1 | % (c) 2020-2024 Lehrstuhl fuer Softwaretechnik und Programmiersprachen, | |
2 | % Heinrich Heine Universitaet Duesseldorf | |
3 | % This software is licenced under EPL 1.0 (http://www.eclipse.org/org/documents/epl-v10.html) | |
4 | ||
5 | :- module(kernel_reals, [construct_real/2, construct_negative_real/2, | |
6 | is_real/1, is_real/2, is_real_wf/2, | |
7 | is_float/1, is_float_wf/2, | |
8 | is_not_real/1, is_not_float/1, | |
9 | is_ground_real/1, | |
10 | is_largest_positive_float/1, is_smallest_positive_float/1, | |
11 | is_next_larger_float/2, is_next_smaller_float/2, | |
12 | convert_int_to_real/2, | |
13 | real_floor/2, real_ceiling/2, | |
14 | real_addition_wf/4, real_subtraction_wf/4, | |
15 | real_multiplication_wf/4, real_division_wf/5, | |
16 | real_unary_minus_wf/3, | |
17 | real_absolute_value_wf/3, | |
18 | real_square_root_wf/4, | |
19 | real_round_wf/3, | |
20 | real_unop_wf/4, real_unop_wf/5, | |
21 | real_binop_wf/6, | |
22 | real_power_of_wf/5, | |
23 | real_less_than_wf/3, real_less_than_equal_wf/3, | |
24 | real_comp_wf/5, | |
25 | real_maximum_of_set/4, real_minimum_of_set/4 | |
26 | ]). | |
27 | ||
28 | % Reals/Floats in ProB are represented by terms of the form term(floating(Number)) | |
29 | % in future a proper wrapper such as real(Number) might be created | |
30 | ||
31 | :- meta_predicate real_comp_wf(2,-,-,-,-). | |
32 | :- meta_predicate real_comp_wf_aux(2,-,-,-,-). | |
33 | ||
34 | :- use_module(module_information,[module_info/2]). | |
35 | :- module_info(group,kernel). | |
36 | :- module_info(description,'This module provides (external) functions to manipulate B reals and floats.'). | |
37 | ||
38 | :- use_module(error_manager). | |
39 | :- use_module(self_check). | |
40 | :- use_module(library(lists)). | |
41 | :- use_module(debug). | |
42 | ||
43 | :- use_module(kernel_objects,[exhaustive_kernel_check_wf/2,exhaustive_kernel_check_wf/3]). | |
44 | :- use_module(extension('counter/counter'), | |
45 | [next_smaller_abs_float/2, next_smaller_float/2,next_larger_float/2, next_float_twoards/3, | |
46 | smallest_float/1, largest_float/1, smallest_abs_float/1]). | |
47 | ||
48 | % used to construct a Value from real(Atom) AST node | |
49 | construct_real(Atom,term(floating(Float))) :- | |
50 | atom_codes(Atom,C), | |
51 | number_codes(Nr,C), | |
52 | Float is float(Nr). % make sure we store a float; not required for AST literals | |
53 | ||
54 | construct_negative_real(Atom,term(floating(Float))) :- | |
55 | atom_codes(Atom,C), | |
56 | number_codes(Nr,C), | |
57 | Float is -float(Nr). | |
58 | ||
59 | is_real_wf(X,_WF) :- is_real(X,_). | |
60 | is_real(X) :- is_real(X,_). | |
61 | ||
62 | is_real(term(floating(Nr)),Nr). | |
63 | % TO DO: other formats | |
64 | ||
65 | is_float_wf(X,_WF) :- is_float(X). | |
66 | ||
67 | is_float(term(floating(_))). | |
68 | ||
69 | is_not_real(_) :- fail. | |
70 | is_not_float(_) :- fail. | |
71 | ||
72 | is_ground_real(term(floating(Nr))) :- number(Nr). | |
