1 % (c) 2019-2022 Lehrstuhl fuer Softwaretechnik und Programmiersprachen,
2 % Heinrich Heine Universitaet Duesseldorf
3 % This software is licenced under EPL 1.0 (http://www.eclipse.org/org/documents/epl-v10.html)
4 :- module(dpllt_preprocessing, [preprocess_predicate/6,
5 optimize_clause_size_by_rewriting/5,
6 simplify_negation/2,
7 get_wd_theory_implications/3]).
8
9 :- use_module(library(sets)).
10 :- use_module(library(lists)).
11 :- use_module(library(plunit)).
12 :- use_module(library(terms), [term_size/2]).
13 :- use_module(dpllt_solver('difference_logic/ast_to_difference_logic')).
14 :- use_module(probsrc(bsyntaxtree), [find_identifier_uses/3,
15 remove_all_infos/2,
16 unique_typed_id/3,
17 syntaxtransformation/5,
18 disjunct_predicates/2,
19 conjunct_predicates/2,
20 safe_create_texpr/4,
21 create_negation/2,
22 create_implication/3,
23 get_texpr_expr/2,
24 get_texpr_type/2]).
25 :- use_module(probsrc(bsyntaxtree),[map_over_bexpr/2]).
26 :- use_module(probsrc('well_def/well_def_analyser'), [prove_sequent/1]).
27 :- use_module(probsrc(error_manager), [add_internal_error/2]).
28 :- use_module(probsrc(module_information), [module_info/2]).
29
30 :- module_info(group, dpllt).
31 :- module_info(description,'This module provides several preprocessing steps for the DPLL(T) based solver such as lifting negations from B operators.').
32
33 %%%
34 % Theory deduction for well-definedness to support the theory solver.
35 % For instance, deduce x:Dom for arr: Dom --> Ran & x:dom(arr).
36 % TO DO: improve code
37 get_wd_theory_implications(CandidateImpls, WDCandidateImpls, WDTheoryImpls) :-
38 CandidateImpls = candidate_impls(global(Global),integer(Integer),integer_ground(_),set(Set),set_ground(_)),
39 WDCandidateImpls = candidate_impls(global(WDGlobal),integer(WDInteger),integer_ground(_),set(WDSet),set_ground(_)),
40 append(WDInteger, WDSet, WDCandidates),
41 get_wd_theory_implications_for_candidates(Global, WDGlobal, GlobalImpls),
42 get_wd_theory_implications_for_candidates(Integer, WDCandidates, IntegerImpls),
43 get_wd_theory_implications_for_candidates(Set, WDCandidates, SetImpls),
44 conjunct_predicates([GlobalImpls,IntegerImpls,SetImpls], WDTheoryImpls).
45
46 b_function(total_function(Domain,_), Domain).
47 b_function(total_surjection(Domain,_), Domain).
48 b_function(total_injection(Domain,_), Domain).
49 b_function(total_bijection(Domain,_), Domain).
50 b_function(partial_function(Domain,_), Domain).
51 b_function(partial_surjection(Domain,_), Domain).
52 b_function(partial_injection(Domain,_), Domain).
53 b_function(partial_bijection(Domain,_), Domain).
54 b_function(surjection_relation(Domain,_), Domain).
55 b_function(total_relation(Domain,_), Domain).
56 b_function(relations(Domain,_), Domain).
57
58 b_function_membership(b(member(Id,Function),pred,_), Id, Domain) :-
59 get_texpr_expr(Function, Expr),
60 b_function(Expr, Domain).
61
62 get_wd_theory_implications_for_candidates(_, [], Out) :-
63 !,
64 Out = b(truth,pred,[]).
65 get_wd_theory_implications_for_candidates(Candidates, WDCandidates, ImplsConj) :-
66 collect_function_constraints(Candidates, FunctionConstraints),
67 get_wd_theory_implications_of_function_memberships(FunctionConstraints, WDCandidates, Impls),
68 conjunct_predicates(Impls, ImplsConj).
69
70 get_wd_theory_implications_of_function_memberships([], _, []).
71 get_wd_theory_implications_of_function_memberships([FunMem-Id-Domain|T], WDCandidates, Impls) :-
72 remove_all_infos(Id, CId),
73 memberchk(b(member(DomId,b(domain(CId),DType,DInfo)),pred,MInfo), WDCandidates),
74 !,
75 safe_create_texpr(member(DomId,b(domain(CId),DType,DInfo)), pred, MInfo, DomMember),
76 safe_create_texpr(disjunct(b(disjunct(b(negation(DomMember),pred,[]),b(negation(FunMem),pred,[])),pred,[]),b(member(DomId,Domain),pred,[])), pred, [], Impl),
77 Impls = [Impl|NT],
78 get_wd_theory_implications_of_function_memberships(T, WDCandidates, NT).
79 get_wd_theory_implications_of_function_memberships([_|T], WDCandidates, NT) :-
80 get_wd_theory_implications_of_function_memberships(T, WDCandidates, NT).
81
82 collect_function_constraints([], []).
83 collect_function_constraints([Candidate|T], FunctionConstraints) :-
84 b_function_membership(Candidate, Id, Domain),
85 !,
86 FunctionConstraints = [Candidate-Id-Domain|NT],
87 collect_function_constraints(T, NT).
88 collect_function_constraints([_|T], NT) :-
89 collect_function_constraints(T, NT).
90 %%%
91
92 negate_bool_expr(boolean_true, boolean_false).
93 negate_bool_expr(boolean_false, boolean_true).
94 negate_bool_expr(value(pred_true), boolean_false).
95 negate_bool_expr(value(pred_false), boolean_true).
96
97 is_boolean_true(b(boolean_true,boolean,_)).
98 is_boolean_true(b(value(pred_true),boolean,_)).
99
100 % convenience predicates:
101 disjunct_two_preds(A,B,Expr) :-
102 disjunct_predicates([A,B],b(Expr,_,_)).
103 conjunct_two_preds(A,B,Expr) :-
104 conjunct_predicates([A,B],b(Expr,_,_)).
105
106 simplify_negation(Ast, Simplified) :-
107 Ast = b(Expr,Type,Info),
108 simplify_negation_e(Expr, SimplifiedExpr),
109 safe_create_texpr(SimplifiedExpr, Type, Info, Simplified).
110
111 simplify_negation_e(negation(A), SimplifiedExpr) :-
112 A = b(truth,pred,_),
113 !,
114 SimplifiedExpr = falsity.
115 simplify_negation_e(negation(A), SimplifiedExpr) :-
116 A = b(falsity,pred,_),
117 !,
118 SimplifiedExpr = truth.
119 simplify_negation_e(negation(A), SimplifiedExpr) :-
120 A = b(Expr,pred,_),
121 negated_b_operator(Expr, NExpr),
122 !,
123 SimplifiedExpr=NExpr.
124 simplify_negation_e(negation(BoolEq), SimplifiedExpr) :-
125 % important for SAT constraints such as x=TRUE & not(x=TRUE)
126 ( BoolEq = b(equal(Bool,Id),pred,_)
127 ; BoolEq = b(equal(Id,Bool),pred,_)
128 ),
129 Id = b(identifier(_),boolean,_),
130 Bool = b(Expr,boolean,Info),
131 negate_bool_expr(Expr, NExpr),
132 safe_create_texpr(NExpr, boolean, Info, NBool),
133 !,
134 SimplifiedExpr = equal(NBool,Id).
135 simplify_negation_e(negation(Neg), SimplifiedExpr) :-
136 Neg = b(negation(A),pred,_),
137 !,
138 A = b(SimplifiedExpr,_,_).
139 simplify_negation_e(negation(Conj), SimplifiedExpr) :-
140 Conj = b(conjunct(A,B),pred,_),
141 !,
142 simplify_negation(b(negation(A),pred,[]), SimplifiedA),
143 simplify_negation(b(negation(B),pred,[]), SimplifiedB),
144 disjunct_two_preds(SimplifiedA,SimplifiedB,SimplifiedExpr).
