1 | | % (c) 2009-2024 Lehrstuhl fuer Softwaretechnik und Programmiersprachen, |
2 | | % Heinrich Heine Universitaet Duesseldorf |
3 | | % This software is licenced under EPL 1.0 (http://www.eclipse.org/org/documents/epl-v10.html) |
4 | | |
5 | | :- module(csp_sets,[ %is_a_set/1, % reported as an unnecessary export by infolog |
6 | | %evaluate_set/3, |
7 | | evaluate_set/2, |
8 | | % force_evaluate_set/2, % export superfluous (used in haskell_csp.pl) |
9 | | evaluate_closure/2, |
10 | | is_empty_set/2, |
11 | | is_member_set/2, |
12 | | is_subset_of/2, % reported as superfluous by infolog, though predicate called by meta call in haskell_csp.pl (see last two clauses of check_boolean_expression/1 in haskell_csp.pl) |
13 | | %is_member_comprehension_set/3, |
14 | | extract_variables_from_generator_list/2, |
15 | | try_get_cardinality_for_wait_flag/2, |
16 | | subsets/2, enum_subset/2, |
17 | | cardinality/2, |
18 | | singleSetElement/3, |
19 | | union_set/3,diff_set/3,inter_set/3, |
20 | | equal_element/2, not_equal_element/2, |
21 | | expand_set_comprehension/3, replicate_expand_set_comprehension/3, |
22 | | expand_symbolic_set/3, |
23 | | big_union/2, big_inter/2, |
24 | | unify_also_patterns/3, |
25 | | closure_expand/2, |
26 | | is_member_set_alsoPat/2 |
27 | | %,csp_full_expanded_type/2 |
28 | | %,expand_int_value/2 |
29 | | ]). |
30 | | |
31 | | :- use_module(probsrc(module_information)). |
32 | | :- module_info(group,csp). |
33 | | :- module_info(description,'Operations on CSP sets.'). |
34 | | |
35 | | /******* SICSTUS libraries *******/ |
36 | | :- use_module(library(lists)). |
37 | | %:- load_files(library(detcheck), [when(compile_time), if(changed)]). |
38 | | /******* ---------------- *******/ |
39 | | |
40 | | /*************** PROB modules ****************/ |
41 | | :- use_module(probsrc(tools),[remove_variables/3,flatten/2,exact_member/2]). |
42 | | :- use_module(probsrc(error_manager)). |
43 | | :- use_module(probsrc(self_check)). |
44 | | %% :- use_module(probsrc(preferences),[preference/2]). |
45 | | %% :- use_module(probsrc(debug)). |
46 | | %-------- CSP modules: |
47 | | :- use_module(probcspsrc(haskell_csp_analyzer),[is_csp_constructor/1]). |
48 | | :- use_module(probcspsrc(haskell_csp), |
49 | | [is_a_datatype/2, csp_constructor/3, channel/2, dataTypeDef/2,channel_type_list/2, |
50 | | evaluate_argument/2,force_evaluate_argument/2,force_evaluate_argument_for_member_check/2,evaluate_int_argument/2, |
51 | | check_boolean_expression/1, enumerate_channel_input_value/4,enumerate_datatype_el/5]). |
52 | | :- use_module(probcspsrc(csp_sequences)). |
53 | | :- use_module(probcspsrc(haskell_csp_analyzer),[csp_full_type_constructor/3,csp_full_type_constant/2]). |
54 | | |
55 | | /*************** ----------- ****************/ |
56 | | |
57 | | % -------------------------------------------------------- |
58 | | % SETS |
59 | | % -------------------------------------------------------- |
60 | | |
61 | | % Possible sets: |
62 | | % setValue([]) |
63 | | % setValue([el1,...,eln]) sorted, without duplicates |
64 | | % setFromTo(int(Low),int(Up)) |
65 | | % ... intType,.... |
66 | | |
67 | | :- assert_must_succeed(is_a_set(setFrom(1))). |
68 | | :- assert_must_succeed(is_a_set(dataType(bool))). |
69 | | :- assert_must_succeed(is_a_set(dotTupleType(list([int,int])))). |
70 | | :- assert_must_succeed(is_a_set(setExp(val,int))). |
71 | | :- assert_must_succeed(is_a_set(closureComp(_,_))). |
72 | | :- assert_must_succeed(is_a_set('Seq'(setValue([1,2,3])))). |
73 | | |
74 | | is_a_set(setValue(_)). |
75 | | is_a_set(closure(_)). |
76 | | is_a_set(setFromTo(_,_)). |
77 | | is_a_set(setFrom(_)). |
78 | | is_a_set(intType). |
79 | | is_a_set(boolType). |
80 | | is_a_set(dataType(_)). |
81 | | is_a_set(dotTupleType(_)). |
82 | | is_a_set(setExp(_,_)). |
83 | | is_a_set(closureComp(_,_)). % right? |
84 | | is_a_set('Seq'(_)). |
85 | | %is_a_set(DT) :- dataTypeDef(DT,_). |
86 | | |
87 | | |
88 | | :- assert_must_succeed(( csp_sets:evaluate_set([int(3)],R), R == setValue([int(3)]) )). |
89 | | |
90 | | evaluate_set([],R) :- !, R=setValue([]). |
91 | | evaluate_set([H|T],R) :- !, haskell_csp:evaluate_argument(H,EH), evaluate_set(T,ET), |
92 | | add_element(EH,ET,R). |
93 | | evaluate_set(X,_) :- add_internal_error('Internal Error: Could not evaluate: ',evaluate_set(X,_)),fail. |
94 | | |
95 | | force_evaluate_set([],R) :- !, R=setValue([]). |
96 | | force_evaluate_set([H|T],R) :- !, haskell_csp:force_evaluate_argument(H,EH), |
97 | | force_evaluate_set(T,ET), |
98 | | add_element(EH,ET,R). |
99 | | force_evaluate_set(X,_) :- add_internal_error('Interal Error: Could not evaluate: ',force_evaluate_set(X,_)),fail. |
100 | | |
101 | | |
102 | | /* This implementation of evanluate_set/2 make the Basin_Bank_CSP benchmark's performnance slower. */ |
103 | | /* |
104 | | % Functor can be evaluate_argument/2 or force_evaluate_argument/2 |
105 | | % Clause match is only possible through internal call. CSP-M parser always provide list inside rangeEnum(). |
106 | | % See implementation of haskell_csp: evaluate_set_expression/2. |
107 | | evaluate_set(L,Set,Functor) :- is_list(L),!, |
108 | | evaluate_set(L,setValue([]),Set,Functor). |
109 | | evaluate_set(X,_,_Functor) :- |
110 | | add_internal_error('Internal Error: Could not evaluate: ',evaluate_set(X)),fail. |
111 | | |
112 | | evaluate_set([],Set,Set,_Functor). |
113 | | evaluate_set([H|T],Set,R,Functor) :- |
114 | | % this variant of defining the argument call is less memory wasteful than the ordinary way (Call =.. [Functor|Args]) |
115 | | functor(Call,Functor,2), |
116 | | arg(1,Call,H),arg(2,Call,EH), |
117 | | haskell_csp:Call,!, |
118 | | add_element(EH,Set,Set1), |
119 | | evaluate_set(T,Set1,R,Functor). |
120 | | */ |
121 | | |
122 | | evaluate_closure(X,closure(RS)) :- (X=tuple(XList) -> true ; X=XList), |
123 | | evaluate_set(XList,setValue(RS)).%evaluate_set(XList,setValue(RS),evaluate_argument). |
124 | | |
125 | | :- use_module(probcspsrc(csp_sequences),[is_empty_list/2]). |
126 | | :- use_module(probcspsrc(csp_basic)). |
127 | | |
128 | | :- assert_must_succeed((csp_sets: is_empty_set(setValue([setValue([])]),R), R == false)). |
129 | | :- assert_must_succeed((csp_sets: is_empty_set(setValue([]),R), R == true)). |
130 | | :- assert_must_succeed((csp_sets: is_empty_set(setFromTo(3,1),R), R == true)). |
131 | | :- assert_must_succeed((csp_sets: is_empty_set(closure([tuple(ack),tuple(rec)]),R), R == false)). |
132 | | :- assert_must_succeed((csp_sets: is_empty_set(setFrom(1),R), R == false)). |
133 | | |
134 | | :- block is_empty_set(-,?). |
135 | | is_empty_set(setValue(X),R) :- !, is_empty_list(X,R). |
136 | | is_empty_set(closure(X),R) :- !, is_empty_list(X,R). |
137 | | is_empty_set(setFromTo(Low,Up),R) :- !, safe_less_than(Up,Low,R). |
138 | | is_empty_set(setFrom(_),R) :- !, R=false. |
139 | | is_empty_set(X,_) :- add_error(csp_sets,'Could not evaluate: ',is_empty_set(X)),fail. |
140 | | |
141 | | |
142 | | :- assert_must_succeed(( csp_sets:is_member_set(X,setValue([int(1),int(9)])), X=int(9) )). |
143 | | :- assert_must_fail(( csp_sets:is_member_set(X,setValue([int(1),int(9)])), X=int(3) )). |
144 | | :- assert_must_succeed((csp_sets: is_member_set(int(10),setFrom(5)))). |
145 | | :- assert_must_fail((csp_sets: is_member_set(int(3),setFrom(5)))). |
146 | | :- assert_must_succeed( is_member_set(na_tuple([int(3)]),typeTuple([setFromTo(1,10)])) ). |
147 | | :- assert_must_succeed( is_member_set(na_tuple([int(3),int(4)]),typeTuple([setFromTo(1,10),setValue([int(1),int(2),int(3),int(4)])])) ). |
148 | | :- assert_must_succeed( is_member_set(tuple([int(3),int(4)]),dotTupleType([setFromTo(1,10),setValue([int(1),int(2),int(3),int(4)])])) ). |
149 | | |
150 | ? | is_member_set(El,S) :- is_member_set2(S,El). |
151 | | |
152 | | :- block is_member_set2(-,?). |
153 | ? | is_member_set2(setValue(Set),El) :- !, blocking_member(El,Set). |
154 | | is_member_set2(boolType,X) :- !, (X=true;X=false). |
155 | | is_member_set2(intType,R) :- !, R=int(_). |
156 | | is_member_set2(setFromTo(Low,Up),R) :- !, R=int(X), |
157 | ? | is_member_from_to(X,Low,Up). |
158 | | is_member_set2(setFrom(Low),int(X)) :- !, is_member_from(X,Low). |
159 | | is_member_set2('Seq'(X),C) :- expand_sequence(C,list(EC)), !, list_elements_member_set(EC,X). |
160 | ? | is_member_set2('dotTupleType'(X),T) :- !,(T=tuple(TT) ; T=dotTuple(TT)), l_dot_is_member_set(TT,X). %%%%%% see trace output |
161 | ? | is_member_set2('typeTuple'(X),T) :- !, T=na_tuple(TT), l_is_member_set(TT,X). |
162 | | is_member_set2(dataType(DT),C) :- is_a_datatype(DT,L),!, % to do: precompute this |
163 | | ( (atomic(C),member(constructor(C),L)) ; ( C=record(Cons,Fields), |
164 | | csp_constructor(Cons,DT,ArgSubTypes), |
165 | | maplist(haskell_csp:get_value_alsoPat,Fields,Fields1), % could be possible that some of the elements are wrapped in in(.) or alsoPat(.,.) |
166 | | l_dot_is_member_set(Fields1,ArgSubTypes) ) |
167 | | ). |
168 | | is_member_set2(setExp(RangeExpr),C) :- !, is_member_set2(setExp(RangeExpr,[]),C). |
169 | | is_member_set2(setExp(RangeExpr,GeneratorSet),C) :- !, |
170 | | is_member_comprehension_set(C,RangeExpr,GeneratorSet). |
171 | | % print(is_member_comprehension_set(C,Tuple,GeneratorSet)),nl. |
172 | | % what about closureComp ? |
173 | | is_member_set2('Union'(LS),El) :- ground(El),!,is_member_union(LS,El). |
174 | | is_member_set2('Union'(LS),El) :- !,force_evaluate_argument('Union'(LS),ES), is_member_set2(ES,El). |
175 | | is_member_set2('Inter'(LS),El) :- !,is_member_inter(LS,El). |
176 | | is_member_set2(agent_call(Span,F,Par),El) :- !, haskell_csp: unfold_function_call_once(F,Par,Body,Span), |
177 | | force_evaluate_argument_for_member_check(Body,R), is_member_set(El,R). |
178 | | is_member_set2(closure(Cl),El) :- !, closure_expand(Cl,R),is_member_set(El,R). |
