1 % (c) 2009-2024 Lehrstuhl fuer Softwaretechnik und Programmiersprachen,
2 % Heinrich Heine Universitaet Duesseldorf
3 % This software is licenced under EPL 1.0 (http://www.eclipse.org/org/documents/epl-v10.html)
4
5 :- module(kernel_objects,[basic_type/2,
6 enumerate_basic_type/2, enumerate_basic_type_wf/3, enumerate_basic_type_wf/4,
7 all_objects_of_type/2,
8 max_cardinality/2,
9 enumerate_type/3, % last argument basic or tight
10 enumerate_type_wf/4,
11 enumerate_type/4, % last argument false/true disables/enables enum warning
12 enumerate_basic_type/3,
13 enumerate_tight_type/2, enumerate_tight_type/3, enumerate_tight_type_wf/4,
14 enumerate_int/3,
15 gen_enum_warning_wf/6,
16 all_strings_wf/2, is_string/2, is_not_string/1,
17
18 top_level_dif/2,
19 equal_object_optimized/2, equal_object_optimized/3, equal_object_optimized_wf/4,
20 equal_object/2, equal_object/3, equal_object_wf/3, equal_object_wf/4,
21 not_equal_object/2, not_equal_object_wf/3,
22 equal_cons/3, equal_cons_wf/4, equal_cons_lwf/5,
23 get_next_element/3,
24 is_marked_to_be_computed/1, mark_as_to_be_computed/1,
25
26 %equality_objects/3,
27 membership_test_wf/4,
28
29 %is_a_set/1,
30 empty_set/1, empty_set_wf/2,
31 not_empty_set/1, not_empty_set_wf/2,
32 exact_element_of/2,
33 check_element_of/2, check_element_of_wf/3,
34 not_element_of/2, not_element_of_wf/3,
35
36 add_element/3, add_element/4, add_element_wf/4, add_element_wf/5,
37 add_new_element_wf/4,
38 delete_element_wf/4,
39 %remove_element/3,
40 remove_element_wf/4,remove_element_wf/5,remove_element_wf_if_not_infinite_or_closure/6,
41 remove_exact_first_element/3,
42 check_no_duplicates_in_list/3,
43
44 partition_wf/3, not_partition_wf/3, test_partition_wf/4,
45 %all_different/2,
46 disjoint_sets/3, not_disjoint_sets/3,
47
48 union/3, union_wf/4, union_generalized/2, union_generalized_wf/3,
49 intersection/3, intersection_generalized_wf/4,
50 difference_set/3, difference_set_wf/4,
51 in_difference_set_wf/4, not_in_difference_set_wf/4,
52 in_union_set_wf/4, not_in_union_set_wf/4,
53 in_intersection_set_wf/4, not_in_intersection_set_wf/4,
54
55 strict_subset_of/2, strict_subset_of_wf/3,
56 check_subset_of/2, check_subset_of_wf/3, check_finite_subset_of_wf/3,
57 check_non_empty_subset_of_wf/3, check_finite_non_empty_subset_of_wf/3,
58 not_subset_of/2, not_subset_of_wf/3, not_both_subset_of/5,
59 not_finite_subset_of_wf/3,
60 not_strict_subset_of/2, not_strict_subset_of_wf/3,
61 not_non_empty_subset_of_wf/3, not_non_empty_finite_subset_of_wf/3,
62 both_global_sets/4,check_subset_of_global_sets/2, check_not_subset_of_global_sets/2,
63
64 first_of_pair/2, second_of_pair/2,
65 minimum_of_set_extension_list/4,
66 maximum_of_set_extension_list/4,
67 minimum_of_set/4, maximum_of_set/4,
68 is_finite_set_wf/2, is_infinite_set_wf/2, test_finite_set_wf/3,
69 %finite_cardinality_as_int/3, % now we use kernel_cardinality_attr
70 cardinality_as_int_for_wf/2,
71 cardinality_as_int_wf/3,
72 cardinality_as_int/2, %cardinality_peano_wf/3,
73 card_convert_int_to_peano/2,
74 same_cardinality_wf/3,
75 % card_geq/2,
76 cardinality_greater/5, cardinality_greater_equal/5,
77 cardinality_of_range/3,
78 cardinality_of_set_extension_list/3,
79
80 cartesian_product_wf/4,
81 is_cartesian_pair_wf/4, not_is_cartesian_pair/4,
82
83 power_set/2, non_empty_power_set/2,
84
85 % is_boolean/1, %is_not_boolean/1,
86 is_integer/2, is_not_integer/1,
87 is_natural/2, is_natural1/2,
88 is_implementable_int/2,is_implementable_nat/2, is_implementable_nat1/2,
89 is_not_natural/1, is_not_natural1/1,
90 is_not_implementable_int/1,is_not_implementable_nat/1, is_not_implementable_nat1/1,
91
92 less_than/2, less_than_equal/2,
93 less_than_direct/2, less_than_equal_direct/2,
94 safe_less_than_equal/2, safe_less_than_equal/3,
95
96 greater_than/2, greater_than_equal/2,
97 int_plus/3,
98 division/5, floored_division/5,
99 modulo/5,
100 int_minus/3, unary_minus_wf/3,
101 % nat_range/3, % removed
102 in_nat_range_wf/4, not_in_nat_range/3, not_in_nat_range_wf/4, test_in_nat_range_wf/5,
103 in_nat_range/3, % version without enumeration
104 times/3, square/3,
105 int_power/5,
106 % pred/2, succ/2, removed
107 integer_global_set/1,
108
109 element_of_global_set/2,element_of_global_set_wf/3,not_element_of_global_set/2,
110
111 exhaustive_kernel_check/1, exhaustive_kernel_check_wf/2, exhaustive_kernel_check_wf/3,
112 exhaustive_kernel_check_wfdet/2, exhaustive_kernel_check_wf_upto/3,
113 exhaustive_kernel_succeed_check/1, exhaustive_kernel_fail_check/1,
114 exhaustive_kernel_fail_check_wf/2, exhaustive_kernel_fail_check_wfdet/2,
115 exhaustive_kernel_fail_check_wf_upto/3,
116 exhaustive_kernel_fail_check_wfinit/2,
117 exhaustive_kernel_check/2, exhaustive_kernel_succeed_check/2, exhaustive_kernel_fail_check/2,
118
119 singleton_set_element/4, singleton_set_element_wd/4,
120 infer_value_type/2,
121 check_values_have_same_type/3,
122 contains_any/1
123 ]).
124
125 :- meta_predicate exhaustive_kernel_check_opt(-,0).
126 :- meta_predicate exhaustive_kernel_fail_check_opt(-,0).
127 :- meta_predicate not_strict_eq_check(-,0).
128
129 %:- use_module('../extensions/profiler/profiler.pl').
130 %:- use_module('../extensions/profiler/profiler_te.pl').
131 %:- enable_profiling(enumerate_basic_type/3).
132 %:- enable_profiling(enumerate_type/3).
133 %:- enable_profiling(enumerate_tight_type/2).
134
135 %:- print(loading_kernel_objects),nl.
136
137 %:- multifile user:portray_message/2.
138 %user:portray_message(informational, _).
139 :- use_module(library(terms)).
140 :- use_module(self_check).
141
142 :- use_module(debug).
143 :- use_module(tools_platform, [platform_is_64_bit/0]).
144 :- use_module(tools_printing).
145 :- use_module(tools).
146
147 :- use_module(module_information,[module_info/2]).
148 :- module_info(group,kernel).
149 :- module_info(description,'This module provides operations for the basic datatypes of ProB (equal, not_equal, enumeration).').
150
151 :- use_module(typechecker).
152 :- use_module(error_manager).
153 :- use_module(b_global_sets). %,[global_type/2, b_global_set_cardinality/2, b_empty_global_set/1]).
154 :- use_module(kernel_waitflags).
155 :- use_module(library(lists)).
156 :- use_module(library(avl),[avl_min/2, avl_max/2]).
157 :- use_module(library(clpfd)).
158 :- use_module(fd_utils_clpfd).
159 :- use_module(kernel_freetypes).
160 :- use_module(kernel_card_arithmetic).
161 :- use_module(custom_explicit_sets).
162 :- use_module(typechecker).
163 %:- use_module(clpfd_off_interface). %
164 % on a 32 bit system: use clpfd_off_interface; on 64 bit system clpfd_interface should be ok (integer overflows)
165 :- use_module(clpfd_interface). %
166 :- use_module(bsyntaxtree, [get_texpr_id/2, get_texpr_pos/2]).
167
168 :- type atomic_type +--> (term(integer,[]) ; term(string,[]) ; constant(list(atomic)) ; abort ; boolean ; global(atomic)).
169 :- type atomic_any_type +--> (type(atomic_type) ; term(any,[]) ).
170 :- type basic_type_descriptor +--> (type(atomic_any_type) ; set(basic_type_descriptor) ;
171 seq(basic_type_descriptor) ;
172 couple(basic_type_descriptor,basic_type_descriptor) ;
173 record(list(type(field_type))) ;
174 freetype(atomic)).
175
176 :- type inferred_basic_type_descriptor +--> (var ; type(atomic_type) ; set(inferred_basic_type_descriptor) ;
177 seq(inferred_basic_type_descriptor) ;
178 couple(inferred_basic_type_descriptor,inferred_basic_type_descriptor)).
179
180 :- type fd_index +--> (integer ; var).
181 :- type fd_set +--> (atomic ; var).
182 :- type fd_term +--> fd(fd_index,fd_set).
183 :- type bsets_integer +--> int((integer ; var)).
184 :- type bsets_string +--> string((atomic ; var)).
185 :- type bsets_bool +--> (pred_false /* bool_false */ ; pred_true /* bool_true */).
186 :- type field_type +--> field(atomic,basic_type_descriptor).
187
188 %:- type bsets_sequence +--> (nil_seq ; cons(type(bsets_object),type(bsets_sequence))).
189 %:- type bsets_set +--> vlist(type(bsets_object)).
190 :- functor([_|_],ListFunctor,_),
191 (type bsets_set +--> (term([],[]) ; var ; term(ListFunctor,[type(bsets_object),type(bsets_set)]) ;
192 avl_set( ground ) ;
193 closure(list(type(variable_id)),
194 list(type(basic_type_descriptor)),type(boolean_expression))
195 ; closure_x(list(type(variable_id)),
196 list(type(basic_type_descriptor)),type(boolean_expression),any))).
197 :- type bsets_couple +--> term(',',[type(bsets_object),type(bsets_object)]).
198 :- type bsets_global +--> global_set((atomic ; var)).
199 :- type bsets_field +--> field(atomic,type(bsets_object)).
200 :- type bsets_record +--> rec((var ; list(bsets_field))).
201 :- type bsets_freetype +--> freeval(atomic,(atomic ; var),type(bsets_object)).
202
203 :- type bsets_object +--> (fd_term ; bsets_integer ; bsets_bool ; term(term,[any]) ; bsets_set ;
204 % abort(any) ; % deprecated
205 bsets_couple ; bsets_string ; bsets_global ; var;
206 bsets_record ; bsets_freetype).
207
208
209 :- assert_must_succeed(kernel_waitflags:set_silent(true)). % disable waitflag store not init msgs
210
211
212
213
214 % a predicate to exhaustively check a kernel predicate with all possible modes
215
216 :- use_module(tools_timeout,[time_out_call/1]).
217 exhaustive_kernel_check_opt(C,Cond) :- (Cond -> exhaustive_kernel_check(C) ; true).
218 exhaustive_kernel_check(C) :- exhaustive_kernel_check4([],C,true,true).
219 exhaustive_kernel_check(Opts,C) :- exhaustive_kernel_check4(Opts,C,true,true).
220 exhaustive_kernel_check_wf(C,WF) :- exhaustive_kernel_check_wf([],C,WF).
221 exhaustive_kernel_check_wf(Opts,C,WF) :-
222 exhaustive_kernel_check4(Opts,C,kernel_waitflags:init_wait_flags(WF),
223 kernel_waitflags:ground_wait_flags(WF)).
224 exhaustive_kernel_check_wfdet(C,WF) :-
225 exhaustive_kernel_check4([],C,kernel_waitflags:init_wait_flags(WF),
226 kernel_waitflags:ground_det_wait_flag(WF)).
227 exhaustive_kernel_check_wf_upto(C,WF,Limit) :-
228 exhaustive_kernel_check4([],C,kernel_waitflags:init_wait_flags(WF),
229 (kernel_waitflags:ground_wait_flag_to(WF,Limit),
230 kernel_waitflags:portray_waitflags(WF))).
231
232 ?exhaustive_kernel_check4(Opts,Call,Pre,Post) :- enumerate_kernel_call(Call,Opts,ECall,Code),
233 debug_println(9,exhaustive_kernel_check(ECall,Code)),
234 flatten_call((Pre,ECall,Code,Post),FullCall),
235 ? must_succeed_without_residue_and_time_out(FullCall), debug_println(9,ok),
236 fail.
237 exhaustive_kernel_check4(_,_,_,_).
238
239 flatten_call((A,B),Res) :- !,flatten_call(A,FA), flatten_call(B,FB), conjoin_call(FA,FB,Res).
240 flatten_call(Module:Call,Res) :- !, flatten_call(Call,F), Res=Module:F.
241 flatten_call(X,X).
242
243 conjoin_call(true,X,R) :- !,R=X.
244 conjoin_call(X,true,R) :- !, R=X.
245 conjoin_call(X,Y,(X,Y)).
246
247 exhaustive_kernel_succeed_check(C) :- exhaustive_kernel_succeed_check([],C).
248 ?exhaustive_kernel_succeed_check(Opts,Call) :- enumerate_kernel_call(Call,Opts,ECall,Code),
249 debug_println(9,exhaustive_kernel_succeed_check(ECall,Code)),
250 flatten_call((ECall,Code),FullCall),
251 time_out_call(must_succeed(FullCall)),debug_println(9,ok),
252 fail.
253 exhaustive_kernel_succeed_check(_,_).
254
255 exhaustive_kernel_fail_check_opt(C,Cond) :- (Cond -> exhaustive_kernel_fail_check(C) ; true).
256 exhaustive_kernel_fail_check(C) :- exhaustive_kernel_fail_check4([],C,true,true).
257 exhaustive_kernel_fail_check(Opts,C) :- exhaustive_kernel_fail_check4(Opts,C,true,true).
258 exhaustive_kernel_fail_check_wf(C,WF) :-
259 exhaustive_kernel_fail_check4([],C,kernel_waitflags:init_wait_flags(WF),
260 kernel_waitflags:ground_wait_flags(WF)).
261 exhaustive_kernel_fail_check_wfdet(C,WF) :-
262 exhaustive_kernel_fail_check4([],C,kernel_waitflags:init_wait_flags(WF),
263 kernel_waitflags:ground_det_wait_flag(WF)).
264 exhaustive_kernel_fail_check_wf_upto(C,WF,Limit) :-
265 exhaustive_kernel_fail_check4([],C,kernel_waitflags:init_wait_flags(WF),
266 kernel_waitflags:ground_wait_flag_to(WF,Limit)).
267 exhaustive_kernel_fail_check_wfinit(C,WF) :-
268 exhaustive_kernel_fail_check4([],C,kernel_waitflags:init_wait_flags(WF), true).
269
270 ?exhaustive_kernel_fail_check4(Opts,Call,Pre,Post) :- enumerate_kernel_call(Call,Opts,ECall,Code),
271 debug_println(9,exhaustive_kernel_fail_check(ECall,Code)),
272 flatten_call((Pre,ECall,Code,Post),FullCall),
273 time_out_call(must_fail(FullCall)),debug_println(9,ok),
274 fail.
275 exhaustive_kernel_fail_check4(_,_,_,_).
276
277 % enumerate_kernel_call(Call, OptionList, NewCall, CodeAfter)
278 enumerate_kernel_call((A,B),Opts,(EA,EB),(CA,CB)) :- !,
279 ? enumerate_kernel_call(A,Opts,EA,CA), enumerate_kernel_call(B,Opts,EB,CB).
280 ?enumerate_kernel_call(Module:Call,Opts,Module:ECall,Code) :- !, enumerate_kernel_call(Call,Opts,ECall,Code).
281 enumerate_kernel_call(Call,Opts,ECall,Code) :- Call=..[KernelPred|CArgs],
282 (member(commutative,Opts)
283 -> (Args=CArgs ; CArgs=[A1,A2|T], Args=[A2,A1|T])
284 ; Args=CArgs
285 ),
286 ? l_enumerate_kernel_args(Args,EArgs,Code,KernelPred,1), ECall=..[KernelPred|EArgs].
287 l_enumerate_kernel_args([],[],true,_,_).
288 l_enumerate_kernel_args([H|T],[EH|ET],Code,KernelPred,Nr) :-
289 ? enumerate_kernel_args(H,EH,C1,KernelPred/Nr),
290 N1 is Nr+1,
291 ? l_enumerate_kernel_args(T,ET,C2,KernelPred,N1),
292 ? permute_code((C1,C2),Code).
293
294 permute_code((true,C),R) :- !,R=C.
295 permute_code((C,true),R) :- !, R=C.
296 permute_code((C1,C2),(C1,C2)).
297 permute_code((C1,C2),(C2,C1)).
298
299 enumerate_kernel_args(Var,Res,Code,_) :- var(Var),!, Res=Var, Code=true.
300 ?enumerate_kernel_args(X,Res,Code,KP_Nr) :- do_not_delay(X,KP_Nr),!, Res=X, Code=true.
301 enumerate_kernel_args(Arg,Arg,true,_). % just keep the argument
302 enumerate_kernel_args(Args,NewArg,Code,KP_Nr) :- arg_is_list(KP_Nr),!,
303 % we have a list of B expressions (e.g., in partition_wf)
304 ? (Code = '='(NewArg,Args) ; l_enumerate_kernel_args(Args,NewArg,Code,arg_is_list,1)).
305 enumerate_kernel_args(Arg,NewArg,Code,_) :- % delay the argument fully
306 (term_is_of_type(Arg,bsets_object,no)
307 -> Code = equal_object(NewArg,Arg,enumerate_kernel_args)
308 ; Code = '='(NewArg,Arg)).
309 enumerate_kernel_args(int(X),int(XX),Code,_) :- nonvar(X), Code = '='(X,XX). % delay setting number content
310 enumerate_kernel_args(string(X),string(XX),Code,_) :- nonvar(X), Code = '='(X,XX). % delay setting string content
311 enumerate_kernel_args(term(floating(X)),term(floating(XX)),Code,_) :- nonvar(X), Code = '='(X,XX). % delay setting real number content
312 enumerate_kernel_args((A,B),(AA,BB),(CodeA,CodeB),KP_Nr) :-
313 ? enumerate_kernel_args(A,AA,CodeA,KP_Nr),enumerate_kernel_args(B,BB,CodeB,KP_Nr),
314 (AA,BB) \== (A,B). % avoid re-generating case 3 above (just keep argument)
315 enumerate_kernel_args(freeval(ID,Case,A),freeval(ID,Case,AA),CodeA,KP_Nr) :-
316 ? enumerate_kernel_args(A,AA,CodeA,KP_Nr),
317 AA \== A. % avoid re-generating case 3 above (just keep argument)
318 enumerate_kernel_args([H|T],[H|NewT],Code,_) :- Code = equal_object(NewT,T). % delay tail
319 enumerate_kernel_args([H|T],[(int(NewI),H2)|T],Code,_) :- nonvar(H), % make index (e.g. of sequence) nonvar first
320 ? H = (II,H2), ground(II), II=int(I), \+ member((int(I),_),T), % the element is unique in domain
321 Code = '='(NewI,I).
322 enumerate_kernel_args([H|T],[(H1,NewH2)|T],Code,_) :- nonvar(H),
323 ? H = (H1,H2), ground(H2), \+ member((_,H2),T), % the element is unique in ragne
324 Code = equal_object(NewH2,H2).
325 enumerate_kernel_args([H|T],Res,Code,KP_Nr) :-
326 try_expand_and_convert_to_avl([H|T],AVL),
327 ? AVL \= [H|T], enumerate_kernel_args(AVL,Res,Code,KP_Nr).
328 enumerate_kernel_args([H|T],Res,Code,KP_Nr) :- ground([H|T]),generate_member_closure([H|T],Closure),
329 ? enumerate_kernel_args(Closure,Res,Code,KP_Nr).
330
331 % check if an argument is a list not a set.
332 arg_is_list(KernelPred/Nr) :- argument_is_list_not_set(KernelPred,Nr).
333 %arg_is_not_list(KernelPred/Nr) :- \+ argument_is_list_not_set(KernelPred,Nr).
334 argument_is_list_not_set(partition_wf,2).
335 argument_is_list_not_set(not_partition_wf,2).
336 argument_is_list_not_set(test_partition_wf,2).
337 argument_is_list_not_set(disjoint_union_generalized_wf,1).
338
339 do_not_delay(b(_,_,_),_). % do not delay instantiation B predicates and expressions
340 ?do_not_delay(global_set(G),KP/ArgNr) :- custom_explicit_sets:is_infinite_global_set(G,_),
341 ? do_not_delay_arg(KP,ArgNr).
342 % these arguments cause difficulty if infinite sets are delayed (i.e., instantiated later)
343 do_not_delay_arg(partial_function_wf,2).
344 do_not_delay_arg(partial_function_wf,3).
345 do_not_delay_arg(subset_test,2).
346 do_not_delay_arg(subset_strict_test,2).
347
348 generate_member_closure(ExplicitSet,closure(['_zzzz_unit_tests'],[Type],Pred)) :-
349 infer_type(ExplicitSet,set(Type)),
350 Pred =
351 b(member(b(identifier('_zzzz_unit_tests'),Type,[generated]),
352 b(value(ExplicitSet),set(Type),[])),pred,[]).
353
354 infer_type(Value,Type) :- (infer_value_type(Value,Type)
355 -> true %,print(inferred(Type,Value)),nl
356 ; print('### Could not infer type: '), print(Value),nl,fail).
357
358 :- use_module(btypechecker,[couplise_list/2]).
359 infer_value_type(Var,Type) :- var(Var),!,Type=any.
360 infer_value_type([],set(any)).
361 infer_value_type([H|T],set(ResType)) :- infer_value_type(H,Type),
362 ((contains_any(Type),T=[H2|_], % try H2; maybe we can infer a better type here
363 infer_value_type(H2,Type2), \+ contains_any(Type2))
364 -> ResType = Type2
365 ; ResType = Type).
366 infer_value_type(avl_set(node(H,_True,_,_,_)),set(Type)) :- infer_value_type(H,Type).
367 infer_value_type(int(_),integer).
368 infer_value_type(string(_),string).
369 infer_value_type((A,B),couple(TA,TB)) :- infer_value_type(A,TA), infer_value_type(B,TB).
370 infer_value_type(fd(_,T),global(T)).
371 infer_value_type(pred_true /* bool_true */,boolean).
372 infer_value_type(pred_false /* bool_false */,boolean).
373 infer_value_type(rec(Fields),record(FieldTypes)) :- infer_field_types(Fields,FieldTypes).
374 infer_value_type(freeval(Id,_Case,_Val),freetype(Id)).
375 infer_value_type(closure(_,Types,_),set(Res)) :- couplise_list(Types,Res).
376 infer_value_type(global_set('STRING'),R) :- !, R=set(string). % what if Event-B/TLA have a deferred set of that name
377 infer_value_type(global_set('FLOAT'),R) :- !, R=set(real).
378 infer_value_type(global_set('REAL'),R) :- !, R=set(real).
379 infer_value_type(global_set(X),R) :- b_integer_set(X),!,R=set(integer).
380 infer_value_type(global_set(Name),set(global(Name))) :- b_global_set(Name).
381 infer_value_type(term(floating(_)),real). % see kernel_reals:is_real(.)
382
383 infer_field_types([],[]).
384 infer_field_types([field(Name1,Val)|T],[field(Name1,VT)|TT]) :-
385 infer_value_type(Val,VT),
386 infer_field_types(T,TT).
387
388 contains_any(any).
389 contains_any(couple(A,B)) :- (contains_any(A) -> true ; contains_any(B)).
390 contains_any(set(A)) :- contains_any(A).
391 % to do: fields
392
393 :- assert_pre(kernel_objects:basic_type(Obj,Type), (type_check(Obj,bsets_object),type_check(Type,basic_type_descriptor))).
394 :- assert_post(kernel_objects:basic_type(Obj,_), type_check(Obj,bsets_object)).
395
396 %:- block basic_type(-,-).
397
398 basic_type(FD,global(T)) :- !, global_type(FD,T). % will set up CLP(FD) domain for X
399 % TO DO: Also: what about global(T) inside other structures (pairs) ?
400 basic_type(Rec,record(FieldTypes)) :- !, Rec=rec(Fields),
401 ? basic_field_types(Fields,FieldTypes).
402 %basic_type(Set,set(Type)) :- !, basic_type_set(Type,Set,inf).
403 basic_type(_X,_TY). %basic_type2(TY,X) %basic_symbreak(TY,X)
404 %print(ignore_basic_type(X,Y)),nl %, basic_type2(TY,X) %%STILL REQUIRED ?????
405
406 basic_field_types([],[]).
407 basic_field_types([field(Name1,Val)|T],[field(Name2,VT)|TT]) :-
408 check_field_name_compatibility(Name1,Name2,basic_field_types2),
409 ? basic_type(Val,VT),basic_field_types(T,TT).
410
411
412
413 /* ------------------------- */
414 /* enumerate_basic_type/2 */
415 /* ------------------------- */
416 /* a version of basic_type that enumerates */
417
418 :- assert_must_succeed(enumerate_basic_type([],set(couple(integer,integer)) )).
419 :- assert_must_succeed(enumerate_basic_type([([],int(2)), ([int(3)],int(4))],
420 set(couple(set(integer),integer)) )).
421 :- assert_must_succeed(enumerate_basic_type([(int(1),int(2)),(int(3),int(4))],
422 set(couple(integer,integer)) )).
423 :- assert_must_succeed(enumerate_basic_type([(int(1),int(2)),(int(3),int(4))],
424 seq(integer) )).
425 :- assert_must_succeed(enumerate_basic_type([(int(1),int(2)),(int(3),int(4))],
426 seq(integer) )).
427 :- assert_must_succeed((enumerate_basic_type(X,global('Name')),
428 equal_object(X,fd(1,'Name')) )).
429 :- assert_must_succeed((enumerate_basic_type(X,global('Name')),
430 equal_object(X,fd(2,'Name')) )).
431 :- assert_must_succeed((enumerate_basic_type(X,global('Name')),
432 X==fd(2,'Name')) ).
433 :- assert_must_succeed((enumerate_basic_type(X,record([field(a,global('Name'))])),
434 equal_object(X,rec([field(a,fd(1,'Name'))])) )).
435 :- assert_must_succeed((enumerate_basic_type(X,record([field(a,integer),field(b,global('Name'))])),
436 equal_object(X,rec([field(a,int(1)),field(b,fd(1,'Name'))])) )).
437 :- assert_must_succeed((kernel_freetypes:add_freetype(selfc1,[case(a,constant([a])),case(b,integer)]),
438 kernel_freetypes:set_freetype_depth(2),
439 enumerate_basic_type(X,freetype(selfc1)),equal_object(X,freeval(selfc1,a,term(a))),
440 kernel_freetypes:reset_freetypes)).
441 :- assert_must_succeed((kernel_freetypes:add_freetype(selfc5,[case(a,constant([a])),case(b,integer)]),
442 kernel_freetypes:set_freetype_depth(2),
443 enumerate_basic_type(X,freetype(selfc5)),equal_object(X,freeval(selfc5,b,int(1))),
444 kernel_freetypes:reset_freetypes)).
445 :- assert_must_succeed((kernel_freetypes:add_freetype(selfc7,[case(nil,constant([nil])),case(node,couple(freetype(selfc7),freetype(selfc7)))]),
446 kernel_freetypes:set_freetype_depth(3),
447 findall(X,enumerate_basic_type(X,freetype(selfc7)),Solutions),
448 length(Solutions,5),
449 kernel_freetypes:reset_freetypes)).
450 :- assert_must_succeed((kernel_freetypes:add_freetype(selfc2,[case(a,constant([a])),case(b,freetype(selfc3))]),
451 kernel_freetypes:add_freetype(selfc3,[case(c,constant([c])),case(d,freetype(selfc2))]),
452 kernel_freetypes:set_freetype_depth(4),
453 enumerate_basic_type(X,freetype(selfc2)),
454 equal_object(X,freeval(selfc2,b,freeval(selfc3,d,freeval(selfc2,b,freeval(selfc3,c,term(c)))))),
455 kernel_freetypes:reset_freetypes)).
456 :- assert_must_succeed((enumerate_basic_type(X,set(couple(global('Name'),global('Code'))) ),
457 equal_object(X,[(fd(1,'Name'),fd(1,'Code'))])) ).
458 :- assert_must_succeed((enumerate_basic_type(X,set(couple(global('Name'),global('Code'))) ),
459 equal_object(X,[(fd(2,'Name'),fd(1,'Code')), (fd(1,'Name'),fd(2,'Code'))])) ).
460 :- assert_must_succeed((enumerate_basic_type(X,set(couple(global('Name'),global('Code'))) ),
461 equal_object(X,[(fd(1,'Name'),fd(2,'Code')), (fd(2,'Name'),fd(1,'Code'))])) ).
462 :- assert_must_succeed_any((enumerate_basic_type(X,set(couple(global('Name'),global('Code'))) ),
463 equal_object(X,[(fd(1,'Name'),fd(2,'Code')), (fd(2,'Name'),fd(1,'Code'))])) ).
464 :- assert_must_succeed(enumerate_basic_type([(int(2),(int(1),int(2))),
465 (int(1),(int(3),int(4)))],
466 set(couple(integer,couple(integer,integer))) )).
467 :- assert_must_succeed(enumerate_basic_type([(int(2),(int(1),int(2))),
468 (int(55),(int(3),int(4)))],
469 set(couple(integer,couple(integer,integer))) )).
470 :- assert_must_succeed(enumerate_basic_type([term('err')],set(constant([err])))).
471 :- assert_must_succeed(enumerate_basic_type([(int(1),int(2)),(int(3),int(4))],
472 set(couple(integer,integer)))).
473
474 :- assert_must_succeed_multiple(enumerate_basic_type([(int(2),fd(_A,'Name')),(int(3),fd(_B,'Name')),
475 (int(4),fd(_C,'Name')),(int(5),fd(_D,'Name')),(int(6),fd(_E,'Name')),(int(7),fd(_F,'Name')),
476 (int(8),fd(_G,'Name')),(int(9),fd(_H,'Name')),(int(10),fd(_I,'Name')),
477 (int(11),fd(_,'Name')),(int(12),fd(_,'Name')),(int(13),fd(_,'Name')),
478 (int(14),fd(_,'Name'))],set(couple(integer,global('Name'))))).
479
480 :- assert_must_fail(( findall(XX,enumerate_basic_type(XX, set(set(global('Code')))) ,S), member(X,S), remove(S,X,R), member(X2,R), equal_object(X,X2) )).
481
482 :- assert_must_succeed(( enumerate_basic_type(global_set('Code'),
483 set(global('Code'))) )).
484
485 :- assert_must_succeed(exhaustive_kernel_succeed_check(enumerate_basic_type([(fd(1,'Name'),fd(2,'Code')), (fd(2,'Name'),fd(1,'Code'))],set(couple(global('Name'),global('Code')))))).
486 :- assert_must_succeed(exhaustive_kernel_succeed_check(enumerate_basic_type([(fd(1,'Name'),pred_true), (fd(2,'Name'),pred_false), (fd(2,'Name'),pred_true)],set(couple(global('Name'),boolean))))).
487 :- assert_must_succeed(exhaustive_kernel_succeed_check(enumerate_basic_type([pred_true,pred_false],set(boolean)))).
488 :- assert_must_succeed(exhaustive_kernel_succeed_check(enumerate_basic_type([[],[pred_true,pred_false]],set(set(boolean))))).
489
490 :- assert_pre(kernel_objects:enumerate_basic_type(Obj,Type),
491 (type_check(Obj,bsets_object),type_check(Type,basic_type_descriptor))).
492 :- assert_post(kernel_objects:enumerate_basic_type(Obj,_), (type_check(Obj,bsets_object),ground_check(Obj))).
493
494 enumerate_basic_type_wf(Obj,Type,WF) :-
495 enumerate_basic_type_wf(Obj,Type,enumerate_basic_type,WF).
496 :- block enumerate_basic_type_wf(?,-,?,?).
497 enumerate_basic_type_wf(Obj,Type,EnumWarning,WF) :-
498 enumerate_basic_type4(Type,Obj,basic,trigger_true(EnumWarning),WF). % add WF context info
499
500 :- block enumerate_basic_type(?,-).
501 enumerate_basic_type(Obj,Type) :-
502 %enumerate_basic_type2(Obj,Type).
503 ? enumerate_basic_type4(Type,Obj,basic,trigger_true(enumerate_basic_type),no_wf_available).
504 %(ground(Obj) -> true ; enumerate_basic_type3(Type,Obj,basic)).
505
506 :- block enumerate_basic_type(?,-,-).
507 enumerate_basic_type(Obj,Type,EnumWarning) :-
508 enumerate_basic_type4(Type,Obj,basic,EnumWarning,no_wf_available).
509
510
511 :- block enumerate_type(?,-,?). % last argument: basic or tight
512 enumerate_type(Obj,Type,Tight) :-
513 %enumerate_basic_type2(Obj,Type).
514 ? enumerate_basic_type4(Type,Obj,Tight,trigger_true(enumerate_type_3),no_wf_available).
515
516 :- block enumerate_type(?,-,?,?), enumerate_type(?,?,?,-).
517 enumerate_type(Obj,Type,Tight,EnumWarning) :-
518 enumerate_basic_type4(Type,Obj,Tight,EnumWarning,no_wf_available).
519
520 enumerate_type_wf(Obj,Type,Tight,WF) :-
521 ? enumerate_type_wf(Obj,Type,Tight,trigger_true(enumerate_type_wf),WF).
522
523 :- block enumerate_type_wf(?,-,?,?,?), enumerate_type_wf(?,?,?,-,?).
524 enumerate_type_wf(Obj,Type,Tight,EnumWarning,WF) :-
525 ? enumerate_basic_type4(Type,Obj,Tight,EnumWarning,WF).
526
527 %enumerate_basic_type2(X,Type) :-
528 % (ground(X) -> (basic_type(X,Type) -> true
529 % ; add_internal_error('Type error: ',enumerate_basic_type2(X,Type)))
530 % ; enumerate_basic_type3(Type,X)).
531
532 enumerate_basic_type4(global(T),R,_Tight,EnumWarning,WF) :-
533 ? enumerate_global_type_with_enum_warning(R,T,EnumWarning,WF).
534 enumerate_basic_type4(set(X),Set,Tight,EnumWarning,WF) :-
535 ? enumerate_basic_type_set(Set,X,Tight,EnumWarning,WF).
536 enumerate_basic_type4(seq(SeqRanType),Seq,Tight,EnumWarning,WF) :-
537 ? (Tight = tight -> enumerate_seq_type_wf(Seq,SeqRanType,EnumWarning,WF) % might trigger warning. push flag.
538 ? ; enumerate_basic_type4(set(couple(integer,SeqRanType)),Seq,basic,EnumWarning,WF)).
539 enumerate_basic_type4(couple(XT,YT),(X,Y),Tight,EnumWarning,WF) :-
540 ? enumerate_type_wf(X,XT,Tight,EnumWarning,WF),
541 ? enumerate_type_wf(Y,YT,Tight,EnumWarning,WF).
542 ?enumerate_basic_type4(boolean,B,_Tight,_EnumWarning,_WF) :- enumerate_bool(B).
543 enumerate_basic_type4(real,R,_Tight,EnumWarning,WF) :- enumerate_real_wf(R,EnumWarning,WF).
544 enumerate_basic_type4(string,string(S),_Tight,EnumWarning,WF) :- enumerate_string_wf(S,EnumWarning,WF).
545 enumerate_basic_type4(constant([V]),term(V),_Tight,_EnumWarning,_WF).
546 enumerate_basic_type4(record(FT),rec(F),Tight,EnumWarning,WF) :-
547 ? enumerate_basic_field_types(F,FT,Tight,EnumWarning,WF).
548 enumerate_basic_type4(freetype(Id),freeval(Id2,C,Value),Tight,EnumWarning,WF) :-
549 (Id=Id2 -> true
550 ; add_internal_error('Freetypes do not match:',enumerate_basic_type4(freetype(Id),freeval(Id2,C,Value),Tight,_,_))),
551 (ground_value(freeval(Id2,C,Value)) -> true
552 ; (is_recursive_freetype(Id),
553 max_freetype_enum_depth(Depth)
554 -> gen_enum_warning_wf(Id,0:inf,0:Depth,EnumWarning,unknown,WF)
555 ; true),
556 ? enumerate_freetype_wf(Tight,freeval(Id,C,Value),freetype(Id),WF)
557 ).
558 enumerate_basic_type4(freetype_lim_depth(Id,Depth),freeval(Id2,C,Value),Tight,_EnumWarning,WF) :-
559 (Id=Id2 -> true
560 ; add_internal_error('Freetypes do not match:',enumerate_basic_type4(freetype_lim_depth(Id,Depth),freeval(Id2,C,Value),Tight,_,_))),
561 % freetype_lim_depth is created artificially by enumerate_freetype
562 ? enumerate_freetype_wf(Tight,freeval(Id,C,Value),freetype_lim_depth(Id,Depth),WF).
563 enumerate_basic_type4(integer,int(N),Tight,EnumWarning,WF) :-
564 (nonvar(N)
565 -> (integer(N) -> true
566 ; add_internal_error('Illegal value:',enumerate_basic_type4(integer,int(N),Tight,EnumWarning,WF))
567 )
568 ? ; enumerate_int_with_span(N,EnumWarning,unknown,WF)).
569 enumerate_basic_type4(abort,V,Tight,EnumWarning,WF) :-
570 add_internal_error(deprecated_abort_type,enumerate_basic_type4(abort,V,Tight,EnumWarning,WF)).
571 enumerate_basic_type4(constant,V,Tight,EnumWarning,WF) :-
572 add_internal_error(deprecated_abort_type,enumerate_basic_type4(constant,V,Tight,EnumWarning,WF)).
573 enumerate_basic_type4(any,Obj,_Tight,EnumWarning,WF) :- enumerate_any_wf(Obj,EnumWarning,WF).
574
575 :- use_module(library(random),[random/3]).
576 enumerate_bool(X) :- preferences:preference(randomise_enumeration_order,true),
577 random(1,3,1),!,
578 (X=pred_false ; X=pred_true).
579 enumerate_bool(pred_true). /* was bool_true */
580 enumerate_bool(pred_false).
581
582 max_cardinality_string(inf). % was 2
583 all_strings_wf(AS,WF) :- findall(string(S),enumerate_string_wf(S,trigger_throw(all_strings),WF),AS).
584 :- use_module(btypechecker,[machine_string/1]).
585 enumerate_string_wf(S,_EnumWarning,_WF) :- atomic(S),!.
586 enumerate_string_wf(S,EnumWarning,WF) :- %print('### WARNING, Enumerating STRING'),nl,
587 % frozen(S,Goal), print(enum(S,Goal)),nl,
588 % MAYBE TO DO: we could check if prolog:dif(S,'"STR1"') are in frozen Goal and then enumerate more?
589 % if we do this we need to adapt dont_expand(global('STRING')) :- ... further below
590 gen_enum_warning_wf('STRING',inf,'"STRING1","STRING2",...',EnumWarning,unknown,WF),
591 (S = 'STRING1', \+ machine_string(S) % used to be '"STR1"'
592 ; S = 'STRING2', \+ machine_string(S) % used to be '"STR2"'
593 ; machine_string(S)).
594
595 is_string(string(_),_WF).
596 is_not_string(X) :- top_level_dif(X,string).
597
598
599 :- use_module(library(random),[random/3]).
600 :- use_module(kernel_reals,[is_ground_real/1, construct_real/2, is_real/2]).
601 enumerate_real_wf(S,_EnumWarning,_) :- is_ground_real(S),!.
602 enumerate_real_wf(S,EnumWarning,WF) :-
603 gen_enum_warning_wf('REAL',inf,'"0.0","1.0",...',EnumWarning,unknown,WF),
604 ( construct_real('0.0',S)
605 ; construct_real('1.0',S)
606 ; construct_real('-1.0',S)
607 ; random(0.0,1.0,R), is_real(S,R)
608 ; random(-1.0,0.0,R), is_real(S,R)
609 ; preferences:preference(maxint,MaxInt), random(1.0,MaxInt,R), is_real(S,R)
610 ; preferences:preference(minint,MinInt), random(MinInt,-1.0,R), is_real(S,R)
611 ).
612
613
614 :- block enumerate_any_wf(-,?,?).
615 enumerate_any_wf(fd(X,T),EnumWarning,WF) :- !,
616 when(nonvar(T),enumerate_global_type_with_enum_warning(fd(X,T),T,EnumWarning,WF)).
617 enumerate_any_wf(int(N),EnumWarning,WF) :- !,enumerate_basic_type4(integer,int(N),basic,EnumWarning,WF).
618 enumerate_any_wf(term(X),_EnumWarning,_WF) :- !, print_message(could_not_enumerate_term(X)).
619 enumerate_any_wf(string(S),EnumWarning,WF) :- !, enumerate_string_wf(S,EnumWarning,WF).
620 enumerate_any_wf(pred_true /* bool_true */,_EnumWarning,_WF) :- !.
621 enumerate_any_wf(pred_false /* bool_false */,_EnumWarning,_WF) :- !.
622 enumerate_any_wf([],_EnumWarning,_WF) :- !.
623 enumerate_any_wf([H|T],EnumWarning,WF) :- !, enumerate_any_wf(H,EnumWarning,WF), enumerate_any_wf(T,EnumWarning,WF).
624 enumerate_any_wf(avl_set(_),_EnumWarning,_WF) :- !.
625 enumerate_any_wf(global_set(_),_EnumWarning,_WF) :- !.
626 enumerate_any_wf((H,T),EnumWarning,WF) :- !, enumerate_any_wf(H,EnumWarning,WF), enumerate_any_wf(T,EnumWarning,WF).
627 enumerate_any_wf(rec(Fields),EnumWarning,WF) :- !, enumerate_any_wf(Fields,EnumWarning,WF).
628 enumerate_any_wf(field(_,V),EnumWarning,WF) :- !, enumerate_any_wf(V,EnumWarning,WF).
629 % we could support: closure values...
630 enumerate_any_wf(T,_EnumWarning,_WF) :- add_message(enumerate_any_wf,'Could_not_enumerate value: ',T).
631
632
633 :- use_module(preferences,[preference/2]).
634
635 % enumerate an INTEGER variable
636 enumerate_int_with_span(N,EnumWarning,Span,WF) :-
637 clpfd_domain(N,FDLow,FDUp), % print(enum(N,FDLow,FDUp)),nl,
638 (finite_domain(FDLow,FDUp)
639 ? -> label(N,FDLow,FDUp)
640 ? ; enum_unbounded(FDLow,FDUp,N,EnumWarning,Span,WF)
641 ).
642 label(N,FDLow,FDUp) :-
643 gen_enum_warning_if_large(N,FDLow,FDUp),
644 ? clpfd_interface:clpfd_randomised_labeling([],[N]).
645 % Note: CLP(FD) labeling does not necessarily try all values in range (disjunctive domains)
646
647 % when in CLP(FD) mode; try and do a case-split and see if that narrows down the possible ranges
648 enum_unbounded(X,Y,N,EnumWarning,Span,WF) :- preferences:preference(use_clpfd_solver,true),!,
649 ? enum_unbounded_clp(X,Y,N,EnumWarning,Span,WF).
650 enum_unbounded(X,Y,N,EnumWarning,Span,WF) :- %frozen(N,G), print(frozen(N,G,X,Y,EnumWarning)),nl,
651 clpfd_off_domain(N,X,Y,NX,NY),
652 (finite_domain(NX,NY) -> enumerate_int1(N,NX,NY)
653 ? ; enum_unbounded_clpfd_off(NX,NY,N,EnumWarning,Span,WF)).
654
655 enum_unbounded_clpfd_off(_FDLow,_FDUp,N,_EnumWarning,_,_WF) :- is_wd_guarded_result_variable(N),!.
656 enum_unbounded_clpfd_off(FDLow,FDUp,N,EnumWarning,Span,WF) :-
657 make_domain_finite(FDLow,FDUp,Min,Max),
658 gen_enum_warning_wf('INTEGER',FDLow:FDUp,Min:Max,EnumWarning,Span,WF),
659 ? enumerate_int1(N,Min,Max). % will also do a case split, but without posting constraints
660
661 % try to determine integer variable bounds from pending co-routines for CLPFD off mode
662 clpfd_off_domain(Var,Low,Up,NewLow,NewUp) :-
663 frozen(Var,Goal), narrow_down_interval(Goal,Var,Low,Up,NewLow,NewUp).
664 % ((Lowx,Up)==(NewLow,NewUp) -> true ; print(narrowed_down(Var,Low,Up,NewLow,NewUp)),nl).
665 narrow_down_interval((A,B),Var,Low,Up,NewLow,NewUp) :- !,
666 narrow_down_interval(A,Var,Low,Up,Low1,Up1),
667 narrow_down_interval(B,Var,Low1,Up1,NewLow,NewUp).
668 narrow_down_interval(kernel_objects:safe_less_than_equal(_,V1,V2),Var,Low,Up,NewLow,NewUp) :- !,
669 (V1==Var,number(V2) -> NewLow=Low,fd_min(Up,V2,NewUp)
670 ; V2==Var,number(V1) -> fd_max(Low,V1,NewLow),NewUp=Up
671 ; NewLow=Low,NewUp=Up).
672 narrow_down_interval(kernel_objects:safe_less_than(V1,V2),Var,Low,Up,NewLow,NewUp) :- !,
673 (V1==Var,number(V2) -> NewLow=Low,V2m1 is V2-1, fd_min(Up,V2m1,NewUp)
674 ; V2==Var,number(V1) -> V1p1 is V1+1, fd_max(Low,V1p1,NewLow),NewUp=Up
675 ; NewLow=Low,NewUp=Up).
676 narrow_down_interval(_,_,L,U,L,U).
677
678 % check if this variable is marked as being assigned to by currently not-well-defined construct such as min,max,...:
679 is_wd_guarded_result_variable(N) :- % write('-WDG-'),
680 frozen(N,FrozenGoal), % TO DO: use attribute rather than frozen
681 is_wd_guarded_result_variable_aux(FrozenGoal,N).
682 is_wd_guarded_result_variable_aux(kernel_waitflags:is_wd_guarded_result(V),N) :- !, N==V.
683 is_wd_guarded_result_variable_aux((A,B),N) :-
684 is_wd_guarded_result_variable_aux(A,N) ; is_wd_guarded_result_variable_aux(B,N).
685
686 % enumerate unbounded integer variable N in a CLP(FD) fashion:
687 enum_unbounded_clp(0,Y,N,EnumWarning,Span,WF) :- (Y=sup ; Y>0),
688 % we span 0 and positive numbers
689 !,
690 (N=0
691 % for division/modulo... 0 is often a special case
692 ; try_post_constraint(N #>0),
693 force_enumerate_int_wo_case_split(N,'INTEGER',EnumWarning,Span,WF)
694 ).
695 enum_unbounded_clp(X,Y,N,EnumWarning,Span,WF) :-
696 (is_inf_or_overflow_card(X) -> true ; X<0), (Y=sup ; Y>0),
697 % we span both negative and positive numbers
698 !,
699 % do a case split
700 (N=0
701 % Instead of doing a case-split on 0; we could try and detect other relevant values (e.g., what if we have x / (y-1)
702 ; try_post_constraint(N #>0), % TO DO: use clpfd_lt_expr(0,N), ?and in other calls; this is an area where time-outs are more likely, but we cannot do anything about them anyway
703 ? force_enumerate_int_wo_case_split(N,'INTEGER',EnumWarning,Span,WF)
704 ; try_post_constraint(N #<0),
705 ? force_enumerate_int_wo_case_split(N,'INTEGER',EnumWarning,Span,WF)
706 ).
707 enum_unbounded_clp(FDLow,FDUp,N,EnumWarning,Span,WF) :-
708 % we cover only negative or only positive numbers
709 ? force_enumerate_with_warning(N,FDLow,FDUp,'INTEGER',EnumWarning,Span,WF).
710
711 % force enumeration without case split:
712 force_enumerate_int_wo_case_split(N,Msg,EnumWarning,Span,WF) :-
713 clpfd_domain(N,FDLow,FDUp), % print(enum(N,FDLow,FDUp)),nl,
714 (finite_domain(FDLow,FDUp)
715 -> label(N,FDLow,FDUp)
716 ; %print(force_enumerate_int_wo_case_split(FDLow,FDUp)),nl,
717 ? force_enumerate_with_warning(N,FDLow,FDUp,Msg,EnumWarning,Span,WF)
718 ).
719
720 force_enumerate_with_warning(N,_FDLow,_FDUp,_Msg,_EnumWarning,_Span,_WF) :- % check if we should enumerate at all
721 is_wd_guarded_result_variable(N),!. % affects tests 1825, 2017
722 force_enumerate_with_warning(N,FDLow,FDUp,Msg,EnumWarning,Span,WF) :-
723 make_domain_finite(FDLow,FDUp,Min,Max),
724 gen_enum_warning_wf(Msg,FDLow:FDUp,Min:Max,EnumWarning,Span,WF),
725 %try_post_constraint(N in Min..Max), % I am not sure whether this is useful or not
726 ? enumerate_int2(N,Min,Max).
727
728
729 % generate enumeration warning:
730 gen_enum_warning_wf(TYPE,RANGE,RESTRICTED_RANGE,Trigger,Span,WF) :-
731 Warning = enumeration_warning(enumerating(Info),TYPE,RANGE,RESTRICTED_RANGE,critical),
732 (get_trigger_info(Trigger,Info)
733 -> (Span=unknown,Info=b(_,_,_),get_texpr_pos(Info,Span2) -> true ; Span2=Span)
734 ; Info=unknown, Span2=Span
735 ),
736 (add_new_event_in_error_scope(Warning,
737 print_enum_warning(Trigger,TYPE,RANGE,RESTRICTED_RANGE,Span2,WF))
738 % may also throw(Warning)
739 ->
740 (preference(allow_enumeration_of_infinite_types,false)
741 -> formatsilent('### VIRTUAL TIME-OUT generated because ENUMERATE_INFINITE_TYPES=false~n',[]),
742 % print_pending_abort_error(WF),
743 (silent_mode(on) -> true ; print_span_nl(Span2)),
744 throw(Warning)
745 ; Trigger = trigger_throw(Source)
746 -> (silent_mode(on) -> true
747 ; Source=b(identifier(ID),_,_) ->
748 format('### VIRTUAL TIME-OUT generated for ~w ',[ID]),
749 print_span_nl(Span2)
750 ; format('### VIRTUAL TIME-OUT generated for ~w ',[Source]),
751 print_span_nl(Span2)
752 ),
753 throw(Warning)
754 ; true)
755 ; true).
756
757 %get_trigger_info(trigger_false(I),Info) :- get_trigger_info2(I,Info). % was non_critical ; no longer used
758 get_trigger_info(trigger_true(I),Info) :- get_trigger_info2(I,Info).
759 get_trigger_info(trigger_throw(I),Info) :- get_trigger_info2(I,Info).
760 %get_trigger_info2(enum_wf_context(_,Info),Res) :- !,Res=Info. % no longer used; WF now passed
761 get_trigger_info2(Info,Info).
762
763
764 % TO DO: pass WF explicitly rather than extracting it from enumeration warning terms
765 :- use_module(translate,[translate_span/2, translate_error_term/3]).
766 print_pending_abort_error(WF) :-
767 pending_abort_error(WF,Msg,ErrTerm,Span),
768 !, % just print one error
769 translate_span(Span,TSpan),
770 translate_error_term(ErrTerm,Span,TT),
771 format_with_colour(user_output,[bold],' (could be due to WD-Error ~w: ~w ~w)~n',[TSpan,Msg,TT]).
772 print_pending_abort_error(_).
773
774 % try and get get_pending_abort_error_for_trigger
775 get_pending_abort_error_for_info(WF,Span,FullMsg,ErrTerm) :-
776 pending_abort_error(WF,Msg,ErrTerm,Span),
777 ajoin(['Enumeration warning occured, probably caused by WD-Error: ',Msg],FullMsg).
778
779 :- use_module(translate,[print_span/1, print_span_nl/1]).
780 % THROWING,OuterSpan added by add_new_event_in_error_scope
781 print_enum_warning(_,_,_,_,_,_WF,THROWING,_) :-
782 THROWING \= throwing, % maybe we should also be silent if THROWING=throwing; see test 1522
783 silent_mode(on), % we could also check: performance_monitoring_on,
784 !. % do not print
785 print_enum_warning(Trigger,_,_,_,_LocalSpan,WF,THROWING,OuterThrowSpan) :-
786 will_throw_enum_warning(THROWING),
787 debug_mode(off),
788 !, % do not print detailed enumeration warning with reduced scopes; we print another message instead
789 print_throwing_wf(THROWING,Trigger,OuterThrowSpan,WF).
790 print_enum_warning(_,_,_,_,_,_WF,THROWING,_) :- THROWING \= throwing,
791 inc_counter(non_critical_enum_warnings,Nr), Nr>50,!, % do not print anymore
792 (Nr=51 -> write('### No longer printing non-critical enumeration warnings; limit exceeded.'),nl
793 ; true).
794 print_enum_warning(Trigger,TYPE,RANGE,RESTRICTED_RANGE,LocalSpan,WF,THROWING,OuterThrowSpan) :-
795 write('### Unbounded enumeration of '), % error_manager:trace_if_user_wants_it,
796 print_trigger_var(Trigger),
797 format('~w : ~w ---> ~w ',[TYPE,RANGE,RESTRICTED_RANGE]),
798 print_wf_context(WF),
799 print_span(LocalSpan),nl,
800 print_throwing_wf(THROWING,Trigger,OuterThrowSpan,WF).
801
802 % just count number of enum warnings
803 :- use_module(extension('counter/counter'),
804 [counter_init/0, new_counter/1, inc_counter/2, reset_counter/1]).
805 kernel_objects_startup :- % call once at startup to ensure all counters exist
806 counter_init,
807 new_counter(non_critical_enum_warnings).
808 kernel_objects_reset :- reset_counter(non_critical_enum_warnings).
809
810 :- use_module(probsrc(eventhandling),[register_event_listener/3]).
811 :- register_event_listener(startup_prob,kernel_objects_startup,
812 'Initialise kernel_objects counters.').
813 :- register_event_listener(clear_specification,kernel_objects_reset,
814 'Reset kernel_objects counters.').
815
816 % -----------
817
818 will_throw_enum_warning(THROWING) :-
819 (THROWING=throwing -> true ; preference(strict_raise_enum_warnings,true)).
820
821 :- use_module(tools_printing,[format_with_colour/4]).
822 print_throwing(THROWING,Span) :- print_throwing_wf(THROWING,unknown_info,Span,no_wf_available).
823 print_throwing_wf(THROWING,TriggerInfo,ThrowSpan,WF) :-
824 peel_trigger(TriggerInfo,Info),
825 (preference(strict_raise_enum_warnings,true)
826 -> (get_pending_abort_error_for_info(WF,Span,Msg,ErrTerm)
827 -> add_error(strict_raise_enum_warnings,Msg,ErrTerm,Span)
828 ; add_error(strict_raise_enum_warnings,'Enumeration warning occured','',ThrowSpan)
829 )
830 ; true
831 ),
832 (THROWING=throwing ->
833 (get_trigger_info_variable(Info,VarID)
834 -> format_with_colour(user_output,[bold],'Generating VIRTUAL TIME-OUT for unbounded enumeration of ~w!~n',[VarID])
835 ; format_with_colour(user_output,[bold],'Generating VIRTUAL TIME-OUT for unbounded enumeration warning!~n',[])
836 ),
837 print_pending_abort_error(WF),
838 (get_wait_flags_context_msg(WF,Msg) % % get call stack or other context message from WF
839 -> format_with_colour(user_output,[bold],' ~w~n',[Msg])
840 ; true),
841 (extract_span_description(ThrowSpan,PosMsg) -> format_with_colour(user_output,[bold],' ~w~n',[PosMsg]) ; true)
842 ; true).
843
844 peel_trigger(trigger_true(Info),Info) :- !.
845 peel_trigger(trigger_throw(Info),Info) :- !.
846 peel_trigger(Info,Info).
847
848 print_trigger_var(trigger_true(Info)) :- !, print_trigger_var_info(Info), write(' : ').
849 print_trigger_var(trigger_throw(Info)) :- !, print_trigger_var_info(Info), write(' : (all_solutions) : ').
850 %print_trigger_var(trigger_false(Info)) :- !, print_trigger_var_info(Info), print(' (not critical [unless failure]) : '). % no longer used
851 print_trigger_var(X) :- write(' UNKNOWN TRIGGER: '), print(X), write(' : ').
852
853 print_wf_context(WF) :-
854 (get_wait_flags_context_msg(WF,Msg)
855 -> format('~n### ~w~n ',[Msg]) %format(' : (~w)',[Msg])
856 ; true).
857 :- use_module(translate,[print_bexpr/1]).
858 print_trigger_var_info(b(E,T,I)) :- !, print_bexpr(b(E,T,I)), write(' '), print_span(I).
859 print_trigger_var_info(VarID) :- print(VarID).
860
861 % get variable name from trigger info field
862 get_trigger_info_variable(b(identifier(ID),_,_),VarID) :- !, VarID=ID.
863 get_trigger_info_variable(ID,VarID) :- atom(ID), VarID=ID.
