1 % (c) 2019-2022 Lehrstuhl fuer Softwaretechnik und Programmiersprachen,
2 % Heinrich Heine Universitaet Duesseldorf
3 % This software is licenced under EPL 1.0 (http://www.eclipse.org/org/documents/epl-v10.html)
4 :- module(cdclt_preprocessing, [preprocess_predicate/6,
5 optimize_clause_size_by_rewriting/5,
6 simplify_negation/2,
7 reset_artificial_id_counter/0,
8 remove_subsumed_clauses/2,
9 get_wd_theory_implications/3]).
10
11 :- use_module(library(sets)).
12 :- use_module(library(lists)).
13 :- use_module(library(plunit)).
14 :- use_module(library(samsort)).
15 :- use_module(library(terms), [term_size/2]).
16 :- use_module(cdclt_solver(cdclt_settings)).
17 :- use_module(cdclt_solver('difference_logic/ast_to_difference_logic')).
18 :- use_module(probsrc(bsyntaxtree), [find_identifier_uses/3,
19 remove_all_infos/2,
20 syntaxtransformation/5,
21 disjunct_predicates/2,
22 conjunct_predicates/2,
23 safe_create_texpr/4,
24 create_negation/2,
25 create_implication/3,
26 get_texpr_expr/2,
27 get_texpr_type/2]).
28 :- use_module(probsrc(bsyntaxtree),[map_over_bexpr/2]).
29 :- use_module(probsrc('well_def/well_def_analyser'), [prove_sequent/1]).
30 :- use_module(probsrc(kernel_tools),[ground_bexpr/1]).
31 :- use_module(probsrc(tools_meta), [safe_time_out/3]).
32 :- use_module(probsrc(error_manager), [add_internal_error/2]).
33 :- use_module(probsrc(module_information), [module_info/2]).
34 :- use_module(wdsrc(well_def_hyps), [empty_hyps/1]).
35 :- use_module(wdsrc(well_def_analyser), [compute_wd/4]).
36
37 :- module_info(group, cdclt).
38 :- module_info(description,'This module provides several preprocessing steps for the CDCL(T) based solver such as lifting negations from B operators.').
39
40 :- dynamic artificial_id_counter/1.
41
42 clause_size_sort(Clause1, Clause2) :-
43 length(Clause1, L1),
44 length(Clause2, L2),
45 L1 < L2.
46
47 %% remove_subsumed_clauses(+Clauses, -ReducedClauses).
48 % Remove clauses that are subsumed by another clause. For instance, (A or B) subsumes (A or B or C).
49 remove_subsumed_clauses(Clauses, ReducedClauses) :-
50 \+ preprocessing(subsuming),
51 \+ preprocessing(resolution_subsuming),
52 !,
53 ReducedClauses = Clauses.
54 remove_subsumed_clauses(Clauses, ReducedClauses) :-
55 samsort(clause_size_sort, Clauses, SClauses),
56 safe_time_out(remove_subsumed_clauses_sorted(SClauses, TReducedClauses),
57 5000,
58 TimeOutRes),
59 ( TimeOutRes == time_out
60 -> ReducedClauses = SClauses
61 ; ReducedClauses = TReducedClauses
62 ).
63
64 remove_subsumed_clauses_sorted([], []).
65 remove_subsumed_clauses_sorted([Clause|T], Out) :-
66 remove_clauses_subsumed_by(Clause, T, false, RemoveThis, NT),
67 ( RemoveThis == true
68 -> Out = ReducedClauses
69 ; Out = [Clause|ReducedClauses]
70 ),
71 remove_subsumed_clauses_sorted(NT, ReducedClauses).
72
73 remove_clauses_subsumed_by(_, [], RemoveThis, RemoveThis, []).
74 remove_clauses_subsumed_by(Clause, [Clause2|T], RemoveThisAcc, RemoveThis, NT) :-
75 preprocessing(subsuming),
76 subsumes(Clause, Clause2),
77 !,
78 %format("Remove clause ~w due to clause ~w~n", [Clause2,Clause]),
79 remove_clauses_subsumed_by(Clause, T, RemoveThisAcc, RemoveThis, NT).
80 remove_clauses_subsumed_by(Clause, [Clause2|T], RemoveThisAcc, RemoveThis, Out) :-
81 preprocessing(resolution_subsuming),
82 boolean_resolution(Clause, Clause2, Resolved),
83 subsumes(Resolved, Clause2),
84 !,
85 %format("Resolution of ~n~w and ~n~w ~nresults in ~n~w~n~n", [Clause,Clause2,Resolved]),
86 ( subsumes(Resolved, Clause)
87 -> NRemoveThisAcc = true
88 ; NRemoveThisAcc = RemoveThisAcc
89 ),
90 Out = [Resolved|NT],
91 remove_clauses_subsumed_by(Clause, T, NRemoveThisAcc, RemoveThis, NT).
92 remove_clauses_subsumed_by(Clause, [Clause2|T], RemoveThisAcc, RemoveThis, [Clause2|NT]) :-
93 remove_clauses_subsumed_by(Clause, T, RemoveThisAcc, RemoveThis, NT).
94
95 subsumes([], _).
96 subsumes([Lit|T], Clause2) :-
97 select(Lit, Clause2, Rest),
98 subsumes(T, Rest).
99
100 %% boolean_resolution(+Clause1, +Clause2, -Resolved).
101 % Fail if no possible boolean resolution.
102 boolean_resolution(Clause1, Clause2, Resolved) :-
103 boolean_resolution(Clause1, Clause2, false, Changed, TResolved),
104 Changed == true,
105 sort(TResolved, Resolved).
106
107 boolean_resolution([], Clause2, ChangedAcc, ChangedAcc, Clause2).
108 boolean_resolution([StackInfo-Pol-Var-Name|T], Clause2, _, Changed, Resolved) :-
109 ( Pol == pred_true
110 -> NPol = pred_false
111 ; NPol = pred_true
112 ),
113 select(StackInfo-NPol-Var-Name, Clause2, Rest),
114 !,
115 append(T, Rest, Resolved),
116 Changed = true.
117 boolean_resolution([Lit|T], Clause2, ChangedAcc, Changed, [Lit|Resolved]) :-
118 boolean_resolution(T, Clause2, ChangedAcc, Changed, Resolved).
119
120 %%%
121 % Theory deduction for well-definedness to support the theory solver.
122 % For instance, deduce x:Dom for arr: Dom --> Ran & x:dom(arr).
123 % TO DO: improve code
124 get_wd_theory_implications(CandidateImpls, WDCandidateImpls, WDTheoryImpls) :-
125 CandidateImpls = candidate_impls(global(Global),integer(Integer),integer_ground(_),set(Set),set_ground(_)),
126 WDCandidateImpls = candidate_impls(global(WDGlobal),integer(WDInteger),integer_ground(_),set(WDSet),set_ground(_)),
127 append(WDInteger, WDSet, WDCandidates),
128 get_wd_theory_implications_for_candidates(Global, WDGlobal, GlobalImpls),
129 get_wd_theory_implications_for_candidates(Integer, WDCandidates, IntegerImpls),
130 get_wd_theory_implications_for_candidates(Set, WDCandidates, SetImpls),
131 conjunct_predicates([GlobalImpls,IntegerImpls,SetImpls], WDTheoryImpls).
132
133 b_function(total_function(Domain,_), Domain).
134 b_function(total_surjection(Domain,_), Domain).
135 b_function(total_injection(Domain,_), Domain).
136 b_function(total_bijection(Domain,_), Domain).
137 b_function(partial_function(Domain,_), Domain).
138 b_function(partial_surjection(Domain,_), Domain).
139 b_function(partial_injection(Domain,_), Domain).
140 b_function(partial_bijection(Domain,_), Domain).
141 b_function(surjection_relation(Domain,_), Domain).
142 b_function(total_relation(Domain,_), Domain).
143 b_function(relations(Domain,_), Domain).
144
145 b_function_membership(b(member(Id,Function),pred,_), Id, Domain) :-
146 get_texpr_expr(Function, Expr),
147 b_function(Expr, Domain).
148
149 get_wd_theory_implications_for_candidates(_, [], Out) :-
150 !,
151 Out = b(truth,pred,[]).
152 get_wd_theory_implications_for_candidates(Candidates, WDCandidates, ImplsConj) :-
153 collect_function_constraints(Candidates, FunctionConstraints),
154 get_wd_theory_implications_of_function_memberships(FunctionConstraints, WDCandidates, Impls),
155 conjunct_predicates(Impls, ImplsConj).
