1 % (c) 2009-2024 Lehrstuhl fuer Softwaretechnik und Programmiersprachen,
2 % Heinrich Heine Universitaet Duesseldorf
3 % This software is licenced under EPL 1.0 (http://www.eclipse.org/org/documents/epl-v10.html)
4
5 :- module(csp_sets,[ %is_a_set/1, % reported as an unnecessary export by infolog
6 %evaluate_set/3,
7 evaluate_set/2,
8 % force_evaluate_set/2, % export superfluous (used in haskell_csp.pl)
9 evaluate_closure/2,
10 is_empty_set/2,
11 is_member_set/2,
12 is_subset_of/2, % reported as superfluous by infolog, though predicate called by meta call in haskell_csp.pl (see last two clauses of check_boolean_expression/1 in haskell_csp.pl)
13 %is_member_comprehension_set/3,
14 extract_variables_from_generator_list/2,
15 try_get_cardinality_for_wait_flag/2,
16 subsets/2, enum_subset/2,
17 cardinality/2,
18 singleSetElement/3,
19 union_set/3,diff_set/3,inter_set/3,
20 equal_element/2, not_equal_element/2,
21 expand_set_comprehension/3, replicate_expand_set_comprehension/3,
22 expand_symbolic_set/3,
23 big_union/2, big_inter/2,
24 unify_also_patterns/3,
25 closure_expand/2,
26 is_member_set_alsoPat/2
27 %,csp_full_expanded_type/2
28 %,expand_int_value/2
29 ]).
30
31 :- use_module(probsrc(module_information)).
32 :- module_info(group,csp).
33 :- module_info(description,'Operations on CSP sets.').
34
35 /******* SICSTUS libraries *******/
36 :- use_module(library(lists)).
37 %:- load_files(library(detcheck), [when(compile_time), if(changed)]).
38 /******* ---------------- *******/
39
40 /*************** PROB modules ****************/
41 :- use_module(probsrc(tools),[remove_variables/3,flatten/2,exact_member/2]).
42 :- use_module(probsrc(error_manager)).
43 :- use_module(probsrc(self_check)).
44 %% :- use_module(probsrc(preferences),[preference/2]).
45 %% :- use_module(probsrc(debug)).
46 %-------- CSP modules:
47 :- use_module(probcspsrc(haskell_csp_analyzer),[is_csp_constructor/1]).
48 :- use_module(probcspsrc(haskell_csp),
49 [is_a_datatype/2, csp_constructor/3, channel/2, dataTypeDef/2,channel_type_list/2,
50 evaluate_argument/2,force_evaluate_argument/2,force_evaluate_argument_for_member_check/2,evaluate_int_argument/2,
51 check_boolean_expression/1, enumerate_channel_input_value/4,enumerate_datatype_el/5]).
52 :- use_module(probcspsrc(csp_sequences)).
53 :- use_module(probcspsrc(haskell_csp_analyzer),[csp_full_type_constructor/3,csp_full_type_constant/2]).
54
55 /*************** ----------- ****************/
56
57 % --------------------------------------------------------
58 % SETS
59 % --------------------------------------------------------
60
61 % Possible sets:
62 % setValue([])
63 % setValue([el1,...,eln]) sorted, without duplicates
64 % setFromTo(int(Low),int(Up))
65 % ... intType,....
66
67 :- assert_must_succeed(is_a_set(setFrom(1))).
68 :- assert_must_succeed(is_a_set(dataType(bool))).
69 :- assert_must_succeed(is_a_set(dotTupleType(list([int,int])))).
70 :- assert_must_succeed(is_a_set(setExp(val,int))).
71 :- assert_must_succeed(is_a_set(closureComp(_,_))).
72 :- assert_must_succeed(is_a_set('Seq'(setValue([1,2,3])))).
73
74 is_a_set(setValue(_)).
75 is_a_set(closure(_)).
76 is_a_set(setFromTo(_,_)).
77 is_a_set(setFrom(_)).
78 is_a_set(intType).
79 is_a_set(boolType).
80 is_a_set(dataType(_)).
81 is_a_set(dotTupleType(_)).
82 is_a_set(setExp(_,_)).
83 is_a_set(closureComp(_,_)). % right?
84 is_a_set('Seq'(_)).
85 %is_a_set(DT) :- dataTypeDef(DT,_).
86
87
88 :- assert_must_succeed(( csp_sets:evaluate_set([int(3)],R), R == setValue([int(3)]) )).
89
90 evaluate_set([],R) :- !, R=setValue([]).
91 evaluate_set([H|T],R) :- !, haskell_csp:evaluate_argument(H,EH), evaluate_set(T,ET),
92 add_element(EH,ET,R).
93 evaluate_set(X,_) :- add_internal_error('Internal Error: Could not evaluate: ',evaluate_set(X,_)),fail.
94
95 force_evaluate_set([],R) :- !, R=setValue([]).
96 force_evaluate_set([H|T],R) :- !, haskell_csp:force_evaluate_argument(H,EH),
97 force_evaluate_set(T,ET),
98 add_element(EH,ET,R).
99 force_evaluate_set(X,_) :- add_internal_error('Interal Error: Could not evaluate: ',force_evaluate_set(X,_)),fail.
100
101
102 /* This implementation of evanluate_set/2 make the Basin_Bank_CSP benchmark's performnance slower. */
103 /*
104 % Functor can be evaluate_argument/2 or force_evaluate_argument/2
105 % Clause match is only possible through internal call. CSP-M parser always provide list inside rangeEnum().
106 % See implementation of haskell_csp: evaluate_set_expression/2.
107 evaluate_set(L,Set,Functor) :- is_list(L),!,
108 evaluate_set(L,setValue([]),Set,Functor).
109 evaluate_set(X,_,_Functor) :-
110 add_internal_error('Internal Error: Could not evaluate: ',evaluate_set(X)),fail.
111
112 evaluate_set([],Set,Set,_Functor).
113 evaluate_set([H|T],Set,R,Functor) :-
114 % this variant of defining the argument call is less memory wasteful than the ordinary way (Call =.. [Functor|Args])
115 functor(Call,Functor,2),
116 arg(1,Call,H),arg(2,Call,EH),
117 haskell_csp:Call,!,
118 add_element(EH,Set,Set1),
119 evaluate_set(T,Set1,R,Functor).
120 */
121
122 evaluate_closure(X,closure(RS)) :- (X=tuple(XList) -> true ; X=XList),
123 evaluate_set(XList,setValue(RS)).%evaluate_set(XList,setValue(RS),evaluate_argument).
124
125 :- use_module(probcspsrc(csp_sequences),[is_empty_list/2]).
126 :- use_module(probcspsrc(csp_basic)).
127
128 :- assert_must_succeed((csp_sets: is_empty_set(setValue([setValue([])]),R), R == false)).
129 :- assert_must_succeed((csp_sets: is_empty_set(setValue([]),R), R == true)).
130 :- assert_must_succeed((csp_sets: is_empty_set(setFromTo(3,1),R), R == true)).
131 :- assert_must_succeed((csp_sets: is_empty_set(closure([tuple(ack),tuple(rec)]),R), R == false)).
132 :- assert_must_succeed((csp_sets: is_empty_set(setFrom(1),R), R == false)).
133
134 :- block is_empty_set(-,?).
135 is_empty_set(setValue(X),R) :- !, is_empty_list(X,R).
136 is_empty_set(closure(X),R) :- !, is_empty_list(X,R).
137 is_empty_set(setFromTo(Low,Up),R) :- !, safe_less_than(Up,Low,R).
138 is_empty_set(setFrom(_),R) :- !, R=false.
139 is_empty_set(X,_) :- add_error(csp_sets,'Could not evaluate: ',is_empty_set(X)),fail.
140
141
142 :- assert_must_succeed(( csp_sets:is_member_set(X,setValue([int(1),int(9)])), X=int(9) )).
143 :- assert_must_fail(( csp_sets:is_member_set(X,setValue([int(1),int(9)])), X=int(3) )).
144 :- assert_must_succeed((csp_sets: is_member_set(int(10),setFrom(5)))).
145 :- assert_must_fail((csp_sets: is_member_set(int(3),setFrom(5)))).
146 :- assert_must_succeed( is_member_set(na_tuple([int(3)]),typeTuple([setFromTo(1,10)])) ).
147 :- assert_must_succeed( is_member_set(na_tuple([int(3),int(4)]),typeTuple([setFromTo(1,10),setValue([int(1),int(2),int(3),int(4)])])) ).
148 :- assert_must_succeed( is_member_set(tuple([int(3),int(4)]),dotTupleType([setFromTo(1,10),setValue([int(1),int(2),int(3),int(4)])])) ).
149
150 ?is_member_set(El,S) :- is_member_set2(S,El).
151
152 :- block is_member_set2(-,?).
153 ?is_member_set2(setValue(Set),El) :- !, blocking_member(El,Set).
154 is_member_set2(boolType,X) :- !, (X=true;X=false).
155 is_member_set2(intType,R) :- !, R=int(_).
156 is_member_set2(setFromTo(Low,Up),R) :- !, R=int(X),
157 ? is_member_from_to(X,Low,Up).
158 is_member_set2(setFrom(Low),int(X)) :- !, is_member_from(X,Low).
159 is_member_set2('Seq'(X),C) :- expand_sequence(C,list(EC)), !, list_elements_member_set(EC,X).
160 ?is_member_set2('dotTupleType'(X),T) :- !,(T=tuple(TT) ; T=dotTuple(TT)), l_dot_is_member_set(TT,X). %%%%%% see trace output
161 ?is_member_set2('typeTuple'(X),T) :- !, T=na_tuple(TT), l_is_member_set(TT,X).
162 is_member_set2(dataType(DT),C) :- is_a_datatype(DT,L),!, % to do: precompute this
163 ( (atomic(C),member(constructor(C),L)) ; ( C=record(Cons,Fields),
164 csp_constructor(Cons,DT,ArgSubTypes),
165 maplist(haskell_csp:get_value_alsoPat,Fields,Fields1), % could be possible that some of the elements are wrapped in in(.) or alsoPat(.,.)
166 l_dot_is_member_set(Fields1,ArgSubTypes) )
167 ).
168 is_member_set2(setExp(RangeExpr),C) :- !, is_member_set2(setExp(RangeExpr,[]),C).
169 is_member_set2(setExp(RangeExpr,GeneratorSet),C) :- !,
170 is_member_comprehension_set(C,RangeExpr,GeneratorSet).
171 % print(is_member_comprehension_set(C,Tuple,GeneratorSet)),nl.
172 % what about closureComp ?
173 is_member_set2('Union'(LS),El) :- ground(El),!,is_member_union(LS,El).
174 is_member_set2('Union'(LS),El) :- !,force_evaluate_argument('Union'(LS),ES), is_member_set2(ES,El).
175 is_member_set2('Inter'(LS),El) :- !,is_member_inter(LS,El).
176 is_member_set2(agent_call(Span,F,Par),El) :- !, haskell_csp: unfold_function_call_once(F,Par,Body,Span),
177 force_evaluate_argument_for_member_check(Body,R), is_member_set(El,R).
178 is_member_set2(closure(Cl),El) :- !, closure_expand(Cl,R),is_member_set(El,R).
179 is_member_set2(S,El) :- haskell_csp: name_type(S,Type),!,is_member_set2(Type,El).
180 is_member_set2(R,X) :- add_error(csp_sets,'Could not evaluate: ',is_member_set(X,R)),fail.
181
182 :- assert_must_fail(csp_sets: is_member_union(setExp(rangeEnum([])),int(1))).
183
184 :- block is_member_union(-,?).
