1 | % (c) 2020-2024 Lehrstuhl fuer Softwaretechnik und Programmiersprachen, | |
2 | % Heinrich Heine Universitaet Duesseldorf | |
3 | % This software is licenced under EPL 1.0 (http://www.eclipse.org/org/documents/epl-v10.html) | |
4 | ||
5 | :- module(external_functions_reals,['STRING_TO_REAL'/3, | |
6 | 'RADD'/4,'RSUB'/4,'RMUL'/4,'RDIV'/5, 'RINV'/4, | |
7 | 'RPI'/1, 'RZERO'/1, 'RONE'/1, 'REULER'/1, | |
8 | 'REPSILON'/1, 'RMAXFLOAT'/1, | |
9 | 'RSIN'/3, 'RCOS'/3, 'RTAN'/3, 'RCOT'/3, | |
10 | 'RSINH'/3, 'RCOSH'/3, 'RTANH'/3, 'RCOTH'/3, | |
11 | 'RASIN'/3, 'RACOS'/3, 'RATAN'/3, 'RACOT'/3, | |
12 | 'RASINH'/3, 'RACOSH'/3, 'RATANH'/3, 'RACOTH'/3, | |
13 | 'RATAN2'/5, 'RHYPOT'/5, | |
14 | 'RADIANS'/4, 'DEGREE'/4, | |
15 | 'RUMINUS'/3, | |
16 | 'REXP'/3, 'RLOGe'/4, 'RSQRT'/4, | |
17 | 'RABS'/3, 'ROUND'/3, 'RSIGN'/3, | |
18 | 'RINTEGER'/3, 'RFRACTION'/3, | |
19 | 'RMAX'/5, 'RMIN'/5, | |
20 | 'RPOW'/5, 'RLOG'/5, | |
21 | 'RDECIMAL'/5, % scientific notation using integers | |
22 | 'RLT'/4, 'REQ'/4, 'RNEQ'/4, 'RLEQ'/4, 'RGT'/4, 'RGEQ'/4, | |
23 | 'RMAXIMUM'/4, 'RMINIMUM'/4, | |
24 | ||
25 | 'RNEXT'/2, 'RPREV'/2, | |
26 | ||
27 | 'SFADD16'/3, | |
28 | 'SFSUB16'/3, | |
29 | 'SFMUL16'/3, | |
30 | 'SFDIV16'/3, | |
31 | 'SFSQRT16'/2, | |
32 | 'SFMULADD16'/4, | |
33 | ||
34 | 'SFADD32'/3, | |
35 | 'SFSUB32'/3, | |
36 | 'SFMUL32'/3, | |
37 | 'SFDIV32'/3, | |
38 | 'SFSQRT32'/2, | |
39 | 'SFMULADD32'/4, | |
40 | ||
41 | 'SFADD64'/3, | |
42 | 'SFSUB64'/3, | |
43 | 'SFMUL64'/3, | |
44 | 'SFDIV64'/3, | |
45 | 'SFSQRT64'/2, | |
46 | 'SFMULADD64'/4, | |
47 | ||
48 | 'SFADD80'/3, | |
49 | 'SFSUB80'/3, | |
50 | 'SFMUL80'/3, | |
51 | 'SFDIV80'/3, | |
52 | 'SFSQRT80'/2, | |
53 | ||
54 | 'SFADD128'/3, | |
55 | 'SFSUB128'/3, | |
56 | 'SFMUL128'/3, | |
57 | 'SFDIV128'/3, | |
58 | 'SFSQRT128'/2, | |
59 | 'SFMULADD128'/4 | |
60 | ]). | |
61 | ||
62 | ||
63 | % ------------------------------- | |
64 | :- use_module(probsrc(kernel_reals),[construct_real/2, | |
65 | is_largest_positive_float/1, is_smallest_positive_float/1, | |
66 | is_next_larger_float/2, is_next_smaller_float/2]). | |
67 | ||
68 | %external_fun_type('STRING_TO_REAL',[],[string,real]). | |
69 | % allows to call construct_real/2; also works for numbers without decimal point | |
70 | ||
71 | :- block 'STRING_TO_REAL'(-,?,?). | |
72 | 'STRING_TO_REAL'(string(A),Result,_) :- | |
73 | block_construct_real(A,Result). | |
74 | ||
75 | :- block 'block_construct_real'(-,?). | |
76 | block_construct_real(A,Result) :- | |
77 | construct_real(A,Result). | |
78 | ||
79 | % ------------------------------- | |
80 | ||
81 | :- use_module(probsrc(kernel_reals),[real_addition_wf/4, real_subtraction_wf/4, | |
82 | real_multiplication_wf/4, real_division_wf/5, real_power_of_wf/5, | |
83 | real_unary_minus_wf/3, real_absolute_value_wf/3, real_square_root_wf/4, | |
