1 | % (c) 2019-2022 Lehrstuhl fuer Softwaretechnik und Programmiersprachen, | |
2 | % Heinrich Heine Universitaet Duesseldorf | |
3 | % This software is licenced under EPL 1.0 (http://www.eclipse.org/org/documents/epl-v10.html) | |
4 | :- module(cdclt_preprocessing, [preprocess_predicate/6, | |
5 | optimize_clause_size_by_rewriting/5, | |
6 | simplify_negation/2, | |
7 | reset_artificial_id_counter/0, | |
8 | remove_subsumed_clauses/2, | |
9 | get_wd_theory_implications/3]). | |
10 | ||
11 | :- use_module(library(sets)). | |
12 | :- use_module(library(lists)). | |
13 | :- use_module(library(plunit)). | |
14 | :- use_module(library(samsort)). | |
15 | :- use_module(library(terms), [term_size/2]). | |
16 | :- use_module(cdclt_solver(cdclt_settings)). | |
17 | :- use_module(cdclt_solver('difference_logic/ast_to_difference_logic')). | |
18 | :- use_module(probsrc(bsyntaxtree), [find_identifier_uses/3, | |
19 | remove_all_infos/2, | |
20 | syntaxtransformation/5, | |
21 | disjunct_predicates/2, | |
22 | conjunct_predicates/2, | |
23 | safe_create_texpr/4, | |
24 | create_negation/2, | |
25 | create_implication/3, | |
26 | get_texpr_expr/2, | |
27 | get_texpr_type/2]). | |
28 | :- use_module(probsrc(bsyntaxtree),[map_over_bexpr/2]). | |
29 | :- use_module(probsrc('well_def/well_def_analyser'), [prove_sequent/1]). | |
30 | :- use_module(probsrc(kernel_tools),[ground_bexpr/1]). | |
31 | :- use_module(probsrc(tools_meta), [safe_time_out/3]). | |
32 | :- use_module(probsrc(error_manager), [add_internal_error/2]). | |
33 | :- use_module(probsrc(module_information), [module_info/2]). | |
34 | :- use_module(wdsrc(well_def_hyps), [empty_hyps/1]). | |
35 | :- use_module(wdsrc(well_def_analyser), [compute_wd/4]). | |
36 | ||
37 | :- module_info(group, cdclt). | |
38 | :- module_info(description,'This module provides several preprocessing steps for the CDCL(T) based solver such as lifting negations from B operators.'). | |
39 | ||
40 | :- dynamic artificial_id_counter/1. | |
41 | ||
42 | clause_size_sort(Clause1, Clause2) :- | |
43 | length(Clause1, L1), | |
44 | length(Clause2, L2), | |
45 | L1 < L2. | |
46 | ||
47 | %% remove_subsumed_clauses(+Clauses, -ReducedClauses). | |
48 | % Remove clauses that are subsumed by another clause. For instance, (A or B) subsumes (A or B or C). | |
49 | remove_subsumed_clauses(Clauses, ReducedClauses) :- | |
50 | \+ preprocessing(subsuming), | |
51 | \+ preprocessing(resolution_subsuming), | |
52 | !, | |
53 | ReducedClauses = Clauses. | |
54 | remove_subsumed_clauses(Clauses, ReducedClauses) :- | |
55 | samsort(clause_size_sort, Clauses, SClauses), | |
56 | safe_time_out(remove_subsumed_clauses_sorted(SClauses, TReducedClauses), | |
57 | 5000, | |
58 | TimeOutRes), | |
59 | ( TimeOutRes == time_out | |
60 | -> ReducedClauses = SClauses | |
61 | ; ReducedClauses = TReducedClauses | |
62 | ). | |
63 | ||
64 | remove_subsumed_clauses_sorted([], []). | |
65 | remove_subsumed_clauses_sorted([Clause|T], Out) :- | |
66 | remove_clauses_subsumed_by(Clause, T, false, RemoveThis, NT), | |
67 | ( RemoveThis == true | |
68 | -> Out = ReducedClauses | |
69 | ; Out = [Clause|ReducedClauses] | |
70 | ), | |
71 | remove_subsumed_clauses_sorted(NT, ReducedClauses). | |
72 | ||
73 | remove_clauses_subsumed_by(_, [], RemoveThis, RemoveThis, []). | |
74 | remove_clauses_subsumed_by(Clause, [Clause2|T], RemoveThisAcc, RemoveThis, NT) :- | |
75 | preprocessing(subsuming), | |
76 | subsumes(Clause, Clause2), | |
77 | !, | |
78 | %format("Remove clause ~w due to clause ~w~n", [Clause2,Clause]), | |
79 | remove_clauses_subsumed_by(Clause, T, RemoveThisAcc, RemoveThis, NT). | |
80 | remove_clauses_subsumed_by(Clause, [Clause2|T], RemoveThisAcc, RemoveThis, Out) :- | |
81 | preprocessing(resolution_subsuming), | |
82 | boolean_resolution(Clause, Clause2, Resolved), | |
83 | subsumes(Resolved, Clause2), | |
84 | !, | |
85 | %format("Resolution of ~n~w and ~n~w ~nresults in ~n~w~n~n", [Clause,Clause2,Resolved]), | |
86 | ( subsumes(Resolved, Clause) | |
87 | -> NRemoveThisAcc = true | |
88 | ; NRemoveThisAcc = RemoveThisAcc | |
89 | ), | |
90 | Out = [Resolved|NT], | |
91 | remove_clauses_subsumed_by(Clause, T, NRemoveThisAcc, RemoveThis, NT). | |
92 | remove_clauses_subsumed_by(Clause, [Clause2|T], RemoveThisAcc, RemoveThis, [Clause2|NT]) :- | |
93 | remove_clauses_subsumed_by(Clause, T, RemoveThisAcc, RemoveThis, NT). | |
94 | ||
95 | subsumes([], _). | |
96 | subsumes([Lit|T], Clause2) :- | |
97 | select(Lit, Clause2, Rest), | |
98 | subsumes(T, Rest). | |
99 | ||
100 | %% boolean_resolution(+Clause1, +Clause2, -Resolved). | |
101 | % Fail if no possible boolean resolution. | |
102 | boolean_resolution(Clause1, Clause2, Resolved) :- | |
103 | boolean_resolution(Clause1, Clause2, false, Changed, TResolved), | |
104 | Changed == true, | |
105 | sort(TResolved, Resolved). | |
106 | ||
107 | boolean_resolution([], Clause2, ChangedAcc, ChangedAcc, Clause2). | |
108 | boolean_resolution([StackInfo-Pol-Var-Name|T], Clause2, _, Changed, Resolved) :- | |
109 | ( Pol == pred_true | |
110 | -> NPol = pred_false | |
111 | ; NPol = pred_true | |
112 | ), | |
113 | select(StackInfo-NPol-Var-Name, Clause2, Rest), | |
114 | !, | |
115 | append(T, Rest, Resolved), | |
116 | Changed = true. | |
117 | boolean_resolution([Lit|T], Clause2, ChangedAcc, Changed, [Lit|Resolved]) :- | |
118 | boolean_resolution(T, Clause2, ChangedAcc, Changed, Resolved). | |
119 | ||
120 | %%% | |
121 | % Theory deduction for well-definedness to support the theory solver. | |
122 | % For instance, deduce x:Dom for arr: Dom --> Ran & x:dom(arr). | |
123 | % TO DO: improve code | |
124 | get_wd_theory_implications(CandidateImpls, WDCandidateImpls, WDTheoryImpls) :- | |
125 | CandidateImpls = candidate_impls(global(Global),integer(Integer),integer_ground(_),set(Set),set_ground(_)), | |
126 | WDCandidateImpls = candidate_impls(global(WDGlobal),integer(WDInteger),integer_ground(_),set(WDSet),set_ground(_)), | |
127 | append(WDInteger, WDSet, WDCandidates), | |
128 | get_wd_theory_implications_for_candidates(Global, WDGlobal, GlobalImpls), | |
129 | get_wd_theory_implications_for_candidates(Integer, WDCandidates, IntegerImpls), | |
130 | get_wd_theory_implications_for_candidates(Set, WDCandidates, SetImpls), | |
131 | conjunct_predicates([GlobalImpls,IntegerImpls,SetImpls], WDTheoryImpls). | |
132 | ||
133 | b_function(total_function(Domain,_), Domain). | |
134 | b_function(total_surjection(Domain,_), Domain). | |
135 | b_function(total_injection(Domain,_), Domain). | |
136 | b_function(total_bijection(Domain,_), Domain). | |
137 | b_function(partial_function(Domain,_), Domain). | |
138 | b_function(partial_surjection(Domain,_), Domain). | |
139 | b_function(partial_injection(Domain,_), Domain). | |
140 | b_function(partial_bijection(Domain,_), Domain). | |
141 | b_function(surjection_relation(Domain,_), Domain). | |
142 | b_function(total_relation(Domain,_), Domain). | |
143 | b_function(relations(Domain,_), Domain). | |