185 is_member_union(LS,El) :-
186 (deconstruct_set_of_sets(LS,H,T) ->
187 %print(lazy_Union(El,H,T)),nl, % args should not be setComp; otherwise we have problem with cut below
188 (is_member_set2(H,El) -> true ; is_member_set2('Union'(T),El))
189 ; empty_set_of_sets(LS) -> fail
190 ; add_error_fail(is_member_set,'Illegal argument: ','Union'(LS))).
191 :- block is_member_inter(-,?).
192 is_member_inter(LS,El) :-
193 (deconstruct_set_of_sets(LS,H,T) ->
194 is_member_set2(H,El),
195 (empty_set_of_sets(T) -> true ; is_member_set2('Inter'(T),El))
196 ; empty_set_of_sets(T) -> add_error(is_member_set2,'Empty set not allowed for Inter(-): ',T)
197 ; add_error_fail(is_member_set,'Illegal argument: ','Inter'(LS))).
198
199 :- block is_member_from_to(-,-,?),is_member_from_to(-,?,-).
200 is_member_from_to(X,Low,Up) :- ground(X),!,geq(X,Low), leq(X,Up).
201 ?is_member_from_to(X,Low,Up) :- enumerate_csp_int(X,Low,Up).
202 :- block geq(?,-).
203 geq(X,Low) :- X>=Low.
204 :- block leq(?,-).
205 leq(X,Up) :- X=<Up.
206
207 :- block is_member_from(-,?),is_member_from(?,-).
208 is_member_from(X,Low) :- X >= Low.
209
210 :- block blocking_member(?,-).
211 blocking_member(X,[H|T]) :-
212 ? (equal_element(X,H) ; blocking_member(X,T)).
213
214 :- assert_must_succeed((csp_sets: l_dot_is_member_set([int(1),int(2),int(3)],['dotTupleType'([setFromTo(1,3),setFrom(1),setFromTo(1,3)])]))).
215 :- assert_must_fail((csp_sets: l_dot_is_member_set([int(1),int(2),int(3)],['dotTupleType'([setFromTo(1,3),setFromTo(1,3),setFrom(14)])]))).
216 :- assert_must_succeed((csp_sets: l_dot_is_member_set([int(1),int(2),int(3),int(10),int(9)],
217 ['dotTupleType'([setFromTo(1,3),setFrom(1),setFromTo(1,3)]),intType,setValue([int(1),int(9),int(10)])]))).
218 :- assert_must_fail((csp_sets: l_dot_is_member_set([int(1),int(2),int(3),int(10),int(11)],
219 ['dotTupleType'([setFromTo(1,3),setFrom(1),setFromTo(1,3)]),intType,setValue([int(1),int(9),int(10)])]))).
220 :- assert_must_succeed((csp_sets: l_dot_is_member_set([int(10),int(9),int(1),int(2),int(3)],
221 ['dotTupleType'([intType,setValue([int(1),int(9),int(10)]),setFromTo(1,3),setFrom(1),setFromTo(1,3)])]))).
222
223 l_dot_is_member_set(L,TL) :-
224 unfold_dot_tuples(L,R),
225 l_unfold_datatype_dot_tuple(TL,TR),
226 ? l_is_member_set(R,TR).
227
228 l_is_member_set(SetList,SetList1) :-
229 is_list(SetList),!,
230 ? maplist(is_member_set,SetList,SetList1).
231 l_is_member_set(L,S) :- add_internal_error('Internal Error: Could not evaluate: ', l_is_member_set(L,S)),fail.
232
233 :- assert_must_succeed((csp_sets: unfold_dot_tuples([],[]))).
234 :- assert_must_succeed((csp_sets: unfold_dot_tuples([int(1),tuple([int(2),int(3)]),int(4)],R), R == [int(1),int(2),int(3),int(4)])).
235 :- assert_must_succeed((csp_sets: unfold_dot_tuples([int(1),int(2),int(3),int(4)],R), R == [int(1),int(2),int(3),int(4)])).
236 :- assert_must_succeed((csp_sets: unfold_dot_tuples([tuple([int(1),int(5)]),tuple([int(2),int(3)])],R), R == [int(1),int(5),int(2),int(3)])).
237 :- assert_must_succeed((csp_sets: unfold_dot_tuples([tuple([int(1),tuple([int(2),int(3)])])],R), R == [int(1),int(2),int(3)])).
238
239 unfold_dot_tuples([],[]).
240 unfold_dot_tuples([H|T],R) :-
241 ((nonvar(H),(H = tuple(L) ; H=dotTuple(L))) -> unfold_dot_tuples(L,LRes), append(LRes,R1,R) ; R=[H|R1]), unfold_dot_tuples(T,R1).
242
243 :- assert_must_succeed((csp_sets: l_unfold_datatype_dot_tuple([],[]))).
244 :- assert_must_succeed((csp_sets: l_unfold_datatype_dot_tuple(['dotTupleType'([intType,setValue([int(1),int(9),int(10)])])],R), R == [intType,setValue([int(1),int(9),int(10)])])).
245 :- assert_must_succeed((csp_sets: l_unfold_datatype_dot_tuple([intType,intType],R), R == [intType,intType])).
246 :- assert_must_succeed((csp_sets: l_unfold_datatype_dot_tuple(['dotTupleType'([intType,setValue([int(1),int(9),int(10)])]),'dotTupleType'([intType,setValue([int(1),int(9),int(10)])])],R),
247 R == [intType,setValue([int(1),int(9),int(10)]),intType,setValue([int(1),int(9),int(10)])])).
248
249 unfold_datatype_dot_tuple(DT,R) :-
250 (nonvar(DT), DT = 'dotTupleType'(L) -> R=L ; R=[DT]).
251
252 l_unfold_datatype_dot_tuple(LDotTypes,Res) :-
253 maplist(unfold_datatype_dot_tuple,LDotTypes,R),
254 append(R,Res).
255
256 list_elements_member_set([],_) :- !.
257 list_elements_member_set([H|T],Set) :- !, is_member_set2(Set,H), list_elements_member_set(T,Set).
258 list_elements_member_set(L,S) :- add_internal_error('Internal Error: Could not evaluate: ', list_elements_member_set(L,S)),fail.
259
260 :- assert_must_succeed((csp_sets: deconstruct_set_of_sets(setExp(rangeEnum([int(1),int(2),int(3)])),H,T),H==int(1),T == setExp(rangeEnum([int(2),int(3)])))).
261 :- assert_must_succeed((csp_sets: deconstruct_set_of_sets(setValue([int(1),int(2),int(3)]),H,T),H==int(1),T == setValue([int(2),int(3)]))).
262 :- assert_must_fail((csp_sets: deconstruct_set_of_sets(setValue([]),_H,_T))).
263
264 %deconstruct_set_of_sets(setEnum([H|T]),H,setEnum(T)).
265 deconstruct_set_of_sets(setExp(rangeEnum([H|T])),H,setExp(rangeEnum(T))).
266 deconstruct_set_of_sets(setValue(V),H,setValue(T)) :- deconstruct_setValue(V,H,T).
267 :- block deconstruct_setValue(-,?,?).
268 deconstruct_setValue([H|T],H,T).
269
270 :- assert_must_succeed((csp_sets: empty_set_of_sets(setValue([])))).
271 empty_set_of_sets(setExp(rangeEnum([]))).
272 empty_set_of_sets(setValue(X)) :- is_empty_list(X,true).
273
274 :- assert_must_succeed(( csp_sets:cardinality(setValue([int(1),int(9)]),R), R==int(2) )).
275 :- block cardinality(-,?).
276 cardinality(setValue(S),R) :- my_length(S,C),!,R=int(C).
277 cardinality(setFromTo(Low,Up),R) :- !,
278 R=int(C), when((ground(Low),ground(Up)),compute_from_to_cardinality(Low,Up,C)).
279 cardinality(setFrom(Low),_) :- !,
280 add_error(csp_sets,'Trying to compute cardinality of infinite set: ',set_from(Low)),fail.
281 cardinality(closure(ChannelList),R) :- !,my_length(Closure,C), R=int(C),
282 when(ground(ChannelList),
283 expand_symbolic_set(closure(ChannelList),setValue(Closure),closure_cardinality)).
284 cardinality(dataType(DT),R) :- !,R=int(C),my_length(DTSet,C),
285 expand_symbolic_set(dataType(DT),setValue(DTSet),datatype_set_cardinality).
286 cardinality(X,_R) :- add_error(csp_sets,'Could not compute card of: ',X),fail.
287
288 :- assert_must_succeed((csp_sets: compute_from_to_cardinality(1,3,C), C == 3)).
289 :- assert_must_succeed((csp_sets: compute_from_to_cardinality(-1,3,C), C == 5)).
290 :- assert_must_succeed((csp_sets: compute_from_to_cardinality(3,1,C), C == 0)).
291 :- assert_must_succeed((csp_sets: compute_from_to_cardinality(-3,1,C), C == 5)).
292 :- assert_must_succeed((csp_sets: compute_from_to_cardinality(-3,-1,C), C == 3)).
293
294 compute_from_to_cardinality(Low,Up,C) :-
295 (Up<Low ->
296 C is 0
297 ; C is Up-Low+1
298 ).
299
300 my_length(L,Len) :- my_length_aux(L,0,Len).
301 :- block my_length_aux(-,?,?).
302 my_length_aux([],Acc,Acc).
303 my_length_aux([_|T],Acc,R) :- A1 is Acc+1, my_length_aux(T,A1,R).
304
305
306 try_get_cardinality_for_wait_flag(setValue(S),R) :- try_get_length(S,C),!,R=C.
307 try_get_cardinality_for_wait_flag(setFromTo(Low,Up),C) :-
308 ground(Low),ground(Up),!,C is Up-Low+1.
309 try_get_cardinality_for_wait_flag(_,1000).
310
311 try_get_length(X,_) :- var(X),!,fail.
312 try_get_length([],0).
313 try_get_length([_|T],R) :- try_get_length(T,R1), R is R1+1.
314
315 :- block singleSetElement(-,?,?).
316 singleSetElement(S,El,Span) :- expand_symbolic_set(S,setValue(V),singleSetElement),
317 singleSetElement_aux(V,El,Span).
318
319 :- block singleSetElement_aux(-,?,?).
320 singleSetElement_aux([H|T],El,_Span) :- (var(T);T==[]),!,H=El.
321 singleSetElement_aux(Set,_El,Span) :-
322 add_error(singleSetElement,'This is not a singleton set: ',setValue(Set),Span),fail.
323
324 :- assert_must_succeed(( csp_sets:is_subset_of(R,setValue([int(2),int(4)])),
325 R = setValue([int(4)]) )).
326 :- assert_must_fail(( csp_sets:is_subset_of(R,setValue([int(2),int(4)])),
327 R = setValue([int(3)]) )).
328 :- block is_subset_of(-,?), is_subset_of(?,-).
329 is_subset_of(X,Y) :-
330 expand_symbolic_set(X,setValue(EX),is_subset_of_x),
331 expand_symbolic_set(Y,setValue(EY),is_subset_of_y),
332 is_subset_of2(EX,EY).
333
334 :- block is_subset_of2(-,?).
335 is_subset_of2([],_).
336 is_subset_of2([H|T],S) :- remove_element(H,S,S2), is_subset_of2(T,S2).
337
338 :- assert_must_succeed(( csp_sets:subsets(setValue([int(1),int(9)]),R),
339 R==setValue([ setValue([int(1),int(9)]),setValue([int(9)]),setValue([int(1)]),setValue([]) ]) )).
340
341 subsets(S,setValue(RS)) :- expand_symbolic_set(S,setValue(ES),subsets),sub2(ES,RS).
342
343 :- block sub2(-,?).