84 | convert_int_to_real/2, | |
85 | real_round_wf/3, | |
86 | real_unop_wf/4, real_unop_wf/5, real_binop_wf/6, | |
87 | real_comp_wf/5, | |
88 | real_maximum_of_set/4, real_minimum_of_set/4]). | |
89 | ||
90 | 'RADD'(RX,RY,RR,WF) :- | |
91 | real_addition_wf(RX,RY,RR,WF). | |
92 | ||
93 | 'RSUB'(RX,RY,RR,WF) :- | |
94 | real_subtraction_wf(RX,RY,RR,WF). | |
95 | ||
96 | 'RMUL'(RX,RY,RR,WF) :- | |
97 | real_multiplication_wf(RX,RY,RR,WF). | |
98 | ||
99 | 'RDIV'(RX,RY,RR,Span,WF) :- | |
100 | real_division_wf(RX,RY,RR,Span,WF). | |
101 | ||
102 | 'RINV'(RY,RR,Span,WF) :- | |
103 | 'RONE'(RX), | |
104 | real_division_wf(RX,RY,RR,Span,WF). | |
105 | ||
106 | % ---- constants | |
107 | ||
108 | 'RPI'(term(floating(R))) :- R is pi. | |
109 | ||
110 | 'RZERO'(term(floating(R))) :- R = 0.0. | |
111 | ||
112 | 'RONE'(term(floating(R))) :- R = 1.0. | |
113 | ||
114 | 'REULER'(term(floating(R))) :- R is exp(1.0). | |
115 | ||
116 | 'REPSILON'(R) :- is_smallest_positive_float(R). % 5.0E-324 | |
117 | ||
118 | 'RMAXFLOAT'(R) :- is_largest_positive_float(R). % 1.7976931348623157E+308 | |
119 | ||
120 | % ---- unary operators | |
121 | ||
122 | % --- Trigonometric | |
123 | ||
124 | :- block 'RSIN'(-,?,?). | |
125 | 'RSIN'(X,R,WF) :- | |
126 | real_unop_wf('sin',X,R,WF). | |
127 | ||
128 | :- block 'RCOS'(-,?,?). | |
129 | 'RCOS'(X,R,WF) :- | |
130 | real_unop_wf('cos',X,R,WF). | |
131 | ||
132 | :- block 'RTAN'(-,?,?). | |
133 | 'RTAN'(X,R,WF) :- | |
134 | real_unop_wf('tan',X,R,WF). | |
135 | ||
136 | :- block 'RCOT'(-,?,?). | |
137 | 'RCOT'(X,R,WF) :- | |
138 | real_unop_wf('cot',X,R,WF). | |
139 | ||
140 | :- block 'RSINH'(-,?,?). | |
141 | 'RSINH'(X,R,WF) :- | |
142 | real_unop_wf('sinh',X,R,WF). | |
143 | ||
144 | :- block 'RCOSH'(-,?,?). | |
145 | 'RCOSH'(X,R,WF) :- | |
146 | real_unop_wf('cosh',X,R,WF). | |
147 | ||
148 | :- block 'RTANH'(-,?,?). | |
149 | 'RTANH'(X,R,WF) :- | |
150 | real_unop_wf('tanh',X,R,WF). | |
151 | ||
152 | :- block 'RCOTH'(-,?,?). | |
153 | 'RCOTH'(X,R,WF) :- | |
154 | real_unop_wf('coth',X,R,WF). | |
155 | ||
156 | :- block 'RASIN'(-,?,?). | |
157 | 'RASIN'(X,R,WF) :- | |
158 | real_unop_wf('asin',X,R,WF). | |
159 | ||
160 | :- block 'RACOS'(-,?,?). | |
161 | 'RACOS'(X,R,WF) :- | |
162 | real_unop_wf('acos',X,R,WF). | |
163 | ||
164 | :- block 'RATAN'(-,?,?). | |
165 | 'RATAN'(X,R,WF) :- | |
166 | real_unop_wf('atan',X,R,WF). | |
167 | ||
168 | :- block 'RACOT'(-,?,?). | |
169 | 'RACOT'(X,R,WF) :- | |
170 | real_unop_wf('acot',X,R,WF). | |
171 | ||
172 | :- block 'RASINH'(-,?,?). | |
173 | 'RASINH'(X,R,WF) :- | |
174 | real_unop_wf('asinh',X,R,WF). | |
175 | ||
176 | :- block 'RACOSH'(-,?,?). | |
177 | 'RACOSH'(X,R,WF) :- | |
178 | real_unop_wf('acosh',X,R,WF). | |
179 | ||
180 | :- block 'RATANH'(-,?,?). | |