179 | | is_member_set2(S,El) :- haskell_csp: name_type(S,Type),!,is_member_set2(Type,El). |
180 | | is_member_set2(R,X) :- add_error(csp_sets,'Could not evaluate: ',is_member_set(X,R)),fail. |
181 | | |
182 | | :- assert_must_fail(csp_sets: is_member_union(setExp(rangeEnum([])),int(1))). |
183 | | |
184 | | :- block is_member_union(-,?). |
185 | | is_member_union(LS,El) :- |
186 | | (deconstruct_set_of_sets(LS,H,T) -> |
187 | | %print(lazy_Union(El,H,T)),nl, % args should not be setComp; otherwise we have problem with cut below |
188 | | (is_member_set2(H,El) -> true ; is_member_set2('Union'(T),El)) |
189 | | ; empty_set_of_sets(LS) -> fail |
190 | | ; add_error_fail(is_member_set,'Illegal argument: ','Union'(LS))). |
191 | | :- block is_member_inter(-,?). |
192 | | is_member_inter(LS,El) :- |
193 | | (deconstruct_set_of_sets(LS,H,T) -> |
194 | | is_member_set2(H,El), |
195 | | (empty_set_of_sets(T) -> true ; is_member_set2('Inter'(T),El)) |
196 | | ; empty_set_of_sets(T) -> add_error(is_member_set2,'Empty set not allowed for Inter(-): ',T) |
197 | | ; add_error_fail(is_member_set,'Illegal argument: ','Inter'(LS))). |
198 | | |
199 | | :- block is_member_from_to(-,-,?),is_member_from_to(-,?,-). |
200 | | is_member_from_to(X,Low,Up) :- ground(X),!,geq(X,Low), leq(X,Up). |
201 | ? | is_member_from_to(X,Low,Up) :- enumerate_csp_int(X,Low,Up). |
202 | | :- block geq(?,-). |
203 | | geq(X,Low) :- X>=Low. |
204 | | :- block leq(?,-). |
205 | | leq(X,Up) :- X=<Up. |
206 | | |
207 | | :- block is_member_from(-,?),is_member_from(?,-). |
208 | | is_member_from(X,Low) :- X >= Low. |
209 | | |
210 | | :- block blocking_member(?,-). |
211 | | blocking_member(X,[H|T]) :- |
212 | ? | (equal_element(X,H) ; blocking_member(X,T)). |
213 | | |
214 | | :- assert_must_succeed((csp_sets: l_dot_is_member_set([int(1),int(2),int(3)],['dotTupleType'([setFromTo(1,3),setFrom(1),setFromTo(1,3)])]))). |
215 | | :- assert_must_fail((csp_sets: l_dot_is_member_set([int(1),int(2),int(3)],['dotTupleType'([setFromTo(1,3),setFromTo(1,3),setFrom(14)])]))). |
216 | | :- assert_must_succeed((csp_sets: l_dot_is_member_set([int(1),int(2),int(3),int(10),int(9)], |
217 | | ['dotTupleType'([setFromTo(1,3),setFrom(1),setFromTo(1,3)]),intType,setValue([int(1),int(9),int(10)])]))). |
218 | | :- assert_must_fail((csp_sets: l_dot_is_member_set([int(1),int(2),int(3),int(10),int(11)], |
219 | | ['dotTupleType'([setFromTo(1,3),setFrom(1),setFromTo(1,3)]),intType,setValue([int(1),int(9),int(10)])]))). |
220 | | :- assert_must_succeed((csp_sets: l_dot_is_member_set([int(10),int(9),int(1),int(2),int(3)], |
221 | | ['dotTupleType'([intType,setValue([int(1),int(9),int(10)]),setFromTo(1,3),setFrom(1),setFromTo(1,3)])]))). |
222 | | |
223 | | l_dot_is_member_set(L,TL) :- |
224 | | unfold_dot_tuples(L,R), |
225 | | l_unfold_datatype_dot_tuple(TL,TR), |
226 | ? | l_is_member_set(R,TR). |
227 | | |
228 | | l_is_member_set(SetList,SetList1) :- |
229 | | is_list(SetList),!, |
230 | ? | maplist(is_member_set,SetList,SetList1). |
231 | | l_is_member_set(L,S) :- add_internal_error('Internal Error: Could not evaluate: ', l_is_member_set(L,S)),fail. |
232 | | |
233 | | :- assert_must_succeed((csp_sets: unfold_dot_tuples([],[]))). |
234 | | :- assert_must_succeed((csp_sets: unfold_dot_tuples([int(1),tuple([int(2),int(3)]),int(4)],R), R == [int(1),int(2),int(3),int(4)])). |
235 | | :- assert_must_succeed((csp_sets: unfold_dot_tuples([int(1),int(2),int(3),int(4)],R), R == [int(1),int(2),int(3),int(4)])). |
236 | | :- assert_must_succeed((csp_sets: unfold_dot_tuples([tuple([int(1),int(5)]),tuple([int(2),int(3)])],R), R == [int(1),int(5),int(2),int(3)])). |
237 | | :- assert_must_succeed((csp_sets: unfold_dot_tuples([tuple([int(1),tuple([int(2),int(3)])])],R), R == [int(1),int(2),int(3)])). |
238 | | |
239 | | unfold_dot_tuples([],[]). |
240 | | unfold_dot_tuples([H|T],R) :- |
241 | | ((nonvar(H),(H = tuple(L) ; H=dotTuple(L))) -> unfold_dot_tuples(L,LRes), append(LRes,R1,R) ; R=[H|R1]), unfold_dot_tuples(T,R1). |
242 | | |
243 | | :- assert_must_succeed((csp_sets: l_unfold_datatype_dot_tuple([],[]))). |
244 | | :- assert_must_succeed((csp_sets: l_unfold_datatype_dot_tuple(['dotTupleType'([intType,setValue([int(1),int(9),int(10)])])],R), R == [intType,setValue([int(1),int(9),int(10)])])). |
245 | | :- assert_must_succeed((csp_sets: l_unfold_datatype_dot_tuple([intType,intType],R), R == [intType,intType])). |
246 | | :- assert_must_succeed((csp_sets: l_unfold_datatype_dot_tuple(['dotTupleType'([intType,setValue([int(1),int(9),int(10)])]),'dotTupleType'([intType,setValue([int(1),int(9),int(10)])])],R), |
247 | | R == [intType,setValue([int(1),int(9),int(10)]),intType,setValue([int(1),int(9),int(10)])])). |
248 | | |
249 | | unfold_datatype_dot_tuple(DT,R) :- |
250 | | (nonvar(DT), DT = 'dotTupleType'(L) -> R=L ; R=[DT]). |
251 | | |
252 | | l_unfold_datatype_dot_tuple(LDotTypes,Res) :- |
253 | | maplist(unfold_datatype_dot_tuple,LDotTypes,R), |
254 | | append(R,Res). |
255 | | |
256 | | list_elements_member_set([],_) :- !. |
257 | | list_elements_member_set([H|T],Set) :- !, is_member_set2(Set,H), list_elements_member_set(T,Set). |
258 | | list_elements_member_set(L,S) :- add_internal_error('Internal Error: Could not evaluate: ', list_elements_member_set(L,S)),fail. |
259 | | |
260 | | :- assert_must_succeed((csp_sets: deconstruct_set_of_sets(setExp(rangeEnum([int(1),int(2),int(3)])),H,T),H==int(1),T == setExp(rangeEnum([int(2),int(3)])))). |
261 | | :- assert_must_succeed((csp_sets: deconstruct_set_of_sets(setValue([int(1),int(2),int(3)]),H,T),H==int(1),T == setValue([int(2),int(3)]))). |
262 | | :- assert_must_fail((csp_sets: deconstruct_set_of_sets(setValue([]),_H,_T))). |
263 | | |
264 | | %deconstruct_set_of_sets(setEnum([H|T]),H,setEnum(T)). |
265 | | deconstruct_set_of_sets(setExp(rangeEnum([H|T])),H,setExp(rangeEnum(T))). |
266 | | deconstruct_set_of_sets(setValue(V),H,setValue(T)) :- deconstruct_setValue(V,H,T). |
267 | | :- block deconstruct_setValue(-,?,?). |
268 | | deconstruct_setValue([H|T],H,T). |
269 | | |
270 | | :- assert_must_succeed((csp_sets: empty_set_of_sets(setValue([])))). |
271 | | empty_set_of_sets(setExp(rangeEnum([]))). |
272 | | empty_set_of_sets(setValue(X)) :- is_empty_list(X,true). |
273 | | |
274 | | :- assert_must_succeed(( csp_sets:cardinality(setValue([int(1),int(9)]),R), R==int(2) )). |
275 | | :- block cardinality(-,?). |
276 | | cardinality(setValue(S),R) :- my_length(S,C),!,R=int(C). |
277 | | cardinality(setFromTo(Low,Up),R) :- !, |
278 | | R=int(C), when((ground(Low),ground(Up)),compute_from_to_cardinality(Low,Up,C)). |
279 | | cardinality(setFrom(Low),_) :- !, |
280 | | add_error(csp_sets,'Trying to compute cardinality of infinite set: ',set_from(Low)),fail. |
281 | | cardinality(closure(ChannelList),R) :- !,my_length(Closure,C), R=int(C), |
282 | | when(ground(ChannelList), |
283 | | expand_symbolic_set(closure(ChannelList),setValue(Closure),closure_cardinality)). |
284 | | cardinality(dataType(DT),R) :- !,R=int(C),my_length(DTSet,C), |
285 | | expand_symbolic_set(dataType(DT),setValue(DTSet),datatype_set_cardinality). |
286 | | cardinality(X,_R) :- add_error(csp_sets,'Could not compute card of: ',X),fail. |
287 | | |
288 | | :- assert_must_succeed((csp_sets: compute_from_to_cardinality(1,3,C), C == 3)). |
289 | | :- assert_must_succeed((csp_sets: compute_from_to_cardinality(-1,3,C), C == 5)). |
290 | | :- assert_must_succeed((csp_sets: compute_from_to_cardinality(3,1,C), C == 0)). |
291 | | :- assert_must_succeed((csp_sets: compute_from_to_cardinality(-3,1,C), C == 5)). |
292 | | :- assert_must_succeed((csp_sets: compute_from_to_cardinality(-3,-1,C), C == 3)). |
293 | | |
294 | | compute_from_to_cardinality(Low,Up,C) :- |
295 | | (Up<Low -> |
296 | | C is 0 |
297 | | ; C is Up-Low+1 |
298 | | ). |
299 | | |
300 | | my_length(L,Len) :- my_length_aux(L,0,Len). |
301 | | :- block my_length_aux(-,?,?). |
302 | | my_length_aux([],Acc,Acc). |
303 | | my_length_aux([_|T],Acc,R) :- A1 is Acc+1, my_length_aux(T,A1,R). |
304 | | |
305 | | |
306 | | try_get_cardinality_for_wait_flag(setValue(S),R) :- try_get_length(S,C),!,R=C. |
307 | | try_get_cardinality_for_wait_flag(setFromTo(Low,Up),C) :- |
308 | | ground(Low),ground(Up),!,C is Up-Low+1. |
309 | | try_get_cardinality_for_wait_flag(_,1000). |
310 | | |
311 | | try_get_length(X,_) :- var(X),!,fail. |
312 | | try_get_length([],0). |
313 | | try_get_length([_|T],R) :- try_get_length(T,R1), R is R1+1. |
314 | | |
315 | | :- block singleSetElement(-,?,?). |
316 | | singleSetElement(S,El,Span) :- expand_symbolic_set(S,setValue(V),singleSetElement), |
317 | | singleSetElement_aux(V,El,Span). |
318 | | |
319 | | :- block singleSetElement_aux(-,?,?). |
320 | | singleSetElement_aux([H|T],El,_Span) :- (var(T);T==[]),!,H=El. |
321 | | singleSetElement_aux(Set,_El,Span) :- |
322 | | add_error(singleSetElement,'This is not a singleton set: ',setValue(Set),Span),fail. |
323 | | |
324 | | :- assert_must_succeed(( csp_sets:is_subset_of(R,setValue([int(2),int(4)])), |
325 | | R = setValue([int(4)]) )). |
326 | | :- assert_must_fail(( csp_sets:is_subset_of(R,setValue([int(2),int(4)])), |
327 | | R = setValue([int(3)]) )). |
328 | | :- block is_subset_of(-,?), is_subset_of(?,-). |
329 | | is_subset_of(X,Y) :- |
330 | | expand_symbolic_set(X,setValue(EX),is_subset_of_x), |
331 | | expand_symbolic_set(Y,setValue(EY),is_subset_of_y), |
332 | | is_subset_of2(EX,EY). |
333 | | |
334 | | :- block is_subset_of2(-,?). |
335 | | is_subset_of2([],_). |
336 | | is_subset_of2([H|T],S) :- remove_element(H,S,S2), is_subset_of2(T,S2). |
337 | | |
338 | | :- assert_must_succeed(( csp_sets:subsets(setValue([int(1),int(9)]),R), |
339 | | R==setValue([ setValue([int(1),int(9)]),setValue([int(9)]),setValue([int(1)]),setValue([]) ]) )). |
340 | | |