156
157 get_wd_theory_implications_of_function_memberships([], _, []).
158 get_wd_theory_implications_of_function_memberships([FunMem-Id-Domain|T], WDCandidates, Impls) :-
159 remove_all_infos(Id, CId),
160 memberchk(b(member(DomId,b(domain(CId),DType,DInfo)),pred,MInfo), WDCandidates),
161 !,
162 safe_create_texpr(member(DomId,b(domain(CId),DType,DInfo)), pred, MInfo, DomMember),
163 safe_create_texpr(disjunct(b(disjunct(b(negation(DomMember),pred,[]),b(negation(FunMem),pred,[])),pred,[]),b(member(DomId,Domain),pred,[])), pred, [], Impl),
164 Impls = [Impl|NT],
165 get_wd_theory_implications_of_function_memberships(T, WDCandidates, NT).
166 get_wd_theory_implications_of_function_memberships([_|T], WDCandidates, NT) :-
167 get_wd_theory_implications_of_function_memberships(T, WDCandidates, NT).
168
169 collect_function_constraints([], []).
170 collect_function_constraints([Candidate|T], FunctionConstraints) :-
171 b_function_membership(Candidate, Id, Domain),
172 !,
173 FunctionConstraints = [Candidate-Id-Domain|NT],
174 collect_function_constraints(T, NT).
175 collect_function_constraints([_|T], NT) :-
176 collect_function_constraints(T, NT).
177 %%%
178
179 negate_bool_expr(boolean_true, boolean_false).
180 negate_bool_expr(boolean_false, boolean_true).
181 negate_bool_expr(value(pred_true), boolean_false).
182 negate_bool_expr(value(pred_false), boolean_true).
183
184 is_boolean_true(b(boolean_true,boolean,_)).
185 is_boolean_true(b(value(pred_true),boolean,_)).
186
187 % convenience predicates:
188 disjunct_two_preds(A,B,Expr) :-
189 disjunct_predicates([A,B],b(Expr,_,_)).
190 conjunct_two_preds(A,B,Expr) :-
191 conjunct_predicates([A,B],b(Expr,_,_)).
192
193 %% simplify_negation(+Ast, -Simplified).
194 simplify_negation(Ast, Simplified) :-
195 Ast = b(Expr,Type,Info),
196 simplify_negation_e(Expr, SimplifiedExpr),
197 safe_create_texpr(SimplifiedExpr, Type, Info, Simplified).
198
199 simplify_negation_e(negation(A), SimplifiedExpr) :-
200 A = b(truth,pred,_),
201 !,
202 SimplifiedExpr = falsity.
203 simplify_negation_e(negation(A), SimplifiedExpr) :-
204 A = b(falsity,pred,_),
205 !,
206 SimplifiedExpr = truth.
207 simplify_negation_e(negation(A), SimplifiedExpr) :-
208 A = b(Expr,pred,_),
209 negated_b_operator(Expr, NExpr),
210 !,
211 SimplifiedExpr = NExpr.
212 simplify_negation_e(negation(BoolEq), SimplifiedExpr) :-
213 % important for SAT constraints such as x=TRUE & not(x=TRUE)
214 ( BoolEq = b(equal(Bool,Id),pred,_)
215 ; BoolEq = b(equal(Id,Bool),pred,_)
216 ),
217 Id = b(identifier(_),boolean,_),
218 Bool = b(Expr,boolean,Info),
219 negate_bool_expr(Expr, NExpr),
220 safe_create_texpr(NExpr, boolean, Info, NBool),
221 !,
222 SimplifiedExpr = equal(NBool,Id).
223 simplify_negation_e(negation(Neg), SimplifiedExpr) :-
224 Neg = b(negation(A),pred,_),
225 !,
226 A = b(SimplifiedExpr,_,_).
227 simplify_negation_e(negation(Conj), SimplifiedExpr) :-
228 Conj = b(conjunct(A,B),pred,_),
229 !,
230 simplify_negation(b(negation(A),pred,[]), SimplifiedA),
231 simplify_negation(b(negation(B),pred,[]), SimplifiedB),
232 disjunct_two_preds(SimplifiedA,SimplifiedB,SimplifiedExpr).
233 simplify_negation_e(negation(Disj), SimplifiedExpr) :-
234 Disj = b(disjunct(A,B),pred,_),
235 !,
236 simplify_negation(b(negation(A),pred,[]), SimplifiedA),
237 simplify_negation(b(negation(B),pred,[]), SimplifiedB),
238 conjunct_two_preds(SimplifiedA,SimplifiedB,SimplifiedExpr).
239 simplify_negation_e(negation(Impl), SimplifiedExpr) :-
240 Impl = b(implication(A,B),pred,_),
241 !,
242 simplify_negation_e(conjunct(A,b(negation(B),pred,[])), SimplifiedExpr).
243 simplify_negation_e(negation(Equi), SimplifiedExpr) :-
244 Equi = b(equivalence(A,B),pred,_),
245 !,
246 simplify_negation_e(disjunct(b(negation(b(implication(A,B),pred,[])),pred,[]),
247 b(negation(b(implication(B,A),pred,[])),pred,[])), SimplifiedExpr).
248 simplify_negation_e(Conn, SimplifiedExpr) :-
249 ( Conn = conjunct(A,B)
250 ; Conn = disjunct(A,B)
251 ; Conn = implication(A,B)
252 ; Conn = equivalence(A,B)
253 ),
254 !,
255 simplify_negation(A, SimplifiedA),
256 simplify_negation(B, SimplifiedB),
257 ( Conn = conjunct(A,B) ->
258 SimplifiedExpr = conjunct(SimplifiedA,SimplifiedB)
259 ; Conn = disjunct(A,B) ->
260 SimplifiedExpr = disjunct(SimplifiedA,SimplifiedB)
261 ; Conn = implication(A,B) ->
262 SimplifiedExpr = implication(SimplifiedA,SimplifiedB)
263 ; Conn = equivalence(A,B) ->
264 SimplifiedExpr = equivalence(SimplifiedA,SimplifiedB)
265 ).
266 simplify_negation_e(Expr, Expr).
267
268 is_literal(b(truth,pred,[])).
269 is_literal(b(falsity,pred,[])).
270 is_literal(b(equal(b(_,boolean,_),b(identifier(_),boolean,_)),pred,[])).
271 is_literal(b(equal(b(identifier(_),boolean,_),b(_,boolean,_)),pred,[])).
272
273 %% optimize_clause_size_by_rewriting(+BoolFormula, +SatVars, -OptBoolFormula, -NewSatVars, -NewVarConjList).
274 % CNF construction can suffer from exponential blowup in size.
275 % We thus rewrite
276 % - nested equivalences TO DO
277 % - equivalences under disjunctions TO DO
278 % - conjunctions which are directly under a disjunction
279 % Rewriting means to introduce a new boolean variable to break nested distributivity.
280 % For instance, A <-> (B <-> (C <-> D)) is rewritten to A <-> (B <-> R) & R <-> (C <-> D).
281 % A or (B <-> C) is rewritten to A or R & (R <-> (B <-> C))
282 % (A & B & C) or (B & C & D) is rewritten to (A & B & C) or R & (R <-> (B & C & D))
283 % Note: Assumes that negation has been pushed to literals.
284 % TO DO: use only "obvious" rewritings and not all
285 optimize_clause_size_by_rewriting(BoolFormula, SatVars, OptBoolFormula, NewSatVars, NewVarConjList) :-
286 BoolFormula = b(Expr,Type,Info),
287 optimize_clause_size_by_rewriting_expr(Expr, SatVars, OptExpr, NewSatVars, NewVarConjList),
288 safe_create_texpr(OptExpr, Type, Info, OptBoolFormula).
289
290 %% get_larger_conj(+C1, +C2, -Larger, -Other).
291 % Return the conjunction with the larger term size
292 % but at least one conjunction has to be nested.
