1 % (c) 2014-2022 Lehrstuhl fuer Softwaretechnik und Programmiersprachen,
2 % Heinrich Heine Universitaet Duesseldorf
3 % This software is licenced under EPL 1.0 (http://www.eclipse.org/org/documents/epl-v10.html)
4
5 :- module(ctigar,[ctigar_symbolic_model_check/1]).
6
7 :- use_module(probsrc(module_information)).
8 :- module_info(group,symbolic_model_checker).
9 :- module_info(description,'An infinite-state symbolic model checker based on CTIGAR.').
10
11 :- use_module(library(heaps)).
12 :- use_module(library(avl)).
13 :- use_module(library(ordsets)).
14 :- use_module(library(lists)).
15
16 :- use_module(extension('counter/counter'),[counter_init/0,
17 new_counter/1,
18 get_counter/2]).
19
20 :- use_module(probsrc(preferences), [get_preference/2]).
21 :- use_module(probsrc(bmachine),[b_get_invariant_from_machine/1,
22 %b_get_initialisation_from_machine/2,
23 b_get_properties_from_machine/1,
24 b_get_machine_operation/4,
25 b_specialized_invariant_for_op/2,
26 get_proven_invariant/2]).
27 :- use_module(probsrc(bsyntaxtree), [conjunct_predicates/2,
28 disjunct_predicates/2,
29 conjunction_to_list/2,
30 create_implication/3,
31 create_negation/2
32 %create_exists/3, replace_id_by_expr/4
33 ]).
34 :- use_module(probsrc(translate), [translate_bexpression/2, print_bexpr/1]).
35 :- use_module(probsrc(state_space),[state_space_reset/0]).
36 :- use_module(extrasrc(unsat_cores), [unsat_core_with_fixed_conjuncts/3]).
37 :- use_module(extrasrc(weakest_preconditions), [weakest_precondition/3]).
38
39 :- use_module(symbolic_model_checker(predicate_handling)).
40 :- use_module(symbolic_model_checker(solver_handling)).
41 :- use_module(symbolic_model_checker(mic_generation)).
42 :- use_module(symbolic_model_checker(predicate_abstraction)).
43
44 % algorithm for computing the minimal inductive clause
45 mic_algorithm(down).
46 % mic_algorithm(ctgDown).
47
48 ctigar_symbolic_model_check(Res) :-
49 statistics(walltime,[Start,_]),
50 catch(symbolic_model_check_aux(Res),solver_and_provers_too_weak,Res=solver_and_provers_too_weak),
51 statistics(walltime,[End,_]),
52 Took is End - Start,
53 get_counter(ic3solvercalls,Calls),
54 format('Result of CTIGAR based model checking: ~w,~nCTIGAR took ~w ms and ~w solver calls~n',[Res,Took,Calls]).
55
56 symbolic_model_check_aux(Result) :-
57 % count number of solver calls
58 counter_init, new_counter(ic3solvercalls),
59 % fetch the invariant we want to check
60 b_get_invariant_from_machine(Invariant),
61 % and the predicate describing the initial state
62 get_initial_state_predicate(Init),
63 % debug output
64 translate_bexpression(Init,PPInit), translate_bexpression(Invariant,PPInvariant),
65 format('Symbolic Model Checking:~nProperty: ~w~nInitial Predicate: ~w~n',[PPInvariant,PPInit]),
66 symbolic_model_check(Invariant,Init,Result).
67
68 % check base cases (length 0 and 1) first - as in Bradleys implementation
69 symbolic_model_check(Property,Init,ResultOut) :-
70 % ce of length 0? check if Init => Invariant
71 create_implication(Init,Property,Predicate),
72 % debug output
73 translate_bexpression(Predicate,PPPredicate),
74 format('Checking: ~w~n',[PPPredicate]),
75 solve_negated(Predicate,Result),
76 functor(Result,ForPrint,_),
77 format('Counter-Example of Length 0 exists: ~w~n', [ForPrint]),
78 Result = solution(Sol), !,
79 create_state_predicate(Sol,StatePred),
80 replay_counter_example([StatePred]),
81 ResultOut = counterexample_found.
82 symbolic_model_check(Property,Init,ResultOut) :-
83 % ce of length 1? check if Init & Transition => Invariant'
84 prime_predicate(Property,PrimedProperty),
85 get_single_transition_predicate(OpName,Transition),
86 conjunct_predicates([Init,Transition],LHS),
87 create_implication(LHS,PrimedProperty,Predicate),
88 % debug output
89 translate_bexpression(Predicate,PPPredicate),
90 format('Checking: ~w~n',[PPPredicate]),
91 solve_negated(Predicate,Result),
92 functor(Result,ForPrint,_),
93 format('Counter-Example of Length 1 (transition ~w) exists: ~w~n', [OpName,ForPrint]),
