1 % (c) 2004-2024 Lehrstuhl fuer Softwaretechnik und Programmiersprachen,
2 % Heinrich Heine Universitaet Duesseldorf
3 % This software is licenced under EPL 1.0 (http://www.eclipse.org/org/documents/epl-v10.html)
4
5 :- module(bsets_clp,
6 [empty_sequence/1,
7 is_sequence/2, is_sequence_wf/3, not_is_sequence/2, not_is_sequence_wf/3,
8 not_is_non_empty_sequence_wf/3,
9 injective_sequence_wf/3,
10 not_injective_sequence/3,
11 not_non_empty_injective_sequence/3,
12 injective_non_empty_sequence/3,
13 finite_non_empty_sequence/3,
14 test_finite_non_empty_sequence/4,
15 permutation_sequence_wf/3,
16 not_permutation_sequence/3,
17 size_of_sequence/3,
18 prepend_sequence/4, append_sequence/4, prefix_sequence_wf/4,
19 suffix_sequence/4, concat_sequence/4,
20 disjoint_union_wf/4,
21 concatentation_of_sequences/3,
22 tail_sequence/4, first_sequence/4, front_sequence/4, last_sequence/4,
23 rev_sequence/3,
24
25
26 % maplet/3,
27 % relation/1,
28 relation_over/3, relation_over_wf/4,
29 not_relation_over/4,
30 domain_wf/3,
31
32 range_wf/3,
33 identity_relation_over_wf/3, in_identity/3, not_in_identity/3,
34 invert_relation_wf/3,
35 tuple_of/3,
36 in_composition_wf/4, not_in_composition_wf/4, rel_composition_wf/5,
37 direct_product_wf/4,
38 parallel_product_wf/4, in_parallel_product_wf/4, not_in_parallel_product_wf/4,
39 rel_iterate_wf/5,
40 event_b_identity_for_type/3,
41
42 not_partial_function/4,
43 partial_function/3, partial_function_wf/4, partial_function_test_wf/5,
44
45 total_function/3, total_function_wf/4, total_function_test_wf/5,
46
47 % enumerate_total_bijection/3,
48 total_bijection/3, total_bijection_wf/4,
49
50 not_total_function/4,
51 not_total_bijection/4,
52
53
54 range_restriction_wf/4, range_subtraction_wf/4,
55 in_range_restriction_wf/4, not_in_range_restriction_wf/4,
56 in_range_subtraction_wf/4, not_in_range_subtraction_wf/4,
57 domain_restriction_wf/4, domain_subtraction_wf/4,
58 in_domain_restriction_wf/4, not_in_domain_restriction_wf/4,
59 in_domain_subtraction_wf/4, not_in_domain_subtraction_wf/4,
60 override_relation/4,
61 in_override_relation_wf/4, not_in_override_relation_wf/4,
62 image_wf/4, image_for_closure1_wf/4,
63 special_operator_for_image/3, image_for_special_operator/5, apply_fun_for_special_operator/6,
64
65 in_domain_wf/3, not_in_domain_wf/3,
66 apply_to/4, apply_to/5, apply_to/6,
67 override/5,
68
69 %sum_over_range/2, mul_over_range/2,
70
71 disjoint_union_generalized_wf/3,
72
73 partial_surjection/3, not_partial_surjection_wf/4,
74 partial_surjection_test_wf/5,
75
76 total_relation_wf/4,
77 not_total_relation_wf/4,
78
79 surjection_relation_wf/4, total_surjection_relation_wf/4,
80 not_surjection_relation_wf/4, not_total_surjection_relation_wf/4,
81
82 total_surjection/3, total_surjection_wf/4,
83 not_total_surjection_wf/4,
84
85 partial_injection/3, partial_injection_wf/4,
86 not_partial_injection/4,
87
88 total_injection/3, total_injection_wf/4,
89 not_total_injection/4,
90
91 partial_bijection/3, partial_bijection_wf/4,
92 not_partial_bijection/4,
93
94 relational_trans_closure_wf/3, %relational_reflexive_closure/2,
95 in_closure1_wf/3, not_in_closure1_wf/3
96 ]).
97
98
99 :- use_module(library(terms)).
100 :- use_module(self_check).
101
102 :- use_module(debug).
103 :- use_module(tools).
104
105 :- use_module(module_information,[module_info/2]).
106 :- module_info(group,kernel).
107 :- module_info(description,'This module provides more advanced operations for the basic datatypes of ProB (mainly for relations, functions, sequences).').
108
109 :- use_module(tools_printing).
110
111 :- use_module(delay).
112
113 :- use_module(typechecker).
114 :- use_module(error_manager).
115
116 :- use_module(kernel_objects).
117 :- use_module(kernel_records).
118 :- use_module(kernel_tools).
119
120 :- use_module(kernel_waitflags).
121 :- use_module(kernel_equality,[equality_objects_wf/4]).
122
123 :- use_module(custom_explicit_sets).
124 :- use_module(avl_tools,[avl_fetch_pair/3]).
125 :- use_module(bool_pred,[negate/2]).
126 :- use_module(closures,[is_symbolic_closure/1]).
127 :- use_module(bsyntaxtree, [conjunct_predicates/2,
128 mark_bexpr_as_symbolic/2,
129 create_texpr/4,
130 safe_create_texpr/3,
131 get_texpr_type/2
132 ]).
133
134 /* --------- */
135 /* SEQUENCES */
136 /* ------- - */
137
138 :- assert_must_succeed((bsets_clp:empty_sequence([]))).
139 :- assert_must_fail((bsets_clp:empty_sequence([int(1)]))).
140 ?empty_sequence(X) :- empty_set(X). % TO DO: add WF
141
142 :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:not_empty_sequence([(int(2),int(33)),(int(1),int(22))]))).
143 :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:not_empty_sequence([(int(1),int(33))]))).
144 :- assert_must_succeed(exhaustive_kernel_fail_check(bsets_clp:not_empty_sequence([]))).
145
146 not_empty_sequence(X) :- var(X),!,
147 X = [(int(1),_)|_].
148 not_empty_sequence(X) :- is_custom_explicit_set_nonvar(X),!,
149 is_non_empty_explicit_set(X).
150 not_empty_sequence([(int(_),_)|_]). % clousure, avl_set dealt with clause above
151
152 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_empty_sequence_wf([(int(1),int(33))],WF),WF)).
153 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_empty_sequence_wf([(int(1),pred_true),(int(2),pred_false)],WF),WF)).
154 not_empty_sequence_wf(X,_WF) :- nonvar(X),!, not_empty_sequence(X).
155 not_empty_sequence_wf(X,WF) :-
156 (preferences:preference(use_smt_mode,true) -> not_empty_sequence(X)
157 ; get_enumeration_starting_wait_flag(not_empty_sequence_wf,WF,LWF),
158 not_empty_sequence_lwf(X,LWF)).
159
160 :- block not_empty_sequence_lwf(-,-).
161 not_empty_sequence_lwf(S,_) :- nonvar(S),!,not_empty_sequence(S).
162 not_empty_sequence_lwf([(int(1),_)|_],_).
163
164 :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:is_sequence([(int(1),int(22))],[int(22)]))).
165 :- assert_must_succeed(bsets_clp:is_sequence(closure(['_zzzz_unit_tests'],[couple(integer,integer)],b(member(b(identifier('_zzzz_unit_tests'),couple(integer,integer),[generated]),b(value([(int(1),int(22))]),set(couple(integer,integer)),[])),pred,[])),[int(22)])).
166
167 :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:is_sequence([(int(2),int(33)),(int(1),int(22))],[int(22),int(33),int(44)]))).
168 :- assert_must_succeed(exhaustive_kernel_fail_check(bsets_clp:is_sequence([(int(2),int(33)),(int(1),int(23))],[int(22),int(33),int(44)]))).
169 :- assert_must_succeed(exhaustive_kernel_fail_check(bsets_clp:is_sequence([(int(1),int(33)),(int(0),int(22))],[int(22),int(33),int(44)]))).
170 :- assert_must_succeed(exhaustive_kernel_fail_check(bsets_clp:is_sequence([(int(3),int(33)),(int(1),int(22))],[int(22),int(33),int(44)]))).
171 :- assert_must_succeed((is_sequence(R,global_set('Name')),R = [])).
172 :- assert_must_succeed((is_sequence(R,global_set('Name')),
173 R = [(int(2),fd(1,'Name')),(int(1),fd(2,'Name'))] )).
174 :- assert_must_succeed((is_sequence(R,global_set('Name')),
175 R = [(int(1),fd(2,'Name'))] )).
176 :- assert_must_succeed((is_sequence(R,global_set('Name')),
177 R = [(int(1),fd(1,'Name')),(int(2),fd(2,'Name'))] )).
178 :- assert_must_succeed((is_sequence(R,global_set('Name')),
179 R = [(int(2),fd(1,'Name')),(int(1),fd(1,'Name'))] )).
180 :- assert_must_succeed((is_sequence([(int(2),fd(1,'Name')),(int(1),fd(1,'Name'))],
181 global_set('Name')) )).
182 :- assert_must_succeed((is_sequence(R,[int(1),int(2)]),
183 R = [(int(2),int(2)),(int(1),int(1))] )).
184 :- assert_must_fail((is_sequence(R,[int(1),int(2)]),
185 R = [(int(2),int(2)),(int(3),int(1))] )).
186 :- assert_must_fail((is_sequence(R,[int(1),int(2)]),
187 R = [(int(2),int(2)),(int(1),int(3))] )).
188 :- assert_must_fail((is_sequence(R,global_set('Name')),
189 R = [(int(0),fd(1,'Name')),(int(1),fd(2,'Name'))] )).
190 :- assert_must_succeed((is_sequence(X,global_set('Name')),
191 (preferences:get_preference(randomise_enumeration_order,true) -> true
192 ; kernel_objects:enumerate_basic_type(X,seq(global('Name')))),
193 X = [(int(1),fd(1,'Name'))])). % can take a long time with RANDOMISE_ENUMERATION_ORDER
194
195 is_sequence(X,Type) :- init_wait_flags(WF,[is_sequence]),
196 is_sequence_wf(X,Type,WF),
197 ? ground_wait_flags(WF).