181 | 'RATANH'(X,R,WF) :- | |
182 | real_unop_wf('atanh',X,R,WF). | |
183 | ||
184 | :- block 'RACOTH'(-,?,?). | |
185 | 'RACOTH'(X,R,WF) :- | |
186 | real_unop_wf('acoth',X,R,WF). | |
187 | ||
188 | :- block 'RATAN2'(-,?,?,?,?), 'RATAN2'(?,-,?,?,?). | |
189 | 'RATAN2'(RX,RY,RR,Span,WF) :- | |
190 | real_binop_wf(atan2,RX,RY,RR,Span,WF). | |
191 | % is useful for computing angle in radians from deltax, deltay, avoiding division by 0 | |
192 | % e.g. converting Cartesian coordinates x,y to Polar can be done with: | |
193 | % angle phi = RATAN2(y,x) | |
194 | % r = RHYPOT(x,y) | |
195 | % Note: conversion from Polar to Cartesian is x = r*RCOS(phi) and y=r*RSIN(phi) | |
196 | ||
197 | :- block 'RHYPOT'(-,?,?,?,?), 'RHYPOT'(?,-,?,?,?). | |
198 | 'RHYPOT'(X,Y,Res,Span,WF) :- | |
199 | 'RMUL'(X,X,X2,WF), | |
200 | 'RMUL'(Y,Y,Y2,WF), | |
201 | 'RADD'(X2,Y2,X2Y2,WF), | |
202 | 'RSQRT'(X2Y2,Res,Span,WF). | |
203 | ||
204 | :- block 'RADIANS'(-,?,?,?). | |
205 | 'RADIANS'(Degree,Res,Span,WF) :- | |
206 | D180 = term(floating(180.0)), | |
207 | 'RDIV'(Degree,D180,Deg2,Span,WF), | |
208 | 'RPI'(PI), | |
209 | 'RMUL'(PI,Deg2,Res,WF). | |
210 | ||
211 | :- block 'DEGREE'(-,?,?,?). | |
212 | 'DEGREE'(Radians,Res,Span,WF) :- | |
213 | D180 = term(floating(180.0)), | |
214 | 'RPI'(PI), | |
215 | 'RDIV'(Radians,PI,Deg2,Span,WF), | |
216 | 'RMUL'(D180,Deg2,Res,WF). | |
217 | ||
218 | ||
219 | % ----------------------- | |
220 | ||
221 | ||
222 | 'RUMINUS'(RX,RR,WF) :- % unary minus | |
223 | real_unary_minus_wf(RX,RR,WF). | |
224 | ||
225 | :- block 'REXP'(-,?,?). | |
226 | 'REXP'(X,R,WF) :- | |
227 | real_unop_wf('exp',X,R,WF). | |
228 | ||
229 | :- block 'RLOGe'(-,?,?,?). | |
230 | 'RLOGe'(X,R,Span,WF) :- | |
231 | real_unop_wf('log',X,R,Span,WF). | |
232 | ||
233 | 'RSQRT'(X,R,Span,WF) :- | |
234 | real_square_root_wf(X,R,Span,WF). | |
235 | ||
236 | 'RABS'(X,R,WF) :- | |
237 | real_absolute_value_wf(X,R,WF). | |
238 | ||
239 | :- block 'ROUND'(-,?,?). | |
240 | 'ROUND'(X,R,WF) :- | |
241 | real_round_wf(X,R,WF). | |
242 | ||
243 | :- block 'RSIGN'(-,?,?). | |
244 | 'RSIGN'(X,R,WF) :- | |
245 | real_unop_wf('sign',X,R,WF). | |
246 | ||
247 | :- block 'RINTEGER'(-,?,?). | |
248 | 'RINTEGER'(X,R,WF) :- | |
249 | real_unop_wf('float_integer_part',X,R,WF). | |
250 | ||
251 | :- block 'RFRACTION'(-,?,?). | |
252 | 'RFRACTION'(X,R,WF) :- | |
253 | real_unop_wf('float_fractional_part',X,R,WF). | |
254 | ||
255 | % ---- other binary operators | |
256 | 'RMAX'(RX,RY,RR,Span,WF) :- | |
257 | real_binop_wf(max,RX,RY,RR,Span,WF). | |
258 | ||
259 | 'RMIN'(RX,RY,RR,Span,WF) :- | |
260 | real_binop_wf(min,RX,RY,RR,Span,WF). | |
261 | ||
262 | 'RPOW'(RX,RY,RR,Span,WF) :- | |
263 | real_power_of_wf(RX,RY,RR,Span,WF). | |
264 | ||
265 | % convert integers x,y to reak x*10^y | |
266 | 'RDECIMAL'(IntX,IntY,RR,Span,WF) :- | |