145 simplify_negation_e(negation(Disj), SimplifiedExpr) :-
146 Disj = b(disjunct(A,B),pred,_),
147 !,
148 simplify_negation(b(negation(A),pred,[]), SimplifiedA),
149 simplify_negation(b(negation(B),pred,[]), SimplifiedB),
150 conjunct_two_preds(SimplifiedA,SimplifiedB,SimplifiedExpr).
151 simplify_negation_e(negation(Impl), SimplifiedExpr) :-
152 Impl = b(implication(A,B),pred,_),
153 !,
154 simplify_negation_e(conjunct(A,b(negation(B),pred,[])), SimplifiedExpr).
155 simplify_negation_e(negation(Equi), SimplifiedExpr) :-
156 Equi = b(equivalence(A,B),pred,_),
157 !,
158 simplify_negation_e(disjunct(b(negation(b(implication(A,B),pred,[])),pred,[]),
159 b(negation(b(implication(B,A),pred,[])),pred,[])), SimplifiedExpr).
160 simplify_negation_e(Conn, SimplifiedExpr) :-
161 ( Conn = conjunct(A,B)
162 ; Conn = disjunct(A,B)
163 ; Conn = implication(A,B)
164 ; Conn = equivalence(A,B)
165 ),
166 !,
167 simplify_negation(A, SimplifiedA),
168 simplify_negation(B, SimplifiedB),
169 ( Conn = conjunct(A,B) ->
170 SimplifiedExpr = conjunct(SimplifiedA,SimplifiedB)
171 ; Conn = disjunct(A,B) ->
172 SimplifiedExpr = disjunct(SimplifiedA,SimplifiedB)
173 ; Conn = implication(A,B) ->
174 SimplifiedExpr = implication(SimplifiedA,SimplifiedB)
175 ; Conn = equivalence(A,B) ->
176 SimplifiedExpr = equivalence(SimplifiedA,SimplifiedB)
177 ).
178 simplify_negation_e(Expr, Expr).
179
180 is_literal(b(truth,pred,[])).
181 is_literal(b(falsity,pred,[])).
182 is_literal(b(equal(b(_,boolean,_),b(identifier(_),boolean,_)),pred,[])).
183 is_literal(b(equal(b(identifier(_),boolean,_),b(_,boolean,_)),pred,[])).
184
185 %% optimize_clause_size_by_rewriting(+BoolFormula, +SatVars, -OptBoolFormula, -NewSatVars, -NewVarConj).
186 % CNF construction can suffer from exponential blowup in size.
187 % We thus rewrite
188 % - nested equivalences TO DO
189 % - equivalences under disjunctions TO DO
190 % - conjunctions which are directly under a disjunction
191 % Rewriting means to introduce a new boolean variable to break nested distributivity.
192 % For instance, A <-> (B <-> (C <-> D)) is rewritten to A <-> (B <-> R) & R <-> (C <-> D).
193 % A or (B <-> C) is rewritten to A or R & (R <-> (B <-> C))
194 % (A & B & C) or (B & C & D) is rewritten to (A & B & C) or R & (R <-> (B & C & D))
195 % Note: Assumes that negation has been pushed to literals.
196 % TO DO: use only "obvious" rewritings and not all
197 optimize_clause_size_by_rewriting(BoolFormula, SatVars, OptBoolFormula, NewSatVars, NewVarConj) :-
198 BoolFormula = b(Expr,Type,Info),
199 optimize_clause_size_by_rewriting_expr(Expr, SatVars, OptExpr, NewSatVars, NewVarConj),
200 safe_create_texpr(OptExpr, Type, Info, OptBoolFormula).
201
202 %% get_larger_conj(+C1, +C2, -Larger, -Other).
203 % Return the conjunction with the larger term size
204 % but at least one conjunction has to be nested.
205 get_larger_conj(C1, C2, Larger, Other) :-
206 C1 = b(conjunct(C1A,C1B),pred,_),
207 C2 \= b(conjunct(_,_),pred,_),
208 ( \+ is_literal(C1A); \+ is_literal(C1B)),
209 !,
210 Larger = C1,
211 Other = C2.
212 get_larger_conj(C1, C2, Larger, Other) :-
213 C2 = b(conjunct(C2A,C2B),pred,_),
214 C1 \= b(conjunct(_,_),pred,_),
215 ( \+ is_literal(C2A); \+ is_literal(C2B)),
216 !,
217 Larger = C2,
218 Other = C1.
219 get_larger_conj(C1, C2, Larger, Other) :-
220 C1 = b(conjunct(C1A,C1B),pred,_),
221 C2 = b(conjunct(C2A,C2B),pred,_),
222 ( \+ is_literal(C1A)
223 ; \+ is_literal(C1B)
224 ; \+ is_literal(C2A)
225 ; \+ is_literal(C2B)
226 ),
227 term_size(C1, S1),
228 term_size(C2, S2),
229 ( S1 > S2
230 -> Larger = C1,
231 Other = C2
232 ; Larger = C2,
233 Other = C1
234 ).
235
236 optimize_clause_size_by_rewriting_expr(disjunct(D1,D2), SatVars, OptExpr, NewSatVars, NewVarConj) :-
237 D1 = b(conjunct(_,_),pred,_),
238 D2 \= b(conjunct(_,_),pred,_),
239 !,
240 optimize_clause_size_by_rewriting_expr(disjunct(D2,D1), SatVars, OptExpr, NewSatVars, NewVarConj).
241 optimize_clause_size_by_rewriting_expr(disjunct(D1,D2), SatVars, OptExpr, NewSatVars, NewVarConj) :-
242 get_larger_conj(D1, D2, ToReplace, ToKeep),
243 !,
244 unique_typed_id("_cnf_opt", boolean, NewSatVar),
245 optimize_clause_size_by_rewriting(ToReplace, SatVars, NToReplace, SatVars1, NewVarConj1),
246 safe_create_texpr(equal(NewSatVar,b(boolean_true,boolean,[])), pred, [], NewVarTrue),
247 safe_create_texpr(equal(NewSatVar,b(boolean_false,boolean,[])), pred, [], NewVarFalse),
248 safe_create_texpr(disjunct(NewVarFalse,NToReplace), pred, [], NewVarImpl1),
249 safe_create_texpr(negation(NToReplace), pred, [], ToReplaceNeg),
250 negate_bool_formula(ToReplaceNeg, ToReplaceNegClean),
251 optimize_clause_size_by_rewriting(ToReplaceNegClean, SatVars1, NToReplaceNegClean, SatVars2, NewVarConj2),
252 NewVarImpl2 = b(disjunct(NewVarTrue,NToReplaceNegClean),pred,[]),
253 optimize_clause_size_by_rewriting(ToKeep, SatVars2, NToKeep, SatVars3, NewVarConj3),
254 OptExpr = disjunct(NToKeep,NewVarTrue),
255 NewSatVars = [NewSatVar|SatVars3],
256 append([NewVarConj1, NewVarConj2, NewVarConj3], TNewVarConj),
257 safe_create_texpr(conjunct(NewVarImpl1,NewVarImpl2), pred, [], Conj),
258 NewVarConj = [Conj|TNewVarConj].
259 optimize_clause_size_by_rewriting_expr(Binary, SatVars, NBinary, NewSatVars, NewVarConj) :-
260 functor(Binary, Functor, 2),
261 (Functor = conjunct; Functor = disjunct; Functor = implication; Functor = equivalence),
262 !,
263 arg(1, Binary, Arg1),
264 arg(2, Binary, Arg2),
265 optimize_clause_size_by_rewriting(Arg1, SatVars, NArg1, SatVars1, NewVarConj1),
266 optimize_clause_size_by_rewriting(Arg2, SatVars1, NArg2, NewSatVars, NewVarConj2),
267 functor(NBinary, Functor, 2),
268 arg(1, NBinary, NArg1),
269 arg(2, NBinary, NArg2),
270 append(NewVarConj1, NewVarConj2, NewVarConj).