864
865
866 % generate a warning if a large range is enumerated
867 gen_enum_warning_if_large(Var,FDLow,FDUp) :-
868 (FDUp>FDLow+8388608 /* 2**23 ; {x|x:1..2**23 & x mod 2 = x mod 1001} takes about 2 minutes */
869 % however the domain itself could be very small, we also check clpfd_size instead
870 -> fd_size(Var,Size), % no need to call clpfd_size; we know we are in CLP(FD) mode
871 (Size =< 8388608 -> true
872 ; enum_warning_large(Var,'INTEGER',FDLow:FDUp)
873 )
874 ; true).
875 enum_warning_large(_Var,TYPE,RANGE) :-
876 Warning = enumeration_warning(enumerating,TYPE,RANGE,RANGE,non_critical),
877 (add_new_event_in_error_scope(Warning,print_enum_warning_large(TYPE,RANGE))
878 -> true
879 ; true).
880
881 print_enum_warning_large(TYPE,RANGE,THROWING,Span) :-
882 print('### Warning: enumerating large range '),
883 print(TYPE), print(' : '),
884 print(RANGE),nl,
885 print_throwing(THROWING,Span).
886
887 :- block finite_warning(-,?,?,?,?).
888 finite_warning(_,Par,Types,Body,Source) :-
889 add_new_event_in_error_scope(enumeration_warning(checking_finite_closure,Par,Types,finite,critical),
890 print_finite_warning(Par,Types,Body,Source) ),
891 fail. % WITH NEW SEMANTICS OF ENUMERATION WARNING WE SHOULD PROBABLY ALWAYS FAIL HERE !
892 print_finite_warning(Par,Types,Body,Source,THROWING,Span) :-
893 print('### Warning: could not determine set comprehension to be finite: '),
894 translate:print_bvalue(closure(Par,Types,Body)),nl,
895 print('### Source: '), print(Source),nl,
896 print_throwing(THROWING,Span).
897
898 :- block enumerate_natural(-,?,-,?,?).
899 ?enumerate_natural(N,From,_,Span,WF) :- nonvar(N) -> true ; enumerate_natural(N,From,Span,WF).
900 enumerate_natural(N,From,Span,WF) :- preference(use_clpfd_solver,false),!,
901 clpfd_off_domain(N,From,sup,NewLow,NewUp), % try narrow down domain using co-routines
902 (finite_domain(NewLow,NewUp) -> enumerate_int1(N,NewLow,NewUp)
903 ? ; force_enumerate_with_warning(N,NewLow,NewUp,'NATURAL(1)',trigger_true('NATURAL(1)'),Span,WF)).
904 enumerate_natural(N,From,Span,WF) :- clpfd_domain(N,FDLow,FDUp),
905 fd_max(FDLow,From,Low),
906 (finite_domain(Low,FDUp)
907 -> label(N,Low,FDUp)
908 ? ; enumerate_natural_unbounded(N,Low,FDUp,Span,WF)
909 ).
910 enumerate_natural_unbounded(N,FDLow1,FDUp,Span,WF) :-
911 (FDLow1=0
912 -> (N=0 ; /* do a case split */
913 try_post_constraint(N #>0), % this can sometimes make the domain finite
914 ? force_enumerate_int_wo_case_split(N,'NATURAL',trigger_true('NATURAL'),Span,WF)
915 )
916 ; force_enumerate_with_warning(N,FDLow1,FDUp,'NATURAL(1)',trigger_true('NATURAL(1)'),Span,WF)
917 ).
918
919
920 % assumes one of FDLow and FDUp is not a number
921 make_domain_finite(FDLow,_FDUp,Min,Max) :- number(FDLow),!,Min=FDLow,
922 preferences:preference(maxint,MaxInt),
923 (MaxInt>=FDLow -> Max=MaxInt ; Max=FDLow). % ensure that we try at least one number
924 make_domain_finite(_FDLow,FDUp,Min,Max) :- number(FDUp),!,Max=FDUp,
925 preferences:preference(minint,MinInt),
926 (MinInt=<FDUp -> Min=MinInt ; Min=FDUp).
927 make_domain_finite(_FDLow,_FDUp,Min,Max) :-
928 ((preferences:preference(maxint,Max),
929 preferences:get_preference(minint,Min))->true). % ensure that we try at least one number
930
931 enumerate_int1(N,Min,Max) :-
932 (Min<0 /* enumerate positive numbers first; many specs only use NAT/NATURAL */
933 ? -> (enumerate_int2(N,0,Max) ; enumerate_int2(N,Min,-1))
934 ? ; enumerate_int2(N,Min,Max)
935 ).
936 enumerate_int(X,Low,Up) :- get_int_domain(X,Low,Up,RL,RU),
937 %% print(enumerate_int(X,Low,Up, RL,RU)),nl, %%
938 ? enumerate_int2(X,RL,RU).
939
940 get_int_domain(X,Low,Up,RL,RU) :- clpfd_domain(X,FDLow,FDUp),
941 fd_max(FDLow,Low,RL),fd_min(FDUp,Up,RU).
942
943 finite_domain(Low,Up) :- \+ infinite_domain(Low,Up).
944 infinite_domain(inf,_) :- !.
945 infinite_domain(_,sup).
946
947 % second arg should always be a number
948 fd_max(inf,L,R) :- !,R=L.
949 fd_max(FDX,Y,R) :- (nonvar(FDX),nonvar(Y),FDX>Y -> R=FDX ; R=Y).
950 fd_min(sup,L,R) :- !,R=L.
951 fd_min(FDX,Y,R) :- (nonvar(FDX),nonvar(Y),FDX<Y -> R=FDX ; R=Y).
952
953 :- use_module(extension('random_permutations/random_permutations'),
954 [enum_fd_random/3]).
955
956 enumerate_int2(N,X,Y) :-
957 preferences:get_preference(randomise_enumeration_order,true)
958 ? -> enum_fd_random(N,X,Y) ; enumerate_int2_linear(N,X,Y).
959
960 enumerate_int2_linear(N,X,Y) :- X=<Y,
961 ? (N=X ; X1 is X+1, enumerate_int2_linear(N,X1,Y)).
962
963
964 enumerate_basic_type_set(X,Type,Tight,EnumWarning,WF) :- var(X),!,
965 max_cardinality_with_check(Type,Card),
966 ? enumerate_basic_type_set2(X,[],Card,Type,none,Tight,EnumWarning,WF).
967 enumerate_basic_type_set([],_,_,_EnumWarning,_WF) :- !.
968 enumerate_basic_type_set(avl_set(_),_,_,_EnumWarning,_WF) :- !.
969 enumerate_basic_type_set(freetype(_),_,_,_EnumWarning,_WF) :- !.
970 enumerate_basic_type_set(global_set(GS),Type,_Tight,_EnumWarning,_WF) :- !,
971 (Type = global(GT)
972 -> (GS = GT -> true
973 ; nonvar(GS), add_error_and_fail(enumerate_basic_type_set,'Type error in global set: ',GS:GT))
974 ; Type = integer,integer_global_set(GS)
975 ; Type = string, string_global_set(GS)
976 ; Type = real, real_global_set(GS)
977 ).
978 enumerate_basic_type_set(closure(Parameters, PT, Body),_Type,_Tight,_EnumWarning,WF) :- !,
979 (ground(Body) -> true
980 ; add_message_wf(kernel_objects,'Enumerating non-ground closure body: ',closure(Parameters, PT, Body),Body,WF),
981 % this did happen for symbolic total function closures set up for f : NATURAL1 --> ..., see test 2022
982 %term_variables(Body,Vars), print('### Variables: '), print(Vars),nl,
983 enumerate_values_inside_expression(Body,WF)
984 ).
985 enumerate_basic_type_set([H|T],Type,Tight,EnumWarning,WF) :- !,
986 % collect bound elements; avoid enumerating initial elements with elements that already appear later
987 collect_bound_elements([H|T], SoFar,Unbound,Closed),
988 (Closed=false -> max_cardinality_with_check(Type,Card)
989 ; Card = Closed),
990 % print(enum(Card,Unbound,SoFar,[H|T],Closed)),nl,
991 ? enumerate_basic_type_set2(Unbound,SoFar,Card,Type,none,Tight,EnumWarning,WF).
992 %enumerate_basic_type_set([H|T],Type,Tight,WF) :- !,
993 % (is_list_skeleton([H|T],Card) -> true
994 % ; max_cardinality_with_check(Type,Card)
995 % ),
996 % enumerate_basic_type_set2([H|T],[],Card,Type,none,Tight,WF).
997 enumerate_basic_type_set(S,Type,Tight,EnumWarning,WF) :-
998 add_internal_error('Illegal set: ',enumerate_basic_type_set(S,Type,Tight,EnumWarning,WF)).
999
1000 enumerate_basic_type_set2(HT,ElementsSoFar,_Card,_Type,_Last,_Tight,_EnumWarning,_WF) :- nonvar(HT),
1001 is_custom_explicit_set(HT,enumerate_basic_type),!,
1002 disjoint_sets(HT,ElementsSoFar). % I am not sure this is necessary; probably other constraints already ensure this holds
1003 enumerate_basic_type_set2(HT,ElementsSoFar,Card,Type,Last,Tight,EnumWarning,WF) :- var(HT),
1004 preferences:preference(randomise_enumeration_order,true),!,
1005 (random(1,3,1)
1006 -> (enumerate_basic_type_set_cons(HT,ElementsSoFar,Card,Type,Last,Tight,EnumWarning,WF)
1007 ; HT = [])
1008 ; (HT = [] ;
1009 enumerate_basic_type_set_cons(HT,ElementsSoFar,Card,Type,Last,Tight,EnumWarning,WF))
1010 ).
1011 enumerate_basic_type_set2([],_,_,_,_,_Tight,_EnumWarning,_WF).
1012 enumerate_basic_type_set2(HT,ElementsSoFar,Card,Type,Last,Tight,EnumWarning,WF) :-
1013 ? enumerate_basic_type_set_cons(HT,ElementsSoFar,Card,Type,Last,Tight,EnumWarning,WF).
1014
1015 enumerate_basic_type_set_cons(HT,ElementsSoFar,Card,Type,Last,Tight,EnumWarning,WF) :- positive_card(Card),
1016 %debug:trace_point(enum(HT,ElementsSoFar,Card,Type,Last,Tight)),
1017 (var(HT) -> HT=[H|T], NewLast=NormH /* the enumerator has completely determined H */
1018 % Note: HT=[H|T] may wake up co-routines and then attach infos to H; but these should hold indpendently for all elements
1019 ; HT=[H|T],
1020 (unbound_value(H)
1021 -> NewLast=NormH /* the enumerator has completely determined H */
1022 ; NewLast=Last) /* H was not freely chosen by the enumerator */
1023 ),
1024 ? not_element_of(H,ElementsSoFar), % this is only needed for elements generated by the enumerator itself
1025 % if we pass WF to not_element_of then test 479 fails due to different enumeration order
1026 ? enumerate_type_wf(H,Type,Tight,EnumWarning,WF),
1027 % TO DO: extract normal form from add_new_element
1028 % Note: if H is_wd_guarded_result_variable then H may not be ground !!
1029 (ground_value(H)
1030 -> val_greater_than(H,NormH,Last),
1031 add_new_element(NormH,ElementsSoFar,SoFar2) % TODO : use add_new_element_wf ?
1032 ; add_new_element(H,ElementsSoFar,SoFar2),
1033 NormH=none
1034 ),
1035 C1 is Card-1,
1036 ? enumerate_basic_type_set2(T,SoFar2,C1,Type,NewLast,Tight,EnumWarning,WF).
1037
1038 :- assert_must_succeed((collect_bound_elements([int(1),int(2),int(4),X,int(5)|T],_,U,C),U==[X|T],C==false)).
1039 :- assert_must_succeed((collect_bound_elements([int(1),int(2),int(4),X,int(5)],_,U,C),U==[X],C==1)).
1040 :- assert_must_succeed(exhaustive_kernel_succeed_check(collect_bound_elements([int(1),int(2),int(4),int(5)],_,_,_))).
1041
1042 % collect the bound and unbound elements in a list; also return if the list is closed (then return length) or return false
1043 collect_bound_elements(T, SoFar,Unbound,Closed) :- var(T),!, SoFar=[],Unbound=T,Closed=false.
1044 collect_bound_elements([],[],[],0).
1045 collect_bound_elements(avl_set(A),avl_set(A),[],0).
1046 collect_bound_elements(global_set(GS),SoFar,Unbound,Closed) :- expand_custom_set(global_set(GS),ES),
1047 collect_bound_elements(ES,SoFar,Unbound,Closed).
1048 collect_bound_elements(freetype(FS),SoFar,Unbound,Closed) :- expand_custom_set(freetype(FS),ES),
1049 collect_bound_elements(ES,SoFar,Unbound,Closed).
1050 collect_bound_elements(closure(P,T,B),SoFar,Unbound,Closed) :- expand_custom_set(closure(P,T,B),ES),
1051 collect_bound_elements(ES,SoFar,Unbound,Closed).
1052 collect_bound_elements([H|T],SoFar,Unbound,Closed) :-
1053 collect_bound_elements(T,TSoFar,TUnbound,TClosed),
1054 (ground(H) -> add_new_element(H,TSoFar,SoFar), Unbound=TUnbound, TClosed=Closed
1055 ; SoFar = TSoFar, Unbound = [H|TUnbound],
1056 (TClosed=false -> Closed=false ; Closed is TClosed+1)
1057 ).
1058
1059
1060 % perform order checking on terms, normalising them first
1061 % val_greater_than(A,NormA,NormB)
1062 val_greater_than(A,NormA,NormB) :- !,
1063 (nonvar(A),custom_explicit_sets:convert_to_avl_inside_set(A,NormA)
1064 -> (NormB==none -> true ; NormA @> NormB)
1065 ; add_internal_error('Call failed: ',custom_explicit_sets:convert_to_avl_inside_set(A,NormA)),
1066 NormA = A).
1067
1068 positive_card(inf) :- !, print('$').
1069 positive_card(C) :- (integer(C) -> C>0
1070 ; add_internal_error('Not an integer: ',positive_card(C)),fail).
1071
1072
1073
1074 :- block enumerate_basic_field_types(?,-,?,-,?).
1075 enumerate_basic_field_types([],[],_Tight,_EnumWarning,_).
1076 enumerate_basic_field_types(Fields,[field(Name,VT)|TT],Tight,EnumWarning,WF) :-
1077 ? enumerate_basic_field_types2(Fields,Name,VT,TT,Tight,EnumWarning,WF).
1078
1079 :- block enumerate_basic_field_types2(?,-,?,?,?,?,?).
1080 enumerate_basic_field_types2([field(Name1,V)|T], Name2,VT,TT,Tight,EnumWarning,WF) :-
1081 check_field_name_compatibility(Name1,Name2,enumerate_basic_field_types2),
1082 ? enumerate_type_wf(V,VT,Tight,EnumWarning,WF),
1083 ? enumerate_basic_field_types(T,TT,Tight,EnumWarning,WF).
1084
1085
1086 :- block all_objects_of_type(-,?).
1087 all_objects_of_type(Type,Res) :-
1088 findall(O,enumerate_basic_type(O,Type),Res).
1089
1090 :- use_module(library(avl),[avl_size/2]).
1091 :- use_module(kernel_cardinality_attr,[clpfd_card_domain_for_var/3]).
1092 % obtain info for enumerating sequence lists: length of list skeleton and maximum index inferred to be in the list
1093 % (MaxIndex is not the maximum index that can appear in the full sequence !)
1094 list_length_info(X,LenSoFar,Len,Type,MaxIndex) :- var(X),!,Len=0,
1095 clpfd_card_domain_for_var(X,MinCard,MaxCard),
1096 ( number(MinCard)
1097 -> MaxIndex is MinCard+LenSoFar % we know a valid list must be at least LenSoFar+MinCard long
1098 ; MaxIndex=0),
1099 ( number(MaxCard) -> Max1 is MaxCard+Len, Type = open_bounded(Max1) ; Type = open).
1100 list_length_info([],_,0,closed,0).
1101 list_length_info([H|T],LenSoFar,C1,Type,MaxIndex1) :- Len1 is LenSoFar+1,
1102 list_length_info(T,Len1,C,Type,MaxIndex),
1103 C1 is C+1,
1104 (nonvar(H),H=(I,_),nonvar(I),I=int(Idx),number(Idx),Idx>MaxIndex
1105 -> MaxIndex1 = Idx ; MaxIndex1 = MaxIndex).
1106 list_length_info(avl_set(A),LenSoFar,Size,closed,0) :- % case arises e.g. in private_examples/ClearSy/2019_Dec/well_def
1107 (LenSoFar=0 -> Size=1000000 % then length not used anyway
1108 ; avl_size(A,Size)). % we could check that this is a sequence tail!
1109 list_length_info(closure(_,_,_),_,0,open,0).
1110
1111 :- assert_must_succeed((max_cardinality(set(couple(global('Name'),global('Code'))),64))).
1112 :- assert_must_succeed((max_cardinality(set(set(set(couple(global('Name'),global('Code'))))),_))).
1113 :- assert_must_succeed((kernel_freetypes:add_freetype(selfc4,[case(a,boolean),case(b,couple(boolean,boolean))]),
1114 max_cardinality(freetype(selfc4),6),
1115 kernel_freetypes:reset_freetypes)).
1116 :- assert_must_succeed((kernel_freetypes:add_freetype(selfc6,[case(a,boolean),case(b,freetype(selfc6)),case(c,constant([c]))]),
1117 kernel_freetypes:set_freetype_depth(3),
1118 findall(X,enumerate_tight_type(X,freetype(selfc6)),Solutions),
1119 length(Solutions,NumberOfSolutions),
1120 max_cardinality(freetype(selfc6),NumberOfSolutions),
1121 kernel_freetypes:reset_freetypes)).
1122
1123 :- use_module(tools_printing,[print_error/1]).
1124 max_cardinality_with_check(Set,CCard) :-
1125 ? (max_cardinality(Set,Card) ->
1126 (is_inf_or_overflow_card(Card)
1127 -> debug_println(9,very_large_cardinality(Set,Card)),
1128 CCard = 20000000
1129 ; CCard=Card,
1130 (Card>100 -> debug_println(9,large_cardinality(Set,Card)) ; true)
1131 )
1132 ; print_error(failed(max_cardinality(Set,CCard))), CCard = 10
1133 ).
1134 max_cardinality(global(T),Card) :- b_global_set_cardinality(T,Card).
1135 max_cardinality(boolean,2).
1136 max_cardinality(constant([_V]),1).
1137 max_cardinality(any,inf). % :- print_message(dont_know_card_of_any). /* TODO: what should we do here ? */
1138 max_cardinality(string,MC) :- max_cardinality_string(MC). % is inf now
1139 %max_cardinality(abort,1).
1140 max_cardinality(integer,Card) :- Card=inf. %b_global_set_cardinality('INTEGER',Card).
1141 max_cardinality(real,Card) :- Card=inf.
1142 max_cardinality(seq(X),Card) :- % Card=inf, unless a freetype can be of cardinality 0
1143 max_cardinality(set(couple(integer,X)),Card).
1144 max_cardinality(couple(X,Y),Card) :-
1145 ? max_cardinality(X,CX), max_cardinality(Y,CY), safe_mul(CX,CY,Card).
1146 max_cardinality(record([]),1).
1147 max_cardinality(record([field(_,T1)|RF]),Card) :-
1148 ? max_cardinality(record(RF),RC),
1149 max_cardinality(T1,C1),
1150 safe_mul(C1,RC,Card).
1151 ?max_cardinality(set(X),Card) :- max_cardinality(X,CX),
1152 safe_pow2(CX,Card).
1153 max_cardinality(freetype(Id),Card) :- max_cardinality_freetype(freetype(Id),Card).
1154 max_cardinality(freetype_lim_depth(Id,Depth),Card) :- max_cardinality_freetype(freetype_lim_depth(Id,Depth),Card).
1155
1156
1157
1158 /* ---------------------------- */
1159
1160
1161 /* use a cleverer, better enumeration than enumerate_basic_type */
1162 /* can only be used in certain circumstances: operation preconditions,
1163 properties,... but not for VARIABLES as there is no guarantee that
1164 something declared as a sequence will actually turn out to be a sequence */
1165
1166 :- assert_pre(kernel_objects:enumerate_tight_type(Obj,Type),
1167 (type_check(Obj,bsets_object),type_check(Type,basic_type_descriptor))).
1168 :- assert_post(kernel_objects:enumerate_tight_type(Obj,_), (type_check(Obj,bsets_object),ground_check(Obj))).
1169 :- assert_pre(kernel_objects:enumerate_tight_type(Obj,Type,_),
1170 (type_check(Obj,bsets_object),type_check(Type,basic_type_descriptor))).
1171 :- assert_post(kernel_objects:enumerate_tight_type(Obj,_,_), (type_check(Obj,bsets_object),ground_check(Obj))).
1172
1173 :- assert_must_succeed(enumerate_tight_type([(int(1),int(2)),(int(2),int(4))],
1174 seq(integer) )).
1175 :- assert_must_succeed(enumerate_tight_type([(int(1),int(2))],seq(integer) )).
1176 :- assert_must_succeed(enumerate_tight_type([],seq(integer) )).
1177 :- assert_must_succeed((enumerate_tight_type(X,record([field(a,integer),field(b,global('Name'))])),
1178 equal_object(X,rec([field(a,int(1)),field(b,fd(1,'Name'))])) )).
1179 :- assert_must_fail(enumerate_tight_type([(int(1),int(2)),(int(3),int(_))],
1180 seq(integer) )).
1181 :- assert_must_fail(enumerate_tight_type([(int(3),int(_))],seq(integer) )).
1182 :- assert_must_succeed((bsets_clp:is_sequence(X,global_set('Name')),
1183 enumerate_tight_type(X,seq(global('Name')) ),
1184 X = [(int(1),fd(2,'Name'))] )).
1185 :- assert_must_succeed(( enumerate_tight_type(XX, record([field(balance,integer),field(name,global('Name'))])) ,
1186 XX = rec([field(balance,int(1)),field(name,fd(3,'Name'))]) )).
1187 :- assert_must_succeed(( enumerate_tight_type(XX, set(record([field(balance,global('Name')),field(name,global('Name'))]))) , /* STILL TAKES VERY LONG !! */
1188 XX = [rec([field(balance,fd(3,'Name')),field(name,fd(3,'Name'))])] )).
1189 :- assert_must_succeed(( findall(XX,enumerate_tight_type(XX, set(record([field(balance,global('Name')),field(name,global('Name'))]))) ,S),
1190 length(S,Len), Len = 512 )).
1191 :- assert_must_succeed(( findall(XX,enumerate_tight_type(XX, set(record([field(name,global('Code'))]))) ,S),
1192 length(S,Len), Len = 4 )).
1193 :- assert_must_succeed(( findall(XX,enumerate_tight_type(XX, set(record([field(fname,global('Code')),field(name,global('Code'))]))) ,S),
1194 length(S,Len), Len = 16 )).
1195 :- assert_must_succeed(( findall(XX,enumerate_tight_type(XX, set(record([field(fname,global('Code')),field(name,global('Name'))]))) ,S),
1196 length(S,Len), Len = 64 )).
1197 :- assert_must_succeed(( findall(XX,enumerate_tight_type(XX, set(global('Name'))) ,S),
1198 length(S,Len), Len = 8 )).
1199 :- assert_must_succeed(( findall(XX,enumerate_tight_type(XX, set(set(boolean))) ,S),
1200 length(S,Len), Len = 16 )).
1201 :- assert_must_succeed(( findall(XX,enumerate_tight_type(XX, set(set(global('Name')))) ,S),
1202 length(S,Len), Len = 256 )).
1203 :- assert_must_succeed(( findall(XX,enumerate_tight_type(XX, set(set(global('Code')))) ,S),
1204 length(S,Len), Len = 16 )).
1205 :- assert_must_succeed(( findall(XX,enumerate_tight_type(XX, set(set(boolean))) ,S),
1206 length(S,Len), Len = 16 )).
1207 :- assert_must_succeed(( findall(XX,enumerate_tight_type(XX, set(couple(global('Code'),global('Name')))) ,S),
1208 length(S,Len), Len = 64 )).
1209 %:- assert_must_succeed(( findall(XX,enumerate_tight_type(XX, set(couple(global('Code'),integer))) ,S),
1210 % length(S,Len), Len = 64 )).
1211 :- assert_must_succeed(( enumerate_tight_type(XX, set(record([field(balance,integer)]))) ,
1212 XX = [rec([field(balance,int(1))])] )).
1213 :- assert_must_succeed(( enumerate_tight_type(global_set('Code'),set(global('Code'))) )).
1214
1215 enumerate_tight_type(Obj,Type) :-
1216 ? enumerate_tight_type_wf(Obj,Type,no_wf_available).
1217
1218 enumerate_tight_type_wf(Obj,Type,WF) :-
1219 ? enumerate_tight_type_wf(Obj,Type,trigger_true(enumerate_tight_type),WF).
1220
1221 enumerate_tight_type(Obj,Type,EnumWarning) :- %enumerate_tight_type2(Type,Obj).
1222 enumerate_tight_type_wf(Obj,Type,EnumWarning,no_wf_available).
1223
1224 :- block enumerate_tight_type_wf(?,-,?,?), enumerate_tight_type_wf(?,?,-,?).
1225 enumerate_tight_type_wf(Obj,Type,EnumWarning,WF) :- %enumerate_tight_type2(Type,Obj).
1226 (ground_value(Obj) -> true ; % print(enumerate_tight_type(Obj,Type)),nl,
1227 ? enumerate_basic_type4(Type,Obj,tight,EnumWarning,WF)
1228 ).
1229
1230 /* TO DO: provide tight enumerators for nat, functions, ... ?? */
1231
1232
1233
1234 :- assert_must_succeed((X=[(int(I1),pred_true /* bool_true */),Y], dif(I1,1),
1235 kernel_objects:enumerate_seq_type(X,boolean,true),I1==2,Y=(int(1),pred_false /* bool_false */))).
1236
1237 ?enumerate_seq_type(X,Type,EnumWarning) :- enumerate_seq_type_wf(X,Type,EnumWarning,no_wf_available).
1238
1239 enumerate_seq_type_wf(X,Type,EnumWarning,WF) :-
1240 list_length_info(X,0,Len,ListType,MaxIndex), % ListType can be open or closed
1241 % determine MaxIndexForEnum:
1242 (ListType=closed
1243 -> MaxIndexForEnum=Len, EW = no_enum_warning,
1244 MaxIndex =< Len % otherwise this is obviously not a sequence (Index in set which is larger than size)
1245 ; ListType=open_bounded(MaxSize)
1246 -> MaxIndexForEnum=MaxSize, EW = no_enum_warning,
1247 MaxIndex =< MaxSize % otherwise cannot be a sequence
1248 % TO DO: use MinSize?
1249 ; (MaxIndex>Len -> Card = MaxIndex ; Card=Len), % in case we already have an explicit index which is higher than the length we use that as index
1250 b_global_set_cardinality('NAT1',NatCard),
1251 (NatCard<Card -> Max1=Card ; Max1=NatCard),
1252 (Max1<1 -> MaxIndexForEnum = 1 ; MaxIndexForEnum=Max1), % ensure that we generate enumeration warning
1253 EW = EnumWarning
1254 ),
1255 ? enumerate_seq(X,range(1,MaxIndexForEnum),MaxIndexForEnum,Type,EW,WF).
1256
1257 enumerate_seq([],_,_,_,_,_WF).
1258 enumerate_seq(V,_,_,_,_,_WF) :- nonvar(V),V=avl_set(_),!.
1259 enumerate_seq(V,_,_,Type,EnumWarning,WF) :- nonvar(V),V=closure(_,_,_),!,
1260 enumerate_basic_type_set(V,Type,not_tight,EnumWarning,WF).
1261 enumerate_seq(Seq,_,_,_,_,_WF) :- nonvar(Seq),
1262 is_custom_explicit_set(Seq,enumerate_seq),!.
1263 enumerate_seq(Seq,Indexes,Card,Type,EnumWarning,WF) :-
1264 (unbound_variable_for_cons(Seq)
1265 -> positive_card(Card),
1266 get_next_index(Indexes,Index,RemIndexes), % force next index
1267 Seq = [(int(Index),Element)|TSeq], VarEl=true
1268 ; Seq = [El|TSeq],
1269 (unbound_variable(El)
1270 -> VarEl=true, get_next_index(Indexes,Index,RemIndexes) % force next index
1271 ; VarEl=false),
1272 El = (int(Index),Element)
1273 ),
1274 (VarEl=true
1275 -> true % index already forced above
1276 ; number(Index) -> remove_index_ground(Indexes,Index,RemIndexes) % this can fail if Index > MaxIndex found above ! but not first time around, i.e., we will generate enum warning anyway
1277 ? ; remove_index(Indexes,Index,RemIndexes)
1278 ),
1279 (EnumWarning==no_enum_warning -> true
1280 ; gen_enum_warning_wf('seq (length)',inf,Card,EnumWarning,unknown,WF)), % delay enum_warning until we have made the first case-split (sometimes instantiating the sequence to at least one element will trigger an inconsistency)
1281 ? enumerate_tight_type_wf(Element,Type,WF),
1282 C1 is Card-1,
1283 ? enumerate_seq(TSeq,RemIndexes,C1,Type,no_enum_warning,WF).
1284
1285 get_next_index([Index1|RestIndexes],Index1,RestIndexes).
1286 get_next_index(range(I1,I2),I1,Res) :-
1287 I11 is I1+1,
1288 (I11>I2 -> Res=[] ; Res=range(I11,I2)).
1289
1290 remove_index_ground(Indexes,X,Res) :- get_next_index(Indexes,H,T),
1291 (X=H -> Res=T ; Res=[H|R2], remove_index_ground(T,X,R2)).
1292
1293 remove_index(Indexes,X,Res) :- get_next_index(Indexes,H,T),
1294 ? (X=H,Res=T ; X\==H, Res=[H|R2], remove_index(T,X,R2)).
1295
1296
1297
1298 /* a few more unit tests: */
1299
1300 :- assert_must_succeed(( findall(X,enumerate_type(X,set(couple(boolean,boolean)),tight) ,L), length(L,16) )).
1301 :- assert_must_succeed(( findall(X,enumerate_type(X,set(couple(boolean,boolean)),basic) ,L), length(L,16) )).
1302
1303 :- assert_must_succeed(( enumerate_tight_type(
1304 [rec([field(balance,int(0)),field(name,fd(2,'Name'))])],[
1305 rec([field(balance,int(1)),field(name,fd(3,'Name'))]),
1306 rec([field(balance,int(1)),field(name,fd(2,'Name'))]),
1307 rec([field(balance,int(0)),field(name,fd(1,'Name'))]),
1308 rec([field(balance,int(-1)),field(name,fd(1,'Name'))])],
1309 set(record([field(balance,integer),field(name,global('Name'))]))) )).
1310 :- assert_must_succeed(( enumerate_tight_type([
1311 rec([field(balance,int(1)),field(name,fd(2,'Name'))]),
1312 rec([field(balance,int(1)),field(name,fd(1,'Name'))]),
1313 rec([field(balance,int(0)),field(name,fd(1,'Name'))]),
1314 rec([field(balance,int(-1)),field(name,fd(1,'Name'))])|X],
1315 set(record([field(balance,integer),field(name,global('Name'))]))) ,
1316 X = [rec([field(balance,int(1)),field(name,fd(3,'Name'))])] )).
1317
1318 :- assert_must_succeed((not_element_of(X,[(pred_true /* bool_true */,pred_true /* bool_true */),
1319 (pred_true /* bool_true */,pred_false /* bool_false */),(pred_false /* bool_false */,pred_false /* bool_false */)]),
1320 enumerate_tight_type(X,couple(boolean,boolean)))).
1321
1322 :- assert_must_succeed(( not_equal_object(X,(pred_true /* bool_true */,pred_false /* bool_false */)),
1323 not_equal_object(X,(pred_false /* bool_false */,pred_false /* bool_false */)),
1324 not_equal_object(X,(pred_true /* bool_true */,pred_true /* bool_true */)),
1325 enumerate_tight_type(X,couple(boolean,boolean)))).
1326
1327 :- assert_must_succeed(( X = [fd(3,'Name')|T],enumerate_tight_type(X,set(global('Name'))),
1328 T == [fd(1,'Name'),fd(2,'Name')] )).
1329
1330
1331
1332 unbound_value(V) :-
1333 (var(V) -> unbound_variable(V)
1334 ; V = (V1,W1),unbound_value(V1), unbound_value(W1)).
1335
1336 :- use_module(bsyntaxtree,[syntaxtraversion/6]).
1337 enumerate_values_inside_expression(TExpr,WF) :-
1338 syntaxtraversion(TExpr,Expr,Type,_Infos,Subs,_),
1339 nonvar(Expr),!,
1340 enumerate_expr(Expr,Type,Subs,WF).
1341 enumerate_values_inside_expression(X,WF) :-
1342 add_internal_error('Unexpected B expression: ',enumerate_values_inside_expression(X,WF)).
1343
1344 %:- block enumerate_expr(-,?,?,?).
1345 enumerate_expr(value(X),Type,Subs,WF) :- !,
1346 (ground(Type) -> enumerate_value(X,Type,WF)
1347 ; add_internal_error('Value type not ground: ',enumerate_expr(value(X),Type,Subs,WF))).
1348 enumerate_expr(_,_,Subs,WF) :- l_enumerate_values_inside_expression(Subs,WF).
1349
1350 :- use_module(bsyntaxtree,[is_set_type/2]).
1351 % catch a few type errors:
1352 enumerate_value(X,Type,_) :- X==[], !,
1353 (is_set_type(Type,_) -> true ; add_internal_error('Illegal type: ',enumerate_value(X,Type,_))).
1354 enumerate_value(X,Type,WF) :- enumerate_basic_type_wf(X,Type,WF).
1355
1356 :- block l_enumerate_values_inside_expression(-,?).
1357 l_enumerate_values_inside_expression([],_WF).
1358 l_enumerate_values_inside_expression([H|T],WF) :-
1359 enumerate_values_inside_expression(H,WF),
1360 l_enumerate_values_inside_expression(T,WF).
1361
1362
1363 /* --------------- */
1364 /* top_level_dif/2 */
1365 /* --------------- */
1366 /* checks whether two terms have a different top-level functor */
1367
1368 :- assert_must_succeed(top_level_dif(a,b)).
1369 :- assert_must_succeed(top_level_dif(f(_X),g(_Z))).
1370 :- assert_must_fail(top_level_dif(f(a),f(_Z))).
1371 :- assert_must_fail(top_level_dif(f(a),f(b))).
1372
1373 :- block top_level_dif(-,?),top_level_dif(?,-).
1374 top_level_dif(X,Y) :-
1375 functor(X,FX,_),functor(Y,FY,_), FX\=FY. /* check arities ? */
1376
1377
1378 /* ------------------------------------------------------------------- */
1379 /* EQUAL OBJECT */
1380 /* ------------------------------------------------------------------- */
1381
1382 sample_closure(C) :-
1383 construct_closure([xx],[integer],Body,C),
1384 Body = b(conjunct(b(conjunct(
1385 b(member(b(identifier(xx),integer,[]),b(integer_set('NAT'),set(identifier(xx)),[])),pred,[]),
1386 b(greater(b(identifier(xx),integer,[]),b(integer(0),integer,[])),pred,[])),pred,[]),
1387 b(less(b(identifier(xx),integer,[]),b(integer(3),integer,[])),pred,[])),pred,[]).
1388
1389 :- assert_must_succeed(equal_object([int(3),int(1)],
1390 closure([zz],[integer],b(member(b(identifier(zz),integer,[]),b(value([int(1),int(3)]),set(integer),[])),pred,[])))).
1391 :- assert_must_succeed(( equal_object( (fd(1,'Name'),fd(1,'Name')) , (fd(1,'Name'),fd(1,'Name')) ) )).
1392 :- assert_must_succeed(( equal_object( (X,Y) , (fd(2,'Name'),fd(2,'Name')) ) , X = fd(2,'Name'), Y=fd(2,'Name') )).
1393 :- assert_must_fail(equal_object(term(a),term(b))).
1394 :- assert_must_fail(equal_object(int(1),int(2))).
1395 :- assert_must_fail(equal_object([term(a),term(b)],[term(a),term(c)])).
1396 :- assert_must_fail((equal_object([(int(1),[Y])],[(int(X),[Z])]),
1397 Y=(term(a),Y2), X=1, Z=(term(a),[]), Y2=[int(2)])).
1398 :- assert_must_fail(equal_object(rec([field(a,int(1))]),rec([field(a,int(2))]))).
1399 :- assert_must_fail(equal_object(rec([field(a,int(2)),field(b,int(3))]),
1400 rec([field(a,int(2)),field(b,int(4))]))).
1401 :- assert_must_succeed(equal_object(rec([field(a,int(2))]),rec([field(a,int(2))]))).
1402 :- assert_must_succeed(equal_object(rec([field(a,int(2)),field(b,[int(3),int(2)])]),
1403 rec([field(a,int(2)),field(b,[int(2),int(3)])]) )).
1404 :- assert_must_succeed(equal_object([(term(a),[])],[(term(a),[])])).
1405 :- assert_must_succeed(equal_object(_X,[int(1),int(2)])).
1406 :- assert_must_succeed(equal_object([int(1),int(2)],_X)).
1407 :- assert_must_succeed((equal_object([(int(1),[Y])],[(int(X),[Z])]),
1408 Y=(term(a),Y2), X=1, Z=(term(a),[]), Y2=[])).
1409 :- assert_must_succeed(equal_object([int(1),int(2)],[int(2),int(1)])).
1410 :- assert_must_succeed(equal_object(global_set('Name'),[fd(2,'Name'),fd(3,'Name'),fd(1,'Name')])).
1411 :- assert_must_succeed(equal_object(global_set('Name'),[fd(1,'Name'),fd(3,'Name'),fd(2,'Name')])).
1412 :- assert_must_succeed((equal_object([fd(3,'Name'),fd(2,'Name'),fd(1,'Name')],global_set('Name')))).
1413 %:- assert_must_succeed((equal_object([fd(3,'Name'),fd(2,'Name'),fd(1,'Name')],X),X=global_set('Name'))).
1414 :- assert_must_succeed((equal_object(Y,X),X=global_set('Name'),equal_object(Y,[fd(3,'Name'),fd(2,'Name'),fd(1,'Name')]))).
1415 :- assert_must_succeed((equal_object(X,X),X=global_set('Name'))).
1416 :- assert_must_succeed((equal_object(_,X),X=global_set('Name'))).
1417 :- assert_must_succeed((equal_object(X,global_set('Name')),X=global_set('Name'))).
1418 :- assert_must_succeed((equal_object([_A,_B],[int(2),int(1)]))).
1419 :- assert_must_fail((equal_object(X,global_set('Code')),X=global_set('Name'))).
1420 :- assert_must_fail((equal_object(Y,global_set('Name')),Y=[fd(3,'Name'),fd(1,'Name')])).
1421 :- assert_must_fail((equal_object(Y,global_set('Name')),Y=[_,_])).
1422 :- assert_must_succeed((equal_object(X,closure([xx],[integer],b(truth,pred,[]))),X==closure([xx],[integer],b(truth,pred,[])))).
1423 :- assert_must_succeed((sample_closure(C), equal_object([int(1),int(2)],C))).
1424 :- assert_must_succeed((sample_closure(C), equal_object(C,[int(1),int(2)]))).
1425 :- assert_must_fail((sample_closure(C), equal_object(C,[int(1),int(0)]))).
1426 :- assert_must_fail((sample_closure(C), equal_object(C,global_set('NAT')))).
1427 :- assert_must_succeed((equal_object(freeval(selfcx,a,int(5)),freeval(selfcx,a,int(5))))).
1428 :- assert_must_fail((equal_object([int(1),int(2),int(3)],global_set('NATURAL1')))).
1429 :- assert_must_fail((equal_object(X,global_set('NATURAL1')),equal_object(X,[int(1),int(2),int(3)]))).
1430 :- assert_must_fail((equal_object(X,[int(1),int(2),int(3)]),equal_object(X,global_set('NATURAL1')))).
1431 :- assert_must_fail((equal_object(X,global_set('NATURAL')),equal_object(X,global_set('NATURAL1')))).
1432 :- assert_must_succeed((equal_object(X,global_set('NATURAL')),equal_object(X,global_set('NATURAL')))).
1433 % :- assert_must_fail((equal_object(freeval(selfcx,a,int(5)),freeval(selfcy,a,int(5))))). % is a type error
1434 :- assert_must_fail((equal_object(freeval(selfcx,b,int(5)),freeval(selfcx,a,int(5))))).
1435 :- assert_must_fail((equal_object(freeval(selfcx,a,int(5)),freeval(selfcx,a,int(6))))).
1436 :- assert_must_succeed((equal_object(
1437 [[],[fd(1,'Name')],[fd(1,'Name'),fd(2,'Name')],
1438 [fd(1,'Name'),fd(2,'Name'),fd(3,'Name')],[fd(2,'Name')],[fd(3,'Name'),fd(2,'Name')]]
1439 ,[[],[fd(1,'Name')],[fd(1,'Name'),fd(2,'Name')],
1440 [fd(1,'Name'),fd(2,'Name'),fd(3,'Name')],[fd(2,'Name')],[fd(2,'Name'),fd(3,'Name')]])
1441 )).
1442 :- assert_must_succeed(exhaustive_kernel_check( (equal_object([int(3),int(2),int(1)],[int(2)|T]),
1443 equal_object(T,[int(1),int(3)])))).
1444 :- assert_must_succeed(exhaustive_kernel_check([commutative],equal_object([int(3),int(1)],[int(1),int(3)]))).
1445 :- assert_must_succeed(exhaustive_kernel_check([commutative],equal_object([int(3),int(4),int(1)],[int(4),int(1),int(3)]))).
1446
1447 %:- assert_must_succeed(exhaustive_kernel_fail_check([commutative],equal_object([int(1),int(2),int(3)],global_set('NATURAL1')))).
1448 :- assert_must_succeed(( equal_object([int(0),int(5)|T],avl_set(node(int(1),true,1,node(int(0),true,0,empty,empty),node(int(3),true,1,empty,node(int(5),true,0,empty,empty))))), nonvar(T),equal_object(T,[int(_A),int(_B)]) )).
1449 % NOTE: had multiple solutions; after solving Ticket #227 it no longer has :-)
1450 :- assert_must_succeed(( equal_object([int(0),int(5)|T],avl_set(node(int(1),true,1,node(int(0),true,0,empty,empty),node(int(3),true,1,empty,node(int(5),true,0,empty,empty))))), nonvar(T),equal_object(T,[_A,_B]) )).
1451
1452 :- assert_must_succeed((equal_object([_X,_Y],[int(1),int(2)]))).
1453 :- assert_must_succeed((equal_object([(int(1),X),(int(2),Y),(int(3),Z),(int(4),A),(int(5),B),(int(6),C),(int(7),D),(int(8),E),(int(9),F),(int(10),G)],avl_set(node((int(5),int(25)),true,0,node((int(2),int(4)),true,1,node((int(1),int(1)),true,0,empty,empty),node((int(3),int(9)),true,1,empty,node((int(4),int(16)),true,0,empty,empty))),node((int(8),int(64)),true,0,node((int(6),int(36)),true,1,empty,node((int(7),int(49)),true,0,empty,empty)),node((int(9),int(81)),true,1,empty,node((int(10),int(100)),true,0,empty,empty)))))),
1454 A == int(16), B == int(25),C == int(36),D == int(49),E == int(64),F == int(81),G == int(100),X == int(1),Y == int(4), Z == int(9))).
1455
1456 :- use_module(bool_pred).
1457
1458 ?equal_object(V1,V2) :- equal_object_wf(V1,V2,no_wf_available).
1459 ?equal_object(V1,V2,Origin) :- equal_object_wf(V1,V2,Origin,no_wf_available).
1460 ?equal_object_optimized(V1,V2,Origin) :- equal_object_optimized_wf(V1,V2,Origin,no_wf_available).
1461 ?equal_object_optimized(V1,V2) :- equal_object_optimized(V1,V2,unknown).
1462
1463 :- load_files(library(system), [when(compile_time), imports([environ/2])]).
1464 :- if(environ(prob_safe_mode,true)).
1465 /* a version of equal_object which will convert lists to avl if possible */
1466 equal_object_optimized_wf(V1,V2,Origin,WF) :-
1467 ( var(V1) -> (var(V2) -> V1=V2 ; equal_object_opt3(V2,V1,WF))
1468 ; equal_object_opt3(V1,V2,WF)),
1469 check_value(V1,Origin), check_value(V2,Origin).
1470 equal_object_wf(V1,V2,Origin,WF) :- ( (var(V1);var(V2)) -> V1=V2
1471 ; nonvar(V1) -> equal_object3(V1,V2,WF)
1472 ; equal_object3(V2,V1,WF)),
1473 check_value(V1,val1(Origin)), check_value(V2,val2(Origin)).
1474 equal_object_wf(V1,V2,WF) :- ( (var(V1);var(V2)) -> V1=V2
1475 ; nonvar(V1) -> equal_object3(V1,V2,WF)
1476 ; equal_object3(V2,V1,WF)),
1477 check_value(V1,equal_object1), check_value(V2,equal_object2).
1478 check_value(X,Origin) :- nonvar(X) -> check_value_aux(X,Origin) ; true.
1479 check_value_aux((A,B),Origin) :- !, check_value(A,pair1(Origin)), check_value(B,pair2(Origin)).
1480 check_value_aux([H|T],Origin) :- !, check_value(H,head(Origin)), check_value(T,tail(Origin)).
1481 check_value_aux(avl_set(X),Origin) :- !,
1482 (var(X) -> add_warning(Origin,'Variable avl_set')
1483 ; X=empty -> add_warning(Origin,'Empty avl_set') ; true).
1484 check_value_aux(closure(P,T,B),Origin) :- !,
1485 (ground(P),ground(T),nonvar(B) -> true
1486 ; add_warning(Origin,illegal_closure(P,T,B))).
1487 check_value_aux(_,_Origin).
1488 :- else.
1489 /* a version of equal_object which will convert lists to avl if possible */
1490 equal_object_optimized_wf(V1,V2,_Origin,WF) :-
1491 ? ( var(V1) -> (var(V2) -> V1=V2 ; equal_object_opt3(V2,V1,WF))
1492 ? ; equal_object_opt3(V1,V2,WF)).
1493
1494 equal_object_wf(V1,V2,_Origin,WF) :- ( (var(V1);var(V2)) -> V1=V2
1495 ? ; nonvar(V1) -> equal_object3(V1,V2,WF)
1496 ; equal_object3(V2,V1,WF)).
1497 equal_object_wf(V1,V2,WF) :- ( (var(V1);var(V2)) -> V1=V2
1498 ? ; nonvar(V1) -> equal_object3(V1,V2,WF)
1499 ; equal_object3(V2,V1,WF)).
1500 :- endif.
1501
1502
1503 equal_object_opt3(int(X),Y,_WF) :- !, Y=int(X).
1504 equal_object_opt3(fd(X,T),Y,_WF) :- !, Y=fd(X,T).
1505 equal_object_opt3(string(X),Y,_WF) :- !, Y=string(X).
1506 equal_object_opt3(pred_false,Y,_WF) :- !, Y=pred_false.
1507 equal_object_opt3(pred_true,Y,_WF) :- !, Y=pred_true.
1508 equal_object_opt3(X,S2,WF) :- var(S2), %unbound_variable(S2), % is it ok to assing an AVL set in one go ?!
1509 should_be_converted_to_avl_from_lists(X), !, % does a ground(X) check
1510 construct_avl_from_lists_wf(X,S2,WF).
1511 %equal_object_opt3([H|T],S2) :- var(S2),ground(H),ground(T), !, construct_avl_from_lists([H|T],S2).
1512 ?equal_object_opt3(X,Y,WF) :- equal_object3(X,Y,WF).
1513
1514
1515 %%equal_object3c(X,Y) :- if(equal_object3(X,Y),true,
1516 %% (print_message(equal_object3_failed(X,Y)),equal_object3(X,Y),fail)). %%
1517 :- if(environ(prob_safe_mode,true)).
1518 equal_object3(X,Y,_WF) :- (nonvar(Y) -> type_error(X,Y) ; illegal_value(X)),
1519 add_internal_error('Internal Typing Error (please report as bug !) : ',equal_object(X,Y)),fail.
1520 :- endif.
1521 equal_object3(closure(Par,ParTypes,Clo),Y,WF) :- var(Y),!,
1522 ( closure_occurs_check(Y,Par,ParTypes,Clo)
1523 -> print(occurs_check(Y,Par)),nl,
1524 expand_custom_set_wf(closure(Par,ParTypes,Clo),Expansion,equal_object3,WF),
1525 equal_object_optimized_wf(Y,Expansion,equal_object3,WF)
1526 ; Y = closure(Par,ParTypes,Clo)).
1527 equal_object3(closure(Parameters,PT,Cond),Y,WF) :-
1528 equal_object_custom_explicit_set(closure(Parameters,PT,Cond),Y,WF).
1529 %equal_object3(Obj,Y) :- is_custom_explicit_set(Obj,equal_object3_Obj),
1530 % equal_object_custom_explicit_set(Obj,Y,WF). % inlined below for performance
1531 equal_object3(global_set(X),Y,WF) :- equal_object_custom_explicit_set(global_set(X),Y,WF).
1532 equal_object3(freetype(X),Y,WF) :- equal_object_custom_explicit_set(freetype(X),Y,WF).
1533 ?equal_object3(avl_set(X),Y,WF) :- equal_object_custom_explicit_set(avl_set(X),Y,WF).
1534 equal_object3(pred_true /* bool_true */,pred_true /* bool_true */,_WF).
1535 equal_object3(pred_false /* bool_false */,pred_false /* bool_false */,_WF).
1536 equal_object3(term(X),term(X),_WF).
1537 equal_object3(string(X),string(X),_WF).
1538 ?equal_object3(rec(F1),rec(F2),WF) :- equal_fields_wf(F1,F2,WF).
1539 equal_object3(freeval(Id,C,F1),freeval(Id,C,F2),WF) :-
1540 instantiate_freetype_case(Id,C,C),
1541 equal_object_wf(F1,F2,WF).
1542 equal_object3(int(X),int(X),_WF).
1543 equal_object3(fd(X,Type),fd(Y,Type),_WF) :- eq_fd(X,Y).
1544 equal_object3((X,Y),(X2,Y2),WF) :-
1545 ? equal_object_wf(X,X2,WF), equal_object_wf(Y,Y2,WF). % initially order was reversed; but this can lead to issues in e.g. g(f("f2")), for f = {"f0"|->0, "f2"|->2} where g gets called for 0 before "f2"="f0" fails
1546 equal_object3([],X,WF) :- empty_set_wf(X,WF).
1547 equal_object3([H|T],S2,WF) :- nonvar(S2), is_custom_explicit_set_nonvar(S2),!,
1548 ? equal_custom_explicit_set_cons_wf(S2,H,T,WF).
1549 %equal_object3([H|T],S2,WF) :- equal_cons_wf(S2,H,T,WF). % leads to time-out for test 1270 : TODO investigate
1550 ?equal_object3([H|T],S2,_WF) :- equal_cons(S2,H,T).
1551
1552 equal_object_custom_explicit_set(Obj,Y,WF) :-
1553 (var(Y) -> Y = Obj
1554 ; (is_custom_explicit_set_nonvar(Y) -> equal_explicit_sets_wf(Obj,Y,WF)
1555 ; (Y=[] -> is_empty_explicit_set_wf(Obj,WF)
1556 ? ; Y=[H|T] -> equal_custom_explicit_set_cons_wf(Obj,H,T,WF)
1557 ; add_internal_error('Illegal set: ',equal_object_custom_explicit_set(Obj,Y,WF)),fail
1558 )
1559 )).
1560
1561 equal_custom_explicit_set_cons_wf(CS,H,T,_WF) :- CS \= avl_set(_),
1562 var(H),var(T), % TO DO: should we move this treatment below ? to equal_cons_lwf
1563 % YES, I THINK WE CAN DELETE THIS NOW for avl_sets; but not yet for global_set,...
1564 % print_term_summary(equal_custom_explicit_set_cons(CS,H,T)),nl, (debug_mode(on) -> trace ; true),
1565 unbound_variable(H),
1566 unbound_variable_for_cons(T),
1567 !,
1568 remove_minimum_element_custom_set(CS,Min,NewCS),
1569 (H,T) = (Min,NewCS).
1570 equal_custom_explicit_set_cons_wf(avl_set(AVL),H,T,_WF) :- var(H),
1571 is_unbound_ordered_list_skeleton(H,T),!, % TO DO: provide this also for global_set(_)
1572 % below we check if H can be removed from AVL and remove it
1573 remove_minimal_elements([H|T],avl_set(AVL),SkeletonToUnify),
1574 [H|T] = SkeletonToUnify.
1575 equal_custom_explicit_set_cons_wf(Obj,H,T,WF) :-
1576 ? equal_cons_lwf(Obj,H,T,2,WF).
1577 %equal_cons_wf(Obj,H,T,WF). % equal_cons_wf causes issues to tests 799, (but not anymore 1751, 1642, 1708)
1578
1579
1580 :- block equal_fields_wf(-,-,?).
1581 equal_fields_wf([],[],_).
1582 equal_fields_wf([field(Name1,V1)|T1],[field(Name2,V2)|T2],WF) :-
1583 check_field_name_compatibility(Name1,Name2,equal_fields_wf),
1584 equal_object_wf(V1,V2,field,WF),
1585 ? equal_fields_wf(T1,T2,WF).
1586
1587
1588 % is just like equal_cons, but H and T are guaranteed by the caller to be free
1589 % this just gives one next element of the set; can be used to iterate over sets.
1590 get_next_element(R,H,T) :- var(R),!,R=[H|T].
1591 get_next_element([H1|T1],H,T) :- !,(H1,T1)=(H,T).
1592 get_next_element(R,H,T) :- equal_cons(R,H,T).
1593
1594
1595 ?equal_cons_wf(R,H,T,WF) :- WF == no_wf_available,!, equal_cons_lwf(R,H,T,2,WF).
1596 equal_cons_wf(R,H,T,WF) :-
1597 %get_cardinality_wait_flag(R,equal_cons_wf,WF,LWF),
1598 %get_binary_choice_wait_flag(equal_cons_wf,WF,LWF), %old version
1599 LWF = lwf_card(R,equal_cons_wf,WF), % will be instantiated by instantiate_lwf
1600 ? equal_cons_lwf(R,H,T,LWF,WF).
1601
1602 % a deterministic version; will never instantiate non-deterministically:
1603 % probably better to use equal_cons_wf if possible
1604 %equal_cons_det(R,H,T) :- equal_cons_lwf4(R,H,T,_).
1605
1606 equal_cons(R,H,T) :-
1607 ? equal_cons_lwf(R,H,T,2,no_wf_available). %lwf_first(2)).
1608
1609 :- block blocking_equal_cons_lwf(-,?,?,?,?).
1610 ?blocking_equal_cons_lwf(E,H,T,LWF,WF) :- equal_cons_lwf(E,H,T,LWF,WF).
1611
1612 %equal_cons_lwf4(R,H,T,LWF) :- equal_cons_lwf(R,H,T,LWF,no_wf_available).
1613
1614 ?equal_cons_lwf(R,H,T,_,_) :- var(R),!,add_new_el(T,H,R).
1615 equal_cons_lwf([HR|TR],H,T,_,WF) :- ground_value(H), %print(delete_exact(H,[HR|TR])),nl,
1616 try_quick_delete_exact_member([HR|TR],H,Rest), % try and see if we can find an exact member in the list
1617 % adds quadratic complexity if TR is a list; TODO: maybe do a sort
1618 !,
1619 %equal_object(Rest,T,equal_cons_lwf_1).
1620 ? equal_object_wf(Rest,T,equal_cons_lwf_1,WF).
1621 ?equal_cons_lwf([HR|TR],H,T,LWF,WF) :- !, equal_cons_cons(HR,TR,H,T,LWF,WF).
1622 equal_cons_lwf(avl_set(AVL),H,T,LWF,WF) :- !,
1623 (is_one_element_custom_set(avl_set(AVL),El)
1624 ? -> empty_set(T), % was T=[], but T could be an empty closure !
1625 equal_object_wf(El,H,equal_cons_lwf_2,WF)
1626 ; T==[] -> fail % we have a one element set and AVL is not
1627 ; element_can_be_added_or_removed_to_avl(H) ->
1628 remove_element_from_explicit_set(avl_set(AVL),H,AR),
1629 ? equal_object_wf(AR,T,equal_cons_lwf_3,WF)
1630 ; nonvar(T),T=[H2|T2],element_can_be_added_or_removed_to_avl(H2) ->
1631 remove_element_from_explicit_set(avl_set(AVL),H2,AR),
1632 ? equal_object_wf(AR,[H|T2],equal_cons_lwf_4,WF)
1633 % TO DO: move all such H2 to the front ??
1634 % Common pattern for function application patterns f(a) = 1 & f(b) = 2 & f = AVL
1635 % We have f = [(a,1),(b,2)|_] to be unified with an avl_set
1636 ; at_most_one_match_possible(H,AVL,Pairs) -> Pairs=[H2], % unification could fail if no match found
1637 % this optimisation is redundant wrt definitely_not_in_list optimisation below; check test 1716
1638 % but it has better performance for large sets, e.g., when unifying with a large sequence skeleton
1639 % TODO: it could be useful even if there are more than one matches??
1640 equal_object_wf(H,H2,WF),
1641 % element_can_be_added_or_removed_to_avl not checked !