344 sub2([],[setValue([])]).
345 sub2([El|T],Res) :- sub2(T,TR), sub3(TR,El,Res).
346
347 :- block sub3(-,?,?).
348 sub3([],_,[]).
349 sub3([setValue(S1)|T],El,[setValue([El|S1]),setValue(S1)|ST]) :- sub3(T,El,ST).
350
351
352 :- assert_must_succeed(( csp_sets:enum_subset(setValue([int(1),int(9)]),R),
353 R==setValue([int(9)]) )).
354 enum_subset(S,setValue(Subset)) :- expand_symbolic_set(S,setValue(ES),enum_subset),
355 ? enum_sub2(ES,Subset).
356 enum_sub2([],[]).
357 enum_sub2([El|T],Res) :-
358 ? (Res = [El|T2], enum_sub2(T,T2))
359 ? ; enum_sub2(T,Res).
360
361 :- assert_must_succeed(( csp_sets:add_element(int(3),setValue([int(1),int(9)]),R), R==setValue([int(1),int(3),int(9)]) )).
362 :- assert_must_succeed(( csp_sets:add_element(int(3),setValue([int(1),int(3),int(9)]),R), R==setValue([int(1),int(3),int(9)]) )).
363 :- assert_must_succeed(( csp_sets:add_element(int(11),setValue([int(1),int(9)]),R), R==setValue([int(1),int(9),int(11)]) )).
364 :- assert_must_succeed(( csp_sets:add_element(int(1),setValue([int(3),int(9)]),R), R==setValue([int(1),int(3),int(9)]) )).
365 :- assert_must_succeed(( csp_sets:add_element(setValue([int(3)]),setValue([]),R), R==setValue([setValue([int(3)])]) )).
366 :- assert_must_succeed(( csp_sets:add_element(boolType,setValue([]),R), R == setValue([setValue([true,false])]))).
367
368 :- block add_element(-,?,?), add_element(?,-,?).
369 add_element(El,S,Res) :- Res = setValue(R), expand_symbolic_set(S,setValue(ES),add_element),
370 (is_a_set(El) -> expand_symbolic_set(El,ExEl,add_element) ; ExEl=El), % normalise element before storing in set
371 when(ground(ExEl),add_element1(ES,ExEl,R)).
372 % when( (/* ground(El),*/ nonvar(ES)), add_element2(ES,El,R)).
373
374 :- block add_element1(-,?,?).
375 %add_element1(T,El,Res) :- print(add_element1(T,El,Res)),nl,fail.
376 add_element1([],El,[El]).
377 add_element1([H|T],El,Res) :- when(?=(El,H),(El @=<H -> (El=H -> Res = [El|T] ; Res = [El,H|T])
378 ; (Res=[H|R2],add_element1(T,El,R2)))).
379
380 :- assert_must_succeed(( csp_sets:union_set(setValue([int(3),int(4)]),setValue([int(2),int(9)]),R),
381 R == setValue([int(2),int(3),int(4),int(9)]) )).
382 :- assert_must_succeed(( csp_sets:union_set(setValue([int(3),int(4)]),setValue([int(4),int(9)]),R),
383 R == setValue([int(3),int(4),int(9)]) )).
384 :- assert_must_succeed(( csp_sets:union_set(setValue([int(3),int(4)]),setValue([]),R),
385 R == setValue([int(3),int(4)]) )).
386 :- assert_must_succeed(( csp_sets:union_set(setValue([]),setValue([int(3),int(4)]),R),
387 R == setValue([int(3),int(4)]) )).
388 :- block union_set(-,?,?), union_set(?,-,?).
389 union_set(S1,S2,Res) :- Res = setValue(R), expand_symbolic_set(S1,setValue(ES1),union_set1),
390 expand_symbolic_set(S2,setValue(ES2),union_set2),
391 ? when(ground((ES1,ES2)),union_add_elements(ES1,ES2,R,none,none))
392 % , print(union(S1,S2,Res)),nl
393 .
394
395 union_add_elements([],R,R,_,_).
396 union_add_elements([H|T],[],[H|T],PrevH1,_) :- (ground(H) -> check_sorted(union_set,PrevH1,H) ; true).
397 union_add_elements([H1|T1],[H2|T2],Res,PrevH1,PrevH2) :- %check_sorted(union_set,PrevH1,H1), % unnecessary call
398 ? when((ground(H1),ground(H2)),
399 (check_sorted(union_set,PrevH1,H1), check_sorted(union_set,PrevH2,H2),
400 (H1=H2 -> Res=[H1|RT],union_add_elements(T1,T2,RT,H1,H1)
401 ; (H1 @=< H2 -> Res=[H1|RT], union_add_elements(T1,[H2|T2],RT,H1,none)
402 ; Res=[H2|RT], union_add_elements([H1|T1],T2,RT,none,H2)) ))).
403
404 check_sorted(Src,PrevH,H) :- ((PrevH=none;PrevH @< H) -> true ; add_error(Src,'CSP set not sorted: ',[PrevH,H])).
405
406 :- assert_must_succeed(( csp_sets:diff_set(setValue([int(3),int(4)]),setValue([int(2),int(3)]),R),
407 R == setValue([int(4)]) )).
408 :- assert_must_succeed(( csp_sets:diff_set(setValue([int(3),int(4)]),setValue([int(2),int(5)]),R),
409 R == setValue([int(3),int(4)]) )).
410 :- assert_must_succeed(( csp_sets:diff_set(setValue([int(3),int(4)]),setValue([int(2),int(3),int(4),int(5),int(9)]),R),
411 R == setValue([]) )).
412
413 :- block diff_set(-,?,?), diff_set(?,-,?).
414 diff_set(S1,S2,Res) :- Res = setValue(R), expand_symbolic_set(S1,setValue(ES1),diff_set1),
415 expand_symbolic_set(S2,setValue(ES2),diff_set2),
416 when(ground((ES1,ES2)),diff_elements(ES1,ES2,R)).
417 %, print(diff(S1,S2,Res,ES1,ES2)),nl.
418
419 diff_elements([],_,[]).
420 diff_elements([H|T],S2,Res) :-
421 (remove_element(H,S2,S3)
422 -> diff_elements(T,S3,Res)
423 ; (Res=[H|R2], diff_elements(T,S2,R2))
424 ).
425
426 %:- block remove_element(-,?,?), remove_element(?,-,?).
427 remove_element(X,[H|T],R) :-
428 (selectchk(X,[H|T],R)
429 -> true
430 ; equal_element(X,H)
431 -> R=T
432 ; (X@>H, /* diff set assumes that arguments are already evaluated ! */
433 R=[H|RT], remove_element(X,T,RT))
434 ).
435
436
437 :- assert_must_succeed(( csp_sets:inter_set(setValue([int(3),int(4)]),setValue([int(2),int(4)]),R),
438 R == setValue([int(4)]) )).
439 :- assert_must_succeed(( csp_sets:inter_set(setValue([int(3),int(4)]),setValue([int(3),int(4)]),R),
440 R == setValue([int(3),int(4)]) )).
441 :- assert_must_succeed(( csp_sets:inter_set(setValue([int(3),int(4)]),setFromTo(4,5),R),
442 R == setValue([int(4)]) )).
443 :- assert_must_succeed(( csp_sets:inter_set(setValue([int(2)]),setFromTo(0,1),R),
444 R == setValue([]) )).
445 :- assert_must_succeed(( csp_sets:inter_set(setFrom(1),setFromTo(3,5),R),
446 R == setValue([int(3),int(4),int(5)]))).
447 :- assert_must_succeed(( csp_sets:inter_set(setFrom(6),setFromTo(3,5),R),
448 R == setValue([]))).
449 :- assert_must_succeed(( csp_sets:inter_set(setFrom(6),setValue([]),R),
450 R == setValue([]))).
451
452 :- block inter_set(-,?,?), inter_set(?,-,?).
453 inter_set(S1,S2,Res) :- Res = setValue(R),
454 (S1=setFrom(Low) ->
455 expand_symbolic_set(S2,setValue(ES2),inter_set1),
456 when(ground((Low,ES2)),inter_merge_elements_from(ES2,Low,R))
457 ;S2=setFrom(Low) ->
458 expand_symbolic_set(S1,setValue(ES1),inter_set2),
459 when(ground((ES1,Low)),inter_merge_elements_from(ES1,Low,R))
460 ;
461 expand_symbolic_set(S1,setValue(ES1),inter_set1),
462 expand_symbolic_set(S2,setValue(ES2),inter_set2),
463 ? when(ground((ES1,ES2)),inter_merge_elements(ES1,ES2,R))
464 ).
465
466 inter_merge_elements([],_R,[]).
467 inter_merge_elements([_|_],[],[]).
468 inter_merge_elements([H1|T1],[H2|T2],Res) :-
469 (equal_element(H1,H2)
470 -> (Res = [H1|TR], inter_merge_elements(T1,T2,TR))
471 ; (H1@<H2 -> inter_merge_elements(T1,[H2|T2],Res)
472 ? ; inter_merge_elements([H1|T1],T2,Res)
473 )
474 ).
475
476 inter_merge_elements_from([],_Low,[]).
477 inter_merge_elements_from([int(H)|T],Low,Res) :-
478 ((Low =< H) ->
479 Res = [int(H)|TR], inter_merge_elements_from(T,Low,TR)
480 ;
481 inter_merge_elements_from(T,Low,Res)
482 ).
483
484 :- assert_must_succeed((X=true, csp_sets: equal_element(true, X))).
485 :- assert_must_fail((X=false, csp_sets: equal_element(true, X))).
486 :- assert_must_succeed((X=false, csp_sets: equal_element(false, X))).
487 :- assert_must_fail((X=true, csp_sets: equal_element(false, X))).
488 :- assert_must_succeed((R=setFrom(1),csp_sets: equal_element(setFrom(1), R))).
489 :- assert_must_fail((R=setFrom(2),csp_sets: equal_element(setFrom(1), R))).
490 :- assert_must_fail((R=intType,csp_sets: equal_element(setFrom(1), R))).
491 :- assert_must_succeed((R=setFromTo(1,46), csp_sets: equal_element(setFromTo(1,46),R))).
492 :- assert_must_fail((R=setFromTo(1,2), csp_sets: equal_element(setFromTo(1,46),R))).
493 :- assert_must_fail((R=setFrom(1), csp_sets: equal_element(setFromTo(1,46),R))).
494 :- assert_must_succeed((R=setValue([int(1),int(2),int(3)]), csp_sets: equal_element(setFromTo(1,3),R))).
495 :- assert_must_succeed((R=setValue([]), csp_sets: equal_element(setFromTo(3,1),R))).
496 :- assert_must_fail((R=setValue([int(1),int(2),int(3)]), csp_sets: equal_element(setFromTo(1,4),R))).
497 :- assert_must_fail((R=setFrom(10), csp_sets: equal_element(setValue(_X), R))).
498 :- assert_must_succeed((R=boolType, csp_sets: equal_element(setValue([true,false]),R))).
499 :- assert_must_succeed((R=setFromTo(1,1), csp_sets: equal_element(setValue([int(1)]),R))).
500 :- assert_must_succeed((R=tuple([v1,int(0),na_tuple([int(0),int(0)])]), csp_sets: equal_element(tuple([v1,tuple([int(0),na_tuple([int(0),int(0)])])]),R))).
501 :- assert_must_succeed((R=tuple([v1,tuple([int(0),na_tuple([int(0),int(0)])])]), csp_sets: equal_element(tuple([v1,int(0),na_tuple([int(0),int(0)])]),R))).
502 :- assert_must_succeed((R=record(v1,[int(0),na_tuple([int(0),int(0)])]), csp_sets: equal_element(tuple([v1,tuple([int(0),na_tuple([int(0),int(0)])])]),R))).