73 | ||
74 | is_largest_positive_float(term(floating(Nr))) :- largest_float(Nr). | |
75 | is_smallest_positive_float(term(floating(Nr))) :- smallest_abs_float(Nr). | |
76 | ||
77 | is_next_larger_float(term(floating(Nr)),term(floating(Next))) :- | |
78 | block_next_larger_float(Nr,Next). | |
79 | :- block block_next_larger_float(-,-). | |
80 | block_next_larger_float(Nr,Next) :- nonvar(Nr),!,next_larger_float(Nr,Next). | |
81 | block_next_larger_float(Nr,Next) :- next_smaller_float(Next,Nr). | |
82 | ||
83 | is_next_smaller_float(term(floating(Nr)),term(floating(Next))) :- | |
84 | block_next_larger_float(Next,Nr). | |
85 | ||
86 | ||
87 | % convert an integer to a real, corresponds to the real(.) function in Atelier-B; convert_real as AST | |
88 | convert_int_to_real(int(X),term(floating(R))) :- | |
89 | convert_int_to_real_aux(X,R). | |
90 | ||
91 | :- block convert_int_to_real_aux(-,-). | |
92 | convert_int_to_real_aux(Int,Real) :- number(Int),!, | |
93 | Real is float(Int). | |
94 | convert_int_to_real_aux(Int,Real) :- Int1 is floor(Real), | |
95 | Real is float(Int1), | |
96 | Int1=Int. | |
97 | ||
98 | ||
99 | % convert_int_floor as AST, Atelier-B floor(.) | |
100 | real_floor(term(floating(R)),int(X)) :- real_floor_aux(R,X). | |
101 | :- block real_floor_aux(-,?). | |
102 | real_floor_aux(Real,Int) :- Int is floor(Real). | |
103 | ||
104 | % convert_int_ceiling as AST, Atelier-B ceiling(.) | |
105 | real_ceiling(term(floating(R)),int(X)) :- real_ceiling_aux(R,X). | |
106 | :- block real_ceiling_aux(-,?). | |
107 | real_ceiling_aux(Real,Int) :- Int is ceiling(Real). | |
108 | ||
109 | :- assert_must_succeed(exhaustive_kernel_check_wf([commutative],kernel_reals:real_addition_wf(term(floating(1.0)),term(floating(2.0)),term(floating(3.0)),WF),WF)). | |
110 | :- assert_must_succeed(exhaustive_kernel_check_wf([commutative],kernel_reals:real_addition_wf(term(floating(0.0)),term(floating(2.0)),term(floating(2.0)),WF),WF)). | |
111 | :- assert_must_succeed(exhaustive_kernel_check_wf([commutative],kernel_reals:real_addition_wf(term(floating(-1.0)),term(floating(1.0)),term(floating(0.0)),WF),WF)). | |
112 | ||
113 | real_addition_wf(term(floating(X)),term(floating(Y)),term(floating(R)),WF) :- | |
114 | real_add_wf_aux(X,Y,R,WF). | |
115 | :- block real_add_wf_aux(-,-,?,?), real_add_wf_aux(?,-,-,?), real_add_wf_aux(-,?,-,?). | |
116 | real_add_wf_aux(X,Y,R,WF) :- | |
117 | (nonvar(X) | |
118 | -> (nonvar(Y) | |
119 | -> safe_is(R,X+Y,WF) | |
120 | ; allow_constraint_propagation(Kind), | |
121 | safe_is(YY,R-X,WF), | |
122 | confirm_solution_for_expr(YY,X+SOL,SOL,R,Kind,Solutions,WF) | |
123 | -> set_solution_for_expr(Y,Solutions,WF) | |
124 | ; real_add_wf_aux2(X,Y,R,WF) % delay until Y is known | |
125 | ) | |
126 | ; allow_constraint_propagation(Kind), | |
127 | safe_is(XX,R-Y,WF), | |
128 | confirm_solution_for_expr(XX,SOL+Y,SOL,R,Kind,Solutions,WF) | |
129 | -> set_solution_for_expr(X,Solutions,WF) | |