1642 % we may need to call another predicate to remove, which only checks index
1643 % or at_most_one_match_possible should remove the element itself
1644 remove_element_from_explicit_set(avl_set(AVL),H2,AR), % print(removed_from_avl_by_equal_cons(H)),nl,
1645 equal_object_wf(AR,T,equal_cons_lwf_3,WF) %%
1646 ; expand_custom_set_wf(avl_set(AVL),ES,equal_cons_lwf,WF), % length(ES,LenES),print(expanded(LenES,T)),nl,
1647 % before attempting unification quickly look if lengths are compatible:
1648 ? quick_check_length_compatible(ES,[H|T]), % not really sure this is worth it: we have propagate_card in equal_cons_cons below
1649 %we could do the following: (nonvar(LWF),LWF=lwf_card(_,_,WF) -> quick_propagation_element_information(avl_set(AVL),H,WF,NS) ; true) % we could also do it for T, but both H/T can cause issues with free_var detection
1650 equal_cons_perf_message(AVL,H,T,WF),
1651 ? equal_cons_lwf(ES,H,T,LWF,WF) ).
1652 equal_cons_lwf(C,H,T,LWF,WF) :-
1653 is_interval_closure_or_integerset(C,Low,Up),
1654 (T==[] -> true ; finite_bound(Low), finite_bound(Up)),
1655 !,
1656 ? equal_cons_interval(H,T,Low,Up,LWF,WF).
1657 equal_cons_lwf(closure(P,Ty,B),H,T,LWF,WF) :- !,
1658 ? equal_cons_closure(P,Ty,B,H,T,LWF,WF).
1659 equal_cons_lwf(freetype(ID),H,T,LWF,WF) :- !, expand_custom_set_wf(freetype(ID),ES,equal_cons_lwf,WF),
1660 blocking_equal_cons_lwf(ES,H,T,LWF,WF).
1661 ?equal_cons_lwf(global_set(G),H,T,LWF,WF) :- equal_cons_global_set(G,H,T,LWF,WF).
1662
1663
1664 :- use_module(probsrc(avl_tools),[avl_height_less_than/2]).
1665 :- use_module(performance_messages,[perf_format_wf/3]).
1666 equal_cons_perf_message(AVL,H,T,WF) :- preference(performance_monitoring_on,true),
1667 \+ avl_height_less_than(AVL,5),
1668 \+ is_unbound_ordered_list_skeleton(H,T), % otherwise H will be set to minimum of AVL deterministically
1669 !,
1670 translate:translate_bvalue(avl_set(AVL),AS),
1671 translate:translate_bvalue([H|T],HTS),
1672 perf_format_wf('Expanding avl_set for set-unification~n ~w~n =~n ~w~n',[AS,HTS],WF).
1673 equal_cons_perf_message(_,_,_,_).
1674
1675 equal_cons_closure(P,Ty,B,_H,T,_LWF,_WF) :- nonvar(T),
1676 is_definitely_finite(T), % move earlier; is_infinite_closure can perform expansions, e.g., for nested closures
1677 is_infinite_closure(P,Ty,B),
1678 !,
1679 fail. % an infinite set cannot be equal to a finite one.
1680 equal_cons_closure(Par,Types,B,H,T,LWF,WF) :-
1681 % used to be expand_custom_set_wf(closure(Par,Types,B),ES,equal_cons_closure,WF) which calls:
1682 expand_closure_to_list(Par,Types,B,ES,Done,equal_cons_closure,WF),
1683 ? lazy_check_elements_of_closure([H|T],Done, Par,Types,B,WF), % relevant for test 2466
1684 % the lazy check in custom_explicit_sets does not trigger, as we cannot unify [H|T] with ES (unlike in equal_expansions3)
1685 % because we do not know if [H|T] is ordered
1686 ? blocking_equal_cons_lwf(ES,H,T,LWF,WF).
1687
1688 is_definitely_finite(Var) :- var(Var),!,fail.
1689 is_definitely_finite([]).
1690 is_definitely_finite([_|T]) :- is_definitely_finite(T).
1691 is_definitely_finite(avl_set(_)).
1692
1693 %get_wf_from_lwf(LWF,WF) :- % TO DO: a cleaner, less hacky version; passing WF around if possible
1694 % (nonvar(LWF),LWF=lwf_card(_,_,WF1) -> WF=WF1 ; WF = no_wf_available).
1695
1696 finite_bound(I) :- (var(I) -> true /* inf would be created straightaway */ ; number(I)).
1697
1698 % Purpose: treat some specific closures better; e.g., interval closures and constraint a..b = {1,y,5,x,4} or a..b = {x} & x:100..1002
1699 equal_cons_interval(H,T,Low,Up,_LWF,_WF) :- T==[],!, % Low..Up = {H} -> Low=H & Up=H
1700 % unification will fail if Low or Up are not numbers (inf)
1701 (int(Low),int(Up)) = (H,H).
1702 %equal_cons_interval(_H,_T,Low,Up,_LWF,WF) :- (nonvar(Low),\+ number(Low) ; nonvar(Up),\+ number(Up)),!,
1703 % gen_enum_warning_wf('OPEN INTERVAL',Low:Up,'cannot expand',trigger_throw(equal_cons_interval),WF),
1704 % % we could try and instantiate T to an infinite closure
1705 % fail.
1706 equal_cons_interval(H,T,Low,Up,LWF,WF) :-
1707 (number(Low),number(Up) -> true % we can expand interval fully
1708 ; propagate_in_interval([H|T],int(Low),int(Up),0)),
1709 expand_interval_closure_to_avl(Low,Up,ES),
1710 ? blocking_equal_cons_lwf(ES,H,T,LWF,WF).
1711
1712 :- block propagate_in_interval(-,?,?,?).
1713 propagate_in_interval([],Low,Up,Sze) :-
1714 (Sze > 0 -> S1 is Sze-1, int_plus(Low,int(S1),Up) ; true). % Test should always be true
1715 propagate_in_interval([H|T],Low,Up,Sze) :-
1716 in_nat_range(H,Low,Up), % without enumeration
1717 S1 is Sze+1,
1718 propagate_in_interval(T,Low,Up,S1).
1719 propagate_in_interval(avl_set(_A),_Low,_Up,_). % TO DO: propagate if Low/Up not instantiated
1720 propagate_in_interval(closure(_,_,_),_,_,_).
1721 propagate_in_interval(global_set(_),_,_,_).
1722
1723 quick_check_length_compatible([],R) :- !,
1724 (var(R) -> R=[] % can we force R=[] here ??
1725 ; R \= [_|_]). %(R \= [_|_] -> true ; print(incompatible(R)),fail).
1726 quick_check_length_compatible([_|T],R) :-
1727 (var(R) -> true
1728 ; R = [] -> fail
1729 ? ; R = [_|RT] -> quick_check_length_compatible(T,RT)
1730 ; true).
1731
1732 :- block equal_cons_global_set(-,?,?,?,?).
1733 ?equal_cons_global_set(G,H,T,LWF,WF) :- is_infinite_global_set(G,_),!,
1734 % for maximal sets we could complement_set([H],global(G),Res),
1735 /* should normally fail, unless T is not a list but contains closure or global set */
1736 test_finite_set_wf(T,Finite,WF), dif(Finite,pred_true),
1737 when((nonvar(Finite);nonvar(LWF)),equal_cons_global_set_warning(LWF,G,H,T,WF)).
1738 % used to be : expand_custom_set(global_set(G),ES), equal_cons_lwf4(ES,H,T,LWF))).
1739 equal_cons_global_set(G,H,T,LWF,WF) :-
1740 %(is_infinite_global_set(G,_) -> test_finite_set_wf(T,Finite,WF), Finite \== pred_true ; true),
1741 expand_custom_set_wf(global_set(G),ES,equal_cons_global_set,WF),
1742 ? equal_cons_lwf(ES,H,T,LWF,WF).
1743
1744
1745 :- block equal_cons_global_set_warning(-,?,?,?,?).
1746 equal_cons_global_set_warning(_,G,H,T,WF) :-
1747 add_new_event_in_error_scope(enumeration_warning(enumerating(G),G,'{}',finite,critical),
1748 print_equal_cons_warning(G,H,T,WF)),
1749 fail. % WITH NEW SEMANTICS OF ENUMERATION WARNING WE SHOULD PROBABLY ALWAYS FAIL HERE !
1750
1751 % THROWING, Span added by add_new_event_in_error_scope
1752 print_equal_cons_warning(G,H,T,WF,THROWING,Span) :-
1753 print('### Enumeration Warning: trying to deconstruct infinite set: '),
1754 translate:print_bvalue(global_set(G)),nl,
1755 print('### Source: '), print(equal_cons_global_set(G,H,T)),nl,
1756 print_throwing_wf(THROWING,unknown_info,Span,WF).
1757
1758 add_new_el(T,H,R) :- var(T),!,R=[H|T].
1759 add_new_el(T,H,R) :- nonvar(T), is_custom_explicit_set_nonvar(T),
1760 add_element_to_explicit_set_wf(T,H,Res,no_wf_available), % will fail for closure/3
1761 !,
1762 Res=R.
1763 add_new_el([HT|TT],H,R) :- !,R=[H,HT|TT].
1764 add_new_el([],H,R) :- !, R=[H].
1765 add_new_el(Set,H,R) :- expand_custom_set_to_list(Set,ESet,_,add_new_el),
1766 add_new_el(ESet,H,R).
1767
1768 %delete_exact_member(V,_,_) :- var(V),!,fail.
1769 %delete_exact_member([H|T],El,Res) :-
1770 % (H==El -> Res=T
1771 % ; Res=[H|TR], delete_exact_member(T,El,TR)).
1772
1773 % a version of delete_exact_member with a cut off
1774 % avoids spending useless time traversing large non-ground lists
1775 % for a list consisting only of non-ground elements delete_exact_member will never succeed !
1776 % this occurs e.g., when a large list skeleton generated by e.g. size_of_sequence is unified with an avl_set
1777 % (e.g., m = READ_PGM_IMAGE_FILE("pgm_files/yuv_1.pgm") & %i.(i:1..550| m(i) /|\ 725))
1778 try_quick_delete_exact_member(List,El,Result) :-
1779 try_quick_delete_exact_member(List,1,El,Result).
1780 try_quick_delete_exact_member(V,_,_,_) :- var(V),!,fail.
1781 try_quick_delete_exact_member([H|T],Sz,El,Res) :-
1782 (H==El -> Res=T
1783 ; Res=[H|TR],
1784 (Sz>50
1785 -> ground_value(H), % after a certain limit we only proceed if there are ground elements
1786 % we could also check: preferences:preference(use_smt_mode,true)
1787 Sz=30 % check again in 20 steps
1788 ; Sz1 is Sz+1),
1789 try_quick_delete_exact_member(T,Sz1,El,TR)).
1790
1791
1792 %unbound_variable(V) :- !, unbound_variable_check(V).
1793 unbound_variable(V) :- free_var(V), frozen(V,Residue),
1794 %unbound_residue(Residue,V).
1795 (unbound_residue(Residue,V) -> true ; %print(bound_var(V,Residue)),nl,trace,unbound_residue(Residue,V),
1796 fail).
1797 unbound_residue((A,B),V) :- !,unbound_residue(A,V), unbound_residue(B,V).
1798 unbound_residue(true,_) :- !.
1799 unbound_residue(Module:Call,Variable) :- unbound_residue_m(Module,Call,Variable).
1800
1801 unbound_residue_m(external_functions,to_string_aux(GrV,_Val,Str),V) :- !, %GrV checks for groundness of _Val
1802 V==GrV,unbound_variable(Str).
1803 unbound_residue_m(external_functions,format_to_string_aux(GrV,_Format,_Val,Str),V) :- !,
1804 %GrV checks for groundness of _Val
1805 V==GrV,unbound_variable(Str).
1806 % TO DO: we need to detect other functions (e.g., B function application,...) which result in values which are not used
1807 %unbound_residue_m(_,ground_value_check(V1,V2),V) :- !, V1==V, unbound_variable(V2). % V1==V not necessary?! cycle check
1808 unbound_residue_m(Module,Residue,Var) :- unbound_basic_residue(Module,Residue,Var).
1809
1810 %unbound_basic_residue(_,true,_).
1811 unbound_basic_residue(_,ground_value_check(V1,V2),Var) :- !, Var==V1, % == check to prevent loops
1812 % in particularly in SWI, where residues also contain calls where Var==V2; e.g., test 639
1813 unbound_variable(V2).
1814 unbound_basic_residue(_,ground_value_check_aux(V1,V2,V3),Var) :- !, (Var==V1 -> true ; Var==V2), unbound_variable(V3).
1815 % we could also treat ground_value_opt_check
1816 unbound_basic_residue(b_interpreter_components,observe_variable_block(_,_,_,_,_),_). % when in -p TRACE_INFO TRUE mode
1817 unbound_basic_residue(b_interpreter_components,observe_variable1_block(_,_,_,_),_). % (provide_trace_information pref)
1818 unbound_basic_residue(kernel_objects,mark_as_to_be_computed(_),_).
1819 unbound_basic_residue(custom_explicit_sets,block_copy_waitflag_store(_,_,_,_,_),_). % this stems from checking the domain predicate of function application check_element_of_function_closure
1820 %unbound_basic_residue(kernel_objects,ordered_value(V,_),_). % <-- TO DO: treat this and then assign minimal value !
1821 %unbound_basic_residue(kernel_ordering,ordered_value2(V,_),_).
1822 % b_tighter_enumerate_sorted_value_and_continue
1823 %unbound_basic_residue(M,U,Var) :- print(bound_basic_residue(M,U,Var)),nl,fail.
1824
1825 % check if we have an unbound list_skeleton with optionally just ordering constraints
1826 % check if it is safe to assign H minimal value
1827 % TO DO: also accept if all elements have the same co-routines constraints attached (e.g., because of +-> check)
1828 is_unbound_ordered_list_skeleton(H,T) :-
1829 is_unbound_ordered_list_skeleton3(H,T,[allow_ordered_values]).
1830 is_unbound_list_skeleton(H,T) :-
1831 ? is_unbound_ordered_list_skeleton3(H,T,[]).
1832
1833 is_unbound_ordered_list_skeleton(H,T,Ordered) :-
1834 ? is_unbound_ordered_list_skeleton3(H,T,List),
1835 % if List gets instantiated it will become [allow_ordered_values|_]
1836 (var(List) -> Ordered=unordered ; Ordered=ordered).
1837
1838 is_unbound_ordered_list_skeleton3(H,T,Options) :-
1839 free_var(H),
1840 (var(T) -> unbound_variable(H),
1841 ? unbound_ordered_tail(T,Options) % or ? unbound_variable_for_cons(T)
1842 ; T = [H2|T2],
1843 unbound_variable_or_ordered(H,'$$',H2,T,Options),
1844 is_unbound_ordered_list_skeleton5(H,H2,T2,[H|T],Options)).
1845 is_unbound_ordered_list_skeleton5(Prev,H,T,All,Options) :-
1846 free_var(H),
1847 (var(T) -> unbound_variable_or_ordered(H,Prev,'$$',All,Options),
1848 unbound_ordered_tail(T,Options)
1849 ; T==[] -> unbound_variable_or_ordered(H,Prev,'$$',All,Options)
1850 ; T = [H2|T2],
1851 unbound_variable_or_ordered(H,Prev,H2,All,Options),
1852 is_unbound_ordered_list_skeleton5(H,H2,T2,All,Options)).
1853
1854 % utility: if is_unbound_ordered_list_skeleton is true, extract for every element in the list one minimal element from CS
1855 remove_minimal_elements(T,CS,Res) :- var(T),!,Res=CS.
1856 remove_minimal_elements([],CS,Res) :- !, empty_set(CS),Res=[].
1857 remove_minimal_elements([_H|T],CS,[Min|Rest]) :-
1858 remove_minimum_element_custom_set(CS,Min,NewCS), % _H will be unified in one go with Min later
1859 remove_minimal_elements(T,NewCS,Rest).
1860
1861 % it is unbound or can be assigned the minimal value of a set
1862 unbound_variable_or_ordered(Var,Prev,Nxt,All,Options) :-
1863 free_var(Var), frozen(Var,Residue),
1864 unbound_ord_residue_aux(Residue,Prev,Var,Nxt,All,Options).
1865 unbound_ord_residue_aux(true,_Prev,_,_Nxt,_All,_Options).
1866 unbound_ord_residue_aux((A,B),Prev,V,Nxt,All,Options) :- !,
1867 unbound_ord_residue_aux(A,Prev,V,Nxt,All,Options),
1868 unbound_ord_residue_aux(B,Prev,V,Nxt,All,Options).
1869 unbound_ord_residue_aux(Module:Call,Prev,V,Nxt,All,Options) :-
1870 unbound_ord_residue_m(Module,Call,Prev,V,Nxt,All,Options).
1871 unbound_ord_residue_m(Module,Residue,_,Var,_,_,_) :- unbound_basic_residue(Module,Residue,Var),!.
1872 unbound_ord_residue_m(bsets_clp,check_index(V2,_),_,V,_,_,_) :- !,
1873 V2==V. % assumes all index elements in the sequence are being checked; this is the case
1874 unbound_ord_residue_m(kernel_objects,ordered_value(A,B),Prev,V,Nxt,_,Options) :- !,
1875 % there is also a bsets_clp version
1876 ((A,B)==(Prev,V) ; (A,B)==(V,Nxt)),
1877 (member(allow_ordered_values,Options) -> true).
1878 unbound_ord_residue_m(kernel_objects,not_equal_object_wf(A,B,_),_,V,_,All,_) :- !,
1879 % check for all diff constraint; e.g., set up by not_element_of_wf(H,SoFar,WF) in cardinality_as_int2;
1880 % anyway: all elements in a list must be different
1881 (A==V -> exact_member_in_skel(B,All) ; B==V, exact_member_in_skel(A,All)).
1882 unbound_ord_residue_m(kernel_objects,not_element_of_wf1(Set,Val,_),_,V,_,All,_) :- !, Val==V,
1883 open_tail(All,Tail), Tail==Set. % ditto, again just stating that Values are distinct in the list
1884 %unbound_ord_residue_m(A,Prev,V,Nxt,All) :-
1885 % print(unbound_ord_residue_aux(A,Prev,V,Nxt,All)),nl,fail.
1886
1887 % get tail of an open list:
1888 open_tail(X,Res) :- var(X),!,Res=X.
1889 open_tail([_|T],Res) :- open_tail(T,Res).
1890 % exact member in a possibly open list:
1891 exact_member_in_skel(X,List) :- nonvar(List), List=[Y|T],
1892 (X==Y -> true ; exact_member_in_skel(X,T)).
1893
1894
1895 unbound_ordered_tail(T,Options) :- free_var(T), frozen(T,Residue),
1896 ? unbound_ordered_tail_aux(Residue,T,Options).
1897 unbound_ordered_tail_aux(true,_,_).
1898 unbound_ordered_tail_aux(kernel_objects:propagate_card(A,B,_Eq),V,_) :-
1899 (V==A ; V==B). % just specifies A and B have same cardinality
1900 unbound_ordered_tail_aux(prolog:dif(X,Y),V,_) :- (V==X,Y==[] ; V==Y,X==[]).
1901 unbound_ordered_tail_aux(dif(X,Y),V,_) :- (V==X,Y==[] ; V==Y,X==[]).
1902 unbound_ordered_tail_aux(kernel_objects:lazy_ordered_value(W,_),T,Options) :-
1903 W==T, %% difference with just_cardinality_constraints
1904 (member(allow_ordered_values,Options)->true).
1905 unbound_ordered_tail_aux(bsets_clp:propagate_empty_set(_,_),_,_).
1906 unbound_ordered_tail_aux(kernel_objects:prop_non_empty(_,W,_),T,_) :- W==T.
1907 unbound_ordered_tail_aux(kernel_objects:cardinality_as_int2(W,_,_,_,_,_),T,_) :- W==T.
1908 unbound_ordered_tail_aux(kernel_objects:cardinality3(W,_,_),Var,_) :- W==Var.
1909 unbound_ordered_tail_aux((A,B),T,Options) :-
1910 ? (unbound_ordered_tail_aux(A,T,Options) -> true ; unbound_ordered_tail_aux(B,T,Options)).
1911 % TODO: call unbound_basic_residue
1912
1913 % co-routine used to mark certain values as to be computed; avoid instantiating them
1914 :- block mark_as_to_be_computed(-).
1915 mark_as_to_be_computed(_).
1916
1917 is_marked_to_be_computed(X) :- var(X),frozen(X,G), %nl,print(check_frozen(X,G)),nl,
1918 marked_aux(G,X).
1919 marked_aux((A,B),V) :- (marked_aux(A,V) -> true ; marked_aux(B,V)).
1920 marked_aux(kernel_objects:mark_as_to_be_computed(M),V) :- V==M.
1921
1922 :- public unbound_variable_check/1.
1923 % currently not used; but can be useful for debugging
1924 unbound_variable_check(V) :- free_var(V), % check no bool_pred attributes
1925 (frozen(V,Goal), Goal\=true
1926 -> nl,print('### WARNING: goal attached to unbound variable expression'),nl,print(V:Goal),nl, %trace,
1927 fail
1928 ; true).
1929
1930 % check if a variable is unbound or only dif(_,[]) attached; we do not need to check for bool_pred attributes as we have a set
1931 unbound_variable_for_cons(Set) :- var(Set),frozen(Set,F),
1932 \+ contains_problematic_coroutine_for_cons(F,Set). % for equal cons we can allow more co-routines than when we want to freely determine a value in enumeration; the head of the list is unbound
1933
1934 % prolog:dif(X,Y) with Y == [] is ok
1935 contains_problematic_coroutine_for_cons(custom_explicit_sets:element_of_avl_set_wf3(Var,_,_,_,_),V) :- V==Var. % occurs in test 1270
1936 contains_problematic_coroutine_for_cons(kernel_objects:non_free(_),_). % has been marked as non-free
1937 contains_problematic_coroutine_for_cons(kernel_objects:mark_as_to_be_computed(_),_). % has been marked to be computed by closure expansion
1938 % contains_problematic_coroutine_for_cons(bsets_clp:range_wf(_,Var,_),V) :- V==Var. % will be computed by range, range does not propagate well backwards (does it?)
1939 % contains_problematic_coroutine_for_cons(custom_explicit_sets:expand_custom_set_to_list3(_From,Var,_Done,_Source,_WF),V) :- V==Var. % this can propagate backwards
1940 contains_problematic_coroutine_for_cons((A,B),Var) :-
1941 (contains_problematic_coroutine_for_cons(A,Var) -> true
1942 ; contains_problematic_coroutine_for_cons(B,Var)).
1943 %contains_problematic_coroutine_for_cons(M:Call,Var) :-
1944 % functor(Call,F,N), format('~w:~w/~w for ~w~n',[M,F,N,Var]),fail.
1945
1946 unbound_variable_for_card(Set) :- % when do we allow card to instantiate a list skeleton
1947 preference(data_validation_mode,true),
1948 !,
1949 unbound_variable(Set).
1950 unbound_variable_for_card(Set) :- unbound_variable_for_cons(Set).
1951
1952
1953
1954 % handling equal_object for [HR|TR] = [H|T]
1955
1956 equal_cons_cons(HR,TR,H,T,_LWF,WF) :- TR==[],!,
1957 ? empty_set_wf(T,WF), % was T=[], but T could be an empty closure
1958 equal_object_wf(HR,H,equal_cons_cons_1,WF).
1959 equal_cons_cons(HR,TR,H,T,_LWF,WF) :- T==[],!,
1960 ? empty_set_wf(TR,WF), % was TR=[], but TR could be an empty closure
1961 equal_object_wf(HR,H,equal_cons_cons_2,WF).
1962 equal_cons_cons(HR,TR,H,T,_LWF,WF) :-
1963 %(is_unbound_list_skeleton(H,T) -> true ; is_unbound_list_skeleton(HR,TR)),
1964 ? (is_unbound_ordered_list_skeleton(H,T,Ordered)
1965 -> (Ordered = unordered -> true
1966 ; is_unbound_ordered_list_skeleton(HR,TR))
1967 ? ; is_unbound_list_skeleton(HR,TR)),
1968 % if both are ordered: then the first elements must be equal,
1969 % if one or both are not ordered: the unification HR=H is only ok if the other is unbound
1970 % beware of tests 1078 and 1101 when allowing ordered lists
1971 !,
1972 % HR is variable: no constraints/co-routines attached to it; no other element in TR is constrained either
1973 %(HR,TR)=(H,T). %fails, e.g., if TR=[] and T= empty closure !
1974 % at the moment : unbound_check does not allow ordered set skeletons
1975 HR=H, equal_object_wf(TR,T,equal_cons_cons3,WF).
1976 equal_cons_cons(HR,TR,H,T,LWF,WF) :-
1977 % here we use LWF for the first time
1978 %(number(LWF) -> LWF2=LWF ; true),
1979 equality_objects_lwf(HR,H,EqRes,LWF2,WF),
1980 ? equal_cons1(EqRes,HR,TR,H,T,LWF,LWF2,WF).
1981
1982 equal_cons1(EqRes,_HR,TR,_H,T,_LWF,_LWF2,WF) :- EqRes == pred_true,!,
1983 ? equal_object_wf(TR,T,equal_cons1,WF).
1984 equal_cons1(EqRes,HR,TR,H,T,_LWF,_LWF2,WF) :- var(EqRes),
1985 (definitely_not_in_list(TR,H)
1986 ; definitely_not_in_list(T,HR) % this can induce a quadratic complexity for large list skeletons
1987 ),
1988 !,
1989 EqRes=pred_true, % H cannot appear in TR; it must match HR
1990 ? equal_object_wf(TR,T,equal_cons1,WF).
1991 equal_cons1(EqRes,HR,TR,H,T,LWF,LWF2,WF) :-
1992 ? instantiate_lwf(LWF,LWF2), % instantiate later to ensure var(EqRes) can hold if LWF already bound
1993 %print(eq_cons_cons_lwf2(HR,H,EqRes,LWF2)),nl,
1994 ? equal_cons2(EqRes,HR,TR,H,T,LWF2,WF),
1995 propagate_card(TR,T,EqRes). % prevents tail recursion; move earlier/remove if EqRes nonvar?
1996 %,instantiate_lwf(LWF,LWF2) % we could instantiate LWF2 later here to give propagate_card a chance to figure out value of EqRes first ? this slows down examples/B/Alstom/CompilatonProject/Regles/Rule_DB_Route_0001ori.his
1997
1998
1999 % this will instantiate LWF if it has not yet been computed
2000 % (Idea: get_cardinality_wait_flag can be expensive; only do it if we really need the wait_flag)
2001 instantiate_lwf(LWF,R) :- var(LWF),!,R=LWF.
2002 instantiate_lwf(lwf_card(Set,Info,WF),LWF) :- !, % TO DO: in prob_data_validation_mode: increase or get_last_waitflag
2003 ? get_cardinality_wait_flag(Set,Info,WF,LWF).
2004 %% get_cardinality_powset_wait_flag(Set,Info,WF,_,LWF).
2005 %instantiate_lwf(lwf_first(X),R) :- !, R=X.
2006 instantiate_lwf(LWF,LWF).
2007
2008 :- block equal_cons2(-,?,?,?,?,?,?).
2009 ?equal_cons2(pred_true,_HR,TR,_H,T,_,WF) :- equal_object_wf(TR,T,equal_cons2,WF).
2010 equal_cons2(pred_false,HR,TR, H,T,LWF,WF) :-
2011 ? equal_cons_lwf(T,HR,TR2,LWF,WF), % look for HR inside T
2012 T2=TR2,
2013 ? equal_cons_lwf(TR,H,T2,LWF,WF). %, was instead of T2=TR2: equal_object(TR2,T2).
2014
2015 :- use_module(kernel_tools,[cannot_match/2]).
2016 % TO DO: investigate whether we should not use kernel_equality or at least a blocking version
2017 definitely_not_in_list(V,_) :- var(V),!,fail.
2018 definitely_not_in_list([],_).
2019 definitely_not_in_list([H|T],X) :- cannot_match(H,X), definitely_not_in_list(T,X).
2020
2021
2022 :- block propagate_card(-,-,-).
2023 propagate_card(X,Y,EqRes) :-
2024 (nonvar(EqRes) -> true % we no longer need to propagate; equal_cons will traverse
2025 ; nonvar(X) -> propagate_card2(X,Y,EqRes)
2026 ; propagate_card2(Y,X,EqRes)).
2027 propagate_card2([],Y,_) :- !,empty_set(Y).
2028 propagate_card2([_|TX],Y,EqRes) :- !,
2029 (var(Y) -> Y= [_|TY], propagate_card(TX,TY,EqRes)
2030 ; Y=[] -> fail
2031 ; Y=[_|TY] -> propagate_card(TX,TY,EqRes)
2032 ; true
2033 ). % TO DO: add more propagation
2034 propagate_card2(_,_,_).
2035
2036 %same_card_and_expand(A,B,ExpA,ExpB) :- .... + reorder ??
2037
2038
2039 % CODE FOR CHECKING FOR TYPE ERRORS AT RUNTIME
2040
2041 % explicitly check for type errors between two terms
2042 % can be useful for some external functions were users provide predicates/values at runtime
2043 % should be called before attempting e.g., equal_object
2044 check_values_have_same_type(TermA,TermB,_Pos) :- (var(TermA) ; var(TermB)),!.
2045 check_values_have_same_type((A1,A2),(B1,B2),Pos) :- !,
2046 check_values_have_same_type(A1,B1,Pos),
2047 check_values_have_same_type(A2,B2,Pos).
2048 % TODO: better checking for fields
2049 check_values_have_same_type(TermA,TermB,Pos) :- type_error(TermA,TermB),!,
2050 add_error(kernel_objects,'Type error, values are incompatible:',(TermA,TermB),Pos).
2051 check_values_have_same_type(_,_,_).
2052
2053 % the following is used by some kernel predicates if(environ(prob_safe_mode,true)).
2054 :- assert_must_succeed(type_error([],int(1))).
2055 :- assert_must_succeed(type_error((int(1),int(2)),[pred_true])).
2056 :- assert_must_succeed(type_error(string('Name'),global_set('Name'))).
2057 :- assert_must_fail((type_error([],[_]))).
2058 type_error(pred_true,Y) :- \+ bool_val(Y).
2059 type_error(pred_false,Y) :- \+ bool_val(Y).
2060 type_error([],Y) :- no_set_type_error(Y).
2061 type_error([_|_],Y) :- no_set_type_error(Y).
2062 %type_error(X,Y) :- is_custom_explicit_set(X,type_error1), no_set_type_error(Y).
2063 type_error(avl_set(A),Y) :- illegal_avl_set(A) -> true ; no_set_type_error(Y).
2064 type_error(global_set(_),Y) :- no_set_type_error(Y).
2065 type_error(freetype(_),Y) :- no_set_type_error(Y).
2066 type_error(closure(P,_,B),Y) :-
2067 (var(P) -> true ; var(B) -> true ; P=[] -> true ; P=[P1|_], var(P1) -> true ; no_set_type_error(Y)).
2068 type_error((_,_),Y) :- Y \= (_,_).
2069 type_error(fd(_,T1),Y) :- (Y= fd(_,T2) -> nonvar(T1),nonvar(T2),T1 \=T2 ; true).
2070 type_error(int(_),Y) :- Y\= int(_).
2071 type_error(term(_),Y) :- Y\= term(_).
2072 type_error(rec(FX),Y) :- (Y = rec(FY) -> type_error_fields(FX,FY,'$') ; true).
2073 type_error(freeval(ID,_,_),Y) :- Y \= freeval(ID,_,_).
2074 type_error(string(_),Y) :- Y \= string(_).
2075 % Should raise type error: kernel_objects:union([int(1)],[[]],R).
2076
2077 bool_val(pred_true).
2078 bool_val(pred_false).
2079
2080 type_error_fields(X,Y,_) :- (var(X);var(Y)),!,fail.
2081 type_error_fields([],[_|_],_).
2082 type_error_fields([_|_],[],_).
2083 type_error_fields([F1|T1],[F2|T2],PrevField) :-
2084 nonvar(F1),nonvar(F2),F1=field(Name1,_),F2=field(Name2,_),
2085 nonvar(Name1),
2086 (Name1 @=< PrevField -> true % not sorted
2087 ; Name1 \= Name2 -> true % other record has different field
2088 ; type_error_fields(T1,T2,Name1)).
2089
2090 :- public illegal_value/1.
2091 illegal_value(X) :- var(X),!,fail.
2092 illegal_value(avl_set(A)) :- illegal_avl_set(A).
2093 illegal_value([H|T]) :- illegal_value(H) -> true ; illegal_value(T).
2094 illegal_value(global_set(G)) :- \+ ground(G).
2095 illegal_value(N) :- number(N).
2096 illegal_value((A,B)) :- illegal_value(A) -> true ; illegal_value(B).
2097 % TO DO: complete this
2098
2099 illegal_avl_set(X) :- var(X),!.
2100 illegal_avl_set(empty).
2101 illegal_avl_set(X) :- (X=node(_,_,_,_,_) -> \+ ground(X) ; true).
2102
2103 no_set_type_error(int(_)).
2104 no_set_type_error(fd(_,_)).
2105 no_set_type_error((_,_)).
2106 no_set_type_error(rec(_)).
2107 no_set_type_error(pred_true /* bool_true */).
2108 no_set_type_error(pred_false /* bool_false */).
2109 no_set_type_error(term(_)).
2110 no_set_type_error(string(_)).
2111 no_set_type_error(freeval(_,_,_)).
2112 no_set_type_error(avl_set(A)) :- illegal_avl_set(A).
2113 %% END OF TYPE CHECKING CODE
2114
2115
2116 :- assert_must_succeed(not_equal_object(term(a),term(b))).
2117 :- assert_must_succeed(not_equal_object(string('a'),string('b'))).
2118 :- assert_must_succeed(not_equal_object(int(1),int(2))).
2119 :- assert_must_succeed(not_equal_object(rec([field(a,int(1))]),rec([field(a,int(2))]))).
2120 :- assert_must_succeed(not_equal_object(rec([field(a,int(1)),field(b,int(2))]),
2121 rec([field(a,int(1)),field(b,int(3))]))).
2122 :- assert_must_fail(not_equal_object(rec([field(a,int(1))]),rec([field(a,int(1))]))).
2123 :- assert_must_fail(not_equal_object(rec([field(a,int(1)),field(b,int(2))]),
2124 rec([field(a,int(1)),field(b,int(2))]))).
2125 :- assert_must_fail(not_equal_object(term(msg),int(2))).
2126 :- assert_must_fail(not_equal_object(fd(1,a),term(msg))).
2127 :- assert_must_succeed(not_equal_object(global_set(a),global_set(b))).
2128 :- assert_must_succeed(not_equal_object([term(a),term(b)],[term(a),term(c)])).
2129 :- assert_must_succeed((not_equal_object([(int(1),[Y])],[(int(X),[Z])]),
2130 Y=(term(a),Y2), X=1, Z=(term(a),[]), Y2=[int(2)])).
2131 :- assert_must_succeed(not_equal_object((int(1),int(2)),(int(3),int(4)))).
2132 :- assert_must_succeed(exhaustive_kernel_succeed_check(not_equal_object((int(1),int(2)),(int(1),int(4))))).
2133 :- assert_must_succeed(exhaustive_kernel_succeed_check(not_equal_object((int(1),int(4)),(int(3),int(4))))).
2134 :- assert_must_fail(not_equal_object((int(1),int(4)),(int(1),int(4)))).
2135 :- assert_must_succeed(not_equal_object((int(1),string('a')),(int(1),string('b')))).
2136 :- assert_must_fail(not_equal_object((int(1),string('b')),(int(1),string('b')))).
2137 :- assert_must_fail(not_equal_object([(term(a),[])],[(term(a),[])])).
2138 :- assert_must_fail((not_equal_object([(int(1),[Y])],[(int(X),[Z])]),
2139 Y=(term(a),Y2), X=1, Z=(term(a),[]), Y2=[])).
2140 :- assert_must_fail(not_equal_object([int(1),int(2)],[int(2),int(1)])).
2141 :- assert_must_succeed(not_equal_object(term(msg),term(another_msg))).
2142 :- assert_must_succeed(not_equal_object([int(1),int(2)],[int(0),int(4)])).
2143 :- assert_must_fail((sample_closure(C),
2144 not_equal_object(C,[int(1),int(2)]))).
2145 :- assert_must_succeed((sample_closure(C),
2146 not_equal_object(C,[int(1),int(0)]))).
2147 :- assert_must_succeed((sample_closure(C),
2148 not_equal_object(C,global_set('NAT')))).
2149 :- assert_must_fail((not_equal_object(
2150 [[],[fd(1,'Name')],[fd(1,'Name'),fd(2,'Name')],
2151 [fd(1,'Name'),fd(2,'Name'),fd(3,'Name')],[fd(2,'Name')],[fd(3,'Name'),fd(2,'Name')]]
2152 ,[[],[fd(1,'Name')],[fd(1,'Name'),fd(2,'Name')],
2153 [fd(1,'Name'),fd(2,'Name'),fd(3,'Name')],[fd(2,'Name')],[fd(2,'Name'),fd(3,'Name')]])
2154 )).
2155 :- assert_must_fail((not_equal_object(freeval(selfcx,a,int(2)),freeval(selfcx,a,int(2))))).
2156 :- assert_must_succeed((not_equal_object(freeval(selfcx,a,int(2)),freeval(selfcx,a,int(3))))).
2157 :- assert_must_succeed((not_equal_object(freeval(selfcx,a,int(2)),freeval(selfcx,b,int(2))))).
2158 :- assert_must_succeed((not_equal_object(freeval(selfcx,a,int(2)),freeval(selfcx,a,int(3))))).
2159
2160 :- assert_must_succeed((not_equal_object(pred_true /* bool_true */,X), X==pred_false /* bool_false */)).
2161 :- assert_must_succeed((not_equal_object([],X),X=[_|_])).
2162 %:- assert_must_succeed((not_equal_object([],X), nonvar(X),X=[_|_])).
2163 :- assert_must_succeed((not_equal_object(X,[]), X=[_|_])).
2164 :- assert_must_succeed((not_equal_object(X,pred_false /* bool_false */), X==pred_true /* bool_true */)).
2165
2166 :- assert_must_succeed(not_equal_object([_X],[int(1),int(3)])). % Inefficiency example of setlog
2167 :- assert_must_succeed_any(not_equal_object([_X],[int(1)])). % Inefficiency example of setlog
2168 :- assert_must_succeed((not_equal_object([X],[pred_true /* bool_true */]),X==pred_false /* bool_false */)).
2169 :- assert_must_succeed((not_equal_object([pred_true /* bool_true */],[X]),X==pred_false /* bool_false */)).
2170 :- assert_must_succeed((not_equal_object([[X]],[[pred_true /* bool_true */]]),X==pred_false /* bool_false */)).
2171 :- assert_must_succeed((not_equal_object([[pred_true /* bool_true */]],[[X]]),X==pred_false /* bool_false */)).
2172 :- assert_must_succeed((custom_explicit_sets:construct_one_element_custom_set(pred_true /* bool_true */, A), kernel_objects:not_equal_object(A,[X]), X==pred_false /* bool_false */)).
2173 :- assert_must_succeed((custom_explicit_sets:construct_one_element_custom_set(pred_true /* bool_true */,A), kernel_objects:not_equal_object([X],A), X==pred_false /* bool_false */)).
2174 :- assert_must_succeed(exhaustive_kernel_check([commutative],not_equal_object([],[int(3333)]))).
2175 :- assert_must_succeed(exhaustive_kernel_check([commutative],not_equal_object([],[int(2),int(1),int(3)]))).
2176 :- assert_must_succeed(exhaustive_kernel_check([commutative],not_equal_object([int(3)],[int(2),int(1),int(3)]))).
2177 :- assert_must_succeed(exhaustive_kernel_check([commutative],not_equal_object([int(3),int(1),int(4)],[int(2),int(1),int(3)]))).
2178 :- assert_must_succeed(exhaustive_kernel_check([commutative],not_equal_object([int(2),int(1),int(3),int(5)],[int(2),int(1),int(3)]))).
2179 % X in 3..4, kernel_objects:not_equal_object([int(2),int(3)],[int(2),int(X)]), X==4. in clpfd Mode
2180
2181
2182 not_equal_object_wf(X,Y,WF) :-
2183 (var(X)
2184 -> (var(Y)
2185 -> X \== Y,
2186 when((nonvar(X);nonvar(Y);?=(X,Y)), not_equal_object_wf0(X,Y,WF))
2187 ; not_equal_object_wf1(Y,X,WF) % invert arguments
2188 )
2189 ? ; not_equal_object_wf1(X,Y,WF)).
2190
2191 %:- block not_equal_object_wf0(-,-,?).
2192 /* TO DO: implement a better _wf version ; use bool_dif if possible */
2193 % block is relevant for tests 1374, 1737
2194 not_equal_object_wf0(X,Y,WF) :-
2195 %(X==Y -> print(not_eq_pruned(X,Y)),nl,fail ; true),
2196 %X\==Y, % could be expensive if X,Y assigned to large term simultaneously (just woken up by when)
2197 (var(X) -> X\==Y, not_equal_object_wf1(Y,X,WF)
2198 ; not_equal_object_wf1(X,Y,WF)).
2199
2200 not_equal_object_wf1([],R,WF) :- !, not_empty_set_wf(R,WF).
2201 not_equal_object_wf1(R,E,WF) :- E==[],!, not_empty_set_wf(R,WF).
2202 ?not_equal_object_wf1(X,Y,WF) :- not_equal_object2_wf(X,Y,WF).
2203
2204 not_equal_object(X,Y) :-
2205 ? ( nonvar(X) -> not_equal_object2_wf(X,Y,no_wf_available)
2206 ; nonvar(Y) -> not_equal_object2_wf(Y,X,no_wf_available)
2207 ; X\==Y, when((?=(X,Y);nonvar(X);nonvar(Y)), not_equal_object0(X,Y))).
2208
2209 not_equal_object0(X,Y) :- X\==Y,(var(X) -> not_equal_object2_wf(Y,X,no_wf_available)
2210 ; not_equal_object2_wf(X,Y,no_wf_available)).
2211
2212 %not_equal_object2_wf(X,Y,_) :- print(not_equal_object2_wf(X,Y)),nl,fail.
2213 not_equal_object2_wf(pred_true /* bool_true */,R,_) :- !, R=pred_false /* bool_false */.
2214 not_equal_object2_wf(pred_false /* bool_false */,R,_) :- !, R=pred_true /* bool_true */.
2215 not_equal_object2_wf(fd(X,Type),R,_) :- !, get_global_type_value(R,Type,Y), % also sets up FD range for Y if R was var
2216 neq_fd(X,Y,Type).
2217 not_equal_object2_wf(int(X),R,_WF) :- !, R=int(Y), integer_dif(X,Y).
2218 not_equal_object2_wf(string(X),R,_) :- !, R=string(Y), dif(X,Y).
2219 not_equal_object2_wf(term(X),R,WF) :- !, R=term(Y), not_equal_term_wf(X,Y,WF).
2220 not_equal_object2_wf(rec(F1),R,WF) :- !, R=rec(F2),
2221 not_equal_fields_wf(F1,F2,WF).
2222 not_equal_object2_wf([],X,WF) :- !, not_empty_set_wf(X,WF).
2223 not_equal_object2_wf((X1,X2),R,WF) :- !, R=(Y1,Y2),
2224 ? not_equal_couple_wf(X1,Y1,X2,Y2,WF).
2225 not_equal_object2_wf(X,Y,WF) :- is_custom_explicit_set(X,not_equal_object2),!,
2226 ? not_equal_explicit_set_wf(X,Y,WF).
2227 ?not_equal_object2_wf(X,Y,WF) :- not_equal_object3(X,Y,WF).
2228
2229 :- block not_equal_term_wf(-,-,?).
2230 not_equal_term_wf(X,Y,_WF) :- % triggered e.g. in test 1225 or 1227 for nil (freetypes)
2231 dif(X,Y).
2232 % TO DO: should we treat floating/1 in a special way?
2233
2234 :- block not_equal_explicit_set_wf(?,-,?).
2235 not_equal_explicit_set_wf(X,Y,WF) :-
2236 is_custom_explicit_set_nonvar(Y),!,
2237 not_equal_explicit_sets_wf(X,Y,WF).
2238 not_equal_explicit_set_wf(X,[],WF) :- !,
2239 is_non_empty_explicit_set_wf(X,WF).
2240 not_equal_explicit_set_wf(CS,[H|T],WF) :-
2241 is_simple_infinite_set(CS), % global_set(.) or open interval
2242 !, % TODO: maybe also detect other infinite sets
2243 test_finite_set_wf(T,Finite,WF),
2244 when(nonvar(Finite),(Finite=pred_true -> true % infinite set cannot be equal finite one
2245 ; not_equal_explicit_set_expand(CS,[H|T],WF))).
2246 not_equal_explicit_set_wf(X,Y,WF) :-
2247 ? not_equal_explicit_set_expand(X,Y,WF).
2248
2249 not_equal_explicit_set_expand(X,Y,WF) :-
2250 expand_custom_set_wf(X,EX,not_equal_explicit_set_wf,WF),
2251 ? not_equal_object3_block(EX,Y,WF).
2252
2253 :- block not_equal_object3_block(-,?,?).
2254 ?not_equal_object3_block(EX,Y,WF) :- not_equal_object3(EX,Y,WF).
2255
2256 :- load_files(library(system), [when(compile_time), imports([environ/2])]).
2257 :- block not_equal_object3(?,-,?).
2258 :- if(environ(prob_safe_mode,true)).
2259 not_equal_object3(X,Y,_) :- nonvar(X),type_error(X,Y),
2260 add_internal_error('Internal Typing Error (please report as bug !) : ',not_equal_object(X,Y)),
2261 fail.
2262 :- endif.
2263 not_equal_object3(X,Y,WF) :- is_custom_explicit_set(Y,not_equal_object2),!,
2264 ? not_equal_explicit_set_wf(Y,X,WF). % TODO: will uselessly check for X being custom_set or []
2265 not_equal_object3(freeval(ID,Case1,Value1),freeval(ID,Case2,Value2),WF) :-
2266 instantiate_freetype_case(ID,Case1,Case2),
2267 when(?=(Case1,Case2), % we first have to be able to decide the case; if cases are different types of values may be different
2268 not_equal_freeval_wf(Case1,Value1,Case2,Value2,WF)).
2269 not_equal_object3([],X,WF) :- not_empty_set_wf(X,WF).
2270 not_equal_object3([H|T],Set2,WF) :-
2271 (Set2==[] -> true % note second argument is nonvar
2272 ; cardinality_peano_wf([H|T],N1,no_wf_available),
2273 cardinality_peano_wf(Set2,N2,no_wf_available), % TODO(?): pending co-routines if Set2 infinite
2274 ? when(?=(N1,N2), % when we trigger code below, = can be decided:
2275 (N1=N2 -> neq_cons_wf(Set2,H,T,WF) ; true))).
2276 % (dif(N1,N2) ; (N1=N2, neq_cons_wf(Set2,H,T,WF)))). %not_equal_object_sets(Set1,Set2) )) ).
2277
2278 not_equal_freeval_wf(Case1,Value1,Case2,Value2,WF) :-
2279 (Case1=Case2 -> not_equal_object_wf(Value1,Value2,WF) ; true).
2280
2281 :- block not_equal_object_sets_wf(-,?,?), not_equal_object_sets_wf(?,-,?).
2282 not_equal_object_sets_wf([H|T],Set2,WF) :- !,
2283 ( Set2=[H2|_T2]
2284 ? -> not_equal_object_sets2(H,T,H2,Set2,WF)
2285 ; Set2=[] -> true
2286 ; not_equal_object2_wf(Set2,[H|T],WF) % avl_set probably
2287 ).
2288 not_equal_object_sets_wf(Set1,Set2,WF) :- % Note : if Set1 =[] then we can fail, as both sets have same length
2289 % we could have empty set or avl_set can sometimes creep into end of lists
2290 not_equal_object2_wf(Set1,Set2,WF).
2291
2292 :- block not_equal_object_sets2(-,?,?,?,?), not_equal_object_sets2(?,?,-,?,?).
2293 not_equal_object_sets2(H,_T,_H2,Set2,WF) :-
2294 % TO DO: should we not use kernel_equality:membership_test_wf here ??
2295 not_element_of_wf(H,Set2,WF).
2296 not_equal_object_sets2(H,T,_H2,Set2,WF) :-
2297 remove_element_wf(H,Set2,Del2,WF), % used to be remove_element(X,Set,Res) :- equal_cons(Set,X,Res).
2298 not_equal_object_wf(T,Del2,WF).
2299
2300
2301 :- block neq_cons_wf(-,?,?,?).
2302 neq_cons_wf([],_,_,_) :- !.
2303 neq_cons_wf([H2|T2],H1,T1,WF) :- !,
2304 (T2==[],T1==[]
2305 -> not_equal_object_wf(H1,H2,WF)
2306 ; check_and_remove([H2|T2],H1,NewSet2,RemoveSuccesful),
2307 ? neq_cons2(RemoveSuccesful,T1,NewSet2,WF)
2308 ).
2309 neq_cons_wf(avl_set(A),H1,T1,WF) :- element_can_be_added_or_removed_to_avl(H1),!,
2310 (remove_element_from_explicit_set(avl_set(A),H1,RA)
2311 -> not_equal_object_wf(T1,RA,WF)
2312 ; true ).
2313 neq_cons_wf(ES,H1,T1,WF) :- is_custom_explicit_set(ES,neq_cons),
2314 expand_custom_set_wf(ES,ExpSet,neq_cons_wf,WF),
2315 neq_cons_wf(ExpSet,H1,T1,WF).
2316
2317 :- block neq_cons2(-,?,?,?).
2318 neq_cons2(not_successful,_T1,_NewSet2,_WF). % one element could not be removed: the sets are different
2319 ?neq_cons2(successful,T1,NewSet2,WF) :- not_equal_object_sets_wf(T1,NewSet2,WF).
2320
2321 % kernel_objects:not_equal_couple(int(1),int(Y),B,pred_true).
2322 :- assert_must_succeed(( kernel_objects:not_equal_couple_wf(int(1),int(Y),B,pred_true,no_wf_available),Y=1, B==pred_false)).
2323 :- assert_must_succeed(( kernel_objects:not_equal_couple_wf(int(Y),int(1),B,pred_true,no_wf_available),Y=1, B==pred_false)).
2324 :- assert_must_succeed(( kernel_objects:not_equal_couple_wf(int(Y),int(1),B,pred_false,no_wf_available),Y=1, B==pred_true)).
2325 :- assert_must_succeed(( kernel_objects:not_equal_couple_wf(int(Y),int(1),pred_false,B,no_wf_available),Y=1, B==pred_true)).
2326 :- assert_must_succeed(( kernel_objects:not_equal_couple_wf(int(Y),int(1),B,pred_true,no_wf_available),Y=2, var(B))).
2327 :- assert_must_succeed(( kernel_objects:not_equal_couple_wf(B,pred_true,int(Y),int(1),no_wf_available),Y=1, B==pred_false)).
2328 :- assert_must_succeed(( kernel_objects:not_equal_couple_wf(B,fd(C,'Code'),fd(Y,'Name'),F,no_wf_available),F=fd(1,'Name'),Y=1,B=fd(1,'Code'),C=2 )).
2329 :- assert_must_succeed(( kernel_objects:not_equal_couple_wf(B,pred_true,fd(Y,'Name'),F,no_wf_available),F=fd(1,'Name'),Y=1, B==pred_false)).
2330
2331 :- assert_must_succeed(( kernel_objects:not_equal_couple_wf(int(2500),int(50),_,_,no_wf_available))).
2332 :- assert_must_succeed(( kernel_objects:not_equal_couple_wf(_,_,int(2500),int(50),no_wf_available))).
2333
2334
2335 %was too lax (but works): :- block not_equal_couple_wf(-,?,-,?,?),not_equal_couple_wf(?,-,?,-,?).
2336 % but not sure if this new declaration below is worth it, also since X1==Y1 or X2==Y2 is possible
2337 :- block not_equal_couple_wf(-,?,-,?,?), % X1 or X2 must be known
2338 not_equal_couple_wf(?,-,?,-,?), % Y1 or Y2 must be known
2339 not_equal_couple_wf(?,-,-,?,?), % X2 or Y1 must be known
2340 not_equal_couple_wf(-,?,?,-,?). % X1 or Y2 must be known
2341 % (X1,X2) /= (Y1,Y2)
2342
2343 % using CLPFD results in less propagation it seems
2344 % e.g. post_constraint((A1 #\= A2 #\/ B1 #\= B2), dif((A1,B1),(A2,B2))) will not propagate if A1=A2 or B1=B2
2345 % we could do something like
2346 % post_constraint((N*A1 + B1 #\= N*A2 + B2), dif((A1,B1),(A2,B2))). ; but we need to know good value for N
2347 % TO DO: pass typing information when available ?? or not needed because type info extracted ?
2348
2349 not_equal_couple_wf(X1,Y1,X2,Y2,WF) :- var(X1), var(Y1),!,
2350 (X1==Y1 -> not_equal_object_wf(X2,Y2,WF)
2351 ; not_equal_couple_wf_aux(X2,Y2,X1,Y1,WF)). % change order to test
2352 not_equal_couple_wf(X1,Y1,X2,Y2,WF) :-
2353 ? not_equal_couple_wf_aux(X1,Y1,X2,Y2,WF).
2354
2355 not_equal_couple_wf_aux(X1,Y1,X2,Y2,WF) :-
2356 ? equality_objects_wf(X1,Y1,EqRes1,WF),
2357 (var(EqRes1)
2358 -> equality_objects_wf(X2,Y2,EqRes2,WF),
2359 not_equal_couple4(EqRes1,X1,Y1,EqRes2,X2,Y2)
2360 ; EqRes1=pred_true -> not_equal_object_wf(X2,Y2,WF)
2361 ; true).
2362
2363 :- block not_equal_couple4(-,?,?,-,?,?).
2364 not_equal_couple4(EqRes1,X1,Y1,EqRes2,X2,Y2) :-
2365 (var(EqRes1)
2366 ? -> not_equal_couple5(EqRes2,X1,Y1,EqRes1)
2367 ; not_equal_couple5(EqRes1,X2,Y2,EqRes2)).
2368
2369 not_equal_couple5(pred_true,_X2,_Y2,EqResOther) :- EqResOther=pred_false.
2370 not_equal_couple5(pred_false,_,_,_).
2371
2372
2373 /* To do: provide special support for things like
2374 couple of fd's [done], list of fd's, set of fd's */
2375
2376 :- use_module(kernel_records,[check_field_name_compatibility/3]).
2377 :- block not_equal_fields_wf(-,-,?).
2378 not_equal_fields_wf([field(ID1,V1)|T1],[field(ID2,V2)|T2],WF) :-
2379 % should we wait for ID1 or ID2 to become nonvar?
2380 check_field_name_compatibility(ID1,ID2,not_equal_fields_wf),
2381 (T1==[]
2382 -> T2=[], not_equal_object_wf(V1,V2,WF)
2383 ; not_equal_couple_wf(V1,V2,rec(T1),rec(T2),WF) % would be slightly more efficient to have a custom version of not_equal_couple
2384 ).
2385
2386
2387 /* ------------------------------------------- */
2388 /* equality_objects/3 function */
2389 /* ------------------------------------------- */
2390
2391 %% :- ensure_loaded(kernel_equality).
2392
2393 % ----------------------------------------------------------
2394 % ----------------------------------------------------------
2395
2396
2397
2398 :- use_module(kernel_equality).
2399
2400 % ----------------------------------------------------------
2401 % ----------------------------------------------------------
2402
2403 /* ---------------> */
2404 /* This should probably be more systematically applied before every kernel call
2405 + expanded for other symbolic representations !! */
2406
2407
2408
2409 /* underlying assumption: if G is a global set: we get back the
2410 global_set tag immediately: no need to use when to wait;
2411 better: ensure that b_compute_expression always returns a nonvar term */
2412
2413 integer_global_set('NAT').
2414 integer_global_set('NATURAL').
2415 integer_global_set('NAT1').
2416 integer_global_set('NATURAL1').
2417 integer_global_set('INT').
2418 integer_global_set('INTEGER').
2419
2420 string_global_set('STRING'). % TODO : check what happens when we have STRING in Event-B as a set
2421 real_global_set('REAL'). % TODO: ditto
2422 real_global_set('FLOAT'). % TODO: ditto
2423
2424
2425 :- assert_must_succeed(( kernel_objects:element_of_global_set(int(0),'NATURAL'))).
2426 :- assert_must_fail(( kernel_objects:element_of_global_set(int(0),'NATURAL1'))).
2427 :- assert_must_fail(( kernel_objects:element_of_global_set(int(-1),'NATURAL'))).
2428 :- assert_must_succeed(( kernel_objects:element_of_global_set(int(-1),'INTEGER'))).
2429 :- assert_must_succeed(( kernel_objects:element_of_global_set(int(0),'NAT'))).
2430 :- assert_must_fail(( kernel_objects:element_of_global_set(int(0),'NAT1'))).
2431 :- assert_must_succeed(( kernel_objects:element_of_global_set(X,'NAT'),X=int(1))).
2432 :- assert_must_succeed(( kernel_objects:element_of_global_set(X,'NATURAL'),X=int(1))).
2433
2434 element_of_global_set(X,GS) :-
2435 ? init_wait_flags(WF),element_of_global_set_wf(X,GS,WF),ground_wait_flags(WF).
2436
2437 element_of_global_set_wf(El,Set,WF) :- element_of_global_set_wf(El,Set,WF,unknown).
2438
2439 :- use_module(kernel_reals,[is_real/1, is_float_wf/2, is_not_float/1]).
2440 :- block element_of_global_set_wf(?,-,?,?).