293 get_larger_conj(C1, C2, Larger, Other) :-
294 C1 = b(conjunct(C1A,C1B),pred,_),
295 C2 \= b(conjunct(_,_),pred,_),
296 ( \+ is_literal(C1A); \+ is_literal(C1B)),
297 !,
298 Larger = C1,
299 Other = C2.
300 get_larger_conj(C1, C2, Larger, Other) :-
301 C2 = b(conjunct(C2A,C2B),pred,_),
302 C1 \= b(conjunct(_,_),pred,_),
303 ( \+ is_literal(C2A); \+ is_literal(C2B)),
304 !,
305 Larger = C2,
306 Other = C1.
307 get_larger_conj(C1, C2, Larger, Other) :-
308 C1 = b(conjunct(C1A,C1B),pred,_),
309 C2 = b(conjunct(C2A,C2B),pred,_),
310 ( \+ is_literal(C1A)
311 ; \+ is_literal(C1B)
312 ; \+ is_literal(C2A)
313 ; \+ is_literal(C2B)
314 ),
315 term_size(C1, S1),
316 term_size(C2, S2),
317 ( S1 > S2
318 -> Larger = C1,
319 Other = C2
320 ; Larger = C2,
321 Other = C1
322 ).
323
324 artificial_id_counter(0).
325
326 %% reset_artificial_id_counter.
327 reset_artificial_id_counter :-
328 retractall(artificial_id_counter(_)),
329 asserta(artificial_id_counter(0)).
330
331 get_next_artificial_id(Ast) :-
332 retract(artificial_id_counter(Id)),
333 number_codes(Id, IdCodes),
334 atom_codes(IdAtom, IdCodes),
335 atom_concat('_cnf_opt', IdAtom, IdName),
336 Ast = b(identifier(IdName),boolean,[]),
337 Id1 is Id + 1,
338 asserta(artificial_id_counter(Id1)).
339
340 optimize_clause_size_by_rewriting_expr(disjunct(D1,D2), SatVars, OptExpr, NewSatVars, NewVarConjL) :-
341 D1 = b(conjunct(_,_),pred,_),
342 D2 \= b(conjunct(_,_),pred,_),
343 !,
344 optimize_clause_size_by_rewriting_expr(disjunct(D2,D1), SatVars, OptExpr, NewSatVars, NewVarConjL).
345 optimize_clause_size_by_rewriting_expr(disjunct(D1,D2), SatVars, OptExpr, NewSatVars, NewVarConjL) :-
346 get_larger_conj(D1, D2, ToReplace, ToKeep),
347 !,
348 get_next_artificial_id(NewSatVar),
349 optimize_clause_size_by_rewriting(ToReplace, SatVars, NToReplace, SatVars1, NewVarConjL1),
350 safe_create_texpr(equal(NewSatVar,b(boolean_true,boolean,[])), pred, [], NewVarTrue),
351 safe_create_texpr(equal(NewSatVar,b(boolean_false,boolean,[])), pred, [], NewVarFalse),
352 safe_create_texpr(disjunct(NewVarFalse,NToReplace), pred, [], NewVarImpl1),
353 safe_create_texpr(negation(NToReplace), pred, [], ToReplaceNeg),
354 negate_bool_formula(ToReplaceNeg, ToReplaceNegClean),
355 optimize_clause_size_by_rewriting(ToReplaceNegClean, SatVars1, NToReplaceNegClean, SatVars2, NewVarConjL2),
356 safe_create_texpr(disjunct(NewVarTrue,NToReplaceNegClean), pred, [], NewVarImpl2),
357 optimize_clause_size_by_rewriting(ToKeep, SatVars2, NToKeep, SatVars3, NewVarConjL3),
358 OptExpr = disjunct(NToKeep,NewVarTrue),
359 NewSatVars = [NewSatVar|SatVars3],
360 append([NewVarConjL1, NewVarConjL2, NewVarConjL3], TNewVarConjL),
361 safe_create_texpr(conjunct(NewVarImpl1,NewVarImpl2), pred, [], Conj),
362 NewVarConjL = [Conj|TNewVarConjL].
363 optimize_clause_size_by_rewriting_expr(Binary, SatVars, NBinary, NewSatVars, NewVarConjL) :-
364 functor(Binary, Functor, 2),
365 (Functor = conjunct; Functor = disjunct; Functor = implication; Functor = equivalence),
366 !,
367 arg(1, Binary, Arg1),
368 arg(2, Binary, Arg2),
369 optimize_clause_size_by_rewriting(Arg1, SatVars, NArg1, SatVars1, NewVarConjL1),
370 optimize_clause_size_by_rewriting(Arg2, SatVars1, NArg2, NewSatVars, NewVarConjL2),
371 functor(NBinary, Functor, 2),
372 arg(1, NBinary, NArg1),
373 arg(2, NBinary, NArg2),
374 append(NewVarConjL1, NewVarConjL2, NewVarConjL).
375 optimize_clause_size_by_rewriting_expr(Expr, SatVars, Expr, SatVars, []).
376
377 %% preprocess_predicate(+PerformStaticAnalysis, +RewriteToIdl, +Pred, -LiftedPred, -FilteredCandidateImplsConj, -CandidateImpls).
378 preprocess_predicate(PerformStaticAnalysis, RewriteToIdl, Pred, LiftedPred, FilteredCandidateImplsConj, CandidateImpls) :-
379 empty_candidate_impls_acc(CandidateAcc),
380 lift_negations_find_impls(Pred, RewriteToIdl, CandidateAcc, TLiftedPred, CandidateImpls), !,
381 LiftedPred = TLiftedPred,
382 ( PerformStaticAnalysis = true
383 -> process_candidate_impls(CandidateImpls, FilteredCandidateImplsConj)
384 ; FilteredCandidateImplsConj = b(truth,pred,[])
385 ).
386
387 %% process_candidate_impls(+CandidateImpls, -FilteredCandidateImplsConj).
388 % Given a candidate like x>y, get partner candidates like y<x, y=<x and x=y.
389 % Filter those partner candidates that exist in the given formula (prevent introducing redundant SAT variables)
390 % and create the implication, e.g., x>y => (not(y<x) & not(y=<x) & not(x=y)).
391 process_candidate_impls(CandidateImpls, FilteredCandidateImplsConj) :-
392 CandidateImpls = candidate_impls(global(Global),integer(Integer),integer_ground(IntegerGrnd),set(Set),set_ground(SetGrnd)),
393 process_candidate_impls_list(true, Global, GlobalImplsConj),
394 process_candidate_impls_list(false, Integer, IntImplsConj),
395 process_candidate_impls_list(false, IntegerGrnd, IntGrndImplsConj),
396 process_candidate_impls_list(false, Set, SetImplsConj),
397 process_candidate_impls_list(false, SetGrnd, SetGrndImplsConj),
398 conjunct_predicates([GlobalImplsConj,IntImplsConj,IntGrndImplsConj,SetImplsConj,SetGrndImplsConj], FilteredCandidateImplsConj).
399
400 process_candidate_impls_list(IsGlobalType, GrndCandidateImpls, ImplsConj) :-
401 process_candidate_impls_list(IsGlobalType, GrndCandidateImpls, [], Impls),
402 conjunct_predicates(Impls, ImplsConj).
403
404 process_candidate_impls_list(_, [], Acc, ImplsConj) :- !, ImplsConj=Acc.
405 process_candidate_impls_list(IsGlobalType, [GrndCandidateImpl|T], Acc, ImplsConj) :-
406 ( is_true(IsGlobalType)
407 -> get_global_type_partner_candidates(GrndCandidateImpl, T, Partners, _RestT)
408 ; get_partner_candidates(GrndCandidateImpl, T, Partners, _RestT)
409 ),
410 Partners \== [],
411 !,
412 build_implications_from_ground_candidates(GrndCandidateImpl, Partners, PartialImplsConj),
413 process_candidate_impls_list(IsGlobalType, T, [PartialImplsConj|Acc], ImplsConj).
414 process_candidate_impls_list(IsGlobalType, [_|T], Acc, ImplsConj) :-
415 process_candidate_impls_list(IsGlobalType, T, Acc, ImplsConj).
416
417 %% build_implications_from_ground_candidates(+GrndCandidateImpl, +Partners, -PartialImplsConj).
418 % Given GrndCandidateImpl and some matching partner candidates, collect proven implications:
419 % p in Partners, add one of 'GrndCandidateImpl => p', 'p => GrndCandidateImpl' or nothing
420 build_implications_from_ground_candidates(GrndCandidateImpl, Partners, PartialImplsConj) :-
421 build_implications_from_ground_candidates(GrndCandidateImpl, Partners, [], PartialImplsConj).