198
199 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:is_sequence_domain([int(1),int(2),int(3)],WF),WF)).
200 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:is_sequence_domain([int(1)],WF),WF)).
201 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:is_sequence_domain([],WF),WF)).
202 :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:is_sequence_domain([int(0)],WF),WF)).
203 :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:is_sequence_domain([int(2),int(3)],WF),WF)).
204 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_is_sequence_domain([int(2),int(3)],WF),WF)).
205 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_is_sequence_domain([int(0)],WF),WF)).
206 :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:not_is_sequence_domain([int(1)],WF),WF)).
207 :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:not_is_sequence_domain([],WF),WF)).
208
209 % check if a set is the domain of a sequence, i.e., an interval 1..n with n>=0
210 :- use_module(custom_explicit_sets,[construct_interval_closure/3]).
211 :- use_module(kernel_cardinality_attr,[finite_cardinality_as_int_wf/3]).
212 :- block is_sequence_domain(-,?).
213 is_sequence_domain(Domain,WF) :-
214 finite_cardinality_as_int_wf(Domain,int(Max),WF),
215 construct_interval_closure(1,Max,Interval), equal_object_wf(Domain,Interval,is_sequence_domain,WF).
216 :- block not_is_sequence_domain(-,?).
217 not_is_sequence_domain(Domain,WF) :-
218 finite_cardinality_as_int_wf(Domain,int(Max),WF),
219 construct_interval_closure(1,Max,Interval), not_equal_object_wf(Domain,Interval,WF).
220
221 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:is_sequence_wf([(int(1),pred_true)],
222 [pred_true,pred_false],WF),WF)).
223 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:is_sequence_wf([(int(1),pred_true),(int(2),pred_false),(int(3),pred_true)],
224 [pred_true,pred_false],WF),WF)).
225 :- assert_must_succeed((bsets_clp:is_sequence_wf([(int(X),R)],[pred_true],_WF),X==1, R==pred_true)).
226 :- assert_must_succeed((bsets_clp:is_sequence_wf([(int(X),R),(int(Y),R)],[pred_true],_WF),X=2,
227 (preferences:preference(use_clpfd_solver,true) -> Y==1 ; Y=1), R==pred_true)).
228
229 is_sequence_wf(Seq,Range,WF) :- is_sequence_wf_ex(Seq,Range,WF,_).
230 % is_sequence_wf_ex also returns expansion; if it was done
231 :- block is_sequence_wf_ex(-,?,?,?).
232 is_sequence_wf_ex(FF,Range,WF,FF) :-
233 nonvar(FF), FF = closure(_,_,_),
234 custom_explicit_sets:is_definitely_maximal_set(Range),
235 % we do not need the Range; this means we can match more closures (e.g., lambda)
236 custom_explicit_sets:dom_for_specific_closure(FF,FFDomain,function(_),WF),!,
237 is_sequence_domain(FFDomain,WF).
238 is_sequence_wf_ex(Seq,Range,WF,Res) :-
239 expand_and_convert_to_avl_set_warn(Seq,AER,is_sequence_wf_ex,'ARG : seq(?)',WF),!,
240 is_avl_sequence(AER),
241 is_avl_relation_over_range(AER,Range,WF),
242 custom_explicit_sets:construct_avl_set(AER,Res).
243 is_sequence_wf_ex(X,Type,WF,EX) :-
244 % try_ensure_seq_numbering(X,1),
245 expand_custom_set_to_list_wf(X,EX,_,is_sequence_wf_ex,WF),
246 is_sequence2(EX,[],Type,0,_MinSize,WF).
247
248 % will make this much faster x:seq(STRING) & card(x)=400 & 401:dom(x) (40 ms rather than > 2 secs)
249 % but this does not work -eval_file /Users/leuschel/git_root/prob_examples/examples/Setlog/prob-ttf/plavis-TransData_SP_21_simplified.prob
250 %:- block try_ensure_seq_numbering(-,?).
251 %try_ensure_seq_numbering([H|T],NextNr) :- var(H),!, print(nr(NextNr)),nl,
252 % H = (int(NextNr),_), N1 is NextNr+1,
253 % try_ensure_seq_numbering(T,N1).
254 %try_ensure_seq_numbering(_,_).
255
256 :- block is_sequence2(-,?,?,?,?,?).
257 is_sequence2([],IndexesSoFar,_Type,Size,MinSize,_WF) :- MinSize = Size,
258 contiguous_set_of_indexes(IndexesSoFar,Size).
259 /* not very good to do the checking at the end; can we move part of the checking earlier ? */
260 is_sequence2([(int(Idx),X)|Tail],IndexesSoFar,Type,Size,MinSize,WF) :-
261 less_than_direct(0,Idx), %is_index_greater_zero(Idx),
262 not_element_of_wf(int(Idx),IndexesSoFar,WF),
263 check_element_of_wf(X,Type,WF), S1 is Size+1,
264 clpfd_interface:clpfd_leq(Idx,MinSize,_Posted),
265 (var(Tail)
266 -> clpfd_interface:clpfd_domain(MinSize,Low,_Up), % TO DO: ensure that final size at least Low
267 (number(Low),Low>S1 -> Tail = [_|_] % TO DO: proper reification; what if MinSize gets constrained later
268 ; expand_seq_if_necessary(Idx,S1,Tail)) % the sequence must be longer; force it
269 ; true
270 ),
271 is_sequence2(Tail,[int(Idx)|IndexesSoFar],Type,S1,MinSize,WF).
272
273 :- block expand_seq_if_necessary(-,?,-).
274 expand_seq_if_necessary(MinSize,S1,Tail) :- % TO DO: proper reification on MinSize above
275 number(MinSize), MinSize>S1, (var(Tail) ; Tail==[]),
276 !,
277 Tail = [_|_].
278 expand_seq_if_necessary(_,_,_).
279
280 :- block contiguous_set_of_indexes(-,?).
281 contiguous_set_of_indexes([],_).
282 contiguous_set_of_indexes([H|T],Size) :- contiguous_set_of_indexes1(T,H,Size).
283
284 :- block contiguous_set_of_indexes1(-,?,?).
285 contiguous_set_of_indexes1([],int(1),_).
286 contiguous_set_of_indexes1([int(H2)|T],int(H1),Size) :- less_than_equal_direct(H1,Size),
287 less_than_equal_direct(H2,Size), less_than_equal_indexes(T,[H1,H2],Size).
288
289
290 less_than_equal_indexes([],All,_) :- clpfd_interface:clpfd_alldifferent(All).
291 less_than_equal_indexes([int(H)|T],All,Size) :- less_than_equal_direct(H,Size),less_than_equal_indexes(T,[H|All],Size).
292
293 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_is_sequence_wf([(int(1),int(6)),(int(2),int(7)),(int(4),int(7))],[int(7),int(6)],WF),WF)).
294 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_is_sequence_wf([(int(1),int(6)),(int(2),int(7)),(int(3),int(8))],[int(7),int(6)],WF),WF)).
295 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_is_sequence_wf([(int(1),int(6)),(int(2),int(7)),(int(1),int(7))],[int(7),int(6)],WF),WF)).
296 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_is_sequence_wf([(int(2),int(6)),(int(3),int(7)),(int(4),int(7))],[int(7),int(6)],WF),WF)).
297 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_is_sequence_wf([(int(1),int(6)),(int(0),int(7)),(int(2),int(7))],[int(7),int(6)],WF),WF)).
298 :- assert_must_succeed(exhaustive_kernel_fail_check(bsets_clp:not_is_sequence([(int(1),int(22))],[int(22)]))).
299 :- assert_must_succeed(exhaustive_kernel_fail_check(bsets_clp:not_is_sequence([(int(2),int(33)),(int(1),int(22))],[int(22),int(33),int(44)]))).
300 :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:not_is_sequence([(int(2),int(33)),(int(1),int(23))],[int(22),int(33),int(44)]))).
301 :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:not_is_sequence([(int(3),int(33)),(int(1),int(22))],[int(22),int(33),int(44)]))).
302 :- assert_must_fail((not_is_sequence(R,global_set('Name')),R = [])).
303 :- assert_must_fail((not_is_sequence(R,global_set('Name')),
304 R = [(int(2),fd(1,'Name')),(int(1),fd(2,'Name'))] )).
305 :- assert_must_fail((not_is_sequence(R,global_set('Name')),
306 R = [(int(1),fd(2,'Name'))] )).
307 :- assert_must_fail((not_is_sequence(R,global_set('Name')),
308 R = [(int(1),fd(1,'Name')),(int(2),fd(2,'Name'))] )).
309 :- assert_must_fail((not_is_sequence(R,global_set('Name')),
310 R = [(int(2),fd(1,'Name')),(int(1),fd(1,'Name'))] )).
311 :- assert_must_fail((not_is_sequence([(int(2),fd(1,'Name')),(int(1),fd(1,'Name'))],
312 global_set('Name')) )).
313 :- assert_must_fail((not_is_sequence(R,[int(1),int(2)]),
314 R = [(int(2),int(2)),(int(1),int(1))] )).
315 :- assert_must_succeed((not_is_sequence(R,[int(1),int(2)]),
316 R = [(int(2),int(2)),(int(3),int(1))] )).
317 :- assert_must_succeed((not_is_sequence(R,[int(1),int(2)]),
318 R = [(int(2),int(2)),(int(1),int(3))] )).
319
320
321 not_is_sequence(X,Type) :- init_wait_flags(WF,[not_is_sequence]),
322 not_is_sequence_wf(X,Type,WF),
323 ground_wait_flags(WF).
324
325 :- block not_is_sequence_wf(-,?,?).
326 not_is_sequence_wf(FF,Range,WF) :- nonvar(FF),custom_explicit_sets:is_definitely_maximal_set(Range),
327 % we do not need the Range; this means we can match more closures (e.g., lambda)
328 custom_explicit_sets:dom_for_specific_closure(FF,FFDomain,function(_),WF),!,
329 not_is_sequence_domain(FFDomain,WF).
330 not_is_sequence_wf(Seq,Range,WF) :-
331 expand_and_convert_to_avl_set_warn(Seq,AER,not_is_sequence_wf,'ARG /: seq(?)',WF),
332 !,
333 (is_avl_sequence(AER) -> is_not_avl_relation_over_range(AER,Range,WF)
334 ; true).