271 optimize_clause_size_by_rewriting_expr(Expr, SatVars, Expr, SatVars, []).
272
273 %% preprocess_predicate(+PerformStaticAnalysis, +RewriteToIdl, +Pred, -LiftedPred, -FilteredCandidateImplsConj, -CandidateImpls).
274 preprocess_predicate(PerformStaticAnalysis, RewriteToIdl, Pred, LiftedPred, FilteredCandidateImplsConj, CandidateImpls) :-
275 empty_candidate_impls_acc(CandidateAcc),
276 lift_negations_find_impls(Pred, RewriteToIdl, CandidateAcc, TLiftedPred, CandidateImpls), !,
277 LiftedPred = TLiftedPred,
278 ( PerformStaticAnalysis=true
279 -> process_candidate_impls(CandidateImpls, FilteredCandidateImplsConj)
280 ; FilteredCandidateImplsConj = b(truth,pred,[])
281 ).
282
283 %% process_candidate_impls(+CandidateImpls, -FilteredCandidateImplsConj).
284 % Given a candidate like x>y, get partner candidates like y<x, y=<x and x=y.
285 % Filter those partner candidates that exist in the given formula (prevent introducing redundant SAT variables)
286 % and create the implication, e.g., x>y => (not(y<x) & not(y=<x) & not(x=y)).
287 process_candidate_impls(CandidateImpls, FilteredCandidateImplsConj) :-
288 CandidateImpls = candidate_impls(global(Global),integer(Integer),integer_ground(IntegerGrnd),set(Set),set_ground(SetGrnd)),
289 process_candidate_impls_list(true, Global, GlobalImplsConj),
290 process_candidate_impls_list(false, Integer, IntImplsConj),
291 process_candidate_impls_list(false, IntegerGrnd, IntGrndImplsConj),
292 process_candidate_impls_list(false, Set, SetImplsConj),
293 process_candidate_impls_list(false, SetGrnd, SetGrndImplsConj),
294 conjunct_predicates([GlobalImplsConj,IntImplsConj,IntGrndImplsConj,SetImplsConj,SetGrndImplsConj], FilteredCandidateImplsConj).
295
296 process_candidate_impls_list(IsGlobalType, GrndCandidateImpls, ImplsConj) :-
297 process_candidate_impls_list(IsGlobalType, GrndCandidateImpls, [], Impls),
298 conjunct_predicates(Impls, ImplsConj).
299
300 process_candidate_impls_list(_, [], Acc, ImplsConj) :- !, ImplsConj=Acc.
301 process_candidate_impls_list(IsGlobalType, [GrndCandidateImpl|T], Acc, ImplsConj) :-
302 ( is_true(IsGlobalType)
303 -> get_global_type_partner_candidates(GrndCandidateImpl, T, Partners, _RestT)
304 ; get_partner_candidates(GrndCandidateImpl, T, Partners, _RestT)
305 ),
306 Partners \== [],
307 !,
308 build_implications_from_ground_candidates(GrndCandidateImpl, Partners, PartialImplsConj),
309 process_candidate_impls_list(IsGlobalType, T, [PartialImplsConj|Acc], ImplsConj).
310 process_candidate_impls_list(IsGlobalType, [_|T], Acc, ImplsConj) :-
311 process_candidate_impls_list(IsGlobalType, T, Acc, ImplsConj).
312
313 %% build_implications_from_ground_candidates(+GrndCandidateImpl, +Partners, -PartialImplsConj).
314 % Given GrndCandidateImpl and some matching partner candidates, collect proven implications:
315 % p in Partners, add one of 'GrndCandidateImpl => p', 'p => GrndCandidateImpl' or nothing
316 build_implications_from_ground_candidates(GrndCandidateImpl, Partners, PartialImplsConj) :-
317 build_implications_from_ground_candidates(GrndCandidateImpl, Partners, [], PartialImplsConj).
318 % TO DO: improve, sometimes too much overhead
319 %build_conj_implications_from_ground_candidates(GrndCandidateImpl, Partners, Partners, [], PartialImplsConj2),
320 %conjunct_predicates([PartialImplsConj1,PartialImplsConj2], PartialImplsConj).
321
322 %build_conj_implications_from_ground_candidates(_, [], _, Acc, PartialImplsConj) :-
323 % conjunct_predicates(Acc, PartialImplsConj).
324 %build_conj_implications_from_ground_candidates(GrndCandidateImpl, [Partner|T], Partners, Acc, PartialImplsConj) :-
325 % select(Partner, Partners, Rest),
326 % NegConj = b(disjunct(b(negation(GrndCandidateImpl),pred,[]),b(negation(Partner),pred,[])),pred,[]),
327 % remove_zero_var(NegConj, NegConjNoZero),
328 % build_conj_implications_from_ground_conj(NegConj, NegConjNoZero, Rest, Acc, NewAcc),
329 % build_conj_implications_from_ground_candidates(GrndCandidateImpl, T, Partners, NewAcc, PartialImplsConj).
330 %
331 %build_conj_implications_from_ground_conj(_, _, [], Acc, Acc).
332 %build_conj_implications_from_ground_conj(NegConj, NegConjNoZero, [Partner|T], Acc, Impls) :-
333 % remove_zero_var(Partner, PartnerNoZero),
334 % Impl1 = b(disjunct(NegConj,Partner),pred,[]),
335 % Impl1NoZero = b(disjunct(NegConjNoZero,PartnerNoZero),pred,[]),
336 % Impl2 = b(disjunct(NegConj,b(negation(Partner),pred,[])),pred,[]),
337 % Impl2NoZero = b(disjunct(NegConjNoZero,b(negation(PartnerNoZero),pred,[])),pred,[]),
338 % ( %nl,write('Try Impl1: '), nl, translate:print_bexpr(Impl1NoZero), nl,
339 % prove_sequent(Impl1NoZero)%, write('True'),nl
340 % -> NewAcc = [Impl1|Acc]
341 % ; %nl,write('Try Impl2: '), nl, translate:print_bexpr(Impl2NoZero), nl,
342 % ( prove_sequent(Impl2NoZero),%, write('True'),nl,
343 % NewAcc = [Impl2|Acc]
344 % ; NewAcc = Acc
345 % )
346 % ),
347 % build_conj_implications_from_ground_conj(NegConj, NegConjNoZero, T, NewAcc, Impls).
348
349 /*
350 prove_with_prob(Constraint) :-
351 find_typed_identifier_uses(Constraint, [], TypedIds),
352 translate:generate_typing_predicates(TypedIds, TypingPreds),
353 conjunct_predicates(TypingPreds, TypingPred),
354 Forall = b(forall(TypedIds,TypingPred,Constraint),pred,[]),
355 solver_interface:solve_predicate(Forall, _, Res),
356 Res == solution([]).
357 */
358
359 build_implications_from_ground_candidates(_, [], Acc, PartialImplsConj) :-
360 conjunct_predicates(Acc, PartialImplsConj).