503
504 equal_element(X,Y) :-
505 (var(X);var(Y)),!,X=Y.
506 equal_element(true,X) :- !,
507 ( X=true -> true
508 ; X=false -> fail
509 ; add_error_fail(haskell_csp,'Type error in equality: ',true=X)
510 ).
511 equal_element(false,X) :- !,
512 ( X=false -> true
513 ; X=true -> fail
514 ; add_error_fail(haskell_csp,'Type error in equality: ',false=X)
515 ).
516 equal_element(int(X),R) :- !,
517 (R=int(Y) -> X=Y
518 ; add_error_fail(haskell_csp,'Type error in equality: ',int(X)=R)
519 ).
520 equal_element(setFrom(X),R) :- !,
521 (R=setFrom(Y) -> X=Y
522 ; is_a_set(R) -> fail
523 ; add_error_fail(haskell_csp,'Type error in equality: ',setFrom(X)=R)
524 ).
525 equal_element(setFromTo(X,Y),R) :- !,
526 (R=setFromTo(X2,Y2) -> X=X2,Y=Y2
527 ; (R=setValue(_) ;R=setExp(_,_)) -> equal_sets(setFromTo(X,Y),R)
528 ; is_a_set(R) -> fail % Set different for setValue and setExp
529 ; add_error_fail(haskell_csp,'Type error in equality: ',setFromTo(X,Y)=R)
530 ).
531 equal_element(setValue(X),R) :- !,
532 (R=setValue(Y) -> equal_setValue(X,Y)
533 ; R=setFrom(_) -> fail % infinite set cannot be equal to finite one
534 ; is_a_set(R) -> expand_symbolic_set(R,setValue(ER),equal_element), equal_setValue(X,ER)
535 ; add_error_fail(haskell_csp,'Type error in equality: ',setValue(X)=R)
536 ).
537 equal_element(list(X),R) :- !,
538 (R=list(Y) -> X=Y
539 ;add_error_fail(haskell_csp,'Type error in equality: ',list(X)=R)
540 ).
541 equal_element(na_tuple(X),R) :- !,
542 (R=na_tuple(Y) -> X=Y
543 ;add_error_fail(haskell_csp,'Type error in equality: ',na_tuple(X)=R)
544 ).
545 equal_element(tuple(X),R) :- !,
546 ( R=tuple(Y) -> (X=Y ; equal_interleaved_dot_tuples(X,Y))
547 ; R=record(C,A) -> X=[H|T], C=H, (T=A ; equal_interleaved_dot_tuples(T,A))
548 ; add_error_fail(haskell_csp,'Type error in equality: ',tuple(X)=R)
549 ).
550 equal_element(dotTuple(X),R) :- !,
551 ( R=tuple(Y) -> (X=Y ; equal_interleaved_dot_tuples(X,Y))
552 ; R=record(C,A) -> X=[H|T], C=H, (T=A ; equal_interleaved_dot_tuples(T,A))
553 ; add_error_fail(haskell_csp,'Type error in equality: ',dotTuple(X)=R)
554 ).
555 equal_element(record(C,A),R) :-
556 get_constructor_type(C,Type),!,
557 ((R=record(C2,A2),get_constructor_type(C2,Type)) -> C=C2,(A=A2 ; equal_interleaved_dot_tuples(A,A2)) % missing subtype checks
558 ; R=tuple([H|T]) -> (H=C,(T=A ; equal_interleaved_dot_tuples(A,T)))
559 ; (atomic(R),get_constant_type(R,Type)) -> fail
560 ; R=agent_call(_,_,_) -> force_evaluate_argument(R,Res),equal_element(record(C,A),Res)
561 ; add_error_fail(haskell_csp,'Type error in equality: ',record(C,A)=R)
562 ).
563 equal_element(X,R) :-
564 atomic(X),get_constant_type(X,Type),!,
565 ((atomic(R),get_constant_type(R,Type)) -> X=R
566 ;(R=record(C,_Args),get_constructor_type(C,Type)) -> fail
567 ; add_error_fail(haskell_csp,'Type error in equality: ',X=R)
568 ).
569 equal_element(Set,R) :-
570 is_a_set(Set),!,
571 expand_symbolic_set(Set,ES,equal_element),
572 equal_element(ES,R).
573 % To do: Further Improve this predicate, and check typing
574 equal_element(X,Y) :- print(equal_element(X,Y)),nl,X=Y.
575
576 equal_interleaved_dot_tuples(X,Y) :-
577 unify_tuple_elements(X,Y,R,tuple),
578 (X=R -> true; unfold_dot_tuples(X,XR),XR=R).
579
580 equal_sets(setFromTo(X,Y),R) :-
581 ((R=setValue(S),ground((X,Y,S))) ->
582 cardinality(setFromTo(X,Y),int(N)),
583 length(S,N),
584 expand_from_to(X,Y,XYSet),
585 diff_elements(XYSet,S,[])
586 ;
587 expand_symbolic_set(setFromTo(X,Y),ES,equal_element),
588 equal_element(ES,R)
589 ).
590 % check if two lists inside setValue are equal; should be sorted !
591 % as all elements that appear in setValue are normalised we could simply use Prolog Unification: X=Y ?
592 equal_setValue(X,Y) :-
593 (var(X);var(Y)),!,X=Y.
594 equal_setValue(L1,L2) :-
595 maplist(equal_element,L1,L2).
596
597 get_constructor_type(C,Type) :- csp_full_type_constructor(C,DT,_ArgTypes),!,Type=DT.
598 get_constructor_type(C,_) :- add_internal_error(/*get_constructor_type,*/'Internal Error: Unknown record constructor: ',C),fail.
599 get_constant_type(C,Type) :- csp_full_type_constant(C,DataType),!,Type=DataType.
600 get_constant_type(C,Type) :- csp_full_type_constructor(C,DataType,_ArgTypes),!,
601 % a type constructor is passed as an atomic value; some CSP specs do this (stc.csp of Kharmeh PhD spec)
602 Type=constructor(DataType).
603 get_constant_type(C,_) :- add_internal_error(/*get_constant_type,*/'Internal Error: Unknown constant: ',C),fail.
604
605 :- assert_must_fail((X=true, csp_sets: not_equal_element(true, X))).
606 :- assert_must_succeed((X=false, csp_sets: not_equal_element(true, X))).
607 :- assert_must_fail((X=false, csp_sets: not_equal_element(false, X))).
608 :- assert_must_succeed((X=true, csp_sets: not_equal_element(false, X))).
609 :- assert_must_fail((R=setFrom(1),csp_sets: not_equal_element(setFrom(1), R))).
610 :- assert_must_succeed((R=setFrom(2),csp_sets: not_equal_element(setFrom(1), R))).
611 :- assert_must_succeed((R=intType,csp_sets: not_equal_element(setFrom(1), R))).
612 :- assert_must_fail((R=setFromTo(1,46), csp_sets: not_equal_element(setFromTo(1,46),R))).
613 :- assert_must_succeed((R=setFromTo(1,2), csp_sets: not_equal_element(setFromTo(1,46),R))).
614 :- assert_must_succeed((R=setFrom(1), csp_sets: not_equal_element(setFromTo(1,46),R))).
615 :- assert_must_fail((R=setValue([int(1),int(2),int(3)]), csp_sets: not_equal_element(setFromTo(1,3),R))).
616 :- assert_must_fail((R=setValue([]), csp_sets: not_equal_element(setFromTo(3,1),R))).
617 :- assert_must_succeed((R=setValue([int(1),int(2),int(3)]), csp_sets: not_equal_element(setFromTo(1,4),R))).
618 :- assert_must_succeed((R=setFrom(10), csp_sets: not_equal_element(setValue(_X), R))).
619 :- assert_must_fail((R=boolType, csp_sets: not_equal_element(setValue([true,false]),R))).
620 :- assert_must_fail((R=setFromTo(1,1), csp_sets: not_equal_element(setValue([int(1)]),R))).
621 :- assert_must_succeed((R=tuple([int(1),int(2)]), csp_sets: not_equal_element(tuple([int(1),int(3)]), R))).
622 :- assert_must_fail((R=tuple([int(1),int(2)]), csp_sets: not_equal_element(tuple([int(1),int(2)]), R))).
623 :- assert_must_succeed((R=na_tuple([int(1),int(2)]), csp_sets: not_equal_element(na_tuple([int(1),int(3)]), R))).
624 :- assert_must_fail((R=na_tuple([int(1),int(2)]), csp_sets: not_equal_element(na_tuple([int(1),int(2)]), R))).
625 :- assert_must_succeed((R=list([int(1),int(2)]), csp_sets: not_equal_element(list([int(1),int(3)]), R))).
626 :- assert_must_fail((R=list([int(1),int(2)]), csp_sets: not_equal_element(list([int(1),int(2)]), R))).
627 :- assert_must_succeed((R=record(seq,[int(1),int(2)]), csp_sets: not_equal_element(record(seq,[int(1),int(3)]), R))).
628 :- assert_must_fail((R=record(seq,[int(1),int(2)]), csp_sets: not_equal_element(record(seq,[int(1),int(2)]), R))).
629
630 not_equal_element(X,Y) :- var(X),!,dif(X,Y).
631 not_equal_element(true,X) :- !,
632 (X=false -> true
633 ; X=true -> fail
634 ; add_error_fail(haskell_csp,'Type error in disequality: ',true\=X)
635 ).
636 not_equal_element(false,X) :- !,
637 (X=true -> true
638 ; X=false -> fail
639 ; add_error_fail(haskell_csp,'Type error in disequality: ',false\=X)
640 ).
641 not_equal_element(int(X),R) :- !,
642 (R=int(Y) -> X\=Y
643 ; add_error_fail(haskell_csp,'Type error in disequality: ',int(X)\=R)
644 ).
645 not_equal_element(setFrom(X),R) :- !,
646 (R=setFrom(Y) -> X\=Y
647 ; is_a_set(R) -> true
648 ; add_error_fail(haskell_csp,'Type error in disequality: ',setFrom(X)\=R)
649 ).
650 not_equal_element(setFromTo(X,Y),R) :- !,
651 (R=setFrom(X2,Y2) -> (X,Y)\=(X2,Y2)
652 ; R=setFrom(_) -> true
653 ; is_a_set(R) -> expand_symbolic_set(setFromTo(X,Y),ES,equal_element), not_equal_element(ES,R)
654 ; add_error_fail(haskell_csp,'Type error in disequality: ',setFromTo(X,Y)\=R)
655 ).
656 not_equal_element(setValue(X),R) :- !,
657 (R=setValue(Y) -> not_equal_setValue(X,Y)
658 ; R=setFrom(_) -> true /* infinite set cannot be equal to finite one */
659 ; is_a_set(R) -> expand_symbolic_set(R,setValue(ER),equal_element), not_equal_setValue(X,ER)
660 ; add_error_fail(haskell_csp,'Type error in disequality: ',setValue(X)\=R)
661 ).
662 not_equal_element(list(X),R) :- !,
663 (R=list(Y) -> X\=Y
664 ; add_error_fail(haskell_csp,'Type error in disequality: ',list(X)\=R)
665 ).
666 not_equal_element(na_tuple(X),R) :- !,
667 (R=na_tuple(Y) -> X\=Y
668 ; add_error_fail(haskell_csp,'Type error in disequality: ',na_tuple(X)\=R)
669 ).
670 not_equal_element(tuple(X),R) :- !,
671 ( R=tuple(Y) -> X\=Y
672 ; R=record(C,A) -> X=[H|T], (C\=H ; (T\=A , \+equal_interleaved_dot_tuples(T,A)))
673 ; add_error_fail(haskell_csp,'Type error in disequality: ',tuple(X)\=R)
674 ).