335 not_is_sequence_wf(X,Type,WF) :- expand_custom_set_to_list_wf(X,EX,_Done,not_is_sequence_wf,WF),
336 not_is_sequence2(EX,[],Type,WF).
337
338 :- block not_is_sequence2(-,?,?,?).
339 ?not_is_sequence2([],IndexesSoFar,_,_WF) :- not_contiguous_set_of_indexes(IndexesSoFar).
340 not_is_sequence2([(int(Idx),X)|Tail],IndexesSoFar,Type,WF) :-
341 membership_test_wf(IndexesSoFar,int(Idx),MemRes,WF),
342 ? not_is_sequence3(MemRes,Idx,X,Tail,IndexesSoFar,Type,WF).
343
344 :- block not_is_sequence3(-,?,?,?,?,?,?).
345 not_is_sequence3(pred_true,_Idx,_X,_Tail,_IndexesSoFar,_Type,_WF).
346 not_is_sequence3(pred_false,Idx,_X,_Tail,_IndexesSoFar,_Type,_WF) :- nonvar(Idx),Idx<1,!.
347 not_is_sequence3(pred_false,Idx,X,Tail,IndexesSoFar,Type,WF) :-
348 membership_test_wf(Type,X,MemRes,WF),
349 ? not_is_sequence4(MemRes,Idx,Tail,IndexesSoFar,Type,WF).
350
351 :- block not_is_sequence4(-,?,?,?,?,?).
352 not_is_sequence4(pred_false,_Idx,_Tail,_IndexesSoFar,_Type,_WF).
353 not_is_sequence4(pred_true,Idx,Tail,IndexesSoFar,Type,WF) :-
354 ? not_is_sequence2(Tail,[int(Idx)|IndexesSoFar],Type,WF).
355
356 not_contiguous_set_of_indexes(Indexes) :-
357 ? when(ground(Indexes),(sort(Indexes,Sorted),not_contiguous_set_of_indexes2(Sorted,1))).
358 not_contiguous_set_of_indexes2([int(N)|T],N1) :-
359 ? when(?=(N,N1),
360 ((N \= N1) ; (N=N1, N2 is N1+1, not_contiguous_set_of_indexes2(T,N2)))).
361
362
363
364
365
366 :- assert_must_succeed(exhaustive_kernel_fail_check(bsets_clp:not_is_non_empty_sequence([(int(1),int(22))],[int(22)]))).
367 :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:not_is_non_empty_sequence([(int(1),int(2))],[int(22)]))).
368 :- assert_must_succeed((bsets_clp:not_is_non_empty_sequence(R,global_set('Name')),R = [])).
369 :- assert_must_fail((bsets_clp:not_is_non_empty_sequence(R,global_set('Name')),
370 R = [(int(2),fd(1,'Name')),(int(1),fd(2,'Name'))] )).
371 :- assert_must_succeed((bsets_clp:not_is_non_empty_sequence(R,global_set('Name')),
372 R = [(int(2),fd(1,'Name')),(int(4),fd(2,'Name'))] )).
373 :- assert_must_fail((bsets_clp:not_is_non_empty_sequence(R,global_set('Name')),
374 R = [(int(1),fd(1,'Name')),(int(2),fd(1,'Name'))] )).
375 :- assert_must_succeed((bsets_clp:not_is_non_empty_sequence(R,[int(1),int(2)]),
376 R = [(int(1),int(2)),(int(2),int(3))] )).
377
378 % S /: seq1(T)
379 not_is_non_empty_sequence_wf(S,T,_) :- not_is_non_empty_sequence(S,T).
380 :- block not_is_non_empty_sequence(-,?).
381 not_is_non_empty_sequence([],_) :- !.
382 not_is_non_empty_sequence(X,Type) :-
383 empty_sequence(X) ; not_is_sequence(X,Type).
384
385
386
387 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:injective_sequence_wf([(int(1),int(22))],[int(22)],WF),WF)).
388 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:injective_sequence_wf([(int(2),int(33)),(int(1),int(22))],[int(22),int(33),int(44)],WF),WF)).
389 :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:injective_sequence_wf([(int(2),int(33)),(int(1),int(23))],[int(22),int(33),int(44)],WF),WF)).
390 :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:injective_sequence_wf([(int(2),int(22)),(int(1),int(22))],[int(22),int(33),int(44)],WF),WF)).
391 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:injective_sequence_wf([],global_set('Name'),WF),WF)).
392 :- assert_must_succeed((bsets_clp:injective_sequence_wf(R,global_set('Name'),WF),
393 kernel_waitflags:ground_det_wait_flag(WF), R = [(int(2),fd(1,'Name')),(int(1),fd(2,'Name'))] )).
394 :- assert_must_succeed((bsets_clp:injective_sequence_wf(R,global_set('Name'),WF),
395 ground_det_wait_flag(WF), R = [(int(1),fd(2,'Name'))] )).
396 :- assert_must_succeed((bsets_clp:injective_sequence_wf(R,global_set('Name'),WF),
397 ground_det_wait_flag(WF), R = [(int(1),fd(1,'Name')),(int(2),fd(2,'Name'))] )).
398 :- assert_must_fail((bsets_clp:injective_sequence_wf(R,global_set('Name'),WF),
399 ground_det_wait_flag(WF), R = [(int(2),fd(1,'Name')),(int(1),fd(1,'Name'))] )).
400 :- assert_must_succeed(exhaustive_kernel_fail_check_wf(bsets_clp:injective_sequence_wf([(int(2),fd(1,'Name')),(int(1),fd(1,'Name'))],
401 global_set('Name'),WF),WF) ).
402 :- assert_must_succeed((bsets_clp:injective_sequence_wf(R,[int(1),int(2)],WF),
403 ground_det_wait_flag(WF),R = [(int(2),int(2)),(int(1),int(1))] )).
404 :- assert_must_fail((bsets_clp:injective_sequence_wf(R,[int(1),int(2)],WF),
405 ground_det_wait_flag(WF),R = [(int(2),int(2)),(int(3),int(1))] )).
406 :- assert_must_fail((bsets_clp:injective_sequence_wf(R,[int(1),int(2)],WF),
407 ground_det_wait_flag(WF), R = [(int(2),int(2)),(int(1),int(3))] )).
408
409
410
411 :- block injective_sequence_wf(-,-,?).
412 injective_sequence_wf(Seq,Type,WF) :- /* corresponds to iseq */
413 nonvar(Seq),
414 %expand_and_convert_to_avl_set_warn(Seq,AER,injective_sequence_wf_aux,'ARG : iseq(?)',WF),
415 Seq=avl_set(AER),
416 !,
417 is_avl_sequence(AER),
418 is_injective_avl_relation(AER,_ExactRange), % Should we check _ExactRange <: Type ??
419 is_avl_relation_over_range(AER,Type,WF).
420 injective_sequence_wf(Seq,Type,WF) :-
421 cardinality_as_int_for_wf(Type,MaxCard),
422 custom_explicit_sets:blocking_nr_iseq(MaxCard,ISeqSize),
423 block_get_wait_flag(ISeqSize,injective_sequence_wf,WF,LWF),
424 injective_sequence_wf_aux(Seq,Type,MaxCard,WF,LWF).
425
426 :- block injective_sequence_wf_aux(-,?,?,?,-).
427 injective_sequence_wf_aux(Seq,Type,_,WF,_) :- /* corresponds to iseq */
428 nonvar(Seq),
429 expand_and_convert_to_avl_set_warn(Seq,AER,injective_sequence_wf_aux,'ARG : iseq(?)',WF),!,
430 %Seq=avl_set(AER),
431 !,
432 is_avl_sequence(AER),
433 is_injective_avl_relation(AER,_ExactRange), % Should we check _ExactRange <: Type ??
434 is_avl_relation_over_range(AER,Type,WF).
435 injective_sequence_wf_aux(Seq,Type,MaxCard,WF,LWF) :-
436 expand_custom_set_to_list_wf(Seq,ESeq,_,injective_sequence_wf,WF),
437 is_sequence_wf(ESeq,Type,WF),
438 injective_sequence2(ESeq,0,[],Type,WF,MaxCard,LWF).
439
440 :- block injective_sequence2(-,?,?,?,?,?,-),injective_sequence2(-,?,?,?,?,-,?).
441 injective_sequence2([],_,_,_Type,_WF,_MaxCard,_LWF).
442 injective_sequence2([(int(Index),X)|Tail],CardSoFar,SoFar,Type,WF,MaxCard,LWF) :-
443 (number(MaxCard) -> CardSoFar< MaxCard, %less_than_equal_direct(Index,MaxCard) % does not enumerate index
444 in_nat_range_wf(int(Index),int(0),int(MaxCard),WF) % ensures the index gets enumerated, see test 1914, x:iseq(50001..50002) & y:1..100005 & SIGMA(yy).(yy:dom(x)|x(yy)) = y & y>50002
445 ; true),
446 check_element_of_wf(X,Type,WF),
447 not_element_of_wf(X,SoFar,WF),
448 add_new_element_wf(X,SoFar,SoFar2,WF),
449 C1 is CardSoFar+1,
450 (C1 == MaxCard -> Tail=[] ; true),
451 injective_sequence2(Tail,C1,SoFar2,Type,WF,MaxCard,LWF).
452
453
454 :- assert_must_succeed(exhaustive_kernel_fail_check_wf(bsets_clp:not_injective_sequence([(int(1),int(22))],[int(22)],WF),WF)).
455 :- assert_must_succeed(exhaustive_kernel_fail_check_wf(bsets_clp:not_injective_sequence([(int(2),int(33)),(int(1),int(22))],[int(22),int(33),int(44)],WF),WF)).
456 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_injective_sequence([(int(2),int(33)),(int(1),int(23))],[int(22),int(33),int(44)],WF),WF)).
457 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_injective_sequence([(int(2),int(22)),(int(1),int(22))],[int(22),int(33),int(44)],WF),WF)).
458 :- assert_must_fail((bsets_clp:not_injective_sequence(R,global_set('Name'),_WF),R = [])).