361 build_implications_from_ground_candidates(GrndCandidateImpl, [Partner|T], Acc, PartialImplsConj) :-
362 safe_create_texpr(negation(GrndCandidateImpl), pred, [], NegGrndCandidateImpl),
363 NegPartner = b(negation(Partner),pred,[]),
364 % possibly remove zero var from idl solver
365 safe_create_texpr(disjunct(NegGrndCandidateImpl,Partner), pred, [], Impl1),
366 remove_zero_var(Impl1, Impl1NoZero),
367 safe_create_texpr(disjunct(NegPartner,GrndCandidateImpl), pred, [], Impl2),
368 remove_zero_var(Impl2, Impl2NoZero),
369 safe_create_texpr(disjunct(NegGrndCandidateImpl,b(negation(Partner),pred,[])), pred, [], Impl3),
370 remove_zero_var(Impl3, Impl3NoZero),
371 safe_create_texpr(disjunct(NegPartner,b(negation(GrndCandidateImpl),pred,[])), pred, [], Impl4),
372 remove_zero_var(Impl4, Impl4NoZero),
373 ( %nl,write('Try Impl1: '), nl, translate:print_bexpr(Impl1NoZero), nl,
374 prove_sequent(Impl1NoZero)% write('True'),nl
375 -> NewAcc = [Impl1|Acc]
376 ; %nl,write('Try Impl2: '), nl, translate:print_bexpr(Impl2NoZero), nl,
377 prove_sequent(Impl2NoZero)% write('True'),nl
378 -> NewAcc = [Impl2|Acc]
379 ; %nl,write('Try Impl3: '), nl, translate:print_bexpr(Impl3NoZero), nl,
380 prove_sequent(Impl3NoZero)% write('True'),nl
381 -> NewAcc = [Impl3|Acc]
382 ; %nl,write('Try Impl4: '), nl, translate:print_bexpr(Impl4NoZero), nl,
383 prove_sequent(Impl4NoZero)% write('True'),nl
384 -> NewAcc = [Impl4|Acc]
385 ; NewAcc = Acc
386 ),
387 build_implications_from_ground_candidates(GrndCandidateImpl, T, NewAcc, PartialImplsConj).
388
389 %create_var_bindings([], []).
390 %create_var_bindings([Id|T], [bind(Id,_)|NT]) :-
391 % create_var_bindings(T, NT).
392 %
393 %get_var_bindings_for_ast(Ast, Bindings) :-
394 % find_identifier_uses(Ast, [], Ids),
395 % create_var_bindings(Ids, Bindings).
396
397 uses_exactly_same_ids(A, UsedIds) :-
398 find_identifier_uses(A, [], UsedA),
399 sets:subset(UsedA, UsedIds),
400 sets:subset(UsedIds, UsedA), !.
401
402 uses_same_id(A, UsedIds) :-
403 find_identifier_uses(A, [], UsedA),
404 sets:intersection(UsedA, UsedIds, Inter),
405 Inter \== [].
406
407 %% get_partner_candidates(+Id, +Rest, -Partners, -RestRest).
408 % ASTs in Rest have the same type.
409 % idea: given, e.g., 1<x: search for all comparisons between x and a ground value like 0<x, x<10 etc.
410 % afterwards, evaluate the constraints and try to build implications like 1<x => 0<x
411 get_partner_candidates(GrndCandidateImpl, Rest, Partners, RestRest) :-
412 find_identifier_uses(GrndCandidateImpl, [], UsedIds),
413 get_partner_candidates(UsedIds, Rest, [], Partners, [], RestRest),!.
414
415 get_partner_candidates(_, [], PartnersAcc, PartnersAcc, RestAcc, RestAcc).
416 get_partner_candidates(UsedIds, Rest, PartnersAcc, Partners, RestAcc, RestRest) :-
417 select(Partner, Rest, TRest),
418 ( uses_exactly_same_ids(Partner, UsedIds)
419 -> NPartnersAcc = [Partner|PartnersAcc],
420 NRestAcc = RestAcc
421 ; NPartnersAcc = PartnersAcc,
422 NRestAcc = [Partner|RestAcc]
423 ),
424 !,
425 get_partner_candidates(UsedIds, TRest, NPartnersAcc, Partners, NRestAcc, RestRest).
426
427 get_global_type_partner_candidates(GrndCandidateImpl, Rest, Partners, RestRest) :-
428 find_identifier_uses(GrndCandidateImpl, [], UsedIds),
429 get_global_type_partner_candidates(UsedIds, Rest, [], Partners, [], RestRest),!.
430
431 get_global_type_partner_candidates(_, [], PartnersAcc, PartnersAcc, RestAcc, RestAcc).
432 get_global_type_partner_candidates(UsedIds, Rest, PartnersAcc, Partners, RestAcc, RestRest) :-
433 select(Partner, Rest, TRest),
434 ( uses_same_id(Partner, UsedIds)
435 -> NPartnersAcc = [Partner|PartnersAcc],
436 NRestAcc = RestAcc
437 ; NPartnersAcc = PartnersAcc,
438 NRestAcc = [Partner|RestAcc]
439 ),
440 !,
441 get_global_type_partner_candidates(UsedIds, TRest, NPartnersAcc, Partners, NRestAcc, RestRest).
442
443 candidate_impl_binary_operator(equal, global).
444 candidate_impl_binary_operator(member, global).
445 candidate_impl_binary_operator(equal, integer).
446 candidate_impl_binary_operator(member, integer).
447 candidate_impl_binary_operator(equal, set).
448 candidate_impl_binary_operator(less, integer).
449 candidate_impl_binary_operator(less_equal, integer).
450 candidate_impl_binary_operator(greater, integer).
451 candidate_impl_binary_operator(greater_equal, integer).
452 candidate_impl_binary_operator(member, set).
453 candidate_impl_binary_operator(subset, set).
454 candidate_impl_binary_operator(subset_strict, set).
455
456 ground_b_ast(Ast) :-
457 ( var(Ast)
458 -> fail
459 ; ground_b_ast_nonvar(Ast)
460 ).
461
462 ground_b_ast_nonvar(b(truth,_,_)).
463 ground_b_ast_nonvar(b(falsity,_,_)).
464 ground_b_ast_nonvar(b(integer(Int),_,_)) :-
465 ground(Int).
466 ground_b_ast_nonvar(b(value(int(Int)),_,_)) :-
467 ground(Int).
468 ground_b_ast_nonvar(b(interval(Min,Max),_,_)) :-
469 Min = b(integer(I1),integer,_),
470 Max = b(integer(I2),integer,_),
471 integer(I1),
472 integer(I2).
473 ground_b_ast_nonvar(b(set_extension(AstList),_,_)) :-
474 maplist(ground_b_ast, AstList).
475 ground_b_ast_nonvar(b(value(Set),_,_)) :-
476 ground(Set).
477
478 %% extend_candidate_impls_acc(+Type, +Functor, +Arg1, +Arg2, +Ast, +CandidateAcc, -NewCandidateAcc) :-
479 % Collect ASTs with functor in candidate_impl_binary_operator/2 and both arguments being
480 % an identifier or ground value.
481 extend_candidate_impls_acc(Type, Functor, Arg1, Arg2, Ast, CandidateAcc, NewCandidateAcc) :-
482 Type == pred,
483 Arg1 = b(_,AType,_),
484 functor(AType, FType, _),
485 candidate_impl_binary_operator(Functor, FType),
486 ( (ground_b_ast(Arg1),
487 is_id_or_pred_containing_id(Arg2))
488 ;
489 (ground_b_ast(Arg2),
490 is_id_or_pred_containing_id(Arg1))
491 ),
492 remove_all_infos(Ast, AstClean),
493 ast_not_in_candidate_acc(ground, FType, AstClean, CandidateAcc),
494 !,
495 extend_candidate_impls_acc_safe_ground(FType, CandidateAcc, Ast, NewCandidateAcc).