130 | ; real_add_wf_aux2(X,Y,R,WF) % delay until X is known | |
131 | ). | |
132 | ||
133 | :- block real_add_wf_aux2(-,?,?,?), real_add_wf_aux2(?,-,?,?). | |
134 | real_add_wf_aux2(X,Y,R,WF) :- safe_is(R,X+Y,WF). | |
135 | ||
136 | ||
137 | % confirm_solution_for_expr(XX,ExprX,X,R : check if XX=X is a solution for R = ExprX, where ExprX contains variable X | |
138 | % depending on solver setting : compute a list of candidate solutions around XX | |
139 | confirm_solution_for_expr(XX,_,_,_,no_checking,Solutions,_) :- !, Solutions=XX. | |
140 | confirm_solution_for_expr(XX,ExprX,X,R,simple_checking,Solutions,WF) :- !, | |
141 | check_sol_direct(XX,ExprX,X,R,WF), Solutions=XX. % single solution | |
142 | confirm_solution_for_expr(XX,ExprX,X,R,check_unique_solution,Solutions,WF) :- !, | |
143 | check_sol_direct(XX,ExprX,X,R,WF), Solutions=XX, % single solution | |
144 | % Now check if there are other solutions: | |
145 | next_larger_float(XX,XN), | |
146 | (X=XN,safe_is(R,ExprX,WF) | |
147 | -> debug_format(19,'Reject ambiguous larger solution {~w,~w} for ~w = ~w~n',[XX,XN,ExprX,R]),fail | |
148 | ; true | |
149 | ), | |
150 | next_smaller_float(XX,XP), | |
151 | (X=XP,safe_is(R,ExprX,WF) | |
152 | -> debug_format(19,'Reject ambiguous smaller solution {~w,~w} for ~w = ~w~n',[XX,XP,ExprX,R]),fail | |
153 | ; true). | |
154 | confirm_solution_for_expr(XX,ExprX,X,R,check_small_interval_solution,Interval,WF) :- | |
155 | get_solutions_around(XX,ExprX,X,R,Interval,WF). | |
156 | ||
157 | :- use_module(kernel_waitflags,[get_wait_flag/4]). | |
158 | % set the solution based on result of confirm_solution_for_expr | |
159 | set_solution_for_expr(X,XX,_WF) :- number(XX),!,X=XX. % deterministic constraint propagation found precise solution | |
160 | set_solution_for_expr(X,[XX],_WF) :- !,X=XX. % ditto | |
161 | set_solution_for_expr(_,[],_WF) :- !, fail. % no solutions | |
162 | set_solution_for_expr(X,Interval,WF) :- | |
163 | length(Interval,Len), % we found an interval list of possible solutions | |
164 | get_wait_flag(Len,kernel_reals,WF,LWF), | |
165 | set_sol_aux(X,Interval,LWF). | |
166 | :- block set_sol_aux(-,?,-). | |
167 | set_sol_aux(X,Interval,_) :- | |
168 | ? | member(X,Interval). |
169 | ||
170 | ||
171 | % get a sorted list of solutions around the candidate XX | |
172 | get_solutions_around(XX,ExprX,X,R,Interval,WF) :- | |
173 | (check_sol_direct(XX,ExprX,X,R,WF) % XX is a solution | |
174 | -> get_preference(solver_strength,SS), | |
175 | Limit is 10+SS, % number of solutions we are willing to find | |
176 | next_larger_float(XX,XN), | |
177 | find_larger_bounds(XN,Limit,ExprX,X,R,WF,LargerSols,[]), | |
178 | next_smaller_float(XX,XP), | |
179 | find_lower_bounds(XP,Limit,ExprX,X,R,WF,Interval,[XX|LargerSols]) | |
180 | ; (X='X',debug_format(19,'Reject non-solution ~w for ~w = ~w~n',[XX,ExprX,R]),fail ; true), | |
181 | %next_smaller_float(XX,XP), (check_sol_direct(XP,ExprX,X,R,WF) -> write(xp(XP)),nl ; write(nxp(XP)),nl), | |