144 | ||
145 | b_function_membership(b(member(Id,Function),pred,_), Id, Domain) :- | |
146 | get_texpr_expr(Function, Expr), | |
147 | b_function(Expr, Domain). | |
148 | ||
149 | get_wd_theory_implications_for_candidates(_, [], Out) :- | |
150 | !, | |
151 | Out = b(truth,pred,[]). | |
152 | get_wd_theory_implications_for_candidates(Candidates, WDCandidates, ImplsConj) :- | |
153 | collect_function_constraints(Candidates, FunctionConstraints), | |
154 | get_wd_theory_implications_of_function_memberships(FunctionConstraints, WDCandidates, Impls), | |
155 | conjunct_predicates(Impls, ImplsConj). | |
156 | ||
157 | get_wd_theory_implications_of_function_memberships([], _, []). | |
158 | get_wd_theory_implications_of_function_memberships([FunMem-Id-Domain|T], WDCandidates, Impls) :- | |
159 | remove_all_infos(Id, CId), | |
160 | memberchk(b(member(DomId,b(domain(CId),DType,DInfo)),pred,MInfo), WDCandidates), | |
161 | !, | |
162 | safe_create_texpr(member(DomId,b(domain(CId),DType,DInfo)), pred, MInfo, DomMember), | |
163 | safe_create_texpr(disjunct(b(disjunct(b(negation(DomMember),pred,[]),b(negation(FunMem),pred,[])),pred,[]),b(member(DomId,Domain),pred,[])), pred, [], Impl), | |
164 | Impls = [Impl|NT], | |
165 | get_wd_theory_implications_of_function_memberships(T, WDCandidates, NT). | |
166 | get_wd_theory_implications_of_function_memberships([_|T], WDCandidates, NT) :- | |
167 | get_wd_theory_implications_of_function_memberships(T, WDCandidates, NT). | |
168 | ||
169 | collect_function_constraints([], []). | |
170 | collect_function_constraints([Candidate|T], FunctionConstraints) :- | |
171 | b_function_membership(Candidate, Id, Domain), | |
172 | !, | |
173 | FunctionConstraints = [Candidate-Id-Domain|NT], | |
174 | collect_function_constraints(T, NT). | |
175 | collect_function_constraints([_|T], NT) :- | |
176 | collect_function_constraints(T, NT). | |
177 | %%% | |
178 | ||
179 | negate_bool_expr(boolean_true, boolean_false). | |
180 | negate_bool_expr(boolean_false, boolean_true). | |
181 | negate_bool_expr(value(pred_true), boolean_false). | |
182 | negate_bool_expr(value(pred_false), boolean_true). | |
183 | ||
184 | is_boolean_true(b(boolean_true,boolean,_)). | |
185 | is_boolean_true(b(value(pred_true),boolean,_)). | |
186 | ||
187 | % convenience predicates: | |
188 | disjunct_two_preds(A,B,Expr) :- | |
189 | disjunct_predicates([A,B],b(Expr,_,_)). | |
190 | conjunct_two_preds(A,B,Expr) :- | |
191 | conjunct_predicates([A,B],b(Expr,_,_)). | |
192 | ||
193 | %% simplify_negation(+Ast, -Simplified). | |
194 | simplify_negation(Ast, Simplified) :- | |
195 | Ast = b(Expr,Type,Info), | |
196 | simplify_negation_e(Expr, SimplifiedExpr), | |
197 | safe_create_texpr(SimplifiedExpr, Type, Info, Simplified). | |
198 | ||
199 | simplify_negation_e(negation(A), SimplifiedExpr) :- | |
200 | A = b(truth,pred,_), | |
201 | !, | |
202 | SimplifiedExpr = falsity. | |
203 | simplify_negation_e(negation(A), SimplifiedExpr) :- | |
204 | A = b(falsity,pred,_), | |
205 | !, | |
206 | SimplifiedExpr = truth. | |
207 | simplify_negation_e(negation(A), SimplifiedExpr) :- | |
208 | A = b(Expr,pred,_), | |
209 | negated_b_operator(Expr, NExpr), | |
210 | !, | |
211 | SimplifiedExpr = NExpr. | |
212 | simplify_negation_e(negation(BoolEq), SimplifiedExpr) :- | |
213 | % important for SAT constraints such as x=TRUE & not(x=TRUE) | |
214 | ( BoolEq = b(equal(Bool,Id),pred,_) | |
215 | ; BoolEq = b(equal(Id,Bool),pred,_) | |
216 | ), | |
217 | Id = b(identifier(_),boolean,_), | |
218 | Bool = b(Expr,boolean,Info), | |
219 | negate_bool_expr(Expr, NExpr), | |
220 | safe_create_texpr(NExpr, boolean, Info, NBool), | |
221 | !, | |
222 | SimplifiedExpr = equal(NBool,Id). | |
223 | simplify_negation_e(negation(Neg), SimplifiedExpr) :- | |
224 | Neg = b(negation(A),pred,_), | |
225 | !, | |
226 | A = b(SimplifiedExpr,_,_). | |
227 | simplify_negation_e(negation(Conj), SimplifiedExpr) :- | |
228 | Conj = b(conjunct(A,B),pred,_), | |
229 | !, | |
230 | simplify_negation(b(negation(A),pred,[]), SimplifiedA), | |
231 | simplify_negation(b(negation(B),pred,[]), SimplifiedB), | |
232 | disjunct_two_preds(SimplifiedA,SimplifiedB,SimplifiedExpr). | |
233 | simplify_negation_e(negation(Disj), SimplifiedExpr) :- | |
234 | Disj = b(disjunct(A,B),pred,_), | |
235 | !, | |
236 | simplify_negation(b(negation(A),pred,[]), SimplifiedA), | |
237 | simplify_negation(b(negation(B),pred,[]), SimplifiedB), | |
238 | conjunct_two_preds(SimplifiedA,SimplifiedB,SimplifiedExpr). | |
239 | simplify_negation_e(negation(Impl), SimplifiedExpr) :- | |
240 | Impl = b(implication(A,B),pred,_), | |
241 | !, | |
242 | simplify_negation_e(conjunct(A,b(negation(B),pred,[])), SimplifiedExpr). | |
243 | simplify_negation_e(negation(Equi), SimplifiedExpr) :- | |
244 | Equi = b(equivalence(A,B),pred,_), | |
245 | !, | |
246 | simplify_negation_e(disjunct(b(negation(b(implication(A,B),pred,[])),pred,[]), | |
247 | b(negation(b(implication(B,A),pred,[])),pred,[])), SimplifiedExpr). | |
248 | simplify_negation_e(Conn, SimplifiedExpr) :- | |
249 | ( Conn = conjunct(A,B) | |
250 | ; Conn = disjunct(A,B) | |
251 | ; Conn = implication(A,B) | |
252 | ; Conn = equivalence(A,B) | |
253 | ), | |
254 | !, | |
255 | simplify_negation(A, SimplifiedA), | |
256 | simplify_negation(B, SimplifiedB), | |
257 | ( Conn = conjunct(A,B) -> | |
258 | SimplifiedExpr = conjunct(SimplifiedA,SimplifiedB) | |
259 | ; Conn = disjunct(A,B) -> | |
260 | SimplifiedExpr = disjunct(SimplifiedA,SimplifiedB) | |
261 | ; Conn = implication(A,B) -> | |
262 | SimplifiedExpr = implication(SimplifiedA,SimplifiedB) | |
263 | ; Conn = equivalence(A,B) -> | |
264 | SimplifiedExpr = equivalence(SimplifiedA,SimplifiedB) | |
265 | ). | |
266 | simplify_negation_e(Expr, Expr). | |
267 | ||
268 | is_literal(b(truth,pred,[])). | |
269 | is_literal(b(falsity,pred,[])). | |
270 | is_literal(b(equal(b(_,boolean,_),b(identifier(_),boolean,_)),pred,[])). | |
271 | is_literal(b(equal(b(identifier(_),boolean,_),b(_,boolean,_)),pred,[])). | |
272 | ||
273 | %% optimize_clause_size_by_rewriting(+BoolFormula, +SatVars, -OptBoolFormula, -NewSatVars, -NewVarConjList). | |
274 | % CNF construction can suffer from exponential blowup in size. | |
275 | % We thus rewrite | |
276 | % - nested equivalences TO DO | |
277 | % - equivalences under disjunctions TO DO | |
278 | % - conjunctions which are directly under a disjunction | |
279 | % Rewriting means to introduce a new boolean variable to break nested distributivity. | |
280 | % For instance, A <-> (B <-> (C <-> D)) is rewritten to A <-> (B <-> R) & R <-> (C <-> D). | |
281 | % A or (B <-> C) is rewritten to A or R & (R <-> (B <-> C)) | |
282 | % (A & B & C) or (B & C & D) is rewritten to (A & B & C) or R & (R <-> (B & C & D)) | |
283 | % Note: Assumes that negation has been pushed to literals. | |
284 | % TO DO: use only "obvious" rewritings and not all | |
285 | optimize_clause_size_by_rewriting(BoolFormula, SatVars, OptBoolFormula, NewSatVars, NewVarConjList) :- | |