675 not_equal_element(record(C,A),R) :- !,
676 (atomic(R) -> true
677 ; R=record(C2,A2) -> (C\=C2 ; (A\=A2 , \+equal_interleaved_dot_tuples(A,A2)))
678 ; R=tuple([H|T]) -> (H\=C ; (A\=T , \+equal_interleaved_dot_tuples(A,T)))
679 ; add_error_fail(haskell_csp,'Type error in disequality: ',record(C,A)\=R)
680 ).
681 not_equal_element(Set,R) :-
682 is_a_set(Set),
683 expand_symbolic_set(Set,ES,equal_element),
684 not_equal_element(ES,R).
685 not_equal_element(X,R) :- atomic(X),!,
686 (atomic(R) -> X\=R
687 ; R=record(_,_) -> fail
688 ; add_error_fail(haskell_csp,'Type error in disequality: ',X\=R)
689 ).
690 not_equal_element(X,Y) :- dif(X,Y).
691
692 % we normalise all elements that appear in setValue; dif or \= is sufficient
693 not_equal_setValue(X,Y) :- dif(X,Y).
694
695 /* expand_symbolic_set */
696 /* force expansion of symbolic sets into explicit sets */
697
698 /* testing the equality: {x*y | x <- {1,3}, y <- {2,4}} == {2,4,6,12} */
699 :- assert_must_succeed(( csp_sets:expand_symbolic_set(setExp(rangeEnum(['*'(_x,_y)] ),
700 [comprehensionGenerator(_x,setValue([int(1),int(3)])),
701 comprehensionGenerator(_y,setValue([int(2),int(4)]))] ),R,test), R = setValue([int(2),int(4),int(6),int(12)]))).
702 :- assert_must_succeed(( csp_sets:expand_symbolic_set(boolType,R,_X), R == setValue([true,false]))).
703 /* testing the equality: {(x,y) | x <- {0..100}, y <- { -99..5}, x+y == 100} == {(95,5),(96,4),(97,3),(98,2),(99,1),(100,0)} */
704 :- assert_must_succeed(( csp_sets:expand_symbolic_set(setExp(rangeEnum([tuplePat([_x,_y])]),
705 [comprehensionGenerator(_x,setFromTo(0,100)),
706 comprehensionGenerator(_y,setFromTo(-99,5)),comprehensionGuard('=='('+'(_x,_y),'int'(100)))] ),R,test),
707 R = setValue([na_tuple([int(95),int(5)]),na_tuple([int(96),int(4)]),na_tuple([int(97),int(3)]),
708 na_tuple([int(98),int(2)]),na_tuple([int(99),int(1)]),na_tuple([int(100),int(0)])]))).
709
710 %expand_symbolic_set(X,R) :- print(expand_symbolic_set(X,R)),nl,fail.
711 expand_symbolic_set(X,R,Context) :- var(X),!,
712 add_error(expand_symbolic_set,'Variable argument for expand_symbolic_set, Context: ',Context),
713 R=X.
714 expand_symbolic_set(dataType(T),R,Context) :- !, R=setValue(SET),
715 (dataTypeDef(T,Def)
716 -> %print(dt(T,Def,SET)),nl,
717 expand_datatypedefbody(Def,T,SET,Context)
718 ; add_error(csp_sets,'Could not expand dataType. No datatype definition for: ',T:context(Context)),
719 SET=[]
720 ).
721 expand_symbolic_set(closure(X),R,_Context) :- !, closure_expand(X,R).
722 expand_symbolic_set(setValue(X),R,_Context) :- !, R=setValue(X).
723 expand_symbolic_set(setFrom(X),R,Context) :- !, add_warning(expand_symbolic_set,'Warning: Tried to expand infinite set: ',setFrom(X):context(Context)),R=setFrom(X).
724 expand_symbolic_set(setFromTo(Low,Up),R,_Context) :- !,R=setValue(RS),expand_from_to(Low,Up,RS).
725 expand_symbolic_set(setExp(RangeExpr,GeneratorList),R,_Context) :- !,
726 expand_set_comprehension(RangeExpr,GeneratorList,R).
727 expand_symbolic_set(listFromTo(X,Y),_,Context) :-
728 add_error(expand_symbolic_set,'Type error; expected set: ',listFromTo(X,Y):context(Context)),fail.
729 expand_symbolic_set(agent_call(Span,F,Par),R,Context) :- !,
730 force_evaluate_argument(agent_call(Span,F,Par),RF),
731 expand_symbolic_set(RF,R,Context).
732 expand_symbolic_set(boolType,R,_Context) :- !, R = setValue([true,false]).
733 expand_symbolic_set(dotTupleType(L),R,_Context) :- !, % we want to expand some more complicated Types like {0..2}.({0..2},{0..2})
734 %print(expand_symbolic_set(dotTupleType(L))),nl,
735 l_unfold_datatype_dot_tuple([dotTupleType(L)],RL),
736 findall(Val,haskell_csp: enumerate_channel_input_value2(dotTupleType(RL),Val,_Ch,2,no_loc_info_available),Set),
737 R = setValue(Set).
738 expand_symbolic_set(typeTuple(L),R,_Context) :- !,
739 haskell_csp: evaluate_type_list(L,LR),
740 findall(Val,haskell_csp: enumerate_channel_input_value2(typeTuple(LR),Val,_Ch,2,no_loc_info_available),Set),
741 R = setValue(Set).
742 expand_symbolic_set(Set,R,Context) :-
743 add_error(expand_symbolic_set,'Could not expand set: ',Set:context(Context)),R=Set.
744
745 :- block expand_from_to(-,?,?), expand_from_to(?,-,?).
746 expand_from_to(X,Y,R) :- expand_from_to2(X,Y,R).
747 expand_from_to2(X,Y,R) :- X>Y,!, R=[].
748 expand_from_to2(X,Y,[int(X)|T]) :- X1 is X+1, expand_from_to2(X1,Y,T).
749
750 expand_datatypedefbody([],_DT,R,_) :- !, R=[].
751 expand_datatypedefbody([constructor(C)|T],DT,R,Context) :- !, R=[C|ET],
752 expand_datatypedefbody(T,DT,ET,Context).
753 expand_datatypedefbody([constructorC(Cons,Type)|T],DT,R,Context) :- !,
754 (haskell_csp:channel_type_is_finite(Type,2) ->
755 findall(Record,csp_sets:expand_constructor_to_record(Cons,DT,2,Record),L),
756 append(L,RT,R),
757 expand_datatypedefbody(T,DT,RT,Context)
758 ; add_error(csp_sets, 'Could not expand infinite datatype body: ',constructorC(Cons,Type):context(Context)),fail
759 ).
760 expand_datatypedefbody(L,_DT,R,Context) :-
761 add_internal_error('Internal Error: Could not expand datatype body (potentially infinite): ',L:context(Context)),
762 R=[].
763
764 expand_constructor_to_record(Cons,DT,MaxRec,Res) :-
765 Res=record(Cons,_L),
766 enumerate_datatype_el(DT,Res,_Channel,MaxRec,no_loc_info_available).
767
768 /* ------------------ */
769 /* EXPANDING CLOSURES */
770 /* ------------------ */
771
772 /* csp_sets:closure_expand([tuple([outf])],R),print(R),nl */
773
774 closure_expand(ListOfEls,setValue(ExpandedList)) :-
775 %print(closure_expand(ListOfEls)),nl,
776 when(ground(ListOfEls),
777 (findall(EEl,(member(El,ListOfEls),
778 closure_expand_single_element(El,EEl)),EEls),
779 %print(expanded(EEls)),nl,
780 sort(EEls,ExpandedList) /* is sort ok wrt to @< used by various set operations?? */
781 )).
782
783 closure_expand_single_element(tuple([Ch|List]),R) :-
784 channel_type_list(Ch,ChannelTypeList),!, R = tuple([Ch|NewList]),
785 %print(tuple([Ch|NewList],ChannelTypeList)),nl,
786 %% print(gen_expanded_list(ChannelTypeList,List,NewList,Ch)),nl,
787 gen_expanded_list(ChannelTypeList,List,NewList,Ch).
788 closure_expand_single_element(Cons,C) :-
789 is_csp_constructor(Cons),!,
790 csp_constructor(Cons,DT,_ArgSubTypes),
791 %print(csp_constructor(Cons,DT,_ArgSubTypes)),nl,
792 C=record(Cons,_Fields),
793 enumerate_datatype_el(DT,C,_Ch,2,no_loc_information).
794 closure_expand_single_element(tuple([Ch|_]),_R) :- !,
795 add_error(csp_sets,'Cannot compute closure: This is not a defined channel: ',Ch),
796 fail.
797 closure_expand_single_element(X,_R) :-
798 add_error(csp_sets,'Cannot expand closure: ',X),
799 fail.
800
801 gen_expanded_list([],List,[],Channel) :-
802 (List=[] ->
803 true
804 ; add_error(csp_sets,'Pattern list too long for channel: ',(List,Channel))
805 ).
806 gen_expanded_list([Type|TT],List,Res,Channel) :-
807 (List=[H|LT]
808 -> (is_incomplete_record(H,CompletedH,RecType)
809 -> ((LT==[] ->
810 true
811 ; add_error(gen_expanded_list,'Incomplete Record at non-tail position:',Channel:H)
812 ),
813 enumerate_channel_input_value(dataType(RecType),CompletedH,Channel,no_loc_info_available),
814 %%print(enum(Type,CompletedH,Channel)),nl,
815 Res = [CompletedH|RT]
816 )
817 ; Res=[H|RT]
818 )
819 ; Res=[NewEl|RT],LT=List, /* is it ok not to put dot(NewEl) here ? */
820 enumerate_channel_input_value(Type,NewEl,Channel,no_loc_info_available)
821 ),
822 gen_expanded_list(TT,LT,RT,Channel).
823
824 :- assert_must_succeed((assertz(csp_sets: csp_full_type_constructor(sq,values,[dataType(values), dataType(values)])),
825 is_incomplete_record(record(sq,['A']), _R, values),
826 retractall(csp_sets:csp_full_type_constructor(_,_,_)))).
827 :- assert_must_fail((assertz(csp_sets: csp_full_type_constructor(sq,values,[dataType(values), dataType(values)])),
828 is_incomplete_record(record(sq,['A','B']), _R, values),
829 retractall(csp_sets:csp_full_type_constructor(_,_,_)))).
830 is_incomplete_record(record(Constructor,Fields),record(Constructor,FullFields),Type) :-
831 csp_full_type_constructor(Constructor,Type,SubTypes),
832 length(SubTypes,NrReqArgs),
833 length(Fields,NrFields),
834 (NrReqArgs > NrFields
835 -> ( %print(record_incomplete(Constructor,Fields,SubTypes)),nl,
836 length(FullFields,NrReqArgs),
837 append(Fields,_,FullFields)
838 %print(completed(record(Constructor,FullFields))),nl
839 )
840 ; ((NrReqArgs<NrFields -> add_error(csp_sets,'Too many arguments for record: ',Constructor:Fields) ; true),
841 fail)
842 ).
843 /* ------------------ */
844 /* SET COMPREHENSIONS */
845 /* ------------------ */
846
847 expand_set_comprehension(RangeExpr,GeneratorList,Res) :-
848 %%%% print(expand_set_comprehension(RangeExpr,GeneratorList,Res)),nl,
849 get_waitvars_for_generator_list(GeneratorList,WaitVars),
850 %print(get_waitvars_for_generator_list(GeneratorList,WaitVars)),nl,
851 when(ground(WaitVars), generate_set_comprehension_solutions(RangeExpr,GeneratorList,Res)).