2441 ?element_of_global_set_wf(El,Set,WF,_) :- b_global_set(Set),!,
2442 global_type_wf(El,Set,WF).
2443 element_of_global_set_wf(X,'STRING',_WF,_) :- !, X=string(_).
2444 element_of_global_set_wf(X,'REAL',_WF,_) :- !, is_real(X).
2445 element_of_global_set_wf(X,'FLOAT',WF,_) :- !, is_float_wf(X,WF).
2446 element_of_global_set_wf(int(X),GS,WF,Span) :-
2447 element_of_global_integer_set_wf(GS,X,WF,Span).
2448
2449 /* what about BOOL ?? */
2450 element_of_global_integer_set_wf('NAT',X,WF,_) :-
2451 preferences:get_preference(maxint,MAXINT),
2452 in_nat_range_wf(int(X),int(0),int(MAXINT),WF).
2453 element_of_global_integer_set_wf('NATURAL',X,WF,Span) :-
2454 (ground(X) -> X>=0
2455 ; is_natural(int(X),WF),
2456 %get_last_wait_flag(element_of_global_set(int(X),'NATURAL'),WF,LWF),
2457 get_integer_enumeration_wait_flag(X,'NATURAL',WF,LWF),
2458 enumerate_natural(X,0,LWF,Span,WF)
2459 ).
2460 element_of_global_integer_set_wf('NAT1',X,WF,_) :-
2461 preferences:get_preference(maxint,MAXINT),
2462 in_nat_range_wf(int(X),int(1),int(MAXINT),WF).
2463 element_of_global_integer_set_wf('NATURAL1',X,WF,Span) :-
2464 (ground(X) -> X>=1
2465 ; is_natural1(int(X),WF),
2466 %get_last_wait_flag(element_of_global_set_wf(int(X),'NATURAL1'),WF,LWF),
2467 get_integer_enumeration_wait_flag(X,'NATURAL1',WF,LWF),
2468 enumerate_natural(X,1,LWF,Span,WF)
2469 ).
2470 element_of_global_integer_set_wf('INT',X,WF,_) :-
2471 preferences:get_preference(minint,MININT),
2472 preferences:get_preference(maxint,MAXINT),
2473 in_nat_range_wf(int(X),int(MININT),int(MAXINT),WF).
2474 element_of_global_integer_set_wf('INTEGER',X,WF,Span) :-
2475 (ground(X) -> true
2476 ; get_integer_enumeration_wait_flag(X,'INTEGER',WF,LWF),
2477 enumerate_int_wf(X,LWF,'INTEGER',WF,Span)
2478 ).
2479
2480
2481 get_integer_enumeration_wait_flag(X,SET,WF,LWF) :-
2482 clpfd_domain(X,FDLow,FDUp), finite_domain(FDLow,FDUp),!,
2483 Size is 1+FDUp-FDLow,
2484 get_wait_flag(Size,element_of_global_set_wf(int(X),SET),WF,LWF).
2485 get_integer_enumeration_wait_flag(X,SET,WF,LWF) :-
2486 get_integer_enumeration_wait_flag(element_of_global_set_wf(int(X),SET),WF,LWF).
2487 % important for e.g., solving r = /*@symbolic*/ {u|#x.(x : NATURAL & u : {x |-> x * x,x |-> x + x})} & 10|->20 : r
2488 % see test 1933, the code was: get_enumeration_starting_wait_flag(element_of_global_set_wf(int(X),SET),WF,LWF), which is a lower number
2489
2490 :- assert_must_succeed((kernel_objects:enumerate_int_wf(X,4,self_check,no_wf_available,unknown),X==2)).
2491 :- block enumerate_int_wf(-,-,?,?,?).
2492 enumerate_int_wf(X,_LWF,Source,WF,Span) :-
2493 (ground(X) -> true
2494 ; add_call_stack_to_span(Span,WF,Span2), % TODO: necessary?
2495 ? enumerate_int_with_span(X,trigger_true(Source),Span2,WF)).
2496
2497 :- assert_must_succeed(not_element_of_global_set(int(-1),'NAT')).
2498 :- assert_must_succeed(not_element_of_global_set(int(-1),'NATURAL')).
2499 :- assert_must_succeed(not_element_of_global_set(int(0),'NAT1')).
2500 :- assert_must_succeed(not_element_of_global_set(int(0),'NATURAL1')).
2501 not_element_of_global_set(_,GS) :- is_maximal_global_set(GS),!, fail. % covers REAL, STRING, INTEGER
2502 not_element_of_global_set(X,'FLOAT') :- !, is_not_float(X).
2503 not_element_of_global_set(int(X),GS) :-
2504 (var(GS) -> add_error(kernel_objects,var_not_element_of_global_set,(int(X),GS)) ; true),
2505 ? not_element_of_global_set2(GS,X).
2506 not_element_of_global_set2('NAT',X) :-
2507 preferences:get_preference(maxint,MAXINT),
2508 ? clpfd_not_in_non_empty_range(X,0,MAXINT). %when(nonvar(X), (X<0 ; X>MAXINT)).
2509 not_element_of_global_set2('NATURAL',X) :- is_not_natural(int(X)).
2510 not_element_of_global_set2('NAT1',X) :-
2511 preferences:get_preference(maxint,MAXINT),
2512 ? clpfd_not_in_non_empty_range(X,1,MAXINT). %when(nonvar(X),(X<1 ; X>MAXINT)).
2513 not_element_of_global_set2('NATURAL1',X) :- is_not_natural1(int(X)).
2514 not_element_of_global_set2('INT',X) :-
2515 preferences:get_preference(minint,MININT),
2516 preferences:get_preference(maxint,MAXINT),
2517 clpfd_not_in_non_empty_range(X,MININT,MAXINT). %when(nonvar(X), (X < MININT ; X > MAXINT)).
2518 %not_element_of_global_set(string(_X),'STRING') :- fail.
2519 %not_element_of_global_set(int(_X),'INTEGER') :- fail.
2520 %not_element_of_global_set(_El,Set) :- b_global_set(Set), fail.
2521
2522
2523
2524 /* ---- */
2525 /* SETS */
2526 /* ---- */
2527
2528 %:- block is_a_set(-).
2529 %is_a_set(X) :- is_a_set2(X).
2530 %is_a_set2([]) :- !.
2531 %is_a_set2([_|_]) :- !.
2532 %is_a_set2(X) :- is_custom_explicit_set(X,is_a_set2).
2533
2534
2535
2536
2537 :- assert_must_succeed(exhaustive_kernel_fail_check(empty_set([int(4),int(3)]))).
2538 :- assert_must_fail((empty_set([int(2),int(1)]))).
2539 :- assert_must_fail((empty_set([int(1)]))).
2540 :- assert_must_fail((empty_set([[]]))).
2541 :- assert_must_fail((empty_set(global_set('Name')))).
2542 :- assert_must_fail((empty_set(X),X=[int(1)])).
2543 :- assert_must_succeed((empty_set([]))).
2544 empty_set(X) :- (var(X) -> X=[]
2545 ; X=[] -> true
2546 % ; X=[_|_] -> fail
2547 ; is_custom_explicit_set_nonvar(X),is_empty_explicit_set(X)).
2548 empty_set_wf(X,WF) :- (var(X) -> X=[]
2549 ; X=[] -> true
2550 % ; X=[_|_] -> fail
2551 ; is_custom_explicit_set_nonvar(X),is_empty_explicit_set_wf(X,WF)).
2552
2553
2554 :- assert_must_succeed(exhaustive_kernel_check(not_empty_set([int(4),int(3)]))).
2555 :- assert_must_succeed((kernel_objects:not_empty_set([int(2),int(1)]))).
2556 :- assert_must_succeed((kernel_objects:not_empty_set([int(1)]))).
2557 :- assert_must_succeed((kernel_objects:not_empty_set([[]]))).
2558 :- assert_must_succeed((kernel_objects:not_empty_set(global_set('Name')))).
2559 :- assert_must_succeed((kernel_objects:not_empty_set_lwf(X,1),nonvar(X),X=[_|_])).
2560 :- assert_must_succeed((kernel_objects:not_empty_set_lwf([int(1)],_))).
2561 :- assert_must_fail((kernel_objects:not_empty_set([]))).
2562
2563 :- use_module(kernel_non_empty_attr,[mark_var_set_as_non_empty/1]).
2564
2565 not_empty_set_wf(S,WF) :- WF==no_wf_available,!, not_empty_set2(S,WF).
2566 not_empty_set_wf(S,WF) :- var(S), !,
2567 (preferences:preference(use_smt_mode,true) -> S=[_|_]
2568 % ; WF=no_wf_available -> not_empty_set(S)
2569 ; get_large_finite_wait_flag(not_empty_set_wf,WF,LWF),
2570 % print(not_empty(S)),nl, % TO DO: set kernel_cardinality attribute if variable
2571 mark_var_set_as_non_empty(S),
2572 not_empty_set_lwf(S,LWF)).
2573 not_empty_set_wf(closure(P,T,B),WF) :- !, is_non_empty_explicit_set_wf(closure(P,T,B),WF).
2574 not_empty_set_wf(S,WF) :- not_empty_set2(S,WF).
2575
2576 :- block not_empty_set_lwf(-,-).
2577 % the instantiation with a list skeleton can easily cause multiple solutions for the same
2578 % set to be found: hence we guard it by a wait flag
2579 not_empty_set_lwf(S,_LWF) :- var(S),!,
2580 S=[_|_].
2581 not_empty_set_lwf(S,_) :- not_empty_set(S).
2582
2583 not_empty_set(Set) :- not_empty_set2(Set,no_wf_available).
2584
2585 :- use_module(error_manager,[add_warning/2]).
2586 :- block not_empty_set2(-,?).
2587 %not_empty_set(S) :- var(S),!,S=[_|_].
2588 % not_empty_set(X) :- not_equal_object([],X).
2589 not_empty_set2([_|_],_).
2590 not_empty_set2(avl_set(A),_) :- (A==empty -> add_warning(not_empty_set,'Empty avl_set'),fail ; true).
2591 not_empty_set2(closure(P,T,B),WF) :- is_non_empty_explicit_set_wf(closure(P,T,B),WF). % TO DO: also use WF
2592 not_empty_set2(global_set(Type),_) :- b_non_empty_global_set(Type).
2593 not_empty_set2(freetype(ID),_) :- kernel_freetypes:is_non_empty_freetype(ID).
2594
2595 % there also exists: eq_empty_set , a reified version, i.e., test_empty_set
2596
2597
2598 :- assert_must_succeed((exact_element_of(int(1),[int(2),int(1)]))).
2599 :- assert_must_succeed((exact_element_of(int(1),[int(2),int(3),int(4),int(1)]))).
2600 :- assert_must_succeed((exact_element_of(int(4),[int(2),int(3),int(4),int(1)]))).
2601 :- assert_must_succeed((exact_element_of(int(1),[int(2),int(3)|T]), T=[int(4),int(1)])).
2602 :- assert_must_fail((exact_element_of(int(5),[int(2),int(3)|T]), T=[int(4),int(1)])).
2603 :- assert_must_succeed((exact_element_of(fd(1,'Name'),global_set('Name')))).
2604 :- assert_must_succeed((exact_element_of([int(2),int(1)],[[],[int(2),int(1)]]))).
2605 :- assert_must_fail((exact_element_of([int(1),int(2)],[[],[int(2),int(1)]]))).
2606 %:- assert_must_succeed((exact_element_of([(int(1),fd(2,'Name'))],
2607 % closure([zzzz],[set(couple(integer,global('Name')))], 'In'('ListExpression'(['Identifier'(zzzz)]),
2608 % 'Seq'(value([fd(1,'Name'),fd(2,'Name')]))))) )).
2609 %:- assert_must_succeed((exact_element_of(XX,
2610 % closure([zzzz],[set(couple(integer,global('Name')))], 'In'('ListExpression'(['Identifier'(zzzz)]),
2611 % 'Seq'(value([fd(1,'Name'),fd(2,'Name')]))))),
2612 % equal_object(XX,[(int(1),fd(1,'Name'))]) )).
2613 %:- assert_must_succeed((
2614 %exact_element_of(XX,closure([zzzz],[set(couple(integer,global('Name')))],
2615 % 'In'('ListExpression'(['Identifier'(zzzz)]),
2616 % 'Perm'(value([fd(1,'Name'),fd(2,'Name')]))))),
2617 % equal_object(XX,[(int(1),fd(2,'Name')),(int(2),fd(1,'Name'))]) )).
2618
2619 %:- assert_must_succeed(( exact_element_of(X,
2620 % closure([zzzz],[set(record([field(balance,integer),field(name,global('Code'))]))],
2621 % 'In'('ListExpression'(['Identifier'(zzzz)]),
2622 % 'PowerSet'(value(closure([zzzz],
2623 % [record([field(balance,integer),field(name,global('Code'))])],'In'('ListExpression'(['Identifier'(zzzz)]),
2624 % 'SetOfRecords'(value(cons_expr(field(balance,global_set('NAT')),
2625 % cons_expr(field(name,global_set('Code')),nil_expr))))))))))),
2626 % X=[rec([field(balance,int(0)),field(name,fd(2,'Code'))])] )).
2627 %:- assert_must_fail(( exact_element_of(X,
2628 % closure([zzzz],[set(record([field(balance,integer),field(name,global('Code'))]))],
2629 % 'In'('ListExpression'(['Identifier'(zzzz)]),
2630 % 'PowerSet'(value(closure([zzzz],
2631 % [record([field(balance,integer),field(name,global('Code'))])],'In'('ListExpression'(['Identifier'(zzzz)]),
2632 % 'SetOfRecords'(value(cons_expr(field(balance,global_set('NAT')),
2633 % cons_expr(field(name,global_set('Code')),nil_expr))))))))))),
2634 % X=[rec([field(balance,int(-1)),field(name,fd(2,'Code'))])] )).
2635
2636
2637 /* use this to compute elements */
2638 exact_element_of(X,Set) :-
2639 dif(Set,[]),
2640 ? exact_element_of2(Set,X).
2641 :- block exact_element_of2(-,?).
2642 exact_element_of2([H|_],H).
2643 ?exact_element_of2([_|T],E) :- exact_element_of3(T,E).
2644 exact_element_of2(X,E) :- is_custom_explicit_set_nonvar(X), check_element_of(E,X).
2645 :- block exact_element_of3(-,?).
2646 exact_element_of3([H|_],H).
2647 ?exact_element_of3([_|T],E) :- exact_element_of3(T,E).
2648
2649
2650 :- assert_must_succeed(exhaustive_kernel_check(check_element_of(int(1),[int(2),int(1)]))).
2651 :- assert_must_succeed(exhaustive_kernel_fail_check(check_element_of(int(3),[int(2),int(1)]))).
2652 :- assert_must_succeed(exhaustive_kernel_fail_check(check_element_of(int(1),[]))).
2653
2654 /* uses equal_object instead of unification */
2655 :- assert_must_succeed((check_element_of(X,
2656 [(int(1),(int(1),(int(1),int(1)))),(int(2),(int(1),(int(1),int(1)))),
2657 (int(1),(int(1),(int(1),int(2)))),(int(2),(int(1),(int(1),int(2))))]),
2658 equal_object(X, (int(2),(int(1),(int(1),int(2))))) )).
2659 :- assert_must_succeed((check_element_of(X,
2660 [ (((int(1),int(1)),int(1)),int(1)), (((int(1),int(1)),int(1)),int(2)),
2661 (((int(1),int(1)),int(1)),int(3)), (((int(1),int(1)),int(1)),int(4)),
2662 (((int(1),int(1)),int(2)),int(1)), (((int(1),int(1)),int(2)),int(2))
2663 ]), equal_object(X, (((int(1),int(1)),int(2)),int(1)))
2664 )).
2665 :- assert_must_succeed((check_element_of(fd(1,'Name'),global_set('Name')))).
2666 %:- assert_must_succeed_multiple(check_element_of(X,[[fd(1,'Name')],[]])).
2667 :- assert_must_succeed((check_element_of((int(1),int(2)),[(int(1),int(2))]))).
2668 :- assert_must_succeed((check_element_of((_X,_Y),[(fd(2,'Code'),fd(2,'Code'))]))).
2669 :- assert_must_succeed((init_wait_flags(WF),
2670 check_element_of_wf((X,Y),[(fd(2,'Code'),fd(2,'Code'))],WF),
2671 ground_det_wait_flag(WF), X= fd(2,'Code'), Y= fd(2,'Code'),
2672 kernel_waitflags:ground_wait_flags(WF) )).
2673 :- assert_must_succeed((init_wait_flags(WF),
2674 check_element_of_wf((Y,X),[(fd(2,'Code'),fd(2,'Code'))],WF),
2675 ground_det_wait_flag(WF), X= fd(2,'Code'), Y= fd(2,'Code'),
2676 kernel_waitflags:ground_wait_flags(WF) )).
2677 :- assert_must_succeed((check_element_of([int(1),int(2)],[[int(2),int(1)]]))).
2678
2679 :- assert_must_succeed((check_element_of([int(1),int(2)],[[],[int(2),int(1)]]))).
2680 :- assert_must_succeed((check_element_of(X,[[],[int(2),int(1)]]), X==[] )).
2681 :- assert_must_succeed((check_element_of_wf(X,[[],[int(2),int(1)]],_WF),
2682 equal_object(X,[int(1),int(2)]) )).
2683 :- assert_must_succeed((check_element_of_wf(XX,global_set('Name'),WF),kernel_waitflags:ground_wait_flags(WF), XX==fd(3,'Name') )).
2684 :- assert_must_fail(check_element_of([fd(2,'Name')],[[fd(1,'Name')],[]])).
2685 :- assert_must_fail((check_element_of([int(2)],[[],[int(2),int(1)]]))).
2686 :- assert_must_succeed((check_element_of(int(1),_X))).
2687 :- assert_must_succeed((check_element_of((int(2),_X),[(int(1),[(int(1),int(22))]),(int(2),[(int(1),int(55))])]))).
2688
2689 check_element_of(X,Set) :- init_wait_flags(WF,[check_element_of]),
2690 check_element_of_wf(X,Set,WF),
2691 ? ground_wait_flags(WF).
2692
2693 % new test: check_element_of(int(1),X).
2694 % new test: check_element_of(int(1),[int(2)|X]).
2695
2696 check_element_of_wf(X,Set,WF) :- %print(el_of(X,Set)),nl,
2697 dif(Set,[]),
2698 % TO do: mark Set as non-empty not_empty_set_wf from kernel_cardinality_attr
2699 ? check_element_of1(X,Set,WF).
2700
2701 %check_element_of1(X,Set,WF) :- var(X),var(Set),unbound_variable_check(Set),!,
2702 % Set=[_|_], check_element_of2(Set,X,WF).
2703 %:- block check_element_of1(-,-,?). %%
2704
2705
2706 %:- block check_element_of1(-,-,?). % leads to time-out in test 292 for {x,S,S2|x : S & S <: (1 .. 213) & S \/ {x} = S2 & x /: S2} and test 1976 in data_validation mode and CLPFD false
2707 check_element_of1(X,Set,WF) :-
2708 (unbound_variable_for_element_of(Set),
2709 preference(data_validation_mode,false) % TODO: this leads to failure of test 1976 with CLPFD FALSE
2710 % but avoids instantiating Sets to lists early on: can disturb enumeration and efficient computation/unification of large sets
2711 ? -> check_element_of_unbound_set(X,Set,WF)
2712 ? ; check_element_of2(Set,X,WF)
2713 ).
2714
2715 check_element_of_unbound_set(X,Set,_WF) :-
2716 mark_as_non_free(X,check_element_of_unbound_set),
2717 Set=[X|_]. % Note: X needs to be nonvar so that other code knows X is not free anymore
2718 % TO DO: normalise X ?
2719 % TO DO: do this using CHR/attributes rather than by instantiation
2720
2721
2722 unbound_variable_for_element_of(Set) :- unbound_variable_for_cons(Set).
2723
2724 % attach co-routine to mark a given term as not a real variable
2725 mark_as_non_free(X,_Info) :- var(X) -> non_free(X) ; true.
2726 mark_as_non_free(X) :- var(X) -> non_free(X) ; true.
2727 :- block non_free(-).
2728 non_free([H|T]) :- !, mark_as_non_free(H), mark_as_non_free(T).
2729 non_free((A,B)) :- !, mark_as_non_free(A), mark_as_non_free(B).
2730 non_free(rec(Fields)) :- !, mark_as_non_free_fields(Fields).
2731 non_free(_).
2732 :- block mark_as_non_free_fields(-).
2733 mark_as_non_free_fields([]).
2734 mark_as_non_free_fields([field(_,Val)|T]) :- mark_as_non_free(Val),mark_as_non_free_fields(T).
2735
2736 :- use_module(clpfd_lists,[lazy_fd_value_check/4]).
2737
2738 :- block check_element_of2(-,?,?).
2739 check_element_of2(CS,El,WF) :-
2740 ? is_custom_explicit_set_nonvar(CS),!, element_of_custom_set_wf(El,CS,WF).
2741 check_element_of2([],_,_) :- !,fail.
2742 %check_element_of2([H|T],El,WF) :- try_expand_and_convert_to_avl([H|T],AVL),AVL=avl_set(_),!, % much better support exists for AVL trees; should we enable this conversion ?? %nl,print(converted_list_to_AVL([H|T])),nl,nl,
2743 % element_of_custom_set_wf(El,AVL,WF).
2744 check_element_of2([H|T],E,WF) :- !, % print(check_element_of4w(E,H,T,WF)),nl,
2745 % try and transform E : Set into clpfd:element(_,FDVals,EFD) check:
2746 lazy_fd_value_check([H|T],E,WF,FullyChecked),
2747 %get_partial_set_priority([H|T],WF,LWF), %%
2748 %get_wait_flag(2,check_element_of2([H|T],E),WF,LWF), %%
2749 (FullyChecked==true,ground(E) -> true % no need to check
2750 ; get_cardinality_wait_flag([H|T],check_element_of2,WF,LWF),
2751 ? check_element_of4w(E,H,T,WF,LWF) % this call is somewhat redundant if FullyChecked=true; but otherwise in_fd_value_list will not enumerate on its own (e.g., self-checks for relation_over will fail)
2752 ).
2753 check_element_of2(freetype(Id),E,WF) :- !, is_a_freetype_wf(E,Id,WF).
2754 check_element_of2(term(Z),_E,_WF) :- Z==undefined,!,
2755 add_error_fail(check_element_of2,'Encountered uninitialised set variable', '').
2756 check_element_of2(Set,E,WF) :-
2757 add_internal_error('Illegal argument: ',check_element_of2(Set,E,WF)),fail.
2758
2759
2760 % call if you already have an explicit waitflag (LWF) setup for the cardinality of the set
2761 :- block check_element_of_wf_lwf(?,-,?,?).
2762 check_element_of_wf_lwf(El,CS,WF,_LWF) :-
2763 ? is_custom_explicit_set_nonvar(CS),!, element_of_custom_set_wf(El,CS,WF).
2764 ?check_element_of_wf_lwf(E,[H|T],WF,LWF) :- check_element_of4w(E,H,T,WF,LWF).
2765 check_element_of_wf_lwf(E,freetype(Id),WF,_) :- !, is_a_freetype_wf(E,Id,WF).
2766
2767 :- block check_element_of4w(-,?,-,?,-).
2768 % check_element_of4w(E,H,T,_WF,_LWF) :- print(check_element_of4w(E,H,T,_WF,_LWF)),nl,fail.
2769 ?check_element_of4w(E,H,T,_WF,_LWF) :- T==[],!,equal_object(E,H,check_element_of4w).
2770 check_element_of4w(E,H,_T,_WF,_LWF) :- E==H ,!. %,print(eq(E,H)),nl. % added by mal, 17.10 2007
2771 check_element_of4w(E,H,T,WF,LWF) :- T\==[],
2772 ? equality_objects_lwf(E,H,Res,LWF,WF),
2773 ? check_element_of4(Res,E,T,WF,LWF).
2774
2775 :- block check_element_of4(-,?,?,?,-).
2776 check_element_of4(pred_true,_E,_,_WF,_LWF).
2777 check_element_of4(pred_false,E,T,WF,LWF) :-
2778 ? (var(T) -> T = [E|_] ; check_element_of5(E,T,WF,LWF)).
2779
2780 :- block check_element_of5(?,-,?,?).
2781 check_element_of5(E,R,WF,LWF) :-
2782 get_next_element(R,H,T),
2783 ? check_element_of4w(E,H,T,WF,LWF).
2784
2785
2786
2787 :- assert_must_succeed(exhaustive_kernel_check(not_element_of(int(3),[int(2),int(1)]))).
2788 :- assert_must_succeed(exhaustive_kernel_check(not_element_of(int(3),[int(2),int(1),int(4)]))).
2789 :- assert_must_succeed(exhaustive_kernel_fail_check(not_element_of(int(1),[int(2),int(1)]))).
2790 :- assert_must_succeed((kernel_objects:not_element_of(int(3),[int(2),int(1)]))).
2791 :- assert_must_succeed((kernel_objects:not_element_of(fd(1,'Name'),[]))).
2792 :- assert_must_fail((kernel_objects:not_element_of(fd(1,'Name'),global_set('Name')))).
2793 :- assert_must_succeed((kernel_objects:not_element_of(X,[fd(1,'Name')]),X = fd(2,'Name'))).
2794 :- assert_must_fail((kernel_objects:not_element_of(X,[fd(1,'Name')]),X = fd(1,'Name'))).
2795 :- assert_must_succeed(kernel_objects:not_element_of(term(a),[])).
2796 :- assert_must_fail((kernel_objects:not_element_of(int(1),[int(2),int(1)]))).
2797 :- assert_must_succeed((kernel_objects:not_element_of([int(1),int(2)],
2798 [[int(1)],[int(0),int(4)],[int(0),int(3)],[int(0),int(1)],[int(0)],[]]))).
2799 :- assert_must_fail((kernel_objects:not_element_of(term(3),[int(2),int(1)]))).
2800
2801
2802 not_element_of(X,Set) :- init_wait_flags(WF,[not_element_of]),
2803 ? not_element_of_wf(X,Set,WF),
2804 ? ground_wait_flags(WF).
2805
2806 :- use_module(b_global_sets,[b_get_fd_type_bounds/3]).
2807 :- block not_element_of_wf(-,-,?).
2808 not_element_of_wf(_,Set,_) :- Set==[],!.
2809 not_element_of_wf(El,Set,WF) :- nonvar(El),El=fd(X,GS),b_get_fd_type_bounds(GS,N,N),!,
2810 % we have a global set with a single element; Set must be empty
2811 X=N,empty_set_wf(Set,WF).
2812 ?not_element_of_wf(El,Set,WF) :- not_element_of_wf1(Set,El,WF).
2813
2814 :- block not_element_of_wf1(-,?,?).
2815 not_element_of_wf1(X,E,WF) :- is_custom_explicit_set_nonvar(X),!,
2816 not_element_of_custom_set_wf(E,X,WF).
2817 not_element_of_wf1([],_E,_WF).
2818 not_element_of_wf1([H|T],E,WF) :-
2819 ? not_equal_object_wf(E,H,WF),
2820 ? not_element_of_wf1(T,E,WF).
2821
2822
2823 :- assert_must_succeed(exhaustive_kernel_check(add_element(int(3),[int(2),int(1)],[int(1),int(3),int(2)]))).
2824 :- assert_must_succeed(exhaustive_kernel_fail_check(add_element(int(2),[int(2),int(1)],[int(1),int(3),int(2)]))).
2825 :- assert_must_succeed(exhaustive_kernel_fail_check(add_element(int(4),[int(2),int(1)],[int(1),int(3),int(2)]))).
2826 :- assert_must_succeed((kernel_objects:add_element(int(3),[int(2),int(1)],R),
2827 kernel_objects:equal_object(R,[int(1),int(2),int(3)]))).
2828 :- assert_must_succeed((kernel_objects:add_element([int(2)],[[int(2),int(1)],[]],R),
2829 kernel_objects:equal_object(R,[[],[int(1),int(2)],[int(2)]]))).
2830 :- assert_must_succeed((kernel_objects:add_element([int(1),int(2)],[[int(2),int(1)],[]],R),
2831 kernel_objects:equal_object(R,[[],[int(1),int(2)]]))).
2832 :- assert_must_succeed((kernel_objects:add_element(X,[int(2),int(1)],R),
2833 kernel_objects:equal_object(R,[int(1),int(2)]), X = int(1))).
2834 :- assert_must_succeed((kernel_objects:add_element([int(1),int(2)],
2835 [[int(1)],[int(0),int(4)],[int(0),int(3)],[int(0),int(1)],[int(0)],[]], _R))).
2836
2837 :- assert_must_succeed((kernel_objects:add_element(int(3),[int(X),int(1)],R,D),
2838 var(D), X=3, R==[int(3),int(1)], D==done)).
2839
2840 :- assert_must_fail((kernel_objects:add_element(term(msg),[int(2),int(1)],_R))).
2841 :- assert_must_succeed((kernel_objects:add_element(int(3),[int(2),int(X)],R),
2842 nonvar(R), R =[H|T], H==int(2), nonvar(T),T=[_HH|TT],var(TT),
2843 X=4, T==[int(4),int(3)])).
2844 :- assert_must_succeed((kernel_objects:add_element(int(3),[int(2),int(X)],R),
2845 nonvar(R), R =[H|T], H==int(2), nonvar(T),T=[_HH|TT],var(TT),
2846 X=3, T==[int(3)])).
2847 :- assert_must_succeed((kernel_objects:add_element(int(3),X,[int(2),int(3)]),
2848 kernel_objects:equal_object(X,[int(2)]) )).
2849 :- assert_must_succeed((kernel_objects:add_element(int(3),X,[int(3)]),
2850 kernel_objects:equal_object(X,[]) )).
2851 :- assert_must_succeed((add_element(X,[int(1)],[int(1)]),X==int(1))).
2852 :- assert_must_succeed((add_element(X,[],[int(1)]),X==int(1))).
2853 % kernel_objects:add_element(E,[H],R,Done), H = int(X), E=int(Y), X in 1..10, Y in 11..20.
2854
2855
2856 add_element(E,Set,NewSet) :- add_element(E,Set,NewSet,_).
2857 add_element(Element,Set,NewSet,Done) :- add_element_wf(Element,Set,NewSet,Done,no_wf_available).
2858 add_element_wf(E,Set,NewSet,WF) :- add_element_wf(E,Set,NewSet,_,WF).
2859
2860 :- block add_element_wf(?,-,?,?,?).
2861 add_element_wf(Element,Set,NewSet,Done,_WF) :- Set==[],!,
2862 % try and convert to AVL if possible:
2863 ? equal_object_optimized(NewSet,[Element]), % we could call equal_object_opt3 directly
2864 Done=done.
2865 add_element_wf(E,Set,NewSet,Done,WF) :- add_element1_wf(E,Set,NewSet,Done,WF).
2866
2867 :- block %add_element1(-,?,-,?),
2868 add_element1_wf(?,-,?,?,?).
2869 add_element1_wf(E,Set,NewSet,Done,WF) :- var(E),!, add_element_var(Set,NewSet,E,Done,WF).
2870 add_element1_wf(E,[H|T],NewSet,Done,WF) :- E==H,!, % avoid running [H|T] through expand_custom_set_to_list, in case T is a variable this will create a pending co-routine
2871 equal_object_wf(NewSet,[H|T],add_element1_1,WF),Done=done.
2872 add_element1_wf(E,Set,NewSet,Done,WF) :-
2873 nonvar(Set), is_custom_explicit_set_nonvar(Set),
2874 add_element_to_explicit_set_wf(Set,E,R,WF),!,
2875 equal_object_wf(R,NewSet,add_element1_2,WF),Done=done.
2876 add_element1_wf(E,Set,NewSet,Done,WF) :-
2877 expand_custom_set_to_list_wf(Set,ESet,_,add_element1,WF), % we could avoid this expansion by treating avl_set,... below in add_element3
2878 add_element2_wf(ESet,E,NewSet,Done,WF).
2879
2880
2881 add_element_var([],Res,Element,Done,WF) :- !,
2882 equal_cons_wf(Res,Element,[],WF),Done=done.
2883 add_element_var(Set,Res,Element,Done,WF) :- Set \= [], Set \= closure(_,_,_),
2884 is_one_element_set(Res,ResEl), !,
2885 % the result is a one element set; hence Element *must* be the element in that set
2886 equal_object_wf(Element,ResEl,add_element_var_1,WF),
2887 equal_object_wf(Set,Res,add_element_var_2,WF), Done=done.
2888 add_element_var(Set,Res,Element,Done,WF) :- %when(nonvar(Element), add_element(Element,Set,Res,Done)).
2889 expand_custom_set_to_list_wf(Set,ESet,_,add_element_var,WF),
2890 add_element2_wf(ESet,Element,Res,Done,WF).
2891
2892 is_one_element_set(S,_) :- var(S),!,fail.
2893 is_one_element_set([H|T],H) :- T==[].
2894 is_one_element_set(avl_set(S),El) :- is_one_element_custom_set(avl_set(S),El).
2895
2896 :- block add_element2_wf(-,?,?,?,?).
2897 add_element2_wf([],E,Res,Done,WF) :- var(Res),should_be_converted_to_avl(E),
2898 construct_avl_from_lists_wf([E],R,WF),!,
2899 (R,Done)=(Res,done).
2900 add_element2_wf(S,E,Res,Done,WF) :- copy_list_skeleton(S,Res,WF),
2901 add_element3_wf(S,E,Res,Done,WF).
2902
2903 % TO DO: use something else, like subset to propagate info that Set1 <: Set1 \/ {New}
2904 :- block copy_list_skeleton(-,?,?).
2905 copy_list_skeleton([],_,_WF) :- !.
2906 copy_list_skeleton([H|T],R,WF) :- !, % H must be in R, but not all elements of R are in [H|T] !; it could be the added element
2907 ((ground_value(H) ; unbound_variable_for_cons(R) ;
2908 custom_explicit_sets:singleton_set(R,_) % if R is a singleton set {EL} then H must be EL and T=[]
2909 )
2910 -> equal_cons_wf(R,H,RR,WF),
2911 copy_list_skeleton(T,RR,WF)
2912 ; %nl,print(not_copying([H|T],R)),nl,
2913 true % otherwise equal_cons_wf can backpropagate elements from R into H !! see {x,y| x = {1,2} & x \/ y = {1,2,3} & 1:y } test 1535
2914 ).
2915 copy_list_skeleton(Set,R,WF) :- !,is_custom_explicit_set(Set,copy_list_skeleton),
2916 expand_custom_set_to_list_wf(Set,ESet,_,copy_list_skeleton,WF), copy_list_skeleton(ESet,R,WF).
2917 copy_list_skeleton(Skel,R,WF) :- add_internal_error('Argument not a set: ',copy_list_skeleton(Skel,R,WF)).
2918
2919 :- block add_element3_wf(-,?,?,?,?).
2920 add_element3_wf([],E,Res,Done,WF) :- % Res must be {E}
2921 equal_cons_wf(Res,E,[],WF),
2922 Done=done.
2923 add_element3_wf([H|T],E,Res,Done,WF) :-
2924 equality_objects_wf(H,E,EqRes,WF),
2925 ? equal_cons_wf(Res,H,TailRes,WF), % was: equal_object([H|TailRes],Res), % use WF?
2926 (var(EqRes)
2927 -> has_not_to_be_added([H|T],Res,EqRes,0)
2928 ; true),
2929 %(when(nonvar(EqRes),(print(nv(EqRes,H,T,WF)),nl))),
2930 add_element4_wf(EqRes,T,E,TailRes,Done,WF).
2931
2932
2933 % check if an element has not to be added to arg1 to obtain arg2
2934 :- block has_not_to_be_added(?,-,?,?),has_not_to_be_added(-,?,?,?).
2935 %has_not_to_be_added(A,B,R,Sz) :- print(has_not_to_be_added(A,B,R,Sz)),nl,fail.
2936 has_not_to_be_added([],[],R,Sz) :- !,(Sz=1 -> R=pred_true % we have 1 element: force equality with first element
2937 ; true).
2938 has_not_to_be_added([],[_H|T],R,_Sz) :- !, %(var(R) -> print(add_f([],[_H|T],R,_Sz)),nl ; true),
2939 empty_set(T),R=pred_false. % R=pred_false means with add an element
2940 has_not_to_be_added([_|_],[],_,_) :- !,fail. % we can either add or not; in both cases we do not obtain []
2941 has_not_to_be_added([_|T1],[_|T2],R,Sz) :- !, S1 is Sz+1, has_not_to_be_added(T1,T2,R,S1).
2942 has_not_to_be_added(_,_,_,_). % to do: support custom explicit sets
2943
2944 :- block add_element4_wf(-,?,?,?,?,?).
2945 add_element4_wf(pred_true, T,_E,TRes,Done,WF) :- equal_object_wf(T,TRes,add_element4_wf,WF), Done=done.
2946 add_element4_wf(pred_false,T, E,TRes,Done,WF) :- add_element3_wf(T,E,TRes,Done,WF).
2947
2948
2949 :- assert_must_succeed((kernel_objects:add_new_element(int(3),[int(2),int(1)],R),
2950 kernel_objects:equal_object(R,[int(1),int(2),int(3)]))).
2951 :- assert_must_succeed((kernel_objects:add_new_element([int(2)],[[int(2),int(1)],[]],R),
2952 kernel_objects:equal_object(R,[[],[int(1),int(2)],[int(2)]]))).
2953
2954 % TO DO : get rid of need for non-WF version in enumeration basic type:
2955 add_new_element(E,Set,NewSet) :- init_wait_flags(WF),
2956 add_new_element_wf(E,Set,NewSet,WF), ground_wait_flags(WF).
2957
2958 % use when you are sure the element to add is not in the set
2959 % to be used for adding elements to an accumulator
2960 :- block add_new_element_wf(?,-,?,?).
2961 %%add_new_element(E,Set,NewSet) :- add_element(E,Set,NewSet). % TO DO : Improve
2962 add_new_element_wf(E,Set,NewSet,WF) :-
2963 is_custom_explicit_set(Set,add_element),
2964 add_element_to_explicit_set_wf(Set,E,R,WF),!,
2965 equal_object_wf(R,NewSet,add_new_element_wf,WF).
2966 add_new_element_wf(E,Set,NewSet,WF) :-
2967 expand_custom_set_to_list_wf(Set,ESet,_,add_new_element_wf,WF),
2968 add_new_element2(ESet,E,NewSet,WF).
2969
2970 :- block add_new_element2(-,?,?,?).
2971 add_new_element2([],E,Res,WF) :- var(Res),should_be_converted_to_avl(E),
2972 construct_avl_from_lists_wf([E],R,WF),!,equal_object_wf(R,Res,add_new_element2,WF).
2973 add_new_element2(S,E,Res,WF) :- equal_cons_wf(Res,E,S,WF).
2974
2975
2976
2977
2978 :- assert_must_succeed(exhaustive_kernel_check(remove_element_wf(int(3),[int(3),int(1)],
2979 [int(1)],_WF))).
2980 :- assert_must_succeed(exhaustive_kernel_check(remove_element_wf(int(1),[int(3),int(1)],
2981 [int(3)],_WF))).
2982 :- assert_must_succeed(exhaustive_kernel_fail_check(remove_element_wf(int(1),[int(3),int(1)],
2983 [int(1)],_WF))).
2984 :- assert_must_succeed(exhaustive_kernel_fail_check(remove_element_wf(int(11),[int(1)],
2985 [int(1)],_WF))).
2986 :- assert_must_succeed(exhaustive_kernel_fail_check(remove_element_wf(int(1),[int(3),int(1)],
2987 [],_WF))).
2988 :- assert_must_succeed((kernel_objects:remove_element_wf(fd(1,'Name'),X,[fd(2,'Name'),fd(3,'Name')],_WF),
2989 kernel_objects:equal_object(X,global_set('Name')))).
2990 :- assert_must_succeed((kernel_objects:remove_element_wf(int(1),X,[int(2)],_WF),
2991 kernel_objects:equal_object(X,[int(2),int(1)]))).
2992 :- assert_must_succeed(( kernel_objects:remove_element_wf(int(1),[int(X),int(2)],R,WF), kernel_waitflags:ground_wait_flags(WF),X==1,R==[int(2)] )).
2993 :- assert_must_succeed(( kernel_objects:remove_element_wf(X,[int(1),int(2)],R,WF), kernel_waitflags:ground_wait_flags(WF),X==int(2),R==[int(1)] )).
2994 :- assert_must_succeed(( kernel_objects:remove_element_wf(X,[pred_true /* bool_true */,pred_false /* bool_false */],R,WF), kernel_waitflags:ground_wait_flags(WF),X==pred_false /* bool_false */,R==[pred_true /* bool_true */] )).
2995
2996 ?remove_element_wf(X,Set,Res,WF) :- remove_element_wf(X,Set,Res,WF,_DONE).
2997
2998 :- block remove_element_wf(?,-, -,?,?).
2999 remove_element_wf(X,Set,Res,WF,_DONE) :- Res==[],!, % we know that X must be the only element in Set
3000 equal_object_wf(Set,[X],remove_element_wf,WF).
3001 remove_element_wf(X,Set,Res,WF,DONE) :-
3002 ? remove_element_wf1(X,Set,Res,WF,DONE).
3003
3004 :- block remove_element_wf1(?,-, ?,?,?).
3005 remove_element_wf1(X,avl_set(A),Res,WF,DONE) :- element_can_be_added_or_removed_to_avl(X),!,
3006 /* TO DO: try and move the check about whether X can be added to later; when either X is known
3007 or LWF is instantiated */
3008 remove_element_from_explicit_set(avl_set(A),X,AR),
3009 equal_object_wf(AR,Res,remove_element_wf1,WF), DONE=done.
3010 remove_element_wf1(X,Set,Res,WF,DONE) :- /* DONE is ground when element actually removed */
3011 expand_custom_set_to_list_wf(Set,ESet,_,remove_element_wf1,WF),
3012 %% nl,print(remove_element_wf1(X,Set,ESet,Res,WF,DONE)),nl,nl, %%
3013 remove_element_wf2(X,ESet,Res,LWF,DONE),
3014 %when(nonvar(DONE), print_bt_message(removed(X,ESet,Res,LWF))),
3015 (DONE==done -> true
3016 ; same_card_prop(ESet,[X|Res]), % in case result is instantiated: check compatible with inputs
3017 ? get_cardinality_wait_flag(ESet,remove_element_wf1(X,ESet,Res),WF,LWF),
3018 quick_propagation_element_information(Set,X,WF,_) % use Set rather than ESet; better if still closure or AVL
3019 ).
3020
3021 :- block same_card_prop(-,?), same_card_prop(?,-).
3022 same_card_prop([],[_|_]) :- !, fail.
3023 same_card_prop([_|T],R) :- !,
3024 (R=[] -> fail
3025 ; R=[_|RT] -> same_card_prop(T,RT)
3026 ; true). % just ignore
3027 same_card_prop(_,_).
3028
3029 :- block remove_element_wf2(?,-,?,?,?).
3030 remove_element_wf2(H1,[H2|T],Res,LWF,DONE) :- Res==[],!,
3031 equal_object(H1,H2,remove_element_wf2),
3032 remove_element_wf3(pred_true,H1,H2,T,Res,LWF,DONE).
3033 remove_element_wf2(H1,[H2|T],Res,LWF,DONE) :-
3034 prop_empty_set(T,EqRes),
3035 ? equality_objects_lwf(H1,H2,EqRes,LWF,no_wf_available), % TODO: pass WF
3036 ? remove_element_wf3(EqRes,H1,H2,T,Res,LWF,DONE).
3037 /* important for total_bijection that this has higher priority than other expansions */
3038
3039 :- block prop_empty_set(-,?).
3040 % force second argument to pred_true if first arg is empty set
3041 prop_empty_set([],R) :- !, R=pred_true.
3042 prop_empty_set(_,_).
3043
3044 :- block remove_element_wf3(-,?,?,?,?,-,?).
3045 % remove_element_wf3(EqRes,H1,H2,T,Res,LWF,DONE) :- print(remove_element_wf3(EqRes,H1,H2,T,Res,LWF,DONE)),nl,fail.
3046 remove_element_wf3(pred_true,_H1,_H2,T,Res,_LWF,DONE) :-
3047 ? equal_object(T,Res,remove_element_wf3_1),DONE=done.
3048 remove_element_wf3(pred_false,E,H,T,Res,LWF,DONE) :-
3049 ? equal_object([H|RT],Res,remove_element_wf3_2),
3050 ? remove_element_wf2(E,T,RT,LWF,DONE).
3051
3052 /* the same as above: but do not remove if infinite or closure */
3053
3054 :- block remove_element_wf_if_not_infinite_or_closure(?,-,?,?,?,?).
3055 remove_element_wf_if_not_infinite_or_closure(X,Set, Res,WF,LWF,Done) :-
3056 (dont_expand(Set)
3057 -> check_element_of_wf(X,Set,WF),
3058 equal_object_wf(Res,Set,remove_element_wf_if_not_infinite_or_closure,WF),
3059 Done=true % or should we wait until X known ?
3060 %(var(Res)->Res=Set ; equal_object(Res,Set))
3061 ; expand_custom_set_to_list_wf(Set,ESet,_,remove_element_wf_if_not_infinite_or_closure,WF),
3062 ? remove_element_wf2(X,ESet,Res,LWF,Done)
3063 ).
3064
3065 %:- use_module(bmachine_construction,[external_procedure_used/1]).
3066 %dont_expand(global_set('STRING')) :- !. % s: STRING +-> ... will generate new strings !
3067 %(external_procedure_used(_) -> true). % we could check if there is a STRING generating procedure involved
3068 % unless we use external functions, there is *no* way that new strings can be generated from a B machine !
3069 % Hence: we can expand STRING safely and thus avoid infinite enumeration of partial functions, ...
3070 % example: procs : STRING +-> {"waiting"} & card( dom(procs) ) = 6 thus fails quickly
3071 dont_expand(avl_set(_)) :- !,fail.
3072 dont_expand(closure(_,_,_)) :- !. % relevant for tests 283, 1609, 1858
3073 dont_expand(Set) :- is_infinite_or_very_large_explicit_set(Set). % should we use a smaller bound than 20000 ? see test 1609
3074
3075
3076 :- assert_must_succeed((kernel_objects:check_no_duplicates_in_list([int(1),int(2)],[],no_wf_available))).
3077 :- assert_must_fail((kernel_objects:check_no_duplicates_in_list([int(1),int(2),int(1)],[],no_wf_available))).
3078
3079 :- block check_no_duplicates_in_list(-,?,?).
3080 check_no_duplicates_in_list([],_,_) :- !.
3081 check_no_duplicates_in_list([H|T],ElementsSoFar,WF) :- !,
3082 not_element_of_wf(H,ElementsSoFar,WF),
3083 add_new_element_wf(H,ElementsSoFar,ElementsSoFar2,WF),
3084 check_no_duplicates_in_list(T,ElementsSoFar2,WF).
3085 check_no_duplicates_in_list(CS,ElementsSoFar,WF) :-
3086 disjoint_sets(CS,ElementsSoFar,WF).
3087
3088 :- public warn_if_duplicates_in_list/3.
3089 % code for debugging / safe mode execution to check for duplicates
3090 warn_if_duplicates_in_list(List,Src,WF) :-
3091 %get_last_wait_flag(warn_if_duplicates_in_list,WF,WFX), % we may wish to use another WF here !?
3092 get_enumeration_finished_wait_flag(WF,WFX),
3093 when(nonvar(WFX),warn_if_duplicates_in_list(List,[],Src,WF)).
3094
3095 :- block warn_if_duplicates_in_list(-,?,?,?).
3096 warn_if_duplicates_in_list([],_,_,_) :- !.
3097 warn_if_duplicates_in_list([H|T],ElementsSoFar,Src,WF) :- !,
3098 membership_test_wf(ElementsSoFar,H,MemRes,WF),
3099 warn_aux(MemRes,H,T,ElementsSoFar,Src,WF).
3100 warn_if_duplicates_in_list(CS,ElementsSoFar,Src,WF) :-
3101 when(ground(CS),
3102 (disjoint_sets(CS,ElementsSoFar,WF)
3103 -> true
3104 ; add_error(Src,'Duplicates in list: ',CS:ElementsSoFar:Src))).
3105
3106 :- block warn_aux(-,?,?,?,?,?).
3107 warn_aux(pred_true,H,_,ElementsSoFar,Src,_WF) :-
3108 add_error(Src,'Duplicate in list: ',H:ElementsSoFar:Src).
3109 warn_aux(pred_false,H,T,ElementsSoFar,Src,WF) :-
3110 add_new_element_wf(H,ElementsSoFar,ElementsSoFar2,WF),
3111 warn_if_duplicates_in_list(T,ElementsSoFar2,Src,WF).
3112
3113
3114 :- assert_must_succeed((kernel_objects:remove_exact_first_element([int(1),int(2)],X,[[]]),
3115 X = [[int(1),int(2)],[]])).
3116 :- assert_must_succeed((kernel_objects:remove_exact_first_element(X,global_set('Name'),T),
3117 X==fd(1,'Name'),T==[fd(2,'Name'),fd(3,'Name')])).
3118 :- assert_must_fail((kernel_objects:remove_exact_first_element([[]],X,_),
3119 X = [[int(1),int(2)],[]])).
3120
3121 :- assert_must_succeed((kernel_objects:remove_exact_first_element(X,C,R),
3122 kernel_objects:gen_test_interval_closure(1,2,C),
3123 X == int(1), R == [int(2)] )).
3124
3125 gen_test_interval_closure(From,To,CL) :-
3126 CL=closure(['_zzzz_unary'],[integer],b(member( b(identifier('_zzzz_unary'),integer,[]),
3127 b(interval(b(value(int(From)),integer,[]),
3128 b(value(int(To)),integer,[])),set(integer),[])),pred,[])).
3129
3130 :- block remove_exact_first_element(?,-,?).
3131 remove_exact_first_element(X,Set,Res) :- remove_exact_first_element1(Set,X,Res).
3132
3133 remove_exact_first_element1([],_,_) :- fail.
3134 remove_exact_first_element1([H|T],H,T).
3135 remove_exact_first_element1(avl_set(A),H,T) :- remove_minimum_element_custom_set(avl_set(A),H,T).
3136 remove_exact_first_element1(global_set(GS),H,T) :-
3137 remove_minimum_element_custom_set(global_set(GS),H,T).
3138 remove_exact_first_element1(freetype(GS),H,T) :-
3139 remove_minimum_element_custom_set(freetype(GS),H,T).
3140 remove_exact_first_element1(closure(P,Types,B),H,T) :-
3141 remove_minimum_element_custom_set(closure(P,Types,B),H,T).
3142
3143
3144 :- assert_must_succeed((kernel_objects:delete_element_wf(fd(1,'Name'),X,[fd(2,'Name'),fd(3,'Name')],_WF),
3145 X = global_set('Name'))).
3146 :- assert_must_succeed((kernel_objects:delete_element_wf(int(1),X,[int(2)],_WF),
3147 X = [int(2),int(1)])).
3148 :- assert_must_succeed((kernel_objects:delete_element_wf([int(1),int(2)],X,[],_WF),
3149 X = [[int(2),int(1)]])).
3150 :- assert_must_succeed((kernel_objects:delete_element_wf(int(3),X,[int(2),int(1)],_WF),
3151 X = [int(2),int(1)])).
3152 :- assert_must_succeed((kernel_objects:delete_element_wf(int(1),X,X,_WF),
3153 X = [])).
3154 :- assert_must_fail((kernel_objects:delete_element_wf(int(X),[int(1)],[int(1)],_WF),
3155 X = 1)).
3156
3157 /* WARNING: only use when R is not instantiated by something else;
3158 (except for R=[]) */
3159
3160
3161 :- block delete_element_wf(?,-,?,?).
3162 delete_element_wf(X,Set,Res,WF) :-
3163 ground(X),
3164 try_expand_and_convert_to_avl_with_check(Set,ESet,delete_element_wf),!,
3165 delete_element0(X,ESet,Res,WF).
3166 delete_element_wf(X,Set,Res,WF) :- delete_element1(X,Set,Res,WF).
3167
3168 :- block delete_element0(?,-,?,?).
3169 delete_element0(X,ESet,Res,WF) :-
3170 ( is_custom_explicit_set(ESet,delete_element),
3171 delete_element_from_explicit_set(ESet,X,DS)
3172 -> equal_object_wf(DS,Res,delete_element0,WF)
3173 ; delete_element1(X,ESet,Res,WF)
3174 ).
3175
3176 delete_element1(X,Set,Res,WF) :- expand_custom_set_to_list_wf(Set,ESet,_,delete_element1,WF),
3177 %check_is_expanded_set(ESet,delete_element2),
3178 delete_element2(ESet,X,Res,WF).
3179
3180 :- block delete_element2(-,?,?,?).
3181 delete_element2([],_,[],_). /* same as above, but allow element to be absent */
3182 delete_element2([H2|T],E,R,WF) :-
3183 equality_objects_wf(H2,E,EqRes,WF),
3184 delete_element3(EqRes,H2,T,E,R,WF).
3185 %when_sufficiently_instantiated(E,H2,delete_element3(H1,[H2|T],R)). /* added by Michael Leuschel, 16/3/06 */
3186
3187 :- block delete_element3(-,?,?,?,?,?).
3188 delete_element3(pred_true,_H2,T,_,R,WF) :- equal_object_wf(R,T,delete_element3,WF).
3189 delete_element3(pred_false,H2,T,E,Res,WF) :- equal_cons_wf(Res,H2,RT,WF),delete_element2(T,E,RT,WF).
3190
3191
3192
3193
3194 :- assert_must_succeed(kernel_objects:check_is_expanded_set([int(1)],test)).
3195
3196 :- public check_is_expanded_set/2.
3197 check_is_expanded_set(X,Source) :-
3198 (nonvar(X),(X=[] ; X= [_|_]) -> true
3199 ; add_internal_error('Is not expanded set: ',check_is_expanded_set(X,Source))
3200 ).
3201
3202
3203 /* union/3 */
3204
3205 :- assert_must_succeed(exhaustive_kernel_check([commutative],union([int(3)],[int(2),int(1),int(3)],[int(1),int(3),int(2)]))).
3206 :- assert_must_succeed(exhaustive_kernel_check([commutative],union([int(1)],[int(1),int(2)],[int(1),int(2)]))).
3207 :- assert_must_succeed(exhaustive_kernel_check([commutative],union([int(3)],[int(2),int(1)],[int(1),int(3),int(2)]))).
3208 :- assert_must_succeed(exhaustive_kernel_check([commutative],union([int(3),int(2)],[int(2),int(1)],[int(1),int(3),int(2)]))).
3209 :- assert_must_succeed(exhaustive_kernel_fail_check([commutative],union([int(3),int(4)],[int(2),int(1)],[int(1),int(3),int(2)]))).
3210 :- assert_must_succeed((kernel_objects:union([int(1)],[int(2)],Res),kernel_objects:equal_object(Res,[_,_]))).
3211 :- assert_must_succeed((kernel_objects:union([],[int(2)],Res),
3212 kernel_objects:equal_object(Res,[int(2)]))).
3213 :- assert_must_succeed((kernel_objects:union([int(2)],[],Res),
3214 kernel_objects:equal_object(Res,[int(2)]))).
3215 :- assert_must_succeed((kernel_objects:union([int(2)],[int(2)],Res),
3216 kernel_objects:equal_object(Res,[int(2)]))).
3217 :- assert_must_succeed((kernel_objects:union([int(1)],Res,[int(1),int(2)]),
3218 kernel_objects:equal_object(Res,[int(2)]))).
3219 :- assert_must_succeed((kernel_objects:union([fd(1,'Name')],X,Res),X=global_set('Name'),
3220 kernel_objects:equal_object(Res,X))).
3221 :- assert_must_succeed((kernel_objects:union(X,global_set('Name'),Res),X=[fd(2,'Name'),fd(1,'Name')],
3222 kernel_objects:equal_object(Res,global_set('Name')))).
3223 :- assert_must_succeed((kernel_objects:union([fd(1,'Name')],[fd(3,'Name'),fd(2,'Name')],Res),
3224 kernel_objects:equal_object(Res,global_set('Name')))).
3225 %:- assert_must_succeed((kernel_objects:union([fd(1,'Name')],[fd(3,'Name'),fd(2,'Name')],Res),
3226 % kernel_objects:equal_object(Res,X),X=global_set('Name'))).
3227 :- assert_must_fail((kernel_objects:union([int(1)],[int(2)],Res),
3228 (kernel_objects:equal_object(Res,[_]);kernel_objects:equal_object(Res,[_,_,_|_])))).
3229 :- assert_must_fail((kernel_objects:union([int(1)],[int(1)],Res),(Res=[];kernel_objects:equal_object(Res,[_,_|_])))).
3230 :- assert_must_fail((kernel_objects:union([fd(1,'Name')],[fd(2,'Name')],Res),
3231 kernel_objects:equal_object(Res,global_set('Name')))).
3232 % kernel_objects:union([int(1),int(2)],X,[int(1),int(2),int(3)])
3233
3234 union(S1,S2,Res) :- init_wait_flags(WF,[union]), union_wf(S1,S2,Res,WF), ground_wait_flags(WF).
3235
3236 :- block union_wf(-,-,-,?).
3237 %union_wf(Set1,Set2,Res,_WF) :- print(union_wf(Set1,Set2,Res)),nl,fail.
3238 union_wf(Set1,Set2,Res,WF) :- Set1==[],!,equal_object_wf(Set2,Res,union_wf_1,WF).
3239 union_wf(Set1,Set2,Res,WF) :- Set2==[],!,equal_object_wf(Set1,Res,union_wf_2,WF).
3240 union_wf(Set1,Set2,Res,WF) :- Res==[],!,empty_set_wf(Set1,WF), empty_set_wf(Set2,WF).