286 | BoolFormula = b(Expr,Type,Info), | |
287 | optimize_clause_size_by_rewriting_expr(Expr, SatVars, OptExpr, NewSatVars, NewVarConjList), | |
288 | safe_create_texpr(OptExpr, Type, Info, OptBoolFormula). | |
289 | ||
290 | %% get_larger_conj(+C1, +C2, -Larger, -Other). | |
291 | % Return the conjunction with the larger term size | |
292 | % but at least one conjunction has to be nested. | |
293 | get_larger_conj(C1, C2, Larger, Other) :- | |
294 | C1 = b(conjunct(C1A,C1B),pred,_), | |
295 | C2 \= b(conjunct(_,_),pred,_), | |
296 | ( \+ is_literal(C1A); \+ is_literal(C1B)), | |
297 | !, | |
298 | Larger = C1, | |
299 | Other = C2. | |
300 | get_larger_conj(C1, C2, Larger, Other) :- | |
301 | C2 = b(conjunct(C2A,C2B),pred,_), | |
302 | C1 \= b(conjunct(_,_),pred,_), | |
303 | ( \+ is_literal(C2A); \+ is_literal(C2B)), | |
304 | !, | |
305 | Larger = C2, | |
306 | Other = C1. | |
307 | get_larger_conj(C1, C2, Larger, Other) :- | |
308 | C1 = b(conjunct(C1A,C1B),pred,_), | |
309 | C2 = b(conjunct(C2A,C2B),pred,_), | |
310 | ( \+ is_literal(C1A) | |
311 | ; \+ is_literal(C1B) | |
312 | ; \+ is_literal(C2A) | |
313 | ; \+ is_literal(C2B) | |
314 | ), | |
315 | term_size(C1, S1), | |
316 | term_size(C2, S2), | |
317 | ( S1 > S2 | |
318 | -> Larger = C1, | |
319 | Other = C2 | |
320 | ; Larger = C2, | |
321 | Other = C1 | |
322 | ). | |
323 | ||
324 | artificial_id_counter(0). | |
325 | ||
326 | %% reset_artificial_id_counter. | |
327 | reset_artificial_id_counter :- | |
328 | retractall(artificial_id_counter(_)), | |
329 | asserta(artificial_id_counter(0)). | |
330 | ||
331 | get_next_artificial_id(Ast) :- | |
332 | retract(artificial_id_counter(Id)), | |
333 | number_codes(Id, IdCodes), | |
334 | atom_codes(IdAtom, IdCodes), | |
335 | atom_concat('_cnf_opt', IdAtom, IdName), | |
336 | Ast = b(identifier(IdName),boolean,[]), | |
337 | Id1 is Id + 1, | |
338 | asserta(artificial_id_counter(Id1)). | |
339 | ||
340 | optimize_clause_size_by_rewriting_expr(disjunct(D1,D2), SatVars, OptExpr, NewSatVars, NewVarConjL) :- | |
341 | D1 = b(conjunct(_,_),pred,_), | |
342 | D2 \= b(conjunct(_,_),pred,_), | |
343 | !, | |
344 | optimize_clause_size_by_rewriting_expr(disjunct(D2,D1), SatVars, OptExpr, NewSatVars, NewVarConjL). | |
345 | optimize_clause_size_by_rewriting_expr(disjunct(D1,D2), SatVars, OptExpr, NewSatVars, NewVarConjL) :- | |
346 | get_larger_conj(D1, D2, ToReplace, ToKeep), | |
347 | !, | |
348 | get_next_artificial_id(NewSatVar), | |
349 | optimize_clause_size_by_rewriting(ToReplace, SatVars, NToReplace, SatVars1, NewVarConjL1), | |
350 | safe_create_texpr(equal(NewSatVar,b(boolean_true,boolean,[])), pred, [], NewVarTrue), | |
351 | safe_create_texpr(equal(NewSatVar,b(boolean_false,boolean,[])), pred, [], NewVarFalse), | |
352 | safe_create_texpr(disjunct(NewVarFalse,NToReplace), pred, [], NewVarImpl1), | |
353 | safe_create_texpr(negation(NToReplace), pred, [], ToReplaceNeg), | |
354 | negate_bool_formula(ToReplaceNeg, ToReplaceNegClean), | |
355 | optimize_clause_size_by_rewriting(ToReplaceNegClean, SatVars1, NToReplaceNegClean, SatVars2, NewVarConjL2), | |
356 | safe_create_texpr(disjunct(NewVarTrue,NToReplaceNegClean), pred, [], NewVarImpl2), | |
357 | optimize_clause_size_by_rewriting(ToKeep, SatVars2, NToKeep, SatVars3, NewVarConjL3), | |
358 | OptExpr = disjunct(NToKeep,NewVarTrue), | |
359 | NewSatVars = [NewSatVar|SatVars3], | |
360 | append([NewVarConjL1, NewVarConjL2, NewVarConjL3], TNewVarConjL), | |
361 | safe_create_texpr(conjunct(NewVarImpl1,NewVarImpl2), pred, [], Conj), | |
362 | NewVarConjL = [Conj|TNewVarConjL]. | |
363 | optimize_clause_size_by_rewriting_expr(Binary, SatVars, NBinary, NewSatVars, NewVarConjL) :- | |
364 | functor(Binary, Functor, 2), | |
365 | (Functor = conjunct; Functor = disjunct; Functor = implication; Functor = equivalence), | |
366 | !, | |
367 | arg(1, Binary, Arg1), | |
368 | arg(2, Binary, Arg2), | |
369 | optimize_clause_size_by_rewriting(Arg1, SatVars, NArg1, SatVars1, NewVarConjL1), | |
370 | optimize_clause_size_by_rewriting(Arg2, SatVars1, NArg2, NewSatVars, NewVarConjL2), | |
371 | functor(NBinary, Functor, 2), | |
372 | arg(1, NBinary, NArg1), | |
373 | arg(2, NBinary, NArg2), | |
374 | append(NewVarConjL1, NewVarConjL2, NewVarConjL). | |
375 | optimize_clause_size_by_rewriting_expr(Expr, SatVars, Expr, SatVars, []). | |
376 | ||
377 | %% preprocess_predicate(+PerformStaticAnalysis, +RewriteToIdl, +Pred, -LiftedPred, -FilteredCandidateImplsConj, -CandidateImpls). | |
378 | preprocess_predicate(PerformStaticAnalysis, RewriteToIdl, Pred, LiftedPred, FilteredCandidateImplsConj, CandidateImpls) :- | |
379 | empty_candidate_impls_acc(CandidateAcc), | |
380 | lift_negations_find_impls(Pred, RewriteToIdl, CandidateAcc, TLiftedPred, CandidateImpls), !, | |
381 | LiftedPred = TLiftedPred, | |
382 | ( PerformStaticAnalysis = true | |
383 | -> process_candidate_impls(CandidateImpls, FilteredCandidateImplsConj) | |
384 | ; FilteredCandidateImplsConj = b(truth,pred,[]) | |
385 | ). | |
386 | ||
387 | %% process_candidate_impls(+CandidateImpls, -FilteredCandidateImplsConj). | |
388 | % Given a candidate like x>y, get partner candidates like y<x, y=<x and x=y. | |
389 | % Filter those partner candidates that exist in the given formula (prevent introducing redundant SAT variables) | |
390 | % and create the implication, e.g., x>y => (not(y<x) & not(y=<x) & not(x=y)). | |
391 | process_candidate_impls(CandidateImpls, FilteredCandidateImplsConj) :- | |
392 | CandidateImpls = candidate_impls(global(Global),integer(Integer),integer_ground(IntegerGrnd),set(Set),set_ground(SetGrnd)), | |
393 | process_candidate_impls_list(true, Global, GlobalImplsConj), | |
394 | process_candidate_impls_list(false, Integer, IntImplsConj), | |
395 | process_candidate_impls_list(false, IntegerGrnd, IntGrndImplsConj), | |
396 | process_candidate_impls_list(false, Set, SetImplsConj), | |
397 | process_candidate_impls_list(false, SetGrnd, SetGrndImplsConj), | |
398 | conjunct_predicates([GlobalImplsConj,IntImplsConj,IntGrndImplsConj,SetImplsConj,SetGrndImplsConj], FilteredCandidateImplsConj). | |
399 | ||
400 | process_candidate_impls_list(IsGlobalType, GrndCandidateImpls, ImplsConj) :- | |
401 | process_candidate_impls_list(IsGlobalType, GrndCandidateImpls, [], Impls), | |
402 | conjunct_predicates(Impls, ImplsConj). | |
403 | ||
404 | process_candidate_impls_list(_, [], Acc, ImplsConj) :- !, ImplsConj=Acc. | |
405 | process_candidate_impls_list(IsGlobalType, [GrndCandidateImpl|T], Acc, ImplsConj) :- | |
406 | ( is_true(IsGlobalType) | |
407 | -> get_global_type_partner_candidates(GrndCandidateImpl, T, Partners, _RestT) | |
408 | ; get_partner_candidates(GrndCandidateImpl, T, Partners, _RestT) | |
409 | ), | |
410 | Partners \== [], | |
411 | !, | |
412 | build_implications_from_ground_candidates(GrndCandidateImpl, Partners, PartialImplsConj), | |
413 | process_candidate_impls_list(IsGlobalType, T, [PartialImplsConj|Acc], ImplsConj). | |