852
853 generate_set_comprehension_solutions(RangeExpr,GeneratorList,Res) :-
854 treat_generators(GeneratorList,GenVars,Sets,Guard),
855 findall(EExpr,get_generators_solution(Guard,GenVars,RangeExpr,Sets,EExpr),Expressions),
856 %print(force_evaluate_set(Expressions,Res)),nl,
857 force_evaluate_set(Expressions,Res).%evaluate_set(Expressions,Res,force_evaluate_argument).
858
859 get_generators_solution(Guard,GenVars,RangeExpr,Sets,EExpr) :-
860 check_boolean_expression(Guard),
861 %print(generator_sol(guard(Guard),GenVars,Sets)),nl,
862 ? generator_sol(GenVars,Sets,set), % unifies the variables of the comprehension generator expressions (e.g. x <- {0..10})
863 %print(checking_range),nl,
864 member_range_expr(RangeExpr,EExpr).
865
866 /* not used anymore
867 % temporary CLPFD will be not used for CSP
868 check_boolean_expression_set(Guard) :-
869 preference(use_clpfd_solver,true),
870 arith_boolean_expression(Guard,EvBExpr),!,
871 set_clpfd_constraints(EvBExpr).
872 check_boolean_expression_set(Guard) :-
873 check_boolean_expression(Guard).
874
875 arith_boolean_expression(BExpr,EvBExpr) :-
876 functor(BExpr,F,2),arg(1,BExpr,Arg1),arg(2,BExpr,Arg2),
877 %BExpr =.. [F,Arg1,Arg2],
878 (F == '=='; F == '!='; F == '<'; F == '<='; F == '>'; F == '>='),!,
879 cspm_compute_arith_expression(Arg1,EArg1),
880 cspm_compute_arith_expression(Arg2,EArg2),
881 functor(EvBExpr,F,2),arg(1,EvBExpr,EArg1),arg(2,EvBExpr,EArg2).
882 %EBExpr=..[F,EArg1,EArg2].
883
884 set_clpfd_constraints('=='(X,Y)) :- !,
885 clpfd_interface:csp_clpfd_eq(X,Y).
886 set_clpfd_constraints('!='(X,Y)) :- !,
887 clpfd_interface:csp_clpfd_neq(X,Y).
888 set_clpfd_constraints('<'(X,Y)) :- !,
889 clpfd_interface:csp_clpfd_lt(X,Y).
890 set_clpfd_constraints('<='(X,Y)) :- !,
891 clpfd_interface:csp_clpfd_leq(X,Y).
892 set_clpfd_constraints('>'(X,Y)) :- !,
893 clpfd_interface:csp_clpfd_gt(X,Y).
894 set_clpfd_constraints('>='(X,Y)) :- !,
895 clpfd_interface:csp_clpfd_geq(X,Y).
896
897
898 cspm_compute_arith_expression(Expr,Res) :-
899 var(Expr),!,Res=Expr.
900 cspm_compute_arith_expression('-'(Arg1),Value) :- !,
901 cspm_compute_arith_expression(Arg1,SV1),
902 Value = '-'(SV1).
903 cspm_compute_arith_expression('-'(Arg1,Arg2),Value) :- !,
904 cspm_compute_arith_expression(Arg1,SV1),
905 cspm_compute_arith_expression(Arg2,SV2),
906 Value = '-'(SV1,SV2).
907 cspm_compute_arith_expression('+'(Arg1,Arg2),Value) :- !,
908 cspm_compute_arith_expression(Arg1,SV1),
909 cspm_compute_arith_expression(Arg2,SV2),
910 Value = '+'(SV1,SV2).
911 cspm_compute_arith_expression('*'(Arg1,Arg2),Value) :- !,
912 cspm_compute_arith_expression(Arg1,SV1),
913 cspm_compute_arith_expression(Arg2,SV2),
914 Value = '*'(SV1,SV2).
915 cspm_compute_arith_expression(int(Expr),Expr) :- !.
916 */
917
918
919 :- assert_must_succeed((csp_sets: member_range_expr(rangeEnum([int(1),int(2),int(3)]),int(E)), E == 2)).
920 :- assert_must_fail((csp_sets: member_range_expr(rangeEnum([]),_E))).
921 :- assert_must_succeed((csp_sets: member_range_expr(rangeClosed(int(1),int(5)),int(E)), E == 3)).
922 :- assert_must_fail((csp_sets: member_range_expr(rangeClosed(int(3),int(1)),_E))).
923 % no lazy-evaluation, argument E must be initialized before calling member_range_expr(rangeOpen(int(_)),E)
924 :- assert_must_succeed((E = int(30000), csp_sets: member_range_expr(rangeOpen(int(1)),E))).
925 :- assert_must_fail((E = int(1), csp_sets: member_range_expr(rangeOpen(int(3)),E))).
926
927 member_range_expr(rangeEnum(ExprList),EExpr) :- !,
928 /*(preference(use_clpfd_solver,true),nonvar(ExprList) ->
929 %print(expr_list_1(ExprList)),nl,
930 term_variables(ExprList,Vars),
931 %print(csp_clpfd_labeling([ffc,enum],Vars)),nl,
932 clpfd_interface: csp_clpfd_labeling([ffc,enum],Vars)
933 ; true
934 ),*/
935 ? member(Expr,ExprList),force_evaluate_argument(Expr,EExpr).
936 member_range_expr(rangeClosed(X,Y),EExpr) :- !,
937 evaluate_int_argument(X,EX),evaluate_int_argument(Y,EY),
938 ? is_member_set(EExpr,setFromTo(EX,EY)).
939 member_range_expr(rangeOpen(X),EExpr) :- !,
940 evaluate_int_argument(X,EX),
941 is_member_set(EExpr,setFrom(EX)). % could flounder if Guard not specific enough?!
942 /* Internal error. CSP-M Parser guarantees that the expression on the left side of | in the parsed comprehension set is one of
943 the rangeEnum(-), rangeClosed(_,_) or rangeOpen(-) predicates. */
944 member_range_expr(Range,_) :-
945 add_internal_error('Internal Error: Illegal range expr in set comprehension: ',Range),fail.
946
947 % compute the variables that have to be ground before expanding a set comprehension:
948 get_waitvars_for_generator_list(GeneratorList,WaitVars) :-
949 extract_local_variables_from_generator_list(GeneratorList,LocalVars),
950 term_variables(GeneratorList,GVars),
951 % Do not wait on local variables, they will never be grounded:
952 remove_variables(GVars,LocalVars,WaitVars).
953
954 % Note: this predicate is also called for the replicated operators ! The expressions can
955 % be CSPM agents : do not use force_evaluate
956 replicate_expand_set_comprehension(ExprList,GeneratorList,Res) :-
957 %% print(replicate_expand_setComp(ExprList,GeneratorList)),nl, %%%
958 extract_local_variables_from_generator_list(GeneratorList,LocalVars),
959 term_variables(GeneratorList,GVars),
960 % Do not wait on local variables, they will never be grounded:
961 remove_variables(GVars,LocalVars,WaitVars),
962 when(ground(WaitVars), generate_replicate_set_comprehension_solutions(ExprList,GeneratorList,Res)).
963
964 generate_replicate_set_comprehension_solutions(ExprList,GeneratorList,Res) :-
965 treat_generators(GeneratorList,GenVars,Sets,Guard),
966 findall(EExpr,get_replicate_generators_solution(Guard,GenVars,ExprList,Sets,EExpr),Expressions),
967 evaluate_set(Expressions,Res).%evaluate_set(Expressions,Res,evaluate_argument).
968
969 get_replicate_generators_solution(Guard,GenVars,ExprList,Sets,EExpr) :-
970 check_boolean_expression(Guard),
971 generator_sol(GenVars,Sets,replicated), % unifies the variables of the comprehension generator expressions (e.g. x <- {0..10})
972 member(Expr,ExprList),
973 evaluate_argument(Expr,EExpr).
974
975 generator_sol([],[],_Context).
976 generator_sol([Pattern|VT],[Set|ST],Context) :-
977 (ground(Set) -> true ; print(generator_sol_set_non_ground(Set)),nl), % for nested set comprehension this could actually be non-ground
978 translate_pattern(Pattern,TranslPattern),
979 % print(evaluated_pattern(TranslPattern,Pattern,Set)),nl,
980 (ground(TranslPattern) -> /* we do not need to enumerate; generator variable already ground */
981 force_evaluate_argument_for_member_check(Set,ESet),
982 is_member_set_alsoPat(TranslPattern,ESet)
983 ; force_evaluate_argument(Set,EvSet),
984 ? is_member_clpfd(TranslPattern,EvSet,Context)
985 ),
986 % print(gen_is_member(TranslPattern,Pattern,Set)),nl,
987 ? generator_sol(VT,ST,Context).
988
989 % constraining the variables domains
990 /*is_member_clpfd(Pat,EvSet,set) :-
991 preference(use_clpfd_solver,true),
992 simple(Pat),check_intset_type(EvSet),!,
993 csp_set_pattern_constraints(EvSet,Pat).
994
995 csp_set_pattern_constraints(setFrom(Low),Pat) :- !,
996 Up=sup,
997 clpfd_interface: csp_clpfd_domain([Pat],Low,Up).
998 csp_set_pattern_constraints(setFromTo(Low,Up),Pat) :- !,
999 clpfd_interface: csp_clpfd_domain([Pat],Low,Up).
1000 csp_set_pattern_constraints(setValue(L),Pat) :- !,
1001 maplist(expand_int_value,L,LDom),
1002 clpfd_interface:csp_in_fdset(Pat,LDom).
1003
1004 expand_int_value(int(X),X).
1005
1006 check_intset_type(setFrom(_Low)) :- !.
1007 check_intset_type(setFromTo(_Low,_Up)) :- !.
1008 check_intset_type(setValue(L)) :-
1009 maplist(functor1(int,1),L),!.
1010
1011 functor1(Name,N,Term) :-
1012 functor(Term,Name,N).
1013
1014 */
1015
1016 is_member_clpfd(Pat,EvSet,_Context) :-
1017 expand_symbolic_set(EvSet,ESet,generator_sol),
1018 ? is_member_set_alsoPat(Pat,ESet).
1019
1020 is_member_set_alsoPat(TranslPattern,ESet) :-
1021 (nonvar(TranslPattern),
1022 TranslPattern = alsoPat(X,Y) ->
1023 is_member_set(X,ESet),
1024 unify_also_patterns(X,Y)
1025 ? ; is_member_set(TranslPattern,ESet)
1026 ).
1027
1028 unify_also_patterns(X,Y) :-
1029 unify_also_patterns(X,Y,R),
1030 evaluate_argument(X,EX),
1031 evaluate_argument(Y,EY),
1032 ((EX=EY;EY=R) -> true % both patterns should be equal
1033 ; add_error_fail(csp_sets, 'Both patterns in the also pattern do not match: ', alsoPat(X,Y))
1034 ).
1035
1036
1037
1038
1039 %%%%%%%%%%%% Unit Tests for unify_also_patterns/3 %%%%%%%%%%%%%%
1040 :- assert_must_succeed((csp_sets: unify_also_patterns(int(3),int(X),R), X == 3, R == int(3))).
1041 :- assert_must_fail((csp_sets: unify_also_patterns(int(3),int(4),_R))).
1042 :- assert_must_succeed((csp_sets: unify_also_patterns(tuple([X,Y,Z]),tuple([c,int(1),int(2)]),R), X == c, Y == int(1), Z == int(2), R == tuple([c,int(1),int(2)]))).