341 | | subsets(S,setValue(RS)) :- expand_symbolic_set(S,setValue(ES),subsets),sub2(ES,RS). |
342 | | |
343 | | :- block sub2(-,?). |
344 | | sub2([],[setValue([])]). |
345 | | sub2([El|T],Res) :- sub2(T,TR), sub3(TR,El,Res). |
346 | | |
347 | | :- block sub3(-,?,?). |
348 | | sub3([],_,[]). |
349 | | sub3([setValue(S1)|T],El,[setValue([El|S1]),setValue(S1)|ST]) :- sub3(T,El,ST). |
350 | | |
351 | | |
352 | | :- assert_must_succeed(( csp_sets:enum_subset(setValue([int(1),int(9)]),R), |
353 | | R==setValue([int(9)]) )). |
354 | | enum_subset(S,setValue(Subset)) :- expand_symbolic_set(S,setValue(ES),enum_subset), |
355 | ? | enum_sub2(ES,Subset). |
356 | | enum_sub2([],[]). |
357 | | enum_sub2([El|T],Res) :- |
358 | ? | (Res = [El|T2], enum_sub2(T,T2)) |
359 | ? | ; enum_sub2(T,Res). |
360 | | |
361 | | :- assert_must_succeed(( csp_sets:add_element(int(3),setValue([int(1),int(9)]),R), R==setValue([int(1),int(3),int(9)]) )). |
362 | | :- assert_must_succeed(( csp_sets:add_element(int(3),setValue([int(1),int(3),int(9)]),R), R==setValue([int(1),int(3),int(9)]) )). |
363 | | :- assert_must_succeed(( csp_sets:add_element(int(11),setValue([int(1),int(9)]),R), R==setValue([int(1),int(9),int(11)]) )). |
364 | | :- assert_must_succeed(( csp_sets:add_element(int(1),setValue([int(3),int(9)]),R), R==setValue([int(1),int(3),int(9)]) )). |
365 | | :- assert_must_succeed(( csp_sets:add_element(setValue([int(3)]),setValue([]),R), R==setValue([setValue([int(3)])]) )). |
366 | | :- assert_must_succeed(( csp_sets:add_element(boolType,setValue([]),R), R == setValue([setValue([true,false])]))). |
367 | | |
368 | | :- block add_element(-,?,?), add_element(?,-,?). |
369 | | add_element(El,S,Res) :- Res = setValue(R), expand_symbolic_set(S,setValue(ES),add_element), |
370 | | (is_a_set(El) -> expand_symbolic_set(El,ExEl,add_element) ; ExEl=El), % normalise element before storing in set |
371 | | when(ground(ExEl),add_element1(ES,ExEl,R)). |
372 | | % when( (/* ground(El),*/ nonvar(ES)), add_element2(ES,El,R)). |
373 | | |
374 | | :- block add_element1(-,?,?). |
375 | | %add_element1(T,El,Res) :- print(add_element1(T,El,Res)),nl,fail. |
376 | | add_element1([],El,[El]). |
377 | | add_element1([H|T],El,Res) :- when(?=(El,H),(El @=<H -> (El=H -> Res = [El|T] ; Res = [El,H|T]) |
378 | | ; (Res=[H|R2],add_element1(T,El,R2)))). |
379 | | |
380 | | :- assert_must_succeed(( csp_sets:union_set(setValue([int(3),int(4)]),setValue([int(2),int(9)]),R), |
381 | | R == setValue([int(2),int(3),int(4),int(9)]) )). |
382 | | :- assert_must_succeed(( csp_sets:union_set(setValue([int(3),int(4)]),setValue([int(4),int(9)]),R), |
383 | | R == setValue([int(3),int(4),int(9)]) )). |
384 | | :- assert_must_succeed(( csp_sets:union_set(setValue([int(3),int(4)]),setValue([]),R), |
385 | | R == setValue([int(3),int(4)]) )). |
386 | | :- assert_must_succeed(( csp_sets:union_set(setValue([]),setValue([int(3),int(4)]),R), |
387 | | R == setValue([int(3),int(4)]) )). |
388 | | :- block union_set(-,?,?), union_set(?,-,?). |
389 | | union_set(S1,S2,Res) :- Res = setValue(R), expand_symbolic_set(S1,setValue(ES1),union_set1), |
390 | | expand_symbolic_set(S2,setValue(ES2),union_set2), |
391 | ? | when(ground((ES1,ES2)),union_add_elements(ES1,ES2,R,none,none)) |
392 | | % , print(union(S1,S2,Res)),nl |
393 | | . |
394 | | |
395 | | union_add_elements([],R,R,_,_). |
396 | | union_add_elements([H|T],[],[H|T],PrevH1,_) :- (ground(H) -> check_sorted(union_set,PrevH1,H) ; true). |
397 | | union_add_elements([H1|T1],[H2|T2],Res,PrevH1,PrevH2) :- %check_sorted(union_set,PrevH1,H1), % unnecessary call |
398 | ? | when((ground(H1),ground(H2)), |
399 | | (check_sorted(union_set,PrevH1,H1), check_sorted(union_set,PrevH2,H2), |
400 | | (H1=H2 -> Res=[H1|RT],union_add_elements(T1,T2,RT,H1,H1) |
401 | | ; (H1 @=< H2 -> Res=[H1|RT], union_add_elements(T1,[H2|T2],RT,H1,none) |
402 | | ; Res=[H2|RT], union_add_elements([H1|T1],T2,RT,none,H2)) ))). |
403 | | |
404 | | check_sorted(Src,PrevH,H) :- ((PrevH=none;PrevH @< H) -> true ; add_error(Src,'CSP set not sorted: ',[PrevH,H])). |
405 | | |
406 | | :- assert_must_succeed(( csp_sets:diff_set(setValue([int(3),int(4)]),setValue([int(2),int(3)]),R), |
407 | | R == setValue([int(4)]) )). |
408 | | :- assert_must_succeed(( csp_sets:diff_set(setValue([int(3),int(4)]),setValue([int(2),int(5)]),R), |
409 | | R == setValue([int(3),int(4)]) )). |
410 | | :- assert_must_succeed(( csp_sets:diff_set(setValue([int(3),int(4)]),setValue([int(2),int(3),int(4),int(5),int(9)]),R), |
411 | | R == setValue([]) )). |
412 | | |
413 | | :- block diff_set(-,?,?), diff_set(?,-,?). |
414 | | diff_set(S1,S2,Res) :- Res = setValue(R), expand_symbolic_set(S1,setValue(ES1),diff_set1), |
415 | | expand_symbolic_set(S2,setValue(ES2),diff_set2), |
416 | | when(ground((ES1,ES2)),diff_elements(ES1,ES2,R)). |
417 | | %, print(diff(S1,S2,Res,ES1,ES2)),nl. |
418 | | |
419 | | diff_elements([],_,[]). |
420 | | diff_elements([H|T],S2,Res) :- |
421 | | (remove_element(H,S2,S3) |
422 | | -> diff_elements(T,S3,Res) |
423 | | ; (Res=[H|R2], diff_elements(T,S2,R2)) |
424 | | ). |
425 | | |
426 | | %:- block remove_element(-,?,?), remove_element(?,-,?). |
427 | | remove_element(X,[H|T],R) :- |
428 | | (selectchk(X,[H|T],R) |
429 | | -> true |
430 | | ; equal_element(X,H) |
431 | | -> R=T |
432 | | ; (X@>H, /* diff set assumes that arguments are already evaluated ! */ |
433 | | R=[H|RT], remove_element(X,T,RT)) |
434 | | ). |
435 | | |
436 | | |
437 | | :- assert_must_succeed(( csp_sets:inter_set(setValue([int(3),int(4)]),setValue([int(2),int(4)]),R), |
438 | | R == setValue([int(4)]) )). |
439 | | :- assert_must_succeed(( csp_sets:inter_set(setValue([int(3),int(4)]),setValue([int(3),int(4)]),R), |
440 | | R == setValue([int(3),int(4)]) )). |
441 | | :- assert_must_succeed(( csp_sets:inter_set(setValue([int(3),int(4)]),setFromTo(4,5),R), |
442 | | R == setValue([int(4)]) )). |
443 | | :- assert_must_succeed(( csp_sets:inter_set(setValue([int(2)]),setFromTo(0,1),R), |
444 | | R == setValue([]) )). |
445 | | :- assert_must_succeed(( csp_sets:inter_set(setFrom(1),setFromTo(3,5),R), |
446 | | R == setValue([int(3),int(4),int(5)]))). |
447 | | :- assert_must_succeed(( csp_sets:inter_set(setFrom(6),setFromTo(3,5),R), |
448 | | R == setValue([]))). |
449 | | :- assert_must_succeed(( csp_sets:inter_set(setFrom(6),setValue([]),R), |
450 | | R == setValue([]))). |
451 | | |
452 | | :- block inter_set(-,?,?), inter_set(?,-,?). |
453 | | inter_set(S1,S2,Res) :- Res = setValue(R), |
454 | | (S1=setFrom(Low) -> |
455 | | expand_symbolic_set(S2,setValue(ES2),inter_set1), |
456 | | when(ground((Low,ES2)),inter_merge_elements_from(ES2,Low,R)) |
457 | | ;S2=setFrom(Low) -> |
458 | | expand_symbolic_set(S1,setValue(ES1),inter_set2), |
459 | | when(ground((ES1,Low)),inter_merge_elements_from(ES1,Low,R)) |
460 | | ; |
461 | | expand_symbolic_set(S1,setValue(ES1),inter_set1), |
462 | | expand_symbolic_set(S2,setValue(ES2),inter_set2), |
463 | ? | when(ground((ES1,ES2)),inter_merge_elements(ES1,ES2,R)) |
464 | | ). |
465 | | |
466 | | inter_merge_elements([],_R,[]). |
467 | | inter_merge_elements([_|_],[],[]). |
468 | | inter_merge_elements([H1|T1],[H2|T2],Res) :- |
469 | | (equal_element(H1,H2) |
470 | | -> (Res = [H1|TR], inter_merge_elements(T1,T2,TR)) |
471 | | ; (H1@<H2 -> inter_merge_elements(T1,[H2|T2],Res) |
472 | ? | ; inter_merge_elements([H1|T1],T2,Res) |
473 | | ) |
474 | | ). |
475 | | |
476 | | inter_merge_elements_from([],_Low,[]). |
477 | | inter_merge_elements_from([int(H)|T],Low,Res) :- |
478 | | ((Low =< H) -> |
479 | | Res = [int(H)|TR], inter_merge_elements_from(T,Low,TR) |
480 | | ; |
481 | | inter_merge_elements_from(T,Low,Res) |
482 | | ). |
483 | | |
484 | | :- assert_must_succeed((X=true, csp_sets: equal_element(true, X))). |
485 | | :- assert_must_fail((X=false, csp_sets: equal_element(true, X))). |
486 | | :- assert_must_succeed((X=false, csp_sets: equal_element(false, X))). |
487 | | :- assert_must_fail((X=true, csp_sets: equal_element(false, X))). |
488 | | :- assert_must_succeed((R=setFrom(1),csp_sets: equal_element(setFrom(1), R))). |
489 | | :- assert_must_fail((R=setFrom(2),csp_sets: equal_element(setFrom(1), R))). |
490 | | :- assert_must_fail((R=intType,csp_sets: equal_element(setFrom(1), R))). |
491 | | :- assert_must_succeed((R=setFromTo(1,46), csp_sets: equal_element(setFromTo(1,46),R))). |
492 | | :- assert_must_fail((R=setFromTo(1,2), csp_sets: equal_element(setFromTo(1,46),R))). |
493 | | :- assert_must_fail((R=setFrom(1), csp_sets: equal_element(setFromTo(1,46),R))). |
494 | | :- assert_must_succeed((R=setValue([int(1),int(2),int(3)]), csp_sets: equal_element(setFromTo(1,3),R))). |
495 | | :- assert_must_succeed((R=setValue([]), csp_sets: equal_element(setFromTo(3,1),R))). |
496 | | :- assert_must_fail((R=setValue([int(1),int(2),int(3)]), csp_sets: equal_element(setFromTo(1,4),R))). |
497 | | :- assert_must_fail((R=setFrom(10), csp_sets: equal_element(setValue(_X), R))). |
498 | | :- assert_must_succeed((R=boolType, csp_sets: equal_element(setValue([true,false]),R))). |
499 | | :- assert_must_succeed((R=setFromTo(1,1), csp_sets: equal_element(setValue([int(1)]),R))). |
500 | | :- assert_must_succeed((R=tuple([v1,int(0),na_tuple([int(0),int(0)])]), csp_sets: equal_element(tuple([v1,tuple([int(0),na_tuple([int(0),int(0)])])]),R))). |
501 | | :- assert_must_succeed((R=tuple([v1,tuple([int(0),na_tuple([int(0),int(0)])])]), csp_sets: equal_element(tuple([v1,int(0),na_tuple([int(0),int(0)])]),R))). |
502 | | :- assert_must_succeed((R=record(v1,[int(0),na_tuple([int(0),int(0)])]), csp_sets: equal_element(tuple([v1,tuple([int(0),na_tuple([int(0),int(0)])])]),R))). |
503 | | |
504 | | equal_element(X,Y) :- |
505 | | (var(X);var(Y)),!,X=Y. |
506 | | equal_element(true,X) :- !, |
507 | | ( X=true -> true |