422 % TO DO: improve, sometimes too much overhead
423 %build_conj_implications_from_ground_candidates(GrndCandidateImpl, Partners, Partners, [], PartialImplsConj2),
424 %conjunct_predicates([PartialImplsConj1,PartialImplsConj2], PartialImplsConj).
425
426 %build_conj_implications_from_ground_candidates(_, [], _, Acc, PartialImplsConj) :-
427 % conjunct_predicates(Acc, PartialImplsConj).
428 %build_conj_implications_from_ground_candidates(GrndCandidateImpl, [Partner|T], Partners, Acc, PartialImplsConj) :-
429 % select(Partner, Partners, Rest),
430 % NegConj = b(disjunct(b(negation(GrndCandidateImpl),pred,[]),b(negation(Partner),pred,[])),pred,[]),
431 % remove_zero_var(NegConj, NegConjNoZero),
432 % build_conj_implications_from_ground_conj(NegConj, NegConjNoZero, Rest, Acc, NewAcc),
433 % build_conj_implications_from_ground_candidates(GrndCandidateImpl, T, Partners, NewAcc, PartialImplsConj).
434 %
435 %build_conj_implications_from_ground_conj(_, _, [], Acc, Acc).
436 %build_conj_implications_from_ground_conj(NegConj, NegConjNoZero, [Partner|T], Acc, Impls) :-
437 % remove_zero_var(Partner, PartnerNoZero),
438 % Impl1 = b(disjunct(NegConj,Partner),pred,[]),
439 % Impl1NoZero = b(disjunct(NegConjNoZero,PartnerNoZero),pred,[]),
440 % Impl2 = b(disjunct(NegConj,b(negation(Partner),pred,[])),pred,[]),
441 % Impl2NoZero = b(disjunct(NegConjNoZero,b(negation(PartnerNoZero),pred,[])),pred,[]),
442 % ( %nl,write('Try Impl1: '), nl, translate:print_bexpr(Impl1NoZero), nl,
443 % prove_sequent(Impl1NoZero)%, write('True'),nl
444 % -> NewAcc = [Impl1|Acc]
445 % ; %nl,write('Try Impl2: '), nl, translate:print_bexpr(Impl2NoZero), nl,
446 % ( prove_sequent(Impl2NoZero),%, write('True'),nl,
447 % NewAcc = [Impl2|Acc]
448 % ; NewAcc = Acc
449 % )
450 % ),
451 % build_conj_implications_from_ground_conj(NegConj, NegConjNoZero, T, NewAcc, Impls).
452
453 /*
454 prove_with_prob(Constraint) :-
455 find_typed_identifier_uses(Constraint, [], TypedIds),
456 translate:generate_typing_predicates(TypedIds, TypingPreds),
457 conjunct_predicates(TypingPreds, TypingPred),
458 Forall = b(forall(TypedIds,TypingPred,Constraint),pred,[]),
459 solver_interface:solve_predicate(Forall, _, Res),
460 Res == solution([]).
461 */
462
463 build_implications_from_ground_candidates(_, [], Acc, PartialImplsConj) :-
464 conjunct_predicates(Acc, PartialImplsConj).
465 build_implications_from_ground_candidates(GrndCandidateImpl, [Partner|T], Acc, PartialImplsConj) :-
466 safe_create_texpr(negation(GrndCandidateImpl), pred, [], NegGrndCandidateImpl),
467 safe_create_texpr(negation(Partner), pred, [], NegPartner),
468 % possibly remove zero var from idl solver
469 safe_create_texpr(disjunct(NegGrndCandidateImpl,Partner), pred, [], Impl1),
470 remove_zero_var(Impl1, Impl1NoZero),
471 safe_create_texpr(disjunct(NegPartner,GrndCandidateImpl), pred, [], Impl2),
472 remove_zero_var(Impl2, Impl2NoZero),
473 safe_create_texpr(disjunct(NegGrndCandidateImpl,b(negation(Partner),pred,[])), pred, [], Impl3),
474 remove_zero_var(Impl3, Impl3NoZero),
475 safe_create_texpr(disjunct(NegPartner,b(negation(GrndCandidateImpl),pred,[])), pred, [], Impl4),
476 remove_zero_var(Impl4, Impl4NoZero),
477 ( %nl,write('Try Impl1: '), nl, translate:print_bexpr(Impl1NoZero), nl,
478 prove_sequent(Impl1NoZero)% write('True'),nl
479 -> NewAcc = [Impl1|Acc]
480 ; %nl,write('Try Impl2: '), nl, translate:print_bexpr(Impl2NoZero), nl,
481 prove_sequent(Impl2NoZero)% write('True'),nl
482 -> NewAcc = [Impl2|Acc]
483 ; %nl,write('Try Impl3: '), nl, translate:print_bexpr(Impl3NoZero), nl,
484 prove_sequent(Impl3NoZero)% write('True'),nl
485 -> NewAcc = [Impl3|Acc]
486 ; %nl,write('Try Impl4: '), nl, translate:print_bexpr(Impl4NoZero), nl,
487 prove_sequent(Impl4NoZero)% write('True'),nl
488 -> NewAcc = [Impl4|Acc]
489 ; NewAcc = Acc
490 ),
491 build_implications_from_ground_candidates(GrndCandidateImpl, T, NewAcc, PartialImplsConj).
492
493 %create_var_bindings([], []).
494 %create_var_bindings([Id|T], [bind(Id,_)|NT]) :-
495 % create_var_bindings(T, NT).
496 %
497 %get_var_bindings_for_ast(Ast, Bindings) :-
498 % find_identifier_uses(Ast, [], Ids),
499 % create_var_bindings(Ids, Bindings).
500
501 uses_exactly_same_ids(A, UsedIds) :-
502 find_identifier_uses(A, [], UsedA),
503 sets:subset(UsedA, UsedIds),
504 sets:subset(UsedIds, UsedA), !.
505
506 uses_same_id(A, UsedIds) :-
507 find_identifier_uses(A, [], UsedA),
508 sets:intersection(UsedA, UsedIds, Inter),
509 Inter \== [].
510
511 %% get_partner_candidates(+Id, +Rest, -Partners, -RestRest).
512 % ASTs in Rest have the same type.
513 % idea: given, e.g., 1<x: search for all comparisons between x and a ground value like 0<x, x<10 etc.
514 % afterwards, evaluate the constraints and try to build implications like 1<x => 0<x
515 get_partner_candidates(GrndCandidateImpl, Rest, Partners, RestRest) :-
516 find_identifier_uses(GrndCandidateImpl, [], UsedIds),
517 get_partner_candidates(UsedIds, Rest, [], Partners, [], RestRest),!.
518
519 get_partner_candidates(_, [], PartnersAcc, PartnersAcc, RestAcc, RestAcc).
520 get_partner_candidates(UsedIds, Rest, PartnersAcc, Partners, RestAcc, RestRest) :-
521 select(Partner, Rest, TRest),
522 ( uses_exactly_same_ids(Partner, UsedIds)
523 -> NPartnersAcc = [Partner|PartnersAcc],
524 NRestAcc = RestAcc
525 ; NPartnersAcc = PartnersAcc,
526 NRestAcc = [Partner|RestAcc]
527 ),
528 !,
529 get_partner_candidates(UsedIds, TRest, NPartnersAcc, Partners, NRestAcc, RestRest).
530
531 get_global_type_partner_candidates(GrndCandidateImpl, Rest, Partners, RestRest) :-
532 find_identifier_uses(GrndCandidateImpl, [], UsedIds),
533 get_global_type_partner_candidates(UsedIds, Rest, [], Partners, [], RestRest),!.
534
535 get_global_type_partner_candidates(_, [], PartnersAcc, PartnersAcc, RestAcc, RestAcc).
536 get_global_type_partner_candidates(UsedIds, Rest, PartnersAcc, Partners, RestAcc, RestRest) :-
537 select(Partner, Rest, TRest),
538 ( uses_same_id(Partner, UsedIds)
539 -> NPartnersAcc = [Partner|PartnersAcc],
540 NRestAcc = RestAcc
541 ; NPartnersAcc = PartnersAcc,
542 NRestAcc = [Partner|RestAcc]
543 ),
544 !,
545 get_global_type_partner_candidates(UsedIds, TRest, NPartnersAcc, Partners, NRestAcc, RestRest).