1043 :- assert_must_succeed((csp_sets: unify_also_patterns(tuple([X,_Y]),tuple([c,int(1),int(2)]),R), X == c, R == tuple([c,tuple([int(1),int(2)])]))).
1044 :- assert_must_succeed((csp_sets: unify_also_patterns(tuple([c,int(1),int(2)]),tuple([X,Y,Z]),R), X == c, Y == int(1), Z == int(2), R == tuple([c,int(1),int(2)]))).
1045 :- assert_must_succeed((csp_sets: unify_also_patterns(tuple([c,int(1),int(2)]),tuple([X,_Y]),R), X == c, R == tuple([c,tuple([int(1),int(2)])]))).
1046 :- assert_must_succeed((csp_sets: unify_also_patterns(tuple([c,int(1),int(2),int(3)]),tuple([X,_Y]),R), X == c, R == tuple([c,tuple([int(1),int(2),int(3)])]))).
1047 :- assert_must_succeed((csp_sets: unify_also_patterns(record(c,[int(1),int(2)]),record(c,[X,Y]),R), X == int(1), Y == int(2), R == record(c,[int(1),int(2)]))).
1048 :- assert_must_succeed((csp_sets: unify_also_patterns(record(c,[int(1),int(2)]),tuple([c,X,Y]),R), X == int(1), Y == int(2), R == record(c,[int(1),int(2)]))).
1049 :- assert_must_succeed((csp_sets: unify_also_patterns(tuple([c,int(1),int(2)]),record(c,[X,Y]),R), X == int(1), Y == int(2), R == record(c,[int(1),int(2)]))).
1050 :- assert_must_succeed((csp_sets: unify_also_patterns(tuple([c,int(1),int(2)]),record(c,[_X]),R), R == record(c,[tuple([int(1),int(2)])]))).
1051 :- assert_must_succeed((csp_sets: unify_also_patterns(record(c,[int(1),int(2)]),Y,R), Y == record(c,[int(1),int(2)]), R == record(c,[int(1),int(2)]))).
1052 :- assert_must_succeed((csp_sets:unify_also_patterns(record(c,[_A]),tuple([c,int(1),na_tuple([int(2),int(3)])]),D), D == record(c,[tuple([int(1),na_tuple([int(2),int(3)])])]))).
1053 :- assert_must_succeed((csp_sets: unify_also_patterns(na_tuple([X,Y,Z]),na_tuple([c,int(1),int(2)]),R), X == c, Y == int(1), Z == int(2), R == na_tuple([c,int(1),int(2)]))).
1054 :- assert_must_succeed((csp_sets: unify_also_patterns(list([X,Y,Z]),list([c,int(1),int(2)]),R), X == c, Y == int(1), Z == int(2), R == list([c,int(1),int(2)]))).
1055 %%%%%%%%%%%% Unit Tests for unify_also_patterns/3 %%%%%%%%%%%%%%
1056
1057 unify_also_patterns(X,Y,R) :- (var(X) ; var(Y)), !, X=Y,R=Y.
1058 unify_also_patterns(int(X),int(Y),int(R)) :- !,int(X)=int(Y),R=X.
1059 unify_also_patterns(tuple(L),Tuple,tuple(R)) :- (Tuple = tuple(L1); Tuple = dotTuple(L1)),!,unify_tuple_elements(L,L1,R,tuple).
1060 unify_also_patterns(dotTuple(L),Tuple,tuple(R)) :- (Tuple = tuple(L1); Tuple = dotTuple(L1)),!,unify_tuple_elements(L,L1,R,tuple).
1061 unify_also_patterns(X,Y,record(CR,LR)) :-
1062 ( X = record(CX,LX) -> !,
1063 ( Y=tuple([H|T]) -> CX=H,!,unify_tuple_elements([CX|LX],[H|T],R,tuple),R=[CR|LR]
1064 ; Y=dotTuple([H|T]) -> CX=H,!,unify_tuple_elements([CX|LX],[H|T],R,dotTuple),R=[CR|LR]
1065 ; Y=record(CY,LY) -> CX=CY,!,unify_tuple_elements([CX|LX],[CY|LY],R,tuple),R=[CR|LR]
1066 ; atomic(Y) -> fail % in case we are comparing a record with a simple constructor
1067 ; add_error_fail(unify_also_patterns, 'Could not unify values (inside of set comprehension): ',unify_also_patterns(X,Y))
1068 )
1069 ; Y = record(_,_) -> !, unify_also_patterns(Y,X,record(CR,LR))
1070 ; fail).
1071 unify_also_patterns(na_tuple(L),na_tuple(L1),na_tuple(R)) :- !,unify_tuple_elements(L,L1,R,na_tuple).
1072 unify_also_patterns(list(X),list(Y),list(R)) :- !,if(list(X)=list(Y),R=Y,fail).
1073 % add_error_fail(unify_also_patterns,'Unification type failure: ', '='(list(X),list(Y)))).
1074 unify_also_patterns(X,Y,_R) :- add_error_fail(csp_sets, 'Could not unify values (inside of set comprehension): ',unify_also_patterns(X,Y)).
1075
1076
1077 %%%%%%%%%%%% Unit Tests for unify_tuple_elements/3 %%%%%%%%%%%%%%
1078 :- assert_must_succeed((csp_sets: unify_tuple_elements([int(1),int(2)],[int(1),int(2)],R,_), R == [int(1),int(2)])).
1079 :- assert_must_succeed((csp_sets: unify_tuple_elements([int(1),int(2),int(3)],[int(1),_X],R,tuple), R == [int(1),tuple([int(2),int(3)])])).
1080 :- assert_must_succeed((csp_sets: unify_tuple_elements([int(1),_X],[int(1),int(2),int(3)],R,tuple), R == [int(1),tuple([int(2),int(3)])])).
1081 :- assert_must_succeed((csp_sets: unify_tuple_elements([int(0),int(1),int(2),int(3)],[int(0),tuple([int(1),int(2),int(3)])],R,tuple), R == [int(0),int(1),int(2),int(3)])).
1082 %%%%%%%%%%%% Unit Tests for unify_tuple_elements/3 %%%%%%%%%%%%%%
1083
1084 unify_tuple_elements([],[],R,_TupleType) :- !,R=[].
1085 unify_tuple_elements([HX|TX],[HY|TY],R,TupleType) :- !,
1086 unfold_dot_tuples([HX|TX],[HHX|TTX]),unfold_dot_tuples([HY|TY],[HHY|TTY]), %still possible that some tuples() are lurking inside of the dot tuple list
1087 ( (TTY = [], var(HHY), TTX \= [], TupleType=tuple) -> unify_to_rest([HHX,TTX], R, TupleType),[HHY]=R
1088 ; (TTX = [], var(HHX), TTY \= [], TupleType=tuple) -> unify_to_rest([HHY,TTY], R, TupleType),[HHX]=R
1089 ; csp_tuples: unify_arg2(HHX,HHY,HR,no_loc_info_available), unify_tuple_elements(TTX,TTY,TR,TupleType),R = [HR|TR]).
1090 % we don't need to raise an exception when we cannot unify the tuple elements.
1091 %unify_tuple_elements(X,Y,_R,_TupleType) :- add_error_fail(csp_sets, 'Could not unify values (inside of set comprehension): ', unify_tuple_elements(X,Y)).
1092
1093 unify_to_rest(L,R,Tuple) :-
1094 flatten(L,FL),
1095 functor(Term,Tuple,1),arg(1,Term,FL),
1096 R = [Term].
1097
1098 treat_generators(Generators,Pats,Sets,ResGuard) :-
1099 treat_generators(Generators,Pats,Sets,true,ResGuard).
1100 %,print(treat_generators(Generators,Pats,Sets,true,ResGuard)),nl.
1101
1102 treat_generators([],Pats,Sets,Guard,ResGuard) :-
1103 Pats=[],Sets=[],ResGuard=Guard.
1104 treat_generators([H|T],Pats,Sets,CurGuard,ResGuard) :-
1105 (H=comprehensionGenerator(Pat,Set) ->
1106 Pats=[Pat|PatT],Sets=[Set|SetT],
1107 CurGuard1=CurGuard
1108 ;H=comprehensionGuard(Guard) ->
1109 PatT=Pats,SetT=Sets,
1110 % Choosing the order of the first two arguments does matter. why? (see CSP/ref_becnchmarks/basin_olderog_bank.csp example)
1111 clever_bool_and(CurGuard,Guard,CurGuard1)
1112 ;
1113 add_internal_error('Internal Error: Could not treat Set Comprehension Generator List: ',[H|T]),fail
1114 ),
1115 treat_generators(T,PatT,SetT,CurGuard1,ResGuard).
1116
1117 clever_bool_and(true,X,R) :- !,R=X.
1118 clever_bool_and(X,true,R) :- !,R=X.
1119 clever_bool_and(G1,G2,bool_and(G1,G2)).
1120
1121 :- use_module(probcspsrc(csp_tuples),[is_constructor/3]).
1122 % maybe we should use same code as for compile_head_para
1123
1124 :- assert_must_succeed((csp_sets:l_translate_pattern([emptySet,set([X]),'Set'(setValue([int(1),int(2)])),dotpat([Y,Z,emptySet])],R),
1125 R == [setValue([]),setValue([X]),setValue([int(1),int(2)]),tuple([Y,Z,setValue([])])])).
1126
1127 translate_pattern(V,R) :- var(V),!,R=V.
1128 translate_pattern(dotpat([X|T]),R) :- nonvar(X), is_constructor(X,Constructor,_SubTypes),
1129 l_translate_pattern(T,LT),!, R=record(Constructor,LT).
1130 translate_pattern(dotpat(T),R) :- l_translate_pattern(T,LT),!, R=tuple(LT).
1131 translate_pattern(tuplePat(T),R) :- l_translate_pattern(T,LT),!, R=na_tuple(LT).
1132 translate_pattern(listPat(List),R) :- l_translate_pattern(List,LT),!, R=list(LT).
1133 translate_pattern(singleSetPat(List),R) :- l_translate_pattern(List,LT),!, R=setValue(LT).
1134 translate_pattern(emptySet,R) :- !, R=setValue([]).
1135 translate_pattern(set(List),R) :- l_translate_pattern(List,LT),!, R=setValue(LT).
1136 translate_pattern('Set'(S),R) :- !,R=S.
1137 translate_pattern(appendPattern([H|T]),R) :- T==[],!, translate_pattern(H,R).
1138 translate_pattern(appendPattern([H|T]),R) :- nonvar(H),H=listPat(HH),
1139 haskell_csp:is_list_skeleton(HH),
1140 l_translate_pattern(HH,LHH),
1141 translate_pattern(appendPattern(T),list(LTT)),!, append(LHH,LTT,ResL),R=list(ResL).
1142 % more complicated append patterns
1143 translate_pattern(alsoPattern([X,Y]),R) :- !, translate_pattern(X,XR),translate_pattern(Y,YR),R = alsoPat(XR,YR).
1144 translate_pattern(X,R) :- ground(X),force_evaluate_argument(X,EX),!,R=EX.
1145 translate_pattern(X,X) :-
1146 add_internal_error('Internal Error: Could not translate pattern: ',X).
1147
1148 l_translate_pattern(Patterns,TranslatedPatterns) :-
1149 maplist(translate_pattern,Patterns,TranslatedPatterns).
1150
1151 :- assert_must_succeed(( is_member_comprehension_set(int(12),
1152 rangeEnum(['*'(_x,_y)]),
1153 [comprehensionGenerator(_x,setValue([int(1),int(3)])),
1154 comprehensionGenerator(_y,setValue([int(1),int(2),int(4)]))]) )).