267 | convert_int_to_real(int(10),R10), | |
268 | convert_int_to_real(IntY,RY), | |
269 | real_power_of_wf(R10,RY,RR10,Span,WF), | |
270 | convert_int_to_real(IntX,RX), | |
271 | 'RMUL'(RX,RR10,RR,WF). | |
272 | ||
273 | 'RLOG'(RX,RY,RR,Span,WF) :- | |
274 | real_binop_wf(log,RX,RY,RR,Span,WF). | |
275 | ||
276 | % ---- other binary predicates | |
277 | ||
278 | 'RLT'(RX,RY,RR,WF) :- | |
279 | real_comp_wf('<',RX,RY,RR,WF). | |
280 | ||
281 | 'REQ'(RX,RY,RR,WF) :- | |
282 | real_comp_wf('=:=',RX,RY,RR,WF). | |
283 | ||
284 | 'RNEQ'(RX,RY,RR,WF) :- | |
285 | real_comp_wf('=\\=',RX,RY,RR,WF). % =\= | |
286 | ||
287 | 'RLEQ'(RX,RY,RR,WF) :- | |
288 | real_comp_wf('=<',RX,RY,RR,WF). | |
289 | ||
290 | 'RGT'(RY,RX,RR,WF) :-'RLT'(RX,RY,RR,WF). | |
291 | ||
292 | 'RGEQ'(RY,RX,RR,WF) :-'RLEQ'(RX,RY,RR,WF). | |
293 | ||
294 | % set operators | |
295 | ||
296 | 'RMAXIMUM'(Set,Res,Span,WF) :- | |
297 | real_maximum_of_set(Set,Res,Span,WF). | |
298 | 'RMINIMUM'(Set,Res,Span,WF) :- | |
299 | real_minimum_of_set(Set,Res,Span,WF). | |
300 | ||
301 | % ---- Float operators | |
302 | ||
303 | 'RNEXT'(Nr,NextNr) :- | |
304 | is_next_larger_float(Nr,NextNr). | |
305 | 'RPREV'(Nr,NextNr) :- | |
306 | is_next_smaller_float(Nr,NextNr). | |
307 | ||
308 | % softfloat functions. | |
309 | ||
310 | :- use_module(extension('softfloat/softfloat')). | |
311 | ||
312 | 'SFADD16'(term(floating(X)),term(floating(Y)),term(floating(R))) :- | |
313 | init_softfloat, | |
314 | add16(X,Y,R). | |
315 | ||
316 | 'SFSUB16'(term(floating(X)),term(floating(Y)),term(floating(R))) :- | |
317 | init_softfloat, | |
318 | sub16(X,Y,R). | |
319 | ||
320 | 'SFMUL16'(term(floating(X)),term(floating(Y)),term(floating(R))) :- | |
321 | init_softfloat, | |
322 | mul16(X,Y,R). | |
323 | ||
324 | 'SFDIV16'(term(floating(X)),term(floating(Y)),term(floating(R))) :- | |
325 | init_softfloat, | |
326 | div16(X,Y,R). | |
327 | ||
328 | 'SFSQRT16'(term(floating(X)),term(floating(R))) :- | |
329 | init_softfloat, | |
330 | sqrt16(X,R). | |
331 | ||
332 | 'SFMULADD16'(term(floating(X)),term(floating(Y)),term(floating(Z)),term(floating(R))) :- | |
333 | init_softfloat, | |
334 | muladd16(X,Y,Z,R). | |
335 | %32bit | |
336 | ||
337 | 'SFADD32'(term(floating(X)),term(floating(Y)),term(floating(R))) :- | |
338 | init_softfloat, | |
339 | add32(X,Y,R). | |
340 | ||
341 | 'SFSUB32'(term(floating(X)),term(floating(Y)),term(floating(R))) :- | |
342 | init_softfloat, | |
343 | sub32(X,Y,R). | |
344 | ||
345 | 'SFMUL32'(term(floating(X)),term(floating(Y)),term(floating(R))) :- | |
346 | init_softfloat, | |
347 | mul32(X,Y,R). | |
348 | ||
349 | 'SFDIV32'(term(floating(X)),term(floating(Y)),term(floating(R))) :- | |
350 | init_softfloat, | |
351 | div32(X,Y,R). | |
352 | ||
353 | 'SFSQRT32'(term(floating(X)),term(floating(R))) :- | |