94 Result = solution(Sol), !,
95 handle_counter_example(Sol,[]),
96 ResultOut = counterexample_found.
97 % recursively check other cases. this corresponds to method "check" of Bradleys reference implementation
98 % internal data structures taken from Bradleys original paper:
99 % frame(F_i as in the paper (+transition), set of clauses to check for convergence)
100 % i/K (= level) is the key to the AVL tree
101 % obligation(state / predicate, primary inputs / predicate, list of successor states)
102 % level is the key to the priority queue
103 symbolic_model_check(Property,Init,Result) :-
104 K = 1,
105 % two initial frames:
106 % F_0 holds the initial condition
107 % F_1 holds the property
108 % further frames will be added by extend later on
109 % we store the transition in the frames as well in order to spare passing it around
110 b_get_properties_from_machine(PropertiesOnConstants),
111 F_0 = frame([Init,PropertiesOnConstants],[]), F_1 = frame([Property,PropertiesOnConstants],[]),
112 empty_avl(E),
113 avl_store(0,E,F_0,FramesT),
114 avl_store(1,FramesT,F_1,Frames),
115 get_abstract_domain(Domain),
116 catch(symbolic_model_check_fx(K,Frames,Domain,Property,Init,Result),
117 ic3_counter_example(Solution,Succs),
118 (handle_counter_example(Solution,Succs),Result=counterexample_found)).
119
120 symbolic_model_check_fx(K,Frames,Domain,Property,Init,Result) :-
121 % initially, K is 1
122 % the algorithm tries to maintain the following invariants:
123 % (1) ! i . i > 0 . I => F_i
124 % (2) ! i . i > 0 . F_i => P (P = Property to check / Invariant)
125 % (3) ! i . i > 0 . clauses(F_{i+1}) <: clauses(F_i)
126 % (4) ! i . 0 <= i < k . F_i & T => F_{i+1}'
127 extend(Frames,K,[Property],Frames2),
128 % strengthen establishes (1) - (4)
129 % if impossible => counter example
130 strengthen(K,Frames2,Domain,Property,FramesOut,RefinedDomain), !,
131 % propagate_clauses assumes (1) - (4)
132 % pushes clauses from one frame to a later one (as far as possible)
133 propagate_clauses(K,FramesOut,FramesOut2),
134 (check_convergence(FramesOut2)
135 -> Result = property_holds
136 ; K2 is K + 1,
137 symbolic_model_check_fx(K2,FramesOut2,RefinedDomain,Property,Init,Result)).
138
139 :- public print_frames/1. % for debugging
140 print_frames(Frames) :-
141 avl_to_list(Frames,List),
142 print_frames_list(List).
143 print_frames_list([]).
144 print_frames_list([K-frame(_,Clauses)|T]) :-
145 length(Clauses,L),
146 format('frame ~w holds ~w clauses:~n',[K,L]),
147 %print_clauses(Clauses),
148 print_frames_list(T).
149
150 :- public print_clauses/1. % for debugging
151 print_clauses([]).
152 print_clauses([C|Cs]) :-
153 disjunct_predicates(C,DC),
154 translate:print_bexpr(DC),nl,
155 print_clauses(Cs).
156
157 extend(FramesIn,K,Content,FramesOut) :-
158 % any new frame holds the properties in addition to the content (usually the transition)
159 NextFrameId is K + 1,
160 b_get_properties_from_machine(PropertiesOnConstants),
161 avl_store(NextFrameId,FramesIn,frame([PropertiesOnConstants|Content],[]),FramesOut).
162
163 propagate_clauses(K,Frames,FramesOut) :-
164 propagate_clauses_aux(1,K,Frames,FramesOut).
165 propagate_clauses_aux(I,K,Frames,FramesOut) :-
166 % for i = 1 .. K call propagate_clauses_on_level
167 propagate_clauses_on_level(I,Frames,FramesTemp),
168 (I < K -> J is I+1, propagate_clauses_aux(J,K,FramesTemp,FramesOut) ; true).
169 propagate_clauses_on_level(I,Frames,FramesOut) :-
170 % pushes from F_I to F_{I+1}
171 IP1 is I + 1,
172 clauses_on_level(I,Frames,_F_From,ClausesFrom),
173 in_solver_on_level(I,Frames,IS),
174
175 include(inductive_clause(IS),ClausesFrom,InductiveClauses),
176
177 add_clauses_to_level(IP1,Frames,InductiveClauses,FramesOut).