182 | %next_larger_float(XX,XN), (check_sol_direct(XN,ExprX,X,R,WF) -> write(xn(XN)),nl ; write(nxp(XN)),nl), | |
183 | Interval = [] % no floating point solutions; TODO: do we need to check smaller/larger values?? | |
184 | ). | |
185 | ||
186 | % e.g. for x+1.0 = 3.0 we have 2.0 as solution and the previous float 1.9999999999999998, nothing else | |
187 | % e.b. for x+2.0 = 3.0 we have four solutions {0.9999999999999998,0.9999999999999999,1.0,1.0000000000000002} | |
188 | % card({x|x + 2.999 = 3.0}) = 2049 | |
189 | % card({x|x + 2.9999 = 3.0}) = 32769 | |
190 | ||
191 | % increment floats until we hit the first non-solution or we reach the limit | |
192 | % TODO: try and compute this bound, rather then single-stepping | |
193 | % TODO: enumerate the first solution and then generate an enum warning if we reach limit | |
194 | find_larger_bounds(XP,Lim,ExprX,X,R,WF,[XP|Sols1],Sols2) :- | |
195 | check_sol_direct(XP,ExprX,X,R,WF),!, Lim>0, L1 is Lim-1, | |
196 | next_larger_float(XP,XP2), | |
197 | find_larger_bounds(XP2,L1,ExprX,X,R,WF,Sols1,Sols2). | |
198 | find_larger_bounds(_Bound,_Lim,_ExprX,_X,_R,_WF,Sols,Sols). | |
199 | ||
200 | % decrement floats until we hit the first non-solution or we reach the limit | |
201 | find_lower_bounds(XP,Lim,ExprX,X,R,WF,[XP|Sols1],Sols2) :- | |
202 | check_sol_direct(XP,ExprX,X,R,WF),!, Lim>0, L1 is Lim-1, | |
203 | next_smaller_float(XP,XP2), | |
204 | find_lower_bounds(XP2,L1,ExprX,X,R,WF,Sols1,Sols2). | |
205 | find_lower_bounds(_Bound,_Lim,_ExprX,_X,_R,_WF,Sols,Sols). | |
206 | ||
207 | check_sol_direct(XX,ExprX,X,R,WF) :- !, | |
208 | % (x + y = z <=> x = z - y) does not hold for all floats, e.g., when x very small and y very large (x+y)-y = 0 | |
209 | (\+((X=XX,safe_is(R,ExprX,WF))) -> fail ; true). | |
210 | ||
211 | ||
212 | :- use_module(probsrc(preferences), [get_preference/2]). | |
213 | ||
214 | allow_constraint_propagation(Kind) :- | |
215 | get_preference(solver_for_reals,Solver), | |
216 | get_solver_kind(Solver,Kind). | |
217 | ||
218 | get_solver_kind(aggressive_float_solver,no_checking). % like CLP(R): do not check propagated solution | |
219 | get_solver_kind(float_solver,simple_checking). % check propagated solution, but do not check uniqueness | |
220 | %get_solver_kind(precise_float_solver,check_unique_solution). | |
221 | get_solver_kind(precise_float_solver,check_small_interval_solution). % perform limited constraint propagation, fail directly if no solution exists | |
222 | ||
223 | % we could have various other options: | |
224 | % aggressive: do it like CLP(R), which can generate non-solutions | |
225 | % | ?- {X+10.0e10 = 1.0e-9}, write(sol(X)),nl, {X+10.0e10 = 1.0e-9}. | |
226 | % prints sol(-1.0E+11) but then fails | |
227 | % conservative: do the precision check and also check that there are no other solutions (not done yet) | |