414 | process_candidate_impls_list(IsGlobalType, [_|T], Acc, ImplsConj) :- | |
415 | process_candidate_impls_list(IsGlobalType, T, Acc, ImplsConj). | |
416 | ||
417 | %% build_implications_from_ground_candidates(+GrndCandidateImpl, +Partners, -PartialImplsConj). | |
418 | % Given GrndCandidateImpl and some matching partner candidates, collect proven implications: | |
419 | % p in Partners, add one of 'GrndCandidateImpl => p', 'p => GrndCandidateImpl' or nothing | |
420 | build_implications_from_ground_candidates(GrndCandidateImpl, Partners, PartialImplsConj) :- | |
421 | build_implications_from_ground_candidates(GrndCandidateImpl, Partners, [], PartialImplsConj). | |
422 | % TO DO: improve, sometimes too much overhead | |
423 | %build_conj_implications_from_ground_candidates(GrndCandidateImpl, Partners, Partners, [], PartialImplsConj2), | |
424 | %conjunct_predicates([PartialImplsConj1,PartialImplsConj2], PartialImplsConj). | |
425 | ||
426 | %build_conj_implications_from_ground_candidates(_, [], _, Acc, PartialImplsConj) :- | |
427 | % conjunct_predicates(Acc, PartialImplsConj). | |
428 | %build_conj_implications_from_ground_candidates(GrndCandidateImpl, [Partner|T], Partners, Acc, PartialImplsConj) :- | |
429 | % select(Partner, Partners, Rest), | |
430 | % NegConj = b(disjunct(b(negation(GrndCandidateImpl),pred,[]),b(negation(Partner),pred,[])),pred,[]), | |
431 | % remove_zero_var(NegConj, NegConjNoZero), | |
432 | % build_conj_implications_from_ground_conj(NegConj, NegConjNoZero, Rest, Acc, NewAcc), | |
433 | % build_conj_implications_from_ground_candidates(GrndCandidateImpl, T, Partners, NewAcc, PartialImplsConj). | |
434 | % | |
435 | %build_conj_implications_from_ground_conj(_, _, [], Acc, Acc). | |
436 | %build_conj_implications_from_ground_conj(NegConj, NegConjNoZero, [Partner|T], Acc, Impls) :- | |
437 | % remove_zero_var(Partner, PartnerNoZero), | |
438 | % Impl1 = b(disjunct(NegConj,Partner),pred,[]), | |
439 | % Impl1NoZero = b(disjunct(NegConjNoZero,PartnerNoZero),pred,[]), | |
440 | % Impl2 = b(disjunct(NegConj,b(negation(Partner),pred,[])),pred,[]), | |
441 | % Impl2NoZero = b(disjunct(NegConjNoZero,b(negation(PartnerNoZero),pred,[])),pred,[]), | |
442 | % ( %nl,write('Try Impl1: '), nl, translate:print_bexpr(Impl1NoZero), nl, | |
443 | % prove_sequent(Impl1NoZero)%, write('True'),nl | |
444 | % -> NewAcc = [Impl1|Acc] | |
445 | % ; %nl,write('Try Impl2: '), nl, translate:print_bexpr(Impl2NoZero), nl, | |
446 | % ( prove_sequent(Impl2NoZero),%, write('True'),nl, | |
447 | % NewAcc = [Impl2|Acc] | |
448 | % ; NewAcc = Acc | |
449 | % ) | |
450 | % ), | |
451 | % build_conj_implications_from_ground_conj(NegConj, NegConjNoZero, T, NewAcc, Impls). | |
452 | ||
453 | /* | |
454 | prove_with_prob(Constraint) :- | |
455 | find_typed_identifier_uses(Constraint, [], TypedIds), | |
456 | translate:generate_typing_predicates(TypedIds, TypingPreds), | |
457 | conjunct_predicates(TypingPreds, TypingPred), | |
458 | Forall = b(forall(TypedIds,TypingPred,Constraint),pred,[]), | |
459 | solver_interface:solve_predicate(Forall, _, Res), | |
460 | Res == solution([]). | |
461 | */ | |
462 | ||
463 | build_implications_from_ground_candidates(_, [], Acc, PartialImplsConj) :- | |
464 | conjunct_predicates(Acc, PartialImplsConj). | |
465 | build_implications_from_ground_candidates(GrndCandidateImpl, [Partner|T], Acc, PartialImplsConj) :- | |
466 | safe_create_texpr(negation(GrndCandidateImpl), pred, [], NegGrndCandidateImpl), | |
467 | safe_create_texpr(negation(Partner), pred, [], NegPartner), | |
468 | % possibly remove zero var from idl solver | |
469 | safe_create_texpr(disjunct(NegGrndCandidateImpl,Partner), pred, [], Impl1), | |
470 | remove_zero_var(Impl1, Impl1NoZero), | |
471 | safe_create_texpr(disjunct(NegPartner,GrndCandidateImpl), pred, [], Impl2), | |
472 | remove_zero_var(Impl2, Impl2NoZero), | |
473 | safe_create_texpr(disjunct(NegGrndCandidateImpl,b(negation(Partner),pred,[])), pred, [], Impl3), | |
474 | remove_zero_var(Impl3, Impl3NoZero), | |
475 | safe_create_texpr(disjunct(NegPartner,b(negation(GrndCandidateImpl),pred,[])), pred, [], Impl4), | |
476 | remove_zero_var(Impl4, Impl4NoZero), | |
477 | ( %nl,write('Try Impl1: '), nl, translate:print_bexpr(Impl1NoZero), nl, | |
478 | prove_sequent(Impl1NoZero)% write('True'),nl | |
479 | -> NewAcc = [Impl1|Acc] | |
480 | ; %nl,write('Try Impl2: '), nl, translate:print_bexpr(Impl2NoZero), nl, | |
481 | prove_sequent(Impl2NoZero)% write('True'),nl | |
482 | -> NewAcc = [Impl2|Acc] | |
483 | ; %nl,write('Try Impl3: '), nl, translate:print_bexpr(Impl3NoZero), nl, | |
484 | prove_sequent(Impl3NoZero)% write('True'),nl | |
485 | -> NewAcc = [Impl3|Acc] | |
486 | ; %nl,write('Try Impl4: '), nl, translate:print_bexpr(Impl4NoZero), nl, | |
487 | prove_sequent(Impl4NoZero)% write('True'),nl | |
488 | -> NewAcc = [Impl4|Acc] | |
489 | ; NewAcc = Acc | |
490 | ), | |
491 | build_implications_from_ground_candidates(GrndCandidateImpl, T, NewAcc, PartialImplsConj). | |
492 | ||
493 | %create_var_bindings([], []). | |
494 | %create_var_bindings([Id|T], [bind(Id,_)|NT]) :- | |
495 | % create_var_bindings(T, NT). | |
496 | % | |
497 | %get_var_bindings_for_ast(Ast, Bindings) :- | |
498 | % find_identifier_uses(Ast, [], Ids), | |
499 | % create_var_bindings(Ids, Bindings). | |
500 | ||
501 | uses_exactly_same_ids(A, UsedIds) :- | |
502 | find_identifier_uses(A, [], UsedA), | |
503 | sets:subset(UsedA, UsedIds), | |
504 | sets:subset(UsedIds, UsedA), !. | |
505 | ||
506 | uses_same_id(A, UsedIds) :- | |
507 | find_identifier_uses(A, [], UsedA), | |
508 | sets:intersection(UsedA, UsedIds, Inter), | |
509 | Inter \== []. | |
510 | ||
511 | %% get_partner_candidates(+Id, +Rest, -Partners, -RestRest). | |
512 | % ASTs in Rest have the same type. | |
513 | % idea: given, e.g., 1<x: search for all comparisons between x and a ground value like 0<x, x<10 etc. | |
514 | % afterwards, evaluate the constraints and try to build implications like 1<x => 0<x | |
515 | get_partner_candidates(GrndCandidateImpl, Rest, Partners, RestRest) :- | |
516 | find_identifier_uses(GrndCandidateImpl, [], UsedIds), | |
517 | get_partner_candidates(UsedIds, Rest, [], Partners, [], RestRest),!. | |
518 | ||
519 | get_partner_candidates(_, [], PartnersAcc, PartnersAcc, RestAcc, RestAcc). | |
520 | get_partner_candidates(UsedIds, Rest, PartnersAcc, Partners, RestAcc, RestRest) :- | |
521 | select(Partner, Rest, TRest), | |
522 | ( uses_exactly_same_ids(Partner, UsedIds) | |
523 | -> NPartnersAcc = [Partner|PartnersAcc], | |
524 | NRestAcc = RestAcc | |
525 | ; NPartnersAcc = PartnersAcc, | |
526 | NRestAcc = [Partner|RestAcc] | |
527 | ), | |
528 | !, | |
529 | get_partner_candidates(UsedIds, TRest, NPartnersAcc, Partners, NRestAcc, RestRest). | |
530 | ||
531 | get_global_type_partner_candidates(GrndCandidateImpl, Rest, Partners, RestRest) :- | |
532 | find_identifier_uses(GrndCandidateImpl, [], UsedIds), | |
533 | get_global_type_partner_candidates(UsedIds, Rest, [], Partners, [], RestRest),!. | |