546
547 candidate_impl_binary_operator(equal, global).
548 candidate_impl_binary_operator(member, global).
549 candidate_impl_binary_operator(equal, integer).
550 candidate_impl_binary_operator(member, integer).
551 candidate_impl_binary_operator(equal, set).
552 candidate_impl_binary_operator(less, integer).
553 candidate_impl_binary_operator(less_equal, integer).
554 candidate_impl_binary_operator(greater, integer).
555 candidate_impl_binary_operator(greater_equal, integer).
556 candidate_impl_binary_operator(member, set).
557 candidate_impl_binary_operator(subset, set).
558 candidate_impl_binary_operator(subset_strict, set).
559
560 %% extend_candidate_impls_acc(+Type, +Functor, +Arg1, +Arg2, +Ast, +CandidateAcc, -NewCandidateAcc) :-
561 % Collect ASTs with functor in candidate_impl_binary_operator/2 and both arguments being
562 % an identifier or ground value.
563 extend_candidate_impls_acc(Type, Functor, Arg1, Arg2, Ast, CandidateAcc, NewCandidateAcc) :-
564 Type == pred,
565 Arg1 = b(_,AType,_),
566 functor(AType, FType, _),
567 candidate_impl_binary_operator(Functor, FType),
568 ( (ground_bexpr(Arg1),
569 is_id_or_pred_containing_id(Arg2))
570 ;
571 (ground_bexpr(Arg2),
572 is_id_or_pred_containing_id(Arg1))
573 ),
574 remove_all_infos(Ast, AstClean),
575 ast_not_in_candidate_acc(ground, FType, AstClean, CandidateAcc),
576 !,
577 extend_candidate_impls_acc_safe_ground(FType, CandidateAcc, Ast, NewCandidateAcc).
578 extend_candidate_impls_acc(Type, Functor, Arg1, Arg2, Ast, CandidateAcc, NewCandidateAcc) :-
579 Type == pred,
580 Arg1 = b(_,AType,_),
581 functor(AType, FType, _),
582 candidate_impl_binary_operator(Functor, FType),
583 is_id_or_pred_containing_id(Arg1),
584 is_id_or_pred_containing_id(Arg2),
585 remove_all_infos(Ast, AstClean),
586 ast_not_in_candidate_acc(var, FType, AstClean, CandidateAcc),
587 !,
588 extend_candidate_impls_acc_safe(FType, CandidateAcc, Ast, NewCandidateAcc).
589 extend_candidate_impls_acc(_, _, _, _, _, CandidateAcc, CandidateAcc).
590
591 is_identifier(identifier(_)).
592
593 is_id_or_pred_containing_id(TExpr) :-
594 get_texpr_expr(TExpr, Expr),
595 functor(Expr, Functor, _),
596 % no ASTs with local identifiers
597 \+ member(Functor, [forall,exists,comprehension_set,lambda,general_sum,general_product,event_b_comprehension_set,quantified_union,quantified_intersection]),
598 map_over_bexpr(is_identifier, TExpr).
599
600 %% ast_not_in_candidate_acc(+VarOrGround, +Type, +AstClean, +CandidateAcc).
601 ast_not_in_candidate_acc(var, global, AstClean, candidate_impls(global(Global),integer(_),integer_ground(_),set(_),set_ground(_))) :-
602 \+ member(AstClean, Global).
603 ast_not_in_candidate_acc(var, integer, AstClean, candidate_impls(global(_),integer(Integer),integer_ground(_),set(_),set_ground(_))) :-
604 \+ member(AstClean, Integer).
605 ast_not_in_candidate_acc(ground, integer, AstClean, candidate_impls(global(_),integer(_),integer_ground(IntegerGrnd),set(_),set_ground(_))) :-
606 \+ member(AstClean, IntegerGrnd).
607 ast_not_in_candidate_acc(var, set, AstClean, candidate_impls(global(_),integer(_),integer_ground(_),set(Set),set_ground(_))) :-
608 \+ member(AstClean, Set).
609 ast_not_in_candidate_acc(ground, set, AstClean, candidate_impls(global(_),integer(_),integer_ground(_),set(_),set_ground(SetGrnd))) :-
610 \+ member(AstClean, SetGrnd).
611
612 % TO DO: use get_sorted_equality/3 for equalities
613 extend_candidate_impls_acc_safe_ground(integer, candidate_impls(global(Global),integer(Integer),integer_ground(IntegerGrnd),set(Set),set_ground(SetGrnd)), Ast, candidate_impls(global(Global),integer(Integer),integer_ground([Ast|IntegerGrnd]),set(Set),set_ground(SetGrnd))).
614 extend_candidate_impls_acc_safe_ground(set, candidate_impls(global(Global),integer(Integer),integer_ground(IntegerGrnd),set(Set),set_ground(SetGrnd)), Ast, candidate_impls(global(Global),integer(Integer),integer_ground(IntegerGrnd),set(Set),set_ground([Ast|SetGrnd]))).
615
616 extend_candidate_impls_acc_safe(global, candidate_impls(global(Global),integer(Integer),integer_ground(IntegerGrnd),set(Set),set_ground(SetGrnd)), Ast, candidate_impls(global([Ast|Global]),integer(Integer),integer_ground(IntegerGrnd),set(Set),set_ground(SetGrnd))).
617 extend_candidate_impls_acc_safe(integer, candidate_impls(global(Global),integer(Integer),integer_ground(IntegerGrnd),set(Set),set_ground(SetGrnd)), Ast, candidate_impls(global(Global),integer([Ast|Integer]),integer_ground(IntegerGrnd),set(Set),set_ground(SetGrnd))).
618 extend_candidate_impls_acc_safe(set, candidate_impls(global(Global),integer(Integer),integer_ground(IntegerGrnd),set(Set),set_ground(SetGrnd)), Ast, candidate_impls(global(Global),integer(Integer),integer_ground(IntegerGrnd),set([Ast|Set]),set_ground(SetGrnd))).
619
620 empty_candidate_impls_acc(candidate_impls(global([]),integer([]),integer_ground([]),set([]),set_ground([]))).
621
622 %% lift_negations_find_impls(+Pred, +RewriteToIdl, +CandidateAcc, -LPred, -CandidateImpls).
623 lift_negations_find_impls(Pred, RewriteToIdl, CandidateAcc, LPred, CandidateImpls) :-
624 Pred = b(Expr,Type,Info),
625 !,
626 lift_negations_find_impls_e(Expr, Type, Info, RewriteToIdl, CandidateAcc, LExpr, CandidateImpls),
627 safe_create_texpr(LExpr, Type, Info, LPred).
628 lift_negations_find_impls(Pred, _, CandidateAcc, Pred, CandidateAcc).
629
630 %% lift_negations_find_impls_e(+Expr, +Type, +RewriteToIdl, +CandidateAcc, -LExpr, -CandidateImpls).
631 % Unfold negated operators like not_equal to detect equal ASTs when introducing
632 % boolean variables for the SAT formula. For instance, it improves performance
633 % to transform 'x={} & x/={}' to 'x={} & not(x={})' first, since we can then translate to
634 % 'A & not(A)' in SAT rather than 'A & B'.
635 % Collect specific operators that might imply each other like 'x>0' and 'x>1' result to 'x>1 => x>0' (see candidate_impl_binary_operator/2).
636 % Note: only binary operators are checked recursively since we transform SMT to SAT on the level of conjunct, disjunct and implication
637 % Note: CandidateImpls contains true asts of lifted predicates, e.g., 'x:{1,2}' is stored for 'x/:{1,2}'
638 lift_negations_find_impls_e(Expr, _, _, _, _, _, _) :- var(Expr),!,
639 add_internal_error('Illegal var B AST: ',lift_negations_find_impls_e(Expr, _, _, _, _, _, _)),fail.