459 :- assert_must_fail((bsets_clp:not_injective_sequence(R,global_set('Name'),WF),
460 ground_det_wait_flag(WF),
461 R = [(int(2),fd(1,'Name')),(int(1),fd(2,'Name'))] )).
462 :- assert_must_fail((bsets_clp:not_injective_sequence(R,global_set('Name'),WF),
463 ground_det_wait_flag(WF),
464 R = [(int(1),fd(2,'Name'))] )).
465 :- assert_must_fail((bsets_clp:not_injective_sequence(R,global_set('Name'),WF),
466 ground_det_wait_flag(WF),
467 R = [(int(1),fd(1,'Name')),(int(2),fd(2,'Name'))] )).
468 :- assert_must_fail((bsets_clp:not_injective_sequence(R,[int(1),int(2)],WF),
469 ground_det_wait_flag(WF),
470 R = [(int(2),int(2)),(int(1),int(1))] )).
471 :- assert_must_succeed((bsets_clp:not_injective_sequence(R,global_set('Name'),WF),
472 ground_det_wait_flag(WF),
473 R = [(int(2),fd(1,'Name')),(int(1),fd(1,'Name'))] )).
474 :- assert_must_succeed((bsets_clp:not_injective_sequence([(int(2),fd(1,'Name')),(int(1),fd(1,'Name'))],
475 global_set('Name'),WF),
476 ground_det_wait_flag(WF) )).
477 :- assert_must_succeed((bsets_clp:not_injective_sequence(R,[int(1),int(2)],WF),
478 ground_det_wait_flag(WF),
479 R = [(int(2),int(2)),(int(3),int(1))] )).
480 :- assert_must_succeed((bsets_clp:not_injective_sequence(R,[int(1),int(2)],WF),
481 ground_det_wait_flag(WF),
482 R = [(int(2),int(2)),(int(1),int(3))] )).
483 :- block not_injective_sequence(-,?,?), not_injective_sequence(?,-,?).
484 not_injective_sequence(Seq,_,_) :- Seq==[],!,fail.
485 not_injective_sequence(Seq,Type,WF) :- nonvar(Seq),
486 expand_and_convert_to_avl_set_warn(Seq,AER,not_injective_sequence,'ARG /: iseq(?)',WF),!,
487 (\+ is_avl_sequence(AER) -> true
488 ; is_injective_avl_relation(AER,ExactRange) -> not_subset_of_wf(ExactRange,Type,WF)
489 ; true).
490 not_injective_sequence(Seq,Type,WF) :- /* corresponds to Iseq */
491 %get_middle_wait_flag(not_injective_sequence,WF,LWF),
492 ground_value_check(Seq,SV),
493 not_injective_sequence1(Seq,Type,WF,SV).
494 :- block not_injective_sequence1(?,?,?,-).
495 not_injective_sequence1(Seq,Type,WF,_) :-
496 expand_custom_set_to_list_wf(Seq,ESeq,_,not_injective_sequence1,WF),
497 (not_is_sequence_wf(ESeq,Type,WF)
498 ; /* CHOICE POINT !! */
499 (is_sequence_wf(ESeq,Type,WF),not_injective_sequence2(ESeq,[],Type,WF))).
500 :- block not_injective_sequence2(-,?,?,?).
501 not_injective_sequence2([(int(_),X)|Tail],SoFar,Type,WF) :-
502 membership_test_wf(SoFar,X,MemRes,WF),
503 not_injective_sequence3(MemRes,X,Tail,SoFar,Type,WF).
504
505 :- block not_injective_sequence3(-,?,?,?,?,?).
506 not_injective_sequence3(pred_true,_X,_Tail,_SoFar,_Type,_WF).
507 not_injective_sequence3(pred_false,X,Tail,SoFar,Type,WF) :-
508 add_new_element_wf(X,SoFar,SoFar2,WF),
509 not_injective_sequence2(Tail,SoFar2,Type,WF).
510
511 :- assert_must_succeed(exhaustive_kernel_fail_check_wf(bsets_clp:not_non_empty_injective_sequence([(int(1),int(22))],[int(22)],WF),WF)).
512 :- assert_must_succeed(exhaustive_kernel_fail_check_wf(bsets_clp:not_non_empty_injective_sequence([(int(2),int(33)),(int(1),int(22))],[int(22),int(33),int(44)],WF),WF)).
513 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_non_empty_injective_sequence([(int(2),int(33)),(int(1),int(23))],[int(22),int(33),int(44)],WF),WF)).
514 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_non_empty_injective_sequence([(int(2),int(33)),(int(1),int(33))],[int(44),int(33),int(22)],WF),WF)).
515 :- assert_must_succeed((bsets_clp:not_non_empty_injective_sequence(R,global_set('Name'),WF),
516 ground_det_wait_flag(WF), R = [])).
517 :- assert_must_fail((bsets_clp:not_non_empty_injective_sequence(R,global_set('Name'),WF),
518 ground_det_wait_flag(WF), R = [(int(1),fd(1,'Name')),(int(2),fd(2,'Name'))] )).
519 :- assert_must_succeed((bsets_clp:not_non_empty_injective_sequence(R,[int(1),int(2)],WF),
520 ground_det_wait_flag(WF), R = [(int(2),int(2)),(int(1),int(3))] )).
521
522 :- block not_non_empty_injective_sequence(-,?,?).
523 not_non_empty_injective_sequence([],_Type,_WF) :- !.
524 not_non_empty_injective_sequence(X,Type,WF) :-
525 empty_sequence(X) ; not_injective_sequence(X,Type,WF).
526
527
528 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:injective_non_empty_sequence([(int(1),int(22))],[int(22)],WF),WF)).
529 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:injective_non_empty_sequence([(int(2),int(33)),(int(1),int(22))],[int(22),int(33),int(44)],WF),WF)).
530 :- assert_must_succeed(exhaustive_kernel_fail_check_wf(bsets_clp:injective_non_empty_sequence([(int(2),int(33)),(int(1),int(23))],[int(22),int(33),int(44)],WF),WF)).
531 :- assert_must_succeed(exhaustive_kernel_fail_check_wf(bsets_clp:injective_non_empty_sequence([(int(2),int(44)),(int(1),int(44))],[int(22),int(33),int(44)],WF),WF)).
532 :- assert_must_fail((bsets_clp:injective_non_empty_sequence(R,global_set('Name'),WF),
533 ground_det_wait_flag(WF),R = [])).
534 :- assert_must_succeed((bsets_clp:injective_non_empty_sequence(R,global_set('Name'),WF),
535 ground_det_wait_flag(WF),R = [(int(1),fd(1,'Name')),(int(2),fd(2,'Name'))] )).
536 :- block injective_non_empty_sequence(-,-,?). /* corresponds to iseq1 */
537 injective_non_empty_sequence(A,Type,WF) :- nonvar(A),A=avl_set(AS), !,
538 injective_sequence_wf(avl_set(AS),Type,WF),is_non_empty_explicit_set_wf(avl_set(AS),WF).
539 injective_non_empty_sequence(Seq,Type,WF) :-
540 ((nonvar(Seq),Seq=closure(_,_,_)) -> try_expand_custom_set_wf(Seq,ESeq,injective_non_empty_sequence,WF) ; ESeq=Seq),
541 injective_sequence_wf(ESeq,Type,WF),not_empty_sequence_wf(ESeq,WF).
542
543 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:finite_non_empty_sequence([(int(1),int(22))],[int(22)],WF),WF)).
544 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:finite_non_empty_sequence([(int(1),int(33)),(int(2),int(33))],[int(22),int(33)],WF),WF)).
545 :- assert_must_fail((bsets_clp:finite_non_empty_sequence(R,global_set('Name'),WF),ground_det_wait_flag(WF),ground_det_wait_flag(WF),R = [])).
546 :- assert_must_succeed((bsets_clp:finite_non_empty_sequence(R,global_set('Name'),WF),
547 ground_det_wait_flag(WF),R = [(int(2),fd(1,'Name')),(int(1),fd(1,'Name'))] )).
548 :- block finite_non_empty_sequence(-,?,?).
549 finite_non_empty_sequence(Seq,Type,WF) :- /* corresponds to Seq1 */
550 is_sequence_wf_ex(Seq,Type,WF,ESeq),
551 (var(ESeq) -> not_empty_sequence_wf(Seq,WF) ; not_empty_sequence_wf(ESeq,WF)).
552
553
554 :- block test_finite_non_empty_sequence(-,?,-,?).
555 test_finite_non_empty_sequence(Seq,_Type,Res,_WF) :-
556 Seq == [],!, Res=pred_false.
557 test_finite_non_empty_sequence(Seq,Type,Res,WF) :- var(Res),!,
558 ground_value_check(Seq,GrSeq),
559 test_finite_non_empty_sequence2(Res,Seq,Type,GrSeq,WF). % will trigger and enumerate Res below
560 % Note: we cannot rely on Res being enumerated; e.g., in case a WD error occurs
561 test_finite_non_empty_sequence(Seq,Type,Res,WF) :-
562 test_finite_non_empty_sequence2(Res,Seq,Type,_,WF).
563
564 % TODO: improve to incrementally check if something is a sequence
565 :- block test_finite_non_empty_sequence2(-,?,?,-,?).
566 test_finite_non_empty_sequence2(pred_true,Seq,Type,_,WF) :-
567 finite_non_empty_sequence(Seq,Type,WF).
568 test_finite_non_empty_sequence2(pred_false,Seq,Type,_,WF) :-
569 not_is_non_empty_sequence_wf(Seq,Type,WF).
570
571
572
573 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:permutation_sequence_wf([(int(1),int(22))],[int(22)],WF),WF)).
574 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:permutation_sequence_wf([(int(2),int(33)),(int(1),int(22))],[int(22),int(33)],WF),WF)).
575 :- assert_must_succeed(exhaustive_kernel_fail_check_wf(bsets_clp:permutation_sequence_wf([(int(2),int(33)),(int(1),int(23))],[int(23),int(33),int(44)],WF),WF)).
576 :- assert_must_succeed(exhaustive_kernel_fail_check_wf(bsets_clp:permutation_sequence_wf([(int(2),int(44)),(int(1),int(44))],[int(44)],WF),WF)).