228 | % e.g., X+10000000000.0 = 10000000000.0 & (X=0.000000000001 or X=2.0) is FALSE with the float_solver, but TRUE with none | |
229 | ||
230 | ||
231 | :- assert_must_succeed(exhaustive_kernel_check_wf(kernel_reals:real_subtraction_wf(term(floating(3.0)),term(floating(2.0)),term(floating(1.0)),WF),WF)). | |
232 | real_subtraction_wf(term(floating(X)),term(floating(Y)),term(floating(R)),WF) :- | |
233 | real_sub_wf_aux(X,Y,R,WF). | |
234 | :- block real_sub_wf_aux(-,-,?,?), real_sub_wf_aux(?,-,-,?), real_sub_wf_aux(-,?,-,?). | |
235 | real_sub_wf_aux(X,Y,R,WF) :- | |
236 | (nonvar(X) | |
237 | -> (nonvar(Y) | |
238 | -> safe_is(R,X-Y,WF) | |
239 | ; allow_constraint_propagation(Kind), | |
240 | safe_is(YY,X-R,WF), | |
241 | confirm_solution_for_expr(YY,X-SOL,SOL,R,Kind,Solutions,WF) | |
242 | -> set_solution_for_expr(Y,Solutions,WF) % deterministic constraint propagation found precise solution | |
243 | ; real_sub_wf_aux2(X,Y,R,WF) % delay until Y is known | |
244 | ) | |
245 | ; allow_constraint_propagation(Kind), | |
246 | safe_is(XX,R+Y,WF), | |
247 | confirm_solution_for_expr(XX,SOL-Y,SOL,R,Kind,Solutions,WF) | |
248 | -> set_solution_for_expr(X,Solutions,WF) % deterministic constraint propagation found precise solution | |
249 | ; real_sub_wf_aux2(X,Y,R,WF) % delay until X is known | |
250 | ). | |
251 | ||
252 | :- block real_sub_wf_aux2(-,?,?,?), real_sub_wf_aux2(?,-,?,?). | |
253 | real_sub_wf_aux2(X,Y,R,WF) :- safe_is(R,X-Y,WF). | |
254 | ||
255 | ||
256 | :- assert_must_succeed(exhaustive_kernel_check_wf([commutative],kernel_reals:real_multiplication_wf(term(floating(3.0)),term(floating(2.0)),term(floating(6.0)),WF),WF)). | |
257 | real_multiplication_wf(term(floating(X)),term(floating(Y)),term(floating(R)),WF) :- | |
258 | real_mul_wf_aux0(X,Y,R,WF). | |
259 | ||
260 | :- block real_mul_wf_aux0(-,-,-,?). | |
261 | real_mul_wf_aux0(X,Y,R,_WF) :- (X==0.0 ; Y==0.0), !, R=0.0. | |
262 | real_mul_wf_aux0(X,Y,R,WF) :- var(X),X==Y, !, % X*X = R -> compute sqrt | |
263 | kernel_square_inverse(X,R,WF). | |
264 | real_mul_wf_aux0(X,Y,R,WF) :- real_mul_wf_aux(X,Y,R,WF). | |
265 | ||
266 | :- block real_mul_wf_aux(-,-,?,?), real_mul_wf_aux(?,-,-,?), real_mul_wf_aux(-,?,-,?). | |
267 | real_mul_wf_aux(X,Y,R,_WF) :- (X==0.0 ; Y==0.0), !, R=0.0. | |
268 | real_mul_wf_aux(X,Y,R,WF) :- | |
269 | (nonvar(X) | |
270 | -> (nonvar(Y) | |
271 | -> safe_is(R,X*Y,WF) | |
272 | ; allow_constraint_propagation(Kind), | |
273 | safe_is(YY,R/X,WF), | |
274 | confirm_solution_for_expr(YY,X*SOL,SOL,R,Kind,Solutions,WF) | |
275 | -> set_solution_for_expr(Y,Solutions,WF) | |
276 | ; real_mul_wf_aux2(X,Y,R,WF) % delay until Y is known | |
277 | ) | |
278 | ; allow_constraint_propagation(Kind), | |
279 | safe_is(XX,R/Y,WF), | |
280 | confirm_solution_for_expr(XX,SOL*Y,SOL,R,Kind,Solutions,WF) | |
281 | -> set_solution_for_expr(X,Solutions,WF) | |
282 | ; real_mul_wf_aux2(X,Y,R,WF) % delay until X is known | |
283 | ). | |
284 | ||
285 | :- block real_mul_wf_aux2(-,?,?,?), real_mul_wf_aux2(?,-,?,?). | |