3241 ?union_wf(Set1,Set2,Res,WF) :- union0(Set1,Set2,Res,WF).
3242
3243 :- block union0(-,-,?,?), union0(-,?,-,?), union0(?,-,-,?). % require two arguments to be known
3244 union0(Set1,Set2,Res,WF) :- Set1==[],!,equal_object_wf(Set2,Res,union0_1,WF).
3245 union0(Set1,Set2,Res,WF) :- Set2==[],!,equal_object_wf(Set1,Res,union0_2,WF).
3246 union0(Set1,Set2,Res,WF) :- Res==[],!,empty_set_wf(Set1,WF), empty_set_wf(Set2,WF).
3247 union0(Set1,Set2,Res,WF) :- nonvar(Res), singleton_set(Res,X),!,
3248 (var(Set1) -> union0_to_singleton_set(Set2,Set1,X,WF) ; union0_to_singleton_set(Set1,Set2,X,WF)).
3249 ?union0(Set1,Set2,Res,WF) :- (var(Set1) -> union1(Set2,Set1,Res,WF) ; union1(Set1,Set2,Res,WF)).
3250
3251 % optimized version for Set1 \/ Set2 = {X}
3252 % TO DO: is not triggered when Set1 and Set2 are instantiated first (before result)
3253 % >>> z:11..12 & {x,y} \/ {v} = {z} does not work
3254 union0_to_singleton_set([],Set2,X,WF) :- !, equal_object_wf(Set2,[X],union0_3,WF). % cannot be reached, due to checks above
3255 union0_to_singleton_set([H|T],Set2,X,WF) :- !, empty_set_wf(T,WF), equal_object_wf(H,X,WF),
3256 check_subset_of_wf(Set2,[X],WF).
3257 union0_to_singleton_set(avl_set(A),Set2,X,WF) :- !, singleton_set(avl_set(A),AEl),
3258 equal_object_wf(AEl,X,WF),
3259 check_subset_of_wf(Set2,[X],WF).
3260 union0_to_singleton_set(Set1,Set2,X,WF) :- % closure or global_set; revert to normal treatment
3261 union1(Set1,Set2,[X],WF).
3262
3263 union1(Set1,Set2,Res,WF) :- var(Set2), dont_expand_this_explicit_set(Set1), !,
3264 block_union1e(Set2,Set1,Res,WF). % try avoid expanding Set1 and wait until Set2 becomes known, may enable symbolic union
3265 union1(Set1,Set2,Res,WF) :-
3266 try_expand_and_convert_to_avl_unless_large_or_closure_wf(Set1,ESet1,WF),
3267 try_expand_and_convert_to_avl_unless_large_or_closure_wf(Set2,ESet2,WF),
3268 ? union1e(ESet1,ESet2,Res,WF).
3269
3270 try_expand_and_convert_to_avl_unless_large_or_closure_wf(Set,ESet,_) :-
3271 (var(Set);Set=closure(_,_,_)),!,ESet=Set.
3272 try_expand_and_convert_to_avl_unless_large_or_closure_wf(Set,ESet,WF) :-
3273 try_expand_and_convert_to_avl_unless_large_wf(Set,ESet,WF).
3274
3275 :- block block_union1e(-,?,?,?).
3276 block_union1e(Set1,Set2,Res,WF) :- Res==[],!,
3277 empty_set_wf(Set1,WF), empty_set_wf(Set2,WF).
3278 block_union1e(Set1,Set2,Res,WF) :-
3279 union1e(Set1,Set2,Res,WF).
3280
3281 union1e(Set1,Set2,Res,WF) :-
3282 is_custom_explicit_set(Set1,union1e),
3283 union_of_explicit_set(Set1,Set2,Union),
3284 !, equal_object_wf(Union,Res,union1e,WF).
3285 union1e(Set2,Set1,Res,WF) :- % Set2=avl_set(_), nonvar(Set1), Set1 \= avl_set(_),
3286 nonvar(Set1), Set1=avl_set(_), Set2 \= avl_set(_), \+ ground(Set2),
3287 !, % avoid expanding Set2
3288 expand_custom_set_to_list_wf(Set1,ESet1,_,union1e_1,WF),
3289 ? union2(ESet1,Set2,Res,WF), lazy_check_subset_of(Set2,Res,WF).
3290 union1e(Set1,Set2,Res,WF) :-
3291 expand_custom_set_to_list_wf(Set1,ESet1,_,union1e_2,WF), % we could avoid this expansion by treating avl_set,... below in union2
3292 ? union2(ESet1,Set2,Res,WF),
3293 lazy_check_subset_of(Set1,Res,WF), % ADDED to solve {x,y| { x \/ y } <: {{1} \/ {2}}}
3294 lazy_check_subset_of(Set2,Res,WF) % could perform additional constraint checking
3295 % ,try_prop_card_leq(ESet1,Res), try_prop_card_leq(Set2,Res). %%% seems to slow down ProB: investigate
3296 .
3297
3298 /* not yet used:
3299 % lazy_check_in_union(R,Set1,Set2,WF): check if all elements of R appear in at least one of the sets Sets1/2:
3300 :- block lazy_check_in_union(-,?,?,?).
3301 lazy_check_in_union([],_,_,_) :- !.
3302 lazy_check_in_union([H|T],Set1,Set2,WF) :- !,
3303 in_one_of_sets(H,Set1,Set2,WF),
3304 lazy_check_in_union(T,Set1,Set2,WF).
3305 lazy_check_in_union(_,_,_,_).
3306
3307 % check if an element appear in at least one of the two sets:
3308 in_one_of_sets(H,Set1,Set2,WF) :-
3309 membership_test_wf(Set1,H,MemRes1,WF),
3310 (MemRes1==pred_true -> true
3311 ; one_true(MemRes1,MemRes2),
3312 membership_test_wf(Set2,H,MemRes2,WF)
3313 ).
3314
3315 :- block one_true(-,-).
3316 one_true(MemRes1,MemRes2) :- var(MemRes1),!,
3317 (MemRes2=pred_false -> MemRes1=pred_true ; true).
3318 one_true(pred_true,_).
3319 one_true(pred_false,pred_true).
3320 */
3321
3322
3323 :- block lazy_try_check_element_of(?,-,?).
3324 ?lazy_try_check_element_of(H,Set,WF) :- lazy_check_element_of_aux(Set,H,WF).
3325
3326 ?lazy_check_element_of_aux(closure(P,T,B),H,WF) :- !, check_element_of_wf(H,closure(P,T,B),WF).
3327 ?lazy_check_element_of_aux(avl_set(A),H,WF) :- !, check_element_of_wf(H,avl_set(A),WF).
3328 lazy_check_element_of_aux([X|T],H,WF) :- !, lazy_check_element_of_list(T,X,H,WF).
3329 lazy_check_element_of_aux(_,_,_).
3330
3331 :- block lazy_check_element_of_list(-,?,?,?).
3332 lazy_check_element_of_list([],X,H,WF) :- !, equal_object_wf(X,H,WF).
3333 lazy_check_element_of_list([Y|T],X,H,WF) :- !,
3334 quick_propagation_element_information([X,Y|T],H,WF,_). % TO DO: check that we loose no performance due to this
3335 lazy_check_element_of_list(_,_,_,_).
3336
3337 % an incomplete subset check without enumeration
3338 :- block lazy_check_subset_of(-,?,?), lazy_check_subset_of(?,-,?).
3339 lazy_check_subset_of(Set1,Set2,WF) :- nonvar(Set2),
3340 (Set2=closure(_,_,_) ; Set2=avl_set(_)),!, lazy_check_subset_of2(Set1,Set2,WF).
3341 lazy_check_subset_of(_,_,_). % ignore other set representations
3342 :- block lazy_check_subset_of2(-,?,?).
3343 lazy_check_subset_of2([],_,_WF) :- !.
3344 lazy_check_subset_of2([H|T],Set,WF) :- !, check_element_of_wf(H,Set,WF), lazy_check_subset_of2(T,Set,WF).
3345 lazy_check_subset_of2(_,_,_). % ignore other set representations
3346
3347 :- block union2(-,?,?,?).
3348 ?union2([],S,Res,WF) :- equal_object_optimized_wf(S,Res,union2,WF).
3349 union2([H|T],Set2,Res,WF) :-
3350 (T\==[],nonvar(Set2), Set2=[H2|T2], T2==[] % minor optimisation for improved propagation; e.g., for x:S & S<:1..13 & S \/ {x} = S2 & x/: S2
3351 % the constraint is not yet detected straight away: x:S & S<:1..12 & S \/ {x} /= S
3352 ? -> union3(H2,T2,[H|T],Res,WF)
3353 ? ; union3(H,T,Set2,Res,WF)
3354 ).
3355 union3(H,T,Set2,Res,WF) :-
3356 add_element_wf(H,Set2,R,Done,WF),
3357 ? lazy_try_check_element_of(H,Res,WF), % TO DO: propagate constraint that H is in Res
3358 (T==[]
3359 ? -> equal_object_optimized_wf(R,Res,union3,WF) %union2(T,R,Res,WF)
3360 ? ; union4(Done,T,R,Res,WF)).
3361 :- block union4(-,?,?,?,?).
3362 ?union4(_Done,T,R,Res,WF) :- union2(T,R,Res,WF). % if WF not set to 2 there maybe equality_objects pending from add_element_wf ! TO DO: investigate; see test 293
3363
3364
3365 :- assert_must_succeed(exhaustive_kernel_check(union_generalized([[int(3)],[int(2),int(1),int(3)]],[int(1),int(3),int(2)]))).
3366 :- assert_must_succeed(exhaustive_kernel_check(union_generalized([[int(3),int(2)],[],[int(2),int(1),int(3)]],[int(1),int(3),int(2)]))).
3367 :- assert_must_succeed(exhaustive_kernel_fail_check(union_generalized([[int(3)],[int(3),int(4)],[int(2),int(1),int(3)]],[int(1),int(3),int(2)]))).
3368 :- assert_must_succeed((kernel_objects:union_generalized([[]],Res),Res=[])).
3369 :- assert_must_succeed((kernel_objects:union_generalized([[int(1)],[int(2)]],Res),
3370 kernel_objects:equal_object(Res,[_,_]))).
3371 :- assert_must_succeed((kernel_objects:union_generalized([[int(1)],[int(2),int(1)]],Res),
3372 kernel_objects:equal_object(Res,[_,_]))).
3373 :- assert_must_succeed((kernel_objects:union_generalized([[int(1)],[int(2),int(1)],[],[int(2)]],Res),
3374 kernel_objects:equal_object(Res,[_,_]))).
3375 :- assert_must_succeed((kernel_objects:union_generalized([[int(1)],[int(2)],X],Res),
3376 kernel_objects:equal_object(X,Res), X = [int(2),int(1),int(3)])).
3377 :- assert_must_succeed((kernel_objects:union_generalized([global_set('Name'),X,X,X],Res),
3378 kernel_objects:equal_object(global_set('Name'),Res), X = [fd(2,'Name'),fd(1,'Name')])).
3379 :- assert_must_succeed((kernel_objects:union_generalized([X,global_set('Name')],Res),
3380 kernel_objects:equal_object(global_set('Name'),Res), X = [fd(2,'Name'),fd(1,'Name')])).
3381 :- assert_must_fail((kernel_objects:union_generalized([[int(1)],[int(2)]],Res),(Res=[_];
3382 kernel_objects:equal_object(Res,[_,_,_|_])))).
3383 :- assert_must_fail((kernel_objects:union_generalized([[int(1)],[int(1)]],Res),(Res=[];
3384 kernel_objects:equal_object(Res,[_,_|_])))).
3385
3386 % treates the general_union AST node (union(.) in B syntax)
3387 union_generalized(S,Res) :- init_wait_flags(WF), union_generalized_wf(S,Res,WF), ground_wait_flags(WF).
3388
3389 :- block union_generalized_wf(-,-,?).
3390 union_generalized_wf(SetsOfSets,Res,WF) :- var(SetsOfSets), Res==[],!,
3391 expand_custom_set_to_list_wf(SetsOfSets,ESetsOfSets,_,union_generalized_wf,WF),
3392 all_empty_sets_wf(ESetsOfSets,WF).
3393 union_generalized_wf(SetsOfSets,Res,WF) :-
3394 union_generalized_wf2(SetsOfSets,Res,WF).
3395
3396 :- block union_generalized_wf2(-,?,?).
3397 union_generalized_wf2(SetsOfSets,Res,WF) :-
3398 custom_explicit_sets:union_generalized_explicit_set(SetsOfSets,ARes,WF),!,
3399 equal_object_optimized_wf(ARes,Res,union_generalized_avl_set,WF).
3400 union_generalized_wf2(SetsOfSets,Res,WF) :-
3401 expand_custom_set_to_list_wf(SetsOfSets,ESetsOfSets,_,union_generalized_wf2,WF),
3402 union_generalized2(ESetsOfSets,[],Res,WF).
3403
3404 :- block union_generalized2(-,?,?,?).
3405 union_generalized2([],S,Res,WF) :- equal_object_optimized_wf(S,Res,union_generalized2,WF).
3406 union_generalized2([H|T],UnionSoFar,Res,WF) :-
3407 Res==[],
3408 !,
3409 empty_set_wf(H,WF),
3410 empty_set_wf(UnionSoFar,WF),
3411 all_empty_sets_wf(T,WF).
3412 union_generalized2([H|T],UnionSoFar,Res,WF) :- union_wf(H,UnionSoFar,UnionSoFar2,WF),
3413 ((var(T);var(UnionSoFar2)),
3414 nonvar(Res),is_custom_explicit_set(Res,union_generalized2) % check important for Schneider2_Trees/NewSolver_v3_complex.mch and query CHOOSE_MODULES("bk-phi-H-2013", solution) (0.1 vs 0.9 secs)
3415 -> check_subset_of_wf(H,Res,WF)
3416 % this is only a very weak propagation; example, for union(v) = {4444} & v={{x},{y},{z}} we will instantiate v={{4444},...} and z=4444; see also test 1216
3417 ; true),
3418 union_generalized2(T,UnionSoFar2,Res,WF).
3419
3420 :- block all_empty_sets_wf(-,?).
3421 all_empty_sets_wf([],_).
3422 all_empty_sets_wf([H|T],WF) :- empty_set_wf(H,WF), all_empty_sets_wf(T,WF).
3423
3424 :- assert_must_succeed(exhaustive_kernel_check([commutative],intersection([int(3)],[int(2),int(1),int(3)],[int(3)]))).
3425 :- assert_must_succeed(exhaustive_kernel_check([commutative],intersection([int(4),int(3),int(2)],[int(2),int(1),int(3)],[int(2),int(3)]))).
3426 :- assert_must_succeed(exhaustive_kernel_check([commutative],intersection([int(4),int(3),int(2)],[],[]))).
3427 :- assert_must_succeed(exhaustive_kernel_fail_check([commutative],intersection([int(1),int(3)],[int(4),int(3),int(2)],[]))).
3428 :- assert_must_succeed((kernel_objects:intersection(Y,X,Res),X=global_set('Name'),
3429 kernel_objects:equal_object(Res,Y), Y =[fd(1,'Name')])).
3430 :- assert_must_succeed((kernel_objects:intersection([int(1)],[int(2)],Res),Res=[])).
3431 :- assert_must_succeed((kernel_objects:intersection([int(1)],[int(2)],[]))).
3432 :- assert_must_fail((kernel_objects:intersection([int(1),int(4),int(3)],[int(2),int(3)],[]))).
3433 :- assert_must_succeed((kernel_objects:intersection([int(1),int(2)],[int(2),int(1)],_))).
3434 :- assert_must_succeed((kernel_objects:intersection([int(1),int(2)],[int(2),int(1)],[int(2),int(1)]))).
3435 :- assert_must_succeed((kernel_objects:intersection([int(1),int(2)],[int(2),int(1)],[int(1),int(2)]))).
3436 :- assert_must_succeed((kernel_objects:intersection([int(1),int(2)],[int(2),int(3)],Res),
3437 kernel_objects:equal_object(Res,[int(2)]))).
3438 :- assert_must_succeed((kernel_objects:intersection([int(2)],[int(2)],Res),
3439 kernel_objects:equal_object(Res,[int(2)]))).
3440 :- assert_must_succeed((kernel_objects:intersection([int(2),int(3)],[int(3),int(4),int(2)],Res),
3441 kernel_objects:equal_object(Res,[int(2),int(3)]))).
3442 :- assert_must_fail((kernel_objects:intersection([int(1)],[int(2)],Res),(
3443 kernel_objects:equal_object(Res,[_|_])))).
3444 :- assert_must_fail((kernel_objects:intersection([int(1)],[int(1)],Res),(Res=[];
3445 kernel_objects:equal_object(Res,[_,_|_])))).
3446 :- assert_must_fail((kernel_objects:intersection([fd(1,'Name')],X,Res),X=global_set('Name'),
3447 kernel_objects:equal_object(Res,X))).
3448
3449
3450 intersection(S1,S2,Res) :- init_wait_flags(WF,[intersection]), intersection(S1,S2,Res,WF), ground_wait_flags(WF).
3451
3452 :- block intersection(-,-,-,?).
3453 intersection(Set1,Set2,Res,WF) :- (Set1==[] ; Set2==[]),!, empty_set_wf(Res,WF).
3454 intersection(Set1,Set2,Res,WF) :- quick_same_value(Set1,Set2),!,
3455 equal_object_wf(Res,Set1,inter0_equal,WF).
3456 intersection(Set1,Set2,Res,WF) :- Res==[],!,
3457 disjoint_sets(Set1,Set2,WF).
3458 intersection(Set1,Set2,Res,WF) :- % now we need to know at least a bit about both Set1 and Set2; at least given the current code below; TO DO: infer that {x} /\ s = {x} => x:s
3459 intersection0(Set1,Set2,Res,WF),
3460 propagate_intersection(Set1,Set2,Res,WF).
3461
3462 :- block propagate_intersection(?,?,-,?). % propagate constraint that result elements must be in both sets
3463 propagate_intersection(Set1,Set2,[H|T],WF) :-
3464 preference(data_validation_mode,false),
3465 !,
3466 propagate_intersection_aux(Set1,Set2,H,T,WF).
3467 propagate_intersection(Set1,Set2,avl_set(A),WF) :- !,
3468 ((unknown_set(Set1) ; unknown_set(Set2)) % otherwise intersection0 has already triggered below
3469 -> custom_explicit_sets:avl_approximate_size(A,Size),
3470 (Size<20
3471 -> expand_custom_set_to_list_wf(avl_set(A),ESet,_,propagate_intersection,WF)
3472 ; avl_min(A,Min), avl_max(A,Max), ESet=[Min,Max]
3473 ),
3474 propagate_intersection(Set1,Set2,ESet,WF)
3475 ; true).
3476 % other cases: Set1,2,3 could be interval closure with unknown bounds,...
3477 propagate_intersection(_,_,_,_).
3478
3479 :- block propagate_intersection_aux(-,-,-,?,?).
3480 propagate_intersection_aux(Set1,Set2,H,T,WF) :-
3481 ((unknown_set(Set1) ; unknown_set(Set2)) % otherwise intersection0 has already triggered below
3482 -> check_element_of_wf(H,Set1,WF), % should we do this lazily ?
3483 check_element_of_wf(H,Set2,WF),
3484 propagate_intersection(Set1,Set2,T,WF)
3485 ; true).
3486
3487 unknown_set(Set) :- var(Set),!.
3488 unknown_set([H|T]) :- (unknown_val(H) -> true ; unknown_set(T)).
3489 unknown_val(Val) :- var(Val),!.
3490 unknown_val(int(X)) :- var(X).
3491 unknown_val(string(X)) :- var(X).
3492 unknown_val(fd(X,_)) :- var(X).
3493 unknown_val((A,B)) :- (unknown_val(A) -> true ; unknown_val(B)).
3494 unknown_val([H|T]) :- (unknown_val(H) -> true ; unknown_set(T)).
3495
3496 :- block intersection0(-,?,?,?), intersection0(?,-,?,?).
3497 intersection0(Set1,Set2,Res,WF) :-
3498 (Set1==[] ; Set2==[]),!, empty_set_wf(Res,WF).
3499 intersection0(Set1,Set2,Res,WF) :- quick_same_value(Set1,Set2),!,
3500 equal_object_wf(Res,Set1,inter0_equal,WF).
3501 intersection0(Set1,Set2,Res,WF) :- Res==[],!,
3502 disjoint_sets(Set1,Set2,WF).
3503 intersection0([El1|T1],[El2|T2],Res,WF) :- T1==[],T2==[],
3504 !, % avoid doing intersection_with_interval_closure, especially for nonvar El1,El2 ; see test 2021
3505 equality_objects_wf(El1,El2,EqRes,WF),
3506 kernel_equality:empty_set_test_wf(Res,Empty,WF),
3507 bool_pred:negate(Empty,EqRes),
3508 intersection_pair(EqRes,El1,El2,Res,WF).
3509 intersection0(Set1,Set2,Res,WF) :-
3510 ? intersection_with_interval_closure(Set1,Set2,Inter),!, % avoid expanding intervals at all
3511 equal_object_wf(Inter,Res,intersection0,WF).
3512 intersection0(Set1,Set2,Res,WF) :-
3513 try_expand_and_convert_to_avl_unless_large_wf(Set1,ESet1,WF),
3514 try_expand_and_convert_to_avl_unless_large_wf(Set2,ESet2,WF),
3515 intersection1(ESet1,ESet2,Res,WF).
3516
3517 % treat {El1} /\ {El2} = Res
3518 :- block intersection_pair(-,?,?,?,?).
3519 intersection_pair(pred_false,_,_,_,_). % empty_set_test_wf above will set Res to empty_set
3520 intersection_pair(pred_true,El1,_El2,Res,WF) :- equal_object_wf(Res,[El1],intersection_pair,WF).
3521
3522 intersection1(Set1,Set2,Res,WF) :- nonvar(Set1),is_custom_explicit_set(Set1,intersection),
3523 intersection_of_explicit_set_wf(Set1,Set2,Inter,WF), !,
3524 equal_object_wf(Inter,Res,intersection1,WF).
3525 intersection1(Set1,Set2,Res,WF) :-
3526 (Res==[] ->
3527 disjoint_sets(Set1,Set2,WF)
3528 ;
3529 (swap_set(Set1,Set2) -> intersection2(Set2,Set1,Res,WF)
3530 ; intersection2(Set1,Set2,Res,WF))
3531 ).
3532
3533 swap_set(Set1,_Set2) :- var(Set1),!.
3534 swap_set(_Set1,Set2) :- var(Set2),!,fail.
3535 %swap_set(_Set1,Set2) :- is_infinite_explicit_set(Set2),!,fail.
3536 swap_set(avl_set(_),Set2) :- \+ functor(Set2,avl_set,2), %Set2 \= avl_set(_),
3537 Set2 \= [],
3538 \+ functor(Set2,closure,3), %Set2 \= closure(_,_,_),
3539 \+ functor(Set2,global_set,1). %Set2 \= global_set(_). % if it was a small closure, intersection_of_explicit_set should have triggered
3540 swap_set(closure(_P,_T,_B),Set2) :- ok_to_swap(Set2). % TO DO: for two closures: we could try and use the smallest one as first argument to intersection2
3541 swap_set(global_set(_GS),Set2) :- ok_to_swap(Set2).
3542
3543 ok_to_swap(global_set(GS)) :- !, \+ is_infinite_or_very_large_explicit_set(global_set(GS),1000000).
3544 ok_to_swap(closure(P,T,B)) :- !,\+ is_infinite_or_very_large_explicit_set(closure(P,T,B),1000000).
3545 ok_to_swap(_).
3546 % maybe also use is_efficient_custom_set as below ??
3547 % what about freetype ?
3548
3549
3550 intersection2(Set1,Set2,Res,WF) :-
3551 expand_custom_set_to_list_wf(Set1,ESet1,_,intersection2,WF),
3552 intersection3(ESet1,Set2,Res,WF).
3553 :- block intersection3(-,?,?,?).
3554 intersection3([],_,Res,WF) :- empty_set_wf(Res,WF).
3555 intersection3([H|T],Set,Res,WF) :-
3556 (Res==[]
3557 -> not_element_of_wf(H,Set,WF),intersection3(T,Set,Res,WF)
3558 ; membership_test_wf(Set,H,MemRes,WF),
3559 ? intersection4(MemRes,H,T,Set,Res,WF)
3560 ).
3561
3562 :- block intersection4(-,?,?, ?,?,?).
3563 intersection4(pred_true,H,T,Set,Result,WF) :-
3564 ? equal_object_wf([H|Res],Result,intersection4,WF),
3565 intersection3(T,Set,Res,WF).
3566 intersection4(pred_false,_H,T,Set,Res,WF) :-
3567 ? intersection3(T,Set,Res,WF).
3568
3569
3570 :- assert_must_succeed(exhaustive_kernel_check_wfdet(disjoint_sets([int(5)],[int(2),int(1),int(3)],WF),WF)).
3571 :- assert_must_succeed(exhaustive_kernel_check_wfdet(disjoint_sets([int(5)],[],WF),WF)).
3572 :- assert_must_succeed(exhaustive_kernel_check_wfdet(disjoint_sets([int(5),int(2)],[int(6),int(1),int(3)],WF),WF)).
3573
3574 disjoint_sets(S1,S2) :- init_wait_flags(WF,[disjoint_sets]),
3575 disjoint_sets(S1,S2,WF),
3576 ground_wait_flags(WF).
3577
3578 :- block disjoint_sets(-,?,?), disjoint_sets(?,-,?).
3579 disjoint_sets(S1,S2,WF) :-
3580 % TO DO: we could provide faster code for two avl sets / intervals; but probably caught in intersection code above?
3581 ((S1==[];S2==[]) -> true
3582 ; is_interval_closure_or_integerset(S1,Low1,Up1),
3583 nonvar(Low1), nonvar(Up1), % avoid applying it to e.g., {x} /\ 0..2000 = {} from test 1165
3584 is_interval_closure_or_integerset(S2,Low2,Up2), nonvar(Low2), nonvar(Up2) ->
3585 custom_explicit_sets:disjoint_intervals_with_inf(Low1,Up1,Low2,Up2)
3586 ; is_efficient_custom_set(S2) -> expand_custom_set_to_list_wf(S1,ESet1,_,disjoint_sets_1,WF),
3587 % TODO: treat is_infinite_or_symbolic_closure S1
3588 disjoint_sets2(ESet1,S2,WF)
3589 ; is_efficient_custom_set(S1) -> expand_custom_set_to_list_wf(S2,ESet2,_,disjoint_sets_2,WF),
3590 disjoint_sets2(ESet2,S1,WF)
3591 ; expand_custom_set_to_list_wf(S1,ESet1,_,disjoint_sets_3,WF),
3592 %expand_custom_set_to_list_wf(S2,ESet2,_,disjoint_sets_4,WF),
3593 disjoint_sets2(ESet1,S2,WF)
3594 ).
3595
3596 % TO DO: we could infer some constraints on the possible max sizes of the sets
3597 % for finite types (sum of size must be <= size of type)
3598 :- block disjoint_sets2(-,?,?).
3599 disjoint_sets2([],_,_WF).
3600 disjoint_sets2([H|T],S2,WF) :- not_element_of_wf(H,S2,WF), disjoint_sets2(T,S2,WF).
3601
3602 % NOT YET USED: not_disjoint_sets could be used for S /\ R /= {}
3603 :- assert_must_succeed(exhaustive_kernel_check_wfdet(not_disjoint_sets([int(3)],[int(2),int(1),int(3)],WF),WF)).
3604 :- block not_disjoint_sets(-,?,?), not_disjoint_sets(?,-,?).
3605 not_disjoint_sets(S1,S2,WF) :-
3606 ((S1==[];S2==[]) -> fail
3607 ; is_efficient_custom_set(S2) -> expand_custom_set_to_list_wf(S1,ESet1,_,disjoint_sets_1,WF),
3608 not_disjoint_sets2(ESet1,S2,WF)
3609 ; is_efficient_custom_set(S1) -> expand_custom_set_to_list_wf(S2,ESet2,_,disjoint_sets_2,WF),
3610 not_disjoint_sets2(ESet2,S1,WF)
3611 ; expand_custom_set_to_list_wf(S1,ESet1,_,disjoint_sets_3,WF),
3612 %expand_custom_set_to_list_wf(S2,ESet2,_,disjoint_sets_4,WF),
3613 not_disjoint_sets2(ESet1,S2,WF)
3614 ).
3615
3616 :- block not_disjoint_sets2(-,?,?).
3617 not_disjoint_sets2([],_,_WF).
3618 not_disjoint_sets2([H|T],S2,WF) :- membership_test_wf(S2,H,MemRes,WF), not_disjoint3(MemRes,T,S2,WF).
3619
3620 :- block not_disjoint3(-,?,?,?).
3621 not_disjoint3(pred_true,_,_,_).
3622 not_disjoint3(pred_false,T,S2,WF) :- not_disjoint_sets2(T,S2,WF).
3623
3624 :- assert_must_succeed(exhaustive_kernel_check_wfdet(intersection_generalized_wf([[int(3)],[int(2),int(1),int(3)]],[int(3)],unknown,WF),WF)).
3625 :- assert_must_succeed(exhaustive_kernel_check_wfdet(intersection_generalized_wf([[int(3),int(2)],[int(2),int(1),int(3)],[int(4),int(3)]],[int(3)],unknown,WF),WF)).
3626 :- assert_must_succeed((kernel_objects:intersection_generalized_wf(avl_set(node(avl_set(node(fd(1,'Name'),true,1,empty,node(fd(2,'Name'),true,0,empty,empty))),
3627 true,1,empty,node(avl_set(node(fd(2,'Name'),true,1,empty,node(fd(3,'Name'),true,0,empty,empty))),true,0,empty,empty))),
3628 avl_set(node(fd(2,'Name'),true,0,empty,empty)),unknown,_WF))).
3629 :- assert_must_succeed((kernel_objects:intersection_generalized_wf([[int(1)],[int(2)]],Res,unknown,_WF),Res=[])).
3630 :- assert_must_succeed((kernel_objects:intersection_generalized_wf([[int(1)],[int(2),int(1)]],Res,unknown,_WF),
3631 kernel_objects:equal_object(Res,[int(1)]))).
3632 :- assert_must_succeed((kernel_objects:intersection_generalized_wf([[int(1)],X,[int(2),int(3),int(1)]],Res,unknown,_WF),
3633 X = [int(2),int(1)],
3634 kernel_objects:equal_object(Res,[int(1)]))).
3635 :- assert_must_succeed((kernel_objects:intersection_generalized_wf([X,X,[int(2),int(3),int(1)]],Res,unknown,_WF),
3636 X = [int(2),int(1)], kernel_objects:equal_object(Res,[int(1),int(2)]))).
3637 :- assert_must_succeed((kernel_objects:intersection_generalized_wf([[int(2),int(1),int(3)],X,[int(1),int(2)],X],Res,unknown,_WF),
3638 kernel_objects:equal_object(X,Res), X = [int(2),int(1)])).
3639 :- assert_must_succeed((kernel_objects:intersection_generalized_wf([global_set('Name'),X],Res,unknown,_WF),
3640 kernel_objects:equal_object(X,Res), X = [fd(2,'Name'),fd(1,'Name')])).
3641 :- assert_must_fail((kernel_objects:intersection_generalized_wf([[int(1)],[int(2)]],Res,unknown,_WF),(
3642 kernel_objects:equal_object(Res,[_|_])))).
3643 :- assert_must_fail((kernel_objects:intersection_generalized_wf([[int(1)],[int(1)]],Res,unknown,_WF),(Res=[];
3644 kernel_objects:equal_object(Res,[_,_|_])))).
3645 :- assert_must_abort_wf(kernel_objects:intersection_generalized_wf([],_R,unknown,WF),WF).
3646
3647 % code for general_intersection
3648 :- block intersection_generalized_wf(-,?,?,?).
3649 intersection_generalized_wf(SetsOfSets,Res,Span,WF) :-
3650 expand_custom_set_to_list_wf(SetsOfSets,ESetsOfSets,_,intersection_generalized_wf,WF),
3651 intersection_generalized2(ESetsOfSets,Res,Span,WF).
3652
3653 intersection_generalized2([],Res,Span,WF) :- /* Atelier-B manual requires argument to inter to be non-empty */
3654 add_wd_error_set_result('inter applied to empty set','',Res,[],Span,WF).
3655 intersection_generalized2([H|T],Res,_Span,WF) :- intersection_generalized3(T,H,Res,WF).
3656 :- block intersection_generalized3(-,?,?,?).
3657 intersection_generalized3([],SoFar,Res,WF) :- equal_object_optimized_wf(SoFar,Res,intersection_generalized3,WF).
3658 intersection_generalized3([H|T],InterSoFar,Res,WF) :-
3659 intersection(H,InterSoFar,InterSoFar2,WF),
3660 intersection_generalized3(T,InterSoFar2,Res,WF).
3661
3662 :- assert_must_succeed(exhaustive_kernel_check(difference_set([int(3),int(2)],[int(2),int(1),int(3)],[]))).
3663 :- assert_must_succeed(exhaustive_kernel_check(difference_set([int(3),int(2)],[int(2),int(1),int(4)],[int(3)]))).
3664 :- assert_must_succeed((kernel_objects:difference_set(SSS,[[int(1),int(2)]],[]),
3665 kernel_objects:equal_object(SSS,[[int(2),int(1)]]))).
3666 :- assert_must_succeed((kernel_objects:difference_set(SSS,[[int(1),int(2)]],R), kernel_objects:equal_object(R,[]),
3667 kernel_objects:equal_object(SSS,[[int(2),int(1)]]))).
3668 :- assert_must_succeed((kernel_objects:difference_set(SSS,[[fd(1,'Name'),fd(2,'Name')]],R),
3669 kernel_objects:equal_object(R,[]),
3670 kernel_objects:equal_object(SSS,[[fd(2,'Name'),fd(1,'Name')]]))).
3671 :- assert_must_succeed((kernel_objects:difference_set(SSS,[[int(1),int(2)]],[]),
3672 kernel_objects:equal_object(SSS,[[int(1),int(2)]]))).
3673 :- assert_must_succeed((kernel_objects:difference_set([int(1),int(2)],[int(1)],_))).
3674 :- assert_must_succeed((kernel_objects:difference_set([int(1),int(2)],[int(2)],_))).
3675 :- assert_must_succeed((kernel_objects:difference_set([int(1),int(2)],[int(2)],[int(1)]))).
3676 :- assert_must_succeed((kernel_objects:difference_set([int(1),int(2)],[],[int(2),int(1)]))).
3677 :- assert_must_succeed((kernel_objects:difference_set([],[int(1),int(2)],[]))).
3678 :- assert_must_succeed((kernel_objects:difference_set(Y,X,Res),X=global_set('Name'),
3679 kernel_objects:equal_object(Res,[]), Y =[fd(1,'Name')])).
3680 :- assert_must_succeed((kernel_objects:difference_set(X,Y,Res),X=global_set('Name'),
3681 kernel_objects:equal_object(Res,[fd(3,'Name'),fd(1,'Name')]), Y =[fd(2,'Name')])).
3682 :- assert_must_fail((kernel_objects:difference_set(X,Y,Res),X=global_set('Name'),
3683 kernel_objects:equal_object(Res,[]), Y =[fd(1,'Name'),fd(2,'Name')])).
3684 :- assert_must_fail((kernel_objects:difference_set(Y,X,Res),X=global_set('Name'),
3685 kernel_objects:equal_object(Res,Y), Y =[fd(1,'Name')])).
3686
3687 % deals with set_subtraction AST node
3688 difference_set(Set1,Set2,Res) :- init_wait_flags(WF),
3689 ? difference_set_wf(Set1,Set2,Res,WF),
3690 ? ground_wait_flags(WF).
3691
3692 :- block difference_set_wf(-,-,?,?).
3693 difference_set_wf(Set1,_,Res,WF) :- Set1==[],!,empty_set_wf(Res,WF).
3694 difference_set_wf(Set1,Set2,Res,WF) :- Set2==[],!,equal_object_wf(Set1,Res,difference_set_wf,WF).
3695 ?difference_set_wf(Set1,Set2,Res,WF) :- difference_set1(Set1,Set2,Res,WF).
3696
3697
3698 :- block difference_set1(?,-,-,?), difference_set1(-,?,-,?).
3699 difference_set1(Set1,Set2,Res,WF) :-
3700 nonvar(Set1),is_custom_explicit_set(Set1,difference_set),
3701 difference_of_explicit_set_wf(Set1,Set2,Diff,WF), !,
3702 equal_object_wf(Diff,Res,difference_set1_1,WF).
3703 difference_set1(Set1,Set2,Res,WF) :- Set2==[],!,equal_object_wf(Set1,Res,difference_set1_2,WF).
3704 ?difference_set1(Set1,Set2,Res,WF) :- Res==[],!, check_subset_of_wf(Set1,Set2,WF).
3705 difference_set1(Set1,Set2,Res,WF) :-
3706 expand_custom_set_to_list_wf(Set1,ESet1,_,difference_set1,WF),
3707 ? compute_diff(ESet1,Set2,Res,WF),
3708 propagate_into2(Res,ESet1,Set2,WF).
3709
3710 :- block compute_diff(-,?,?,?).
3711 compute_diff([],_Set2,Res,WF) :- empty_set_wf(Res,WF).
3712 compute_diff([H|T],Set2,Res,WF) :-
3713 ? membership_test_wf(Set2,H,MemRes,WF),compute_diff2(MemRes,H,T,Set2,Res,WF).
3714
3715 :- block compute_diff2(-,?,?,?,?,?).
3716 compute_diff2(pred_true,_H,T,Set2,Res,WF) :- compute_diff(T,Set2,Res,WF).
3717 ?compute_diff2(pred_false,H,T,Set2,Res,WF) :- equal_object_wf([H|R2],Res,compute_diff2,WF),
3718 compute_diff(T,Set2,R2,WF).
3719
3720 % propagate all elements from one set into another one; do not use for computation; may skip elements ...
3721 /* this version not used at the moment:
3722 :- block propagate_into(-,?,?).
3723 propagate_into(_,Set2,_WF) :- nonvar(Set2),
3724 is_custom_explicit_set(Set2,propagate_into),!. % second set already fully known
3725 propagate_into([],_,_WF) :- !.
3726 propagate_into([H|T],Set,WF) :- !,check_element_of_wf(H,Set,WF), propagate_into(T,Set,WF).
3727 propagate_into(Set1,Set2,WF) :- is_custom_explicit_set(Set1,propagate_into),!,
3728 (is_infinite_explicit_set(Set1) -> true ;
3729 expand_custom_set_to_list(Set1,ESet1), propagate_into(ESet1,Set2,WF)). */
3730
3731 :- block propagate_into2(-,?,?,?).
3732 propagate_into2(_,Set2,_NegSet,_WF) :- nonvar(Set2),
3733 is_custom_explicit_set(Set2,propagate_into),!. % second set already fully known
3734 propagate_into2([],_,_,_WF) :- !.
3735 propagate_into2([H|T],PosSet,NegSet,WF) :- !,
3736 check_element_of_wf(H,PosSet,WF),
3737 not_element_of_wf(H,NegSet,WF),propagate_into2(T,PosSet,NegSet,WF).
3738 propagate_into2(Set1,PosSet,NegSet,WF) :- is_custom_explicit_set(Set1,propagate_into),!,
3739 (is_infinite_explicit_set(Set1) -> true ;
3740 expand_custom_set_to_list_wf(Set1,ESet1,_,propagate_into2,WF), propagate_into2(ESet1,PosSet,NegSet,WF)).
3741
3742 :- assert_must_succeed(exhaustive_kernel_check_wf(in_difference_set_wf(int(33),[int(33),int(2)],[int(2),int(1),int(3)],WF),WF)).
3743 :- block in_difference_set_wf(-,-,-,?).
3744 in_difference_set_wf(A,X,Y,WF) :-
3745 (treat_arg_symbolically(X) ; treat_arg_symbolically(Y) ; preference(convert_comprehension_sets_into_closures,true)),
3746 % symbolic treatment would also make sense when A is nonvar and X var to force A to be in X ?!
3747 !,
3748 check_element_of_wf(A,X,WF), not_element_of_wf(A,Y,WF).
3749 in_difference_set_wf(A,X,Y,WF) :-
3750 difference_set_wf(X,Y,Diff,WF),
3751 check_element_of_wf(A,Diff,WF).
3752
3753 treat_arg_symbolically(X) :- var(X),!.
3754 treat_arg_symbolically(global_set(_)).
3755 treat_arg_symbolically(freetype(_)).
3756 treat_arg_symbolically(closure(P,T,B)) :- \+ small_interval(P,T,B).
3757
3758 small_interval(P,T,B) :- is_interval_closure(P,T,B,Low,Up),
3759 integer(Low), integer(Up),
3760 Up-Low < 500. % Magic Constant; TO DO: determine good value
3761
3762
3763 :- assert_must_succeed(exhaustive_kernel_check_wf(not_in_difference_set_wf(int(2),[int(33),int(2)],[int(2),int(1),int(3)],WF),WF)).
3764 :- assert_must_succeed(exhaustive_kernel_check_wf(not_in_difference_set_wf(int(111),[int(33),int(2)],[int(2),int(1),int(3)],WF),WF)).
3765 :- assert_must_succeed(exhaustive_kernel_check_wf(not_in_difference_set_wf(int(1),[int(33),int(2)],[int(2),int(1),int(3)],WF),WF)).
3766
3767 :- block not_in_difference_set_wf(-,-,-,?).
3768 not_in_difference_set_wf(A,X,Y,WF) :-
3769 (treat_arg_symbolically(X) ; treat_arg_symbolically(Y) ; preference(convert_comprehension_sets_into_closures,true)),
3770 !,
3771 % A : (X-Y) <=> A:X & not(A:Y)
3772 % A /: (X-Y) <=> A/: X or A:Y
3773 membership_test_wf(X,A,AX_Res,WF),
3774 (AX_Res==pred_false -> true
3775 ; bool_pred:negate(AX_Res,NotAX_Res),
3776 b_interpreter_check:disjoin(NotAX_Res,AY_Res,pred_true,priority(16384),priority(16384),WF), % better: uese a version that does not do a case split ?! or use last wait flag ?
3777 membership_test_wf(Y,A,AY_Res,WF)
3778 ).
3779 not_in_difference_set_wf(A,X,Y,WF) :-
3780 difference_set_wf(X,Y,Diff,WF),
3781 not_element_of_wf(A,Diff,WF).
3782
3783
3784 :- assert_must_succeed(exhaustive_kernel_check_wf(in_intersection_set_wf(int(2),[int(33),int(2)],[int(2),int(1),int(3)],WF),WF)).
3785
3786 :- block in_intersection_set_wf(-,-,-,?).
3787 in_intersection_set_wf(A,X,Y,WF) :-
3788 (treat_arg_symbolically(X) ; treat_arg_symbolically(Y)
3789 ; preference(convert_comprehension_sets_into_closures,true)),
3790 (preference(data_validation_mode,true) -> nonvar(X) ; true),
3791 % otherwise we may change enumeration order and enumerate with Y first;
3792 % see private_examples/ClearSy/2019_May/perf_3264/rule_186.mch (but also test 1976);
3793 % we could check if A is ground
3794 !,
3795 Y \== [], % avoid setting up check_element_of for X then
3796 check_element_of_wf(A,X,WF), check_element_of_wf(A,Y,WF).
3797 in_intersection_set_wf(A,X,Y,WF) :-
3798 intersection(X,Y,Inter,WF),
3799 check_element_of_wf(A,Inter,WF).
3800
3801 :- assert_must_succeed(exhaustive_kernel_check_wf(not_in_intersection_set_wf(int(3),[int(33),int(2)],[int(2),int(1),int(3)],WF),WF)).
3802 :- block not_in_intersection_set_wf(-,-,-,?).
3803 not_in_intersection_set_wf(_A,_X,Y,_WF) :- Y == [], !. % intersection will be empty; avoid analysing X
3804 not_in_intersection_set_wf(A,X,Y,WF) :-
3805 (treat_arg_symbolically(X) ; treat_arg_symbolically(Y) ; preference(convert_comprehension_sets_into_closures,true)),
3806 !,
3807 % A : (X /\ Y) <=> A:X & A:Y
3808 % A /: (X /\ Y) <=> A/:X or A/:Y
3809 membership_test_wf(X,A,AX_Res,WF),
3810 (AX_Res==pred_false -> true
3811 ; bool_pred:negate(AX_Res,NotAX_Res), bool_pred:negate(AY_Res,NotAY_Res),
3812 b_interpreter_check:disjoin(NotAX_Res,NotAY_Res,pred_true,priority(16384),priority(16384),WF), % better: uese a version that does not do a case split ?! or use last wait flag ?
3813 membership_test_wf(Y,A,AY_Res,WF)
3814 ).
3815 not_in_intersection_set_wf(A,X,Y,WF) :-
3816 intersection(X,Y,Inter,WF),
3817 not_element_of_wf(A,Inter,WF).
3818
3819 :- assert_must_succeed(exhaustive_kernel_check_wf(in_union_set_wf(int(2),[int(33),int(2)],[int(2),int(1),int(3)],WF),WF)).
3820 :- assert_must_succeed(exhaustive_kernel_check_wf(in_union_set_wf(int(33),[int(32),int(2)],[int(2),int(1),int(33)],WF),WF)).
3821
3822 :- block in_union_set_wf(-,-,-,?).
3823 in_union_set_wf(A,X,Y,WF) :-
3824 (treat_arg_symbolically(X) ; treat_arg_symbolically(Y) ; preference(convert_comprehension_sets_into_closures,true)),
3825 % symbolic treatment would also make sense when A is nonvar and X var to force A to be in X ?!
3826 !,
3827 membership_test_wf(X,A,AX_Res,WF),
3828 (AX_Res==pred_true -> true
3829 ; b_interpreter_check:disjoin(AX_Res,AY_Res,pred_true,priority(16384),priority(16384),WF), % better: use a version that does not do a case split ?! or use last wait flag ?
3830 membership_test_wf(Y,A,AY_Res,WF)
3831 ).
3832 in_union_set_wf(A,X,Y,WF) :-
3833 union_wf(X,Y,Union,WF),
3834 check_element_of_wf(A,Union,WF).
3835
3836 :- assert_must_succeed(exhaustive_kernel_check_wf(not_in_union_set_wf(int(3),[int(32),int(2)],[int(2),int(1),int(33)],WF),WF)).
3837
3838 :- block not_in_union_set_wf(-,-,-,?).
3839 not_in_union_set_wf(A,X,Y,WF) :-
3840 not_element_of_wf(A,X,WF),
3841 not_element_of_wf(A,Y,WF).
3842
3843 % ---------------------
3844
3845
3846 strict_subset_of(X,Y) :-
3847 init_wait_flags(WF,[strict_subset_of]),
3848 strict_subset_of_wf(X,Y,WF),
3849 ground_wait_flags(WF).
3850
3851 :- assert_must_succeed(exhaustive_kernel_check(strict_subset_of_wf([int(3),int(2)],[int(2),int(1),int(3)],_))).
3852 :- assert_must_succeed(exhaustive_kernel_check(strict_subset_of_wf([],[int(2),int(1),int(3)],_))).
3853 :- assert_must_succeed(exhaustive_kernel_check(strict_subset_of_wf([],[ [] ],_))).
3854 :- assert_must_succeed(exhaustive_kernel_fail_check(strict_subset_of_wf([int(3),int(2),int(1)],[int(2),int(1),int(3)],_))).
3855 :- assert_must_succeed(exhaustive_kernel_fail_check(strict_subset_of_wf([int(1),int(4)],[int(2),int(1),int(3)],_))).
3856 :- assert_must_succeed(exhaustive_kernel_fail_check(strict_subset_of_wf([[]],[],_))).
3857 :- assert_must_succeed(exhaustive_kernel_fail_check(strict_subset_of_wf([],[],_))).
3858 :- assert_must_succeed((kernel_objects:strict_subset_of_wf(Y,X,_WF), Y = [int(1)], X=[int(2),int(1)])).
3859 :- assert_must_succeed((kernel_objects:strict_subset_of(Y,X), Y = [int(1)], X=[int(2),int(1)])).
3860 :- assert_must_succeed((kernel_objects:strict_subset_of_wf(Y,X,_WF), Y = [], X=[int(2),int(1)])).
3861 :- assert_must_succeed((kernel_objects:strict_subset_of_wf(Y,X,_WF), Y = [[int(1),int(2)]], X=[[int(2)],[int(2),int(1)]])).
3862 :- assert_must_succeed((kernel_objects:strict_subset_of_wf(Y,X,_WF), Y = [fd(1,'Name')], kernel_objects:equal_object(X,global_set('Name')))).
3863 :- assert_must_succeed((kernel_objects:strict_subset_of_wf(Y,X,_WF), Y = [fd(3,'Name'),fd(2,'Name')], kernel_objects:equal_object(X,global_set('Name')))).
3864 :- assert_must_fail((kernel_objects:strict_subset_of_wf(X,Y,_WF), Y = [fd(1,'Name'),fd(3,'Name'),fd(2,'Name')], X=global_set('Name'))).
3865 :- assert_must_fail((kernel_objects:strict_subset_of_wf(X,Y,_WF), Y = [fd(1,'Name'),fd(3,'Name')], kernel_objects:equal_object(X,global_set('Name')))).
3866 :- assert_must_fail((kernel_objects:strict_subset_of_wf(X,Y,_WF), Y = [int(1)], X=[int(2),int(1)])).
3867 :- assert_must_fail((kernel_objects:strict_subset_of_wf(X,Y,_WF), Y = [int(1),int(2)], X=[int(2),int(1)])).
3868 :- assert_must_fail((kernel_objects:strict_subset_of_wf(X,Y,_WF), Y = [int(2)], X=[int(2)])).
3869 :- assert_must_fail((kernel_objects:strict_subset_of_wf(X,Y,_WF), Y = [int(2)], X=[int(1)])).
3870 :- assert_must_fail((kernel_objects:strict_subset_of_wf(X,Y,_WF), Y = [], X=[int(1)])).
3871
3872
3873 :- use_module(chrsrc(chr_set_membership),[chr_subset_strict/2, chr_not_subset_strict/2]).
3874 :- use_module(chrsrc(chr_integer_inequality),[chr_in_interval/4]).
3875
3876 strict_subset_of_wf(Set1,Set2,WF) :-
3877 (preference(use_chr_solver,true) -> chr_subset_strict(Set1,Set2)
3878 ; Set1 \== Set2), % relevant for test 1326
3879 strict_subset_of_wf_aux(Set1,Set2,WF).
3880
3881 %:- block strict_subset_of_wf(-,-,?).
3882 strict_subset_of_wf_aux(Set1,Set2,WF) :- Set1==[],!,not_empty_set_wf(Set2,WF).
3883 %strict_subset_of_wf_aux(Set1,Set2,WF) :- var(Set2),nonvar(Set1), print(subs(Set1,Set2)),nl,fail.
3884 strict_subset_of_wf_aux(Set1,Set2,WF) :- nonvar(Set2), singleton_set(Set2,_),!, empty_set_wf(Set1,WF).
3885 strict_subset_of_wf_aux(Set1,Set2,WF) :-
3886 not_empty_set_wf(Set2,WF),
3887 get_cardinality_powset_wait_flag(Set2,strict_subset_of_wf,WF,_,LWF),
3888 % we could subtract 1 from priority !? (get_cardinality_pow1set_wait_flag)
3889 when(((nonvar(LWF),(nonvar(Set1);ground(Set2))) ; (nonvar(Set1),nonvar(Set2)) ),
3890 strict_subset_of_aux_block(Set1,Set2,WF,LWF)).
3891
3892 strict_subset_of_aux_block(Set1,_Set2,_WF,_LWF) :-
3893 Set1==[],
3894 !. % we have already checked that Set2 is not empty
3895 strict_subset_of_aux_block(Set1,Set2,WF,_LWF) :-
3896 nonvar(Set2), is_definitely_maximal_set(Set2),
3897 !,
3898 not_equal_object_wf(Set1,Set2,WF).
3899 strict_subset_of_aux_block(Set1,Set2,WF,_LWF) :- nonvar(Set2), singleton_set(Set2,_),!, empty_set_wf(Set1,WF).
3900 strict_subset_of_aux_block(Set1,Set2,_WF,_LWF) :-
3901 both_global_sets(Set1,Set2,G1,G2),
3902 !, %(print(check_strict_subset_of_global_sets(G1,G2)),nl,
3903 check_strict_subset_of_global_sets(G1,G2).
3904 strict_subset_of_aux_block(Set1,Set2,WF,LWF) :-
3905 var(Set1), nonvar(Set2), Set2=avl_set(_),
3906 check_card_waitflag_less(LWF,4097), % if the number is too big strict_subset_of0 has better chance of working ?!
3907 % without avl_set check test 1003 leads to time out for plavis-TransData_SP_13.prob, with
3908 % memp : seq(STRING) & dom(memp) <<: ( mdp + 1 .. ( mdp + 43 ) )
3909 !,
3910 %non_free(Set1), % as we used to force order, now we use equal_object_wf in gen_strict_subsets and no longer need non_free checking
3911 expand_custom_set_to_list_wf(Set2,ESet2,_,strict_subset_of_wf,WF),
3912 gen_strict_subsets(Set1,ESet2,WF).
3913 strict_subset_of_aux_block(Set1,Set2,WF,LWF) :-
3914 ? strict_subset_of0(Set1,Set2,WF,LWF).
3915 % TO DO (26.10.2014): test 1270 now passes thanks to maximal set check above
3916 % but we should need a better way of ensuring that something like {ssu|ssu<<:POW(elements)} is efficiently computed
3917 % (which it no longer is once the unbound_variable check had been fixed)
3918 % we could also just generally use Set1 <: Set2 & Set1 /= Set2
3919
3920 check_card_waitflag_less(float(Nr),Limit) :- number(Nr), Nr<Limit.
3921
3922 % avoid generating different ordering of the same subset ([1,2] and [2,1] for example), useful for test 642
3923 % Note: remove_element_wf in strict_subset_of2 will create different orders
3924 % for sequence domains gen_strict_subsets uses just the wrong order (deciding to remove 1 first);
3925 % cf test 1003 where not including 1 in domain is bad: memp : seq(STRING) & dom(memp) <<: ( mdp + 1 .. ( mdp + 43 ) )
3926 gen_strict_subsets(T,[H2|T2],WF) :-
3927 not_element_of_wf(H2,T,WF),
3928 gen_subsets(T,T2,WF).
3929 gen_strict_subsets(SubSet,[H2|T2],WF) :-
3930 equal_object_wf([H2|T],SubSet,gen_strict_subsets,WF),
3931 gen_strict_subsets(T,T2,WF).
3932
3933
3934 %:- block strict_subset_of0(-,?,?,?). % required to wait: we know Set2 must be non-empty, but Set1 could be an avl-tree or closure
3935 % TO DO: deal with infinite Set1
3936 strict_subset_of0(Set1,Set2,WF,LWF) :-
3937 expand_custom_set_to_list_wf(Set1,ESet1,_,strict_subset_of0,WF),
3938 (ESet1==[] -> true %not_empty_set(Set2) already checked above
3939 ? ; is_infinite_explicit_set(Set2) ->
3940 % Set1 is expanded to a list ESet1 and thus finite: it is sufficient to check subset relation
3941 check_subset_of_wf(ESet1,Set2,WF)
3942 ; try_expand_custom_set_wf(Set2,ESet2,strict_subset_of0,WF),
3943 %%try_prop_card_lt(ESet1,ESet2), try_prop_card_gt(ESet2,ESet1),
3944 ? strict_subset_of2(ESet1,[],ESet2,WF,LWF)
3945 ).
3946
3947 :- block strict_subset_of2(-,?,?,?,-).
3948 %strict_subset_of2(S,SoFar,Set2,WF) :- print(strict_subset_of2(S,SoFar,Set2,WF)),nl,fail.
3949 strict_subset_of2([],_,RemS,WF,_LWF) :- not_empty_set_wf(RemS,WF). /* we know it must be explicit set */
3950 strict_subset_of2([H|T],SoFar,Set2,WF,LWF) :- var(Set2),!,
3951 Set2 = [H|Set2R],
3952 add_new_element_wf(H,SoFar,SoFar2,WF), %was SoFar2 = [H|SoFar],
3953 strict_subset_of2(T,SoFar2,Set2R,WF,LWF).
3954 strict_subset_of2([H|T],SoFar,Set2,WF,LWF) :-
3955 % when_sufficiently_for_member(H,Set2,WF,
3956 ? remove_element_wf(H,Set2,RS2,WF),
3957 not_empty_set_wf(RS2,WF),
3958 not_element_of_wf(H,SoFar,WF), /* consistent((H,SoFar)), necessary? */
3959 when((nonvar(T) ; (ground(LWF),ground(RS2))),
3960 (add_new_element_wf(H,SoFar,SoFar2,WF), %SoFar2 = [H|SoFar],
3961 strict_subset_of2(T,SoFar2,RS2,WF,LWF) )).
3962
3963
3964
3965
3966 :- assert_must_succeed(exhaustive_kernel_check(partition_wf([int(1),int(2)],[ [int(2)], [int(1)] ],_))).
3967 :- assert_must_succeed(exhaustive_kernel_check(partition_wf([int(1),int(2),int(5)],[ [int(2)], [int(5),int(1)] ],_))).
3968 :- assert_must_succeed(exhaustive_kernel_check(partition_wf([int(1),int(2),int(5)],[ [int(2)], [int(5)],[int(1)] ],_))).
3969 :- assert_must_succeed(exhaustive_kernel_fail_check(partition_wf([int(1),int(2),int(5)],[ [int(2)], [int(5),int(1)], [int(3)] ],_))).