496 extend_candidate_impls_acc(Type, Functor, Arg1, Arg2, Ast, CandidateAcc, NewCandidateAcc) :-
497 Type == pred,
498 Arg1 = b(_,AType,_),
499 functor(AType, FType, _),
500 candidate_impl_binary_operator(Functor, FType),
501 is_id_or_pred_containing_id(Arg1),
502 is_id_or_pred_containing_id(Arg2),
503 remove_all_infos(Ast, AstClean),
504 ast_not_in_candidate_acc(var, FType, AstClean, CandidateAcc),
505 !,
506 extend_candidate_impls_acc_safe(FType, CandidateAcc, Ast, NewCandidateAcc).
507 extend_candidate_impls_acc(_, _, _, _, _, CandidateAcc, CandidateAcc).
508
509 is_identifier(identifier(_)).
510
511 is_id_or_pred_containing_id(TExpr) :-
512 get_texpr_expr(TExpr, Expr),
513 functor(Expr, Functor, _),
514 % no ASTs with local identifiers
515 \+ member(Functor, [forall,exists,comprehension_set,lambda,general_sum,general_product,event_b_comprehension_set,quantified_union,quantified_intersection]),
516 map_over_bexpr(is_identifier, TExpr).
517
518 %% ast_not_in_candidate_acc(+VarOrGround, +Type, +AstClean, +CandidateAcc).
519 ast_not_in_candidate_acc(var, global, AstClean, candidate_impls(global(Global),integer(_),integer_ground(_),set(_),set_ground(_))) :-
520 \+ member(AstClean, Global).
521 ast_not_in_candidate_acc(var, integer, AstClean, candidate_impls(global(_),integer(Integer),integer_ground(_),set(_),set_ground(_))) :-
522 \+ member(AstClean, Integer).
523 ast_not_in_candidate_acc(ground, integer, AstClean, candidate_impls(global(_),integer(_),integer_ground(IntegerGrnd),set(_),set_ground(_))) :-
524 \+ member(AstClean, IntegerGrnd).
525 ast_not_in_candidate_acc(var, set, AstClean, candidate_impls(global(_),integer(_),integer_ground(_),set(Set),set_ground(_))) :-
526 \+ member(AstClean, Set).
527 ast_not_in_candidate_acc(ground, set, AstClean, candidate_impls(global(_),integer(_),integer_ground(_),set(_),set_ground(SetGrnd))) :-
528 \+ member(AstClean, SetGrnd).
529
530 % TO DO: use get_sorted_equality/3 for equalities
531 extend_candidate_impls_acc_safe_ground(integer, candidate_impls(global(Global),integer(Integer),integer_ground(IntegerGrnd),set(Set),set_ground(SetGrnd)), Ast, candidate_impls(global(Global),integer(Integer),integer_ground([Ast|IntegerGrnd]),set(Set),set_ground(SetGrnd))).
532 extend_candidate_impls_acc_safe_ground(set, candidate_impls(global(Global),integer(Integer),integer_ground(IntegerGrnd),set(Set),set_ground(SetGrnd)), Ast, candidate_impls(global(Global),integer(Integer),integer_ground(IntegerGrnd),set(Set),set_ground([Ast|SetGrnd]))).
533
534 extend_candidate_impls_acc_safe(global, candidate_impls(global(Global),integer(Integer),integer_ground(IntegerGrnd),set(Set),set_ground(SetGrnd)), Ast, candidate_impls(global([Ast|Global]),integer(Integer),integer_ground(IntegerGrnd),set(Set),set_ground(SetGrnd))).
535 extend_candidate_impls_acc_safe(integer, candidate_impls(global(Global),integer(Integer),integer_ground(IntegerGrnd),set(Set),set_ground(SetGrnd)), Ast, candidate_impls(global(Global),integer([Ast|Integer]),integer_ground(IntegerGrnd),set(Set),set_ground(SetGrnd))).
536 extend_candidate_impls_acc_safe(set, candidate_impls(global(Global),integer(Integer),integer_ground(IntegerGrnd),set(Set),set_ground(SetGrnd)), Ast, candidate_impls(global(Global),integer(Integer),integer_ground(IntegerGrnd),set([Ast|Set]),set_ground(SetGrnd))).
537
538 empty_candidate_impls_acc(candidate_impls(global([]),integer([]),integer_ground([]),set([]),set_ground([]))).
539
540 %% lift_negations_find_impls(+Pred, +RewriteToIdl, +CandidateAcc, -LPred, -CandidateImpls).
541 lift_negations_find_impls(Pred, RewriteToIdl, CandidateAcc, LPred, CandidateImpls) :-
542 Pred = b(Expr,Type,Info),
543 !,
544 lift_negations_find_impls_e(Expr, Type, Info, RewriteToIdl, CandidateAcc, LExpr, CandidateImpls),
545 safe_create_texpr(LExpr,Type,Info,LPred).
546 lift_negations_find_impls(Pred, _, CandidateAcc, Pred, CandidateAcc).
547
548 %% lift_negations_find_impls_e(+Expr, +Type, +RewriteToIdl, +CandidateAcc, -LExpr, -CandidateImpls).
549 % Unfold negated operators like not_equal to detect equal ASTs when introducing
550 % boolean variables for the SAT formula. For instance, it improves performance
551 % to transform 'x={} & x/={}' to 'x={} & not(x={})' first, since we can then translate to
552 % 'A & not(A)' in SAT rather than 'A & B'.
553 % Collect specific operators that might imply each other like 'x>0' and 'x>1' result to 'x>1 => x>0' (see candidate_impl_binary_operator/2).
554 % Note: only binary operators are checked recursively since we transform SMT to SAT on the level of conjunct, disjunct and implication
555 % Note: CandidateImpls contains true asts of lifted predicates, e.g., 'x:{1,2}' is stored for 'x/:{1,2}'
556 lift_negations_find_impls_e(Expr, _, _, _, _, _, _) :- var(Expr),!,
557 add_internal_error('Illegal var B AST: ',lift_negations_find_impls_e(Expr, _, _, _, _, _, _)),fail.
558 lift_negations_find_impls_e(Expr, _, _, _, CandidateAcc, LPred, CandidateImpls) :-
559 % important to use the same SAT variables, e.g., for x=TRUE & x=FALSE
560 (Expr = equal(Bool,BoolId) ; Expr = equal(BoolId,Bool)),
561 BoolId = b(identifier(_),boolean,_),
562 is_boolean_true(Bool),
563 !,
564 LPred = negation(b(equal(b(boolean_false,boolean,[]),BoolId),pred,[])),
565 CandidateImpls = CandidateAcc.
566 lift_negations_find_impls_e(Expr, _, Info, RewriteToIdl, CandidateAcc, LPred, CandidateImpls) :-
567 Expr = equivalence(Lhs,Rhs),
568 !,
569 create_implication(Lhs,Rhs,Impl1),
570 create_implication(Rhs,Lhs,Impl2),
571 Rewritten = conjunct(Impl1,Impl2),
572 /*Disj1 = b(conjunct(Lhs,Rhs),pred,[]),
573 Disj2 = b(conjunct(b(negation(Lhs),pred,[]),b(negation(Rhs),pred,[])),pred,[]),
574 Rewritten = b(disjunct(Disj1,Disj2),pred,[]),*/
575 lift_negations_find_impls_e(Rewritten, pred, Info, RewriteToIdl, CandidateAcc, LPred, CandidateImpls).
576 lift_negations_find_impls_e(Expr, _, Info, RewriteToIdl, CandidateAcc, LExpr, CandidateImpls) :-
577 Expr = implication(Lhs,Rhs),
578 !,
579 create_negation(Lhs,NLhs),
580 Rewritten = disjunct(NLhs,Rhs),
581 lift_negations_find_impls_e(Rewritten, pred, Info, RewriteToIdl, CandidateAcc, LExpr, CandidateImpls).