534 | ||
535 | get_global_type_partner_candidates(_, [], PartnersAcc, PartnersAcc, RestAcc, RestAcc). | |
536 | get_global_type_partner_candidates(UsedIds, Rest, PartnersAcc, Partners, RestAcc, RestRest) :- | |
537 | select(Partner, Rest, TRest), | |
538 | ( uses_same_id(Partner, UsedIds) | |
539 | -> NPartnersAcc = [Partner|PartnersAcc], | |
540 | NRestAcc = RestAcc | |
541 | ; NPartnersAcc = PartnersAcc, | |
542 | NRestAcc = [Partner|RestAcc] | |
543 | ), | |
544 | !, | |
545 | get_global_type_partner_candidates(UsedIds, TRest, NPartnersAcc, Partners, NRestAcc, RestRest). | |
546 | ||
547 | candidate_impl_binary_operator(equal, global). | |
548 | candidate_impl_binary_operator(member, global). | |
549 | candidate_impl_binary_operator(equal, integer). | |
550 | candidate_impl_binary_operator(member, integer). | |
551 | candidate_impl_binary_operator(equal, set). | |
552 | candidate_impl_binary_operator(less, integer). | |
553 | candidate_impl_binary_operator(less_equal, integer). | |
554 | candidate_impl_binary_operator(greater, integer). | |
555 | candidate_impl_binary_operator(greater_equal, integer). | |
556 | candidate_impl_binary_operator(member, set). | |
557 | candidate_impl_binary_operator(subset, set). | |
558 | candidate_impl_binary_operator(subset_strict, set). | |
559 | ||
560 | %% extend_candidate_impls_acc(+Type, +Functor, +Arg1, +Arg2, +Ast, +CandidateAcc, -NewCandidateAcc) :- | |
561 | % Collect ASTs with functor in candidate_impl_binary_operator/2 and both arguments being | |
562 | % an identifier or ground value. | |
563 | extend_candidate_impls_acc(Type, Functor, Arg1, Arg2, Ast, CandidateAcc, NewCandidateAcc) :- | |
564 | Type == pred, | |
565 | Arg1 = b(_,AType,_), | |
566 | functor(AType, FType, _), | |
567 | candidate_impl_binary_operator(Functor, FType), | |
568 | ( (ground_bexpr(Arg1), | |
569 | is_id_or_pred_containing_id(Arg2)) | |
570 | ; | |
571 | (ground_bexpr(Arg2), | |
572 | is_id_or_pred_containing_id(Arg1)) | |
573 | ), | |
574 | remove_all_infos(Ast, AstClean), | |
575 | ast_not_in_candidate_acc(ground, FType, AstClean, CandidateAcc), | |
576 | !, | |
577 | extend_candidate_impls_acc_safe_ground(FType, CandidateAcc, Ast, NewCandidateAcc). | |
578 | extend_candidate_impls_acc(Type, Functor, Arg1, Arg2, Ast, CandidateAcc, NewCandidateAcc) :- | |
579 | Type == pred, | |
580 | Arg1 = b(_,AType,_), | |
581 | functor(AType, FType, _), | |
582 | candidate_impl_binary_operator(Functor, FType), | |
583 | is_id_or_pred_containing_id(Arg1), | |
584 | is_id_or_pred_containing_id(Arg2), | |
585 | remove_all_infos(Ast, AstClean), | |
586 | ast_not_in_candidate_acc(var, FType, AstClean, CandidateAcc), | |
587 | !, | |
588 | extend_candidate_impls_acc_safe(FType, CandidateAcc, Ast, NewCandidateAcc). | |
589 | extend_candidate_impls_acc(_, _, _, _, _, CandidateAcc, CandidateAcc). | |
590 | ||
591 | is_identifier(identifier(_)). | |
592 | ||
593 | is_id_or_pred_containing_id(TExpr) :- | |
594 | get_texpr_expr(TExpr, Expr), | |
595 | functor(Expr, Functor, _), | |
596 | % no ASTs with local identifiers | |
597 | \+ member(Functor, [forall,exists,comprehension_set,lambda,general_sum,general_product,event_b_comprehension_set,quantified_union,quantified_intersection]), | |
598 | map_over_bexpr(is_identifier, TExpr). | |
599 | ||
600 | %% ast_not_in_candidate_acc(+VarOrGround, +Type, +AstClean, +CandidateAcc). | |
601 | ast_not_in_candidate_acc(var, global, AstClean, candidate_impls(global(Global),integer(_),integer_ground(_),set(_),set_ground(_))) :- | |
602 | \+ member(AstClean, Global). | |
603 | ast_not_in_candidate_acc(var, integer, AstClean, candidate_impls(global(_),integer(Integer),integer_ground(_),set(_),set_ground(_))) :- | |
604 | \+ member(AstClean, Integer). | |
605 | ast_not_in_candidate_acc(ground, integer, AstClean, candidate_impls(global(_),integer(_),integer_ground(IntegerGrnd),set(_),set_ground(_))) :- | |
606 | \+ member(AstClean, IntegerGrnd). | |
607 | ast_not_in_candidate_acc(var, set, AstClean, candidate_impls(global(_),integer(_),integer_ground(_),set(Set),set_ground(_))) :- | |
608 | \+ member(AstClean, Set). | |
609 | ast_not_in_candidate_acc(ground, set, AstClean, candidate_impls(global(_),integer(_),integer_ground(_),set(_),set_ground(SetGrnd))) :- | |
610 | \+ member(AstClean, SetGrnd). | |
611 | ||
612 | % TO DO: use get_sorted_equality/3 for equalities | |
613 | extend_candidate_impls_acc_safe_ground(integer, candidate_impls(global(Global),integer(Integer),integer_ground(IntegerGrnd),set(Set),set_ground(SetGrnd)), Ast, candidate_impls(global(Global),integer(Integer),integer_ground([Ast|IntegerGrnd]),set(Set),set_ground(SetGrnd))). | |
614 | extend_candidate_impls_acc_safe_ground(set, candidate_impls(global(Global),integer(Integer),integer_ground(IntegerGrnd),set(Set),set_ground(SetGrnd)), Ast, candidate_impls(global(Global),integer(Integer),integer_ground(IntegerGrnd),set(Set),set_ground([Ast|SetGrnd]))). | |
615 | ||
616 | extend_candidate_impls_acc_safe(global, candidate_impls(global(Global),integer(Integer),integer_ground(IntegerGrnd),set(Set),set_ground(SetGrnd)), Ast, candidate_impls(global([Ast|Global]),integer(Integer),integer_ground(IntegerGrnd),set(Set),set_ground(SetGrnd))). | |
617 | extend_candidate_impls_acc_safe(integer, candidate_impls(global(Global),integer(Integer),integer_ground(IntegerGrnd),set(Set),set_ground(SetGrnd)), Ast, candidate_impls(global(Global),integer([Ast|Integer]),integer_ground(IntegerGrnd),set(Set),set_ground(SetGrnd))). | |
618 | extend_candidate_impls_acc_safe(set, candidate_impls(global(Global),integer(Integer),integer_ground(IntegerGrnd),set(Set),set_ground(SetGrnd)), Ast, candidate_impls(global(Global),integer(Integer),integer_ground(IntegerGrnd),set([Ast|Set]),set_ground(SetGrnd))). | |
619 | ||
620 | empty_candidate_impls_acc(candidate_impls(global([]),integer([]),integer_ground([]),set([]),set_ground([]))). | |
621 | ||
622 | %% lift_negations_find_impls(+Pred, +RewriteToIdl, +CandidateAcc, -LPred, -CandidateImpls). | |
623 | lift_negations_find_impls(Pred, RewriteToIdl, CandidateAcc, LPred, CandidateImpls) :- | |
624 | Pred = b(Expr,Type,Info), | |
625 | !, | |
626 | lift_negations_find_impls_e(Expr, Type, Info, RewriteToIdl, CandidateAcc, LExpr, CandidateImpls), | |
627 | safe_create_texpr(LExpr, Type, Info, LPred). | |
628 | lift_negations_find_impls(Pred, _, CandidateAcc, Pred, CandidateAcc). | |
629 | ||
630 | %% lift_negations_find_impls_e(+Expr, +Type, +RewriteToIdl, +CandidateAcc, -LExpr, -CandidateImpls). | |
631 | % Unfold negated operators like not_equal to detect equal ASTs when introducing | |
632 | % boolean variables for the SAT formula. For instance, it improves performance | |
633 | % to transform 'x={} & x/={}' to 'x={} & not(x={})' first, since we can then translate to | |
634 | % 'A & not(A)' in SAT rather than 'A & B'. | |
635 | % Collect specific operators that might imply each other like 'x>0' and 'x>1' result to 'x>1 => x>0' (see candidate_impl_binary_operator/2). | |