508 | | ; X=false -> fail |
509 | | ; add_error_fail(haskell_csp,'Type error in equality: ',true=X) |
510 | | ). |
511 | | equal_element(false,X) :- !, |
512 | | ( X=false -> true |
513 | | ; X=true -> fail |
514 | | ; add_error_fail(haskell_csp,'Type error in equality: ',false=X) |
515 | | ). |
516 | | equal_element(int(X),R) :- !, |
517 | | (R=int(Y) -> X=Y |
518 | | ; add_error_fail(haskell_csp,'Type error in equality: ',int(X)=R) |
519 | | ). |
520 | | equal_element(setFrom(X),R) :- !, |
521 | | (R=setFrom(Y) -> X=Y |
522 | | ; is_a_set(R) -> fail |
523 | | ; add_error_fail(haskell_csp,'Type error in equality: ',setFrom(X)=R) |
524 | | ). |
525 | | equal_element(setFromTo(X,Y),R) :- !, |
526 | | (R=setFromTo(X2,Y2) -> X=X2,Y=Y2 |
527 | | ; (R=setValue(_) ;R=setExp(_,_)) -> equal_sets(setFromTo(X,Y),R) |
528 | | ; is_a_set(R) -> fail % Set different for setValue and setExp |
529 | | ; add_error_fail(haskell_csp,'Type error in equality: ',setFromTo(X,Y)=R) |
530 | | ). |
531 | | equal_element(setValue(X),R) :- !, |
532 | | (R=setValue(Y) -> equal_setValue(X,Y) |
533 | | ; R=setFrom(_) -> fail % infinite set cannot be equal to finite one |
534 | | ; is_a_set(R) -> expand_symbolic_set(R,setValue(ER),equal_element), equal_setValue(X,ER) |
535 | | ; add_error_fail(haskell_csp,'Type error in equality: ',setValue(X)=R) |
536 | | ). |
537 | | equal_element(list(X),R) :- !, |
538 | | (R=list(Y) -> X=Y |
539 | | ;add_error_fail(haskell_csp,'Type error in equality: ',list(X)=R) |
540 | | ). |
541 | | equal_element(na_tuple(X),R) :- !, |
542 | | (R=na_tuple(Y) -> X=Y |
543 | | ;add_error_fail(haskell_csp,'Type error in equality: ',na_tuple(X)=R) |
544 | | ). |
545 | | equal_element(tuple(X),R) :- !, |
546 | | ( R=tuple(Y) -> (X=Y ; equal_interleaved_dot_tuples(X,Y)) |
547 | | ; R=record(C,A) -> X=[H|T], C=H, (T=A ; equal_interleaved_dot_tuples(T,A)) |
548 | | ; add_error_fail(haskell_csp,'Type error in equality: ',tuple(X)=R) |
549 | | ). |
550 | | equal_element(dotTuple(X),R) :- !, |
551 | | ( R=tuple(Y) -> (X=Y ; equal_interleaved_dot_tuples(X,Y)) |
552 | | ; R=record(C,A) -> X=[H|T], C=H, (T=A ; equal_interleaved_dot_tuples(T,A)) |
553 | | ; add_error_fail(haskell_csp,'Type error in equality: ',dotTuple(X)=R) |
554 | | ). |
555 | | equal_element(record(C,A),R) :- |
556 | | get_constructor_type(C,Type),!, |
557 | | ((R=record(C2,A2),get_constructor_type(C2,Type)) -> C=C2,(A=A2 ; equal_interleaved_dot_tuples(A,A2)) % missing subtype checks |
558 | | ; R=tuple([H|T]) -> (H=C,(T=A ; equal_interleaved_dot_tuples(A,T))) |
559 | | ; (atomic(R),get_constant_type(R,Type)) -> fail |
560 | | ; R=agent_call(_,_,_) -> force_evaluate_argument(R,Res),equal_element(record(C,A),Res) |
561 | | ; add_error_fail(haskell_csp,'Type error in equality: ',record(C,A)=R) |
562 | | ). |
563 | | equal_element(X,R) :- |
564 | | atomic(X),get_constant_type(X,Type),!, |
565 | | ((atomic(R),get_constant_type(R,Type)) -> X=R |
566 | | ;(R=record(C,_Args),get_constructor_type(C,Type)) -> fail |
567 | | ; add_error_fail(haskell_csp,'Type error in equality: ',X=R) |
568 | | ). |
569 | | equal_element(Set,R) :- |
570 | | is_a_set(Set),!, |
571 | | expand_symbolic_set(Set,ES,equal_element), |
572 | | equal_element(ES,R). |
573 | | % To do: Further Improve this predicate, and check typing |
574 | | equal_element(X,Y) :- print(equal_element(X,Y)),nl,X=Y. |
575 | | |
576 | | equal_interleaved_dot_tuples(X,Y) :- |
577 | | unify_tuple_elements(X,Y,R,tuple), |
578 | | (X=R -> true; unfold_dot_tuples(X,XR),XR=R). |
579 | | |
580 | | equal_sets(setFromTo(X,Y),R) :- |
581 | | ((R=setValue(S),ground((X,Y,S))) -> |
582 | | cardinality(setFromTo(X,Y),int(N)), |
583 | | length(S,N), |
584 | | expand_from_to(X,Y,XYSet), |
585 | | diff_elements(XYSet,S,[]) |
586 | | ; |
587 | | expand_symbolic_set(setFromTo(X,Y),ES,equal_element), |
588 | | equal_element(ES,R) |
589 | | ). |
590 | | % check if two lists inside setValue are equal; should be sorted ! |
591 | | % as all elements that appear in setValue are normalised we could simply use Prolog Unification: X=Y ? |
592 | | equal_setValue(X,Y) :- |
593 | | (var(X);var(Y)),!,X=Y. |
594 | | equal_setValue(L1,L2) :- |
595 | | maplist(equal_element,L1,L2). |
596 | | |
597 | | get_constructor_type(C,Type) :- csp_full_type_constructor(C,DT,_ArgTypes),!,Type=DT. |
598 | | get_constructor_type(C,_) :- add_internal_error(/*get_constructor_type,*/'Internal Error: Unknown record constructor: ',C),fail. |
599 | | get_constant_type(C,Type) :- csp_full_type_constant(C,DataType),!,Type=DataType. |
600 | | get_constant_type(C,Type) :- csp_full_type_constructor(C,DataType,_ArgTypes),!, |
601 | | % a type constructor is passed as an atomic value; some CSP specs do this (stc.csp of Kharmeh PhD spec) |
602 | | Type=constructor(DataType). |
603 | | get_constant_type(C,_) :- add_internal_error(/*get_constant_type,*/'Internal Error: Unknown constant: ',C),fail. |
604 | | |
605 | | :- assert_must_fail((X=true, csp_sets: not_equal_element(true, X))). |
606 | | :- assert_must_succeed((X=false, csp_sets: not_equal_element(true, X))). |
607 | | :- assert_must_fail((X=false, csp_sets: not_equal_element(false, X))). |
608 | | :- assert_must_succeed((X=true, csp_sets: not_equal_element(false, X))). |
609 | | :- assert_must_fail((R=setFrom(1),csp_sets: not_equal_element(setFrom(1), R))). |
610 | | :- assert_must_succeed((R=setFrom(2),csp_sets: not_equal_element(setFrom(1), R))). |
611 | | :- assert_must_succeed((R=intType,csp_sets: not_equal_element(setFrom(1), R))). |
612 | | :- assert_must_fail((R=setFromTo(1,46), csp_sets: not_equal_element(setFromTo(1,46),R))). |
613 | | :- assert_must_succeed((R=setFromTo(1,2), csp_sets: not_equal_element(setFromTo(1,46),R))). |
614 | | :- assert_must_succeed((R=setFrom(1), csp_sets: not_equal_element(setFromTo(1,46),R))). |
615 | | :- assert_must_fail((R=setValue([int(1),int(2),int(3)]), csp_sets: not_equal_element(setFromTo(1,3),R))). |
616 | | :- assert_must_fail((R=setValue([]), csp_sets: not_equal_element(setFromTo(3,1),R))). |
617 | | :- assert_must_succeed((R=setValue([int(1),int(2),int(3)]), csp_sets: not_equal_element(setFromTo(1,4),R))). |
618 | | :- assert_must_succeed((R=setFrom(10), csp_sets: not_equal_element(setValue(_X), R))). |
619 | | :- assert_must_fail((R=boolType, csp_sets: not_equal_element(setValue([true,false]),R))). |
620 | | :- assert_must_fail((R=setFromTo(1,1), csp_sets: not_equal_element(setValue([int(1)]),R))). |
621 | | :- assert_must_succeed((R=tuple([int(1),int(2)]), csp_sets: not_equal_element(tuple([int(1),int(3)]), R))). |
622 | | :- assert_must_fail((R=tuple([int(1),int(2)]), csp_sets: not_equal_element(tuple([int(1),int(2)]), R))). |
623 | | :- assert_must_succeed((R=na_tuple([int(1),int(2)]), csp_sets: not_equal_element(na_tuple([int(1),int(3)]), R))). |
624 | | :- assert_must_fail((R=na_tuple([int(1),int(2)]), csp_sets: not_equal_element(na_tuple([int(1),int(2)]), R))). |
625 | | :- assert_must_succeed((R=list([int(1),int(2)]), csp_sets: not_equal_element(list([int(1),int(3)]), R))). |
626 | | :- assert_must_fail((R=list([int(1),int(2)]), csp_sets: not_equal_element(list([int(1),int(2)]), R))). |
627 | | :- assert_must_succeed((R=record(seq,[int(1),int(2)]), csp_sets: not_equal_element(record(seq,[int(1),int(3)]), R))). |
628 | | :- assert_must_fail((R=record(seq,[int(1),int(2)]), csp_sets: not_equal_element(record(seq,[int(1),int(2)]), R))). |
629 | | |
630 | | not_equal_element(X,Y) :- var(X),!,dif(X,Y). |
631 | | not_equal_element(true,X) :- !, |
632 | | (X=false -> true |
633 | | ; X=true -> fail |
634 | | ; add_error_fail(haskell_csp,'Type error in disequality: ',true\=X) |
635 | | ). |
636 | | not_equal_element(false,X) :- !, |
637 | | (X=true -> true |
638 | | ; X=false -> fail |
639 | | ; add_error_fail(haskell_csp,'Type error in disequality: ',false\=X) |
640 | | ). |
641 | | not_equal_element(int(X),R) :- !, |
642 | | (R=int(Y) -> X\=Y |
643 | | ; add_error_fail(haskell_csp,'Type error in disequality: ',int(X)\=R) |
644 | | ). |
645 | | not_equal_element(setFrom(X),R) :- !, |
646 | | (R=setFrom(Y) -> X\=Y |
647 | | ; is_a_set(R) -> true |
648 | | ; add_error_fail(haskell_csp,'Type error in disequality: ',setFrom(X)\=R) |
649 | | ). |
650 | | not_equal_element(setFromTo(X,Y),R) :- !, |
651 | | (R=setFrom(X2,Y2) -> (X,Y)\=(X2,Y2) |
652 | | ; R=setFrom(_) -> true |
653 | | ; is_a_set(R) -> expand_symbolic_set(setFromTo(X,Y),ES,equal_element), not_equal_element(ES,R) |
654 | | ; add_error_fail(haskell_csp,'Type error in disequality: ',setFromTo(X,Y)\=R) |
655 | | ). |
656 | | not_equal_element(setValue(X),R) :- !, |
657 | | (R=setValue(Y) -> not_equal_setValue(X,Y) |
658 | | ; R=setFrom(_) -> true /* infinite set cannot be equal to finite one */ |
659 | | ; is_a_set(R) -> expand_symbolic_set(R,setValue(ER),equal_element), not_equal_setValue(X,ER) |
660 | | ; add_error_fail(haskell_csp,'Type error in disequality: ',setValue(X)\=R) |
661 | | ). |
662 | | not_equal_element(list(X),R) :- !, |
663 | | (R=list(Y) -> X\=Y |
664 | | ; add_error_fail(haskell_csp,'Type error in disequality: ',list(X)\=R) |
665 | | ). |
666 | | not_equal_element(na_tuple(X),R) :- !, |
667 | | (R=na_tuple(Y) -> X\=Y |
668 | | ; add_error_fail(haskell_csp,'Type error in disequality: ',na_tuple(X)\=R) |
669 | | ). |
670 | | not_equal_element(tuple(X),R) :- !, |
671 | | ( R=tuple(Y) -> X\=Y |
672 | | ; R=record(C,A) -> X=[H|T], (C\=H ; (T\=A , \+equal_interleaved_dot_tuples(T,A))) |
673 | | ; add_error_fail(haskell_csp,'Type error in disequality: ',tuple(X)\=R) |
674 | | ). |
675 | | not_equal_element(record(C,A),R) :- !, |
676 | | (atomic(R) -> true |
677 | | ; R=record(C2,A2) -> (C\=C2 ; (A\=A2 , \+equal_interleaved_dot_tuples(A,A2))) |
678 | | ; R=tuple([H|T]) -> (H\=C ; (A\=T , \+equal_interleaved_dot_tuples(A,T))) |