582 lift_negations_find_impls_e(Expr, _, Info, RewriteToIdl, CandidateAcc, LExpr, CandidateImpls) :-
583 Expr = negation(b(negation(Pos),pred,_)),
584 get_texpr_expr(Pos, PosExpr),
585 get_texpr_type(Pos, PosType),
586 !,
587 lift_negations_find_impls_e(PosExpr, PosType, Info, RewriteToIdl, CandidateAcc, LExpr, CandidateImpls).
588 lift_negations_find_impls_e(Expr, _, _, _, CandidateAcc, LExpr, CandidateImpls) :-
589 Expr = negation(b(truth,pred,_)),
590 !,
591 LExpr = falsity,
592 CandidateImpls = CandidateAcc.
593 lift_negations_find_impls_e(Expr, _, _, _, CandidateAcc, LExpr, CandidateImpls) :-
594 Expr = negation(b(falsity,pred,_)),
595 !,
596 LExpr = truth,
597 CandidateImpls = CandidateAcc.
598 lift_negations_find_impls_e(Inequality, _, _, RewriteToIdl, CandidateAcc, LExpr, CandidateImpls) :-
599 is_true(RewriteToIdl),
600 ( Inequality = not_equal(b(_,integer,[]),_)
601 %IEQ = Inequality
602 ; Inequality = negation(b(equal(b(_,integer,[]),_),pred,_))
603 %IEQ = b(not_equal(Arg1,Arg2),pred,EQInfo)
604 ),
605 rewrite_inequality_to_idl_disj_no_zero(b(Inequality,pred,[]), DLConstraint),
606 !,
607 DLConstraint = b(disjunct(Lhs,Rhs),pred,_),
608 create_negation(LhsPos,Lhs),
609 create_negation(RhsPos,Rhs),
610 safe_create_texpr(less_equal(LArg1,LArg2),pred,[],LhsPos),
611 safe_create_texpr(less_equal(RArg1,RArg2),pred,[],RhsPos),
612 disjunct_two_preds(Lhs,Rhs,LExpr),
613 %extend_candidate_impls_acc(pred, not_equal, Arg1, Arg2, IEQ, CandidateAcc, CandidateAcc1),
614 extend_candidate_impls_acc(pred, less_equal, LArg1, LArg2, LhsPos, CandidateAcc, CandidateAcc1),
615 extend_candidate_impls_acc(pred, less_equal, RArg1, RArg2, RhsPos, CandidateAcc1, CandidateImpls).
616 lift_negations_find_impls_e(Equality, _, _, RewriteToIdl, CandidateAcc, LPred, CandidateImpls) :-
617 is_true(RewriteToIdl),
618 ( Equality = equal(b(_,integer,_),_)
619 %EQ = Equality
620 ; Equality = negation(b(not_equal(b(_,integer,_),_),pred,_))
621 %EQ = b(equal(Arg1,Arg2),pred,EQInfo)
622 ),
623 rewrite_to_idl_no_zero(b(Equality,pred,[]), ConjList),
624 !,
625 ConjList = [TLhs,TRhs],
626 % don't create _zero var from idl solver in SAT formula
627 remove_idl_origin_from_info(TLhs, Lhs),
628 remove_idl_origin_from_info(TRhs, Rhs),
629 safe_create_texpr(less_equal(LArg1,LArg2),pred,[],Lhs),
630 safe_create_texpr(less_equal(RArg1,RArg2),pred,[],Rhs),
631 conjunct_two_preds(Lhs,Rhs,LPred),
632 extend_candidate_impls_acc(pred, less_equal, LArg1, LArg2, Lhs, CandidateAcc, CandidateAcc1),
633 extend_candidate_impls_acc(pred, less_equal, RArg1, RArg2, Rhs, CandidateAcc1, CandidateImpls).
634 lift_negations_find_impls_e(Expr, Type, _, _, CandidateAcc, LExpr, CandidateImpls) :-
635 negated_b_operator(Expr, TrueNode),
636 !,
637 safe_create_texpr(TrueNode,Type,[],TrueAst),
638 TrueNode =.. [NFunctor, Arg1, Arg2],
639 extend_candidate_impls_acc(Type, NFunctor, Arg1, Arg2, TrueAst, CandidateAcc, CandidateImpls),
640 LExpr = negation(TrueAst).
641 % simplify negated conjunction or disjunction possibly introduced by rewriting equivalence and implication
642 lift_negations_find_impls_e(Expr, _, Info, RewriteToIdl, CandidateAcc, LExpr, CandidateImpls) :-
643 Expr = negation(Arg),
644 Arg = b(conjunct(Conj1,Conj2),pred,_),
645 !,
646 create_negation(Conj1,NConj1),
647 create_negation(Conj2,NConj2),
648 disjunct_two_preds(NConj1,NConj2,Rewritten),
649 lift_negations_find_impls_e(Rewritten, pred, Info, RewriteToIdl, CandidateAcc, LExpr, CandidateImpls).
650 lift_negations_find_impls_e(Expr, _, Info, RewriteToIdl, CandidateAcc, LExpr, CandidateImpls) :-
651 Expr = negation(Arg),
652 Arg = b(disjunct(Conj1,Conj2),pred,_),
653 !,
654 create_negation(Conj1,NConj1),
655 create_negation(Conj2,NConj2),
656 Rewritten = conjunct(NConj1,NConj2),
657 lift_negations_find_impls_e(Rewritten, pred, Info, RewriteToIdl, CandidateAcc, LExpr, CandidateImpls).
658 lift_negations_find_impls_e(Expr, pred, _Info, RewriteToIdl, CandidateAcc, LExpr, CandidateImpls) :-
659 Expr = negation(Arg),
660 Arg = b(ArgExpr,ArgType,ArgInfo),
661 lift_negations_find_impls_e(ArgExpr, ArgType, ArgInfo, RewriteToIdl, CandidateAcc, LArgExpr, CandidateImpls),
662 safe_create_texpr(LArgExpr,pred,ArgInfo,TLA),
663 create_negation(TLA,b(LExpr,_,_)).
664 lift_negations_find_impls_e(Expr, pred, Info, RewriteToIdl, CandidateAcc, LExpr, CandidateImpls) :-
665 functor(Expr, Functor, 2),
666 Names = [], % quantifications (comprehension_set, exists) will be abstracted by a single SAT variable
667 syntaxtransformation(Expr,[Arg1,Arg2],Names,[LLhs,LRhs],LExpr), % TODO REVIEW: syntaxtransformation could have two subarguments even if arity is not 2
668 !,
669 extend_candidate_impls_acc(pred, Functor, Arg1, Arg2, b(Expr,pred,Info), CandidateAcc, CandidateAcc1),
670 lift_negations_find_impls(Arg1, RewriteToIdl, CandidateAcc1, LLhs, CandidateAcc2),
671 lift_negations_find_impls(Arg2, RewriteToIdl, CandidateAcc2, LRhs, CandidateImpls).
672 lift_negations_find_impls_e(Expr, _, _, _, CandidateAcc, Expr, CandidateAcc).
673
674 is_true(X) :- (X==true -> true
675 ; X== false -> fail
676 ; add_internal_error('Illegal call:',is_true(X)), fail
677 ).
678
679 %get_sorted_equality(Lhs, Rhs, Equality) :-
680 % Lhs @> Rhs,
681 % !,
682 % safe_create_texpr(equal(Rhs,Lhs), pred, [], Equality).
683 %get_sorted_equality(Lhs, Rhs, b(equal(Lhs,Rhs),pred,[])).
684
685 %binary_connective(conjunct).
686 %binary_connective(disjunct).
687 %binary_connective(implication).