286 | real_mul_wf_aux2(X,Y,R,WF) :- safe_is(R,X*Y,WF). | |
287 | ||
288 | % compute sqrt, R is known | |
289 | kernel_square_inverse(X,R,WF) :- | |
290 | (R < 0.0 -> fail | |
291 | ; allow_constraint_propagation(Kind), | |
292 | safe_is(XX,sqrt(R),WF), | |
293 | confirm_solution_for_expr(XX,SOL*SOL,SOL,R,Kind,SolutionsPos,WF), | |
294 | (XX=0.0 -> Solutions = SolutionsPos | |
295 | ; NX is -XX, | |
296 | confirm_solution_for_expr(NX,SOL*SOL,SOL,R,Kind,SolutionsNeg,WF), | |
297 | append(SolutionsPos,SolutionsNeg,Solutions) | |
298 | ) | |
299 | -> set_solution_for_expr(X,Solutions,WF) | |
300 | ; real_mul_wf_aux(X,X,R,WF)). | |
301 | ||
302 | ||
303 | :- block 'real_square_root_wf'(-,-,?,?). | |
304 | real_square_root_wf(term(floating(X)),term(floating(R)),Span,WF) :- | |
305 | real_sqrt_wf_aux(X,R,Span,WF). | |
306 | :- block real_sqrt_wf_aux(-,-,?,?). | |
307 | real_sqrt_wf_aux(X,R,_Span,WF) :- var(X), | |
308 | allow_constraint_propagation(Kind), | |
309 | get_preference(find_abort_values,false), | |
310 | (R >= 0.0 | |
311 | -> safe_is(XX,R*R,WF), | |
312 | confirm_solution_for_expr(XX,sqrt(SOL),SOL,R,Kind,Solutions,WF) | |
313 | ; Solutions = []), % RSQRT always returns a positive number | |
314 | !, | |
315 | set_solution_for_expr(X,Solutions,WF). | |
316 | real_sqrt_wf_aux(X,R,Span,WF) :- | |
317 | real_unop_wf_aux('sqrt',X,R,Span,WF). | |
318 | ||
319 | :- assert_must_succeed(exhaustive_kernel_check_wf(kernel_reals:real_division_wf(term(floating(6.0)),term(floating(2.0)),term(floating(3.0)),unknown,WF),WF)). | |
320 | real_division_wf(term(floating(X)),term(floating(Y)),term(floating(R)),Span,WF) :- | |
321 | real_div_wf_aux(X,Y,R,Span,WF). | |
322 | :- block real_div_wf_aux(-,?,-,?,?), real_div_wf_aux(?,-,?,?,?). | |
323 | real_div_wf_aux(X,Y,R,Span,WF) :- nonvar(X),!,safe_is(R,X/Y,Span,WF). | |
324 | real_div_wf_aux(X,Y,R,Span,WF) :- Y \= 0.0, allow_constraint_propagation(Kind), | |
325 | safe_is(XX,R*Y,Span,WF), | |
326 | confirm_solution_for_expr(XX,SOL/Y,SOL,R,Kind,Solutions,WF), | |
327 | !, | |
328 | set_solution_for_expr(X,Solutions,WF). | |
329 | real_div_wf_aux(X,Y,R,Span,WF) :- when(nonvar(X),safe_is(R,X/Y,Span,WF)). | |
330 | ||
331 | :- block 'real_unary_minus_wf'(-,-,?). | |
332 | real_unary_minus_wf(term(floating(X)),term(floating(R)),WF) :- | |
333 | real_um_wf_aux(X,R,WF). | |
334 | :- block real_um_wf_aux(-,-,?). | |
335 | real_um_wf_aux(X,R,_) :- nonvar(X),!,R is -X. | |
336 | real_um_wf_aux(X,R,_) :- X is -R. | |
337 | ||
338 | :- block 'real_absolute_value_wf'(-,-,?). | |
339 | real_absolute_value_wf(term(floating(X)),term(floating(R)),WF) :- | |
340 | real_abs_wf_aux(X,R,WF). | |
341 | :- block real_abs_wf_aux(-,-,?). | |
342 | real_abs_wf_aux(X,R,_) :- nonvar(X),!, R is abs(X). | |
343 | real_abs_wf_aux(X,R,_) :- R = 0.0, !, X=0.0. | |
344 | real_abs_wf_aux(_,R,_) :- R < 0.0, !, fail. | |
345 | real_abs_wf_aux(X,R,WF) :- MR is -R, | |