3970 :- assert_must_succeed((kernel_objects:partition_wf([int(1),int(2)],[ [int(2)], [int(1)] ], _))).
3971 :- assert_must_succeed((kernel_objects:partition_wf([int(1),int(2)],[ [int(2)], [int(1)], [] ], _))).
3972 :- assert_must_fail((kernel_objects:partition_wf([int(1),int(2)],[ [int(2)], [int(1),int(2)] ], _))).
3973 :- assert_must_fail((kernel_objects:partition_wf([int(1),int(3)],[ [int(1)], [int(2)] ], _))).
3974 :- assert_must_fail((kernel_objects:partition_wf([int(1),int(2),int(3)],[ [int(1)], [int(2)] ], _))).
3975 :- assert_must_succeed((kernel_objects:partition_wf([int(1)],[S1,S2],_WF), S1=[H|T], S2==[],T==[],H==int(1))).
3976 :- assert_must_succeed((kernel_objects:partition_wf([int(1),int(2)],[S1,S2],_WF), S1=[H|T], S2=[int(1)],(preferences:preference(use_clpfd_solver,true) -> T==[],H==int(2) ; T=[],H=int(2)))).
3977 :- assert_must_succeed((kernel_objects:partition_wf([int(1),int(2),int(3)],[S1,S2,S3],_WF), S1=[H2|T], S3=[int(3)],T=[H1|TT],H2=int(2),TT==[],S2==[],H1==int(1))).
3978 :- assert_must_succeed((kernel_objects:partition_wf([int(1),int(2),int(3)],[[int(1)],X,[int(2)]],_WF),
3979 X==[int(3)])).
3980
3981 :- use_module(bsets_clp,[disjoint_union_generalized_wf/3]).
3982 :- use_module(kernel_tools,[ground_value/1]).
3983 :- block partition_wf(?,-,?).
3984 partition_wf(Set,ListOfSets,WF) :-
3985 partition_disj_union_wf(Set,ListOfSets,WF),
3986 all_disjoint(ListOfSets,WF).
3987
3988 % just check that the disjoint union of all sets is equal to Set
3989 partition_disj_union_wf(Set,ListOfSets,WF) :-
3990 ground_value(Set),find_non_ground_set(ListOfSets,NGS,Rest),!,
3991 disjoint_union_generalized_wf(Rest,RestSet,WF),
3992 check_subset_of_wf(RestSet,Set,WF), % otherwise this is not a partition of Set
3993 difference_set(Set,RestSet,NGS).
3994 partition_disj_union_wf(Set,ListOfSets,WF) :-
3995 disjoint_union_generalized_wf(ListOfSets,Set,WF).
3996
3997 :- assert_must_succeed((kernel_objects:find_non_ground_set([int(1),int(2),A,int(5)],B,C), B==A,C==[int(1),int(2),int(5)])).
3998 find_non_ground_set([H|T],NG,Rest) :-
3999 (ground_value(H) -> Rest=[H|TR], find_non_ground_set(T,NG,TR)
4000 ; ground_value(T),NG=H, Rest=T).
4001
4002 :- block all_disjoint(-,?).
4003 % check if a list of sets is all disjoint (Note: this is not a set of sets)
4004 all_disjoint([],_WF) :- !.
4005 all_disjoint([H|T],WF) :- !,
4006 all_disjoint_with(T,H,WF),
4007 all_disjoint(T,WF).
4008 all_disjoint(S,WF) :- add_internal_error('Not a list for partition:',all_disjoint(S,WF)),fail.
4009
4010 :- block all_disjoint_with(-,?,?).
4011 all_disjoint_with([],_,_WF).
4012 all_disjoint_with([H|T],Set1,WF) :- disjoint_sets(Set1,H,WF), all_disjoint_with(T,Set1,WF).
4013
4014
4015 % a utility to check for duplicates in set lists and enter debugger
4016 %:- block check_set_for_repetitions(-,?).
4017 %check_set_for_repetitions([],_) :- !.
4018 %check_set_for_repetitions([H|T],Acc) :- !,
4019 % when(ground(H),(member(H,Acc) -> tools:print_bt_message(duplicate(H,Acc)),trace
4020 % ; check_set_for_repetitions(T,[H|Acc]))).
4021 %check_set_for_repetitions(_,_).
4022
4023 :- assert_must_succeed(exhaustive_kernel_fail_check(not_partition_wf([int(1),int(2)],[ [int(2)], [int(1)] ],_))).
4024 :- assert_must_succeed(exhaustive_kernel_fail_check(not_partition_wf([int(1),int(2),int(5)],[ [int(2)], [int(5),int(1)] ],_))).
4025 :- assert_must_succeed(exhaustive_kernel_fail_check(not_partition_wf([int(1),int(2),int(5)],[ [int(2)], [int(5)],[int(1)] ],_))).
4026 :- assert_must_succeed(exhaustive_kernel_check(not_partition_wf([int(1),int(2),int(5)],[ [int(2)], [int(5),int(1)], [int(3)] ],_))).
4027 :- assert_must_fail((kernel_objects:not_partition_wf([int(1),int(2)],[ [int(2)], [int(1)] ], _))).
4028 :- assert_must_fail((kernel_objects:not_partition_wf([int(1),int(2)],[ [int(2)], [int(1)], [] ], _))).
4029 :- assert_must_succeed((kernel_objects:not_partition_wf([int(1),int(2)],[ [int(2)], [int(1),int(2)] ], _))).
4030 :- assert_must_succeed((kernel_objects:not_partition_wf([int(1),int(3)],[ [int(1)], [int(2)] ], _))).
4031 :- assert_must_succeed((kernel_objects:not_partition_wf([int(1),int(2),int(3)],[ [int(1)], [int(2)] ], _))).
4032 :- assert_must_succeed((kernel_objects:not_partition_wf([int(1),int(2)],[ [int(1),int(2)], [int(1),int(2)] ], _))).
4033
4034 not_partition_wf(FullSet,ListOfSets,WF) :-
4035 ? test_partition_wf(FullSet,ListOfSets,pred_false,WF).
4036
4037
4038 :- use_module(b_interpreter_check,[imply_true/2]). % TODO: move to another module
4039 :- block test_partition_wf(?,-,?,?).
4040 test_partition_wf(FullSet,ListOfSets,PredRes,WF) :-
4041 bool_pred:negate(PredRes,NotPredRes),
4042 propagate_partition_true(FullSet,ListOfSets,PredRes,WF),
4043 ? test_partition_wf2(ListOfSets,[],FullSet,PredRes,NotPredRes,WF).
4044
4045 :- block propagate_partition_true(?,?,-,?).
4046 propagate_partition_true(FullSet,ListOfSets,pred_true,WF) :-
4047 % ensure we propagate more info; required for tests 1059, 1060
4048 partition_disj_union_wf(FullSet,ListOfSets,WF).
4049 propagate_partition_true(_,_,pred_false,_).
4050
4051 :- block test_partition_wf2(-,?,?, ?,?,?).
4052 %test_partition_wf2(Sets,SoFar,_,Pred,_,_) :- print_term_summary(test_partition_wf2(Sets,SoFar,Pred)),nl,fail.
4053 ?test_partition_wf2([],ElementsSoFar,FullSet,PredRes,_,WF) :- !, equality_objects_wf(ElementsSoFar,FullSet,PredRes,WF).
4054 test_partition_wf2([Set1|Rest],ElementsSoFar,FullSet,PredRes,NotPredRes,WF) :- !,
4055 expand_custom_set_to_list_wf(Set1,ESet1,_,test_partition_wf2,WF), % TODO: requires finite set; choose instantiated sets first
4056 ? test_partition_wf3(ESet1,ElementsSoFar,ElementsSoFar,Rest,FullSet,PredRes,NotPredRes,WF).
4057 test_partition_wf2(A,E,FS,PR,NPR,WF) :-
4058 add_internal_error('Not a list for partition:',test_partition_wf2(A,E,FS,PR,NPR,WF)),fail.
4059
4060 :- block test_partition_wf3(-,?,?,?, ?,?,?,?).
4061 test_partition_wf3([],_,NewElementsSoFar,OtherSets,FullSet,PredRes,NPR,WF) :-
4062 ? test_partition_wf2(OtherSets,NewElementsSoFar,FullSet,PredRes,NPR,WF). % finished treating this set
4063 test_partition_wf3([H|T],ElementsSoFar,NewElementsSoFar,OtherSets,FullSet,PredRes,NotPredRes,WF) :-
4064 imply_true(MemRes,NotPredRes), % if not disjoint (MemRes=pred_true) then we do not have a partition
4065 membership_test_wf(ElementsSoFar,H,MemRes,WF),
4066 ? test_partition_wf4(MemRes,H,T,ElementsSoFar,NewElementsSoFar,OtherSets,FullSet,PredRes,NotPredRes,WF).
4067
4068 :- block test_partition_wf4(-,?,?,?,?, ?,?,?,?,?).
4069 test_partition_wf4(pred_true,_,_,_,_,_,_,pred_false,_,_). % Not disjoint
4070 test_partition_wf4(pred_false,H,T,ElementsSoFar,NewElementsSoFar,OtherSets,FullSet,PredRes,NotPredRes,WF) :-
4071 add_element_wf(H,NewElementsSoFar,NewElementsSoFar2,WF), % we could also already check whether H in FullSet or not
4072 %(PredRes==pred_true -> check_element_of_wf(H,FullSet,WF) ; true),
4073 ? test_partition_wf3(T,ElementsSoFar,NewElementsSoFar2,OtherSets,FullSet,PredRes,NotPredRes,WF).
4074
4075
4076
4077 :- assert_must_succeed(exhaustive_kernel_succeed_check(check_subset_of([int(1),int(2),int(5)], [int(2),int(5),int(1),int(3)]))).
4078 :- assert_must_succeed(exhaustive_kernel_succeed_check(check_subset_of([int(1),int(2),int(5)],[int(2),int(5),int(1)]))).
4079 :- assert_must_succeed(exhaustive_kernel_fail_check(check_subset_of([int(1),int(3),int(5)],[int(2),int(5),int(1)]))).
4080 :- assert_must_succeed((kernel_objects:power_set(global_set('Name'),PS),kernel_objects:check_subset_of(X,PS),
4081 kernel_objects:equal_object(X,[[fd(2,'Name'),fd(1,'Name')]]))).
4082 :- assert_must_succeed(findall(X,kernel_objects:check_subset_of(X,[[int(1),int(2)],[]]),[_1,_2,_3,_4])).
4083 :- assert_must_succeed((kernel_objects:check_subset_of(X,[[int(1),int(2)],[]]),
4084 nonvar(X),
4085 kernel_objects:equal_object(X,[[int(2),int(1)]]))).
4086 :- assert_must_succeed((kernel_objects:check_subset_of_wf(Y,X,_WF), Y = [fd(1,'Name')],
4087 nonvar(X),X=[H|T], var(T), H==fd(1,'Name'), X=Y)).
4088 :- assert_must_succeed((kernel_objects:check_subset_of(Y,X), Y = [fd(1,'Name')], kernel_objects:equal_object(X,global_set('Name')))).
4089 :- assert_must_succeed((kernel_objects:check_subset_of(Y,X), Y = [fd(1,'Name'),fd(3,'Name'),fd(2,'Name')], kernel_objects:equal_object(X,global_set('Name')))).
4090 :- assert_must_succeed((kernel_objects:check_subset_of(X,Y), Y = [fd(1,'Name'),fd(3,'Name'),fd(2,'Name')], kernel_objects:equal_object(X,global_set('Name')))).
4091 :- assert_must_succeed((kernel_objects:sample_closure(C),kernel_objects:check_subset_of(C,global_set('NAT')))).
4092 :- assert_must_succeed((kernel_objects:check_subset_of(global_set('NAT'),global_set('NAT')))).
4093 :- assert_must_succeed((kernel_objects:check_subset_of(global_set('NAT'),global_set('NATURAL')))).
4094 :- assert_must_fail((kernel_objects:check_subset_of(global_set('NAT'),global_set('NATURAL1')))).
4095 :- assert_must_fail((kernel_objects:check_subset_of(global_set('NAT'),global_set('NAT1')))).
4096 :- assert_must_fail((kernel_objects:check_subset_of(X,Y), Y = [fd(1,'Name')], kernel_objects:equal_object(X,global_set('Name')))).
4097 /* TO DO: add special treatment for closures and type checks !! */
4098
4099 check_subset_of(Set1,Set2) :- init_wait_flags(WF),
4100 ? check_subset_of_wf(Set1,Set2,WF),
4101 ? ground_wait_flags(WF).
4102
4103 check_finite_subset_of_wf(Set1,Set2,WF) :-
4104 check_subset_of_wf(Set1,Set2,WF),
4105 is_finite_set_wf(Set1,WF).
4106
4107 :- block check_subset_of_wf(-,-,?).
4108 check_subset_of_wf(Set1,Set2,WF) :-
4109 (both_global_sets(Set1,Set2,G1,G2)
4110 -> check_subset_of_global_sets(G1,G2)
4111 ? ; check_subset_of0(Set1,Set2,WF)
4112 ).
4113
4114 both_global_sets(S1,S2,G1,G2) :- nonvar(S1),nonvar(S2),
4115 is_global_set(S1,G1), is_global_set(S2,G2).
4116
4117 % check if we have a global set or interval
4118 % is_global_set([],R) :- !, R=interval(0,-1). % useful ???
4119 is_global_set(global_set(G1),R) :- !,
4120 (custom_explicit_sets:get_integer_set_interval(G1,Low,Up) -> R=interval(Low,Up) ; R=G1).
4121 is_global_set(Closure,R) :-
4122 custom_explicit_sets:is_interval_closure_or_integerset(Closure,Low,Up),!,
4123 R=interval(Low,Up).
4124
4125
4126 :- assert_must_succeed(kernel_objects:check_subset_of_global_sets(interval(0,0),interval(minus_inf,inf))).
4127 :- assert_must_succeed(kernel_objects:check_subset_of_global_sets(interval(-200,1000),interval(minus_inf,inf))).
4128 :- assert_must_succeed(kernel_objects:check_subset_of_global_sets(interval(10,1000),interval(0,inf))).
4129 :- assert_must_fail(kernel_objects:check_subset_of_global_sets(interval(-10,1000),interval(0,inf))).
4130 :- assert_must_succeed(kernel_objects:check_subset_of_global_sets(interval(0,inf),interval(0,inf))).
4131 :- assert_must_succeed(kernel_objects:check_subset_of_global_sets(interval(0,inf),interval(minus_inf,inf))).
4132 :- assert_must_succeed(kernel_objects:check_subset_of_global_sets(interval(1,inf),interval(0,inf))).
4133 :- assert_must_succeed(kernel_objects:check_subset_of_global_sets(interval(1,inf),interval(minus_inf,inf))).
4134
4135 % to do: also extend to allow intervals with inf/minus_inf
4136 check_subset_of_global_sets(X,Y) :- (var(X) ; var(Y)),
4137 add_internal_error('Illegal call: ',check_subset_of_global_sets(X,Y)),fail.
4138 check_subset_of_global_sets(interval(Low1,Up1),interval(Low2,Up2)) :- !,
4139 interval_subset(Low1,Up1,Low2,Up2).
4140 check_subset_of_global_sets(X,X) :- !. % both args must be atomic and ground (global set names)
4141 % BUT WE COULD HAVE {x|x>0} <: NATURAL1 ? interval(0,inf) <: NATURAL1
4142 check_subset_of_global_sets(X,Y) :- check_strict_subset_of_global_sets(X,Y).
4143
4144 % To do: perform some treatment of inf, minus_inf values here <----
4145 interval_subset(Low1,Up1,Low2,Up2) :-
4146 (var(Low1) ; var(Up1)), % otherwise we can use code below
4147 finite_interval(Low1,Up1), finite_interval(Low2,Up2), % inf can appear as term; but only directly not later
4148 !,
4149 % Maybe to do: try to avoid CLPFD overflows if possible; pass WF to force case distinction between empty/non-empty intervals
4150 clpfd_in_interval(Low1,Up1,Low2,Up2).
4151 interval_subset(Low1,Up1,Low2,Up2) :-
4152 interval_subset_aux(Low1,Up1,Low2,Up2).
4153
4154 % check if we have a finite interval (fails for inf/minus_inf terms)
4155 finite_interval(Low1,Up1) :- (var(Low1) -> true ; integer(Low1)), (var(Up1) -> true ; integer(Up1)).
4156 finite_val(LowUp) :- (var(LowUp) -> true ; integer(LowUp)).
4157
4158
4159
4160 % assert Low1..Up1 <: Low2..Up2
4161 clpfd_in_interval(Low1,Up1,Low2,Up2) :-
4162 (preferences:preference(use_chr_solver,true)
4163 -> chr_in_interval(Low1,Up1,Low2,Up2) ; true),
4164 % TO DO: improve detection of Low1 #=< Up1; maybe outside of CHR ?; we could also add a choice point here
4165 % example: p..q <: 0..25 & p<q -> should constrain p,q to p:0..24 & q:1..25
4166 clpfd_interface:post_constraint2((Low1 #=< Up1) #=> ((Low2 #=< Low1) #/\ (Up1 #=< Up2)),Posted),
4167 (Posted==true -> true ; interval_subset_aux(Low1,Up1,Low2,Up2)).
4168
4169 :- block interval_subset_aux(-,?,?,?), interval_subset_aux(?,-,?,?).
4170 interval_subset_aux(Low1,Up1,_,_) :- safe_less_than_with_inf(Up1,Low1). %Set 1 is empty.
4171 interval_subset_aux(Low1,Up1,Low2,Up2) :-
4172 safe_less_than_equal_with_inf(Low1,Up1), % Set 1 is not empty
4173 safe_less_than_equal_with_inf_clpfd(Low2,Low1), safe_less_than_equal_with_inf_clpfd(Up1,Up2). % may call CLPFD
4174
4175 % a version of safe_less_than which allows minus_inf and inf, but only if those terms appear straightaway at the first call
4176 % assumes any variable will only be bound to a number
4177 safe_less_than_with_inf(X,Y) :- (X==Y ; X==inf ; Y==minus_inf), !,fail.
4178 safe_less_than_with_inf(X,Y) :- (X==minus_inf ; Y==inf), !.
4179 safe_less_than_with_inf(X,Y) :- safe_less_than(X,Y).
4180
4181 safe_less_than_with_inf_clpfd(X,Y) :- (X==Y ; X==inf ; Y==minus_inf), !,fail.
4182 safe_less_than_with_inf_clpfd(X,Y) :- (X==minus_inf ; Y==inf), !.
4183 safe_less_than_with_inf_clpfd(X,Y) :- less_than_direct(X,Y). % this can also call CLPFD
4184
4185 % a version of safe_less_than_equal which allows minus_inf and inf, but only if those terms appear straightaway at the first call
4186 safe_less_than_equal_with_inf(X,Y) :- X==Y,!.
4187 safe_less_than_equal_with_inf(X,Y) :- (X==inf ; Y==minus_inf), !,fail.
4188 safe_less_than_equal_with_inf(X,Y) :- (X==minus_inf ; Y==inf), !.
4189 safe_less_than_equal_with_inf(X,Y) :- safe_less_than_equal(X,Y).
4190
4191 safe_less_than_equal_with_inf_clpfd(X,Y) :- X==Y,!.
4192 safe_less_than_equal_with_inf_clpfd(X,Y) :- (X==inf ; Y==minus_inf), !,fail.
4193 safe_less_than_equal_with_inf_clpfd(X,Y) :- (X==minus_inf ; Y==inf), !.
4194 safe_less_than_equal_with_inf_clpfd(X,Y) :- less_than_equal_direct(X,Y). % this can also call CLPFD
4195
4196 :- assert_must_succeed(kernel_objects:check_strict_subset_of_global_sets(interval(1,2),interval(1,3))).
4197 :- assert_must_succeed(kernel_objects:check_strict_subset_of_global_sets(interval(1,1),interval(1,2))).
4198 :- assert_must_succeed(kernel_objects:check_strict_subset_of_global_sets(interval(1,1),interval(0,1))).
4199 :- assert_must_succeed(kernel_objects:check_strict_subset_of_global_sets(interval(2,1),interval(33,34))).
4200 :- assert_must_fail(kernel_objects:check_strict_subset_of_global_sets(interval(3,1),interval(4,2))).
4201 :- assert_must_fail(kernel_objects:check_strict_subset_of_global_sets(interval(3,1),interval(2,1))).
4202 :- assert_must_fail(kernel_objects:check_strict_subset_of_global_sets(interval(1,2),interval(1,2))).
4203 :- assert_must_fail(kernel_objects:check_strict_subset_of_global_sets(interval(1,2),interval(2,3))).
4204 :- assert_must_fail(kernel_objects:check_strict_subset_of_global_sets(interval(2,3),interval(1,2))).
4205 :- assert_must_succeed(kernel_objects:check_strict_subset_of_global_sets(interval(0,1000),interval(0,inf))).
4206 :- assert_must_succeed(kernel_objects:check_strict_subset_of_global_sets(interval(1,1000),interval(1,inf))).
4207 :- assert_must_succeed(kernel_objects:check_strict_subset_of_global_sets(interval(-200,1000),interval(minus_inf,inf))).
4208 % for any other term we have global enumerated or deferred sets: they cannot be a strict subset of each other
4209 check_strict_subset_of_global_sets('FLOAT','REAL').
4210 check_strict_subset_of_global_sets(interval(Low1,Up1),interval(Low2,Up2)) :-
4211 ? check_strict_subset_intervals(Low1,Up1,Low2,Up2).
4212
4213 check_strict_subset_intervals(Low1,Up1,Low2,Up2) :-
4214 safe_less_than_equal_with_inf_clpfd(Low2,Up2), % Low2..Up2 not empty
4215 ? check_strict_subset_intervals1(Low1,Up1,Low2,Up2).
4216
4217 check_strict_subset_intervals1(Low1,Up1,Low2,Up2) :- % we cannot have inf as term (yet) here
4218 %preferences:preference(use_clpfd_solver,true),
4219 (var(Low1) ; var(Up1)),
4220 finite_interval(Low1,Up1), finite_interval(Low2,Up2),
4221 !,
4222 clpfd_interface:post_constraint2((Low1 #=< Up1) #=> ((Low2 #=< Low1) #/\ (Up1 #=< Up2) #/\ (Low1 #\= Low2 #\/ Up1 #\= Up2)),Posted),
4223 (Posted==true -> true ; check_strict_subset_intervals2(Low1,Up1,Low2,Up2)).
4224 ?check_strict_subset_intervals1(Low1,Up1,Low2,Up2) :- check_strict_subset_intervals2(Low1,Up1,Low2,Up2).
4225
4226 :- block check_strict_subset_intervals2(-,?,?,?),check_strict_subset_intervals2(?,-,?,?),
4227 check_strict_subset_intervals2(?,?,-,?).
4228 check_strict_subset_intervals2(Low1,Up1,_,_) :- safe_less_than_with_inf(Up1,Low1). % interval 1 empty
4229 check_strict_subset_intervals2(Low1,Up1,Low2,Up2) :-
4230 safe_less_than_equal_with_inf(Low1,Up1), % interval 1 not empty
4231 ( safe_less_than_with_inf(Low2,Low1), safe_less_than_equal_with_inf_clpfd(Up1,Up2)
4232 ;
4233 Low1=Low2,safe_less_than_with_inf_clpfd(Up1,Up2)
4234 ).
4235
4236 :- use_module(custom_explicit_sets,[is_definitely_maximal_set/1,singleton_set/2]).
4237 :- use_module(kernel_tools,[ground_value_check/2, quick_same_value/2]).
4238
4239 check_subset_of0(Set1,_Set2,_WF) :- Set1==[],!.
4240 check_subset_of0(Set1,Set2,WF) :- Set2==[],
4241 %nonvar(Set2),Set2=[], %var(Set1),
4242 !,
4243 empty_set_wf(Set1,WF).
4244 check_subset_of0(_Set1,Set2,_WF) :-
4245 nonvar(Set2),is_definitely_maximal_set(Set2),!.
4246 %singleton
4247 check_subset_of0(Set1,Set2,_) :-
4248 quick_same_value(Set1,Set2), % important for e.g. test 1948 for closures with different info fields
4249 !.
4250 check_subset_of0(Set1,Set2,WF) :- custom_explicit_sets:singleton_set(Set1,El),!,
4251 check_element_of_wf(El,Set2,WF).
4252 check_subset_of0(Set1,Set2,WF) :- % Note: two intervals are treated in check_subset_of_global_sets
4253 subset_of_explicit_set(Set1,Set2,Code,WF),!,
4254 call(Code).
4255 check_subset_of0(Set1,Set2,WF) :- nonvar(Set1),!,
4256 get_cardinality_powset_wait_flag(Set2,check_subset_of0,WF,_,LWF),
4257 expand_custom_set_to_list_wf(Set1,ESet1,_,check_subset_of1,WF),
4258 try_expand_and_convert_to_avl_unless_large_wf(Set2,ESet2,WF),
4259 % b_interpreter_components:observe_instantiation(ESet1,'ESet1',ESet1),
4260 ? check_subset_of2(ESet1,[],ESet2,WF,LWF,none).
4261 check_subset_of0(Set1,Set2,WF) :-
4262 is_wait_flag_info(WF,wfx_no_enumeration),!,
4263 check_subset_of0_lwf(Set1,Set2,WF,_LWF,_).
4264 check_subset_of0(Set1,Set2,WF) :-
4265 % DO we need LWF if Set1=avl_set(_) ??
4266 get_cardinality_powset_wait_flag(Set2,check_subset_of0,WF,_Card,LWF),
4267 ground_value_check(Set2,GS2),
4268 ? check_subset_of0_lwf(Set1,Set2,WF,LWF,GS2).
4269
4270 :- use_module(custom_explicit_sets,[is_infinite_or_very_large_explicit_set/2]).
4271
4272 :- block check_subset_of0_lwf(-,?,?,-,?),check_subset_of0_lwf(-,?,?,?,-).
4273 check_subset_of0_lwf(Set1,_Set2,_WF,_LWF,_GS2) :- Set1==[],!.
4274 %check_subset_of0_lwf(Set1,Set2,WF,_LWF) :- Set2==[],!, % can never trigger as Set2 was already nonvar
4275 % empty_set_wf(Set1,WF).
4276 check_subset_of0_lwf(Set1,Set2,WF,_LWF,_GS2) :- custom_explicit_sets:singleton_set(Set1,El),!,
4277 check_element_of_wf(El,Set2,WF).
4278 check_subset_of0_lwf(Set1,Set2,_WF,_,_) :-
4279 both_global_sets(Set1,Set2,G1,G2),!, % may now succeed compared to same check above, as Set1/Set2 now instantiated
4280 check_subset_of_global_sets(G1,G2).
4281 check_subset_of0_lwf(Set1,Set2,WF,_LWF,_GS2) :- % Note: two intervals are treated in check_subset_of_global_sets
4282 nonvar(Set1), % otherwise we have already checked this code above
4283 subset_of_explicit_set(Set1,Set2,Code,WF),!,
4284 call(Code).
4285 check_subset_of0_lwf(Set1,Set2,WF,LWF,_GS2) :-
4286 (nonvar(Set1) ; nonvar(Set2),dont_expand_this_explicit_set(Set2)),
4287 !,
4288 expand_custom_set_to_list_wf(Set1,ESet1,_,check_subset_of1,WF),
4289 try_expand_and_convert_to_avl_unless_large_wf(Set2,ESet2,WF),
4290 % b_interpreter_components:observe_instantiation(ESet1,'ESet1',ESet1),
4291 ? check_subset_of2(ESet1,[],ESet2,WF,LWF,none).
4292 check_subset_of0_lwf(Set1,Set2,WF,_LWF,_GS2) :-
4293 expand_custom_set_to_list_wf(Set2,ESet2,_,check_subset_of0_lwf,WF), % Set2 is ground
4294 % THIS WILL ENUMERATE, for something like dom(f) <: SET this is problematic, as information cannot be used
4295 % hence we use wfx_no_enumeration above
4296 %non_free(Set1), % we used to enumerate Set1 in a specific order ESet2; now we use equal_object_wf and we no longer need to mark Set1 as non-free ?
4297 ? gen_subsets(Set1,ESet2,WF).
4298
4299 :- block check_subset_of2(-,?,?,?,-, ?).
4300 check_subset_of2([],_SoFar,_Set2,_WF,_LWF,_Last).
4301 check_subset_of2(HT,SoFar,Set2,WF,LWF,Last) :-
4302 (var(HT),Set2 = avl_set(AVL)
4303 -> % the value is chosen by the enumerator
4304 ? custom_explicit_sets:safe_avl_member(H,AVL),
4305 % this forces H to be ground; if Last /= none then it will be ground
4306 (Last==none -> true ; Last @< H),
4307 % TO DO: we could write a safe_avl_member_greater_than(H,Last,AVL)
4308 not_element_of_wf(H,SoFar,WF),
4309 NewLast=H,
4310 HT = [H|T]
4311 ; % the value may have been chosen by somebody else or will not be enumerated in order below
4312 HT = [H|T],
4313 not_element_of_wf(H,SoFar,WF),
4314 ? check_element_of_wf_lwf(H,Set2,WF,LWF),
4315 %check_element_of_wf(H,Set2,WF),
4316
4317 NewLast = Last
4318 ),
4319 ? check_subset_of3(H,T,SoFar,Set2,WF,LWF,NewLast).
4320
4321 % TO DO: write specific subsets code for avl_set(Set2) + try expand when becomes ground; merge with enumerate_tight_set ,...
4322 % TO DO: ensure that it also works with global_set(T) instead of avl_set(_) or with interval closures
4323
4324
4325 :- block check_subset_of3(?,-,-,?,?,-,?), check_subset_of3(?,-,?,-,?,-,?), check_subset_of3(?,-,-,-,?,?,?).
4326 check_subset_of3(_,T,_,_Set2,_WF,_LWF,_) :- T==[],!.
4327 check_subset_of3(H,T,SoFar,Set2,WF,LWF,Last) :- var(T),!,
4328 % Sofar, Set2 and LWF must be set
4329 ? when((nonvar(T);(ground(Set2),ground(H),ground(SoFar))),
4330 (T==[] -> true
4331 ; add_new_element_wf(H,SoFar,SoFar2,WF), %SoFar2 = [H|SoFar],
4332 check_subset_of2(T,SoFar2,Set2,WF,LWF,Last))).
4333 check_subset_of3(H,T,SoFar,Set2,WF,LWF,Last) :-
4334 % T must be set and not equal to []
4335 T = [H2|T2],
4336 add_new_element_wf(H,SoFar,SoFar2,WF), %SoFar2 = [H|SoFar],
4337 %check_subset_of2(T,SoFar2,Set2,WF,LWF))),
4338 ? check_element_of_wf(H2,Set2,WF),
4339 not_element_of_wf(H2,SoFar2,WF),
4340 check_subset_of3(H2,T2,SoFar2,Set2,WF,LWF,Last).
4341
4342
4343 :- block gen_subsets(?,-,?).
4344 gen_subsets([],_,_).
4345 gen_subsets(SubSet,Set,WF) :-
4346 ? ordered_delete(DH,Set,NewSet),
4347 equal_object_wf([DH|T],SubSet,gen_subsets,WF),
4348 ? gen_subsets(T,NewSet,WF).
4349
4350 % note: this is not select/3
4351 ordered_delete(H,[H|T],T).
4352 ?ordered_delete(H,[_|T],R) :- ordered_delete(H,T,R).
4353
4354
4355 :- assert_must_succeed(exhaustive_kernel_check_wf(check_finite_non_empty_subset_of_wf([int(1),int(5)], [int(2),int(5),int(1),int(3)],WF),WF)).
4356 :- assert_must_succeed(exhaustive_kernel_check_wf(check_finite_non_empty_subset_of_wf([int(1),int(5)], [int(5),int(1)],WF),WF)).
4357 check_finite_non_empty_subset_of_wf(Set1,Set2,WF) :-
4358 ? check_non_empty_subset_of_wf(Set1,Set2,WF),
4359 is_finite_set_wf(Set1,WF).
4360
4361 :- assert_must_succeed(exhaustive_kernel_check_wf(check_non_empty_subset_of_wf([int(1),int(5)], [int(2),int(5),int(1),int(3)],WF),WF)).
4362 :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(check_non_empty_subset_of_wf([int(2)], [int(5),int(1)],WF),WF)).
4363 :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(check_non_empty_subset_of_wf([], [int(1)],WF),WF)).
4364
4365 check_non_empty_subset_of_wf(S1,S2,WF) :- not_empty_set_wf(S1,WF),
4366 ? check_subset_of_wf(S1,S2,WF).
4367
4368 :- assert_must_succeed(exhaustive_kernel_succeed_check(not_subset_of([int(1),int(2),int(5)], [int(2),int(4),int(1),int(3)]))).
4369 :- assert_must_succeed(exhaustive_kernel_fail_check(not_subset_of([int(1),int(2),int(5)], [int(2),int(5),int(1),int(3)]))).
4370 :- assert_must_succeed((kernel_objects:not_subset_of(X,Y), Y = [fd(1,'Name')], X=global_set('Name'))).
4371 :- assert_must_succeed((kernel_objects:not_subset_of(X,Y), Y = [fd(1,'Name')], X=[fd(2,'Name')])).
4372 :- assert_must_succeed((kernel_objects:not_subset_of(X,Y), Y = [fd(1,'Name')], X=[fd(1,'Name'),fd(2,'Name')])).
4373 :- assert_must_fail((kernel_objects:not_subset_of(Y,X), Y = [fd(1,'Name'),fd(3,'Name')], X=global_set('Name'))).
4374 :- assert_must_fail((kernel_objects:not_subset_of(Y,X), Y = [fd(1,'Name'),fd(3,'Name'),fd(2,'Name')], X=global_set('Name'))).
4375 :- assert_must_fail((kernel_objects:not_subset_of(X,Y), Y = [fd(1,'Name'),fd(3,'Name'),fd(2,'Name')], X=global_set('Name'))).
4376 :- assert_must_fail((kernel_objects:not_subset_of(global_set('NAT'),global_set('NAT')))).
4377 :- assert_must_succeed((kernel_objects:not_subset_of(global_set('NAT'),global_set('NAT1')))).
4378
4379
4380 not_subset_of(Set1,Set2) :- init_wait_flags(WF),
4381 not_subset_of_wf(Set1,Set2,WF),
4382 ground_wait_flags(WF).
4383
4384 :- assert_must_succeed(exhaustive_kernel_succeed_check(not_finite_subset_of_wf([int(1),int(2),int(5)], [int(2),int(4),int(1),int(3)],_WF))).
4385 :- assert_must_succeed(exhaustive_kernel_succeed_check(not_finite_subset_of_wf(global_set('NATURAL'), global_set('INTEGER'),_WF))).
4386 :- assert_must_succeed(exhaustive_kernel_succeed_check(not_finite_subset_of_wf(global_set('INTEGER'), global_set('INTEGER'),_WF))).
4387 :- assert_must_succeed(exhaustive_kernel_succeed_check(not_finite_subset_of_wf([int(1)], [],_WF))).
4388
4389 :- block not_finite_subset_of_wf(-,?,?).
4390 not_finite_subset_of_wf(Set1,Set2,WF) :- test_finite_set_wf(Set1,Finite,WF),
4391 not_finite_subset_of_wf_aux(Finite,Set1,Set2,WF).
4392 :- block not_finite_subset_of_wf_aux(-,?,?,?).
4393 not_finite_subset_of_wf_aux(pred_false,_Set1,_Set2,_WF).
4394 not_finite_subset_of_wf_aux(pred_true,Set1,Set2,WF) :- not_subset_of_wf(Set1,Set2,WF).
4395
4396 :- block not_subset_of_wf(-,?,?).
4397 not_subset_of_wf([],_,_WF) :- !, fail.
4398 not_subset_of_wf(Set1,Set2,WF) :- Set2==[],!, not_empty_set_wf(Set1,WF).
4399 not_subset_of_wf(Set1,Set2,WF) :-
4400 (both_global_sets(Set1,Set2,G1,G2) % also catches intervals
4401 -> check_not_subset_of_global_sets(G1,G2)
4402 ; not_subset_of_wf1(Set1,Set2,WF)
4403 ).
4404 not_subset_of_wf1(_Set1,Set2,_WF) :-
4405 nonvar(Set2), is_definitely_maximal_set(Set2),!,fail.
4406 not_subset_of_wf1(Set1,Set2,_WF) :- quick_same_value(Set1,Set2),
4407 !, fail.
4408 not_subset_of_wf1(Set1,Set2,WF) :- custom_explicit_sets:singleton_set(Set1,El),!,
4409 not_element_of_wf(El,Set2,WF).
4410 ?not_subset_of_wf1(Set1,Set2,WF) :- not_subset_of_explicit_set(Set1,Set2,Code,WF),!,
4411 call(Code).
4412 not_subset_of_wf1(Set1,Set2,WF) :-
4413 expand_custom_set_to_list_wf(Set1,ESet1,_,not_subset_of_wf1,WF),
4414 not_subset_of2(ESet1,Set2,WF).
4415
4416
4417 :- assert_must_succeed(kernel_objects:check_not_subset_of_global_sets(interval(0,2),interval(1,3))).
4418 :- assert_must_succeed(kernel_objects:check_not_subset_of_global_sets(interval(1,2),interval(0,-1))).
4419 :- assert_must_succeed(kernel_objects:check_not_subset_of_global_sets(interval(1,2),interval(4,3))).
4420 :- assert_must_succeed(kernel_objects:check_not_subset_of_global_sets(interval(2,4),interval(1,3))).
4421 :- assert_must_succeed(kernel_objects:check_not_subset_of_global_sets(interval(1,9000),interval(2,9999))).
4422 :- assert_must_succeed((kernel_objects:check_not_subset_of_global_sets(interval(X2,X4),interval(1,3)),
4423 X2=2, X4=4)).
4424 :- assert_must_fail(kernel_objects:check_not_subset_of_global_sets(interval(2,4),interval(1,4))).
4425 :- assert_must_fail(kernel_objects:check_not_subset_of_global_sets(interval(2,4),interval(2,4))).
4426 :- assert_must_fail(kernel_objects:check_not_subset_of_global_sets(interval(2,4),interval(0,10))).
4427 :- assert_must_succeed(kernel_objects:check_not_subset_of_global_sets(interval(0,2),interval(1,inf))).
4428 :- assert_must_succeed(kernel_objects:check_not_subset_of_global_sets(interval(-1,2),interval(0,inf))).
4429 :- assert_must_fail(kernel_objects:check_not_subset_of_global_sets(interval(1,2),interval(1,inf))).
4430 :- assert_must_fail(kernel_objects:check_not_subset_of_global_sets(interval(0,2),interval(0,inf))).
4431 :- assert_must_fail(kernel_objects:check_not_subset_of_global_sets(interval(-1,2),interval(minus_inf,inf))).
4432 :- assert_must_succeed(kernel_objects:check_not_subset_of_global_sets(interval(0,inf),interval(1,inf))).
4433 :- assert_must_succeed(kernel_objects:check_not_subset_of_global_sets(interval(minus_inf,inf),interval(1,inf))).
4434 :- assert_must_succeed(kernel_objects:check_not_subset_of_global_sets(interval(minus_inf,inf),interval(0,inf))).
4435 :- assert_must_fail(kernel_objects:check_not_subset_of_global_sets(interval(1,inf),interval(minus_inf,inf))).
4436 :- assert_must_fail(kernel_objects:check_not_subset_of_global_sets(interval(1,inf),interval(1,inf))).
4437 :- assert_must_fail(kernel_objects:check_not_subset_of_global_sets(interval(1,inf),interval(0,inf))).
4438 :- assert_must_fail(kernel_objects:check_not_subset_of_global_sets(interval(0,inf),interval(0,inf))).
4439
4440 :- block check_not_subset_of_global_sets(-,?), check_not_subset_of_global_sets(?,-).
4441 check_not_subset_of_global_sets(interval(Low1,Up1),G2) :- !,
4442 safe_less_than_equal_with_inf_clpfd(Low1,Up1), % Set 1 is not empty; otherwise it will always be a subset
4443 not_subset_interval_gs_aux(G2,Low1,Up1).
4444 check_not_subset_of_global_sets(G1,G2) :-
4445 \+ check_subset_of_global_sets(G1,G2).
4446
4447 not_subset_interval_gs_aux(interval(Low2,Up2),Low1,Up1) :-
4448 finite_interval(Low1,Up1), finite_interval(Low2,Up2),
4449 !,
4450 % post_constraint2((Low1 #<Low2 #\/ Up1 #> Up2 #\/ Up2 #< Low1),Posted), %% X #<100 #\/ X#<0. does not constraint X ! but X #<max(100,0) does
4451 post_constraint2((Low1 #<Low2 #\/ Up2 #< max(Up1,Low1)),Posted),
4452 (Posted==true -> true ; not_interval_subset(Low1,Up1,Low2,Up2)).
4453 not_subset_interval_gs_aux(interval(Low2,Up2),Low1,Up1) :- !, not_interval_subset(Low1,Up1,Low2,Up2).
4454 not_subset_interval_gs_aux(GS2,Low1,Up1) :-
4455 when((nonvar(Low1),nonvar(Up1)), \+ check_subset_of_global_sets(interval(Low1,Up1),GS2)).
4456
4457 not_interval_subset(Val1,Up1,Low2,Up2) :- var(Val1), Val1==Up1,
4458 !, % better propagation for singleton set
4459 (Up2==inf -> Low2\==minus_inf, less_than_direct(Val1,Low2)
4460 ; Low2=minus_inf -> less_than_direct(Up2,Val1)
4461 ; not_in_nat_range(int(Val1),int(Low2),int(Up2))).
4462 not_interval_subset(Low1,_,Low2,Up2) :- Up2==inf, finite_val(Low2), finite_val(Low1),
4463 % typical case x..y /<: NATURAL <==> x < 0
4464 !,
4465 less_than_direct(Low1,Low2).
4466 not_interval_subset(_,Up1,Low2,Up2) :- Low2==minus_inf, finite_val(Up2), finite_val(Up1),
4467 % covers x..y /<: {x|x<=0} <==> y > 0
4468 !,
4469 less_than_direct(Up2,Up1).
4470 not_interval_subset(Low1,Up1,Low2,Up2) :- not_interval_subset_block(Low1,Up1,Low2,Up2).
4471 :- block not_interval_subset_block(-,?,?,?), not_interval_subset_block(?,-,?,?),
4472 not_interval_subset_block(?,?,-,?), not_interval_subset_block(?,?,?,-).
4473 not_interval_subset_block(Low1,Up1,Low2,Up2) :- % this could be decided earlier, e.g. 1..n /<: 1..inf is false
4474 \+ interval_subset(Low1,Up1,Low2,Up2).
4475
4476
4477 :- block not_subset_of2(-,?,?).
4478 not_subset_of2([H|T],Set2,WF) :-
4479 (T==[]
4480 -> not_element_of_wf(H,Set2,WF)
4481 ; membership_test_wf(Set2,H,MemRes,WF),
4482 propagate_empty_set_to_pred_false(T,MemRes), % if T becomes empty, we know that H must not be in Set2
4483 not_subset_of3(MemRes,T,Set2,WF)
4484 ).
4485
4486 :- block not_subset_of3(-,?,?,?).
4487 not_subset_of3(pred_false,_T,_Set2,_WF).
4488 not_subset_of3(pred_true,T,Set2,WF) :- not_subset_of2(T,Set2,WF).
4489
4490 :- block propagate_empty_set_to_pred_false(-,-).
4491 propagate_empty_set_to_pred_false(X,PredRes) :- X==[],!,PredRes=pred_false.
4492 propagate_empty_set_to_pred_false(_,_).
4493
4494 :- assert_must_succeed(exhaustive_kernel_check_wf(not_both_subset_of([int(1),int(2),int(5)], []
4495 ,[int(2),int(4),int(1),int(3)],[],WF),WF)).
4496 :- assert_must_succeed(exhaustive_kernel_check_wf(not_both_subset_of([int(1),int(2),int(5)], [int(3)],
4497 [int(2),int(5),int(1),int(3)],[int(1),int(4)],WF),WF)).
4498
4499 not_both_subset_of(Set1A,Set1B, Set2A,Set2B, WF) :-
4500 kernel_equality:subset_test(Set1A,Set2A,Result,WF), % not yet implemented ! % TODO ! -> sub_set,equal,super_set
4501 not_both_subset_of_aux(Result,Set1B,Set2B,WF).
4502
4503 :- block not_both_subset_of_aux(-,?,?,?).
4504 not_both_subset_of_aux(pred_false,_Set1B,_Set2B,_WF).
4505 not_both_subset_of_aux(pred_true,Set1B,Set2B,WF) :-
4506 not_subset_of_wf(Set1B,Set2B,WF).
4507
4508 /***********************************/
4509 /* not_strict_subset_of(Set1,Set2) */
4510 /* Set1 /<<: Set2 */
4511 /**********************************/
4512
4513
4514 :- assert_must_succeed(exhaustive_kernel_succeed_check(not_strict_subset_of([int(1),int(2),int(5)], [int(2),int(4),int(1),int(3)]))).
4515 :- assert_must_succeed(exhaustive_kernel_succeed_check(not_strict_subset_of([int(1),int(2),int(5)], [int(2),int(5),int(1)]))).
4516 :- assert_must_succeed(exhaustive_kernel_fail_check(not_strict_subset_of([int(1),int(2),int(5)], [int(2),int(5),int(1),int(3)]))).
4517 :- assert_must_fail((kernel_objects:not_strict_subset_of(Y,X), Y = [int(1)], X=[int(2),int(1)])).
4518 :- assert_must_fail((kernel_objects:not_strict_subset_of(Y,X), Y = [], X=[int(2),int(1)])).
4519 :- assert_must_fail((kernel_objects:not_strict_subset_of(Y,X), Y = [[int(1),int(2)]], X=[[int(2)],[int(2),int(1)]])).
4520 :- assert_must_fail((kernel_objects:not_strict_subset_of(Y,X), Y = [fd(1,'Name')], X=global_set('Name'))).
4521 :- assert_must_fail((kernel_objects:not_strict_subset_of(Y,X), Y = [fd(3,'Name'),fd(2,'Name')], X=global_set('Name'))).
4522 :- assert_must_succeed((kernel_objects:not_strict_subset_of(X,Y), Y = [fd(1,'Name'),fd(3,'Name'),fd(2,'Name')], X=global_set('Name'))).
4523 :- assert_must_succeed((kernel_objects:not_strict_subset_of(X,Y), Y = [fd(1,'Name'),fd(3,'Name')], X=global_set('Name'))).
4524 :- assert_must_succeed((kernel_objects:not_strict_subset_of(X,Y), Y = [int(1)], X=[int(2),int(1)])).
4525 :- assert_must_succeed((kernel_objects:not_strict_subset_of(X,Y), Y = [int(1),int(2)], X=[int(2),int(1)])).
4526 :- assert_must_succeed((kernel_objects:not_strict_subset_of(X,Y), Y = [int(2)], X=[int(2)])).
4527 :- assert_must_succeed((kernel_objects:not_strict_subset_of(X,Y), Y = [int(2)], X=[int(1)])).
4528 :- assert_must_succeed((kernel_objects:not_strict_subset_of(X,Y), Y = [], X=[int(1)])).
4529
4530 not_strict_subset_of(Set1,Set2) :-
4531 (preference(use_chr_solver,true) -> chr_not_subset_strict(Set1,Set2) ; true),
4532 init_wait_flags(WF,[not_strict_subset_of]),
4533 not_strict_subset_of_wf(Set1,Set2,WF),
4534 ground_wait_flags(WF).
4535
4536 :- block not_strict_subset_of_wf(-,?,?),not_strict_subset_of_wf(?,-,?).
4537 not_strict_subset_of_wf(Set1,Set2,WF) :-
4538 (both_global_sets(Set1,Set2,G1,G2)
4539 -> not_strict_subset_of_global_sets(G1,G2)
4540 ; not_strict_subset_of_wf1(Set1,Set2,WF)
4541 ).
4542 ?not_strict_subset_of_wf1(Set1,Set2,WF) :- not_subset_of_explicit_set(Set1,Set2,Code,WF),!,
4543 equality_objects_wf(Set1,Set2,EqRes,WF),
4544 not_strict_eq_check(EqRes,Code).
4545 not_strict_subset_of_wf1(Set1,Set2,WF) :-
4546 % OLD VERSION: not_subset_of(Set1,Set2) ; check_equal_object(Set1,Set2).
4547 expand_custom_set_to_list_wf(Set1,ESet1,_,not_strict_subset_of_wf1,WF),
4548 (nonvar(Set2),is_infinite_explicit_set(Set2) -> Inf=infinite ; Inf=unknown),
4549 not_strict_subset_of2(ESet1,Set2,Inf,WF).
4550
4551 :- block not_strict_eq_check(-,?).
4552 not_strict_eq_check(pred_true,_). % if equal then not strict subset is true
4553 not_strict_eq_check(pred_false,Code) :- call(Code). % check if not subset
4554
4555 :- block not_strict_subset_of2(-,?,?,?).
4556 not_strict_subset_of2([],R,_,WF) :- empty_set_wf(R,WF).
4557 not_strict_subset_of2([H|T],Set2,Inf,WF) :-
4558 membership_test_wf(Set2,H,MemRes,WF),
4559 not_strict_subset_of3(MemRes,H,T,Set2,Inf,WF).
4560
4561 :- block not_strict_subset_of3(-,?,?,?,?,?).
4562 not_strict_subset_of3(pred_false,_H,_T,_Set2,_,_WF).
4563 not_strict_subset_of3(pred_true,H,T,Set2,Inf,WF) :-
4564 (Inf=infinite
4565 -> RS2=Set2 % Set1 is finite; we just have to check that all elements are in Set2 and we have a strict subset
4566 ; remove_element_wf(H,Set2,RS2,WF)),
4567 not_strict_subset_of2(T,RS2,Inf,WF).
4568
4569
4570 :- assert_must_succeed(kernel_objects:not_strict_subset_of_global_sets(interval(0,2),interval(1,3))).
4571 :- assert_must_succeed(kernel_objects:not_strict_subset_of_global_sets(interval(1,2),interval(0,-1))).
4572 :- assert_must_succeed(kernel_objects:not_strict_subset_of_global_sets(interval(1,2),interval(4,3))).
4573 :- assert_must_succeed(kernel_objects:not_strict_subset_of_global_sets(interval(2,4),interval(1,3))).
4574 :- assert_must_succeed(kernel_objects:not_strict_subset_of_global_sets(interval(1,9000),interval(2,9999))).
4575 :- assert_must_succeed((kernel_objects:not_strict_subset_of_global_sets(interval(X2,X4),interval(1,3)),
4576 X2=2, X4=4)).
4577 :- assert_must_fail(kernel_objects:not_strict_subset_of_global_sets(interval(2,4),interval(1,4))).
4578 :- assert_must_succeed(kernel_objects:not_strict_subset_of_global_sets(interval(2,4),interval(2,4))).
4579 :- assert_must_fail(kernel_objects:not_strict_subset_of_global_sets(interval(2,4),interval(0,10))).
4580 :- assert_must_succeed(kernel_objects:not_strict_subset_of_global_sets(interval(0,2),interval(1,inf))).
4581 :- assert_must_succeed(kernel_objects:not_strict_subset_of_global_sets(interval(-1,2),interval(0,inf))).
4582 :- assert_must_fail(kernel_objects:not_strict_subset_of_global_sets(interval(1,2),interval(1,inf))).
4583 :- assert_must_fail(kernel_objects:not_strict_subset_of_global_sets(interval(0,2),interval(0,inf))).
4584 :- assert_must_fail(kernel_objects:not_strict_subset_of_global_sets(interval(-1,2),interval(minus_inf,inf))).
4585 :- assert_must_succeed(kernel_objects:not_strict_subset_of_global_sets(interval(0,inf),interval(1,inf))).
4586 :- assert_must_succeed(kernel_objects:not_strict_subset_of_global_sets(interval(minus_inf,inf),interval(1,inf))).
4587 :- assert_must_succeed(kernel_objects:not_strict_subset_of_global_sets(interval(minus_inf,inf),interval(0,inf))).
4588 :- assert_must_fail(kernel_objects:not_strict_subset_of_global_sets(interval(1,inf),interval(minus_inf,inf))).
4589 :- assert_must_succeed(kernel_objects:not_strict_subset_of_global_sets(interval(1,inf),interval(1,inf))).
4590 :- assert_must_fail(kernel_objects:not_strict_subset_of_global_sets(interval(1,inf),interval(0,inf))).
4591 :- assert_must_succeed(kernel_objects:not_strict_subset_of_global_sets(interval(0,inf),interval(0,inf))).
4592
4593 :- block not_strict_subset_of_global_sets(-,?), not_strict_subset_of_global_sets(?,-).
4594 not_strict_subset_of_global_sets(interval(Low1,Up1),interval(Low2,Up2)) :- !,
4595 % Note: if Low2>Up2 then nothing is a strict subset of the empty set, i.e., everything is not a strict subset
4596 (finite_interval(Low1,Up1), finite_interval(Low2,Up2)
4597 -> clpfd_interface:post_constraint2(((Low2 #=< Up2) #=> (Low1 #=< Up1 #/\ ((Low2 #> Low1) #\/ (Up1 #> Up2) #\/ ((Low1 #= Low2 #/\ Up1 #= Up2))))),Posted)
4598 ; Posted=false),
4599 (Posted==true -> true ; not_strict_subset_intervals(Low1,Up1,Low2,Up2)).
4600 not_strict_subset_of_global_sets(G1,G2) :-
4601 when((ground(G1),ground(G2)), \+check_strict_subset_of_global_sets(G1,G2)).
4602
4603 :- block not_strict_subset_intervals(?,?,-,?), not_strict_subset_intervals(?,?,?,-).
4604 % Instead of blocking on Low2,Up2 we could post bigger constraint (Low2 <= Up2 => (Low1 <= Up1 /\ ....
4605 not_strict_subset_intervals(_Low1,_Up1,Low2,Up2) :- safe_less_than_with_inf(Up2,Low2),!.
4606 not_strict_subset_intervals(Low1,Up1,Low2,Up2) :-
4607 safe_less_than_equal_with_inf_clpfd(Low1,Up1), % if Low1..Up1 is empty then it would be a strict subset
4608 not_check_strict_subset_intervals2(Low1,Up1,Low2,Up2).
4609 :- block not_check_strict_subset_intervals2(-,?,?,?),not_check_strict_subset_intervals2(?,-,?,?),
4610 not_check_strict_subset_intervals2(?,?,-,?).
4611 ?not_check_strict_subset_intervals2(Low1,Up1,Low2,Up2) :- \+ check_strict_subset_intervals2(Low1,Up1,Low2,Up2).
4612
4613
4614 /* Set1 /: FIN1(Set2) */
4615 :- assert_must_succeed((kernel_objects:not_non_empty_finite_subset_of_wf(Y,X,_WF), X = [int(1)], Y=[int(2)])).
4616 :- assert_must_succeed((kernel_objects:not_non_empty_finite_subset_of_wf(Y,X,_WF), X=[int(1)], Y=[int(1),int(2)])).
4617 :- assert_must_succeed((kernel_objects:not_non_empty_finite_subset_of_wf(Y,X,_WF), X = [int(1)], Y=[])).
4618 :- assert_must_fail((kernel_objects:not_non_empty_finite_subset_of_wf(Y,X,_WF), X = [int(1)], Y=[int(1)])).
4619
4620 :- block not_non_empty_finite_subset_of_wf(-,?,?).
4621 not_non_empty_finite_subset_of_wf(Set1,Set2,WF) :- test_finite_set_wf(Set1,Finite,WF),
4622 not_non_empty_finite_subset_of_aux(Finite,Set1,Set2,WF).
4623 :- block not_non_empty_finite_subset_of_aux(-,?,?,?).
4624 not_non_empty_finite_subset_of_aux(pred_false,_Set1,_Set2,_WF).
4625 not_non_empty_finite_subset_of_aux(pred_true,Set1,Set2,WF) :- not_non_empty_subset_of_wf(Set1,Set2,WF).
4626
4627 /* Set1 /: POW1(Set2) */
4628 :- assert_must_succeed(exhaustive_kernel_check_wf(not_non_empty_subset_of_wf([int(1)], [int(2),int(3)],WF),WF)).
4629 :- assert_must_succeed(exhaustive_kernel_fail_check_wf(not_non_empty_subset_of_wf([int(2)], [int(2),int(3)],WF),WF)).
4630 :- assert_must_succeed((kernel_objects:not_non_empty_subset_of_wf(Y,X,_WF), X = [int(1)], Y=[int(2)])).
4631 :- assert_must_succeed((kernel_objects:not_non_empty_subset_of_wf(Y,X,_WF), X=[int(1)], Y=[int(1),int(2)])).
4632 :- assert_must_succeed((kernel_objects:not_non_empty_subset_of_wf(Y,X,_WF), X = [int(1)], Y=[])).
4633 :- assert_must_fail((kernel_objects:not_non_empty_subset_of_wf(Y,X,_WF), X = [int(1)], Y=[int(1)])).
4634
4635 % Set1 /: POW1(Set2)
4636 :- block not_non_empty_subset_of_wf(-,?,?).
4637 not_non_empty_subset_of_wf(Set1,_,_WF) :- Set1==[],!.
4638 not_non_empty_subset_of_wf(Set1,Set2,WF) :- % Maybe introduce binary choice point ?
4639 empty_set_wf(Set1,WF) ;
4640 not_subset_of_wf(Set1,Set2,WF).
4641
4642
4643 /* min, max */
4644
4645 :- assert_must_succeed(exhaustive_kernel_check(minimum_of_set([int(1)],int(1),unknown,_WF))).