688 %binary_connective(equivalence).
689
690 negated_b_operator(not_equal(A,B), equal(A,B)).
691 negated_b_operator(not_member(A,B), member(A,B)).
692 negated_b_operator(not_subset(A,B), subset(A,B)).
693 negated_b_operator(not_subset_strict(A,B), subset_strict(A,B)).
694
695 negate_bool_formula(b(negation(b(truth,pred,Info)),pred,_), b(falsity,pred,Info)).
696 negate_bool_formula(b(negation(b(falsity,pred,Info)),pred,_), b(truth,pred,Info)).
697 negate_bool_formula(b(negation(Eq),pred,_), b(equal(Id,Negated),pred,EqInfo)) :-
698 ( Eq = b(equal(Bool,Id),pred,EqInfo)
699 ; Eq = b(equal(Id,Bool),pred,EqInfo)
700 ),
701 Bool = b(Expr,boolean,BoolInfo),
702 negate_bool_expr(Expr, NExpr),
703 safe_create_texpr(NExpr, boolean, BoolInfo, Negated),
704 Id = b(identifier(_),_,_).
705 negate_bool_formula(b(negation(b(conjunct(A,B),pred,I)),pred,_), New) :-
706 negate_bool_formula(b(negation(A),pred,[]), NewA),
707 negate_bool_formula(b(negation(B),pred,[]), NewB),
708 safe_create_texpr(disjunct(NewA,NewB), pred, I, New).
709 negate_bool_formula(b(negation(b(disjunct(A,B),pred,I)),pred,_), New) :-
710 negate_bool_formula(b(negation(A),pred,[]), NewA),
711 negate_bool_formula(b(negation(B),pred,[]), NewB),
712 safe_create_texpr(conjunct(NewA,NewB), pred, I, New).
713
714 %%%%%%%%%%%%%%%%%%%%% Unit Tests %%%%%%%%%%%%%%%%%%%%%
715 :- begin_tests(extend_candidate_impls_acc).
716
717 test(extend_candidate_impls_acc_less, [true(NewAcc == candidate_impls(global([]),integer([]),integer_ground([b(less(b(identifier(x),integer,[]),b(integer(7),integer,[])),pred,[])]),set([]),set_ground([])))]) :-
718 empty_candidate_impls_acc(EmptyAcc),
719 Arg1 = b(identifier(x),integer,[]),
720 Arg2 = b(integer(7),integer,[]),
721 Ast = b(less(Arg1,Arg2),pred,[]),
722 extend_candidate_impls_acc(pred, less, Arg1, Arg2, Ast, EmptyAcc, NewAcc).
723
724 test(extend_candidate_impls_acc_less_non_ground, [true(NewAcc == candidate_impls(global([]),integer([]),integer_ground([]),set([]),set_ground([])))]) :-
725 empty_candidate_impls_acc(EmptyAcc),
726 Arg1 = b(identifier(x),set(set(integer)),[]),
727 Arg2 = b(set_extension([_]),set(set(integer)),[]),
728 Ast = b(less(Arg1,Arg2),pred,[]),
729 extend_candidate_impls_acc(pred, less, Arg1, Arg2, Ast, EmptyAcc, NewAcc).
730
731 test(extend_candidate_impls_acc_less_no_identifier, [true(NewAcc == candidate_impls(global([]),integer([]),integer_ground([]),set([]),set_ground([])))]) :-
732 empty_candidate_impls_acc(EmptyAcc),
733 Arg1 = b(comprehension_set([b(identifier(x),integer,[])],b(member(b(identifier(x),integer,[]), b(set_extension([b(integer(234),integer,[]),b(integer(34),integer,[])]),set(integer),[])),pred,[])),set(integer),[some,info]),
734 Arg2 = b(set_extension([b(set_extension([b(integer(27),integer,[])]),set(integer),[])]),set(set(integer)),[]),
735 Ast = b(less(Arg1,Arg2),pred,[]),
736 extend_candidate_impls_acc(pred, less, Arg1, Arg2, Ast, EmptyAcc, NewAcc).
737
738 test(extend_candidate_impls_acc_less_eq, [true(NewAcc == candidate_impls(global([]),integer([]),integer_ground([b(less_equal(b(identifier(x),integer,[]),b(integer(7),integer,[])),pred,[])]),set([]),set_ground([])))]) :-
739 empty_candidate_impls_acc(EmptyAcc),
740 Arg1 = b(identifier(x),integer,[]),
741 Arg2 = b(integer(7),integer,[]),
742 Ast = b(less_equal(Arg1,Arg2),pred,[]),
743 extend_candidate_impls_acc(pred, less_equal, Arg1, Arg2, Ast, EmptyAcc, NewAcc).
744
745 test(extend_candidate_impls_acc_less_eq_non_ground, [true(NewAcc == candidate_impls(global([]),integer([]),integer_ground([]),set([]),set_ground([])))]) :-
746 empty_candidate_impls_acc(EmptyAcc),
747 Arg1 = b(identifier(x),set(set(integer)),[]),
748 Arg2 = b(set_extension([_]),set(set(integer)),[]),
749 Ast = b(less_equal(Arg1,Arg2),pred,[]),
750 extend_candidate_impls_acc(pred, less_equal, Arg1, Arg2, Ast, EmptyAcc, NewAcc).
751
752 test(extend_candidate_impls_acc_less_eq_no_identifier, [true(NewAcc == candidate_impls(global([]),integer([]),integer_ground([]),set([]),set_ground([])))]) :-
753 empty_candidate_impls_acc(EmptyAcc),
754 Arg1 = b(comprehension_set([b(identifier(x),integer,[])],b(member(b(identifier(x),integer,[]), b(set_extension([b(integer(234),integer,[]),b(integer(34),integer,[])]),set(integer),[])),pred,[])),set(integer),[some,info]),
755 Arg2 = b(set_extension([b(set_extension([b(integer(27),integer,[])]),set(integer),[])]),set(set(integer)),[]),
756 Ast = b(less_equal(Arg1,Arg2),pred,[]),
757 extend_candidate_impls_acc(pred, less_equal, Arg1, Arg2, Ast, EmptyAcc, NewAcc).
758
759 test(extend_candidate_impls_acc_subset, [true(NewAcc == candidate_impls(global([]),integer([]),integer_ground([]),set([]),set_ground([b(subset(b(identifier(x),set(set(integer)),[]),b(set_extension([b(set_extension([b(integer(27),integer,[])]),set(integer),[])]),set(set(integer)),[])),pred,[])])))]) :-
760 empty_candidate_impls_acc(EmptyAcc),
761 Arg1 = b(identifier(x),set(set(integer)),[]),
762 Arg2 = b(set_extension([b(set_extension([b(integer(27),integer,[])]),set(integer),[])]),set(set(integer)),[]),
763 Ast = b(subset(Arg1,Arg2),pred,[]),
764 extend_candidate_impls_acc(pred, subset, Arg1, Arg2, Ast, EmptyAcc, NewAcc).
765
766 test(extend_candidate_impls_acc_subset_non_ground, [true(NewAcc == candidate_impls(global([]),integer([]),integer_ground([]),set([]),set_ground([])))]) :-
767 empty_candidate_impls_acc(EmptyAcc),
768 Arg1 = b(identifier(x),set(set(integer)),[]),
769 Arg2 = b(set_extension([_]),set(set(integer)),[]),
770 Ast = b(subset(Arg1,Arg2),pred,[]),
771 extend_candidate_impls_acc(pred, subset, Arg1, Arg2, Ast, EmptyAcc, NewAcc).