640 lift_negations_find_impls_e(Expr, _, _, _, CandidateAcc, LPred, CandidateImpls) :-
641 % important to use the same SAT variables, e.g., for x=TRUE & x=FALSE
642 (Expr = equal(Bool,BoolId) ; Expr = equal(BoolId,Bool)),
643 BoolId = b(identifier(_),boolean,_),
644 is_boolean_true(Bool),
645 !,
646 LPred = negation(b(equal(b(boolean_false,boolean,[]),BoolId),pred,[])),
647 CandidateImpls = CandidateAcc.
648 lift_negations_find_impls_e(Expr, _, Info, RewriteToIdl, CandidateAcc, LPred, CandidateImpls) :-
649 Expr = equivalence(Lhs,Rhs),
650 !,
651 create_implication(Lhs,Rhs,Impl1),
652 create_implication(Rhs,Lhs,Impl2),
653 Rewritten = conjunct(Impl1,Impl2),
654 /*Disj1 = b(conjunct(Lhs,Rhs),pred,[]),
655 Disj2 = b(conjunct(b(negation(Lhs),pred,[]),b(negation(Rhs),pred,[])),pred,[]),
656 Rewritten = b(disjunct(Disj1,Disj2),pred,[]),*/
657 lift_negations_find_impls_e(Rewritten, pred, Info, RewriteToIdl, CandidateAcc, LPred, CandidateImpls).
658 lift_negations_find_impls_e(Expr, _, Info, RewriteToIdl, CandidateAcc, LExpr, CandidateImpls) :-
659 Expr = implication(Lhs,Rhs),
660 !,
661 create_negation(Lhs,NLhs),
662 Rewritten = disjunct(NLhs,Rhs),
663 lift_negations_find_impls_e(Rewritten, pred, Info, RewriteToIdl, CandidateAcc, LExpr, CandidateImpls).
664 lift_negations_find_impls_e(Expr, _, Info, RewriteToIdl, CandidateAcc, LExpr, CandidateImpls) :-
665 Expr = negation(b(negation(Pos),pred,_)),
666 get_texpr_expr(Pos, PosExpr),
667 get_texpr_type(Pos, PosType),
668 !,
669 lift_negations_find_impls_e(PosExpr, PosType, Info, RewriteToIdl, CandidateAcc, LExpr, CandidateImpls).
670 lift_negations_find_impls_e(Expr, _, _, _, CandidateAcc, LExpr, CandidateImpls) :-
671 Expr = negation(b(truth,pred,_)),
672 !,
673 LExpr = falsity,
674 CandidateImpls = CandidateAcc.
675 lift_negations_find_impls_e(Expr, _, _, _, CandidateAcc, LExpr, CandidateImpls) :-
676 Expr = negation(b(falsity,pred,_)),
677 !,
678 LExpr = truth,
679 CandidateImpls = CandidateAcc.
680 lift_negations_find_impls_e(Inequality, _, _, RewriteToIdl, CandidateAcc, LExpr, CandidateImpls) :-
681 is_true(RewriteToIdl),
682 ( Inequality = not_equal(b(_,integer,_),_)
683 %IEQ = Inequality
684 ; Inequality = negation(b(equal(b(_,integer,_),_),pred,_))
685 %IEQ = b(not_equal(Arg1,Arg2),pred,EQInfo)
686 ),
687 rewrite_inequality_to_idl_disj_no_zero(b(Inequality,pred,[]), DLConstraint),
688 !,
689 DLConstraint = b(disjunct(TLhs,TRhs),pred,_),
690 remove_idl_origin_from_info(TLhs, Lhs),
691 remove_idl_origin_from_info(TRhs, Rhs),
692 Lhs = b(negation(LhsPos),_,_),
693 Rhs = b(negation(RhsPos),_,_),
694 LhsPos = b(less_equal(LArg1,LArg2),pred,_),
695 RhsPos = b(less_equal(RArg1,RArg2),pred,_),
696 disjunct_two_preds(Lhs, Rhs, LExpr),
697 %extend_candidate_impls_acc(pred, not_equal, Arg1, Arg2, IEQ, CandidateAcc, CandidateAcc1),
698 extend_candidate_impls_acc(pred, less_equal, LArg1, LArg2, LhsPos, CandidateAcc, CandidateAcc1),
699 extend_candidate_impls_acc(pred, less_equal, RArg1, RArg2, RhsPos, CandidateAcc1, CandidateImpls).
700 lift_negations_find_impls_e(Equality, _, _, RewriteToIdl, CandidateAcc, LPred, CandidateImpls) :-
701 is_true(RewriteToIdl),
702 ( Equality = equal(b(_,integer,_),_)
703 %EQ = Equality
704 ; Equality = negation(b(not_equal(b(_,integer,_),_),pred,_))
705 %EQ = b(equal(Arg1,Arg2),pred,EQInfo)
706 ),
707 rewrite_to_idl_no_zero(b(Equality,pred,[]), ConjList),
708 !,
709 ConjList = [TLhs,TRhs],
710 % don't create _zero var from idl solver in SAT formula
711 remove_idl_origin_from_info(TLhs, Lhs),
712 remove_idl_origin_from_info(TRhs, Rhs),
713 Lhs = b(less_equal(LArg1,LArg2),pred,_),
714 Rhs = b(less_equal(RArg1,RArg2),pred,_),
715 conjunct_two_preds(Lhs, Rhs, LPred),
716 extend_candidate_impls_acc(pred, less_equal, LArg1, LArg2, Lhs, CandidateAcc, CandidateAcc1),
717 extend_candidate_impls_acc(pred, less_equal, RArg1, RArg2, Rhs, CandidateAcc1, CandidateImpls).
718 lift_negations_find_impls_e(Expr, Type, Info, _, CandidateAcc, LExpr, CandidateImpls) :-
719 negated_b_operator(Expr, TrueNode),
720 % don't lift negations for predicates with a WD condition, e.g., x:INT & min(p)/=x
721 % otherwise, this would be transformed to x:INT & not(not(p = {}) & min(p) = x) allowing p={}
722 empty_hyps(Hyps),
723 \+ compute_wd(b(Expr,Type,Info), Hyps, [discharge_po,skip_finite_po], _),
724 !,
725 safe_create_texpr(TrueNode,Type,[],TrueAst),
726 TrueNode =.. [NFunctor, Arg1, Arg2],
727 extend_candidate_impls_acc(Type, NFunctor, Arg1, Arg2, TrueAst, CandidateAcc, CandidateImpls),
728 LExpr = negation(TrueAst).
729 % simplify negated conjunction or disjunction possibly introduced by rewriting equivalence and implication
730 lift_negations_find_impls_e(Expr, _, Info, RewriteToIdl, CandidateAcc, LExpr, CandidateImpls) :-
731 Expr = negation(Arg),
732 Arg = b(conjunct(Conj1,Conj2),pred,_),
733 !,
734 create_negation(Conj1,NConj1),
735 create_negation(Conj2,NConj2),
736 disjunct_two_preds(NConj1,NConj2,Rewritten),
737 lift_negations_find_impls_e(Rewritten, pred, Info, RewriteToIdl, CandidateAcc, LExpr, CandidateImpls).
738 lift_negations_find_impls_e(Expr, _, Info, RewriteToIdl, CandidateAcc, LExpr, CandidateImpls) :-
739 Expr = negation(Arg),
740 Arg = b(disjunct(Conj1,Conj2),pred,_),
741 !,
742 create_negation(Conj1,NConj1),
743 create_negation(Conj2,NConj2),
744 Rewritten = conjunct(NConj1,NConj2),
745 lift_negations_find_impls_e(Rewritten, pred, Info, RewriteToIdl, CandidateAcc, LExpr, CandidateImpls).
746 lift_negations_find_impls_e(Expr, pred, _Info, RewriteToIdl, CandidateAcc, LExpr, CandidateImpls) :-
747 Expr = negation(Arg),
748 Arg = b(ArgExpr,ArgType,ArgInfo),
749 lift_negations_find_impls_e(ArgExpr, ArgType, ArgInfo, RewriteToIdl, CandidateAcc, LArgExpr, CandidateImpls),
750 safe_create_texpr(LArgExpr,pred,ArgInfo,TLA),
751 create_negation(TLA,b(LExpr,_,_)).
752 lift_negations_find_impls_e(Expr, pred, Info, RewriteToIdl, CandidateAcc, LExpr, CandidateImpls) :-
753 functor(Expr, Functor, _),
754 Names = [], % quantifications (comprehension_set, exists) will be abstracted by a single SAT variable
755 syntaxtransformation(Expr,[Arg1,Arg2],Names,[LLhs,LRhs],TLExpr),
756 !,
757 LExpr = TLExpr,
758 extend_candidate_impls_acc(pred, Functor, Arg1, Arg2, b(Expr,pred,Info), CandidateAcc, CandidateAcc1),
759 lift_negations_find_impls(Arg1, RewriteToIdl, CandidateAcc1, LLhs, CandidateAcc2),
760 lift_negations_find_impls(Arg2, RewriteToIdl, CandidateAcc2, LRhs, CandidateImpls).