178
179 inductive_clause(F_I,ClauseDisjuncts) :-
180 get_transition_predicate(T),
181 disjunct_predicates(ClauseDisjuncts,Clause),
182 % checks if a single clause is inductive relative to F_i
183 % by verifying if F_i => C' (F_i includes T)
184 % i.e. there is a contradiction in not C' & F_i
185 create_negation(Clause,NegClause),
186 prime_predicate(NegClause,NegCPrime),
187 conjunct_predicates([NegCPrime,T|F_I],Pred),
188 solve(Pred,Result), !,
189 Result = contradiction_found(_).
190
191 strengthen(K,Frames,Domain,Property,FramesOut,RefinedDomain) :-
192 findall(op(OpName,Trans),get_single_transition_predicate(OpName,Trans),Transitions),
193 strengthen_aux1(Transitions,K,Property,Frames,FramesOut,Domain,RefinedDomain).
194
195 strengthen_aux1([],_K,_Property,Frames,Frames,Domain,Domain).
196 strengthen_aux1([Transition|Transitions],K,Property,Frames,FramesOut,Domain,RefinedDomain) :-
197 strengthen_loop(Transition,K,Property,Frames,FramesTemp,Domain,TempDomain),
198 strengthen_aux1(Transitions,K,Property,FramesTemp,FramesOut,TempDomain,RefinedDomain).
199
200 strengthen_loop(op(OpName,Transition),K,Property,FramesIn,FramesOut,DomainIn,DomainOut) :-
201 get_preference(use_po,UsePO),
202 strengthen_get_property(UsePO,OpName,Property,PrimedNegProperty),
203 in_solver_on_level(K,FramesIn,IS),
204 conjunct_predicates([Transition,PrimedNegProperty|IS],RPred),
205 solve(RPred,Result),
206 strengthen_aux(Result,Transition,K,Property,FramesIn,FramesOut,DomainIn,DomainOut).
207
208 strengthen_get_property(false,_OpName,Property,PrimedNegProperty) :-
209 create_negation(Property,NegProperty),
210 prime_predicate(NegProperty,PrimedNegProperty).
211 strengthen_get_property(true,OpName,FullProperty,Primed) :-
212 (b_specialized_invariant_for_op(OpName,Property)
213 -> true ; Property = FullProperty),
214 (get_proven_invariant(OpName,Proven)
215 -> true ; Proven = b(truth,pred,[])),
216 create_negation(Property,NegProperty),
217 conjunct_predicates([Proven,NegProperty],ToPrime),
218 prime_predicate(ToPrime,Primed).
219
220 % strengthen searches for a counter example to the property
221 % it searches for a state that is permitted by F_i that is the predecessor
222 % of a state that violates the property
223 % if there is a contradiction, we are done, because there is no counter example
224 strengthen_aux(contradiction_found(_),_TransitionPredicate,_K,_Property,Frames,Frames,Domain,Domain).
225 % if there is a counter example, we need to strenghten the frames
226 % in order to make it spurious, i.e. (1) - (4) have to be reestablished
227 strengthen_aux(solution(Wit),TransitionPredicate,K,Property,Frames,FramesOut,Domain,DomainOut) :-
228 % extract predecessor
229 create_state_predicate(Wit,Pre),
230 create_succ_state_predicate(Wit,SStatePred),
231 create_primary_inputs_predicate(Wit,Inputs),
232 K2 is K-2,
233 % finds the highest N to which not Pre can be added
234 % this can fail if the counter example is not spurious
235 inductively_generalize(Pre,[Pre],K2,K,Frames,FramesT,N), !,
236 N2 is N + 1,
237 empty_heap(H),
238 generalize_and_add(concrete,TransitionPredicate,K,H,N2,Frames,Domain,RefinedDomain,Pre,Inputs,[SStatePred],Obls),
239 % Obls is a heap of proof obligations that need to hold
240 % push generalization handles those that are on level =< K
241 push_generalization(Obls,K,FramesT,FramesT2,RefinedDomain,ReRefinedDomain),
242 strengthen(K,FramesT2,ReRefinedDomain,Property,FramesOut,DomainOut).