4646 :- assert_must_succeed(exhaustive_kernel_check(minimum_of_set([int(2),int(3),int(1)],int(1),unknown,_WF))).
4647 :- assert_must_succeed(exhaustive_kernel_fail_check(minimum_of_set([int(2),int(3),int(1)],int(2),unknown,_WF))).
4648 :- assert_must_succeed((kernel_objects:minimum_of_set(Y,X,unknown,_WF), X = int(1), Y=[int(1)])).
4649 :- assert_must_succeed((kernel_objects:minimum_of_set(Y,X,unknown,_WF), X = int(1), Y=[int(2),int(1)])).
4650 :- assert_must_succeed((kernel_objects:minimum_of_set(Y,X,unknown,_WF), X = int(1), Y=[int(1),int(2),int(1),int(3)])).
4651 :- assert_must_fail((kernel_objects:minimum_of_set(Y,X,unknown,_WF), X = int(2), Y=[int(1),int(2),int(1),int(3)])).
4652 :- assert_must_abort_wf(kernel_objects:minimum_of_set([],_R,unknown,WF),WF).
4653 %:- must_succeed(kernel_waitflags:assert_must_abort2_wf(kernel_objects:minimum_of_set([],_R,WF),WF)).
4654
4655 :- block minimum_of_set_extension_list(-,?,?,?).
4656 minimum_of_set_extension_list(ListOfValues,int(Min),Span,WF) :-
4657 minimum_of_set2(ListOfValues,Min,Span,WF).
4658
4659 :- block minimum_of_set(-,?,?,?).
4660 minimum_of_set(Set1,Res,_Span,WF) :- is_custom_explicit_set(Set1,minimum_of_set),
4661 min_of_explicit_set_wf(Set1,Min,WF), !,
4662 equal_object_wf(Min,Res,minimum_of_set,WF).
4663 minimum_of_set(Set1,int(Min),Span,WF) :- expand_custom_set_to_list_wf(Set1,ESet1,_,minimum_of_set,WF),
4664 minimum_of_set2(ESet1,Min,Span,WF).
4665 :- block minimum_of_set2(-,?,?,?).
4666 minimum_of_set2([],Res,Span,WF) :-
4667 add_wd_error_set_result('min applied to empty set','',Res,int(0),Span,WF).
4668 minimum_of_set2([int(N)|T],Min,_,_) :- clpfd_geq2(N,Min,_),minimum_of_set3(T,N,Min,[N]).
4669
4670 :- block minimum_of_set3(-,?,?,?). % with CLPFD: makes sense to also unfold if Min Variable; hence no longer block on : minimum_of_set3(?,-,-).
4671 minimum_of_set3([],MinSoFar,MinSoFar,ListOfValues) :-
4672 (var(MinSoFar) -> clpfd_minimum(MinSoFar,ListOfValues) ; true).
4673 minimum_of_set3([int(M)|T],MinSoFar,Min,ListOfValues) :- clpfd_geq2(M,Min,_),
4674 minimum(M,MinSoFar,NewMinSoFar),
4675 minimum_of_set3(T,NewMinSoFar,Min,[M|ListOfValues]).
4676
4677
4678 :- block minimum(-,?,?), minimum(?,-,?).
4679 minimum(M1,M2,Min) :- M1<M2 -> Min=M1 ; Min=M2.
4680
4681 :- assert_must_succeed(exhaustive_kernel_check(maximum_of_set([int(1)],int(1),unknown,_WF))).
4682 :- assert_must_succeed(exhaustive_kernel_check(maximum_of_set([int(2),int(3),int(1)],int(3),unknown,_WF))).
4683 :- assert_must_succeed(exhaustive_kernel_fail_check(maximum_of_set([int(2),int(3),int(1)],int(2),unknown,_WF))).
4684 :- assert_must_succeed((kernel_objects:maximum_of_set(Y,X,unknown,_WF), X = int(1), Y=[int(1)])).
4685 :- assert_must_succeed((kernel_objects:maximum_of_set(Y,X,unknown,_WF), X = int(2), Y=[int(2),int(1)])).
4686 :- assert_must_succeed((kernel_objects:maximum_of_set(Y,X,unknown,_WF), X = int(3), Y=[int(1),int(2),int(1),int(3)])).
4687 :- assert_must_fail((kernel_objects:maximum_of_set(Y,X,unknown,_WF), X = int(2), Y=[int(1),int(2),int(1),int(3)])).
4688 :- assert_must_fail((preferences:preference(use_clpfd_solver,true),
4689 kernel_objects:maximum_of_set([int(X),int(_Y)],int(3),unknown,_WF), X = 4)). % in CLPFD modus
4690 :- assert_must_fail((preferences:preference(use_clpfd_solver,true),
4691 kernel_objects:maximum_of_set([int(_),int(X)],int(3),unknown,_WF), X = 4)).% in CLPFD modus
4692 :- assert_must_abort_wf(kernel_objects:maximum_of_set([],_R,unknown,WF),WF).
4693
4694 :- block maximum_of_set_extension_list(-,?,?,?).
4695 maximum_of_set_extension_list(ListOfValues,int(Max),Span,WF) :-
4696 maximum_of_set2(ListOfValues,Max,Span,WF).
4697
4698 :- block maximum_of_set(-,?,?,?).
4699 maximum_of_set(Set1,Res,_Span,WF) :-
4700 is_custom_explicit_set(Set1,maximum_of_set),
4701 max_of_explicit_set_wf(Set1,Max,WF), !,
4702 equal_object_wf(Max,Res,maximum_of_set,WF).
4703 maximum_of_set(Set1,int(Max),Span,WF) :-
4704 expand_custom_set_to_list_wf(Set1,ESet1,_,maximum_of_set,WF),
4705 maximum_of_set2(ESet1,Max,Span,WF).
4706 :- block maximum_of_set2(-,?,?,?).
4707 maximum_of_set2([],Res,Span,WF) :-
4708 add_wd_error_set_result('max applied to empty set','',Res,int(0),Span,WF). %preferences:get_preference(maxint,R))). %R=abort(maximum_of_empty_set))).
4709 maximum_of_set2([int(N)|T],Max,_Span,_) :- clpfd_geq2(Max,N,_),
4710 maximum_of_set3(T,N,Max,[N]).
4711
4712 :- block maximum_of_set3(-,?,?,?). % with CLPFD: makes sense to also unfold if Max Variable; hence no longer block on : maximum_of_set3(?,-,-).
4713 maximum_of_set3([],MaxSoFar,MaxSoFar,ListOfValues) :-
4714 (var(MaxSoFar) -> clpfd_maximum(MaxSoFar,ListOfValues) ; true).
4715 maximum_of_set3([int(M)|T],MaxSoFar,Max,ListOfValues) :- clpfd_geq2(Max,M,_),
4716 maximum(M,MaxSoFar,NewMaxSoFar),
4717 maximum_of_set3(T,NewMaxSoFar,Max,[M|ListOfValues]).
4718
4719 :- block maximum(-,?,?), maximum(?,-,?).
4720 maximum(M1,M2,Max) :- M1>M2 -> Max=M1 ; Max=M2.
4721
4722 % card(ran(Function)); useful e.g. for q : 1 .. 16 --> 1 .. 16 & card(ran(q))=16
4723 :- block cardinality_of_range(-,?,?).
4724 cardinality_of_range(CS,Card,WF) :-
4725 is_custom_explicit_set(CS,cardinality_of_range),
4726 range_of_explicit_set_wf(CS,Res,WF),!,
4727 cardinality_as_int_wf(Res,Card,WF).
4728 cardinality_of_range(Function,Card,WF) :-
4729 expand_custom_set_to_list_wf(Function,EF1,Done,cardinality_of_range,WF),
4730 project_on_range(EF1,ERange),
4731 % when Done is set: we have a complete list and can compute MaxCard; TODO: maybe provide a version that can trigger earlier
4732 when(nonvar(Done),cardinality_of_set_extension_list(ERange,Card,WF)).
4733
4734 :- block project_on_range(-,?).
4735 project_on_range([],[]).
4736 project_on_range([(_,Ran)|T],[Ran|TR]) :- project_on_range(T,TR).
4737
4738
4739 :- assert_must_succeed((cardinality_of_set_extension_list([fd(1,'Name')],R,_WF), R = int(1))).
4740 :- assert_must_succeed((cardinality_of_set_extension_list([int(X),int(Y)],int(1),_WF), X=22, Y==22)).
4741
4742 cardinality_of_set_extension_list(List,int(Card),WF) :-
4743 length(List,MaxCard), less_than_equal_direct(Card,MaxCard),
4744 cardinality_of_set_extension_list2(List,[],0,MaxCard,Card,WF).
4745
4746 :- block cardinality_of_set_extension_list2(-,?,?,?,?,?).
4747 cardinality_of_set_extension_list2([],_,AccSz,_MaxCard,Res,_WF) :- Res=AccSz.
4748 cardinality_of_set_extension_list2([H|T],Acc,AccSz,MaxCard,Res,WF) :-
4749 membership_test_wf(Acc,H,MemRes,WF),
4750 (MaxCard==Res -> /* only solution is for H to be not in Acc */ MemRes=pred_false
4751 ; AccSz==Res -> /* only solution is for H to be in Acc */ MemRes=pred_true
4752 ; (var(Res),var(MemRes)) -> kernel_equality:equality_int(MaxCard,Res,EqMaxC),prop_if_pred_true(EqMaxC,MemRes,pred_false),
4753 kernel_equality:equality_int(AccSz,Res,EqAccSz),prop_if_pred_true(EqAccSz,MemRes,pred_true)
4754 ; true),
4755 cardinality_of_set_extension_list3(MemRes,H,T,Acc,AccSz,MaxCard,Res,WF).
4756
4757 :- block prop_if_pred_true(-,?,?).
4758 prop_if_pred_true(pred_true,X,X).
4759 prop_if_pred_true(pred_false,_,_).
4760
4761 :- block cardinality_of_set_extension_list3(-,?,?,?,?,?,?,?).
4762 cardinality_of_set_extension_list3(pred_true,_,T,Acc,AccSz,MaxCard,Res,WF) :-
4763 % H is a member of Acc, do not increase Acc nor AccSz; however MaxCard now decreases
4764 less_than_direct(Res,MaxCard), M1 is MaxCard-1,
4765 cardinality_of_set_extension_list2(T,Acc,AccSz,M1,Res,WF).
4766 cardinality_of_set_extension_list3(pred_false,H,T,Acc,AccSz,MaxCard,Res,WF) :-
4767 A1 is AccSz+1, less_than_equal_direct(A1,Res),
4768 cardinality_of_set_extension_list2(T,[H|Acc],A1,MaxCard,Res,WF).
4769
4770 :- assert_must_succeed(exhaustive_kernel_check(is_finite_set_wf([fd(1,'Name'),fd(2,'Name')],_WF))).
4771 :- assert_must_succeed((is_finite_set_wf(Y,_WF), Y = [])).
4772 :- assert_must_succeed((is_finite_set_wf(Y,_WF), Y = [int(1),int(2)])).
4773 :- use_module(typing_tools,[contains_infinite_type/1]).
4774 :- use_module(custom_explicit_sets,[card_for_specific_custom_set/3]).
4775
4776 is_finite_set_wf(Set,WF) :- test_finite_set_wf(Set,pred_true,WF).
4777
4778 :- assert_must_succeed(exhaustive_kernel_fail_check(is_infinite_set_wf([fd(1,'Name'),fd(2,'Name')],_WF))).
4779 :- assert_must_fail((is_infinite_set_wf(Y,_WF), Y = [int(1),int(2)])).
4780
4781 is_infinite_set_wf(Set,WF) :- test_finite_set_wf(Set,pred_false,WF).
4782
4783 %! test_finite_set_wf(+Set,?X,+WF)
4784 :- block test_finite_set_wf(-,?,?).
4785 %test_finite_set_wf(A,B,C) :- print(test_finite_set_wf(A,B,C)),nl,fail.
4786 test_finite_set_wf([],X,_WF) :- !, X=pred_true.
4787 test_finite_set_wf([_|T],X,WF) :- !, test_finite_set_wf(T,X,WF). % what if Tail contains closure ??
4788 test_finite_set_wf(avl_set(_),X,_WF) :- !, X=pred_true.
4789 test_finite_set_wf(closure(_P,T,_B),X,_WF) :- \+ contains_infinite_type(T), !, X=pred_true.
4790 test_finite_set_wf(closure(P,T,B),X,WF) :- !, test_finite_closure(P,T,B,X,WF).
4791 test_finite_set_wf(Set,X,WF) :- /* also deals with global_set(_) */
4792 /* explicit_set_cardinality may trigger an enum warning */
4793 explicit_set_cardinality_wf(Set,Card,WF),
4794 set_finite_result(Card,Set,explicit_set,X).
4795
4796 :- use_module(bsyntaxtree,[is_a_disjunct/3]).
4797 % we already check that contains_infinite_type above
4798 test_finite_closure(P,T,B,X,WF) :- is_a_disjunct(B,D1,D2),!,
4799 test_finite_closure(P,T,D1,X1,WF),
4800 test_finite_disj2(X1,P,T,D2,X,WF).
4801 % TO DO: add is_closure1_value_closure
4802 test_finite_closure(P,T,B,X,WF) :- when(ground(B), test_finite_closure_ground(P,T,B,X,WF)).
4803
4804 test_finite_disj2(pred_false,_P,_T,_D2,X,_WF) :- X=pred_false.
4805 test_finite_disj2(pred_true,P,T,D2,X,WF) :- test_finite_closure(P,T,D2,X,WF).
4806
4807
4808 % first: we need to check all constructors such as POW, FIN, ... which card_for_specific_custom_set supports
4809 % problem: if card becomes very large it is replaced by inf, which may give wrong results here (for card(.) we just get a spurious WD warning, here we may get wrong results)
4810 test_finite_closure_ground(P,T,B,X,WF) :-
4811 is_powerset_closure(closure(P,T,B),_Type,Subset),
4812 % note: whether Type is fin, fin1, pow, or pow1 does not matter
4813 !,
4814 test_finite_set_wf(Subset,X,WF).
4815 test_finite_closure_ground(P,T,B,X,WF) :-
4816 custom_explicit_sets:is_lambda_value_domain_closure(P,T,B, Subset,_Expr), !,
4817 test_finite_set_wf(Subset,X,WF).
4818 test_finite_closure_ground(P,T,B,X,WF) :-
4819 custom_explicit_sets:is_cartesian_product_closure(closure(P,T,B), A1,B2), !,
4820 test_finite_set_wf(A1,AX,WF),
4821 test_finite_set_wf(B2,BX,WF),
4822 test_finite_cartesian_product_wf(AX,BX,A1,B2,X,WF).
4823 test_finite_closure_ground(Par,Typ,Body, X,_WF) :-
4824 custom_explicit_sets:is_geq_leq_interval_closure(Par,Typ,Body,Low,Up), !,
4825 custom_explicit_sets:card_of_interval_inf(Low,Up,Card),
4826 set_finite_result_no_warn(Card,X).
4827 test_finite_closure_ground(P,T,B,X,WF) :-
4828 custom_explicit_sets:is_member_closure(P,T,B,_,SET), nonvar(SET),
4829 unary_member_closure_for_finite(SET,Check,SET1),
4830 !,
4831 (Check==finite -> test_finite_set_wf(SET1,X,WF)
4832 ; kernel_equality:empty_set_test_wf(SET1,X,WF)).
4833 % TO DO: catch other special cases : relations, struct,...
4834 test_finite_closure_ground(P,T,B,X,_WF) :-
4835 custom_explicit_sets:card_for_specific_closure(closure(P,T,B),ClosureKind,Card,Code),!,
4836 call(Code), % TO DO: catch if we convert large integer due to overflow to inf !
4837 % maybe we can set / transmit a flag for is_overflowcheck ? overflow_float_pown ? factorial ?
4838 set_finite_result(Card,closure(P,T,B),ClosureKind,X).
4839 test_finite_closure_ground(P,T,B,X,WF) :-
4840 on_enumeration_warning(expand_only_custom_closure_global(closure(P,T,B),Result,check,WF),fail),
4841 !,
4842 test_finite_set_wf(Result,X,WF).
4843 test_finite_closure_ground(P,T,B,X,WF) :- X==pred_true, !,
4844 get_enumeration_finished_wait_flag(WF,AWF), % only add warning if indeed we find a solution
4845 finite_warning(AWF,P,T,B,is_finite_set_closure(P)).
4846 test_finite_closure_ground(P,T,B,_X,_WF) :- !,
4847 finite_warning(now,P,T,B,test_finite_closure(P)),
4848 fail. % now we fail; used to be X=pred_true. % we assume set to be finite, but print a warning
4849 % we could set up the closure and do a deterministic phase: if it fails or all variables become bounded, then it is finite
4850
4851 unary_member_closure_for_finite(seq(b(value(SET1),_,_)),empty,SET1). % finite if SET1 is empty
4852 unary_member_closure_for_finite(seq1(b(value(SET1),_,_)),empty,SET1).
4853 unary_member_closure_for_finite(perm(b(value(SET1),_,_)),finite,SET1). % finite if SET1 is finite
4854 unary_member_closure_for_finite(iseq(b(value(SET1),_,_)),finite,SET1).
4855 unary_member_closure_for_finite(iseq1(b(value(SET1),_,_)),finite,SET1).
4856 unary_member_closure_for_finite(identity(b(value(SET1),_,_)),finite,SET1).
4857 % we could deal with POW/POW1... here
4858
4859 :- block test_finite_cartesian_product_wf(-,?,?,?,?,?), test_finite_cartesian_product_wf(?,-,?,?,?,?).
4860 test_finite_cartesian_product_wf(pred_true, pred_true, _,_,X,_) :- !, X=pred_true. % both finite
4861 test_finite_cartesian_product_wf(pred_false,pred_false,_,_,X,_) :- !, X=pred_false. % both infinite
4862 test_finite_cartesian_product_wf(pred_false,pred_true, _,B,X,WF) :- !,
4863 kernel_equality:empty_set_test_wf(B,X,WF). % only finite if B empty
4864 test_finite_cartesian_product_wf(pred_true, pred_false,A,_,X,WF) :- !,
4865 kernel_equality:empty_set_test_wf(A,X,WF). % only finite if B empty
4866
4867
4868 :- block set_finite_result_no_warn(-,?).
4869 set_finite_result_no_warn(inf,X) :- !, X=pred_false.
4870 set_finite_result_no_warn(_,pred_true).
4871
4872 :- block set_finite_result(-,?,?,?).
4873 set_finite_result(inf,_Set,_ClosureKind,X) :- !,
4874 %(Set=closure(P,T,B), \+ precise_closure_kind(ClosureKind)
4875 % -> finite_warning(now,P,T,B,test_finite_closure(P)) % we sometimes return inf for very large sets % TO DO: fix
4876 % ; true),
4877 X=pred_false.
4878 set_finite_result(_,_,_,pred_true).
4879
4880 % inf is now always real infinity; inf_overflow is finite very large cardinality not representable as number
4881 %precise_closure_kind(special_closure). % is_special_infinite_closure is precise, inf is real infinity %%%
4882 %precise_closure_kind(interval_closure). % here we also should never produce inf for a finite but large set
4883
4884
4885 :- assert_must_succeed(exhaustive_kernel_check(cardinality_as_int([int(2),int(4),int(1)],int(3)))).
4886 :- assert_must_succeed((cardinality_as_int(Y,int(2)), Y = [fd(1,'Name'),fd(2,'Name')])).
4887 :- assert_must_succeed((cardinality_as_int(Y,int(2)),
4888 nonvar(Y), Y = [H1|YY], nonvar(YY), YY=[H2], H1=int(0), H2=int(3) )).
4889 :- assert_must_succeed((cardinality_as_int([A|Y],int(3)),
4890 nonvar(Y), Y = [B|YY], nonvar(YY), YY=[C], A=int(1),B=int(3),C=int(2) )).
4891 :- assert_must_succeed((cardinality_as_int(Y,int(1)), Y = [fd(1,'Name')])).
4892 :- assert_must_succeed((cardinality_as_int(Y,int(0)), Y = [])).
4893 :- assert_must_succeed((cardinality_as_int(X,int(3)), equal_object(X,global_set('Name')))).
4894 :- assert_must_fail((cardinality_as_int(Y,int(X)), Y = [fd(1,'Name'),fd(2,'Name')],dif(X,2))).
4895 :- assert_must_succeed_any((preferences:preference(use_clpfd_solver,false) ;
4896 cardinality_as_int_wf(S,int(C),WF), clpfd_interface:try_post_constraint('#>='(C,2)), kernel_waitflags:ground_wait_flags(WF), nonvar(S),S=[_|T],nonvar(T))).
4897 :- assert_must_succeed((cardinality_as_int([int(1)|avl_set(node(int(3),true,0,empty,empty))],int(2)))).
4898 :- assert_must_succeed((cardinality_as_int([int(1)|avl_set(node(int(3),true,0,empty,empty))],X),X==int(2))).
4899 % check that we deal with repeated elements, in case no other predicate sets up a list !
4900 :- assert_must_fail((cardinality_as_int([int(1),int(1)],int(2)))).
4901 :- assert_must_fail((cardinality_as_int([int(1),int(1)],_))).
4902 :- assert_must_fail((cardinality_as_int(X,int(2)),X=[int(1),int(1)])).
4903 :- assert_must_fail((cardinality_as_int([int(3)|avl_set(node(int(3),true,0,empty,empty))],_))).
4904 :- assert_must_fail((cardinality_as_int([X|avl_set(node(int(3),true,0,empty,empty))],int(2)),X=int(3))).
4905
4906
4907 cardinality_as_int(S,I) :- cardinality_as_int_wf(S,I,no_wf_available). % TO DO: remove this predicate ?
4908 :- load_files(library(system), [when(compile_time), imports([environ/2])]).
4909 :- if(environ(prob_data_validation_mode,true)).
4910 :- block cardinality_as_int_wf(-,?,?). % avoid instantiating list skeletons; cause backtracking in unifications,...
4911 :- else.
4912 :- block cardinality_as_int_wf(-,-,?).
4913 :- endif.
4914 % can return inf !
4915 cardinality_as_int_wf(Set,int(Card),WF) :-
4916 cardinality_as_int1(Set,Card,Card,WF).
4917
4918 cardinality_as_int1(Set,Card,ResCard,WF) :-
4919 (number(Card)
4920 -> cardinality_as_int1b(Set,Card,ResCard,WF)
4921 ; cardinality_as_int1b(Set,Card,ResCard,WF),
4922 (var(Set) ->
4923 (clpfd_domain(Card,Low,_Up),
4924 number(Low), Low>1,
4925 unbound_variable_for_card(Set)
4926 % TO DO: also use this optimization later in cardinality_as_int2
4927 -> setup_ordered_list_skeleton(Low,Skel,open,WF),
4928 Skel=Set
4929 ; get_wait_flag(1,force_non_empty(Set,Card),WF,LWF),
4930 force_non_empty0(Set,Card,LWF)
4931 )
4932 ; true)
4933 ).
4934 % tests 1418, 1419, 1628, 1776 require that cardinality_as_int1b be triggered quickly
4935 :- block cardinality_as_int1b(-,-,?,?). % with this the self-check with post_constraint('#>='(C,2) fails
4936 % cardinality_as_int1(Set, CardValue, ComputedCardValue) : CardValue should be unified with ComputedCardValue afterwards
4937 cardinality_as_int1b(Set,Card,ResCard,WF) :-
4938 %portray_waitflags(WF),nl,
4939 number(Card), unbound_variable_for_card(Set),
4940 !, % we know the cardinality and the set is not yet bound; this improvement is tested in tests 1417, 1418
4941 setup_ordered_list_skeleton(Card,Skel,closed,WF),
4942 (Card,Set) = (ResCard,Skel). % bypass equal_object: assign variable in one-go
4943 cardinality_as_int1b(Set,Card,ResCard,WF) :- nonvar(Set),!,
4944 cardinality_as_int2(Set,0,Card,ResCard,[],WF).
4945 cardinality_as_int1b(Set,Card,ResCard,WF) :-
4946 % Set is a variable but not unbound_variable_for_cons
4947 % Unifications can be very expensive when we set up long lists
4948 % Idea: multiply Card by a factor and delay instantiating; maybe we get a avl_set; see test 456
4949 Prio is Card*100,
4950 get_wait_flag(Prio,cardinality_as_int1(Set,Card),WF,LWF2),
4951 when((nonvar(Set) ; nonvar(LWF2)),
4952 cardinality_as_int2(Set,0,Card,ResCard,[],WF)).
4953 %force_non_empty0(Set,Card,1).
4954
4955 :- if(environ(prob_data_validation_mode,true)).
4956 :- block cardinality_as_int2(-,?,?,?,?,?). % avoid instantiating list skeletons; cause backtracking in unifications,...
4957 :- else.
4958 :- block cardinality_as_int2(-,?,-,?,?,?).
4959 :- endif.
4960 cardinality_as_int2(X,C,Res,ResultValue,_,WF) :-
4961 C==Res,!,empty_set_wf(X,WF),ResultValue=Res. % avoid choice point below
4962 cardinality_as_int2(X,C,Res,ResultValue,SoFar,WF) :- nonvar(X), X \= [], X\= [_|_],!,
4963 (is_custom_explicit_set(X)
4964 -> explicit_set_cardinality_wf(X,ESC,WF), blocking_add_card(C,ESC,ResultValue),
4965 disjoint_sets(X,SoFar,WF)
4966 ; add_error_fail(cardinality_as_int2,'First argument not set: ',cardinality_as_int2(X,C,Res))
4967 ).
4968 cardinality_as_int2([],C,Res,ResultValue,_,_WF) :- C=ResultValue, Res=ResultValue.
4969 cardinality_as_int2([H|T],C,Res,ResultValue,SoFar,WF) :-
4970 C1 is C+1,
4971 not_element_of_wf(H,SoFar,WF), % do we always need to check this ? relevant for test 1828
4972 add_new_element_wf(H,SoFar,SoFar2,WF),
4973 (ground(Res) -> safe_less_than_equal(cardinality_as_int2,C1,Res)
4974 /* check consistency so far if cardinality provided */
4975 ; clpfd_geq(Res,C1,_)
4976 ),
4977 force_non_empty(T,C1,Res,1), % Use WF ?
4978 cardinality_as_int2(T,C1,Res,ResultValue,SoFar2,WF).
4979
4980 % setup an list skeleton with ordering constraints to avoid duplicate solutions
4981 setup_ordered_list_skeleton(0,R,Closed,_WF) :- !, (Closed=closed -> R=[] ; true).
4982 setup_ordered_list_skeleton(N,[H|T],Closed,WF) :-
4983 all_different_wf([H|T],WF),
4984 N1 is N-1, setup_list_skel_aux(N1,H,T,Closed).
4985
4986
4987 :- use_module(kernel_ordering,[ordered_value/2]).
4988 %setup_list_skel_aux(0,_,R,Closed) :- !, (Closed=closed -> R=[] ; true). % if open: TO DO: impose ordering on rest using lazy_ordered_value ? done in next clause below
4989 setup_list_skel_aux(0,Prev,R,Closed) :- !, (Closed=closed -> R=[] ; lazy_ordered_value(R,Prev)).
4990 setup_list_skel_aux(N,Prev,[H|T],Closed) :- ordered_value(Prev,H),
4991 N>0, N1 is N-1, setup_list_skel_aux(N1,H,T,Closed).
4992
4993 :- block lazy_ordered_value(-,?).
4994 lazy_ordered_value([H|T],Prev) :- !, ordered_value(Prev,H), lazy_ordered_value(T,H).
4995 lazy_ordered_value(_,_).
4996
4997
4998 % TO DO: use clpfd all_different for integers !?
4999 % get_integer_list(Set,IntList), clpfd_alldifferent(IntList).
5000 % ensure we have all different constraint in case ordered_value does not succeed in enforcing order!
5001 all_different_wf(ListOfValues,WF) :-
5002 all_different2(ListOfValues,[],WF).
5003 :- block all_different2(-,?,?).
5004 all_different2([],_,_) :- !.
5005 all_different2([H|T],SoFar,WF) :- !, all_different3(SoFar,H,WF), all_different2(T,[H|SoFar],WF).
5006 all_different2(CS,SoFar,WF) :- is_custom_explicit_set(CS),
5007 disjoint_sets(CS,SoFar,WF). % already done above by cardinality_as_int2 ?
5008 all_different3([],_,_).
5009 all_different3([H|T],X,WF) :- not_equal_object_wf(H,X,WF), all_different3(T,X,WF).
5010
5011 :- block force_non_empty0(-,-,-).
5012 force_non_empty0(Set,Card,LWF) :- var(Set), var(Card),
5013 clpfd_domain(Card,Low,Up),
5014 (integer(Low) ; integer(Up)), !, % we know we have a finite cardinality
5015 clpfd_interface:try_post_constraint((Card#=0) #<=> EmptyR01),
5016 prop_non_empty(EmptyR01,Set,LWF).
5017 force_non_empty0(_,_,_).
5018
5019 % here we assume that the cardinalities cannot be infinite inf
5020 :- block force_non_empty(-,?,-,-).
5021 force_non_empty(Set,CSoFar,TotalCard,LWF) :-
5022 var(Set), var(TotalCard),
5023 preference(data_validation_mode,false),!,
5024 clpfd_interface:try_post_constraint((TotalCard#=CSoFar) #<=> EmptyR01),
5025 prop_non_empty(EmptyR01,Set,LWF).
5026 force_non_empty(_,_,_,_).
5027 :- block prop_non_empty(-,-,?).
5028 prop_non_empty(_,X,_) :- nonvar(X),!. % do nothing; cardinality_as_int2 will be called anyway
5029 prop_non_empty(0,X,LWF) :- /* X is var; first arg nonvar */ !, not_empty_set_lwf(X,LWF).
5030 %prop_non_empty(1,X,_). % empty_set not really required: TotalCard is now instantiated; cardinality_as_int2 will get called
5031 prop_non_empty(_,_,_).
5032
5033
5034
5035 :- assert_must_succeed(exhaustive_kernel_check(cardinality_as_int_for_wf(global_set('NATURAL'),inf))).
5036 :- assert_must_succeed(exhaustive_kernel_check(cardinality_as_int_for_wf([],0))).
5037 :- assert_must_succeed(exhaustive_kernel_check_opt(cardinality_as_int_for_wf([int(2)],1),
5038 preferences:get_preference(convert_comprehension_sets_into_closures,false))). % in this case inf returned for closures
5039 :- assert_must_succeed(exhaustive_kernel_check_opt(cardinality_as_int_for_wf([int(3),int(1),int(-1),int(100)],4),
5040 preferences:get_preference(convert_comprehension_sets_into_closures,false))).
5041 :- assert_must_succeed(exhaustive_kernel_fail_check_opt(cardinality_as_int_for_wf([int(3),int(1),int(-1),int(100)],1000),
5042 preferences:get_preference(convert_comprehension_sets_into_closures,false))).
5043 :- assert_must_succeed(exhaustive_kernel_fail_check_opt(cardinality_as_int_for_wf(global_set('NATURAL'),1000),
5044 preferences:get_preference(convert_comprehension_sets_into_closures,false))).
5045 % a simpler version without propagation to result; for waitflag priority computation or similar
5046 % it may return inf for closures marked as symbolic !
5047 cardinality_as_int_for_wf(Set,Card) :- cardinality_as_int_for_wf0(Set,0,Card).
5048 :- block cardinality_as_int_for_wf0(-,?,-).
5049 cardinality_as_int_for_wf0(X,C,Res) :-
5050 ? (nonvar(X) -> cardinality_as_int_for_wf1(X,C,Res)
5051 ; Res==inf -> cardinality_as_int_for_inf(X,C)
5052 % TODO: what about inf_overflow here
5053 ; cardinality_as_int_for_wf2(X,C,Res)).
5054
5055 :- block cardinality_as_int_for_inf(-,?).
5056 cardinality_as_int_for_inf(X,C) :- cardinality_as_int_for_wf1(X,C,inf).
5057
5058 cardinality_as_int_for_wf1([],C,Res) :- !,C=Res.
5059 cardinality_as_int_for_wf1([_H|T],C,Res) :- !,C1 is C+1,
5060 ? cardinality_as_int_for_wf0(T,C1,Res).
5061 cardinality_as_int_for_wf1(X,C,Res) :- is_custom_explicit_set(X),!,
5062 ? explicit_set_cardinality_for_wf(X,ESC), blocking_add_card(C,ESC,Res).
5063 cardinality_as_int_for_wf1(term(T),C,Res) :- nonvar(T), T=no_value_for(ID),
5064 format_with_colour(user_error,[bold,red],'~nNo value for ~w for cardinality_as_int_for_wf1!~n',[ID]), % can happen with partial_setup_constants
5065 !, C=Res.
5066 cardinality_as_int_for_wf1(X,C,Res) :-
5067 add_internal_error('First arg is not a set: ',cardinality_as_int_for_wf1(X,C,Res)),fail.
5068
5069 % first argument was var, third argument not inf hence third arg must be set
5070 %cardinality_as_int_for_wf2([],C,C).
5071 cardinality_as_int_for_wf2([],C,Res) :- (C==Res -> ! ; C=Res).
5072 cardinality_as_int_for_wf2([_H|T],C,Res) :- C<Res, C1 is C+1,
5073 (var(T) -> cardinality_as_int_for_wf2(T,C1,Res) ; cardinality_as_int_for_wf1(T,C1,Res)).
5074
5075
5076
5077 :- assert_must_succeed(exhaustive_kernel_check_wf(same_cardinality_wf(global_set('NATURAL'),global_set('NATURAL'),WF),WF)).
5078 :- assert_must_succeed(exhaustive_kernel_check_wf(same_cardinality_wf(global_set('NATURAL'),global_set('NATURAL1'),WF),WF)).
5079 :- assert_must_succeed(exhaustive_kernel_check_wf(same_cardinality_wf([int(2),int(1)],[int(11),int(22)],WF),WF)).
5080 :- assert_must_succeed(exhaustive_kernel_fail_check_wf(same_cardinality_wf([],[int(11),int(22)],WF),WF)).
5081 :- assert_must_succeed(exhaustive_kernel_fail_check_wf(same_cardinality_wf([int(11),int(22),int(33)],[int(11),int(22)],WF),WF)).
5082 :- assert_must_succeed(exhaustive_kernel_fail_check_wf(same_cardinality_wf(global_set('NATURAL1'),[int(11),int(22)],WF),WF)).
5083
5084 :- block same_cardinality_wf(-,-,?).
5085 same_cardinality_wf(Set1,Set2,WF) :-
5086 (var(Set1) -> same_card_aux(Set2,Set1,WF) ; same_card_aux(Set1,Set2,WF)).
5087
5088 same_card_aux(Set1,Set2,WF) :-
5089 (nonvar(Set1),is_custom_explicit_set(Set1,cardinality)
5090 -> explicit_set_cardinality_wf(Set1,Card,WF),
5091 (Card==inf -> is_infinite_set_wf(Set2,WF)
5092 % assumption: if inf then immediately infinite; TO DO: distinguish between infinite(s) and very large
5093 ; cardinality_as_int_wf(Set2,int(Card),WF)
5094 )
5095 ; cardinality3(Set1,PCard,WF),
5096 cardinality_peano_wf(Set2,PCard,WF)
5097 ).
5098
5099 :- assert_must_succeed(exhaustive_kernel_check(cardinality_peano_wf([],0,no_wf_available))).
5100 :- assert_must_succeed(exhaustive_kernel_check(cardinality_peano_wf([int(11)],s(0),no_wf_available))).
5101 :- assert_must_succeed(exhaustive_kernel_check(cardinality_peano_wf([int(11),int(22)],s(s(0)),no_wf_available))).
5102 % cardinality as peano number
5103 :- block cardinality_peano_wf(-,-,?).
5104 cardinality_peano_wf(Set,PCard,WF) :-
5105 (nonvar(Set),is_custom_explicit_set(Set,cardinality)
5106 -> explicit_set_cardinality_wf(Set,Card,WF),
5107 card_convert_int_to_peano(Card,PCard)
5108 ; cardinality3(Set,PCard,WF)
5109 ).
5110
5111 :- assert_must_succeed((kernel_objects:card_convert_int_to_peano(3,s(s(s(0)))))).
5112 :- assert_must_succeed((kernel_objects:card_convert_int_to_peano(2,S),S==s(s(0)))).
5113 :- assert_must_succeed((kernel_objects:card_convert_int_to_peano(X,s(s(s(0)))),X==3)).
5114 :- assert_must_succeed((kernel_objects:card_convert_int_to_peano(X,s(s(s(Y)))),X=4,Y==s(0))).
5115 :- assert_must_fail((kernel_objects:card_convert_int_to_peano(X,s(s(s(_Y)))),X=2)).
5116
5117 :- block card_convert_int_to_peano(-,-).
5118 card_convert_int_to_peano(X,S0) :- var(X), !,
5119 peel_s(S0,SX,RemS),
5120 (RemS==0 -> X=SX
5121 ; int_plus(int(X1),int(SX),int(X)),
5122 greater_than_equal(int(X1),int(0)),
5123 card_convert_int_to_peano(X1,RemS)).
5124 card_convert_int_to_peano(inf,X) :- !,
5125 infinite_peano(X),
5126 add_message(cardinality,'*** WARNING: Large or infinite Cardinality.').
5127 %convert_int_to_peano(100,X). % used to limit to 100
5128 card_convert_int_to_peano(X,P) :- convert_int_to_peano(X,P).
5129
5130 :- block infinite_peano(-).
5131 infinite_peano(inf).
5132 infinite_peano(0) :- fail.
5133 infinite_peano(s(X)) :- infinite_peano(X).
5134
5135 peel_s(0,0,0).
5136 peel_s(s(X),Res,SX) :- (var(X) -> Res=1, SX=X ; peel_s(X,RX,SX), Res is RX+1).
5137
5138 :- block cardinality3(-,?,?). % avoids instantiating set; to do: use kernel_cardinality instead
5139 % relevant, e.g., for "BK-ANT-N-2013" for SlotSolver_v7; but makes 'axm2/WD' fail for test 1448; TO DO: hopefully fixed with kernel_cardinality
5140 % :- block cardinality3(-,-,?).
5141 cardinality3(Set,SC,WF) :- var(Set),!,
5142 (SC=0 -> Set=[] ; SC=s(C),Set=[_|T],cardinality3(T,C,WF)).
5143 cardinality3([],0,_).
5144 ?cardinality3([_|T],s(C),WF) :- cardinality3(T,C,WF).
5145 cardinality3(avl_set(AVL),Res,WF) :- cardinality_peano_wf(avl_set(AVL),Res,WF).
5146 cardinality3(closure(P,T,B),Res,WF) :- cardinality_peano_wf(closure(P,T,B),Res,WF).
5147
5148
5149
5150
5151
5152
5153 :- assert_must_succeed(exhaustive_kernel_check(card_geq([int(2),int(4),int(1)],s(s(s(0)))))).
5154 :- assert_must_succeed((kernel_objects:card_geq(global_set('Name'),s(s(s(0)))))).
5155 :- assert_must_succeed((kernel_objects:card_geq([int(1),int(2)],s(s(0))))).
5156 :- assert_must_succeed((kernel_objects:card_geq([int(1),int(2)],s(0)))).
5157 :- assert_must_fail((kernel_objects:card_geq(global_set('Name'),s(s(s(s(0))))))).
5158 :- assert_must_fail((kernel_objects:card_geq([int(1),int(2)],s(s(s(0)))))).
5159
5160 ?card_geq(Set,Card) :- card_geq_wf(Set,Card,no_wf_available).
5161
5162 :- block card_geq_wf(-,-,?).
5163 card_geq_wf(Set,Card,WF) :-
5164 (nonvar(Set),is_custom_explicit_set(Set,card_geq)
5165 ? -> explicit_set_cardinality_wf(Set,CCard,WF), geq_int_peano(CCard,Card)
5166 ; card_geq2(Set,Card,WF) ).
5167 % should we call setup_ordered_list_skeleton(Card,Set,open)
5168 :- block card_geq2(?,-,?).
5169 card_geq2(_,C,_) :- C==0,!.
5170 card_geq2(S,C,_) :- S==[],!,C=0.
5171 card_geq2(S,s(C),WF) :- var(S),!,S=[_|T],card_geq2(T,C,WF).
5172 card_geq2([_|T],s(C),WF) :- card_geq2(T,C,WF).
5173 card_geq2(avl_set(A),s(C),WF) :- card_geq_wf(avl_set(A),s(C),WF).
5174 card_geq2(closure(P,T,B),s(C),WF) :- card_geq_wf(closure(P,T,B),s(C),WF).
5175 card_geq2(global_set(G),s(C),WF) :- card_geq_wf(global_set(G),s(C),WF).
5176
5177 :- block geq_int_peano(-,-).
5178 geq_int_peano(_,0).
5179 ?geq_int_peano(X,s(C)) :- geq_int_peano1(X,C).
5180 :- block geq_int_peano1(-,?).
5181 geq_int_peano1(inf,_) :- !.
5182 geq_int_peano1(inf_overflow,_) :- !.
5183 ?geq_int_peano1(X,C) :- X>0, X1 is X-1, geq_int_peano(X1,C).
5184
5185 :- block convert_int_to_peano(-,?).
5186 convert_int_to_peano(X,Y) :- convert_int_to_peano2(X,Y).
5187 convert_int_to_peano2(inf,_).
5188 convert_int_to_peano2(inf_overflow,_).
5189 convert_int_to_peano2(X,R) :- number(X),
5190 (X>100000
5191 -> print('*** Warning: converting large integer to peano: '),print(X),nl,
5192 (X>1000000000 -> print('*** treat like inf'),nl % no hope of ever finishing, do not instantiate just like inf
5193 ; convert_int_to_peano3(X,R))
5194 ; convert_int_to_peano3(X,R)
5195 ).
5196 convert_int_to_peano3(0,R) :- !, R=0.
5197 convert_int_to_peano3(X,s(P)) :-
5198 (X>0 -> X1 is X-1, convert_int_to_peano3(X1,P)
5199 ; X<0 -> add_error_and_fail(convert_int_to_peano,'Negative nr cannot be converted to peano: ',X)
5200 ).
5201
5202 % not used:
5203 %:- block convert_peano_to_int(-,?).
5204 %convert_peano_to_int(0,0).
5205 %convert_peano_to_int(s(P),X) :- convert_peano_to_int(P,X1), X is X1+1.
5206
5207 :- assert_must_succeed((kernel_objects:cardinality_greater_equal(Set,set(integer),int(X),integer,_WF), X=3,
5208 nonvar(Set),Set=[_|S2],nonvar(S2),S2=[_|S3],nonvar(S3),S3=[_|S4],var(S4), Set=[int(1),int(2),int(3)] )).
5209 :- assert_must_succeed((kernel_objects:cardinality_greater(Set,set(integer),int(X),integer,_WF), X=2,
5210 nonvar(Set),Set=[_|S2],nonvar(S2),S2=[_|S3],nonvar(S3),S3=[_|S4],var(S4), Set=[int(1),int(2),int(3)] )).
5211 /* special predicates called for e.g. card(Set)>X */
5212 cardinality_greater(Set,TypeSet,int(X),_,WF) :-
5213 kernel_objects:max_cardinality(TypeSet,MaxCard),
5214 (number(MaxCard) -> less_than(int(X),int(MaxCard)) ; true),
5215 card_greater2(Set,X,WF).
5216 :- block card_greater2(?,-,?).
5217 card_greater2(Set,X,WF) :- X1 is X+1, card_greater_equal2(Set,X1,WF).
5218
5219 cardinality_greater_equal(Set,TypeSet,int(X),_,WF) :-
5220 kernel_objects:max_cardinality(TypeSet,MaxCard),
5221 (number(MaxCard) -> less_than_equal(int(X),int(MaxCard)) ; true),
5222 card_greater_equal2(Set,X,WF).
5223 :- block card_greater_equal2(?,-,?).
5224 card_greater_equal2(Set,X,WF) :-
5225 (X<1 -> true % potential WD issue, hence this predicates should only be called when no wd issue
5226 ; X=1 -> not_empty_set_wf(Set,WF) % ditto: Set could be infinite
5227 ; var(Set) -> setup_ordered_list_skeleton(X,Set,open,WF)
5228 ; convert_int_to_peano(X,Peano),
5229 card_geq_wf(Set,Peano,WF)).
5230
5231
5232
5233 %is_cartesian_pair_or_times(P,X,Y) :- is_cartesian_pair(P,X,Y).
5234 %is_cartesian_pair_or_times(int(Z),int(X),int(Y)) :- times(int(X),int(Y),int(Z)).
5235
5236 is_cartesian_pair_wf((X,Y),XType,YType,WF) :-
5237 check_element_of_wf(X,XType,WF), check_element_of_wf(Y,YType,WF).
5238
5239 :- assert_must_succeed(exhaustive_kernel_check_wf(kernel_objects:not_is_cartesian_pair((int(1),int(1)),
5240 [int(1),int(2)],[int(2),int(3)],WF),WF)).
5241 :- assert_must_succeed(exhaustive_kernel_check_wf(kernel_objects:not_is_cartesian_pair((int(3),int(2)),
5242 [int(1),int(2)],[int(2),int(3)],WF),WF)).
5243 :- assert_must_succeed((kernel_objects:not_is_cartesian_pair((int(1),int(1)),
5244 [int(1),int(2)],[int(2),int(3)],_WF))).
5245 :- assert_must_succeed((kernel_objects:not_is_cartesian_pair((int(3),int(1)),
5246 [int(1),int(2)],[int(2),int(3)],_WF))).
5247 :- assert_must_fail((kernel_objects:not_is_cartesian_pair((int(1),int(3)),
5248 [int(1),int(2)],[int(2),int(3)],_WF))).
5249 :- assert_must_succeed((kernel_objects:not_is_cartesian_pair((X,int(3)),
5250 [int(1),int(2)],[int(2),int(3)],_WF),X=int(4))).
5251
5252
5253 not_is_cartesian_pair((X,Y),XType,YType,WF) :-
5254 not_is_cartesian_pair0(X,Y,XType,YType,WF).
5255
5256 :- block not_is_cartesian_pair0(-,-,?,?,?).
5257 not_is_cartesian_pair0(X,Y,XType,YType,WF) :-
5258 (nonvar(X) -> not_is_cartesian_pair1(X,Y,XType,YType,WF)
5259 ; not_is_cartesian_pair1(Y,X,YType,XType,WF)).
5260
5261 not_is_cartesian_pair1(X,Y,XType,YType,WF) :-
5262 membership_test_wf(XType,X,MemResX,WF),
5263 (var(MemResX) -> membership_test_wf(YType,Y,MemResY,WF) ; true),
5264 not_is_cartesian_pair3(MemResX,X,XType,MemResY,Y,YType,WF).
5265
5266 :- block not_is_cartesian_pair3(-,?,?, -,?,?, ?).
5267 not_is_cartesian_pair3(MemResX,X,XType, MemResY,Y,YType, WF) :-
5268 (MemResX==pred_false -> true
5269 ; MemResY==pred_false -> true
5270 ; MemResX==pred_true -> not_element_of_wf(Y,YType,WF)
5271 ; not_element_of_wf(X,XType,WF)
5272 ).
5273
5274
5275
5276 /***************************/
5277 /* power_set(Set,TypeSet) */
5278 /* Set : POW(TypeSet) */
5279 /***************************/
5280
5281 :- assert_must_succeed(exhaustive_kernel_check(power_set([int(2),int(4)],[[int(2)],
5282 [int(4)],[],[int(4),int(2)]]))).
5283 :- assert_must_succeed(power_set([int(1)],[[int(1)],[]])).
5284 :- assert_must_succeed((power_set([int(1),int(2)],R),
5285 equal_object(R,[[],[int(1)],[int(2)],[int(1),int(2)]]))).
5286 :- assert_must_succeed(power_set([],[[]])).
5287
5288 % not used anymore, except for empty set and singleton sets (see do_not_keep_symbolic_unary)
5289 :- block power_set(-,?).
5290 power_set([],Res) :- !,equal_object_optimized([[]],Res,power_set).
5291 power_set(Set1,Res) :- custom_explicit_sets:singleton_set(Set1,El),!,
5292 equal_object_optimized([[],[El]],Res,power_set).
5293 power_set(S,Res) :-
5294 cardinality_peano_wf(S,Card,no_wf_available),
5295 when(ground(Card), /* when all elements are known */
5296 (expand_custom_set_to_list_wf(S,SE,Done,power_set,no_wf_available),
5297 when(nonvar(Done),
5298 (gen_all_subsets(SE,PowerS),
5299 equal_object_optimized(PowerS,Res,power_set) )
5300 )
5301 )).
5302
5303 :- assert_must_succeed((kernel_objects:gen_all_subsets([X],R), R== [[],[X]])).
5304 :- assert_must_succeed((kernel_objects:gen_all_subsets([X,Y],R), R== [[],[Y],[X],[Y,X]])).
5305 % we do not use findall to keep variable links, see test 2103
5306 gen_all_subsets(List,AllSubLists) :- gen_all_subsets(List,[[]],AllSubLists).
5307 add_el(H,T,[H|T]).
5308 gen_all_subsets([],Acc,Acc).
5309 gen_all_subsets([H|T],Acc,Res) :- gen_all_subsets(T,Acc,R1),
5310 append(R1,R2,Res), % DCG would be better; but power_set is not really used anymore for longer lists
5311 maplist(add_el(H),Acc,Acc2), gen_all_subsets(T,Acc2,R2).
5312
5313
5314 :- assert_must_succeed(exhaustive_kernel_check(non_empty_power_set([int(2),int(4)],[[int(2)],
5315 [int(4)],[int(4),int(2)]]))).
5316 :- assert_must_succeed(non_empty_power_set([int(1)],[[int(1)]])).
5317 :- assert_must_succeed((non_empty_power_set([int(1),int(2)],R),
5318 equal_object(R,[[int(1)],[int(2)],[int(1),int(2)]]))).
5319 :- assert_must_succeed(non_empty_power_set([],[])).
5320
5321 :- block non_empty_power_set(-,?).
5322 non_empty_power_set([],Res) :- !,equal_object_optimized([],Res,non_empty_power_set).
5323 non_empty_power_set(Set1,Res) :- custom_explicit_sets:singleton_set(Set1,El),!,
5324 equal_object_optimized([[El]],Res,non_empty_power_set).
5325 non_empty_power_set(S,Res) :-
5326 cardinality_peano_wf(S,Card,no_wf_available),
5327 when(ground(Card), /* when all elements are known */
5328 (expand_custom_set_to_list_wf(S,SE,Done,non_empty_power_set,no_wf_available),
5329 when(nonvar(Done),
5330 (gen_all_subsets(SE,PowerS),
5331 delete(PowerS,[],NE_PowerS),
5332 equal_object_optimized(NE_PowerS,Res,non_empty_power_set) )
5333 )
5334 )).
5335
5336
5337
5338 /* ------- */
5339 /* BOOLEAN */
5340 /* ------- */
5341
5342 % following predicates are not used:
5343 %is_boolean(pred_true /* bool_true */).
5344 %is_boolean(pred_false /* bool_false */).
5345 %is_not_boolean(X) :- dif(X,pred_true /* bool_true */), dif(X,pred_false /* bool_false */).
5346
5347 /* ------- */
5348 /* NUMBERS */
5349 /* ------- */
5350
5351
5352 is_integer(int(X),_WF) :- when(ground(X),integer(X)).
5353 :- block is_not_integer(-).
5354 is_not_integer(X) :- X \= int(_), % will be called for x /: INTEGER; should always fail.
5355 add_internal_error('Wrong type argument: ',is_not_integer(X)),fail.
5356
5357 is_natural(int(X),_WF) :- clpfd_geq2(X,0,Posted), (Posted==true -> true ; number_geq(X,0)).
5358 is_natural1(int(X),_WF) :- clpfd_geq2(X,1,Posted), (Posted==true -> true ; number_geq(X,1)).
5359 :- block number_geq(-,?).
5360 number_geq(X,N) :- X>=N.
5361 :- block number_leq(-,?).
5362 number_leq(X,N) :- X=<N.
5363
5364 :- assert_must_succeed(is_implementable_int(int(0),_WF)).
5365 :- assert_must_fail(is_not_implementable_int(int(0))).
5366
5367
5368 is_implementable_int(int(X),WF) :- element_of_global_integer_set_wf('INT',X,WF,unkmown).
5369 is_implementable_nat(int(X),WF) :- element_of_global_integer_set_wf('NAT',X,WF,unknown).
5370 is_implementable_nat1(int(X),WF) :- element_of_global_integer_set_wf('NAT1',X,WF,unknown).
5371 is_not_implementable_int(X) :- not_element_of_global_set(X,'INT').
5372 is_not_implementable_nat(X) :- not_element_of_global_set(X,'NAT').
5373 is_not_implementable_nat1(X) :- not_element_of_global_set(X,'NAT1').
5374
5375 is_not_natural(int(X)) :- clpfd_geq2(-1,X,Posted), (Posted=true -> true ; number_leq(X,-1)).
5376 is_not_natural1(int(X)) :- clpfd_geq2(0,X,Posted), (Posted==true -> true ; number_leq(X,0)).
5377
5378 :- assert_must_succeed(exhaustive_kernel_check(less_than(int(2),int(3)))).
5379 :- assert_must_succeed(( safe_less_than(A,B),A=3,B=5 )).
5380 :- assert_must_succeed(( safe_less_than(A,B),B=5,A=3 )).
5381 :- assert_must_fail(( safe_less_than(A,B),A=5,B=3 )).
5382 :- assert_must_fail(( safe_less_than(A,B),B=3,A=5 )).
5383 :- assert_must_fail(( safe_less_than(A,B),A=5,B=5 )).
5384 :- assert_must_fail(( safe_less_than(A,B),B=5,A=5 )).
5385
5386 less_than(int(X),int(Y)) :-
5387 (number(X),number(Y) -> X < Y
5388 ; clpfd_lt(X,Y,Posted),
5389 (Posted=true -> true ; safe_less_than(X,Y))).
5390 less_than_direct(X,Y) :-
5391 (number(X),number(Y) -> X < Y
5392 ; clpfd_lt(X,Y,Posted),
5393 (Posted=true -> true ; safe_less_than(X,Y))).
5394 :- block safe_less_than(-,?), safe_less_than(?,-).
5395 safe_less_than(X,Y) :-
5396 (number(X),number(Y) -> X<Y
5397 ; add_internal_error('Arguments not numbers: ',safe_less_than(X,Y))).
5398
5399 :- assert_must_succeed(exhaustive_kernel_check(less_than_equal(int(33),int(33)))).
5400 less_than_equal(int(X),int(Y)) :-
5401 (number(X),number(Y) -> X =< Y
5402 ; clpfd_leq(X,Y,Posted),
5403 (Posted=true -> true ; safe_less_than_equal(less_than_equal,X,Y))).
5404 less_than_equal_direct(X,Y) :-
5405 (number(X),number(Y) -> X =< Y
5406 ? ; clpfd_leq(X,Y,Posted),
5407 (Posted=true -> true ; safe_less_than_equal(less_than_equal_direct,X,Y))).
5408
5409 safe_less_than_equal(X,Y) :-
5410 safe_less_than_equal(safe_less_than_equal,X,Y).
5411 :- block safe_less_than_equal(?,-,?), safe_less_than_equal(?,?,-).
5412 safe_less_than_equal(PP,X,Y) :-
5413 (number(X),number(Y) -> X=<Y
5414 ; add_internal_error('Arguments not numbers: ',safe_less_than_equal(PP,X,Y))).
5415
5416 :- assert_must_succeed(exhaustive_kernel_check(greater_than(int(2),int(1)))).
5417 :- assert_must_succeed(exhaustive_kernel_fail_check(greater_than(int(2),int(2)))).
5418 greater_than(int(X),int(Y)) :- less_than_direct(Y,X).
5419 :- assert_must_succeed(exhaustive_kernel_check(greater_than(int(2),int(1)))).
5420 :- assert_must_succeed(exhaustive_kernel_check(greater_than_equal(int(2),int(2)))).
5421 :- assert_must_succeed(exhaustive_kernel_fail_check(greater_than_equal(int(1),int(2)))).
5422 greater_than_equal(int(X),int(Y)) :- less_than_equal_direct(Y,X).
5423
5424
5425
5426
5427
5428 :- assert_must_succeed(exhaustive_kernel_check([commutative],int_plus(int(2),int(3),int(5)))).
5429 :- assert_must_succeed(exhaustive_kernel_fail_check([commutative],int_plus(int(2),int(3),int(6)))).
5430
5431 :- assert_must_succeed(int_plus(int(1),int(2),int(3))).
5432 :- assert_must_succeed(( int_plus2(A,B,C),A=3,B=2,C==5 )).
5433 :- assert_must_succeed(( int_plus2(A,B,C),A=3,C=5,B==2 )).
5434 :- assert_must_succeed(( int_plus2(A,B,C),B=2,A=3,C==5 )).
5435 :- assert_must_succeed(( int_plus2(A,B,C),B=2,C=5,A==3 )).
5436 :- assert_must_succeed(( int_plus2(A,B,C),C=5,A=3,B==2 )).
5437 :- assert_must_succeed(( int_plus2(A,B,C),C=5,B=2,A==3 )).
5438 :- assert_must_succeed(( int_plus2(A,B,C),A=0,B==C )).
5439 :- assert_must_succeed(( int_plus2(A,B,C),B=0,A==C )).
5440
5441 int_plus(int(X),int(Y),int(Plus)) :-
5442 ? (two_vars_or_more(X,Y,Plus)
5443 -> clpfd_eq(Plus,X+Y) % can have performance problems
5444 ; true % otherwise we can compute the value directly below; we could skip the block declaration
5445 ),
5446 ? int_plus2(X,Y,Plus).