636 | % Note: only binary operators are checked recursively since we transform SMT to SAT on the level of conjunct, disjunct and implication | |
637 | % Note: CandidateImpls contains true asts of lifted predicates, e.g., 'x:{1,2}' is stored for 'x/:{1,2}' | |
638 | lift_negations_find_impls_e(Expr, _, _, _, _, _, _) :- var(Expr),!, | |
639 | add_internal_error('Illegal var B AST: ',lift_negations_find_impls_e(Expr, _, _, _, _, _, _)),fail. | |
640 | lift_negations_find_impls_e(Expr, _, _, _, CandidateAcc, LPred, CandidateImpls) :- | |
641 | % important to use the same SAT variables, e.g., for x=TRUE & x=FALSE | |
642 | (Expr = equal(Bool,BoolId) ; Expr = equal(BoolId,Bool)), | |
643 | BoolId = b(identifier(_),boolean,_), | |
644 | is_boolean_true(Bool), | |
645 | !, | |
646 | LPred = negation(b(equal(b(boolean_false,boolean,[]),BoolId),pred,[])), | |
647 | CandidateImpls = CandidateAcc. | |
648 | lift_negations_find_impls_e(Expr, _, Info, RewriteToIdl, CandidateAcc, LPred, CandidateImpls) :- | |
649 | Expr = equivalence(Lhs,Rhs), | |
650 | !, | |
651 | create_implication(Lhs,Rhs,Impl1), | |
652 | create_implication(Rhs,Lhs,Impl2), | |
653 | Rewritten = conjunct(Impl1,Impl2), | |
654 | /*Disj1 = b(conjunct(Lhs,Rhs),pred,[]), | |
655 | Disj2 = b(conjunct(b(negation(Lhs),pred,[]),b(negation(Rhs),pred,[])),pred,[]), | |
656 | Rewritten = b(disjunct(Disj1,Disj2),pred,[]),*/ | |
657 | lift_negations_find_impls_e(Rewritten, pred, Info, RewriteToIdl, CandidateAcc, LPred, CandidateImpls). | |
658 | lift_negations_find_impls_e(Expr, _, Info, RewriteToIdl, CandidateAcc, LExpr, CandidateImpls) :- | |
659 | Expr = implication(Lhs,Rhs), | |
660 | !, | |
661 | create_negation(Lhs,NLhs), | |
662 | Rewritten = disjunct(NLhs,Rhs), | |
663 | lift_negations_find_impls_e(Rewritten, pred, Info, RewriteToIdl, CandidateAcc, LExpr, CandidateImpls). | |
664 | lift_negations_find_impls_e(Expr, _, Info, RewriteToIdl, CandidateAcc, LExpr, CandidateImpls) :- | |
665 | Expr = negation(b(negation(Pos),pred,_)), | |
666 | get_texpr_expr(Pos, PosExpr), | |
667 | get_texpr_type(Pos, PosType), | |
668 | !, | |
669 | lift_negations_find_impls_e(PosExpr, PosType, Info, RewriteToIdl, CandidateAcc, LExpr, CandidateImpls). | |
670 | lift_negations_find_impls_e(Expr, _, _, _, CandidateAcc, LExpr, CandidateImpls) :- | |
671 | Expr = negation(b(truth,pred,_)), | |
672 | !, | |
673 | LExpr = falsity, | |
674 | CandidateImpls = CandidateAcc. | |
675 | lift_negations_find_impls_e(Expr, _, _, _, CandidateAcc, LExpr, CandidateImpls) :- | |
676 | Expr = negation(b(falsity,pred,_)), | |
677 | !, | |
678 | LExpr = truth, | |
679 | CandidateImpls = CandidateAcc. | |
680 | lift_negations_find_impls_e(Inequality, _, _, RewriteToIdl, CandidateAcc, LExpr, CandidateImpls) :- | |
681 | is_true(RewriteToIdl), | |
682 | ( Inequality = not_equal(b(_,integer,_),_) | |
683 | %IEQ = Inequality | |
684 | ; Inequality = negation(b(equal(b(_,integer,_),_),pred,_)) | |
685 | %IEQ = b(not_equal(Arg1,Arg2),pred,EQInfo) | |
686 | ), | |
687 | rewrite_inequality_to_idl_disj_no_zero(b(Inequality,pred,[]), DLConstraint), | |
688 | !, | |
689 | DLConstraint = b(disjunct(TLhs,TRhs),pred,_), | |
690 | remove_idl_origin_from_info(TLhs, Lhs), | |
691 | remove_idl_origin_from_info(TRhs, Rhs), | |
692 | Lhs = b(negation(LhsPos),_,_), | |
693 | Rhs = b(negation(RhsPos),_,_), | |
694 | LhsPos = b(less_equal(LArg1,LArg2),pred,_), | |
695 | RhsPos = b(less_equal(RArg1,RArg2),pred,_), | |
696 | disjunct_two_preds(Lhs, Rhs, LExpr), | |
697 | %extend_candidate_impls_acc(pred, not_equal, Arg1, Arg2, IEQ, CandidateAcc, CandidateAcc1), | |
698 | extend_candidate_impls_acc(pred, less_equal, LArg1, LArg2, LhsPos, CandidateAcc, CandidateAcc1), | |
699 | extend_candidate_impls_acc(pred, less_equal, RArg1, RArg2, RhsPos, CandidateAcc1, CandidateImpls). | |
700 | lift_negations_find_impls_e(Equality, _, _, RewriteToIdl, CandidateAcc, LPred, CandidateImpls) :- | |
701 | is_true(RewriteToIdl), | |
702 | ( Equality = equal(b(_,integer,_),_) | |
703 | %EQ = Equality | |
704 | ; Equality = negation(b(not_equal(b(_,integer,_),_),pred,_)) | |
705 | %EQ = b(equal(Arg1,Arg2),pred,EQInfo) | |
706 | ), | |
707 | rewrite_to_idl_no_zero(b(Equality,pred,[]), ConjList), | |
708 | !, | |
709 | ConjList = [TLhs,TRhs], | |
710 | % don't create _zero var from idl solver in SAT formula | |
711 | remove_idl_origin_from_info(TLhs, Lhs), | |
712 | remove_idl_origin_from_info(TRhs, Rhs), | |
713 | Lhs = b(less_equal(LArg1,LArg2),pred,_), | |
714 | Rhs = b(less_equal(RArg1,RArg2),pred,_), | |
715 | conjunct_two_preds(Lhs, Rhs, LPred), | |
716 | extend_candidate_impls_acc(pred, less_equal, LArg1, LArg2, Lhs, CandidateAcc, CandidateAcc1), | |
717 | extend_candidate_impls_acc(pred, less_equal, RArg1, RArg2, Rhs, CandidateAcc1, CandidateImpls). | |
718 | lift_negations_find_impls_e(Expr, Type, Info, _, CandidateAcc, LExpr, CandidateImpls) :- | |
719 | negated_b_operator(Expr, TrueNode), | |
720 | % don't lift negations for predicates with a WD condition, e.g., x:INT & min(p)/=x | |
721 | % otherwise, this would be transformed to x:INT & not(not(p = {}) & min(p) = x) allowing p={} | |
722 | empty_hyps(Hyps), | |
723 | \+ compute_wd(b(Expr,Type,Info), Hyps, [discharge_po,skip_finite_po], _), | |
724 | !, | |
725 | safe_create_texpr(TrueNode,Type,[],TrueAst), | |
726 | TrueNode =.. [NFunctor, Arg1, Arg2], | |
727 | extend_candidate_impls_acc(Type, NFunctor, Arg1, Arg2, TrueAst, CandidateAcc, CandidateImpls), | |
728 | LExpr = negation(TrueAst). | |
729 | % simplify negated conjunction or disjunction possibly introduced by rewriting equivalence and implication | |
730 | lift_negations_find_impls_e(Expr, _, Info, RewriteToIdl, CandidateAcc, LExpr, CandidateImpls) :- | |
731 | Expr = negation(Arg), | |
732 | Arg = b(conjunct(Conj1,Conj2),pred,_), | |
733 | !, | |
734 | create_negation(Conj1,NConj1), | |
735 | create_negation(Conj2,NConj2), | |
736 | disjunct_two_preds(NConj1,NConj2,Rewritten), | |
737 | lift_negations_find_impls_e(Rewritten, pred, Info, RewriteToIdl, CandidateAcc, LExpr, CandidateImpls). | |
738 | lift_negations_find_impls_e(Expr, _, Info, RewriteToIdl, CandidateAcc, LExpr, CandidateImpls) :- | |
739 | Expr = negation(Arg), | |
740 | Arg = b(disjunct(Conj1,Conj2),pred,_), | |
741 | !, | |
742 | create_negation(Conj1,NConj1), | |
743 | create_negation(Conj2,NConj2), | |
744 | Rewritten = conjunct(NConj1,NConj2), | |
745 | lift_negations_find_impls_e(Rewritten, pred, Info, RewriteToIdl, CandidateAcc, LExpr, CandidateImpls). | |
746 | lift_negations_find_impls_e(Expr, pred, _Info, RewriteToIdl, CandidateAcc, LExpr, CandidateImpls) :- | |
747 | Expr = negation(Arg), | |
748 | Arg = b(ArgExpr,ArgType,ArgInfo), | |
749 | lift_negations_find_impls_e(ArgExpr, ArgType, ArgInfo, RewriteToIdl, CandidateAcc, LArgExpr, CandidateImpls), | |
750 | safe_create_texpr(LArgExpr,pred,ArgInfo,TLA), | |
751 | create_negation(TLA,b(LExpr,_,_)). | |