243
244 % generalize Pre and / or split it into multiple obligations
245 generalize_and_add(concrete,TP,I,HIn,N,Frames,Domain,Domain,State,Inputs,[SuccState|SuccStates],HOut) :-
246 concrete_state_to_abstract_state(Domain,State,AbsCTI),
247 write(absstate(AbsCTI)),nl,
248 % check if lifting is possible / if query is actually unsat
249 in_solver_on_level(I,Frames,IS),
250 prime_predicate(SuccState,TPrime),
251 create_negation(TPrime,NotTPrime),
252 conjunct_predicates([NotTPrime,TP|IS],Conjunction),
253 conjunct_predicates([AbsCTI,Conjunction],VerifyQuery),
254 solve(VerifyQuery,Result),
255 write(result(Result)),nl,
256 Result = contradiction_found(_), !,
257 % query is unsat and lifting succeeds
258 unsat_core_with_fixed_conjuncts(AbsCTI,Conjunction,Core),
259 I2 is I-1, M is N+1,
260 NewObligation = obligation(Core,TP,Inputs,[SuccState|SuccStates],I2,M),
261 add_to_heap(HIn,N,NewObligation,HOut).
262 generalize_and_add(concrete,TP,I,HIn,N,Frames,Domain,RefinedDomain,State,Inputs,[SuccState|SuccStates],HOut) :-
263 findall(WP,
264 (b_get_machine_operation(_,_,_,D),weakest_precondition(D,SuccState,WP)),
265 WeakestPreconditions),
266 conjunct_predicates(WeakestPreconditions,BigConjunction),
267 conjunction_to_list(BigConjunction,AllConjuncts),
268 list_to_ord_set(AllConjuncts,OrdAllConjuncts),
269 ord_union(OrdAllConjuncts,Domain,NewDomain),
270 length(Domain,LD), length(NewDomain,NLD),
271 (NLD = LD -> write('diverges'),nl,trace ; true),
272 generalize_and_add(concrete,TP,I,HIn,N,Frames,NewDomain,RefinedDomain,State,Inputs,[SuccState|SuccStates],HOut).
273
274 push_generalization(Obligations,_K,Frames,Frames,Domain,Domain) :-
275 empty_heap(Obligations). % no proof obligations left
276 push_generalization(Obligations,K,Frames,Frames,Domain,Domain) :-
277 min_of_heap(Obligations,N,_S),
278 N > K, !. % only proof obligations on a higher level left - fine for level K
279 push_generalization(Obligations,K,Frames,FramesOut,Domain,DomainOut) :-
280 % grep the proof obligations with the lowest level - somewhat a heuristic
281 min_of_heap(Obligations,N,obligation(S,T,Inputs,Succs,I,M)),
282 in_solver_on_level(N,Frames,IS),
283 prime_predicate(S,SPrimed),
284 conjunct_predicates([SPrimed,T|IS],Pred),
285 solve(Pred,Result), !,
286 push_generalization_aux(Result,T,N,obligation(S,T,Inputs,Succs,I,M),Obligations,K,Frames,FramesT,Domain,RefinedDomain,ObligationsOut),
287 push_generalization(ObligationsOut,K,FramesT,FramesOut,RefinedDomain,DomainOut).
288
289 push_generalization_aux(solution(Pre),_T,N,obligation(S,T,Inputs,Succs,_I,_M),Obligations,K,Frames,FramesOut,Domain,RefinedDomain,ObligationsOut) :-
290 N2 is N - 2,
291 create_state_predicate(Pre,PrePred), !,
292 inductively_generalize(PrePred,[S|Succs],N2,K,Frames,FramesOut,M), !,
293 M2 is M + 1,
294 generalize_and_add(concrete,T,K,Obligations,M2,Frames,Domain,RefinedDomain,PrePred,Inputs,[S|Succs],ObligationsOut).
295 push_generalization_aux(contradiction_found(_),_T,N,obligation(S,T,Inputs,Succs,I,M),Obligations,K,Frames,FramesOut,Domain,Domain,ObligationsOut) :-
296 inductively_generalize(S,[S|Succs],N,K,Frames,FramesOut,Lvl), !,
297 delete_from_heap(Obligations,N,obligation(S,T,Inputs,Succs,I,M),ObligationsT),
298 M2 is M + 1, NLvl is Lvl + 1,
299 add_to_heap(ObligationsT,NLvl,obligation(S,T,Inputs,Succs,I,M2),ObligationsOut).
300
301 :- public print_heap/1. % for debugging
302 print_heap(Obls) :-
303 heap_to_list(Obls,List),
304 write('Content of Obligations Heap:'), nl,
305 print_heap2(List).
306 print_heap2([]).
307 print_heap2([Key-Datum|T]) :-
308 Datum = obligation(Predicate,_,Succs),
309 translate_bexpression(Predicate,PPPredicate),
310 format('On level ~w state predicate ~w~n',[Key,PPPredicate]),
311 format('Successors:~n',[]),
312 print_succs(Succs),
313 print_heap2(T).
314 print_succs([]).