5447 two_vars_or_more(X,Y,Z) :- var(X),!, (var(Y) ; var(Z)).
5448 two_vars_or_more(_X,Y,Z) :- var(Y) , var(Z).
5449
5450 :- block int_plus2(-,-,-).
5451 int_plus2(X,Y,Plus) :-
5452 ? ( ground(X) -> int_plus3(X,Y,Plus)
5453 ; ground(Y) -> int_plus3(Y,X,Plus)
5454 ; int_minus3(Plus,X,Y)).
5455
5456 % int_plus3/3: the first argument must be ground when called
5457 int_plus3(0,Y,Plus) :- !, Y=Plus. % not inferred by CLP(FD): Z #= Y+X, X=0. does not infer Y==Z
5458 int_plus3(X,Y,Plus) :- % integer_dif(Y,Plus), % this generates overflows for test 1353, 1014
5459 ? int_plus4(X,Y,Plus).
5460
5461 % int_plus4/3: the first argument must be ground when called
5462 :- block int_plus4(?,-,-).
5463 int_plus4(X,Y,Plus) :-
5464 ( var(Plus) -> Plus is X+Y
5465 ; Y is Plus-X).
5466
5467 :- assert_must_succeed(exhaustive_kernel_check(int_minus(int(2),int(3),int(-1)))).
5468 :- assert_must_succeed(exhaustive_kernel_fail_check(int_minus(int(2),int(3),int(1)))).
5469 :- assert_must_succeed(int_minus(int(3),int(1),int(2))).
5470 :- assert_must_succeed(( int_minus2(A,B,C),A=3,B=2,C==1 )).
5471 :- assert_must_succeed(( int_minus2(A,B,C),A=3,C=1,B==2 )).
5472 :- assert_must_succeed(( int_minus2(A,B,C),B=2,A=3,C==1 )).
5473 :- assert_must_succeed(( int_minus2(A,B,C),B=2,C=1,A==3 )).
5474 :- assert_must_succeed(( int_minus2(A,B,C),C=1,A=3,B==2 )).
5475 :- assert_must_succeed(( int_minus2(A,B,C),C=1,B=2,A==3 )).
5476 :- assert_must_succeed(( int_minus2(A,B,C),B=0,A==C )).
5477 :- assert_must_succeed(( int_minus2(A,B,C),B=0,C=5,A==5 )).
5478 :- assert_must_succeed(( int_minus2(A,B,5),B=0,A==5 )).
5479
5480 int_minus(int(X),int(Y),int(Minus)) :-
5481 ? int_minus2(X,Y,Minus),
5482 ? (two_vars_or_more(X,Y,Minus) -> clpfd_eq(Minus,X-Y) % can have performance problems.
5483 % we could also set Minus to 0 if X==Y; this is done in CHR (chr_integer_inequality)
5484 ; true). % we can compute the value directly anyway
5485 :- block int_minus2(-,-,-).
5486 int_minus2(X,Y,Minus) :-
5487 ( ground(Y) ->
5488 ( Y=0 -> X=Minus
5489 ? ; Y2 is -Y, int_plus3(Y2,X,Minus))
5490 ; ground(X) ->
5491 ? int_minus3(X,Y,Minus)
5492 ; int_plus3(Minus,Y,X) % will infer that Y=X if Minus=0
5493 ).
5494
5495 % int_minus3/3: the first argument must be ground when called
5496 :- block int_minus3(?,-,-).
5497 int_minus3(X,Y,Minus) :-
5498 ( var(Minus) -> Minus is X-Y
5499 ; Y is X-Minus).
5500
5501 :- assert_must_succeed(exhaustive_kernel_check(division(int(2),int(3),int(0),unknown,_WF))).
5502 :- assert_must_succeed(exhaustive_kernel_check(division(int(7),int(2),int(3),unknown,_WF))).
5503 :- assert_must_succeed(exhaustive_kernel_check(division(int(8),int(2),int(4),unknown,_WF))).
5504 :- assert_must_succeed(exhaustive_kernel_check(division(int(9),int(2),int(4),unknown,_WF))).
5505 :- assert_must_succeed(exhaustive_kernel_check(division(int(2),int(-1),int(-2),unknown,_WF))).
5506 :- assert_must_succeed(exhaustive_kernel_check(division(int(9),int(-2),int(-4),unknown,_WF))).
5507 :- assert_must_succeed(exhaustive_kernel_check(division(int(-9),int(-3),int(3),unknown,_WF))).
5508 :- assert_must_succeed(exhaustive_kernel_check(division(int(-1),int(4),int(0),unknown,_WF))).
5509 :- assert_must_succeed((platform_is_64_bit
5510 -> exhaustive_kernel_check(division(int(4294967296),int(2),int(2147483648),unknown,_WF))
5511 ; exhaustive_kernel_check(division(int(134217728),int(2),int(67108864),unknown,_WF)))).
5512 :- assert_must_succeed((platform_is_64_bit
5513 -> exhaustive_kernel_check(division(int(4294967296),int(2147483648),int(2),unknown,_WF))
5514 ; exhaustive_kernel_check(division(int(134217728),int(67108864),int(2),unknown,_WF)))).
5515 :- assert_must_succeed(exhaustive_kernel_fail_check(division(int(2),int(3),int(1),unknown,_WF))).
5516 :- assert_must_succeed(( division3(A,B,C,unknown,_),A=15,B=4,C==3 )).
5517 :- assert_must_succeed(( division3(A,B,C,unknown,_),B=4,A=15,C==3 )).
5518
5519 division(int(X),int(Y),int(XDY),Span,WF) :- var(Y), (var(X) ; var(XDY)),
5520 preferences:preference(use_clpfd_solver,true),!,
5521 (preferences:preference(disprover_mode,true)
5522 -> clpfd_eq_div(XDY,X,Y) /* we can assume well-definedness */
5523 ; clpfd_eq_guarded_div(XDY,X,Y),
5524 % TO DO: we could set up a choice point just before enumeration of infinite types for Y=0 & Y/=0;
5525 % same for modulo
5526 check_nonzero(X,Y,XDY,Span,WF)
5527 ).
5528 division(int(X),int(Y),int(XDY),Span,WF) :-
5529 %% clpfd_eq_expr(XDY,X/Y), % can have performance problems; could hide division by 0 !
5530 division3(X,Y,XDY,Span,WF).
5531
5532 :- block check_nonzero(?,-,?,?,?).
5533 check_nonzero(X,Y,XDY,Span,WF) :-
5534 (Y=0 -> add_wd_error_set_result('division by zero','/'(X,Y),XDY,0,Span,WF)
5535 ; true).
5536
5537 :- block division3(?,-,?,?,?).
5538 division3(X,Y,XDY,Span,WF) :-
5539 ( Y==0 -> add_wd_error_set_result('division by zero','/'(X,Y),XDY,0,Span,WF)
5540 ; nonvar(X) -> XDY is X // Y
5541 ; Y == 1 -> X=XDY
5542 ; Y == -1,nonvar(XDY) -> X is -XDY
5543 ; clpfd_eq_div(XDY,X,Y)). % we could setup constraint before Y is known; could hide division by 0 ?
5544
5545
5546
5547 :- assert_must_succeed(exhaustive_kernel_check(floored_division(int(2),int(3),int(0),unknown,_WF))).
5548 :- assert_must_succeed(exhaustive_kernel_check(floored_division(int(7),int(2),int(3),unknown,_WF))).
5549 :- assert_must_succeed(exhaustive_kernel_check(floored_division(int(-1),int(4),int(-1),unknown,_WF))).
5550 :- assert_must_succeed(exhaustive_kernel_check(floored_division(int(-9),int(-3),int(3),unknown,_WF))).
5551 floored_division(int(X),int(Y),int(XDY),Span,WF) :- var(Y), (var(X) ; var(XDY)),
5552 preferences:preference(use_clpfd_solver,true),!,
5553 (preferences:preference(disprover_mode,true)
5554 -> clpfd_eq_fdiv(XDY,X,Y) /* we can assume well-definedness */
5555 ; clpfd_eq_guarded_fdiv(XDY,X,Y),
5556 check_nonzero(X,Y,XDY,Span,WF)
5557 ).
5558 floored_division(int(X),int(Y),int(XDY),Span,WF) :-
5559 %% clpfd_eq_expr(XDY,X/Y), % can have performance problems; could hide division by 0 !
5560 floored_division3(X,Y,XDY,Span,WF).
5561 :- block floored_division3(?,-,?,?,?).
5562 floored_division3(X,Y,XDY,Span,WF) :-
5563 ( Y==0 -> add_wd_error_set_result('division by zero','/'(X,Y),XDY,0,Span,WF)
5564 ; nonvar(X) -> XDY is X div Y
5565 ; Y == 1 -> X=XDY
5566 ; (Y == -1,nonvar(XDY)) -> X is -XDY
5567 ; clpfd_eq_guarded_fdiv(XDY,X,Y)). % we could setup constraint before Y is known; could hide division by 0 ?
5568
5569 :- assert_must_succeed(exhaustive_kernel_check_wfdet(modulo(int(2),int(3),int(2),unknown,WF),WF)).
5570 :- assert_must_succeed(exhaustive_kernel_check_wfdet(modulo(int(7),int(2),int(1),unknown,WF),WF)).
5571 :- assert_must_succeed(exhaustive_kernel_check_wfdet(modulo(int(8),int(2),int(0),unknown,WF),WF)).
5572 :- assert_must_succeed(exhaustive_kernel_check_wfdet(modulo(int(9),int(2),int(1),unknown,WF),WF)).
5573 :- assert_must_succeed((platform_is_64_bit
5574 -> exhaustive_kernel_check_wfdet(modulo(int(4294967296),int(2147483648),int(0),unknown,WF),WF)
5575 ; exhaustive_kernel_check_wfdet(modulo(int(134217728),int(67108864),int(0),unknown,WF),WF))).
5576 :- assert_must_succeed((platform_is_64_bit
5577 -> exhaustive_kernel_check_wfdet(modulo(int(4294967299),int(2147483648),int(3),unknown,WF),WF)
5578 ; exhaustive_kernel_check_wfdet(modulo(int(134217731),int(67108864),int(3),unknown,WF),WF))).
5579 :- assert_must_succeed(( modulo2(A,B,C,unknown,_),A=7,B=5,C==2 )).
5580 :- assert_must_fail(( modulo2(A,B,C,unknown,_),A=7,B=5,C==3 )).
5581
5582 modulo(int(X),int(Y),int(Modulo),Span,WF) :-
5583 %% clpfd_eq(Modulo,X mod Y), % can have performance problems; could hide division by 0 !
5584 modulo2(X,Y,Modulo,Span,WF),
5585 % assert that Modulo<Y, Modulo>=0
5586 (nonvar(X),nonvar(Y) -> true % we already have computed Modulo using modulo2
5587 ; nonvar(Modulo), Modulo < 0 -> true % we will generate well-definedness error; see comment next line
5588 ; number(Y),Y =< 0 -> true % in this case we will generate a well-definedness error; it would be more efficient from a constraint solving perspective to assume that there are no well-definedness errors and remove this case !!
5589 ; clpfd_modulo_prop(X,Y,Modulo,WF)
5590 ).
5591 :- use_module(specfile,[z_or_tla_minor_mode/0]).
5592 :- block modulo2(-,?,?,?,?), modulo2(?,-,?,?,?).
5593 modulo2(X,Y,Modulo,Span,WF) :-
5594 ( Y>0 -> (X<0 -> (z_or_tla_minor_mode -> Modulo is X mod Y
5595 ; add_wd_error_set_result('mod not defined for negative numbers in B:',mod(X,Y),Modulo,0,Span,WF))
5596 ; Modulo is X mod Y)
5597 ; Y==0 -> add_wd_error_set_result('mod by zero:',mod(X,Y),Modulo,0,Span,WF)
5598 ; Y<0 -> add_wd_error_set_result('mod not defined for negative numbers:',mod(X,Y),Modulo,0,Span,WF)). % there seems to be a definition in Z ? at least for Z Live ?
5599
5600 % propagate information about Modulo result if part of the information known
5601 clpfd_modulo_prop(X,Y,Modulo,WF) :- %preferences:preference(use_clpfd_solver,true),!,
5602 % in CLP(FD) this is sufficient; for non-CLPFD mode it is better to call in_nat_range to restrict enumeration
5603 less_than_direct(Modulo,Y),
5604 less_than_equal_direct(0,Modulo), % 0 <= Modulo < Y -> by transitivity this forces Y>0 and we no longer detect wd-errors
5605 %less_than_equal_direct(Modulo,X). % by transitivity this imposes X >= 0 and we will never find WD problems with negative X
5606 (preference(use_clpfd_solver,true)
5607 -> get_wait_flag0(WF,WF0),
5608 % avoid propagating complex too early, e.g., for x>2 & x:3..10 & x mod 3 = 1 & x mod 3 = 2 in test 2126
5609 % also see test 1959 which was initially failing due to adding WF0 delay
5610 clpfd_modulo_prop2(X,Y,Modulo,WF0)
5611 ; true).
5612
5613 :- block clpfd_modulo_prop2(?,?,?,-).
5614 clpfd_modulo_prop2(X,Y,Modulo,_WF0) :-
5615 number(Modulo), % this test is required for test 1009, 417 : TO DO : investigate cause
5616 var(X), % or should this be var(X) ; var(Y) ??
5617 fd_min(Y,MinY), number(MinY), MinY>0,
5618 fd_min(X,MinX), number(MinX), MinX>=0, % modulo is well-defined
5619 !,
5620 clpfd_interface:clpfd_leq_expr(Modulo,X),
5621 clpfd_interface:try_post_constraint(Modulo #= X mod Y).
5622 %clpfd_modulo_prop2(X,Y,Modulo,_WF0) :- number(Y),!,
5623 % % also makes tests 1009, 417 fail, but would enable solving x mod 256 = 0 & x>0
5624 % clpfd_interface:try_post_constraint(X#>=0 #=> Modulo #= X mod Y). % will also assert X#>Modulo
5625 clpfd_modulo_prop2(X,_Y,_Modulo,_WF0) :- X==0,!. % no need to propagate, we already assert 0 <= Modulo above
5626 clpfd_modulo_prop2(X,_Y,Modulo,_WF0) :-
5627 clpfd_interface:try_post_constraint(X#>=0 #=> X#>=Modulo). % this would be faster (e.g., {y|y:100000..200000 & y mod 2 = 0}), but would not catch some WD errors: clpfd_interface:try_post_constraint(X#>=Modulo).
5628 % we could reify: Y>0 => Modulo <Y ? Is it worth it ?
5629 % we could also use the CLP(FD) modulo operator X in 3..100, 1 #= X mod 20 infers X in 21..81
5630 % try_post_constraint((X#>=0 #/\ Y#>0) #=> Modulo #= X mod Y)
5631 % what is still missing is that if Y < Modulo => X=Y (CLP(FD) does this X in 0..100 , Y in 2..20 , X #= Y mod 30.)
5632 /* clpfd_modulo_prop(X,Y,Modulo,WF) :- clpfd_modulo_noclp(X,Y,Modulo,WF).
5633 :- block clpfd_modulo_noclp(-,-,-,?).
5634 clpfd_modulo_noclp(X,Y,Modulo,WF) :- print(mod(X,Y,Modulo,WF)),nl,
5635 var(X),var(Modulo),number(Y),!,
5636 Y1 is Y-1,
5637 in_nat_range_wf(int(Modulo),int(0),int(Y1),WF). % problem: could enumerate lambda return variables !!
5638 clpfd_modulo_noclp(_X,_Y,_Modulo,_WF).
5639 */
5640
5641
5642 :- assert_must_succeed(exhaustive_kernel_check(unary_minus_wf(int(2),int(-2),_WF))).
5643 :- assert_must_succeed(exhaustive_kernel_fail_check(unary_minus_wf(int(2),int(2),_WF))).
5644 :- assert_must_succeed(( unary_minus2(A,B),A=7,B== -7 )).
5645 :- assert_must_succeed(( unary_minus2(A,B),A= -7,B==7 )).
5646 :- assert_must_succeed(( unary_minus2(B,A),A=7,B== -7 )).
5647 :- assert_must_succeed(( unary_minus2(B,A),A= -7,B==7 )).
5648 :- assert_must_fail(( unary_minus2(B,A),A= -7,B=6 )).
5649 :- assert_must_fail(( unary_minus2(A,B),A= -7,B=6 )).
5650
5651 unary_minus_wf(int(X),int(MX),_WF) :-
5652 unary_minus2(X,MX),
5653 (var(X),var(MX) -> clpfd_eq(MX,0 - X) % can have performance problems
5654 ; true % we can compute the value without CLPFD
5655 ).
5656 :- block unary_minus2(-,-).
5657 unary_minus2(X,MX) :-
5658 ( ground(X) -> MX is -X
5659 ; X is -MX).
5660
5661 :- assert_must_succeed(first_of_pair((int(1),int(2)),int(1))).
5662 :- assert_must_succeed(second_of_pair((int(1),int(2)),int(2))).
5663
5664 first_of_pair((A,_B),R) :- equal_object(R,A,first_of_pair).
5665 second_of_pair((_A,B),R) :- equal_object(R,B,second_of_pair).
5666
5667
5668 :- assert_must_succeed(exhaustive_kernel_check(cartesian_product([int(2),int(4)],[int(3),int(1)],
5669 [(int(2),int(1)),(int(2),int(3)),(int(4),int(3)),(int(4),int(1))]))).
5670 :- assert_must_succeed(exhaustive_kernel_check(cartesian_product([],[int(3),int(1)],[]))).
5671 :- assert_must_succeed(exhaustive_kernel_check(cartesian_product([int(3)],[],[]))).
5672 :- assert_must_succeed(exhaustive_kernel_fail_check(cartesian_product([int(3)],[int(2)],[]))).
5673 :- assert_must_succeed((cartesian_product(global_set('NAT'),[int(2)],_Res))).
5674 :- assert_must_succeed((cartesian_product([int(1)],[int(2)],Res),
5675 equal_object(Res,[(int(1),int(2))]))).
5676 :- assert_must_succeed((cartesian_product([int(1)],[int(2)],[(int(1),int(2))]))).
5677 :- assert_must_succeed((cartesian_product([],[int(1),int(2)],Res),
5678 equal_object(Res,[]))).
5679 :- assert_must_succeed((cartesian_product([int(1),int(2)],[],Res),
5680 equal_object(Res,[]))).
5681 :- assert_must_succeed((cartesian_product([int(1),int(2)],[int(2),int(3)],Res),
5682 equal_object(Res,[(int(1),int(2)),(int(1),int(3)),(int(2),int(2)),(int(2),int(3))]))).
5683 :- assert_must_succeed((cartesian_product([int(1)|T],[int(2)|T2],Res),
5684 T = [int(2)], T2 = [int(3)],
5685 equal_object(Res,[(int(1),int(2)),(int(1),int(3)),(int(2),int(2)),(int(2),int(3))]))).
5686 :- assert_must_fail((cartesian_product([int(1)],[int(2),int(3)],Res),(Res=[_];
5687 equal_object(Res,[_,_,_|_])))).
5688
5689
5690 cartesian_product(Set1,Set2,Res) :- cartesian_product_wf(Set1,Set2,Res,no_wf_available).
5691
5692 :- block cartesian_product_wf(-,?,?,?), cartesian_product_wf(?,-,?,?).
5693 cartesian_product_wf(Set1,Set2,Res,WF) :-
5694 expand_custom_set_to_list_wf(Set1,ESet1,_,cartesian_product1,WF),
5695 (ESet1==[] -> empty_set_wf(Res,WF)
5696 ; expand_custom_set_to_list_wf(Set2,ESet2,_,cartesian_product2,WF),
5697 (var(Res)
5698 -> cartesian_product2(ESet1,ESet2,CRes,WF),
5699 equal_object_optimized_wf(CRes,Res,cart_product,WF)
5700 ; cartesian_product2(ESet1,ESet2,Res,WF))
5701 ).
5702
5703 :- block cartesian_product2(-,?,?,?).
5704 cartesian_product2([],_,Res,WF) :- empty_set_wf(Res,WF).
5705 cartesian_product2([H|T],Set2,Res,WF) :-
5706 cartesian_el_product(Set2,H,Res,InnerRes,WF),
5707 cartesian_product2(T,Set2,InnerRes,WF).
5708
5709 :- block cartesian_el_product(-,?,?,?,?).
5710 cartesian_el_product([],_El,Res,InnerRes,WF) :- equal_object_optimized_wf(Res,InnerRes,cartesian_el_product_1,WF).
5711 cartesian_el_product([H|T],El,ResSoFar,InnerRes,WF) :-
5712 equal_object_wf(ResSoFar,[(El,H)|NewResSoFar],cartesian_el_product_2,WF),
5713 cartesian_el_product(T,El,NewResSoFar,InnerRes,WF).
5714
5715
5716
5717 :- assert_must_succeed(exhaustive_kernel_check(in_nat_range(int(2),int(2),int(3)))).
5718 :- assert_must_succeed(exhaustive_kernel_check(in_nat_range_wf(int(2),int(2),int(3),_WF))).
5719 :- assert_must_succeed(exhaustive_kernel_fail_check(in_nat_range_wf(int(2),int(3),int(2),_WF))).
5720 :- assert_must_succeed((in_nat_range_wf(X,int(11),int(12),WF),
5721 kernel_waitflags:ground_wait_flags(WF), X==int(12) )).
5722 :- assert_must_fail((in_nat_range_wf(X,int(11),int(12),_WF), X=int(10) )).
5723 :- assert_must_fail((in_nat_range_wf(X,int(11),int(12),_WF), X=int(13) )).
5724 :- assert_must_succeed((in_nat_range_wf(X,int(11),int(12),_WF), X=int(11) )).
5725 :- assert_must_fail((in_nat_range_wf(X,int(11),int(10),_WF), X=int(11) )).
5726 :- assert_must_fail((in_nat_range_wf(X,int(11),int(10),_WF), X=int(10) )).
5727 :- assert_must_fail((in_nat_range_wf(X,int(11),int(10),_WF), X=int(12) )).
5728
5729 in_nat_range(int(X),int(Y),int(Z)) :- % does not enumerate, in contrast to in_nat_range_wf
5730 clpfd_inrange(X,Y,Z,Posted), % better to call inrange rather than leq twice, avoids unecessary propagation
5731 (Posted==true -> true
5732 ; safe_less_than_equal(in_nat_range,Y,X),
5733 safe_less_than_equal(in_nat_range,X,Z)
5734 ).
5735 in_nat_range_wf(int(X),int(Y),int(Z),WF) :-
5736 clpfd_inrange(X,Y,Z,Posted), % better to call inrange rather than leq twice, avoids unecessary propagation
5737 (Posted==true ->
5738 /* if the constraint was posted: we do not need to add safe_less_than_equal,...: if overflow happes whole computation will fail anyway */
5739 add_nat_range_fd_variable_for_labeling(X,Y,Z,WF) % do we really need to do this ? maybe add just before enumeration finished ?
5740 ; safe_less_than_equal(in_nat_range_wf,Y,X),
5741 safe_less_than_equal(in_nat_range_wf,X,Z),
5742 (ground(X) -> true
5743 ; get_int_domain(X,Y,Z,RL,RU),get_nat_range_prio(X,RL,RU,WF,LWF),
5744 ? call_enumerate_int(X,RL,RU,LWF))
5745 ).
5746 % when((ground(X);nonvar(LWF)),(ground(X) -> true ; enumerate_int(X,RL,RU))).
5747
5748 add_nat_range_fd_variable_for_labeling(X,_Low,_Up,_WF) :- nonvar(X),!.
5749 % TO DO: avoid adding useless choice points; not adding makes test 328 fail
5750 %add_nat_range_fd_variable_for_labeling(X,Low,Up,WF) :- !,Size is 100*(Up+1-Low),
5751 % get_wait_flag(Size,add_nat_range_fd(X,Low,Up),WF,LWF), when(nonvar(LWF),add_fd_variable_for_labeling(X,WF)).
5752 add_nat_range_fd_variable_for_labeling(_X,Low,Up,_WF) :-
5753 (var(Low) ; var(Up)),!. % domain is not yet bounded; should we delay/block until Low and Up are known?
5754 add_nat_range_fd_variable_for_labeling(X,_Low,_Up,WF) :- !,add_fd_variable_for_labeling(X,WF).
5755
5756
5757 :- block get_nat_range_prio(?,-,?,?,?), get_nat_range_prio(?,?,-,?,?).
5758 get_nat_range_prio(_Variable,Y,Z,WF,LWF) :- Size is Z+1-Y,
5759 (Size>1 ->
5760 % we do not use add_fd_variable_for_labeling(Variable,Size,WF,LWF) % will use CLP(FD) labeling
5761 % either clpfd is off or we had a time-out or overflow; so labeling may generate instantiation error
5762 get_wait_flag(Size,get_nat_range_prio(Y,Z),WF,LWF)
5763 ; LWF=Size /* Size=0 or 1 -> we can either fail or determine variable */).
5764
5765 :- assert_must_succeed((kernel_objects:call_enumerate_int(X,1,2,g), X==2)).
5766 :- block call_enumerate_int(-,?,?,-).
5767 call_enumerate_int(X,RL,RU,_LWF) :-
5768 (ground(X) -> true
5769 ; % get_int_domain(X,RL,RU,RLL,RUU) : if clp(fd) active then CLP(FD) labeling is used anyway
5770 ? enumerate_int(X,RL,RU)).
5771
5772
5773
5774
5775 :- assert_must_succeed(exhaustive_kernel_check(not_in_nat_range(int(2),int(3),int(2)))).
5776 :- assert_must_succeed(exhaustive_kernel_fail_check(not_in_nat_range(int(2),int(2),int(3)))).
5777 :- assert_must_succeed((not_in_nat_range(X,int(11),int(12)), X=int(10) )).
5778 :- assert_must_succeed((not_in_nat_range(X,int(11),int(12)), X=int(13) )).
5779 :- assert_must_fail((not_in_nat_range(X,int(11),int(12)), X=int(11) )).
5780 :- assert_must_succeed((not_in_nat_range(X,int(11),int(10)), X=int(11) )).
5781 :- assert_must_succeed((not_in_nat_range(X,int(11),int(10)), X=int(10) )).
5782 :- assert_must_succeed((not_in_nat_range(X,int(11),int(10)), X=int(12) )).
5783
5784 ?not_in_nat_range_wf(X,Y,Z,_WF) :- not_in_nat_range(X,Y,Z).
5785 not_in_nat_range(int(X),int(Y),int(Z)) :-
5786 (number(Y),number(Z)
5787 ? -> (Z>=Y -> clpfd_not_in_non_empty_range(X,Y,Z) ; true /* interval empty */)
5788 ; clpfd_not_inrange(X,Y,Z)
5789 ).
5790
5791
5792 :- assert_must_succeed(exhaustive_kernel_check_wf(test_in_nat_range_wf(int(1),int(0),int(10),pred_true,WF),WF)).
5793 :- assert_must_succeed(exhaustive_kernel_check_wf(test_in_nat_range_wf(int(10),int(10),int(10),pred_true,WF),WF)).
5794 :- assert_must_succeed(exhaustive_kernel_check_wf(test_in_nat_range_wf(int(1),int(1),int(10),pred_true,WF),WF)).
5795 :- assert_must_succeed(exhaustive_kernel_check_wf(test_in_nat_range_wf(int(10),int(0),int(10),pred_true,WF),WF)).
5796 :- assert_must_succeed(exhaustive_kernel_check_wf(test_in_nat_range_wf(int(11),int(10),int(9),pred_false,WF),WF)).
5797 :- assert_must_succeed(exhaustive_kernel_check_wf(test_in_nat_range_wf(int(11),int(13),int(12),pred_false,WF),WF)).
5798 :- assert_must_succeed(exhaustive_kernel_check_wf(test_in_nat_range_wf(int(11),int(13),int(15),pred_false,WF),WF)).
5799
5800 % reified version
5801 :- block test_in_nat_range_wf(-,-,?,-,?), test_in_nat_range_wf(-,?,-,-,?), test_in_nat_range_wf(?,-,-,-,?).
5802 test_in_nat_range_wf(X,Y,Z,PredRes,WF) :- PredRes==pred_true,!,
5803 in_nat_range_wf(X,Y,Z,WF).
5804 test_in_nat_range_wf(X,Y,Z,PredRes,WF) :- PredRes==pred_false,!,
5805 ? not_in_nat_range_wf(X,Y,Z,WF).
5806 test_in_nat_range_wf(int(X),int(Low),int(Up),PredRes,WF) :-
5807 clpfd_interface:post_constraint2(C1 #<=> (X #>= Low #/\ X #=< Up #/\ Low #=< Up),Posted1),
5808 (Posted1 == true -> prop_01(C1,PredRes) ; test_in_nat_range_no_clpfd(X,Low,Up,PredRes,WF)).
5809
5810 % Note: A #<=> (X #>= Low #/\ X#=< Up #/\ Low #=< Up), Low in 11..15, Up in 7..8. -> CLPFD infers A=0
5811 % without the redundant Low #=< Up it does not infer it !
5812 :- block prop_01(-,-).
5813 prop_01(0,pred_false).
5814 prop_01(1,pred_true).
5815
5816 :- block test_in_nat_range_no_clpfd(-,?,?,-,?), test_in_nat_range_no_clpfd(?,-,?,-,?),
5817 test_in_nat_range_no_clpfd(?,?,-,-,?).
5818 test_in_nat_range_no_clpfd(X,Y,Z,PredRes,WF) :- PredRes==pred_true,!,
5819 in_nat_range_wf(int(X),int(Y),int(Z),WF).
5820 test_in_nat_range_no_clpfd(X,Y,Z,PredRes,WF) :- PredRes==pred_false,!,
5821 not_in_nat_range_wf(int(X),int(Y),int(Z),WF).
5822 test_in_nat_range_no_clpfd(X,Y,Z,PredRes,_WF) :- % X,Y,Z must be ground integers
5823 (X >= Y, X =< Z, Y =< Z -> PredRes=pred_true ; PredRes=pred_false).
5824
5825 :- assert_must_succeed(exhaustive_kernel_check_wf(square(int(3),int(9),WF),WF)).
5826 % is now only called when CLPFD is FALSE
5827 square(int(X),int(Sqr),WF) :-
5828 int_square(X,Sqr,WF),
5829 (var(X) -> clpfd_eq(Sqr,X * X)
5830 ; true). % we can compute the value directly
5831
5832 :- block int_square(-,-,?).
5833 int_square(X,Sqr,_) :- ground(X),!, Sqr is X*X.
5834 int_square(X,Sqr,WF) :- get_binary_choice_wait_flag(int_square,WF,WF2), int_square2(X,Sqr,WF2).
5835 :- block int_square2(-,?,-).
5836 int_square2(X,Sqr,_) :- ground(X),!, Sqr is X*X.
5837 int_square2(X,Sqr,_WF2) :-
5838 integer_square_root(Sqr,X).
5839
5840 :- assert_must_succeed(( kernel_objects:integer_square_root(0,X),X==0 )).
5841 :- assert_must_succeed(( kernel_objects:integer_square_root(1,X),X==1 )).
5842 :- assert_must_succeed(( kernel_objects:integer_square_root(4,X),X==2 )).
5843 :- assert_must_succeed(( kernel_objects:integer_square_root(49,X),X==7 )).
5844 :- assert_must_succeed(( kernel_objects:integer_square_root(49,X),X==(-7) )).
5845 :- assert_must_fail(( kernel_objects:integer_square_root(5,_) )).
5846 :- assert_must_succeed(( X= 123456789, Y is X*X, kernel_objects:integer_square_root(Y,Z),Z==X)).
5847 :- assert_must_fail(( X= 123456789, Y is 1+X*X, kernel_objects:integer_square_root(Y,_Z))).
5848 :- assert_must_succeed(( X= 12345678900, Y is X*X, kernel_objects:integer_square_root(Y,Z),Z==X)).
5849
5850 integer_square_root(0,Root) :- !, Root = 0.
5851 :- if(current_prolog_flag(dialect, swi)).
5852 % SWI's behavior when converting bigint to float is suboptimal -
5853 % the value is always truncated toward zero instead of rounded to the nearest value,
5854 % which introduces slight inaccuracies that don't happen on SICStus.
5855 % See: https://github.com/SWI-Prolog/swipl-devel/issues/545
5856 % As a workaround, use CLP(FD) to calculate integer square roots.
5857 % On SWI, CLP(FD) works with unlimited size integers and can calculate exact integer n-th roots.
5858 :- use_module(library(clpfd), [(#=)/2, (#>)/2, (#=<)/2]).
5859 integer_square_root(Sqr,Root) :-
5860 Root*Root #= Sqr,
5861 (Root #> 0 ; Root #=< 0).
5862 :- else.
5863 integer_square_root(Sqr,PMRoot) :-
5864 Sqr>0, Root is truncate(sqrt(Sqr)), Sqr is Root*Root,
5865 (PMRoot = Root ; PMRoot is -(Root)).
5866 :- endif.
5867
5868 % integer multiplication
5869 times(int(X),int(Y),int(Times)) :-
5870 int_times2(X,Y,Times),
5871 ? (two_vars_or_more(X,Y,Times) -> clpfd_eq(Times,X * Y) % can have performance problems.
5872 ; true). % we can compute the value directly
5873
5874 :- assert_must_succeed(exhaustive_kernel_check([commutative],times(int(2),int(3),int(6)))).
5875 :- assert_must_succeed(exhaustive_kernel_check([commutative],times(int(2),int(1),int(2)))).
5876 :- assert_must_succeed(exhaustive_kernel_check([commutative],times(int(2),int(0),int(0)))).
5877 :- assert_must_succeed(exhaustive_kernel_check(times(int(0),int(1),int(0)))).
5878 :- assert_must_succeed(exhaustive_kernel_fail_check([commutative],times(int(2),int(3),int(5)))).
5879 :- assert_must_succeed(exhaustive_kernel_fail_check([commutative],times(int(1),int(3),int(2)))).
5880 :- assert_must_succeed(( int_times2(A,B,C),A=3,B=2,C==6 )).
5881 :- assert_must_succeed(( int_times2(A,B,C),A=3,C=6,B==2 )).
5882 :- assert_must_succeed(( int_times2(A,B,C),B=2,A=3,C==6 )).
5883 :- assert_must_succeed(( int_times2(A,B,C),B=2,C=6,A==3 )).
5884 :- assert_must_succeed(( int_times2(A,B,C),C=6,A=3,B==2 )).
5885 :- assert_must_succeed(( int_times2(A,B,C),C=6,B=2,A==3 )).
5886 :- assert_must_succeed(( int_times2(A,_,C),A=0,C==0 )).
5887 :- assert_must_succeed(( int_times2(_,B,C),B=0,C==0 )).
5888 :- assert_must_succeed(( int_times2(A,B,C),A=1,B==C )).
5889 :- assert_must_succeed(( int_times2(A,B,C),B=1,A==C )).
5890 :- assert_must_succeed(( int_times2(A,1,C),A=2,C==2 )).
5891 :- assert_must_succeed(( int_times2(_A,0,C),C==0 )).
5892 :- assert_must_succeed(( int_times2(A,_,C),C=0,A=0 )).
5893 :- assert_must_succeed(( int_times2(_,B,C),C=0,B=0 )).
5894 :- assert_must_succeed(( int_times2(A,B,0),A=0,B=2 )).
5895 :- assert_must_succeed(( int_times2(A,B,0),B=2,A=0 )).
5896 :- assert_must_succeed(( int_times2(B,A,0),A=0,B=2 )).
5897 :- assert_must_succeed(( int_times2(B,A,0),B=2,A=0 )).
5898 :- assert_must_fail(( int_times2(A,_,C),A=3,C=7 )).
5899 :- assert_must_fail(( int_times2(A,_,C),C=7,A=3 )).
5900 :- assert_must_fail(( int_times2(_,B,C),B=2,C=7 )).
5901 :- assert_must_fail(( int_times2(_,B,C),C=7,B=2 )).
5902 :- assert_must_fail(( int_times2(A,_,C),C=7,A=0 )).
5903 :- assert_must_fail(( int_times2(_,B,C),C=7,B=0 )).
5904 :- assert_must_fail(( int_times2(B,A,0),B=2,A=1 )).
5905
5906 :- block int_times2(-,-,-).
5907 int_times2(X,Y,Times) :-
5908 ( ground(X) ->
5909 ( X==1 -> Y=Times
5910 ; X==0 -> Times=0
5911 ; int_times3(X,Y,Times))
5912 ; ground(Y) ->
5913 ( Y==1 -> X=Times
5914 ; Y==0 -> Times=0
5915 ; int_times3(Y,X,Times))
5916 ; int_times4(X,Y,Times)).
5917 % int_times3/3: First argument must be ground when called and non-zero
5918 :- block int_times3(?,-,-).
5919 int_times3(X,Y,Times) :-
5920 ( ground(Y) -> Times is X*Y
5921 ; Y is Times // X, Times is X*Y).
5922 % int_times4/3: Third argument must be ground when called
5923 :- block int_times4(-,-,?).
5924 int_times4(X,Y,Times) :-
5925 ( Times==0 ->
5926 ( ground(X) -> (X==0 -> true; Y=0 )
5927 ; /* ground(Y) -> */ (Y==0 -> true; X=0 ))
5928 ; /* Times /== 0 */
5929 ( ground(X) -> X\==0, Y is Times // X, Times is X*Y
5930 ; /* ground(Y) -> */ Y\==0, X is Times // Y, Times is X*Y)).
5931
5932
5933 :- assert_must_succeed(exhaustive_kernel_check(int_power(int(2),int(3),int(8),unknown,_))).
5934 :- assert_must_succeed(exhaustive_kernel_check(int_power(int(2),int(1),int(2),unknown,_))).
5935 :- assert_must_succeed(exhaustive_kernel_check(int_power(int(3),int(0),int(1),unknown,_))).
5936 :- assert_must_succeed(exhaustive_kernel_check(int_power(int(1),int(3),int(1),unknown,_))).
5937 :- assert_must_succeed(exhaustive_kernel_check(int_power(int(0),int(3),int(0),unknown,_))).
5938 :- assert_must_succeed(exhaustive_kernel_fail_check(int_power(int(2),int(3),int(6),unknown,_))).
5939 :- assert_must_succeed(( int_power2(A,B,C,unknown,_),A=2,B=5,C==32 )).
5940 :- assert_must_succeed(( int_power2(A,B,C,unknown,_),A= -2,B=5,C== -32 )).
5941 %:- assert_must_succeed(( int_power2(A,B,C,unknown,_),A=1,B= -5,C==1 )). % now aborts !
5942 :- assert_must_succeed(( int_power2(A,B,C,unknown,_),A=1,C=1, B= -5 )).
5943 :- assert_must_succeed(( int_power2(A,B,C,unknown,_),A=1,C= 1,B = -5 )).
5944 :- assert_must_succeed(( int_power2(A,B,C,unknown,_),A=2,C=32,B==5 )).
5945 :- assert_must_succeed(( int_power2(A,B,C,unknown,_),A=10,C=1000,B==3 )).
5946 :- assert_must_succeed(( int_power2(A,B,C,unknown,_),A= -2,C= -32,B==5 )).
5947 :- assert_must_succeed(( int_power2(A,B,C,unknown,_),A= -2,C= 16,B==4 )).
5948 :- assert_must_succeed(( int_power2(A,B,C,unknown,_),A=2,C=1,B==0 )).
5949 :- assert_must_succeed(( int_power2(A,B,C,unknown,_),A=0,B=2,C==0 )).
5950 :- assert_must_succeed(( int_power2(A,B,C,unknown,_),A=0,C=0,B=2 )).
5951 :- assert_must_succeed(( int_power2(A,B,C,unknown,_),A=0,B=0,C==1 )).
5952 :- assert_must_succeed(( int_power2(A,B,C,unknown,_),A=0,C=1,B==0 )).
5953 :- assert_must_succeed(( int_power2(17,13,C,unknown,_),C==9904578032905937 )).
5954 :- assert_must_succeed((platform_is_64_bit
5955 -> int_power2(A,13,C,unknown,_),C=9904578032905937,A=17
5956 ; int_power2(A,9,C,unknown,_),C=134217728,A=8 )).
5957 :- assert_must_fail((platform_is_64_bit
5958 -> int_power2(A,13,C,unknown,_),C=9904578032905936,A=17
5959 ; int_power2(A,9,C,unknown,_),C=134217727,A=8 )).
5960 :- assert_must_succeed((platform_is_64_bit
5961 -> int_power2(A,10,C,unknown,_),C=576650390625,A=15
5962 ; true)).
5963 :- assert_must_fail((platform_is_64_bit
5964 -> int_power2(A,10,C,unknown,_),C=576650390626,A=15
5965 ; false)).
5966 :- assert_must_succeed(( int_power2(A,100,C,unknown,_),A=2,C==1267650600228229401496703205376 )).
5967 :- assert_must_fail(( int_power2(A,100,C,unknown,_),C=1267650600228229401496703205375,A=2 )).
5968 :- assert_must_fail(( int_power2(A,100,C,unknown,_),C=1267650600228229401496703205377,A=2 )).
5969
5970 :- assert_must_fail(( int_power2(A,B,C,unknown,_),A=2,B=5,C=33 )).
5971 :- assert_must_abort_wf(( int_power2(A,B,_,unknown,WF),A=2,B= -5 ),WF).
5972 :- assert_must_fail(( int_power2(A,_,C,unknown,_),A= -2,C=32 )).
5973 :- assert_must_fail(( int_power2(A,_,C,unknown,_),A= -2,C= -16 )).
5974
5975 :- use_module(specfile,[eventb_mode/0]).
5976 % TODO: calculate X from Y und Pow (i.e., Yth root of Pow); in CLPFD mode this is more or less done
5977 int_power(int(X),int(Y),int(Pow),Span,WF) :- % power_of AST node
5978 ( preferences:preference(use_clpfd_solver,true)
5979 -> int_power2(X,Y,Pow,Span,WF), int_power_clpfd_propagation(X,Y,Pow)
5980 ; int_power1(X,Y,Pow,Span,WF)).
5981 % TO DO ?: if all are variables we can still infer some knowledge
5982 % e.g. if X is positive then Pow must be positive; but it is probably quite rare that we have models with unknown exponent ?
5983 :- block int_power1(-,?,?,?,?). % ensure that Base X is known if CLPFD off
5984 int_power1(X,Y,Pow,Span,WF) :-
5985 int_power2(X,Y,Pow,Span,WF).
5986 :- block int_power2(-,-,?,?,?), int_power2(?,-,-,?,?).
5987 int_power2(X,Y,Pow,Span,WF) :-
5988 ( ground(Y) ->
5989 ( Y>=0 -> (integer(X) -> safe_int_power0(X,Y,PowXY,Span,WF),
5990 clpfd_nr_eq(PowXY,Pow) % try and prevent overflow if PowXY is large
5991 ; safe_int_power0(X,Y,Pow,Span,WF))
5992 ; add_wd_error_set_result('power with negative exponent','**'(X,Y),Pow,1,Span,WF))
5993 ; /* X & POW are ground */
5994 ( X==1 -> Pow==1 /* 1**Y = 1 */
5995 ; X==0, Pow==1 -> Y=0
5996 ; X==0 -> Pow==0
5997 ; X>0, Pow>0 ->
5998 checked_precise_log(X,Y,Pow,Span,WF)
5999 % TO DO: X<0 should raise WD error for Event-B ?
6000 ; X<0, eventb_mode -> add_wd_error_set_result('power with negative base','^'(X,Y),Pow,1,Span,WF)
6001 ; X<0, Pow<0 ->
6002 PosPow is -(Pow),
6003 NegX is -(X),
6004 checked_precise_log(NegX,Y,PosPow,Span,WF),
6005 odd(Y)
6006 ; X<0, Pow>0 ->
6007 NegX is -(X),
6008 checked_precise_log(NegX,Y,Pow,Span,WF),
6009 even(Y))).
6010
6011 :- assert_must_succeed(( integer_log(3,59049,Log),Log==10 )).
6012 :- assert_must_succeed(( integer_log(2,1024,Log),Log==10 )).
6013 :- assert_must_succeed(( integer_log(4,1024,Log),Log==5 )).
6014 :- assert_must_succeed(( integer_log(10,1,Log),Log==0 )).
6015 :- assert_must_succeed(( integer_log(10,2,Log),Log==0 )).
6016 :- assert_must_succeed(( integer_log(10,10,Log),Log==1 )).
6017 :- assert_must_succeed(( integer_log(10,11,Log),Log==1 )).
6018 :- assert_must_succeed(( integer_log(10,1000,Log),Log==3 )).
6019 :- use_module(tools_portability, [check_arithmetic_function/1]).
6020 :- if(check_arithmetic_function(log(2, 4))).
6021 % Native log(Base, Power) function is available - use it.
6022 integer_log(Base, Power, Exp) :- ApproximateExp is truncate(log(Base, Power)),
6023 % it is precise for power of 2 it seems, but not for 3
6024 % | ?- X is log(3,59049). X = 9.999999999999998 ? -> truncate gives 9, correct value is 10
6025 correct_integer_log_approximation(Base,Power,ApproximateExp,_,Exp).
6026 :- else.
6027 % No native log(Base, Power) support, so construct it using natural logarithms.
6028 integer_log(Base, Power, Exp) :- ApproximateExp is truncate(log(Power) / log(Base)),
6029 correct_integer_log_approximation(Base,Power,ApproximateExp,_,Exp).
6030 :- endif.
6031
6032 correct_integer_log_approximation(Base,Power,Exp,Correction,Res) :-
6033 BE is Base ^ Exp,
6034 (Correction=decreasing, BE > Power % not sure this case will ever trigger
6035 -> Exp1 is Exp-1, %write(dec(Base,Bower,Exp1)),nl,
6036 correct_integer_log_approximation(Base,Power,Exp1,Correction,Res)
6037 ; Correction=increasing, BE*Base =< Power
6038 -> Exp1 is Exp+1, %write(inc(Base,Bower,Exp1)),nl,
6039 correct_integer_log_approximation(Base,Power,Exp1,Correction,Res)
6040 ; Res=Exp).
6041
6042 % TO DO for checked_precise_log: we should take pre-cautions with try_find_abort
6043 % 2**x + y = 1024 & y:0..100 -> will give x=10, y=0 but not give rise to possible WD error
6044 checked_precise_log(1,Exp,Pow,_,_) :- !, % the SICStus Prolog log function does not work for Base=1
6045 Pow=1, less_than_equal_direct(0,Exp).
6046 checked_precise_log(Base,Exp,Pow,Span,WF) :-
6047 integer_log(Base,Pow,Exp),
6048 safe_int_power(Base,Exp,Pow,Span,WF). % we have the perfect solution
6049 % ; Exp is Try+1, write(inc(Base,Pow,Try)),nl, safe_int_power(Base,Exp,Pow,Span,WF) ,write(pow(Base,Exp,Pow)),nl).
6050
6051 :- block even(-).
6052 even(X) :- 0 is X mod 2.
6053 :- block odd(-).
6054 odd(X) :- 1 is X mod 2.
6055
6056 % propagation rules if only one of the args known
6057 :- block int_power_clpfd_propagation(-,-,-).
6058 int_power_clpfd_propagation(Base,Exp,Pow) :- Exp==0, var(Base),var(Pow),!, % B**0 = 1
6059 Pow = 1.
6060 int_power_clpfd_propagation(Base,Exp,Pow) :- Exp==1, var(Base),var(Pow),!, % B**1 = B
6061 Pow = Base.
6062 int_power_clpfd_propagation(Base,Exp,Pow) :- Base==1, var(Exp),var(Pow),!, % 1**E = 1
6063 Pow = Base.
6064 %int_power_clpfd_propagation(Base,Exp,Pow) :- number(Base), Base>0,var(Exp),var(Pow),!,
6065 % clpfd_leq(1,Pow,_). % causes problem with test 305
6066 int_power_clpfd_propagation(X,Y,Pow) :-
6067 fd_min(X,MinX), number(MinX), MinX>0,
6068 fd_min(Y,MinY), number(MinY), MinY>0, % ensures no WD problem possible
6069 MinPow is MinX^MinY,
6070 \+ integer_too_large_for_clpfd(MinPow),
6071 fd_max(X,MaxX), number(MaxX),
6072 fd_max(Y,MaxY), number(MaxY),
6073 MaxPow is MaxX^MaxY,
6074 \+ integer_too_large_for_clpfd(MaxPow),
6075 % only do propagation if we are sure not to produce a CLPFD overflow
6076 !,
6077 clpfd_inrange(Pow,MinPow,MaxPow),
6078 (number(X), fd_max(Pow,MaxPow2), number(MaxPow2), get_new_upper_bound(X,MaxPow2,NewMaxExp,NewMaxPow)
6079 -> clpfd_leq(Pow,NewMaxPow,_),
6080 clpfd_leq(Y,NewMaxExp,_)
6081 ; true),
6082 (number(X), fd_min(Pow,MinPow2), number(MinPow2), get_new_lower_bound(X,MinPow2,NewMinExp,NewMinPow)
6083 -> clpfd_leq(NewMinPow,Pow,_),
6084 clpfd_leq(NewMinExp,Y,_)
6085 ; true),
6086 true.
6087 %result of this propagation: x = 3**y & y:3..5 & x /= 27 & x /= 243 -> deterministically forces x=81, y=4
6088 int_power_clpfd_propagation(Base,Exp,Pow) :- number(Base), Base>1, var(Exp), var(Pow),
6089 fd_max(Pow,MaxPow), number(MaxPow),!,
6090 (integer_log(Base,MaxPow,Log)
6091 -> clpfd_leq(Exp,Log,_)
6092 ; add_internal_error('Failed:',integer_log(Base,MaxPow,_)),
6093 clpfd_lt(Exp,MaxPow,_Posted)).
6094 int_power_clpfd_propagation(_,_,_).
6095 % TO DO: maybe implement custom CLPFD propagators; above does not trigger for x>0 & y:0..500 & 2**x + y = 1500 or x>0 & x<20 & y:0..500 & 2**x + y = 1500
6096
6097 :- assert_must_succeed((kernel_objects:get_new_lower_bound(2,3,E,P),E==2,P==4)).
6098 :- assert_must_succeed((kernel_objects:get_new_lower_bound(2,11,E,P),E==4,P==16)).
6099 :- assert_must_fail((kernel_objects:get_new_lower_bound(2,16,_,_))).
6100 % given Base and Power, determine if Power is a proper power of Exp, if not determine the next possible power of Base
6101 get_new_lower_bound(Base,Power,MinExp,MinPower) :- Base > 1, Power> 0,
6102 integer_log(Base,Power,Exp),
6103 BE is Base^Exp,
6104 BE < Power,
6105 MinPower is Base*BE,
6106 MinPower>Power,
6107 MinPower < 1125899906842624, % 2^50 \+ integer_too_large_for_clpfd(MinPower),
6108 MinExp is Exp+1.
6109 :- assert_must_succeed((kernel_objects:get_new_upper_bound(2,3,E,P),E==1,P==2)).
6110 :- assert_must_succeed((kernel_objects:get_new_upper_bound(2,11,E,P),E==3,P==8)).
6111 :- assert_must_fail((kernel_objects:get_new_upper_bound(2,16,_,_))).
6112 get_new_upper_bound(Base,Power,MaxExp,MaxPower) :- Base > 1, Power> 0,
6113 integer_log(Base,Power,MaxExp),
6114 MaxPower is Base^MaxExp,
6115 MaxPower < Power,
6116 \+ integer_too_large_for_clpfd(MaxPower),
6117 MaxPower*Base > Power.
6118
6119 % safe exponentiation using the squaring algorithm (CLPFD supports exponentiation only for SICStus 4.9 or later)
6120 % Note: in TLA mode 0^0 is undefined according to TLC; for B/Rodin it is 1
6121 safe_int_power0(Base,Exp,Result,Span,WF) :- var(Base),
6122 Exp>30,!, % Exp>59 % 2**59 no overflow; but everything above that is guaranteed to generate an overflow unless Base is 0 or 1 or -1
6123 % 3**38 generates overflow; 4**30 generates overflow on 64-bit systems
6124 % To do: examine whether we should already delay with a smaller or larger exponent
6125 when(nonvar(Base),safe_int_power(Base,Exp,Result,Span,WF)). % wait until Base is known to avoid CLPFD overflow
6126 safe_int_power0(Base,Exp,Result,Span,WF) :- safe_int_power(Base,Exp,Result,Span,WF).
6127
6128 safe_int_power(Base,Exp,Result,Span,WF) :- number(Base), Base<0, eventb_mode,!,
6129 add_wd_error_set_result('power with negative base','^'(Base,Exp),Result,1,Span,WF).
6130 safe_int_power(_Base,0,Result,_,_WF) :- !, Result = 1.
6131 safe_int_power(Base,Exp,Result,_,_) :- number(Base),!,
6132 Result is Base^Exp. % new integer exponentiation operator in SICStus 4.3
6133 safe_int_power(Base,Exp,Result,_,_) :-
6134 Msb is msb(Exp), % most significant bit
6135 ExpMask is 1<<Msb,
6136 safe_int_power_clpfd2(ExpMask,Exp,Base,1,Result).
6137
6138 :- use_module(clpfd_interface,[clpfd_eq_expr/2]).
6139 safe_int_power_clpfd2(0,_,_,Prev,Result) :- !, Prev=Result.
6140 safe_int_power_clpfd2(Mask,Exp,Base,Prev,Result) :-
6141 P is Exp /\ Mask, % P is Exp's highest bit
6142 Mask2 is Mask>>1,
6143 clpfd_eq_expr(Quad,Prev*Prev),
6144 ( P==0 -> Next = Quad
6145 ; clpfd_eq_expr(Next,Quad*Base) ),
6146 safe_int_power_clpfd2(Mask2,Exp,Base,Next,Result).
6147 %% -------------------------------------------------------
6148
6149 :- assert_must_succeed(( singleton_set_element([int(1)],E,unknown,_WF), E==int(1) )).
6150 :- assert_must_succeed(( singleton_set_element([int(X)],int(1),unknown,_WF), X==1 )).
6151 :- assert_must_fail(singleton_set_element([int(1)],int(2),unknown,_WF) ).
6152 :- assert_must_abort_wf(kernel_objects:singleton_set_element([int(1),int(2)],_E,unknown,WF),WF).
6153 % This predicate computes the effect of the MU operator.
6154 % Set should be a singleton set and Elem its only element.
6155 % In case Set is empty or has more than one element, an error
6156 % message is generated.
6157 :- block singleton_set_element(-,?,?,?).
6158 singleton_set_element([],_,Span,WF) :- !,
6159 add_wd_error_span('argument of MU expression must have cardinality 1, but is empty ', '', Span,WF).
6160 singleton_set_element([H|T],Elem,Span,WF) :- !,
6161 empty_set_test_wf(T,Empty,WF),
6162 when(nonvar(Empty),
6163 (Empty=pred_true -> equal_object_wf(Elem,H,singleton_set_element,WF)
6164 ; add_wd_error_span('argument of MU expression has more than one element ',
6165 b(value([H|T]),set(any),[]), Span,WF))).
6166 singleton_set_element(avl_set(A),Elem,Span,WF) :- !,
6167 (is_one_element_avl(A,AEl) -> equal_object_wf(Elem,AEl,singleton_set_element,WF)
6168 ; add_wd_error_span('argument of MU expression has more than one element ',
6169 b(value(avl_set(A)),set(any),[]), Span,WF)).
6170 singleton_set_element(Set,Elem,Span,WF) :-
6171 cardinality_as_int_wf(Set,Card,WF), % we have a comprehension set; could return inf !
6172 singleton_set_element1(Card,Set,Elem,Span,WF).
6173 :- block singleton_set_element1(-,?,?,?,?).
6174 singleton_set_element1(int(Card),Set,Elem,Span,WF) :- !,
6175 % we could check if fd_dom of Card is set up and call equality_objects_lwf(Card,int(1),IsSingleton,LWF,WF) if it is
6176 singleton_set_element2(Card,Set,Elem,Span,WF).
6177 singleton_set_element1(XX,_Set,_Elem,Span,WF) :-
6178 add_wd_error_span('argument of MU expression must have cardinality 1, but has ', XX, Span,WF).
6179
6180 :- block singleton_set_element2(-,?,?,?,?).
6181 singleton_set_element2(1,Set,Elem,_Span,_WF) :- !,
6182 exact_element_of(Elem,Set).
6183 singleton_set_element2(Card,_Set,_Elem,Span,WF) :-
6184 add_wd_error_span('argument of MU expression must have cardinality 1, but has ', Card, Span,WF).
6185
6186 :- assert_must_succeed(( singleton_set_element_wd([int(1)],E,unknown,_WF), E==int(1) )).
6187 :- assert_must_succeed(( singleton_set_element_wd([int(X)],int(1),unknown,_WF), X==1 )).
6188 %:- assert_must_succeed(( singleton_set_element_wd([int(X)|T],int(1),unknown,_WF), X==1, T==[] )).
6189 :- assert_must_fail(singleton_set_element_wd([int(1)],int(2),unknown,_WF) ).
6190 % MU_WD: a version of singleton_set_element which propagates more strongly from result to input
6191 % and thus may not raise WD errors in this case
6192 :- block singleton_set_element_wd(-,-,?,?).
6193 singleton_set_element_wd(Set,Elem,Span,WF) :- nonvar(Set),!, % TODO: first check if Elem is ground
6194 singleton_set_element(Set,Elem,Span,WF).
6195 singleton_set_element_wd(Set,Elem,_,WF) :- % TODO: only propagate if fully known?
6196 %(debug_mode(on) -> add_message_wf('MU_WD','MU_WD result instantiated: ',Elem,Span,WF) ; true),
6197 equal_object_wf(Set,[Elem],singleton_set_element_wd,WF).
6198
6199
6200 %:- print(finished_loading_kernel_objects),nl.