577 :- assert_must_succeed((kernel_waitflags:init_wait_flags(WF),bsets_clp:permutation_sequence_wf(R,[int(1)],WF),
578 ground_det_wait_flag(WF),R = [(int(1),int(1))] )).
579 :- assert_must_succeed((kernel_waitflags:init_wait_flags(WF),bsets_clp:permutation_sequence_wf(R,[int(1),int(2)],WF),
580 ground_det_wait_flag(WF),R = [(int(1),int(1)),(int(2),int(2))] )).
581 :- assert_must_succeed((bsets_clp:permutation_sequence_wf(R,[int(1),int(2)],WF),
582 ground_det_wait_flag(WF),R = [(int(1),int(2)),(int(2),int(1))] )).
583 :- assert_must_succeed((kernel_waitflags:init_wait_flags(WF),bsets_clp:permutation_sequence_wf(R,[pred_true /* bool_true */,pred_false /* bool_false */],WF), kernel_waitflags:ground_wait_flags(WF), nonvar(R),
584 R = [(int(1),pred_false /* bool_false */),(int(2),pred_true /* bool_true */)] )).
585 :- assert_must_fail((kernel_waitflags:init_wait_flags(WF),bsets_clp:permutation_sequence_wf(R,[int(1)],WF),
586 ground_det_wait_flag(WF),R = [(int(1),int(1)),(int(2),int(1))] )).
587 :- assert_must_fail((kernel_waitflags:init_wait_flags(WF),bsets_clp:permutation_sequence_wf(R,global_set('Name'),WF),ground_det_wait_flag(WF),R = [])).
588 :- assert_must_fail((kernel_waitflags:init_wait_flags(WF),bsets_clp:permutation_sequence_wf(R,global_set('Name'),WF),
589 ground_det_wait_flag(WF),R = [(int(1),fd(1,'Name')),(int(2),fd(2,'Name'))] )).
590 :- assert_must_succeed((bsets_clp:permutation_sequence_wf(R,global_set('Name'),WF),
591 ground_det_wait_flag(WF),
592 kernel_objects:equal_object(R,[(int(1),fd(1,'Name')),(int(3),fd(2,'Name')),(int(2),fd(3,'Name'))]) )).
593 :- assert_must_fail((kernel_waitflags:init_wait_flags(WF),bsets_clp:permutation_sequence_wf(R,[int(1),int(2)],WF),
594 ground_det_wait_flag(WF),R = [(int(1),int(1)),(int(2),int(3))] )).
595 :- assert_must_fail((kernel_waitflags:init_wait_flags(WF),bsets_clp:permutation_sequence_wf(R,global_set('Name'),WF),
596 ground_det_wait_flag(WF),R = [(int(2),fd(1,'Name')),(int(1),fd(1,'Name'))] )).
597 :- assert_must_succeed((kernel_waitflags:init_wait_flags(WF),bsets_clp:permutation_sequence_wf(R,[int(4),int(3),int(2),int(1)],WF),
598 ground_det_wait_flag(WF), R=[(int(1),int(1)),(int(2),int(2)),(int(3),int(3)),(int(4),int(4))])).
599
600 :- block permutation_sequence_wf(-,-,?).
601 permutation_sequence_wf(SeqFF,Type,WF) :- nonvar(SeqFF),
602 custom_explicit_sets:dom_range_for_specific_closure(SeqFF,FFDomain,FFRange,function(bijection),WF),!,
603 equal_object_wf(FFRange,Type,permutation_sequence_wf_1,WF),
604 is_sequence_domain(FFDomain,WF).
605 permutation_sequence_wf(Seq,Type,WF) :-
606 expand_and_convert_to_avl_set_warn(Seq,AER,permutation_sequence_wf,'ARG : perm(?)',WF),!,
607 is_avl_sequence(AER),
608 is_injective_avl_relation(AER,Range),
609 kernel_objects:equal_object_wf(Range,Type,permutation_sequence_wf_2,WF).
610 permutation_sequence_wf(Seq,Type,WF) :-
611 try_expand_custom_set_wf(Seq,ESeq,permutation_sequence_wf,WF),
612 cardinality_as_int_wf(Type,int(Card),WF),
613 when(nonvar(Card), (setup_sequence_wf(Card,SkelSeq,perm,WF),
614 CardGround=true,
615 kernel_objects:equal_object_wf(SkelSeq,ESeq,permutation_sequence_wf_3,WF))),
616 %injective_sequence_wf(ESeq,Type,WF,LWF),
617 surjective_iseq_0(SkelSeq,ESeq,Type,WF,Card,CardGround).
618 % quick_all_different_range(ESeq,[],Type,WF).
619
620 :- block surjective_iseq_0(-,-,?,?,?,-).
621 surjective_iseq_0(SkelSeq,_ESeq,Type,WF,_Card,Ground) :-
622 nonvar(Ground),
623 nonvar(SkelSeq),
624 preference(use_clpfd_solver,true), % try and use an optimized version calling global_cardinality in CLPFD module
625 ? get_global_cardinality_list(Type,YType,GCL,_,WF),
626 % this dramatically reduces runtime for NQueens40_perm; maybe we should do this only when necessary, i.e., when surjective_iseq blocks on PreviousRemoveDone
627 % check why it slows down SortByPermutation_v2
628 !,
629 global_cardinality_range(SkelSeq,[],YType,GCL,WF).
630 surjective_iseq_0(_,ESeq,Type,WF,Card,_) :-
631 %quick_propagate_range(ESeq,Type,WF), % ensure that we propagate type information to all elements; p:perm(5..20) & p(10)=21 will fail straightaway (surjective_iseq will block);
632 % but this slows down EulerWay.mch ; maybe because it sets up enumerators ? TO DO: investigate
633 surjective_iseq(ESeq,Type,WF,Card).
634
635 %:- use_module(clpfd_interface,[clpfd_alldifferent/1]).
636 % collect range and then call CLPFD global_cardinality using GCL (Global Cardinality List Ki-Vi)
637 :- use_module(library(clpfd), [global_cardinality/3]).
638 :- block global_cardinality_range(-,?,?,?,?).
639 global_cardinality_range([],Acc,_Type,GCL,WF) :-
640 global_cardinality(Acc,GCL,[consistency(value)]),
641 add_fd_variables_for_labeling(Acc,WF). % this is needed for efficiency for NQueens40_perm !!
642 global_cardinality_range([(_,Y)|T],Acc,Type,GCL,WF) :-
643 get_simple_fd_value(Type,Y,FDYVAL),
644 global_cardinality_range(T,[FDYVAL|Acc],Type,GCL,WF).
645
646
647 :- use_module(library(avl), [avl_domain/2]).
648 :- use_module(b_global_sets,[all_elements_of_type_wf/3,b_integer_set/1]).
649 % try and convert a B set into a list suitable for calling clpfd:global_cardinality
650 % get_global_cardinality_list(avl_set(A) % TO DO: extend to integer_lists
651 get_global_cardinality_list(global_set(G),Type,GCL,list,WF) :- !,
652 all_elements_of_type_wf(G,Values,WF), % can only work for finite sets, not for STRING, NATURAL, REAL, ...
653 (b_integer_set(G) -> Type=integer ; Type=global(G)),
654 findall(X-1,(get_simple_fd_value(Type,VV,X),member(VV,Values)),GCL).
655 get_global_cardinality_list(avl_set(A),Type,GCL,list,_WF) :- !,
656 A = node(TopValue,_True,_,_,_),
657 ? get_simple_fd_value(Type,TopValue,_), % we have CLPFD values
658 avl_domain(A,Values),
659 findall(X-1,(get_simple_fd_value(Type,VV,X),member(VV,Values)),GCL).
660 get_global_cardinality_list(Set,integer,GCL,interval(L1,U1),_WF) :- nonvar(Set),
661 is_interval_closure_or_integerset(Set,L1,U1), number(L1),number(U1),
662 global_cardinality_list_interval(L1,U1,GCL).
663
664 global_cardinality_list_interval(From,To,[]) :- From>To, !.
665 global_cardinality_list_interval(From,To,[From-1|T]) :-
666 F1 is From+1, global_cardinality_list_interval(F1,To,T).
667
668 %try_get_simple_fd_value(Type,V,Val) :- nonvar(V),get_simple_fd_value(Type,V,Val).
669 get_simple_fd_value(integer,int(X),X).
670 get_simple_fd_value(global(T),fd(X,T),X).
671 % try_get_simple_fd_value(pred_false,0). try_get_simple_fd_value(pred_true,1). ??
672 % TO DO: maybe also treat pairs ? but we need complete values; see module clpfd_lists !
673
674 setup_sequence_wf(0,R,_,_) :- !, R=[].
675 setup_sequence_wf(Card,_,PP,WF) :- \+ number(Card), !,
676 add_error_wf(infinite_sequence,'Cannot generate infinite sequence for', PP,unkown,WF). % triggered in test 1979
677 setup_sequence_wf(Card,[(int(1),_)|T] ,_PP,_WF) :- Card>0, C1 is Card-1,
678 setup_sequence(C1,T,2).
679 setup_sequence(0,R,_) :- !, R=[].
680 setup_sequence(Card,[(int(Nr),_)|T], Nr ) :- Card>0, C1 is Card-1,
681 N1 is Nr+1,
682 setup_sequence(C1,T,N1).
683
684 :- block surjective_iseq(?,?,?,-),surjective_iseq(?,-,?,?), surjective_iseq(-,?,?,?).
685 surjective_iseq(avl_set(S),Type,WF,Done) :-
686 expand_custom_set_wf(avl_set(S),ES,surjective_iseq,WF),
687 surjective_iseq(ES,Type,WF,Done).
688 surjective_iseq(closure(P,T,B),Type,WF,Done) :-
689 expand_custom_set_wf(closure(P,T,B),ES,surjective_iseq,WF),
690 surjective_iseq(ES,Type,WF,Done).
691 % no case for global_set: cannot be a relation
692 surjective_iseq([],T,WF,_) :- empty_set_wf(T,WF).
693 surjective_iseq([(int(_Nr),El)|Tail],Type,WF,_PreviousRemoveDone) :-
694 remove_element_wf(El,Type,NType,WF,Done),
695 surjective_iseq(Tail,NType,WF,Done).