679 | | ; add_error_fail(haskell_csp,'Type error in disequality: ',record(C,A)\=R) |
680 | | ). |
681 | | not_equal_element(Set,R) :- |
682 | | is_a_set(Set), |
683 | | expand_symbolic_set(Set,ES,equal_element), |
684 | | not_equal_element(ES,R). |
685 | | not_equal_element(X,R) :- atomic(X),!, |
686 | | (atomic(R) -> X\=R |
687 | | ; R=record(_,_) -> fail |
688 | | ; add_error_fail(haskell_csp,'Type error in disequality: ',X\=R) |
689 | | ). |
690 | | not_equal_element(X,Y) :- dif(X,Y). |
691 | | |
692 | | % we normalise all elements that appear in setValue; dif or \= is sufficient |
693 | | not_equal_setValue(X,Y) :- dif(X,Y). |
694 | | |
695 | | /* expand_symbolic_set */ |
696 | | /* force expansion of symbolic sets into explicit sets */ |
697 | | |
698 | | /* testing the equality: {x*y | x <- {1,3}, y <- {2,4}} == {2,4,6,12} */ |
699 | | :- assert_must_succeed(( csp_sets:expand_symbolic_set(setExp(rangeEnum(['*'(_x,_y)] ), |
700 | | [comprehensionGenerator(_x,setValue([int(1),int(3)])), |
701 | | comprehensionGenerator(_y,setValue([int(2),int(4)]))] ),R,test), R = setValue([int(2),int(4),int(6),int(12)]))). |
702 | | :- assert_must_succeed(( csp_sets:expand_symbolic_set(boolType,R,_X), R == setValue([true,false]))). |
703 | | /* testing the equality: {(x,y) | x <- {0..100}, y <- { -99..5}, x+y == 100} == {(95,5),(96,4),(97,3),(98,2),(99,1),(100,0)} */ |
704 | | :- assert_must_succeed(( csp_sets:expand_symbolic_set(setExp(rangeEnum([tuplePat([_x,_y])]), |
705 | | [comprehensionGenerator(_x,setFromTo(0,100)), |
706 | | comprehensionGenerator(_y,setFromTo(-99,5)),comprehensionGuard('=='('+'(_x,_y),'int'(100)))] ),R,test), |
707 | | R = setValue([na_tuple([int(95),int(5)]),na_tuple([int(96),int(4)]),na_tuple([int(97),int(3)]), |
708 | | na_tuple([int(98),int(2)]),na_tuple([int(99),int(1)]),na_tuple([int(100),int(0)])]))). |
709 | | |
710 | | %expand_symbolic_set(X,R) :- print(expand_symbolic_set(X,R)),nl,fail. |
711 | | expand_symbolic_set(X,R,Context) :- var(X),!, |
712 | | add_error(expand_symbolic_set,'Variable argument for expand_symbolic_set, Context: ',Context), |
713 | | R=X. |
714 | | expand_symbolic_set(dataType(T),R,Context) :- !, R=setValue(SET), |
715 | | (dataTypeDef(T,Def) |
716 | | -> %print(dt(T,Def,SET)),nl, |
717 | | expand_datatypedefbody(Def,T,SET,Context) |
718 | | ; add_error(csp_sets,'Could not expand dataType. No datatype definition for: ',T:context(Context)), |
719 | | SET=[] |
720 | | ). |
721 | | expand_symbolic_set(closure(X),R,_Context) :- !, closure_expand(X,R). |
722 | | expand_symbolic_set(setValue(X),R,_Context) :- !, R=setValue(X). |
723 | | expand_symbolic_set(setFrom(X),R,Context) :- !, add_warning(expand_symbolic_set,'Warning: Tried to expand infinite set: ',setFrom(X):context(Context)),R=setFrom(X). |
724 | | expand_symbolic_set(setFromTo(Low,Up),R,_Context) :- !,R=setValue(RS),expand_from_to(Low,Up,RS). |
725 | | expand_symbolic_set(setExp(RangeExpr,GeneratorList),R,_Context) :- !, |
726 | | expand_set_comprehension(RangeExpr,GeneratorList,R). |
727 | | expand_symbolic_set(listFromTo(X,Y),_,Context) :- |
728 | | add_error(expand_symbolic_set,'Type error; expected set: ',listFromTo(X,Y):context(Context)),fail. |
729 | | expand_symbolic_set(agent_call(Span,F,Par),R,Context) :- !, |
730 | | force_evaluate_argument(agent_call(Span,F,Par),RF), |
731 | | expand_symbolic_set(RF,R,Context). |
732 | | expand_symbolic_set(boolType,R,_Context) :- !, R = setValue([true,false]). |
733 | | expand_symbolic_set(dotTupleType(L),R,_Context) :- !, % we want to expand some more complicated Types like {0..2}.({0..2},{0..2}) |
734 | | %print(expand_symbolic_set(dotTupleType(L))),nl, |
735 | | l_unfold_datatype_dot_tuple([dotTupleType(L)],RL), |
736 | | findall(Val,haskell_csp: enumerate_channel_input_value2(dotTupleType(RL),Val,_Ch,2,no_loc_info_available),Set), |
737 | | R = setValue(Set). |
738 | | expand_symbolic_set(typeTuple(L),R,_Context) :- !, |
739 | | haskell_csp: evaluate_type_list(L,LR), |
740 | | findall(Val,haskell_csp: enumerate_channel_input_value2(typeTuple(LR),Val,_Ch,2,no_loc_info_available),Set), |
741 | | R = setValue(Set). |
742 | | expand_symbolic_set(Set,R,Context) :- |
743 | | add_error(expand_symbolic_set,'Could not expand set: ',Set:context(Context)),R=Set. |
744 | | |
745 | | :- block expand_from_to(-,?,?), expand_from_to(?,-,?). |
746 | | expand_from_to(X,Y,R) :- expand_from_to2(X,Y,R). |
747 | | expand_from_to2(X,Y,R) :- X>Y,!, R=[]. |
748 | | expand_from_to2(X,Y,[int(X)|T]) :- X1 is X+1, expand_from_to2(X1,Y,T). |
749 | | |
750 | | expand_datatypedefbody([],_DT,R,_) :- !, R=[]. |
751 | | expand_datatypedefbody([constructor(C)|T],DT,R,Context) :- !, R=[C|ET], |
752 | | expand_datatypedefbody(T,DT,ET,Context). |
753 | | expand_datatypedefbody([constructorC(Cons,Type)|T],DT,R,Context) :- !, |
754 | | (haskell_csp:channel_type_is_finite(Type,2) -> |
755 | | findall(Record,csp_sets:expand_constructor_to_record(Cons,DT,2,Record),L), |
756 | | append(L,RT,R), |
757 | | expand_datatypedefbody(T,DT,RT,Context) |
758 | | ; add_error(csp_sets, 'Could not expand infinite datatype body: ',constructorC(Cons,Type):context(Context)),fail |
759 | | ). |
760 | | expand_datatypedefbody(L,_DT,R,Context) :- |
761 | | add_internal_error('Internal Error: Could not expand datatype body (potentially infinite): ',L:context(Context)), |
762 | | R=[]. |
763 | | |
764 | | expand_constructor_to_record(Cons,DT,MaxRec,Res) :- |
765 | | Res=record(Cons,_L), |
766 | | enumerate_datatype_el(DT,Res,_Channel,MaxRec,no_loc_info_available). |
767 | | |
768 | | /* ------------------ */ |
769 | | /* EXPANDING CLOSURES */ |
770 | | /* ------------------ */ |
771 | | |
772 | | /* csp_sets:closure_expand([tuple([outf])],R),print(R),nl */ |
773 | | |
774 | | closure_expand(ListOfEls,setValue(ExpandedList)) :- |
775 | | %print(closure_expand(ListOfEls)),nl, |
776 | | when(ground(ListOfEls), |
777 | | (findall(EEl,(member(El,ListOfEls), |
778 | | closure_expand_single_element(El,EEl)),EEls), |
779 | | %print(expanded(EEls)),nl, |
780 | | sort(EEls,ExpandedList) /* is sort ok wrt to @< used by various set operations?? */ |
781 | | )). |
782 | | |
783 | | closure_expand_single_element(tuple([Ch|List]),R) :- |
784 | | channel_type_list(Ch,ChannelTypeList),!, R = tuple([Ch|NewList]), |
785 | | %print(tuple([Ch|NewList],ChannelTypeList)),nl, |
786 | | %% print(gen_expanded_list(ChannelTypeList,List,NewList,Ch)),nl, |
787 | | gen_expanded_list(ChannelTypeList,List,NewList,Ch). |
788 | | closure_expand_single_element(Cons,C) :- |
789 | | is_csp_constructor(Cons),!, |
790 | | csp_constructor(Cons,DT,_ArgSubTypes), |
791 | | %print(csp_constructor(Cons,DT,_ArgSubTypes)),nl, |
792 | | C=record(Cons,_Fields), |
793 | | enumerate_datatype_el(DT,C,_Ch,2,no_loc_information). |
794 | | closure_expand_single_element(tuple([Ch|_]),_R) :- !, |
795 | | add_error(csp_sets,'Cannot compute closure: This is not a defined channel: ',Ch), |
796 | | fail. |
797 | | closure_expand_single_element(X,_R) :- |
798 | | add_error(csp_sets,'Cannot expand closure: ',X), |
799 | | fail. |
800 | | |
801 | | gen_expanded_list([],List,[],Channel) :- |
802 | | (List=[] -> |
803 | | true |
804 | | ; add_error(csp_sets,'Pattern list too long for channel: ',(List,Channel)) |
805 | | ). |
806 | | gen_expanded_list([Type|TT],List,Res,Channel) :- |
807 | | (List=[H|LT] |
808 | | -> (is_incomplete_record(H,CompletedH,RecType) |
809 | | -> ((LT==[] -> |
810 | | true |
811 | | ; add_error(gen_expanded_list,'Incomplete Record at non-tail position:',Channel:H) |
812 | | ), |
813 | | enumerate_channel_input_value(dataType(RecType),CompletedH,Channel,no_loc_info_available), |
814 | | %%print(enum(Type,CompletedH,Channel)),nl, |
815 | | Res = [CompletedH|RT] |
816 | | ) |
817 | | ; Res=[H|RT] |
818 | | ) |
819 | | ; Res=[NewEl|RT],LT=List, /* is it ok not to put dot(NewEl) here ? */ |
820 | | enumerate_channel_input_value(Type,NewEl,Channel,no_loc_info_available) |
821 | | ), |
822 | | gen_expanded_list(TT,LT,RT,Channel). |
823 | | |
824 | | :- assert_must_succeed((assertz(csp_sets: csp_full_type_constructor(sq,values,[dataType(values), dataType(values)])), |
825 | | is_incomplete_record(record(sq,['A']), _R, values), |
826 | | retractall(csp_sets:csp_full_type_constructor(_,_,_)))). |
827 | | :- assert_must_fail((assertz(csp_sets: csp_full_type_constructor(sq,values,[dataType(values), dataType(values)])), |
828 | | is_incomplete_record(record(sq,['A','B']), _R, values), |
829 | | retractall(csp_sets:csp_full_type_constructor(_,_,_)))). |
830 | | is_incomplete_record(record(Constructor,Fields),record(Constructor,FullFields),Type) :- |
831 | | csp_full_type_constructor(Constructor,Type,SubTypes), |
832 | | length(SubTypes,NrReqArgs), |
833 | | length(Fields,NrFields), |
834 | | (NrReqArgs > NrFields |
835 | | -> ( %print(record_incomplete(Constructor,Fields,SubTypes)),nl, |
836 | | length(FullFields,NrReqArgs), |
837 | | append(Fields,_,FullFields) |
838 | | %print(completed(record(Constructor,FullFields))),nl |
839 | | ) |
840 | | ; ((NrReqArgs<NrFields -> add_error(csp_sets,'Too many arguments for record: ',Constructor:Fields) ; true), |
841 | | fail) |
842 | | ). |
843 | | /* ------------------ */ |
844 | | /* SET COMPREHENSIONS */ |
845 | | /* ------------------ */ |
846 | | |
847 | | expand_set_comprehension(RangeExpr,GeneratorList,Res) :- |
848 | | %%%% print(expand_set_comprehension(RangeExpr,GeneratorList,Res)),nl, |
849 | | get_waitvars_for_generator_list(GeneratorList,WaitVars), |
850 | | %print(get_waitvars_for_generator_list(GeneratorList,WaitVars)),nl, |
851 | | when(ground(WaitVars), generate_set_comprehension_solutions(RangeExpr,GeneratorList,Res)). |
852 | | |
853 | | generate_set_comprehension_solutions(RangeExpr,GeneratorList,Res) :- |
854 | | treat_generators(GeneratorList,GenVars,Sets,Guard), |
