback,
42 Update, GetTransIdsPred, GetEnabledActionsPred, WeakFairnessArgs, StrongFairnessArgs, Main, Result).
43
44 % Return the list of atomic propositions and transition propositions
45 % of a formula. c_ltl_modelcheck returns counter-examples, where the
46 % evaluation part of the atoms begins with the evaluation of the
47 % formulas corresponding to ApTp.
48 c_ltl_aptp(Formula,ApTp) :-
49 c_ltl_closure(Formula,_,_,ApTp).
50
51 /* Take a formula (with all supported operators), normalise it
52 * (rewrite to basic operators) and convert it into a list of
53 * atomic propositions (APs), transition propositions (TPs),
54 * and basic operators with references to other parts of the
55 * closure.
56 * Additionally a reference to the original formula is given
57 * Each reference has the form pos(N) or neg(N) where N is
58 * the position of the subformula in the closure (starting with 0).
59 * The position -1 refers to "true".
60 * The closure always start with the APs and TPs.
61 * Example:
62 * Formula: not(globally(ap(AP)))
63 * Closure: [ap(AP),next(3),nextnot(3),until(pos(-1),neg(0),1)
64 * Main: pos(3)
65 */
66 c_ltl_closure(Formula,Closure,Main,Atomics) :-
67 %ltl_translate:pp_ltl_formula(Formula,FTxt), format('Normalising: ~w~n',[FTxt]),
68 ( ltl_norm(Formula, Normalised) ->
69 debug_println(normal_form(Normalised))
70 ; atom(Formula) ->
71 add_internal_error('ltl_norm failed for formula, be sure to pass it as term and not as atom: ',Formula),
72 fail
73 ;
74 add_internal_error('ltl_norm failed for formula: ',Formula),
75 fail),
76 %ltl_translate:pp_ltl_formula(Normalised,NTxt), format('Normalised = ~w~n',[NTxt]),
77 positive_closure(Normalised, PClosure),
78 stripClosure(PClosure, Normalised, Main, Closure, Atomics).
79
80 stripClosure(Unsorted, MainIn, MainOut, Result, Atomics) :-
81 filter_parts(Ap,Tp,Next,Nextnot,Yest,Yestnot,Unsorted,Generic),
82 append([Ap,Tp,Next,Nextnot,Yest,Yestnot,Generic], Sorted),
83 append(Ap,Tp,Atomics),
84 findref(MainIn,Sorted,MainOut),
85 numeric_refs(Sorted,Sorted,Result).
86
87 filter_parts(Ap,Tp,Next,Nextnot,Yest,Yestnot) -->
88 filter_terms(Ap, ap(_)),
89 filter_terms(Tp, action(_)),
90 filter_terms(Nextnot, next(not(_))),
91 filter_terms(Next, next(_)),
92 filter_terms(Yestnot, yesterday(not(_))),
93 filter_terms(Yest, yesterday(_)).
94
95 filter_terms(Filtered,Pattern,In,Out) :- filter_terms2(In,Pattern,Filtered,Out).
96
97 filter_terms2([],_,[],[]).
98 filter_terms2([E|Rest],Term,A,B) :-
99 ( copy_term(Term, E) ->
100 A=[E|ARest],B=BRest
101 ;
102 A=ARest,B=[E|BRest]),
103 filter_terms2(Rest,Term,ARest,BRest).
104
105 numeric_refs([],_,[]).
106 numeric_refs([F|Rest],L,[R|RRest]) :-
107 xconv(F,L,R),numeric_refs(Rest,L,RRest).
108
109 xconv(ap(AP),_,ap(AP)).
110 xconv(action(TP),_,tp(TP)).
111 xconv(next(not(X)),L,nextnot(R)) :- !,finduref(X,L,R),!.
112 xconv(next(X),L,next(R)) :- finduref(X,L,R),!.
113 xconv(yesterday(not(X)),L,yesterdaynot(R)) :- !,finduref(X,L,R),!.