354 | init_softfloat, | |
355 | sqrt32(X,R). | |
356 | ||
357 | 'SFMULADD32'(term(floating(X)),term(floating(Y)),term(floating(Z)),term(floating(R))) :- | |
358 | init_softfloat, | |
359 | muladd32(X,Y,Z,R). | |
360 | ||
361 | %32bit | |
362 | %64bit | |
363 | ||
364 | 'SFADD64'(term(floating(X)),term(floating(Y)),term(floating(R))) :- | |
365 | init_softfloat, | |
366 | add64(X,Y,R). | |
367 | ||
368 | 'SFSUB64'(term(floating(X)),term(floating(Y)),term(floating(R))) :- | |
369 | init_softfloat, | |
370 | sub64(X,Y,R). | |
371 | ||
372 | 'SFMUL64'(term(floating(X)),term(floating(Y)),term(floating(R))) :- | |
373 | init_softfloat, | |
374 | mul64(X,Y,R). | |
375 | ||
376 | 'SFDIV64'(term(floating(X)),term(floating(Y)),term(floating(R))) :- | |
377 | init_softfloat, | |
378 | div64(X,Y,R). | |
379 | ||
380 | 'SFSQRT64'(term(floating(X)),term(floating(R))) :- | |
381 | init_softfloat, | |
382 | sqrt64(X,R). | |
383 | ||
384 | 'SFMULADD64'(term(floating(X)),term(floating(Y)),term(floating(Z)),term(floating(R))) :- | |
385 | init_softfloat, | |
386 | muladd64(X,Y,Z,R). | |
387 | %64bit | |
388 | %80bit | |
389 | 'SFADD80'((int(X1),int(X2)),(int(Y1),int(Y2)),(int(R1),int(R2))) :- | |
390 | init_softfloat, | |
391 | add80(X1,X2,Y1,Y2,R1,R2). | |
392 | ||
393 | 'SFSUB80'((int(X1),int(X2)),(int(Y1),int(Y2)),(int(R1),int(R2))) :- | |
394 | init_softfloat, | |
395 | sub80(X1,X2,Y1,Y2,R1,R2). | |
396 | ||
397 | 'SFMUL80'((int(X1),int(X2)),(int(Y1),int(Y2)),(int(R1),int(R2))) :- | |
398 | init_softfloat, | |
399 | mul80(X1,X2,Y1,Y2,R1,R2). | |
400 | ||
401 | 'SFDIV80'((int(X1),int(X2)),(int(Y1),int(Y2)),(int(R1),int(R2))) :- | |
402 | init_softfloat, | |
403 | div80(X1,X2,Y1,Y2,R1,R2). | |
404 | ||
405 | 'SFSQRT80'( (int(X1),int(X2)),(int(R1),int(R2)) ) :- | |
406 | init_softfloat, | |
407 | sqrt80(X1,X2,R1,R2). | |
408 | %80bit | |
409 | %128bit | |
410 | 'SFADD128'((int(X1),int(X2)),(int(Y1),int(Y2)),(int(R1),int(R2))) :- | |
411 | init_softfloat, | |
412 | add128(X1,X2,Y1,Y2,R1,R2). | |
413 | ||
414 | 'SFSUB128'((int(X1),int(X2)),(int(Y1),int(Y2)),(int(R1),int(R2))) :- | |
415 | init_softfloat, | |
416 | sub128(X1,X2,Y1,Y2,R1,R2). | |
417 | ||
418 | 'SFMUL128'((int(X1),int(X2)),(int(Y1),int(Y2)),(int(R1),int(R2))) :- | |
419 | init_softfloat, | |
420 | mul128(X1,X2,Y1,Y2,R1,R2). | |
421 | ||
422 | 'SFDIV128'((int(X1),int(X2)),(int(Y1),int(Y2)),(int(R1),int(R2))) :- | |
423 | init_softfloat, | |
424 | div128(X1,X2,Y1,Y2,R1,R2). | |
425 | ||
426 | 'SFSQRT128'((int(X1),int(X2)),(int(R1),int(R2))) :- | |
427 | init_softfloat, | |
428 | sqrt128(X1,X2,R1,R2). | |
429 | ||
430 | 'SFMULADD128'((int(X1),int(X2)),(int(Y1),int(Y2)),(int(Z1),int(Z2)),(int(R1),int(R2))) :- | |
431 | init_softfloat, | |
432 | muladd128(X1,X2,Y1,Y2,Z1,Z2,R1,R2). | |
433 | %128bit |