761 lift_negations_find_impls_e(Expr, _, _, _, CandidateAcc, Expr, CandidateAcc).
762
763 is_true(X) :-
764 ( X == true
765 -> true
766 ; X == false
767 -> fail
768 ; add_internal_error('Illegal call:',is_true(X)),
769 fail
770 ).
771
772 %get_sorted_equality(Lhs, Rhs, Equality) :-
773 % Lhs @> Rhs,
774 % !,
775 % safe_create_texpr(equal(Rhs,Lhs), pred, [], Equality).
776 %get_sorted_equality(Lhs, Rhs, b(equal(Lhs,Rhs),pred,[])).
777
778 %binary_connective(conjunct).
779 %binary_connective(disjunct).
780 %binary_connective(implication).
781 %binary_connective(equivalence).
782
783 negated_b_operator(not_equal(A,B), equal(A,B)).
784 negated_b_operator(not_member(A,B), member(A,B)).
785 negated_b_operator(not_subset(A,B), subset(A,B)).
786 negated_b_operator(not_subset_strict(A,B), subset_strict(A,B)).
787
788 negate_bool_formula(b(negation(b(truth,pred,Info)),pred,_), b(falsity,pred,Info)).
789 negate_bool_formula(b(negation(b(falsity,pred,Info)),pred,_), b(truth,pred,Info)).
790 negate_bool_formula(b(negation(b(negation(Ast))),pred,_), NAst) :-
791 !,
792 negate_bool_formula(Ast, NAst).
793 negate_bool_formula(b(negation(Eq),pred,_), b(equal(Id,Negated),pred,EqInfo)) :-
794 ( Eq = b(equal(Bool,Id),pred,EqInfo)
795 ; Eq = b(equal(Id,Bool),pred,EqInfo)
796 ),
797 Bool = b(Expr,boolean,BoolInfo),
798 negate_bool_expr(Expr, NExpr),
799 safe_create_texpr(NExpr, boolean, BoolInfo, Negated),
800 Id = b(identifier(_),_,_).
801 negate_bool_formula(b(negation(b(conjunct(A,B),pred,I)),pred,_), New) :-
802 negate_bool_formula(b(negation(A),pred,[]), NewA),
803 negate_bool_formula(b(negation(B),pred,[]), NewB),
804 safe_create_texpr(disjunct(NewA,NewB), pred, I, New).
805 negate_bool_formula(b(negation(b(disjunct(A,B),pred,I)),pred,_), New) :-
806 negate_bool_formula(b(negation(A),pred,[]), NewA),
807 negate_bool_formula(b(negation(B),pred,[]), NewB),
808 safe_create_texpr(conjunct(NewA,NewB), pred, I, New).
809
810 %%%%%%%%%%%%%%%%%%%%% Unit Tests %%%%%%%%%%%%%%%%%%%%%
811 :- begin_tests(extend_candidate_impls_acc).
812
813 test(extend_candidate_impls_acc_less, [true(NewAcc == candidate_impls(global([]),integer([]),integer_ground([b(less(b(identifier(x),integer,[]),b(integer(7),integer,[])),pred,[])]),set([]),set_ground([])))]) :-
814 empty_candidate_impls_acc(EmptyAcc),
815 Arg1 = b(identifier(x),integer,[]),
816 Arg2 = b(integer(7),integer,[]),
817 Ast = b(less(Arg1,Arg2),pred,[]),
818 extend_candidate_impls_acc(pred, less, Arg1, Arg2, Ast, EmptyAcc, NewAcc).
819
820 test(extend_candidate_impls_acc_less_non_ground, [true(NewAcc == candidate_impls(global([]),integer([]),integer_ground([]),set([]),set_ground([])))]) :-
821 empty_candidate_impls_acc(EmptyAcc),
822 Arg1 = b(identifier(x),set(set(integer)),[]),
823 Arg2 = b(set_extension([_]),set(set(integer)),[]),
824 Ast = b(less(Arg1,Arg2),pred,[]),
825 extend_candidate_impls_acc(pred, less, Arg1, Arg2, Ast, EmptyAcc, NewAcc).
826
827 test(extend_candidate_impls_acc_less_no_identifier, [true(NewAcc == candidate_impls(global([]),integer([]),integer_ground([]),set([]),set_ground([])))]) :-
828 empty_candidate_impls_acc(EmptyAcc),
829 Arg1 = b(comprehension_set([b(identifier(x),integer,[])],b(member(b(identifier(x),integer,[]), b(set_extension([b(integer(234),integer,[]),b(integer(34),integer,[])]),set(integer),[])),pred,[])),set(integer),[some,info]),
830 Arg2 = b(set_extension([b(set_extension([b(integer(27),integer,[])]),set(integer),[])]),set(set(integer)),[]),
831 Ast = b(less(Arg1,Arg2),pred,[]),
832 extend_candidate_impls_acc(pred, less, Arg1, Arg2, Ast, EmptyAcc, NewAcc).
833
834 test(extend_candidate_impls_acc_less_eq, [true(NewAcc == candidate_impls(global([]),integer([]),integer_ground([b(less_equal(b(identifier(x),integer,[]),b(integer(7),integer,[])),pred,[])]),set([]),set_ground([])))]) :-
835 empty_candidate_impls_acc(EmptyAcc),
836 Arg1 = b(identifier(x),integer,[]),
837 Arg2 = b(integer(7),integer,[]),
838 Ast = b(less_equal(Arg1,Arg2),pred,[]),
839 extend_candidate_impls_acc(pred, less_equal, Arg1, Arg2, Ast, EmptyAcc, NewAcc).
840
841 test(extend_candidate_impls_acc_less_eq_non_ground, [true(NewAcc == candidate_impls(global([]),integer([]),integer_ground([]),set([]),set_ground([])))]) :-
842 empty_candidate_impls_acc(EmptyAcc),
843 Arg1 = b(identifier(x),set(set(integer)),[]),
844 Arg2 = b(set_extension([_]),set(set(integer)),[]),
845 Ast = b(less_equal(Arg1,Arg2),pred,[]),
846 extend_candidate_impls_acc(pred, less_equal, Arg1, Arg2, Ast, EmptyAcc, NewAcc).
847
848 test(extend_candidate_impls_acc_less_eq_no_identifier, [true(NewAcc == candidate_impls(global([]),integer([]),integer_ground([]),set([]),set_ground([])))]) :-
849 empty_candidate_impls_acc(EmptyAcc),
850 Arg1 = b(comprehension_set([b(identifier(x),integer,[])],b(member(b(identifier(x),integer,[]), b(set_extension([b(integer(234),integer,[]),b(integer(34),integer,[])]),set(integer),[])),pred,[])),set(integer),[some,info]),
851 Arg2 = b(set_extension([b(set_extension([b(integer(27),integer,[])]),set(integer),[])]),set(set(integer)),[]),
852 Ast = b(less_equal(Arg1,Arg2),pred,[]),
853 extend_candidate_impls_acc(pred, less_equal, Arg1, Arg2, Ast, EmptyAcc, NewAcc).
854
855 test(extend_candidate_impls_acc_subset, [true(NewAcc == candidate_impls(global([]),integer([]),integer_ground([]),set([]),set_ground([b(subset(b(identifier(x),set(set(integer)),[]),b(set_extension([b(set_extension([b(integer(27),integer,[])]),set(integer),[])]),set(set(integer)),[])),pred,[])])))]) :-
856 empty_candidate_impls_acc(EmptyAcc),
857 Arg1 = b(identifier(x),set(set(integer)),[]),
858 Arg2 = b(set_extension([b(set_extension([b(integer(27),integer,[])]),set(integer),[])]),set(set(integer)),[]),
859 Ast = b(subset(Arg1,Arg2),pred,[]),
860 extend_candidate_impls_acc(pred, subset, Arg1, Arg2, Ast, EmptyAcc, NewAcc).