855 | | findall(EExpr,get_generators_solution(Guard,GenVars,RangeExpr,Sets,EExpr),Expressions), |
856 | | %print(force_evaluate_set(Expressions,Res)),nl, |
857 | | force_evaluate_set(Expressions,Res).%evaluate_set(Expressions,Res,force_evaluate_argument). |
858 | | |
859 | | get_generators_solution(Guard,GenVars,RangeExpr,Sets,EExpr) :- |
860 | | check_boolean_expression(Guard), |
861 | | %print(generator_sol(guard(Guard),GenVars,Sets)),nl, |
862 | ? | generator_sol(GenVars,Sets,set), % unifies the variables of the comprehension generator expressions (e.g. x <- {0..10}) |
863 | | %print(checking_range),nl, |
864 | | member_range_expr(RangeExpr,EExpr). |
865 | | |
866 | | /* not used anymore |
867 | | % temporary CLPFD will be not used for CSP |
868 | | check_boolean_expression_set(Guard) :- |
869 | | preference(use_clpfd_solver,true), |
870 | | arith_boolean_expression(Guard,EvBExpr),!, |
871 | | set_clpfd_constraints(EvBExpr). |
872 | | check_boolean_expression_set(Guard) :- |
873 | | check_boolean_expression(Guard). |
874 | | |
875 | | arith_boolean_expression(BExpr,EvBExpr) :- |
876 | | functor(BExpr,F,2),arg(1,BExpr,Arg1),arg(2,BExpr,Arg2), |
877 | | %BExpr =.. [F,Arg1,Arg2], |
878 | | (F == '=='; F == '!='; F == '<'; F == '<='; F == '>'; F == '>='),!, |
879 | | cspm_compute_arith_expression(Arg1,EArg1), |
880 | | cspm_compute_arith_expression(Arg2,EArg2), |
881 | | functor(EvBExpr,F,2),arg(1,EvBExpr,EArg1),arg(2,EvBExpr,EArg2). |
882 | | %EBExpr=..[F,EArg1,EArg2]. |
883 | | |
884 | | set_clpfd_constraints('=='(X,Y)) :- !, |
885 | | clpfd_interface:csp_clpfd_eq(X,Y). |
886 | | set_clpfd_constraints('!='(X,Y)) :- !, |
887 | | clpfd_interface:csp_clpfd_neq(X,Y). |
888 | | set_clpfd_constraints('<'(X,Y)) :- !, |
889 | | clpfd_interface:csp_clpfd_lt(X,Y). |
890 | | set_clpfd_constraints('<='(X,Y)) :- !, |
891 | | clpfd_interface:csp_clpfd_leq(X,Y). |
892 | | set_clpfd_constraints('>'(X,Y)) :- !, |
893 | | clpfd_interface:csp_clpfd_gt(X,Y). |
894 | | set_clpfd_constraints('>='(X,Y)) :- !, |
895 | | clpfd_interface:csp_clpfd_geq(X,Y). |
896 | | |
897 | | |
898 | | cspm_compute_arith_expression(Expr,Res) :- |
899 | | var(Expr),!,Res=Expr. |
900 | | cspm_compute_arith_expression('-'(Arg1),Value) :- !, |
901 | | cspm_compute_arith_expression(Arg1,SV1), |
902 | | Value = '-'(SV1). |
903 | | cspm_compute_arith_expression('-'(Arg1,Arg2),Value) :- !, |
904 | | cspm_compute_arith_expression(Arg1,SV1), |
905 | | cspm_compute_arith_expression(Arg2,SV2), |
906 | | Value = '-'(SV1,SV2). |
907 | | cspm_compute_arith_expression('+'(Arg1,Arg2),Value) :- !, |
908 | | cspm_compute_arith_expression(Arg1,SV1), |
909 | | cspm_compute_arith_expression(Arg2,SV2), |
910 | | Value = '+'(SV1,SV2). |
911 | | cspm_compute_arith_expression('*'(Arg1,Arg2),Value) :- !, |
912 | | cspm_compute_arith_expression(Arg1,SV1), |
913 | | cspm_compute_arith_expression(Arg2,SV2), |
914 | | Value = '*'(SV1,SV2). |
915 | | cspm_compute_arith_expression(int(Expr),Expr) :- !. |
916 | | */ |
917 | | |
918 | | |
919 | | :- assert_must_succeed((csp_sets: member_range_expr(rangeEnum([int(1),int(2),int(3)]),int(E)), E == 2)). |
920 | | :- assert_must_fail((csp_sets: member_range_expr(rangeEnum([]),_E))). |
921 | | :- assert_must_succeed((csp_sets: member_range_expr(rangeClosed(int(1),int(5)),int(E)), E == 3)). |
922 | | :- assert_must_fail((csp_sets: member_range_expr(rangeClosed(int(3),int(1)),_E))). |
923 | | % no lazy-evaluation, argument E must be initialized before calling member_range_expr(rangeOpen(int(_)),E) |
924 | | :- assert_must_succeed((E = int(30000), csp_sets: member_range_expr(rangeOpen(int(1)),E))). |
925 | | :- assert_must_fail((E = int(1), csp_sets: member_range_expr(rangeOpen(int(3)),E))). |
926 | | |
927 | | member_range_expr(rangeEnum(ExprList),EExpr) :- !, |
928 | | /*(preference(use_clpfd_solver,true),nonvar(ExprList) -> |
929 | | %print(expr_list_1(ExprList)),nl, |
930 | | term_variables(ExprList,Vars), |
931 | | %print(csp_clpfd_labeling([ffc,enum],Vars)),nl, |
932 | | clpfd_interface: csp_clpfd_labeling([ffc,enum],Vars) |
933 | | ; true |
934 | | ),*/ |
935 | ? | member(Expr,ExprList),force_evaluate_argument(Expr,EExpr). |
936 | | member_range_expr(rangeClosed(X,Y),EExpr) :- !, |
937 | | evaluate_int_argument(X,EX),evaluate_int_argument(Y,EY), |
938 | ? | is_member_set(EExpr,setFromTo(EX,EY)). |
939 | | member_range_expr(rangeOpen(X),EExpr) :- !, |
940 | | evaluate_int_argument(X,EX), |
941 | | is_member_set(EExpr,setFrom(EX)). % could flounder if Guard not specific enough?! |
942 | | /* Internal error. CSP-M Parser guarantees that the expression on the left side of | in the parsed comprehension set is one of |
943 | | the rangeEnum(-), rangeClosed(_,_) or rangeOpen(-) predicates. */ |
944 | | member_range_expr(Range,_) :- |
945 | | add_internal_error('Internal Error: Illegal range expr in set comprehension: ',Range),fail. |
946 | | |
947 | | % compute the variables that have to be ground before expanding a set comprehension: |
948 | | get_waitvars_for_generator_list(GeneratorList,WaitVars) :- |
949 | | extract_local_variables_from_generator_list(GeneratorList,LocalVars), |
950 | | term_variables(GeneratorList,GVars), |
951 | | % Do not wait on local variables, they will never be grounded: |
952 | | remove_variables(GVars,LocalVars,WaitVars). |
953 | | |
954 | | % Note: this predicate is also called for the replicated operators ! The expressions can |
955 | | % be CSPM agents : do not use force_evaluate |
956 | | replicate_expand_set_comprehension(ExprList,GeneratorList,Res) :- |
957 | | %% print(replicate_expand_setComp(ExprList,GeneratorList)),nl, %%% |
958 | | extract_local_variables_from_generator_list(GeneratorList,LocalVars), |
959 | | term_variables(GeneratorList,GVars), |
960 | | % Do not wait on local variables, they will never be grounded: |
961 | | remove_variables(GVars,LocalVars,WaitVars), |
962 | | when(ground(WaitVars), generate_replicate_set_comprehension_solutions(ExprList,GeneratorList,Res)). |
963 | | |
964 | | generate_replicate_set_comprehension_solutions(ExprList,GeneratorList,Res) :- |
965 | | treat_generators(GeneratorList,GenVars,Sets,Guard), |
966 | | findall(EExpr,get_replicate_generators_solution(Guard,GenVars,ExprList,Sets,EExpr),Expressions), |
967 | | evaluate_set(Expressions,Res).%evaluate_set(Expressions,Res,evaluate_argument). |
968 | | |
969 | | get_replicate_generators_solution(Guard,GenVars,ExprList,Sets,EExpr) :- |
970 | | check_boolean_expression(Guard), |
971 | | generator_sol(GenVars,Sets,replicated), % unifies the variables of the comprehension generator expressions (e.g. x <- {0..10}) |
972 | | member(Expr,ExprList), |
973 | | evaluate_argument(Expr,EExpr). |
974 | | |
975 | | generator_sol([],[],_Context). |
976 | | generator_sol([Pattern|VT],[Set|ST],Context) :- |
977 | | (ground(Set) -> true ; print(generator_sol_set_non_ground(Set)),nl), % for nested set comprehension this could actually be non-ground |
978 | | translate_pattern(Pattern,TranslPattern), |
979 | | % print(evaluated_pattern(TranslPattern,Pattern,Set)),nl, |
980 | | (ground(TranslPattern) -> /* we do not need to enumerate; generator variable already ground */ |
981 | | force_evaluate_argument_for_member_check(Set,ESet), |
982 | | is_member_set_alsoPat(TranslPattern,ESet) |
983 | | ; force_evaluate_argument(Set,EvSet), |
984 | ? | is_member_clpfd(TranslPattern,EvSet,Context) |
985 | | ), |
986 | | % print(gen_is_member(TranslPattern,Pattern,Set)),nl, |
987 | ? | generator_sol(VT,ST,Context). |
988 | | |
989 | | % constraining the variables domains |
990 | | /*is_member_clpfd(Pat,EvSet,set) :- |
991 | | preference(use_clpfd_solver,true), |
992 | | simple(Pat),check_intset_type(EvSet),!, |
993 | | csp_set_pattern_constraints(EvSet,Pat). |
994 | | |
995 | | csp_set_pattern_constraints(setFrom(Low),Pat) :- !, |
996 | | Up=sup, |
997 | | clpfd_interface: csp_clpfd_domain([Pat],Low,Up). |
998 | | csp_set_pattern_constraints(setFromTo(Low,Up),Pat) :- !, |
999 | | clpfd_interface: csp_clpfd_domain([Pat],Low,Up). |
1000 | | csp_set_pattern_constraints(setValue(L),Pat) :- !, |
1001 | | maplist(expand_int_value,L,LDom), |
1002 | | clpfd_interface:csp_in_fdset(Pat,LDom). |
1003 | | |
1004 | | expand_int_value(int(X),X). |
1005 | | |
1006 | | check_intset_type(setFrom(_Low)) :- !. |
1007 | | check_intset_type(setFromTo(_Low,_Up)) :- !. |
1008 | | check_intset_type(setValue(L)) :- |
1009 | | maplist(functor1(int,1),L),!. |
1010 | | |
1011 | | functor1(Name,N,Term) :- |
1012 | | functor(Term,Name,N). |
1013 | | |
1014 | | */ |
1015 | | |
1016 | | is_member_clpfd(Pat,EvSet,_Context) :- |
1017 | | expand_symbolic_set(EvSet,ESet,generator_sol), |
1018 | ? | is_member_set_alsoPat(Pat,ESet). |
1019 | | |
1020 | | is_member_set_alsoPat(TranslPattern,ESet) :- |
1021 | | (nonvar(TranslPattern), |
1022 | | TranslPattern = alsoPat(X,Y) -> |
1023 | | is_member_set(X,ESet), |
1024 | | unify_also_patterns(X,Y) |
1025 | ? | ; is_member_set(TranslPattern,ESet) |
1026 | | ). |
1027 | | |
1028 | | unify_also_patterns(X,Y) :- |
1029 | | unify_also_patterns(X,Y,R), |
1030 | | evaluate_argument(X,EX), |
1031 | | evaluate_argument(Y,EY), |
1032 | | ((EX=EY;EY=R) -> true % both patterns should be equal |
1033 | | ; add_error_fail(csp_sets, 'Both patterns in the also pattern do not match: ', alsoPat(X,Y)) |
1034 | | ). |
1035 | | |
1036 | | |
1037 | | |
1038 | | |
1039 | | %%%%%%%%%%%% Unit Tests for unify_also_patterns/3 %%%%%%%%%%%%%% |
1040 | | :- assert_must_succeed((csp_sets: unify_also_patterns(int(3),int(X),R), X == 3, R == int(3))). |
1041 | | :- assert_must_fail((csp_sets: unify_also_patterns(int(3),int(4),_R))). |
1042 | | :- assert_must_succeed((csp_sets: unify_also_patterns(tuple([X,Y,Z]),tuple([c,int(1),int(2)]),R), X == c, Y == int(1), Z == int(2), R == tuple([c,int(1),int(2)]))). |