114 xconv(yesterday(X),L,yesterday(R)) :- finduref(X,L,R),!.
115 xconv(or(A,B),L,or(RA,RB)) :- findref(A,L,RA),findref(B,L,RB).
116 xconv(until(A,B),L,until(RA,RB,RN)) :-
117 findref(A,L,RA),
118 findref(B,L,RB),
119 findref(next(until(A,B)),L,pos(RN)).
120 xconv(since(A,B),L,since(RA,RB,RY)) :-
121 findref(A,L,RA),
122 findref(B,L,RB),
123 findref(yesterday(since(A,B)),L,pos(RY)).
124 findref(not(F),L,neg(N)) :- !,finduref(F,L,N).
125 findref(F,L,pos(N)) :- finduref(F,L,N).
126
127 finduref(true,_,-1) :- !.
128 finduref(F,L,N) :- nth0(N,L,F).
129
130
131 %*******************************************************************************
132 % Closure of a formula
133
134 % the positive closure has only the positive (without leading nots)
135 % formulas of the closure.
136 % Also its elements are sorted
137 positive_closure(F,NDPositive) :-
138 closure(F,Closure),
139 sort_closure(Closure,Sorted),
140 remove_negatives(Sorted,Positive),
141 remove_duplicates(Positive,NDPositive).
142
143 remove_duplicates(In,Out) :- remove_duplicates2(In,[],Out).
144 remove_duplicates2([],_,[]).
145 remove_duplicates2([E|Rest],Before,Out) :-
146 ( member(E,Before) ->
147 !,remove_duplicates2(Rest,Before,Out)
148 ;
149 Out=[E|DRest],remove_duplicates2(Rest,[E|Before],DRest)).
150
151 closure(F,C) :- closure([F],[],C).
152
153 closure([],Acc,Acc).
154 closure([true|Rest],Acc,Closure) :-
155 !,closure(Rest,Acc,Closure).
156 closure([F|Rest],Acc,Closure) :-
157 findall(G,dclosure(F,G),Gen),
158 filternew(Gen,Acc,Rest,New),
159 append(Rest,New,Next),
160 closure(Next,[F|Acc],Closure).
161
162 dclosure(F,Neg) :- negate(F,Neg).
163 dclosure(or(F,_),F).
164 dclosure(or(_,F),F).
165 dclosure(next(F),F).
166 dclosure(yesterday(F),F).
167 dclosure(not(next(F)),next(Neg)) :- negate(F,Neg).
168 dclosure(not(yesterday(F)),yesterday(Neg)) :- negate(F,Neg).
169 dclosure(until(F,_),F).
170 dclosure(until(_,F),F).
171 dclosure(until(A,B),next(until(A,B))).
172 dclosure(since(F,_),F).
173 dclosure(since(_,F),F).
174 dclosure(since(A,B),yesterday(since(A,B))).
175
176 negate(not(F),F) :- !.
177 negate(F,not(F)).
178
179 filternew([],_,_,[]).
180 filternew([F|Rest],Ex1,Ex2,Result) :-
181 (\+ member(F,Ex1), \+ member(F,Ex2)
182 -> Result = [F|FRest]
183 ; Result = FRest),
184 filternew(Rest,Ex1,Ex2,FRest).
185
186 remove_negatives([],[]).
187 remove_negatives([F|Rest],Positive) :-
188 (F = not(_)
189 -> !,Positive = PRest
190 ; Positive = [F|PRest]),
191 remove_negatives(Rest,PRest).
192
193 sort_closure(In,Out) :- sort_closure2(In,[],Out).
194 sort_closure2([],_,[]) :- !.
195 sort_closure2(Unsorted,Sorted,[F|RestSorted]) :-
196 select_formula(Unsorted,Sorted,F,URest),
197 sort_closure2(URest,[F|Sorted],RestSorted).
198
199 select_formula([F|FRest],Sorted,F,FRest) :-
200 deps(F,Deps),
201 subset(Deps,Sorted),!.