696 :- assert_must_succeed(exhaustive_kernel_fail_check_wf(bsets_clp:not_permutation_sequence([(int(1),int(22))],[int(22)],WF),WF)).
697 :- assert_must_succeed(exhaustive_kernel_fail_check_wf(bsets_clp:not_permutation_sequence([(int(2),int(33)),(int(1),int(22))],[int(22),int(33)],WF),WF)).
698 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_permutation_sequence([(int(2),int(33)),(int(1),int(23))],[int(23),int(33),int(44)],WF),WF)).
699 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_permutation_sequence([(int(2),int(44)),(int(1),int(44))],[int(44)],WF),WF)).
700 :- assert_must_fail((bsets_clp:not_permutation_sequence(R,[int(1)],WF),
701 ground_det_wait_flag(WF),R = [(int(1),int(1))] )).
702 :- assert_must_fail((bsets_clp:not_permutation_sequence(R,[int(1),int(2)],WF),
703 ground_det_wait_flag(WF),R = [(int(2),int(2)),(int(1),int(1))] )).
704 :- assert_must_fail((bsets_clp:not_permutation_sequence(R,[int(1),int(2)],WF),
705 ground_det_wait_flag(WF),R = [(int(1),int(2)),(int(2),int(1))] )).
706 :- assert_must_fail((bsets_clp:not_permutation_sequence(R,global_set('Name'),WF),
707 ground_det_wait_flag(WF), R = [(int(1),fd(1,'Name')),(int(3),fd(2,'Name')),(int(2),fd(3,'Name'))] )).
708 :- assert_must_succeed((bsets_clp:not_permutation_sequence(R,[int(1)],WF),
709 ground_det_wait_flag(WF),R = [(int(1),int(1)),(int(2),int(1))] )).
710 :- assert_must_succeed((bsets_clp:not_permutation_sequence(R,global_set('Name'),_WF),R = [])).
711 :- assert_must_succeed((bsets_clp:not_permutation_sequence(R,global_set('Name'),WF),
712 ground_det_wait_flag(WF),R = [(int(1),fd(1,'Name')),(int(2),fd(2,'Name'))] )).
713 :- assert_must_succeed((bsets_clp:not_permutation_sequence(R,[int(1),int(2)],WF),
714 ground_det_wait_flag(WF),R = [(int(1),int(1)),(int(2),int(3))] )).
715 :- assert_must_succeed((bsets_clp:not_permutation_sequence(R,global_set('Name'),WF),
716 ground_det_wait_flag(WF),R = [(int(2),fd(1,'Name')),(int(1),fd(1,'Name'))] )).
717 :- block not_permutation_sequence(-,?,?).
718 not_permutation_sequence(SeqFF,Type,WF) :- nonvar(SeqFF),
719 custom_explicit_sets:dom_range_for_specific_closure(SeqFF,FFDomain,FFRange,function(bijection),WF),!,
720 equality_objects_wf(FFRange,Type,Result,WF),
721 when(nonvar(Result),(Result=pred_false -> true ; not_is_sequence_domain(FFDomain,WF))).
722 not_permutation_sequence(Seq,Type,WF) :-
723 ground_value_check(Seq,SV),
724 ? not_permutation_sequence1(Seq,Type,SV,WF).
725 :- block not_permutation_sequence1(?,-,?,?), not_permutation_sequence1(?,?,-,?).
726 not_permutation_sequence1(avl_set(A),Type,_,WF) :- is_ground_set(Type), !, Seq=avl_set(A),
727 if(not_injective_sequence(Seq,Type,WF),
728 true, % no backtracking required; we could even use regular if with ->
729 not_surj_avl(Seq,Type,WF)
730 ).
731 not_permutation_sequence1(avl_set(A),Type,_,WF) :- !, Seq=avl_set(A),
732 (not_injective_sequence(Seq,Type,WF)
733 ; injective_sequence_wf(Seq,Type,WF),
734 not_surj_avl(Seq,Type,WF)).
735 not_permutation_sequence1(Seq,Type,_,WF) :-
736 expand_custom_set_to_list_wf(Seq,ESeq,Done,not_permutation_sequence1,WF),
737 ? not_permutation_sequence2(ESeq,Type,WF,Done).
738
739 not_surj_avl(Seq,Type,WF) :- range_wf(Seq,Range,WF),
740 not_equal_object_wf(Range,Type,WF). % TO DO: one could even just check cardinality as Seq is inj
741 %expand_custom_set_to_list_wf(Seq,ESeq,_,not_permutation_sequence1,WF),
742 % not_surjective_seq(ESeq,Type,WF).
743 % check if it is a ground set that cannot be instantiated
744 is_ground_set(V) :- var(V),!,fail.
745 is_ground_set(avl_set(_)).
746 is_ground_set(global_set(_)).
747 is_ground_set([]).
748
749 % here we could have a choice point in WF0
750 :- block not_permutation_sequence2(?,?,?,-).
751 not_permutation_sequence2(Seq,Type,WF,_) :- not_injective_sequence(Seq,Type,WF).
752 not_permutation_sequence2(Seq,Type,WF,_) :-
753 injective_sequence_wf(Seq,Type,WF), not_surjective_seq(Seq,Type,WF).
754
755 :- block not_surjective_seq(-,?,?).
756 not_surjective_seq([],T,WF) :- not_empty_set_wf(T,WF).
757 not_surjective_seq([(int(_),El)|Tail],Type,WF) :-
758 delete_element_wf(El,Type,NType,WF),
759 not_surjective_seq(Tail,NType,WF).
760
761 :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:size_of_sequence([(int(1),int(22))],int(1),_WF))).
762 :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:size_of_sequence([(int(2),int(22)),(int(1),int(22))],int(2),_WF))).
763 :- assert_must_succeed(exhaustive_kernel_fail_check(bsets_clp:size_of_sequence([(int(2),int(22)),(int(1),int(22))],int(3),_WF))).
764 :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:size_of_sequence([(int(2),int(22)),(int(1),int(22)),(int(3),int(33))],int(3),_WF))).
765 :- assert_must_succeed((bsets_clp:size_of_sequence(X,R,_WF),
766 X = [(int(1),int(2)),(int(2),int(1))],
767 R = int(2))).
768 :- assert_must_succeed((preferences:preference(use_clpfd_solver,false) -> true
769 ; preferences:preference(use_smt_mode,false) -> true
770 ; bsets_clp:size_of_sequence(X,R,_WF), R=int(RI),
771 clpfd_interface:clpfd_geq2(RI,2,_), nonvar(X), X = [(I1,_),(I2,_)|T],
772 I1==int(1), I2==int(2), T=[], RI==2 )).
773 :- assert_must_succeed((bsets_clp:size_of_sequence(X,R,_WF),X = [(int(1),_),(int(2),_)],R = int(2))).
774 :- assert_must_succeed((bsets_clp:size_of_sequence(X,_R,_WF),X =[(int(1),_),(int(2),_)] )).
775 :- assert_must_succeed_any((bsets_clp:size_of_sequence(X,int(2),_WF),nonvar(X),X=[_|Y],nonvar(Y),Y=[_|Z],Z==[])).
776 :- assert_must_succeed((bsets_clp:size_of_sequence([],int(0),_WF))).
777 :- assert_must_succeed((bsets_clp:size_of_sequence([],int(0),_WF))).
778 :- assert_must_succeed((bsets_clp:size_of_sequence([(int(1),int(4))],int(1),_WF))).
779 :- assert_must_succeed((bsets_clp:size_of_sequence([],_,_WF))).
780 :- assert_must_fail((bsets_clp:size_of_sequence(X,int(1),_WF),
781 X = [(int(1),_),(int(2),_)|_])).
782 :- block size_of_sequence(-,-,?).
783 ?size_of_sequence(Seq,int(Res),WF) :- size_of_sequence1(Seq,Res,WF),
784 set_up_sequence_skel(Seq,Res,WF).
785
786 % setup sequence skeleton if we have some CLPFD bounds information about the size
787 % currently still quite limited: only sets up if sequence is a variable; + does the setup only once
788 :- use_module(library(clpfd), [(#<=>)/2]).
789 :- use_module(clpfd_interface,[clpfd_domain/3]).
790 set_up_sequence_skel(Seq,Res,WF) :-
791 var(Seq), % to do: also deal with cases when Seq partially instantiated
792 var(Res),
793 preferences:preference(use_clpfd_solver,true),
794 !,
795 clpfd_interface:clpfd_geq2(Res,0,_), % assert that size must not be negative
796 clpfd_interface:try_post_constraint((Res#>0) #<=> Trigger), % generate reified trigger for when we can instantiate Seq
797 set_up_sequence_skel_aux(Seq,Res,Trigger,WF).
798 set_up_sequence_skel(_,_,_). % TO DO: check if Size interval shrinks
799 :- block set_up_sequence_skel_aux(-,?,-,?).
800 set_up_sequence_skel_aux(Seq,_Res,_Trigger,_WF) :-
801 nonvar(Seq),
802 !. % to do: also deal with cases when Seq partially instantiated
803 set_up_sequence_skel_aux(Seq,Res,_Trigger,_WF) :-
804 (number(Res) ; preferences:preference(use_smt_mode,true)),
805 !,
806 gen_seq_for_res(Res,Seq).
807 set_up_sequence_skel_aux(Seq,Res,_Trigger,WF) :-
808 get_large_finite_wait_flag(set_up_sequence_skel,WF,LWF), % delay, avoid costly unification with partially instantaited list skeleton; TO DO: in future we may use the kernel_cardinality attribute instead
809 when((nonvar(LWF) ; nonvar(Seq) ; nonvar(Res)), (nonvar(Seq) -> true ; gen_seq_for_res(Res,Seq))).
810
811 gen_seq_for_res(Res,Seq) :-
812 clpfd_domain(Res,FDLow,FDUp), % FDLow could also be 0
813 gen_sequence_skeleton(1,FDLow,FDUp,S),
814 Seq=S.
815 gen_sequence_skeleton(N,M,FDUp,S) :- N>M,!,(FDUp==M -> S=[] ; true).