1043 | | :- assert_must_succeed((csp_sets: unify_also_patterns(tuple([X,_Y]),tuple([c,int(1),int(2)]),R), X == c, R == tuple([c,tuple([int(1),int(2)])]))). |
1044 | | :- assert_must_succeed((csp_sets: unify_also_patterns(tuple([c,int(1),int(2)]),tuple([X,Y,Z]),R), X == c, Y == int(1), Z == int(2), R == tuple([c,int(1),int(2)]))). |
1045 | | :- assert_must_succeed((csp_sets: unify_also_patterns(tuple([c,int(1),int(2)]),tuple([X,_Y]),R), X == c, R == tuple([c,tuple([int(1),int(2)])]))). |
1046 | | :- assert_must_succeed((csp_sets: unify_also_patterns(tuple([c,int(1),int(2),int(3)]),tuple([X,_Y]),R), X == c, R == tuple([c,tuple([int(1),int(2),int(3)])]))). |
1047 | | :- assert_must_succeed((csp_sets: unify_also_patterns(record(c,[int(1),int(2)]),record(c,[X,Y]),R), X == int(1), Y == int(2), R == record(c,[int(1),int(2)]))). |
1048 | | :- assert_must_succeed((csp_sets: unify_also_patterns(record(c,[int(1),int(2)]),tuple([c,X,Y]),R), X == int(1), Y == int(2), R == record(c,[int(1),int(2)]))). |
1049 | | :- assert_must_succeed((csp_sets: unify_also_patterns(tuple([c,int(1),int(2)]),record(c,[X,Y]),R), X == int(1), Y == int(2), R == record(c,[int(1),int(2)]))). |
1050 | | :- assert_must_succeed((csp_sets: unify_also_patterns(tuple([c,int(1),int(2)]),record(c,[_X]),R), R == record(c,[tuple([int(1),int(2)])]))). |
1051 | | :- assert_must_succeed((csp_sets: unify_also_patterns(record(c,[int(1),int(2)]),Y,R), Y == record(c,[int(1),int(2)]), R == record(c,[int(1),int(2)]))). |
1052 | | :- assert_must_succeed((csp_sets:unify_also_patterns(record(c,[_A]),tuple([c,int(1),na_tuple([int(2),int(3)])]),D), D == record(c,[tuple([int(1),na_tuple([int(2),int(3)])])]))). |
1053 | | :- assert_must_succeed((csp_sets: unify_also_patterns(na_tuple([X,Y,Z]),na_tuple([c,int(1),int(2)]),R), X == c, Y == int(1), Z == int(2), R == na_tuple([c,int(1),int(2)]))). |
1054 | | :- assert_must_succeed((csp_sets: unify_also_patterns(list([X,Y,Z]),list([c,int(1),int(2)]),R), X == c, Y == int(1), Z == int(2), R == list([c,int(1),int(2)]))). |
1055 | | %%%%%%%%%%%% Unit Tests for unify_also_patterns/3 %%%%%%%%%%%%%% |
1056 | | |
1057 | | unify_also_patterns(X,Y,R) :- (var(X) ; var(Y)), !, X=Y,R=Y. |
1058 | | unify_also_patterns(int(X),int(Y),int(R)) :- !,int(X)=int(Y),R=X. |
1059 | | unify_also_patterns(tuple(L),Tuple,tuple(R)) :- (Tuple = tuple(L1); Tuple = dotTuple(L1)),!,unify_tuple_elements(L,L1,R,tuple). |
1060 | | unify_also_patterns(dotTuple(L),Tuple,tuple(R)) :- (Tuple = tuple(L1); Tuple = dotTuple(L1)),!,unify_tuple_elements(L,L1,R,tuple). |
1061 | | unify_also_patterns(X,Y,record(CR,LR)) :- |
1062 | | ( X = record(CX,LX) -> !, |
1063 | | ( Y=tuple([H|T]) -> CX=H,!,unify_tuple_elements([CX|LX],[H|T],R,tuple),R=[CR|LR] |
1064 | | ; Y=dotTuple([H|T]) -> CX=H,!,unify_tuple_elements([CX|LX],[H|T],R,dotTuple),R=[CR|LR] |
1065 | | ; Y=record(CY,LY) -> CX=CY,!,unify_tuple_elements([CX|LX],[CY|LY],R,tuple),R=[CR|LR] |
1066 | | ; atomic(Y) -> fail % in case we are comparing a record with a simple constructor |
1067 | | ; add_error_fail(unify_also_patterns, 'Could not unify values (inside of set comprehension): ',unify_also_patterns(X,Y)) |
1068 | | ) |
1069 | | ; Y = record(_,_) -> !, unify_also_patterns(Y,X,record(CR,LR)) |
1070 | | ; fail). |
1071 | | unify_also_patterns(na_tuple(L),na_tuple(L1),na_tuple(R)) :- !,unify_tuple_elements(L,L1,R,na_tuple). |
1072 | | unify_also_patterns(list(X),list(Y),list(R)) :- !,if(list(X)=list(Y),R=Y,fail). |
1073 | | % add_error_fail(unify_also_patterns,'Unification type failure: ', '='(list(X),list(Y)))). |
1074 | | unify_also_patterns(X,Y,_R) :- add_error_fail(csp_sets, 'Could not unify values (inside of set comprehension): ',unify_also_patterns(X,Y)). |
1075 | | |
1076 | | |
1077 | | %%%%%%%%%%%% Unit Tests for unify_tuple_elements/3 %%%%%%%%%%%%%% |
1078 | | :- assert_must_succeed((csp_sets: unify_tuple_elements([int(1),int(2)],[int(1),int(2)],R,_), R == [int(1),int(2)])). |
1079 | | :- assert_must_succeed((csp_sets: unify_tuple_elements([int(1),int(2),int(3)],[int(1),_X],R,tuple), R == [int(1),tuple([int(2),int(3)])])). |
1080 | | :- assert_must_succeed((csp_sets: unify_tuple_elements([int(1),_X],[int(1),int(2),int(3)],R,tuple), R == [int(1),tuple([int(2),int(3)])])). |
1081 | | :- assert_must_succeed((csp_sets: unify_tuple_elements([int(0),int(1),int(2),int(3)],[int(0),tuple([int(1),int(2),int(3)])],R,tuple), R == [int(0),int(1),int(2),int(3)])). |
1082 | | %%%%%%%%%%%% Unit Tests for unify_tuple_elements/3 %%%%%%%%%%%%%% |
1083 | | |
1084 | | unify_tuple_elements([],[],R,_TupleType) :- !,R=[]. |
1085 | | unify_tuple_elements([HX|TX],[HY|TY],R,TupleType) :- !, |
1086 | | unfold_dot_tuples([HX|TX],[HHX|TTX]),unfold_dot_tuples([HY|TY],[HHY|TTY]), %still possible that some tuples() are lurking inside of the dot tuple list |
1087 | | ( (TTY = [], var(HHY), TTX \= [], TupleType=tuple) -> unify_to_rest([HHX,TTX], R, TupleType),[HHY]=R |
1088 | | ; (TTX = [], var(HHX), TTY \= [], TupleType=tuple) -> unify_to_rest([HHY,TTY], R, TupleType),[HHX]=R |
1089 | | ; csp_tuples: unify_arg2(HHX,HHY,HR,no_loc_info_available), unify_tuple_elements(TTX,TTY,TR,TupleType),R = [HR|TR]). |
1090 | | % we don't need to raise an exception when we cannot unify the tuple elements. |
1091 | | %unify_tuple_elements(X,Y,_R,_TupleType) :- add_error_fail(csp_sets, 'Could not unify values (inside of set comprehension): ', unify_tuple_elements(X,Y)). |
1092 | | |
1093 | | unify_to_rest(L,R,Tuple) :- |
1094 | | flatten(L,FL), |
1095 | | functor(Term,Tuple,1),arg(1,Term,FL), |
1096 | | R = [Term]. |
1097 | | |
1098 | | treat_generators(Generators,Pats,Sets,ResGuard) :- |
1099 | | treat_generators(Generators,Pats,Sets,true,ResGuard). |
1100 | | %,print(treat_generators(Generators,Pats,Sets,true,ResGuard)),nl. |
1101 | | |
1102 | | treat_generators([],Pats,Sets,Guard,ResGuard) :- |
1103 | | Pats=[],Sets=[],ResGuard=Guard. |
1104 | | treat_generators([H|T],Pats,Sets,CurGuard,ResGuard) :- |
1105 | | (H=comprehensionGenerator(Pat,Set) -> |
1106 | | Pats=[Pat|PatT],Sets=[Set|SetT], |
1107 | | CurGuard1=CurGuard |
1108 | | ;H=comprehensionGuard(Guard) -> |
1109 | | PatT=Pats,SetT=Sets, |
1110 | | % Choosing the order of the first two arguments does matter. why? (see CSP/ref_becnchmarks/basin_olderog_bank.csp example) |
1111 | | clever_bool_and(CurGuard,Guard,CurGuard1) |
1112 | | ; |
1113 | | add_internal_error('Internal Error: Could not treat Set Comprehension Generator List: ',[H|T]),fail |
1114 | | ), |
1115 | | treat_generators(T,PatT,SetT,CurGuard1,ResGuard). |
1116 | | |
1117 | | clever_bool_and(true,X,R) :- !,R=X. |
1118 | | clever_bool_and(X,true,R) :- !,R=X. |
1119 | | clever_bool_and(G1,G2,bool_and(G1,G2)). |
1120 | | |
1121 | | :- use_module(probcspsrc(csp_tuples),[is_constructor/3]). |
1122 | | % maybe we should use same code as for compile_head_para |
1123 | | |
1124 | | :- assert_must_succeed((csp_sets:l_translate_pattern([emptySet,set([X]),'Set'(setValue([int(1),int(2)])),dotpat([Y,Z,emptySet])],R), |
1125 | | R == [setValue([]),setValue([X]),setValue([int(1),int(2)]),tuple([Y,Z,setValue([])])])). |
1126 | | |
1127 | | translate_pattern(V,R) :- var(V),!,R=V. |
1128 | | translate_pattern(dotpat([X|T]),R) :- nonvar(X), is_constructor(X,Constructor,_SubTypes), |
1129 | | l_translate_pattern(T,LT),!, R=record(Constructor,LT). |
1130 | | translate_pattern(dotpat(T),R) :- l_translate_pattern(T,LT),!, R=tuple(LT). |
1131 | | translate_pattern(tuplePat(T),R) :- l_translate_pattern(T,LT),!, R=na_tuple(LT). |
1132 | | translate_pattern(listPat(List),R) :- l_translate_pattern(List,LT),!, R=list(LT). |
1133 | | translate_pattern(singleSetPat(List),R) :- l_translate_pattern(List,LT),!, R=setValue(LT). |
1134 | | translate_pattern(emptySet,R) :- !, R=setValue([]). |
1135 | | translate_pattern(set(List),R) :- l_translate_pattern(List,LT),!, R=setValue(LT). |
1136 | | translate_pattern('Set'(S),R) :- !,R=S. |
1137 | | translate_pattern(appendPattern([H|T]),R) :- T==[],!, translate_pattern(H,R). |
1138 | | translate_pattern(appendPattern([H|T]),R) :- nonvar(H),H=listPat(HH), |
1139 | | haskell_csp:is_list_skeleton(HH), |
1140 | | l_translate_pattern(HH,LHH), |
1141 | | translate_pattern(appendPattern(T),list(LTT)),!, append(LHH,LTT,ResL),R=list(ResL). |
1142 | | % more complicated append patterns |
1143 | | translate_pattern(alsoPattern([X,Y]),R) :- !, translate_pattern(X,XR),translate_pattern(Y,YR),R = alsoPat(XR,YR). |
1144 | | translate_pattern(X,R) :- ground(X),force_evaluate_argument(X,EX),!,R=EX. |
1145 | | translate_pattern(X,X) :- |
1146 | | add_internal_error('Internal Error: Could not translate pattern: ',X). |
1147 | | |
1148 | | l_translate_pattern(Patterns,TranslatedPatterns) :- |
1149 | | maplist(translate_pattern,Patterns,TranslatedPatterns). |
1150 | | |
1151 | | :- assert_must_succeed(( is_member_comprehension_set(int(12), |
1152 | | rangeEnum(['*'(_x,_y)]), |
1153 | | [comprehensionGenerator(_x,setValue([int(1),int(3)])), |
1154 | | comprehensionGenerator(_y,setValue([int(1),int(2),int(4)]))]) )). |
1155 | | :- assert_must_fail(( is_member_comprehension_set(int(11), |
1156 | | rangeEnum(['*'(_x,_y)]), |
1157 | | [comprehensionGenerator(_x,setValue([int(1),int(3)])), |
1158 | | comprehensionGenerator(_y,setValue([int(1),int(2),int(4)]))]) )). |
1159 | | :- assert_must_succeed(( is_member_comprehension_set(int(X), |
1160 | | rangeEnum(['*'(_x,_y)]), |
1161 | | [comprehensionGenerator(_x,setValue([int(1),int(3)])), |
1162 | | comprehensionGenerator(_y,setValue([int(1),int(2),int(4)]))]),X=12 )). |
1163 | | /* |
1164 | | :- assert_must_succeed(( csp_sets:is_member_comprehension_set(int(X), |
1165 | | rangeEnum([XX,YY]),[comprehensionGenerator(XX,setExp(rangeClosed(int(3),int(4)))), |
1166 | | comprehensionGenerator(YY,setExp(rangeClosed('+'(int(XX),int(2)),'+'(int(XX),int(3)))))]),X=7 )). |