752 | lift_negations_find_impls_e(Expr, pred, Info, RewriteToIdl, CandidateAcc, LExpr, CandidateImpls) :- | |
753 | functor(Expr, Functor, _), | |
754 | Names = [], % quantifications (comprehension_set, exists) will be abstracted by a single SAT variable | |
755 | syntaxtransformation(Expr,[Arg1,Arg2],Names,[LLhs,LRhs],TLExpr), | |
756 | !, | |
757 | LExpr = TLExpr, | |
758 | extend_candidate_impls_acc(pred, Functor, Arg1, Arg2, b(Expr,pred,Info), CandidateAcc, CandidateAcc1), | |
759 | lift_negations_find_impls(Arg1, RewriteToIdl, CandidateAcc1, LLhs, CandidateAcc2), | |
760 | lift_negations_find_impls(Arg2, RewriteToIdl, CandidateAcc2, LRhs, CandidateImpls). | |
761 | lift_negations_find_impls_e(Expr, _, _, _, CandidateAcc, Expr, CandidateAcc). | |
762 | ||
763 | is_true(X) :- | |
764 | ( X == true | |
765 | -> true | |
766 | ; X == false | |
767 | -> fail | |
768 | ; add_internal_error('Illegal call:',is_true(X)), | |
769 | fail | |
770 | ). | |
771 | ||
772 | %get_sorted_equality(Lhs, Rhs, Equality) :- | |
773 | % Lhs @> Rhs, | |
774 | % !, | |
775 | % safe_create_texpr(equal(Rhs,Lhs), pred, [], Equality). | |
776 | %get_sorted_equality(Lhs, Rhs, b(equal(Lhs,Rhs),pred,[])). | |
777 | ||
778 | %binary_connective(conjunct). | |
779 | %binary_connective(disjunct). | |
780 | %binary_connective(implication). | |
781 | %binary_connective(equivalence). | |
782 | ||
783 | negated_b_operator(not_equal(A,B), equal(A,B)). | |
784 | negated_b_operator(not_member(A,B), member(A,B)). | |
785 | negated_b_operator(not_subset(A,B), subset(A,B)). | |
786 | negated_b_operator(not_subset_strict(A,B), subset_strict(A,B)). | |
787 | ||
788 | negate_bool_formula(b(negation(b(truth,pred,Info)),pred,_), b(falsity,pred,Info)). | |
789 | negate_bool_formula(b(negation(b(falsity,pred,Info)),pred,_), b(truth,pred,Info)). | |
790 | negate_bool_formula(b(negation(b(negation(Ast))),pred,_), NAst) :- | |
791 | !, | |
792 | negate_bool_formula(Ast, NAst). | |
793 | negate_bool_formula(b(negation(Eq),pred,_), b(equal(Id,Negated),pred,EqInfo)) :- | |
794 | ( Eq = b(equal(Bool,Id),pred,EqInfo) | |
795 | ; Eq = b(equal(Id,Bool),pred,EqInfo) | |
796 | ), | |
797 | Bool = b(Expr,boolean,BoolInfo), | |
798 | negate_bool_expr(Expr, NExpr), | |
799 | safe_create_texpr(NExpr, boolean, BoolInfo, Negated), | |
800 | Id = b(identifier(_),_,_). | |
801 | negate_bool_formula(b(negation(b(conjunct(A,B),pred,I)),pred,_), New) :- | |
802 | negate_bool_formula(b(negation(A),pred,[]), NewA), | |
803 | negate_bool_formula(b(negation(B),pred,[]), NewB), | |
804 | safe_create_texpr(disjunct(NewA,NewB), pred, I, New). | |
805 | negate_bool_formula(b(negation(b(disjunct(A,B),pred,I)),pred,_), New) :- | |
806 | negate_bool_formula(b(negation(A),pred,[]), NewA), | |
807 | negate_bool_formula(b(negation(B),pred,[]), NewB), | |
808 | safe_create_texpr(conjunct(NewA,NewB), pred, I, New). | |
809 | ||
810 | %%%%%%%%%%%%%%%%%%%%% Unit Tests %%%%%%%%%%%%%%%%%%%%% | |
811 | :- begin_tests(extend_candidate_impls_acc). | |
812 | ||
813 | test(extend_candidate_impls_acc_less, [true(NewAcc == candidate_impls(global([]),integer([]),integer_ground([b(less(b(identifier(x),integer,[]),b(integer(7),integer,[])),pred,[])]),set([]),set_ground([])))]) :- | |
814 | empty_candidate_impls_acc(EmptyAcc), | |
815 | Arg1 = b(identifier(x),integer,[]), | |
816 | Arg2 = b(integer(7),integer,[]), | |
817 | Ast = b(less(Arg1,Arg2),pred,[]), | |
818 | extend_candidate_impls_acc(pred, less, Arg1, Arg2, Ast, EmptyAcc, NewAcc). | |
819 | ||
820 | test(extend_candidate_impls_acc_less_non_ground, [true(NewAcc == candidate_impls(global([]),integer([]),integer_ground([]),set([]),set_ground([])))]) :- | |
821 | empty_candidate_impls_acc(EmptyAcc), | |
822 | Arg1 = b(identifier(x),set(set(integer)),[]), | |
823 | Arg2 = b(set_extension([_]),set(set(integer)),[]), | |
824 | Ast = b(less(Arg1,Arg2),pred,[]), | |
825 | extend_candidate_impls_acc(pred, less, Arg1, Arg2, Ast, EmptyAcc, NewAcc). | |
826 | ||
827 | test(extend_candidate_impls_acc_less_no_identifier, [true(NewAcc == candidate_impls(global([]),integer([]),integer_ground([]),set([]),set_ground([])))]) :- | |
828 | empty_candidate_impls_acc(EmptyAcc), | |
829 | Arg1 = b(comprehension_set([b(identifier(x),integer,[])],b(member(b(identifier(x),integer,[]), b(set_extension([b(integer(234),integer,[]),b(integer(34),integer,[])]),set(integer),[])),pred,[])),set(integer),[some,info]), | |
830 | Arg2 = b(set_extension([b(set_extension([b(integer(27),integer,[])]),set(integer),[])]),set(set(integer)),[]), | |
831 | Ast = b(less(Arg1,Arg2),pred,[]), | |
832 | extend_candidate_impls_acc(pred, less, Arg1, Arg2, Ast, EmptyAcc, NewAcc). | |
833 | ||
834 | test(extend_candidate_impls_acc_less_eq, [true(NewAcc == candidate_impls(global([]),integer([]),integer_ground([b(less_equal(b(identifier(x),integer,[]),b(integer(7),integer,[])),pred,[])]),set([]),set_ground([])))]) :- | |
835 | empty_candidate_impls_acc(EmptyAcc), | |
836 | Arg1 = b(identifier(x),integer,[]), | |
837 | Arg2 = b(integer(7),integer,[]), | |
838 | Ast = b(less_equal(Arg1,Arg2),pred,[]), | |
839 | extend_candidate_impls_acc(pred, less_equal, Arg1, Arg2, Ast, EmptyAcc, NewAcc). | |
840 | ||
841 | test(extend_candidate_impls_acc_less_eq_non_ground, [true(NewAcc == candidate_impls(global([]),integer([]),integer_ground([]),set([]),set_ground([])))]) :- | |
842 | empty_candidate_impls_acc(EmptyAcc), | |
843 | Arg1 = b(identifier(x),set(set(integer)),[]), | |
844 | Arg2 = b(set_extension([_]),set(set(integer)),[]), | |
845 | Ast = b(less_equal(Arg1,Arg2),pred,[]), | |
846 | extend_candidate_impls_acc(pred, less_equal, Arg1, Arg2, Ast, EmptyAcc, NewAcc). | |
847 | ||
848 | test(extend_candidate_impls_acc_less_eq_no_identifier, [true(NewAcc == candidate_impls(global([]),integer([]),integer_ground([]),set([]),set_ground([])))]) :- | |
849 | empty_candidate_impls_acc(EmptyAcc), | |
850 | Arg1 = b(comprehension_set([b(identifier(x),integer,[])],b(member(b(identifier(x),integer,[]), b(set_extension([b(integer(234),integer,[]),b(integer(34),integer,[])]),set(integer),[])),pred,[])),set(integer),[some,info]), | |
851 | Arg2 = b(set_extension([b(set_extension([b(integer(27),integer,[])]),set(integer),[])]),set(set(integer)),[]), | |
852 | Ast = b(less_equal(Arg1,Arg2),pred,[]), | |
853 | extend_candidate_impls_acc(pred, less_equal, Arg1, Arg2, Ast, EmptyAcc, NewAcc). | |
854 | ||
855 | test(extend_candidate_impls_acc_subset, [true(NewAcc == candidate_impls(global([]),integer([]),integer_ground([]),set([]),set_ground([b(subset(b(identifier(x),set(set(integer)),[]),b(set_extension([b(set_extension([b(integer(27),integer,[])]),set(integer),[])]),set(set(integer)),[])),pred,[])])))]) :- | |
856 | empty_candidate_impls_acc(EmptyAcc), | |
857 | Arg1 = b(identifier(x),set(set(integer)),[]), | |
858 | Arg2 = b(set_extension([b(set_extension([b(integer(27),integer,[])]),set(integer),[])]),set(set(integer)),[]), | |
859 | Ast = b(subset(Arg1,Arg2),pred,[]), | |