816 gen_sequence_skeleton(N,Max,FDUp,[(int(N),_)|T]) :-
817 N1 is N+1,
818 gen_sequence_skeleton(N1,Max,FDUp,T).
819
820 :- block size_of_sequence1(-,-,?).
821 size_of_sequence1(Seq,ResInt,WF) :-
822 nonvar(Seq),is_custom_explicit_set_nonvar(Seq),
823 size_of_custom_explicit_set(Seq,Size,WF),!,
824 ? equal_object_wf(Size,int(ResInt),size_of_sequence1,WF).
825 /* TO DO: CHECK BELOW: would it not be better to use cardinality ?? */
826 /*
827 size_of_sequence1(Seq,Size,WF) :- !,kernel_cardinality_attr:finite_cardinality_as_int_wf(Seq,int(Size),WF), check_indexes(Seq,Size).
828
829 construct_interval_closure(1,Size,Domain),
830 total_function_wf(FF,Domain,Range,_WF)
831 % we could also call total_function 1..Size --> _RangeType; would setup domain ?
832 :- block check_indexes(-,?).
833 check_indexes([],_) :- !.
834 check_indexes([(int(X),_)|T],Size) :- !,
835 less_than_equal_direct(X,Size), check_indexes(T,Size).
836 check_indexes(_,_).
837 */
838 ?size_of_sequence1(Seq,Size,_WF) :- Size==0,!, empty_sequence(Seq).
839 size_of_sequence1(Seq,Size,WF) :-
840 expand_custom_set_to_list_wf(Seq,ESeq,_,size_of_sequence1,WF),
841 ? (var(ESeq),nonvar(Size) -> size_of_var_seq(ESeqR,0,Size),
842 ESeqR=ESeq % unify after to do propagation in one go, without triggering coroutines inbetween
843 ? ; size_of_seq2(ESeq,0,Size),
844 (var(Size),var(ESeq) -> less_than_equal_direct(0,Size) % propagate that Size is positive
845 ; true)
846 ).
847 /* small danger of expanding closure while still var !*/
848 :- block size_of_seq2(-,?,-).
849 size_of_seq2([],Size,Size).
850 size_of_seq2([I|Tail],SizeSoFar,Res) :-
851 S2 is SizeSoFar + 1,
852 ? check_index(I,Res), % don't instantiate I yet; allow other kernel_predicates to freely instantiate it
853 less_than_equal_direct(S2,Res),
854 %(ground(Res) -> safe_less_than_equal(size_of_seq2,S2,Res) ; true),
855 ? size_of_seq2(Tail,S2,Res).
856 size_of_var_seq([],Size,Size).
857 size_of_var_seq([(int(S2),_)|Tail],SizeSoFar,Res) :-
858 S2 is SizeSoFar + 1,safe_less_than_equal(size_of_var_seq,S2,Res),
859 ? (var(Tail) -> size_of_var_seq(Tail,S2,Res) ; size_of_seq2(Tail,S2,Res)).
860
861
862 :- block check_index(-,?).
863 ?check_index((I,_),Res) :- check_index1(I,Res).
864 :- block check_index1(-,?).
865 ?check_index1(int(Idx),Res) :- less_than_equal_direct(Idx,Res).
866
867 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:prepend_sequence(int(33),[(int(1),int(22))],[(int(2),int(22)),(int(1),int(33))],WF),WF)).
868 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:prepend_sequence(int(33),[],[(int(1),int(33))],WF),WF)).
869 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:prepend_sequence(int(33),[(int(2),int(44)),(int(1),int(22))],[(int(1),int(33)),(int(3),int(44)),(int(2),int(22))],WF),WF)).
870 :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:prepend_sequence(int(33),[(int(1),int(22))],[(int(1),int(22)),(int(2),int(33))],WF),WF)).
871 :- assert_must_succeed((bsets_clp:prepend_sequence(int(7),[],[(int(1),int(7))],_WF))).
872 :- assert_must_succeed((bsets_clp:prepend_sequence(int(7),X,R,_WF),
873 X = [(int(2),int(4)),(int(1),int(3))],
874 kernel_objects:equal_object(R,[(int(1),int(7)),(int(2),int(3)),(int(3),int(4))]))).
875 % code for insert_front operator: El -> Seq
876 :- block prepend_sequence(?,-,-,?).
877 prepend_sequence(El,Seq,Res,_WF) :- Seq==[],!,
878 equal_object_optimized([(int(1),El)],Res,prepend_sequence).
879 prepend_sequence(El,Seq,Res,WF) :- nonvar(Seq),is_custom_explicit_set(Seq,prepend_sequence),
880 prepend_custom_explicit_set(Seq,El,ERes),!,
881 equal_sequence(Res,ERes,WF).
882 prepend_sequence(El,Seq,Res,WF) :- nonvar(Res),is_custom_explicit_set(Res,prepend_sequence),
883 tail_sequence_custom_explicit_set(Res,First,Tail,unknown,WF),!,
884 equal_object_wf(El,First,prepend_sequence,WF),
885 equal_sequence(Seq,Tail,WF).
886 prepend_sequence(El,Seq,Res,WF) :-
887 equal_cons_wf(Res,(int(1),El),ShiftSeq,WF),
888 shift_seq_indexes(Seq,1,ShiftSeq,WF).
889
890 :- block shift_seq_indexes(-,-,?,?),shift_seq_indexes(-,?,-,?).
891 shift_seq_indexes(Seq,Offset,ShiftedSeq,WF) :-
892 Offset == 0,!, equal_sequence(Seq,ShiftedSeq,WF).
893 shift_seq_indexes(Seq,Offset,ShiftedSeq,WF) :- nonvar(Seq),!,
894 expand_custom_set_to_list_wf(Seq,ESeq,_,shift_seq_indexes,WF),
895 shift_seq_indexes2(ESeq,Offset,ShiftedSeq,WF,Done),
896 (Done == done
897 -> true
898 ; % also propagate in the other way: TO DO: make a more efficient fine-grained two-ways propagation; maybe using CHR
899 NegOffset is -Offset,
900 expand_custom_set_to_list_wf(ShiftedSeq,ESeq1,_,shift_seq_indexes,WF),
901 shift_seq_indexes2(ESeq1,NegOffset,ESeq,WF,_)).
902 shift_seq_indexes(Seq,Offset,ShiftedSeq,WF) :- NegOffset is -Offset,
903 % compute in the other direction; TO DO: make a more efficient fine-grained two-ways propagation; maybe using CHR
904 expand_custom_set_to_list_wf(ShiftedSeq,ESeq,_,shift_seq_indexes,WF),
905 shift_seq_indexes2(ESeq,NegOffset,Seq,WF,Done),
906 (Done == done
907 -> true
908 ; % also propagate in the original way:
909 expand_custom_set_to_list_wf(Seq,ESeq1,_,shift_seq_indexes,WF),
910 shift_seq_indexes2(ESeq1,Offset,ESeq,WF,_)).
911
912 :- block shift_seq_indexes2(-,?,?,?,?).
913 ?shift_seq_indexes2([],_,R,WF,Done) :- !, Done = done, empty_set_wf(R,WF).
914 shift_seq_indexes2([Pair|Tail],Offset,Res,WF,Done) :- !,
915 Pair = (int(N),El),
916 ? equal_cons_wf(Res,(int(NewN),El),ShiftTail,WF),
917 int_plus(int(N),int(Offset),int(NewN)),
918 shift_seq_indexes2(Tail,Offset,ShiftTail,WF,Done).
919 shift_seq_indexes2(Seq,Offset,Res,WF,Done) :-
920 add_internal_error('Unexpected set argument: ',shift_seq_indexes2(Seq,Offset,Res,WF,Done)), fail.
921
922 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:append_sequence([(int(1),int(22))],int(33),[(int(2),int(33)),(int(1),int(22))],WF),WF)).
923 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:append_sequence([],int(33),[(int(1),int(33))],WF),WF)).
924 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:append_sequence([(int(2),int(44)),(int(1),int(22))],int(33),[(int(1),int(22)),(int(3),int(33)),(int(2),int(44))],WF),WF)).
925 :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:append_sequence([(int(1),int(22))],int(33),[(int(1),int(33)),(int(2),int(22))],WF),WF)).
926 :- assert_must_succeed((bsets_clp:append_sequence([],int(7),[(int(1),int(7))],_WF))).
927 :- assert_must_succeed((bsets_clp:append_sequence(X,int(7),R,_WF),
928 X = [(int(2),int(4)),(int(1),int(3))],
929 kernel_objects:equal_object(R,[(int(1),int(3)),(int(2),int(4)),(int(3),int(7))]))).
930
931 % code for the insert_tail operator Seq<-El
932 :- block append_sequence(-,?,-,?).
933 append_sequence(Seq,El,Res,_WF) :- Seq==[],!,
934 equal_object_optimized([(int(1),El)],Res,append_sequence).
935 append_sequence(Seq,El,Res,WF) :-
936 nonvar(Seq),is_custom_explicit_set_nonvar(Seq),
937 append_custom_explicit_set(Seq,El,ERes,WF),!,
938 equal_sequence(Res,ERes,WF).
939 append_sequence(Seq,El,Res,WF) :-
940 nonvar(Res),is_custom_explicit_set_nonvar(Res),
941 % we know result: deconstruct into last El and front Seq
942 front_sequence_custom_explicit_set(Res,Last,Front), !,
943 equal_object_wf(El,Last,append_sequence,WF),
944 equal_sequence(Seq,Front,WF).
945 append_sequence(Seq,El,Res,WF) :-
946 (var(Seq) -> size_of_sequence(Res,INewSize,WF), INewSize=int(NewSize) ; true),
947 equal_cons_wf(Res,(int(NewSize),El),ResT,WF),
948 append_sequence2(Seq,ResT,NewSize,WF).
949
950 :- block append_sequence2(-,?,-,?).
951 append_sequence2(Seq,ResT,_NewSize,WF) :- var(Seq),!,
952 equal_sequence(Seq,ResT,WF).
953 append_sequence2(Seq,ResT,NewSize,WF) :-
954 try_expand_custom_set_wf(Seq,ESeq,append_sequence2,WF),
955 equal_sequence(ESeq,ResT,WF),
956 size_of_sequence(ESeq,Size,WF),
957 int_plus(Size,int(1),int(NewSize)).