315 print_succs([P|T]) :-
316 write(' '), print_bexpr(P),nl,
317 print_succs(T).
318
319 handle_counter_example(Solution,Succs) :-
320 create_state_predicate(Solution,StatePred),
321 create_succ_state_predicate(Solution,SuccStatePred), !,
322 format('Counterexample found. Trace:~n',[]),
323 print_succs([StatePred,SuccStatePred|Succs]),
324 (create_constants_state_predicate(Solution,ConstantsStatePred)
325 -> replay_counter_example([ConstantsStatePred,StatePred,SuccStatePred|Succs])
326 ; replay_counter_example([StatePred,SuccStatePred|Succs])).
327 replay_counter_example(A) :-
328 state_space_reset,
329 replay_aux(A,_).
330 :- use_module(probsrc(b_trace_checking),[find_successor_state/4]).
331 replay_aux([],_).
332 replay_aux([P|Ps],CurId) :-
333 find_successor_state(CurId,P,SuccID,_),
334 replay_aux(Ps,SuccID).
335
336 inductively_generalize(S,Succs,Min,_K,Frames,_FramesOut,_N) :-
337 % if min < 0 and sat(F_0 & T & neg S & S')
338 % fail to report counter example
339 Min < 0,
340 in_solver_on_level(0,Frames,IS),
341 prime_predicate(S,SPrimed),
342 create_negation(S,SNegated),
343 get_transition_predicate(T),
344 conjunct_predicates([SNegated,SPrimed,T|IS],Pred),
345 solve(Pred,Result),
346 Result = solution(Solution), !,
347 throw(ic3_counter_example(Solution,Succs)).
348 inductively_generalize(S,_,Min,K,Frames,FramesOut,N) :-
349 I is max(1, Min + 1),
350 inductively_generalize_aux(I,S,K,Frames,FramesOut,N).
351 inductively_generalize_aux(I,S,K,Frames,FramesOut,N) :-
352 I =< K,
353 in_solver_on_level(I,Frames,IS),
354 prime_predicate(S,SPrimed),
355 create_negation(S,SNegated),
356 get_transition_predicate(T),
357 conjunct_predicates([SNegated,SPrimed,T|IS],Pred),
358 solve(Pred,Result), !,
359 (Result = solution(_) -> N is I - 1, generate_clause(S,N,K,Frames,FramesOut) ;
360 Result = contradiction_found(_) -> I2 is I + 1, inductively_generalize_aux(I2,S,K,Frames,FramesOut,N)).
361 inductively_generalize_aux(I,S,K,Frames,FramesOut,K) :-
362 I > K,
363 generate_clause(S,K,K,Frames,FramesOut).
364
365 generate_clause(S,I,K,Frames,FramesOut) :-
366 mic(S,I,K,Frames,FramesT,Q),
367 translate_bexpression(S,PS),
368 translate_bexpression(Q,PQ),
369 format('minimal inductive clause computation:~n~w to~n~w~n',[PS,PQ]),
370 conjunction_to_list(Q,Conjuncts),
371 maplist(create_negation,Conjuncts,NegConjuncts),
372 generate_clause_aux(1,NegConjuncts,I,FramesT,FramesOut).
373 generate_clause_aux(J,NegS,I,Frames,FramesOut) :-
374 J =< I + 1, !,
375 add_clauses_to_level(J,Frames,[NegS],FramesT),
376 J2 is J + 1,
377 generate_clause_aux(J2,NegS,I,FramesT,FramesOut).
378 generate_clause_aux(_,_,_,Frames,Frames).
379
380 mic(S,I,_K,Frames,Frames,Q) :-
381 mic_algorithm(down), !,
382 conjunction_to_list(S,Conjuncts),
383 down(Conjuncts,I,Frames,ConjunctsOut),
384 conjunct_predicates(ConjunctsOut,Q).
385 mic(S,I,K,FramesIn,FramesOut,Q) :-
386 mic_algorithm(ctgDown), !,
387 conjunction_to_list(S,Conjuncts),
388 ctgDown(Conjuncts,I,K,FramesIn,FramesOut,ConjunctsOut),
389 conjunct_predicates(ConjunctsOut,Q).
390
391 check_convergence(Frames) :-
392 avl_to_list(Frames,L),
393 check_convergence_aux(L).
394 check_convergence_aux([_-F1,K2-F2|Fs]) :-
395 % the algorithm converges if two frames hold the same set of clauses
396 F1 = frame(_,Clauses1),
397 F2 = frame(_,Clauses2),
398 % assumes ordered sets
399 (ord_symdiff(Clauses1, Clauses2, []) ; check_convergence_aux([K2-F2|Fs])).