346 | Solutions = [R,MR], | |
347 | set_solution_for_expr(X,Solutions,WF). | |
348 | ||
349 | real_round_wf(term(floating(X)),int(R),_WF) :- | |
350 | when(nonvar(X), R is round(X)). | |
351 | ||
352 | :- use_module(kernel_waitflags,[add_wd_error/3, add_wd_error_span/4]). | |
353 | % a version of is/2 which catches overflows | |
354 | safe_is(R,Expr,WF) :- | |
355 | safe_is(R,Expr,unknown,WF). | |
356 | safe_is(R,Expr,Span,WF) :- | |
357 | catch(R is Expr, | |
358 | error(evaluation_error(ERR),_), | |
359 | process_evaluation_error(ERR,Expr,Span,WF)). | |
360 | ||
361 | process_evaluation_error(float_overflow,Expr,Span,WF) :- !, | |
362 | add_wd_error_span('Float Overflow while computing:',Expr,Span,WF). | |
363 | process_evaluation_error(zero_divisor,Expr,Span,WF) :- !, | |
364 | add_wd_error_span('Division by zero while computing:',Expr,Span,WF). | |
365 | process_evaluation_error(undefined,Expr,Span,WF) :- !, | |
366 | add_wd_error_span('Arithmetic operator undefined while computing:',Expr,Span,WF). | |
367 | process_evaluation_error(_,Expr,Span,WF) :- | |
368 | add_wd_error_span('Unknown evaluation error while computing:',Expr,Span,WF). | |
369 | ||
370 | ||
371 | % call a Prolog unary artihmetic operator | |
372 | real_unop_wf(OP,X,R,WF) :- | |
373 | real_unop_wf(OP,X,R,unknown,WF). | |
374 | ||
375 | real_unop_wf(OP,RX,RR,Span,WF) :- | |
376 | get_real(RX,X,OP,Span,WF), get_real(RR,R,OP,Span,WF), | |
377 | real_unop_wf_aux(OP,X,R,Span,WF). | |
378 | :- block real_unop_wf_aux(-,?,?,?,?), real_unop_wf_aux(?,-,?,?,?). | |
379 | real_unop_wf_aux(OP,X,R,Span,WF) :- | |
380 | Expr =.. [OP,X], | |
381 | safe_is(R,Expr,Span,WF). | |
382 | ||
383 | :- use_module(probsrc(tools_strings),[ajoin/2]). | |
384 | :- use_module(kernel_waitflags,[add_error_wf/5]). | |
385 | get_real(Var,Real,_,_,_) :- var(Var),!, Var=term(floating(Real)). | |
386 | get_real(term(F),Real,_,_,_) :- !, F=floating(Real). | |
387 | get_real(Other,_,OP,Span,WF) :- | |
388 | ajoin(['Argument for ',OP,' is not a real number:'],Msg), | |
389 | add_error_wf(kernel_reals,Msg,Other,Span,WF). | |
390 | ||
391 | % when called for ** operator the exponent Y is a natural number represented as a float; for RPOW Y can be any float | |
392 | real_power_of_wf(RX,RY,RR,Span,WF) :- | |
393 | get_real(RX,X,'exp',Span,WF), get_real(RY,Y,'exp',Span,WF), get_real(RR,R,'exp',Span,WF), | |
394 | real_power_of_aux(X,Y,R,Span,WF). | |
395 | ||
396 | :- block real_power_of_aux(-,-,?,?,?), real_power_of_aux(?,-,-,?,?), real_power_of_aux(-,?,-,?,?). | |
397 | % we currently require to know at least the exponent, TODO: in future we could also compute the log | |
398 | real_power_of_aux(X,Y,R,Span,WF) :- | |
399 | var(X),!, | |
400 | real_power_inverse(X,Y,R,Span,WF). | |
401 | real_power_of_aux(X,Y,Res,Span,WF) :- | |
402 | real_power_direct(X,Y,Res,Span,WF). | |
403 | ||
404 | % X is variable, Y and R are known | |
405 | real_power_inverse(X,Y,R,_Span,WF) :- Y=2.0,!, | |