772
773 test(extend_candidate_impls_acc_subset_no_identifier, [true(NewAcc == candidate_impls(global([]),integer([]),integer_ground([]),set([]),set_ground([])))]) :-
774 empty_candidate_impls_acc(EmptyAcc),
775 Arg1 = b(comprehension_set([b(identifier(x),integer,[])],b(member(b(identifier(x),integer,[]), b(set_extension([b(integer(234),integer,[]),b(integer(34),integer,[])]),set(integer),[])),pred,[])),set(integer),[some,info]),
776 Arg2 = b(set_extension([b(set_extension([b(integer(27),integer,[])]),set(integer),[])]),set(set(integer)),[]),
777 Ast = b(subset(Arg1,Arg2),pred,[]),
778 extend_candidate_impls_acc(pred, subset, Arg1, Arg2, Ast, EmptyAcc, NewAcc).
779
780 test(extend_candidate_impls_acc_subset_strict, [true(NewAcc == candidate_impls(global([]),integer([]),integer_ground([]),set([]),set_ground([b(subset_strict(b(identifier(x),set(set(integer)),[]),b(set_extension([b(set_extension([b(integer(27),integer,[])]),set(integer),[])]),set(set(integer)),[])),pred,[])])))]) :-
781 empty_candidate_impls_acc(EmptyAcc),
782 Arg1 = b(identifier(x),set(set(integer)),[]),
783 Arg2 = b(set_extension([b(set_extension([b(integer(27),integer,[])]),set(integer),[])]),set(set(integer)),[]),
784 Ast = b(subset_strict(Arg1,Arg2),pred,[]),
785 extend_candidate_impls_acc(pred, subset_strict, Arg1, Arg2, Ast, EmptyAcc, NewAcc).
786
787 test(extend_candidate_impls_acc_subset_strict_non_ground, [true(NewAcc == candidate_impls(global([]),integer([]),integer_ground([]),set([]),set_ground([])))]) :-
788 empty_candidate_impls_acc(EmptyAcc),
789 Arg1 = b(identifier(x),set(set(integer)),[]),
790 Arg2 = b(set_extension([_]),set(set(integer)),[]),
791 Ast = b(subset_strict(Arg1,Arg2),pred,[]),
792 extend_candidate_impls_acc(pred, subset_strict, Arg1, Arg2, Ast, EmptyAcc, NewAcc).
793
794 test(extend_candidate_impls_acc_subset_strict_no_identifier, [true(NewAcc == candidate_impls(global([]),integer([]),integer_ground([]),set([]),set_ground([])))]) :-
795 empty_candidate_impls_acc(EmptyAcc),
796 Arg1 = b(comprehension_set([b(identifier(x),integer,[])],b(member(b(identifier(x),integer,[]), b(set_extension([b(integer(234),integer,[]),b(integer(34),integer,[])]),set(integer),[])),pred,[])),set(integer),[some,info]),
797 Arg2 = b(set_extension([b(set_extension([b(integer(27),integer,[])]),set(integer),[])]),set(set(integer)),[]),
798 Ast = b(subset_strict(Arg1,Arg2),pred,[]),
799 extend_candidate_impls_acc(pred, subset_strict, Arg1, Arg2, Ast, EmptyAcc, NewAcc).
800
801 test(extend_candidate_impls_acc_equal, [true(NewAcc == candidate_impls(global([]),integer([]),integer_ground([]),set([]),set_ground([b(equal(b(identifier(x),set(set(integer)),[]),b(set_extension([b(set_extension([b(integer(27),integer,[])]),set(integer),[])]),set(set(integer)),[])),pred,[])])))]) :-
802 empty_candidate_impls_acc(EmptyAcc),
803 Arg1 = b(identifier(x),set(set(integer)),[]),
804 Arg2 = b(set_extension([b(set_extension([b(integer(27),integer,[])]),set(integer),[])]),set(set(integer)),[]),
805 Ast = b(equal(Arg1,Arg2),pred,[]),
806 extend_candidate_impls_acc(pred, equal, Arg1, Arg2, Ast, EmptyAcc, NewAcc).
807
808 test(extend_candidate_impls_acc_member, [true(NewAcc == candidate_impls(global([]),integer([]),integer_ground([]),set([]),set_ground([b(member(b(identifier(x),set(integer),[]),b(set_extension([b(set_extension([b(integer(27),integer,[])]),set(integer),[])]),set(set(integer)),[])),pred,[])])))]) :-
809 empty_candidate_impls_acc(EmptyAcc),
810 Arg1 = b(identifier(x),set(integer),[]),
811 Arg2 = b(set_extension([b(set_extension([b(integer(27),integer,[])]),set(integer),[])]),set(set(integer)),[]),
812 Ast = b(member(Arg1,Arg2),pred,[]),
813 extend_candidate_impls_acc(pred, member, Arg1, Arg2, Ast, EmptyAcc, NewAcc).
814
815 test(extend_candidate_impls_acc_member_non_ground_type, [true(NewAcc == candidate_impls(global([]),integer([]),integer_ground([]),set([]),set_ground([])))]) :-
816 empty_candidate_impls_acc(EmptyAcc),
817 Arg1 = b(identifier(x),set(integer),[]),
818 Arg2 = b(set_extension([b(set_extension([b(integer(27),integer,[])]),set(integer),[])]),set(set(integer)),[]),
819 Ast = b(member(Arg1,Arg2),pred,[]),
820 extend_candidate_impls_acc(_Type, member, Arg1, Arg2, Ast, EmptyAcc, NewAcc).
821
822 test(extend_candidate_impls_acc_add, [true(NewAcc == candidate_impls(global([]),integer([]),integer_ground([]),set([]),set_ground([])))]) :-
823 empty_candidate_impls_acc(EmptyAcc),
824 Arg1 = b(integer(1),integer,[]),
825 Arg2 = b(integer(1),integer,[]),
826 Ast = b(add(Arg1,Arg2),integer,[]),
827 extend_candidate_impls_acc(integer, add, Arg1, Arg2, Ast, EmptyAcc, NewAcc).
828
829 test(extend_candidate_impls_acc_overwrite, [true(NewAcc == candidate_impls(global([]),integer([]),integer_ground([]),set([]),set_ground([])))]) :-
830 empty_candidate_impls_acc(EmptyAcc),
831 Arg1 = b(set_extension([b(couple(b(integer(1),integer,[]),b(integer(2),integer,[])),couple(integer,integer),[info(o),o])]),set(couple(integer,integer)),[]),
832 Arg2 = b(set_extension([b(couple(b(integer(1),integer,[]),b(integer(2),integer,[])),couple(integer,integer),[ein(e),wei(t,e(re)),info])]),set(couple(integer,integer)),[]),
833 Ast = b(overwrite(Arg1,Arg2),set(couple(integer,integer)),[]),
834 extend_candidate_impls_acc(integer, add, Arg1, Arg2, Ast, EmptyAcc, NewAcc).
835
836 test(extend_candidate_impls_acc_overwrite_non_ground_type, [true(NewAcc == candidate_impls(global([]),integer([]),integer_ground([]),set([]),set_ground([])))]) :-
837 empty_candidate_impls_acc(EmptyAcc),
838 Arg1 = b(set_extension([b(couple(b(integer(1),integer,[]),b(integer(2),integer,[])),couple(integer,integer),[info(o),o])]),set(couple(integer,integer)),[]),
839 Arg2 = b(set_extension([b(couple(b(integer(1),integer,[]),b(integer(2),integer,[])),couple(integer,integer),[ein(e),wei(t,e(re)),info])]),set(couple(integer,integer)),[]),
840 Ast = b(overwrite(Arg1,Arg2),set(couple(integer,integer)),[]),
841 extend_candidate_impls_acc(_Type, add, Arg1, Arg2, Ast, EmptyAcc, NewAcc).
842
843 :- end_tests(extend_candidate_impls_acc).
844