202 select_formula([F|FRest],Sorted,S,[F|Rest]) :-
203 select_formula(FRest,Sorted,S,Rest).
204
205 deps(true,[]).
206 deps(not(F),[F]).
207 deps(ap(_),[]).
208 deps(or(A,B),[A,B]).
209 deps(next(F),D) :- (F=not(N) -> D=[next(N)]; D=[]).
210 deps(yesterday(F),D) :- (F=not(N) -> D=[yesterday(N)]; D=[]).
211 deps(until(A,B),[A,B,next(until(A,B))]).
212 deps(since(A,B),[A,B,yesterday(since(A,B))]).
213 deps(action(_),[]).
214
215 % subset(A,B): A is a subset of B
216 subset([],_).
217 subset([F|Rest],Superset) :-
218 (F=true;member(F,Superset)),!,subset(Rest,Superset).
219
220 %*******************************************************************************
221 % normalise a formula (LTL)
222
223 % part I: translating syntatic sugar
224 ltl_norm(false,not(true)).
225 ltl_norm(and(A,B),N) :- ltl_norm(not(or(not(A),not(B))),N).
226 ltl_norm(implies(A,B),N) :- ltl_norm(or(not(A),B),N).
227 ltl_norm(equivalent(A,B),N) :- ltl_norm(and(implies(A,B),implies(B,A)),N).
228 ltl_norm(finally(F),N) :- ltl_norm(until(true,F),N).
229 ltl_norm(globally(F),N) :- ltl_norm(not(finally(not(F))),N).
230 ltl_norm(weakuntil(A,B),N) :- ltl_norm(or(globally(A),until(A,B)),N).
231 ltl_norm(release(A,B),N) :- ltl_norm(not(until(not(A),not(B))),N).
232 ltl_norm(once(F),N) :- ltl_norm(since(true,F),N).
233 ltl_norm(historically(F),N) :- ltl_norm(not(once(not(F))),N).
234 ltl_norm(trigger(A,B),N) :- ltl_norm(not(since(not(A),not(B))),N).
235 %ltl_norm(forall(ID,LHS,N),N) :- ...
236 %ltl_norm(exists(ID,LHS,N),N) :- ...
237
238 % part II: mostly normalising arguments recursivly, removing not(not(...))
239 ltl_norm(true,true).
240 ltl_norm(next(F),next(NF)) :- ltl_norm(F,NF).
241 ltl_norm(yesterday(F),yesterday(NF)) :- ltl_norm(F,NF).
242 ltl_norm(or(A,B),or(NA,NB)) :-
243 ltl_norm(A,NA),ltl_norm(B,NB).
244 ltl_norm(not(F),N) :- ltl_norm(F,N1), (N1=not(P) -> N=P; N=not(N1)).
245 ltl_norm(ap(X),N) :-
246 (X=available(F) ->
247 ltl_norm(available(F),N)
248 ; N = ap(X)
249 ).
250 ltl_norm(until(A,B),until(NA,NB)) :-
251 ltl_norm(A,NA),ltl_norm(B,NB).
252 ltl_norm(since(A,B),since(NA,NB)) :-
253 ltl_norm(A,NA),ltl_norm(B,NB).
254 ltl_norm(action(Op),action(Op)).
255
256 % part III (fairness)
257 % ignore fairness assumptions, they will be given later as an additional argument to the ltlc_modelcheck function
258 ltl_norm(fairnessimplication(_Assumptions,F),NF) :-
259 ltl_norm(F,NF).
260
261 % Normalising Gavin Lowe's available operator
262 % available a ----> [tau] U ((e(tau) & not [tau]) or (e(a) & not e(tau)))
263 % Note: It works only for CSP !!!
264 ltl_norm(available(F),N) :-
265 ltl_norm(
266 until( action(csp(tau,_,[])),
267 or(and(ap(enabled(csp(tau,_,[]))),not(action(csp(tau,_,[])))),
268 and(ap(enabled(F)),not(ap(enabled(csp(tau,_,[])))))
269 )
270 ),N).