406 | kernel_square_inverse(X,R,WF). | |
407 | real_power_inverse(X,Y,R,_Span,_WF) :- Y=1.0,!, X=R. | |
408 | real_power_inverse(X,Y,R,Span,WF) :- | |
409 | real_power_direct(X,Y,R,Span,WF). | |
410 | % TODO: add more exponents and compute root | |
411 | ||
412 | :- block real_power_direct(-,?,?,?,?), real_power_direct(?,-,?,?,?). | |
413 | real_power_direct(X,Y,R,Span,WF) :- | |
414 | safe_is(R,exp(X,Y),Span,WF). | |
415 | ||
416 | % call a Prolog binary artihmetic operator | |
417 | real_binop_wf(OP,RX,RY,RR,Span,WF) :- | |
418 | get_real(RX,X,OP,Span,WF), get_real(RY,Y,OP,Span,WF), get_real(RR,R,OP,Span,WF), | |
419 | real_binop_wf_aux(OP,X,Y,R,Span,WF). | |
420 | :- block real_binop_wf_aux(-,?,?,?,?,?), real_binop_wf_aux(?,-,?,?,?,?), real_binop_wf_aux(?,?,-,?,?,?). | |
421 | real_binop_wf_aux(OP,X,Y,R,Span,WF) :- | |
422 | Expr =.. [OP,X,Y], | |
423 | safe_is(R,Expr,Span,WF). | |
424 | ||
425 | real_less_than_wf(X,Y,WF) :- real_comp_wf('<',X,Y,pred_true,WF). | |
426 | real_less_than_equal_wf(X,Y,WF) :- real_comp_wf('=<',X,Y,pred_true,WF). | |
427 | ||
428 | ||
429 | % call a Prolog bianry artihmetic operator | |
430 | real_comp_wf(OP,term(floating(X)),term(floating(Y)),R,WF) :- | |
431 | real_comp_wf_aux(OP,X,Y,R,WF). | |
432 | :- block real_comp_wf_aux(-,?,?,?,?), real_comp_wf_aux(?,-,?,?,?), real_comp_wf_aux(?,?,-,?,?). | |
433 | real_comp_wf_aux(OP,X,Y,R,_) :- | |
434 | (call(OP,X,Y) -> R=pred_true ; R=pred_false). | |
435 | ||
436 | % ----------------- | |
437 | ||
438 | :- use_module(probsrc(kernel_tools),[ground_value_check/2]). | |
439 | real_maximum_of_set(Set,Res,Span,WF) :- | |
440 | ground_value_check(Set,Gr), | |
441 | rmax_set(Gr,Set,Res,Span,WF). | |
442 | ||
443 | :- block rmax_set(-,?,?,?,?). | |
444 | rmax_set(_,Set,Res,Span,WF) :- | |
445 | custom_explicit_sets:expand_and_convert_to_avl_set(Set,ESet,'RMAXIMUM','RMAXIMUM'), | |
446 | (ESet=empty | |
447 | -> add_wd_error_span('max applied to empty set of reals:',Set,Span,WF) | |
448 | ; custom_explicit_sets:max_of_explicit_set_wf(avl_set(ESet),Res,WF) | |
449 | ). | |
450 | ||
451 | real_minimum_of_set(Set,Res,Span,WF) :- | |
452 | ground_value_check(Set,Gr), | |
453 | rmin_set(Gr,Set,Res,Span,WF). | |
454 | ||
455 | :- block rmin_set(-,?,?,?,?). | |
456 | rmin_set(_,Set,Res,Span,WF) :- | |
457 | custom_explicit_sets:expand_and_convert_to_avl_set(Set,ESet,'RMINIMUM','RMINIMUM'), | |
458 | (ESet=empty | |
459 | -> add_wd_error_span('min applied to empty set of reals:',Set,Span,WF) | |
460 | ; custom_explicit_sets:min_of_explicit_set_wf(avl_set(ESet),Res,WF) | |
461 | ). | |
462 | ||
463 | ||
464 | % not used yet: useful for kernel_strings ? | |
465 | %:- block real_to_string(-,?). | |
466 | %real_to_string(term(floating(I)),S) :- real_to_string2(I,S). | |
467 | % | |
468 | %:- block real_to_string2(-,?). | |
469 | %real_to_string2(Num,Res) :- | |
470 | % number_codes(Num,C), | |
471 | % atom_codes(S,C), Res=string(S). | |
472 |