860 | extend_candidate_impls_acc(pred, subset, Arg1, Arg2, Ast, EmptyAcc, NewAcc). | |
861 | ||
862 | test(extend_candidate_impls_acc_subset_non_ground, [true(NewAcc == candidate_impls(global([]),integer([]),integer_ground([]),set([]),set_ground([])))]) :- | |
863 | empty_candidate_impls_acc(EmptyAcc), | |
864 | Arg1 = b(identifier(x),set(set(integer)),[]), | |
865 | Arg2 = b(set_extension([_]),set(set(integer)),[]), | |
866 | Ast = b(subset(Arg1,Arg2),pred,[]), | |
867 | extend_candidate_impls_acc(pred, subset, Arg1, Arg2, Ast, EmptyAcc, NewAcc). | |
868 | ||
869 | test(extend_candidate_impls_acc_subset_no_identifier, [true(NewAcc == candidate_impls(global([]),integer([]),integer_ground([]),set([]),set_ground([])))]) :- | |
870 | empty_candidate_impls_acc(EmptyAcc), | |
871 | Arg1 = b(comprehension_set([b(identifier(x),integer,[])],b(member(b(identifier(x),integer,[]), b(set_extension([b(integer(234),integer,[]),b(integer(34),integer,[])]),set(integer),[])),pred,[])),set(integer),[some,info]), | |
872 | Arg2 = b(set_extension([b(set_extension([b(integer(27),integer,[])]),set(integer),[])]),set(set(integer)),[]), | |
873 | Ast = b(subset(Arg1,Arg2),pred,[]), | |
874 | extend_candidate_impls_acc(pred, subset, Arg1, Arg2, Ast, EmptyAcc, NewAcc). | |
875 | ||
876 | test(extend_candidate_impls_acc_subset_strict, [true(NewAcc == candidate_impls(global([]),integer([]),integer_ground([]),set([]),set_ground([b(subset_strict(b(identifier(x),set(set(integer)),[]),b(set_extension([b(set_extension([b(integer(27),integer,[])]),set(integer),[])]),set(set(integer)),[])),pred,[])])))]) :- | |
877 | empty_candidate_impls_acc(EmptyAcc), | |
878 | Arg1 = b(identifier(x),set(set(integer)),[]), | |
879 | Arg2 = b(set_extension([b(set_extension([b(integer(27),integer,[])]),set(integer),[])]),set(set(integer)),[]), | |
880 | Ast = b(subset_strict(Arg1,Arg2),pred,[]), | |
881 | extend_candidate_impls_acc(pred, subset_strict, Arg1, Arg2, Ast, EmptyAcc, NewAcc). | |
882 | ||
883 | test(extend_candidate_impls_acc_subset_strict_non_ground, [true(NewAcc == candidate_impls(global([]),integer([]),integer_ground([]),set([]),set_ground([])))]) :- | |
884 | empty_candidate_impls_acc(EmptyAcc), | |
885 | Arg1 = b(identifier(x),set(set(integer)),[]), | |
886 | Arg2 = b(set_extension([_]),set(set(integer)),[]), | |
887 | Ast = b(subset_strict(Arg1,Arg2),pred,[]), | |
888 | extend_candidate_impls_acc(pred, subset_strict, Arg1, Arg2, Ast, EmptyAcc, NewAcc). | |
889 | ||
890 | test(extend_candidate_impls_acc_subset_strict_no_identifier, [true(NewAcc == candidate_impls(global([]),integer([]),integer_ground([]),set([]),set_ground([])))]) :- | |
891 | empty_candidate_impls_acc(EmptyAcc), | |
892 | Arg1 = b(comprehension_set([b(identifier(x),integer,[])],b(member(b(identifier(x),integer,[]), b(set_extension([b(integer(234),integer,[]),b(integer(34),integer,[])]),set(integer),[])),pred,[])),set(integer),[some,info]), | |
893 | Arg2 = b(set_extension([b(set_extension([b(integer(27),integer,[])]),set(integer),[])]),set(set(integer)),[]), | |
894 | Ast = b(subset_strict(Arg1,Arg2),pred,[]), | |
895 | extend_candidate_impls_acc(pred, subset_strict, Arg1, Arg2, Ast, EmptyAcc, NewAcc). | |
896 | ||
897 | test(extend_candidate_impls_acc_equal, [true(NewAcc == candidate_impls(global([]),integer([]),integer_ground([]),set([]),set_ground([b(equal(b(identifier(x),set(set(integer)),[]),b(set_extension([b(set_extension([b(integer(27),integer,[])]),set(integer),[])]),set(set(integer)),[])),pred,[])])))]) :- | |
898 | empty_candidate_impls_acc(EmptyAcc), | |
899 | Arg1 = b(identifier(x),set(set(integer)),[]), | |
900 | Arg2 = b(set_extension([b(set_extension([b(integer(27),integer,[])]),set(integer),[])]),set(set(integer)),[]), | |
901 | Ast = b(equal(Arg1,Arg2),pred,[]), | |
902 | extend_candidate_impls_acc(pred, equal, Arg1, Arg2, Ast, EmptyAcc, NewAcc). | |
903 | ||
904 | test(extend_candidate_impls_acc_member, [true(NewAcc == candidate_impls(global([]),integer([]),integer_ground([]),set([]),set_ground([b(member(b(identifier(x),set(integer),[]),b(set_extension([b(set_extension([b(integer(27),integer,[])]),set(integer),[])]),set(set(integer)),[])),pred,[])])))]) :- | |
905 | empty_candidate_impls_acc(EmptyAcc), | |
906 | Arg1 = b(identifier(x),set(integer),[]), | |
907 | Arg2 = b(set_extension([b(set_extension([b(integer(27),integer,[])]),set(integer),[])]),set(set(integer)),[]), | |
908 | Ast = b(member(Arg1,Arg2),pred,[]), | |
909 | extend_candidate_impls_acc(pred, member, Arg1, Arg2, Ast, EmptyAcc, NewAcc). | |
910 | ||
911 | test(extend_candidate_impls_acc_member_non_ground_type, [true(NewAcc == candidate_impls(global([]),integer([]),integer_ground([]),set([]),set_ground([])))]) :- | |
912 | empty_candidate_impls_acc(EmptyAcc), | |
913 | Arg1 = b(identifier(x),set(integer),[]), | |
914 | Arg2 = b(set_extension([b(set_extension([b(integer(27),integer,[])]),set(integer),[])]),set(set(integer)),[]), | |
915 | Ast = b(member(Arg1,Arg2),pred,[]), | |
916 | extend_candidate_impls_acc(_Type, member, Arg1, Arg2, Ast, EmptyAcc, NewAcc). | |
917 | ||
918 | test(extend_candidate_impls_acc_add, [true(NewAcc == candidate_impls(global([]),integer([]),integer_ground([]),set([]),set_ground([])))]) :- | |
919 | empty_candidate_impls_acc(EmptyAcc), | |
920 | Arg1 = b(integer(1),integer,[]), | |
921 | Arg2 = b(integer(1),integer,[]), | |
922 | Ast = b(add(Arg1,Arg2),integer,[]), | |
923 | extend_candidate_impls_acc(integer, add, Arg1, Arg2, Ast, EmptyAcc, NewAcc). | |
924 | ||
925 | test(extend_candidate_impls_acc_overwrite, [true(NewAcc == candidate_impls(global([]),integer([]),integer_ground([]),set([]),set_ground([])))]) :- | |
926 | empty_candidate_impls_acc(EmptyAcc), | |
927 | Arg1 = b(set_extension([b(couple(b(integer(1),integer,[]),b(integer(2),integer,[])),couple(integer,integer),[info(o),o])]),set(couple(integer,integer)),[]), | |
928 | Arg2 = b(set_extension([b(couple(b(integer(1),integer,[]),b(integer(2),integer,[])),couple(integer,integer),[ein(e),wei(t,e(re)),info])]),set(couple(integer,integer)),[]), | |
929 | Ast = b(overwrite(Arg1,Arg2),set(couple(integer,integer)),[]), | |
930 | extend_candidate_impls_acc(integer, add, Arg1, Arg2, Ast, EmptyAcc, NewAcc). | |
931 | ||
932 | test(extend_candidate_impls_acc_overwrite_non_ground_type, [true(NewAcc == candidate_impls(global([]),integer([]),integer_ground([]),set([]),set_ground([])))]) :- | |
933 | empty_candidate_impls_acc(EmptyAcc), | |
934 | Arg1 = b(set_extension([b(couple(b(integer(1),integer,[]),b(integer(2),integer,[])),couple(integer,integer),[info(o),o])]),set(couple(integer,integer)),[]), | |
935 | Arg2 = b(set_extension([b(couple(b(integer(1),integer,[]),b(integer(2),integer,[])),couple(integer,integer),[ein(e),wei(t,e(re)),info])]),set(couple(integer,integer)),[]), | |
936 | Ast = b(overwrite(Arg1,Arg2),set(couple(integer,integer)),[]), | |
937 | extend_candidate_impls_acc(_Type, add, Arg1, Arg2, Ast, EmptyAcc, NewAcc). | |
938 | ||
939 | :- end_tests(extend_candidate_impls_acc). | |
940 |