1155 :- assert_must_fail(( is_member_comprehension_set(int(11),
1156 rangeEnum(['*'(_x,_y)]),
1157 [comprehensionGenerator(_x,setValue([int(1),int(3)])),
1158 comprehensionGenerator(_y,setValue([int(1),int(2),int(4)]))]) )).
1159 :- assert_must_succeed(( is_member_comprehension_set(int(X),
1160 rangeEnum(['*'(_x,_y)]),
1161 [comprehensionGenerator(_x,setValue([int(1),int(3)])),
1162 comprehensionGenerator(_y,setValue([int(1),int(2),int(4)]))]),X=12 )).
1163 /*
1164 :- assert_must_succeed(( csp_sets:is_member_comprehension_set(int(X),
1165 rangeEnum([XX,YY]),[comprehensionGenerator(XX,setExp(rangeClosed(int(3),int(4)))),
1166 comprehensionGenerator(YY,setExp(rangeClosed('+'(int(XX),int(2)),'+'(int(XX),int(3)))))]),X=7 )).
1167 */
1168
1169 is_member_comprehension_set(X,rangeEnum(ExprList),GeneratorList) :- ExprList=[Expr|TT],TT==[],var(Expr),!,
1170 get_waitvars_for_generator_list(GeneratorList,WaitVars),
1171 when(ground(WaitVars),
1172 (treat_generators(GeneratorList,Vars,Sets,Guard),
1173 % print(treat_generators(for(X,ExprList),Vars,Sets,Guard)),nl,
1174 Expr=X,
1175 check_boolean_expression(Guard),
1176 % print(checked(Guard,Vars,Sets)),nl,
1177 generator_sol(Vars,Sets,set))).
1178 is_member_comprehension_set(X,ExprList,GeneratorList) :- !, %ExprList = [_,_|_],fail,!,
1179 /* if more than one element in ExprList:
1180 we need to expand it; we cannot instantiate the single variable and just check the generators,guards
1181 otherwise pending co-routines can occur (e.g., { x , x1 | x<-{1..4}, x1 <-{x+2..x+3} } )
1182 Also: currently we cannot check it symbolically if the elment of ExprList is not a variable */
1183 % print(expanding_comprehension_set(ExprList,GeneratorList)),nl,
1184 expand_set_comprehension(ExprList,GeneratorList,ExpandedSet),
1185 ? is_member_set(X,ExpandedSet).
1186 is_member_comprehension_set(X,T,G) :-
1187 add_error_fail(is_member_comprehension_set,'Could not evaluate: ', is_member_comprehension_set(X,T,G)).
1188
1189
1190 :- assert_must_succeed(( csp_sets:extract_variables_from_generator_list(
1191 [comprehensionGenerator(_x,setValue([int(1),int(3)])),
1192 comprehensionGenerator(_y,setValue([int(1),int(2),int(4)]))],R),
1193 R == [_x,_y])).
1194
1195 % TODO: does not extract local quantified variables for nested set comprehensions !
1196 % extract locally quantified variables from a set comprehension generator list
1197 extract_variables_from_generator_list([],R) :- !,R=[].
1198 extract_variables_from_generator_list([comprehensionGuard(_)|T],Res) :- !,
1199 extract_variables_from_generator_list(T,Res).
1200 extract_variables_from_generator_list([comprehensionGenerator(Var,Set)|T],Res) :- !,
1201 check_variable(Var),
1202 extract_variables_from_generator_list(T,TVar),
1203 term_variables(Var,Vars),
1204 add_variables(Vars,TVar,Res,Set).
1205 extract_variables_from_generator_list(X,R) :-
1206 add_internal_error('Not a generator list: ', X),
1207 R=[].
1208
1209 :- assert_must_succeed(( csp_sets:extract_local_variables_from_generator_list(
1210 [comprehensionGenerator(_x,setValue([int(1),int(3)])),
1211 comprehensionGenerator(_y,setValue([int(1),int(2),int(4)]))],R),
1212 R == [_x,_y])).
1213 % TODO: does not extract local quantified variables for nested set comprehensions !
1214 % extract locally quantified variables from a set comprehension generator list
1215 extract_local_variables_from_generator_list([],R) :- !,R=[].
1216 extract_local_variables_from_generator_list([comprehensionGuard(_)|T],Res) :- !,
1217 extract_local_variables_from_generator_list(T,Res).
1218 extract_local_variables_from_generator_list([comprehensionGenerator(Var,Set)|T],Res) :- !,
1219 check_variable(Var),
1220 extract_local_variables_from_generator_list(T,TVar),
1221 term_variables(Var,Vars),
1222 add_variables(Vars,TVar,Res1,Set),
1223 extract_local_variables_from_set_expression(Set,Res1,Res).
1224 extract_local_variables_from_generator_list(X,R) :-
1225 add_internal_error('Not a generator list: ', X),
1226 R=[].
1227
1228 % TODO: are there any operators we are missing !??
1229 extract_local_variables_from_set_expression(X,I,O) :- var(X),!,
1230 %add_error(extract_local_variables_from_set_expression,'Variable expr. :',X),
1231 I=O.
1232 extract_local_variables_from_set_expression(Set,InVar,OutVar) :- unary_set_op(Set,A),!,
1233 extract_local_variables_from_set_expression(A,InVar,OutVar).
1234 extract_local_variables_from_set_expression(Set,InVar,OutVar) :- binary_set_op(Set,A,B),!,
1235 extract_local_variables_from_set_expression(A,InVar,V1),
1236 extract_local_variables_from_set_expression(B,V1,OutVar).
1237 extract_local_variables_from_set_expression(setEnum(List),InVar,OutVar) :- !,
1238 l_extract_local_variables_from_set_expression(List,InVar,OutVar).
1239 extract_local_variables_from_set_expression(closureComp(Generators,Set),In,Out) :- !,
1240 extract_local_variables_from_generator_list(Generators,GV),
1241 add_variables(GV,In,Out,Set).
1242 extract_local_variables_from_set_expression(setExp(RangeExpr,Generators),In,Out) :- !,
1243 extract_local_variables_from_generator_list(Generators,GV),
1244 add_variables(GV,In,Out,RangeExpr).
1245
1246 extract_local_variables_from_set_expression(_Set,In,Out) :-
1247 %print(uncovered_set_extract(_Set)),nl,
1248 Out=In.
1249 % what if we have a set of values, containing e.g. the card operator on setComprehensions !!
1250 % TO DO: maybe propagate local variables up in haskell_csp_analyzer.pl and make available to setComp ??
1251
1252 unary_set_op(builtin_call(X),R) :- unary_set_op(X,R).
1253 unary_set_op('Union'(A),A).
1254 unary_set_op('Inter'(A),A).
1255 binary_set_op(builtin_call(X),A,B) :- binary_set_op(X,A,B).
1256 binary_set_op(union(A,B),A,B).
1257 binary_set_op(diff(A,B),A,B).
1258 binary_set_op(inter(A,B),A,B).
1259
1260 :- assert_must_succeed((csp_sets:l_extract_local_variables_from_set_expression([],X,Y), Y == X)).
1261 :- assert_must_succeed((csp_sets:l_extract_local_variables_from_set_expression([builtin_call(union(S,setExp(rangeEnum([_I])))),
1262 builtin_call(union(_X,_Y))],S,Out), Out == S)).
1263 :- assert_must_succeed((csp_sets:l_extract_local_variables_from_set_expression([builtin_call(union(_S,setExp(rangeEnum([I])))),
1264 builtin_call(union(_X,_Y))],_I,Out), Out == I)).
1265 :- assert_must_succeed((csp_sets:l_extract_local_variables_from_set_expression([builtin_call(union(_S,setExp(rangeEnum([_I])))),
1266 builtin_call(inter(X,_Y))],X,Out), Out == X)).
1267 :- assert_must_succeed((csp_sets: csp_sets: extract_local_variables_from_generator_list([comprehensionGenerator(rangeEnum([Y]),setExp(rangeEnum([X]),[comprehensionGenerator(X,setExp(rangeClosed(int(1),int(4))))]))],L), L == [X,Y])).
1268 :- assert_must_succeed((csp_sets:l_extract_local_variables_from_set_expression([setEnum([S,Y,_X]),
1269 builtin_call('Inter'(Y))],S,Out), Out == S)).
1270 :- assert_must_succeed((csp_sets:l_extract_local_variables_from_set_expression([builtin_call('Union'(_S)),
1271 builtin_call('Inter'(Y))],Y,Out), Out == Y)).
1272
1273 l_extract_local_variables_from_set_expression(X,I,O) :- var(X),!,
1274 add_internal_error(/*l_extract_local_variables_from_set_expression,*/'Variable expr. :',X), I=O.
1275 l_extract_local_variables_from_set_expression([],In,Out) :- !, Out = In.
1276 l_extract_local_variables_from_set_expression([H|T],In,Out) :- !,
1277 extract_local_variables_from_set_expression(H,In,In2),
1278 l_extract_local_variables_from_set_expression(T,In2,Out).
1279 l_extract_local_variables_from_set_expression(X,In,Out) :-
1280 add_internal_error('Unknown expr.: ',X), In=Out.
1281
1282
1283 check_variable(V) :- atomic(V), channel(V,_),!,
1284 add_error(csp_sets,'Channel name used for local variable: ',V).
1285 check_variable(_).
1286
1287 add_variables([],TVar,TVar,_).
1288 add_variables([Var|T],TVar,Res,Set) :-
1289 (exact_member(Var,TVar)
1290 -> (add_error(csp_sets,'Variable appears twice in Generator list:',
1291 (Var,[comprehensionGenerator(Var,Set)|T])),
1292 /* TODO: FIX; this is actually allowed ?? !! */
1293 TVar1 = TVar)
1294 ; TVar1 = [Var|TVar]),
1295 add_variables(T,TVar1,Res,Set).
1296
1297 /* --------- */
1298 /* BIG UNION */
1299 /* --------- */
1300
1301
1302 :- assert_must_succeed(( csp_sets:big_union(setValue([setValue([int(3),int(4)]),setValue([int(2),int(9)])]),R),
1303 R == setValue([int(2),int(3),int(4),int(9)]) )).
1304
1305 :- block big_union(-,?).
1306 big_union(S1,Res) :- %print(big_union(S1,Res)),nl,
1307 expand_symbolic_set(S1,setValue(ES1),big_union),
1308 %%print(big2(ES1)),nl,
1309 ? big_union_add(ES1,setValue([]),Res). %, print(big_res(Res)),nl.
1310
1311 big_union_add([],R,R).
1312 ?big_union_add([H|T],S2,Res) :- union_set(H,S2,S3),
1313 ? big_union_add(T,S3,Res).
1314
1315
1316
1317 /* --------- */
1318 /* BIG INTER */
1319 /* --------- */
1320
1321
1322 :- assert_must_succeed(( csp_sets:big_inter(setValue([setValue([int(3),int(4)]),setValue([int(2),int(4)])]),R),
1323 R == setValue([int(4)]) )).
1324 :- assert_must_succeed(( csp_sets:big_inter(setValue([setValue([int(3),int(4)]),setValue([int(2),int(4)]),setValue([])]),R),
1325 R == setValue([]) )).
1326
1327
1328 :- block big_inter(-,?).
1329 big_inter(S1,Res) :-
1330 expand_symbolic_set(S1,setValue(ES1),big_inter),
1331 (ES1 = [H|T]
1332 -> big_inter_del(T,H,Res)
1333 ; (add_error(csp_sets,'At least one set needed for Inter: ','Inter'(S1)),
1334 fail)
1335 ).
1336
1337 big_inter_del([],R,R).
1338 big_inter_del([H|T],S2,Res) :- inter_set(H,S2,S3),
1339 big_inter_del(T,S3,Res).
1340