1167 | | */ |
1168 | | |
1169 | | is_member_comprehension_set(X,rangeEnum(ExprList),GeneratorList) :- ExprList=[Expr|TT],TT==[],var(Expr),!, |
1170 | | get_waitvars_for_generator_list(GeneratorList,WaitVars), |
1171 | | when(ground(WaitVars), |
1172 | | (treat_generators(GeneratorList,Vars,Sets,Guard), |
1173 | | % print(treat_generators(for(X,ExprList),Vars,Sets,Guard)),nl, |
1174 | | Expr=X, |
1175 | | check_boolean_expression(Guard), |
1176 | | % print(checked(Guard,Vars,Sets)),nl, |
1177 | | generator_sol(Vars,Sets,set))). |
1178 | | is_member_comprehension_set(X,ExprList,GeneratorList) :- !, %ExprList = [_,_|_],fail,!, |
1179 | | /* if more than one element in ExprList: |
1180 | | we need to expand it; we cannot instantiate the single variable and just check the generators,guards |
1181 | | otherwise pending co-routines can occur (e.g., { x , x1 | x<-{1..4}, x1 <-{x+2..x+3} } ) |
1182 | | Also: currently we cannot check it symbolically if the elment of ExprList is not a variable */ |
1183 | | % print(expanding_comprehension_set(ExprList,GeneratorList)),nl, |
1184 | | expand_set_comprehension(ExprList,GeneratorList,ExpandedSet), |
1185 | ? | is_member_set(X,ExpandedSet). |
1186 | | is_member_comprehension_set(X,T,G) :- |
1187 | | add_error_fail(is_member_comprehension_set,'Could not evaluate: ', is_member_comprehension_set(X,T,G)). |
1188 | | |
1189 | | |
1190 | | :- assert_must_succeed(( csp_sets:extract_variables_from_generator_list( |
1191 | | [comprehensionGenerator(_x,setValue([int(1),int(3)])), |
1192 | | comprehensionGenerator(_y,setValue([int(1),int(2),int(4)]))],R), |
1193 | | R == [_x,_y])). |
1194 | | |
1195 | | % TODO: does not extract local quantified variables for nested set comprehensions ! |
1196 | | % extract locally quantified variables from a set comprehension generator list |
1197 | | extract_variables_from_generator_list([],R) :- !,R=[]. |
1198 | | extract_variables_from_generator_list([comprehensionGuard(_)|T],Res) :- !, |
1199 | | extract_variables_from_generator_list(T,Res). |
1200 | | extract_variables_from_generator_list([comprehensionGenerator(Var,Set)|T],Res) :- !, |
1201 | | check_variable(Var), |
1202 | | extract_variables_from_generator_list(T,TVar), |
1203 | | term_variables(Var,Vars), |
1204 | | add_variables(Vars,TVar,Res,Set). |
1205 | | extract_variables_from_generator_list(X,R) :- |
1206 | | add_internal_error('Not a generator list: ', X), |
1207 | | R=[]. |
1208 | | |
1209 | | :- assert_must_succeed(( csp_sets:extract_local_variables_from_generator_list( |
1210 | | [comprehensionGenerator(_x,setValue([int(1),int(3)])), |
1211 | | comprehensionGenerator(_y,setValue([int(1),int(2),int(4)]))],R), |
1212 | | R == [_x,_y])). |
1213 | | % TODO: does not extract local quantified variables for nested set comprehensions ! |
1214 | | % extract locally quantified variables from a set comprehension generator list |
1215 | | extract_local_variables_from_generator_list([],R) :- !,R=[]. |
1216 | | extract_local_variables_from_generator_list([comprehensionGuard(_)|T],Res) :- !, |
1217 | | extract_local_variables_from_generator_list(T,Res). |
1218 | | extract_local_variables_from_generator_list([comprehensionGenerator(Var,Set)|T],Res) :- !, |
1219 | | check_variable(Var), |
1220 | | extract_local_variables_from_generator_list(T,TVar), |
1221 | | term_variables(Var,Vars), |
1222 | | add_variables(Vars,TVar,Res1,Set), |
1223 | | extract_local_variables_from_set_expression(Set,Res1,Res). |
1224 | | extract_local_variables_from_generator_list(X,R) :- |
1225 | | add_internal_error('Not a generator list: ', X), |
1226 | | R=[]. |
1227 | | |
1228 | | % TODO: are there any operators we are missing !?? |
1229 | | extract_local_variables_from_set_expression(X,I,O) :- var(X),!, |
1230 | | %add_error(extract_local_variables_from_set_expression,'Variable expr. :',X), |
1231 | | I=O. |
1232 | | extract_local_variables_from_set_expression(Set,InVar,OutVar) :- unary_set_op(Set,A),!, |
1233 | | extract_local_variables_from_set_expression(A,InVar,OutVar). |
1234 | | extract_local_variables_from_set_expression(Set,InVar,OutVar) :- binary_set_op(Set,A,B),!, |
1235 | | extract_local_variables_from_set_expression(A,InVar,V1), |
1236 | | extract_local_variables_from_set_expression(B,V1,OutVar). |
1237 | | extract_local_variables_from_set_expression(setEnum(List),InVar,OutVar) :- !, |
1238 | | l_extract_local_variables_from_set_expression(List,InVar,OutVar). |
1239 | | extract_local_variables_from_set_expression(closureComp(Generators,Set),In,Out) :- !, |
1240 | | extract_local_variables_from_generator_list(Generators,GV), |
1241 | | add_variables(GV,In,Out,Set). |
1242 | | extract_local_variables_from_set_expression(setExp(RangeExpr,Generators),In,Out) :- !, |
1243 | | extract_local_variables_from_generator_list(Generators,GV), |
1244 | | add_variables(GV,In,Out,RangeExpr). |
1245 | | |
1246 | | extract_local_variables_from_set_expression(_Set,In,Out) :- |
1247 | | %print(uncovered_set_extract(_Set)),nl, |
1248 | | Out=In. |
1249 | | % what if we have a set of values, containing e.g. the card operator on setComprehensions !! |
1250 | | % TO DO: maybe propagate local variables up in haskell_csp_analyzer.pl and make available to setComp ?? |
1251 | | |
1252 | | unary_set_op(builtin_call(X),R) :- unary_set_op(X,R). |
1253 | | unary_set_op('Union'(A),A). |
1254 | | unary_set_op('Inter'(A),A). |
1255 | | binary_set_op(builtin_call(X),A,B) :- binary_set_op(X,A,B). |
1256 | | binary_set_op(union(A,B),A,B). |
1257 | | binary_set_op(diff(A,B),A,B). |
1258 | | binary_set_op(inter(A,B),A,B). |
1259 | | |
1260 | | :- assert_must_succeed((csp_sets:l_extract_local_variables_from_set_expression([],X,Y), Y == X)). |
1261 | | :- assert_must_succeed((csp_sets:l_extract_local_variables_from_set_expression([builtin_call(union(S,setExp(rangeEnum([_I])))), |
1262 | | builtin_call(union(_X,_Y))],S,Out), Out == S)). |
1263 | | :- assert_must_succeed((csp_sets:l_extract_local_variables_from_set_expression([builtin_call(union(_S,setExp(rangeEnum([I])))), |
1264 | | builtin_call(union(_X,_Y))],_I,Out), Out == I)). |
1265 | | :- assert_must_succeed((csp_sets:l_extract_local_variables_from_set_expression([builtin_call(union(_S,setExp(rangeEnum([_I])))), |
1266 | | builtin_call(inter(X,_Y))],X,Out), Out == X)). |
1267 | | :- assert_must_succeed((csp_sets: csp_sets: extract_local_variables_from_generator_list([comprehensionGenerator(rangeEnum([Y]),setExp(rangeEnum([X]),[comprehensionGenerator(X,setExp(rangeClosed(int(1),int(4))))]))],L), L == [X,Y])). |
1268 | | :- assert_must_succeed((csp_sets:l_extract_local_variables_from_set_expression([setEnum([S,Y,_X]), |
1269 | | builtin_call('Inter'(Y))],S,Out), Out == S)). |
1270 | | :- assert_must_succeed((csp_sets:l_extract_local_variables_from_set_expression([builtin_call('Union'(_S)), |
1271 | | builtin_call('Inter'(Y))],Y,Out), Out == Y)). |
1272 | | |
1273 | | l_extract_local_variables_from_set_expression(X,I,O) :- var(X),!, |
1274 | | add_internal_error(/*l_extract_local_variables_from_set_expression,*/'Variable expr. :',X), I=O. |
1275 | | l_extract_local_variables_from_set_expression([],In,Out) :- !, Out = In. |
1276 | | l_extract_local_variables_from_set_expression([H|T],In,Out) :- !, |
1277 | | extract_local_variables_from_set_expression(H,In,In2), |
1278 | | l_extract_local_variables_from_set_expression(T,In2,Out). |
1279 | | l_extract_local_variables_from_set_expression(X,In,Out) :- |
1280 | | add_internal_error('Unknown expr.: ',X), In=Out. |
1281 | | |
1282 | | |
1283 | | check_variable(V) :- atomic(V), channel(V,_),!, |
1284 | | add_error(csp_sets,'Channel name used for local variable: ',V). |
1285 | | check_variable(_). |
1286 | | |
1287 | | add_variables([],TVar,TVar,_). |
1288 | | add_variables([Var|T],TVar,Res,Set) :- |
1289 | | (exact_member(Var,TVar) |
1290 | | -> (add_error(csp_sets,'Variable appears twice in Generator list:', |
1291 | | (Var,[comprehensionGenerator(Var,Set)|T])), |
1292 | | /* TODO: FIX; this is actually allowed ?? !! */ |
1293 | | TVar1 = TVar) |
1294 | | ; TVar1 = [Var|TVar]), |
1295 | | add_variables(T,TVar1,Res,Set). |
1296 | | |
1297 | | /* --------- */ |
1298 | | /* BIG UNION */ |
1299 | | /* --------- */ |
1300 | | |
1301 | | |
1302 | | :- assert_must_succeed(( csp_sets:big_union(setValue([setValue([int(3),int(4)]),setValue([int(2),int(9)])]),R), |
1303 | | R == setValue([int(2),int(3),int(4),int(9)]) )). |
1304 | | |
1305 | | :- block big_union(-,?). |
1306 | | big_union(S1,Res) :- %print(big_union(S1,Res)),nl, |
1307 | | expand_symbolic_set(S1,setValue(ES1),big_union), |
1308 | | %%print(big2(ES1)),nl, |
1309 | ? | big_union_add(ES1,setValue([]),Res). %, print(big_res(Res)),nl. |
1310 | | |
1311 | | big_union_add([],R,R). |
1312 | ? | big_union_add([H|T],S2,Res) :- union_set(H,S2,S3), |
1313 | ? | big_union_add(T,S3,Res). |
1314 | | |
1315 | | |
1316 | | |
1317 | | /* --------- */ |
1318 | | /* BIG INTER */ |
1319 | | /* --------- */ |
1320 | | |
1321 | | |
1322 | | :- assert_must_succeed(( csp_sets:big_inter(setValue([setValue([int(3),int(4)]),setValue([int(2),int(4)])]),R), |
1323 | | R == setValue([int(4)]) )). |
1324 | | :- assert_must_succeed(( csp_sets:big_inter(setValue([setValue([int(3),int(4)]),setValue([int(2),int(4)]),setValue([])]),R), |
1325 | | R == setValue([]) )). |
1326 | | |
1327 | | |
1328 | | :- block big_inter(-,?). |
1329 | | big_inter(S1,Res) :- |
1330 | | expand_symbolic_set(S1,setValue(ES1),big_inter), |
1331 | | (ES1 = [H|T] |
1332 | | -> big_inter_del(T,H,Res) |
1333 | | ; (add_error(csp_sets,'At least one set needed for Inter: ','Inter'(S1)), |
1334 | | fail) |
1335 | | ). |
1336 | | |
1337 | | big_inter_del([],R,R). |
1338 | | big_inter_del([H|T],S2,Res) :- inter_set(H,S2,S3), |
1339 | | big_inter_del(T,S3,Res). |
1340 | | |