861
862 test(extend_candidate_impls_acc_subset_non_ground, [true(NewAcc == candidate_impls(global([]),integer([]),integer_ground([]),set([]),set_ground([])))]) :-
863 empty_candidate_impls_acc(EmptyAcc),
864 Arg1 = b(identifier(x),set(set(integer)),[]),
865 Arg2 = b(set_extension([_]),set(set(integer)),[]),
866 Ast = b(subset(Arg1,Arg2),pred,[]),
867 extend_candidate_impls_acc(pred, subset, Arg1, Arg2, Ast, EmptyAcc, NewAcc).
868
869 test(extend_candidate_impls_acc_subset_no_identifier, [true(NewAcc == candidate_impls(global([]),integer([]),integer_ground([]),set([]),set_ground([])))]) :-
870 empty_candidate_impls_acc(EmptyAcc),
871 Arg1 = b(comprehension_set([b(identifier(x),integer,[])],b(member(b(identifier(x),integer,[]), b(set_extension([b(integer(234),integer,[]),b(integer(34),integer,[])]),set(integer),[])),pred,[])),set(integer),[some,info]),
872 Arg2 = b(set_extension([b(set_extension([b(integer(27),integer,[])]),set(integer),[])]),set(set(integer)),[]),
873 Ast = b(subset(Arg1,Arg2),pred,[]),
874 extend_candidate_impls_acc(pred, subset, Arg1, Arg2, Ast, EmptyAcc, NewAcc).
875
876 test(extend_candidate_impls_acc_subset_strict, [true(NewAcc == candidate_impls(global([]),integer([]),integer_ground([]),set([]),set_ground([b(subset_strict(b(identifier(x),set(set(integer)),[]),b(set_extension([b(set_extension([b(integer(27),integer,[])]),set(integer),[])]),set(set(integer)),[])),pred,[])])))]) :-
877 empty_candidate_impls_acc(EmptyAcc),
878 Arg1 = b(identifier(x),set(set(integer)),[]),
879 Arg2 = b(set_extension([b(set_extension([b(integer(27),integer,[])]),set(integer),[])]),set(set(integer)),[]),
880 Ast = b(subset_strict(Arg1,Arg2),pred,[]),
881 extend_candidate_impls_acc(pred, subset_strict, Arg1, Arg2, Ast, EmptyAcc, NewAcc).
882
883 test(extend_candidate_impls_acc_subset_strict_non_ground, [true(NewAcc == candidate_impls(global([]),integer([]),integer_ground([]),set([]),set_ground([])))]) :-
884 empty_candidate_impls_acc(EmptyAcc),
885 Arg1 = b(identifier(x),set(set(integer)),[]),
886 Arg2 = b(set_extension([_]),set(set(integer)),[]),
887 Ast = b(subset_strict(Arg1,Arg2),pred,[]),
888 extend_candidate_impls_acc(pred, subset_strict, Arg1, Arg2, Ast, EmptyAcc, NewAcc).
889
890 test(extend_candidate_impls_acc_subset_strict_no_identifier, [true(NewAcc == candidate_impls(global([]),integer([]),integer_ground([]),set([]),set_ground([])))]) :-
891 empty_candidate_impls_acc(EmptyAcc),
892 Arg1 = b(comprehension_set([b(identifier(x),integer,[])],b(member(b(identifier(x),integer,[]), b(set_extension([b(integer(234),integer,[]),b(integer(34),integer,[])]),set(integer),[])),pred,[])),set(integer),[some,info]),
893 Arg2 = b(set_extension([b(set_extension([b(integer(27),integer,[])]),set(integer),[])]),set(set(integer)),[]),
894 Ast = b(subset_strict(Arg1,Arg2),pred,[]),
895 extend_candidate_impls_acc(pred, subset_strict, Arg1, Arg2, Ast, EmptyAcc, NewAcc).
896
897 test(extend_candidate_impls_acc_equal, [true(NewAcc == candidate_impls(global([]),integer([]),integer_ground([]),set([]),set_ground([b(equal(b(identifier(x),set(set(integer)),[]),b(set_extension([b(set_extension([b(integer(27),integer,[])]),set(integer),[])]),set(set(integer)),[])),pred,[])])))]) :-
898 empty_candidate_impls_acc(EmptyAcc),
899 Arg1 = b(identifier(x),set(set(integer)),[]),
900 Arg2 = b(set_extension([b(set_extension([b(integer(27),integer,[])]),set(integer),[])]),set(set(integer)),[]),
901 Ast = b(equal(Arg1,Arg2),pred,[]),
902 extend_candidate_impls_acc(pred, equal, Arg1, Arg2, Ast, EmptyAcc, NewAcc).
903
904 test(extend_candidate_impls_acc_member, [true(NewAcc == candidate_impls(global([]),integer([]),integer_ground([]),set([]),set_ground([b(member(b(identifier(x),set(integer),[]),b(set_extension([b(set_extension([b(integer(27),integer,[])]),set(integer),[])]),set(set(integer)),[])),pred,[])])))]) :-
905 empty_candidate_impls_acc(EmptyAcc),
906 Arg1 = b(identifier(x),set(integer),[]),
907 Arg2 = b(set_extension([b(set_extension([b(integer(27),integer,[])]),set(integer),[])]),set(set(integer)),[]),
908 Ast = b(member(Arg1,Arg2),pred,[]),
909 extend_candidate_impls_acc(pred, member, Arg1, Arg2, Ast, EmptyAcc, NewAcc).
910
911 test(extend_candidate_impls_acc_member_non_ground_type, [true(NewAcc == candidate_impls(global([]),integer([]),integer_ground([]),set([]),set_ground([])))]) :-
912 empty_candidate_impls_acc(EmptyAcc),
913 Arg1 = b(identifier(x),set(integer),[]),
914 Arg2 = b(set_extension([b(set_extension([b(integer(27),integer,[])]),set(integer),[])]),set(set(integer)),[]),
915 Ast = b(member(Arg1,Arg2),pred,[]),
916 extend_candidate_impls_acc(_Type, member, Arg1, Arg2, Ast, EmptyAcc, NewAcc).
917
918 test(extend_candidate_impls_acc_add, [true(NewAcc == candidate_impls(global([]),integer([]),integer_ground([]),set([]),set_ground([])))]) :-
919 empty_candidate_impls_acc(EmptyAcc),
920 Arg1 = b(integer(1),integer,[]),
921 Arg2 = b(integer(1),integer,[]),
922 Ast = b(add(Arg1,Arg2),integer,[]),
923 extend_candidate_impls_acc(integer, add, Arg1, Arg2, Ast, EmptyAcc, NewAcc).
924
925 test(extend_candidate_impls_acc_overwrite, [true(NewAcc == candidate_impls(global([]),integer([]),integer_ground([]),set([]),set_ground([])))]) :-
926 empty_candidate_impls_acc(EmptyAcc),
927 Arg1 = b(set_extension([b(couple(b(integer(1),integer,[]),b(integer(2),integer,[])),couple(integer,integer),[info(o),o])]),set(couple(integer,integer)),[]),
928 Arg2 = b(set_extension([b(couple(b(integer(1),integer,[]),b(integer(2),integer,[])),couple(integer,integer),[ein(e),wei(t,e(re)),info])]),set(couple(integer,integer)),[]),
929 Ast = b(overwrite(Arg1,Arg2),set(couple(integer,integer)),[]),
930 extend_candidate_impls_acc(integer, add, Arg1, Arg2, Ast, EmptyAcc, NewAcc).
931
932 test(extend_candidate_impls_acc_overwrite_non_ground_type, [true(NewAcc == candidate_impls(global([]),integer([]),integer_ground([]),set([]),set_ground([])))]) :-
933 empty_candidate_impls_acc(EmptyAcc),
934 Arg1 = b(set_extension([b(couple(b(integer(1),integer,[]),b(integer(2),integer,[])),couple(integer,integer),[info(o),o])]),set(couple(integer,integer)),[]),
935 Arg2 = b(set_extension([b(couple(b(integer(1),integer,[]),b(integer(2),integer,[])),couple(integer,integer),[ein(e),wei(t,e(re)),info])]),set(couple(integer,integer)),[]),
936 Ast = b(overwrite(Arg1,Arg2),set(couple(integer,integer)),[]),
937 extend_candidate_impls_acc(_Type, add, Arg1, Arg2, Ast, EmptyAcc, NewAcc).
938
939 :- end_tests(extend_candidate_impls_acc).
940