958
959 :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:prefix_sequence([(int(1),int(22))],int(1),[(int(1),int(22))]))).
960 :- assert_must_succeed(exhaustive_kernel_succeed_check(bsets_clp:prefix_sequence([(int(2),int(22)),(int(3),int(33)),(int(1),int(11))],int(2),[(int(1),int(11)),(int(2),int(22))]))).
961 :- assert_must_succeed(exhaustive_kernel_fail_check(bsets_clp:prefix_sequence([(int(2),int(22)),(int(3),int(33)),(int(1),int(11))],int(3),[(int(1),int(11)),(int(2),int(22))]))).
962 :- assert_must_succeed((bsets_clp:prefix_sequence(X,int(1),X),X = [(int(1),int(1))])).
963 :- assert_must_succeed((bsets_clp:prefix_sequence(X,int(0),[]),X = [(int(1),int(1))])).
964 :- assert_must_abort_wf((bsets_clp:prefix_sequence_wf(X,int(-1),_R,WF),X = [(int(1),int(1))]),WF).
965 :- assert_must_succeed((bsets_clp:prefix_sequence(X,int(2),Y),
966 X = [(int(2),int(3)),(int(3),int(4)),(int(1),int(1))],
967 kernel_objects:equal_object(Y,[(int(1),int(1)),(int(2),int(3))]) )).
968 :- assert_must_succeed((bsets_clp:prefix_sequence(X,int(1),Y),
969 X = [(int(2),int(3)),(int(3),int(4)),(int(1),int(1))],
970 kernel_objects:equal_object(Y,[(int(1),int(1))]) )).
971 :- assert_must_succeed((bsets_clp:prefix_sequence(X,int(3),Y),
972 X = [(int(2),int(3)),(int(3),int(4)),(int(1),int(1))],
973 kernel_objects:equal_object(Y,X) )).
974
975 prefix_sequence(Seq,N,R) :- init_wait_flags(WF,[prefix_sequence]),
976 ? prefix_sequence_wf(Seq,N,R,WF),
977 ? ground_wait_flags(WF).
978
979 % Prefix of a sequence (s /|\ n)
980 prefix_sequence_wf(Seq,int(Num),Res,WF) :-
981 ? prefix_sequence1(Seq,Num,Res,WF),
982 ? propagate_size(Res,Num,WF).
983
984 % the size of the result of (s /|\ n) is the number n
985 :- block propagate_size(-,-,?).
986 propagate_size(Res,Num,WF) :-
987 var(Res),!,
988 (Num<0 -> preferences:preference(disprover_mode,false) % don't do anything; we may want to generate WD error
989 ? ; Num < 4 -> size_of_sequence(Res,int(Num),WF)
990 ; Prio is 1+Num // 100,
991 get_wait_flag(Prio,propagate_size,WF,LWF), % avoid setting up very large skeletons too early
992 block_size_of_sequence(LWF,Res,int(Num),WF)
993 ).
994 propagate_size(_,Num,_) :- number(Num), !. % no need to propagate
995 propagate_size(_,_Num,_) :- \+ preferences:preference(find_abort_values,false),
996 !. % do not propagate as we could prevent detection of WD errors below
997 propagate_size([],Num,_WF) :- !,
998 Num=0. % Note: this could prevent a wd-error being detected
999 propagate_size(avl_set(A),Num,WF) :- var(Num),
1000 % with partially instantated sets we get slowdowns (SimpleCSGGrammar2_SlowCLPFD)
1001 % TO DO: treat list skeletons
1002 !,
1003 ? size_of_sequence(avl_set(A),int(Num),WF). % Note: this could prevent a wd-error being detected
1004 propagate_size(_,_,_). % should we also propagate the other way around ?
1005
1006 :- block block_size_of_sequence(-,?,?,?).
1007 block_size_of_sequence(_,Seq,Size,WF) :- size_of_sequence(Seq,Size,WF).
1008
1009 :- block prefix_sequence1(-,?,?,?), prefix_sequence1(?,-,?,?).
1010 prefix_sequence1(_Seq,Num,Res,WF) :- Num==0,!, empty_set_wf(Res,WF).
1011 prefix_sequence1(_Seq,Num,_Res,WF) :- Num<0,!, % according to version 1.8.8 of Atelier-B manual Num must be in 0..size(_Seq)
1012 add_wd_error('negative index in prefix_sequence (/|\\)! ', Num,WF).
1013 prefix_sequence1(Seq,Num,Res,WF) :-
1014 is_custom_explicit_set(Seq,prefix),
1015 prefix_of_custom_explicit_set(Seq,Num,ERes,WF),!, % TO DO: check Num <= size(Seq)
1016 equal_object_wf(Res,ERes,prefix_sequence1,WF).
1017 prefix_sequence1(Seq,Num,Res,WF) :-
1018 expand_custom_set_to_list_wf(Seq,ESeq,_,prefix_sequence1,WF),
1019 unify_same_index_elements(Res,ESeq,WF),
1020 unify_same_index_elements(Seq,Res,WF),
1021 ? prefix_seq(ESeq,Num,0,Res,WF).
1022 :- block prefix_seq(-,?,?,?,?).
1023 prefix_seq([],Max,Sze,Res,WF) :-
1024 (less_than_direct(Sze,Max)
1025 -> add_wd_error('index larger than size of sequence in prefix_sequence (/|\\)! ', (Max,Sze),WF)
1026 ; true),
1027 empty_set_wf(Res,WF).
1028 %(less_than(int(_Sze),int(_Max))
1029 % -> (print_message('Index bigger than sequence size in prefix_sequence (/|\\) !'),
1030 % print_message(Max))
1031 % /* in the AtelierB book this is allowed, in Wordsworth + AMN on web it is not ?? */
1032 % ; true).
1033 prefix_seq([(int(N),El)|Tail],Max,SizeSoFar,Res,WF) :-
1034 ? prefix_seq2(N,El,Tail,Max,SizeSoFar,Res,WF).
1035 :- block prefix_seq2(-,?,?,?,?,?,?).
1036 prefix_seq2(N,El,Tail,Max,SizeSoFar,Res,WF) :- % SizeSoFar is always ground
1037 ? (less_than_equal_direct(N,Max), equal_cons_wf(Res,(int(N),El),PTail,WF)
1038 ;
1039 less_than_direct(Max,N), equal_object_wf(Res,PTail,prefix_seq2,WF)
1040 ),
1041 ( SizeSoFar<N -> NewSizeSoFar=N ; NewSizeSoFar = SizeSoFar ),
1042 ? prefix_seq(Tail,Max,NewSizeSoFar,PTail,WF).
1043
1044 :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:suffix_sequence([(int(1),int(22))],int(0),[(int(1),int(22))],WF),ground_det_wait_flag(WF))).
1045 :- assert_must_succeed(exhaustive_kernel_succeed_check(bsets_clp:suffix_sequence([(int(2),int(22)),(int(3),int(33)),(int(1),int(11))],int(1),[(int(1),int(22)),(int(2),int(33))],_WF))).
1046 :- assert_must_succeed(exhaustive_kernel_fail_check(bsets_clp:suffix_sequence([(int(2),int(22)),(int(3),int(33)),(int(1),int(11))],int(2),[(int(1),int(22)),(int(2),int(33))],_WF))).
1047 :- assert_must_succeed((bsets_clp:suffix_sequence(X,int(0),X,_WF),X = [(int(1),int(1))])).
1048 :- assert_must_succeed((bsets_clp:suffix_sequence(X,int(1),[],_WF),X = [(int(1),int(1))])).
1049 :- assert_must_succeed((bsets_clp:suffix_sequence(X,int(2),Y,_WF),
1050 X = [(int(2),int(3)),(int(3),int(4)),(int(1),int(1))],
1051 kernel_objects:equal_object(Y,[(int(1),int(4))]) )).
1052 :- assert_must_succeed((bsets_clp:suffix_sequence(X,int(1),Y,_WF),
1053 X = [(int(2),int(3)),(int(3),int(4)),(int(1),int(1))],
1054 kernel_objects:equal_object(Y,[(int(1),int(3)),(int(2),int(4))]) )).
1055 :- assert_must_succeed((bsets_clp:suffix_sequence(X,int(2),Y,_WF),
1056 X = [(int(2),int(3)),(int(3),int(4)),(int(1),int(1))],
1057 kernel_objects:equal_object(Y,[(int(1),int(4))]) )).
1058 :- assert_must_abort_wf(bsets_clp:suffix_sequence([(int(1),int(11)),(int(2),int(22))],int(-1),_R,WF),WF).
1059 :- assert_must_abort_wf(bsets_clp:suffix_sequence([(int(1),int(11)),(int(2),int(22))],int(3),_R,WF),WF).
1060
1061 % kernel_waitflags:assert_must_abort2_wf(bsets_clp:suffix_sequence([int(11),int(22)],int(-1),_R,WF),WF)
1062
1063 % suffix of a sequence (s \|/ n); also called restrict at tail (Atelier B) or Drop
1064 :- block suffix_sequence(-,?,?,?).
1065 suffix_sequence(Seq,int(Num),Res,WF) :-
1066 ? suffix_sequence1(Seq,Num,Res,WF).
1067 :- block suffix_sequence1(?,-,?,?).
1068 suffix_sequence1(Seq,Num,Res,WF) :- Num==0, !, equal_object_wf(Res,Seq,suffix_sequence1_1,WF).
1069 suffix_sequence1(_Seq,Num,_Res,WF) :- Num<0, !, add_wd_error('negative index in suffix_sequence (\\|/)! ', Num,WF).
1070 suffix_sequence1(Seq,Num,Res,WF) :- is_custom_explicit_set(Seq,suffix),
1071 suffix_of_custom_explicit_set(Seq,Num,ERes,WF),!,
1072 equal_object_wf(Res,ERes,suffix_sequence1_2,WF).
1073 suffix_sequence1(Seq,Num,Res,WF) :-
1074 ? expand_custom_set_to_list_wf(Seq,ESeq,_,suffix_sequence,WF), suffix_seq(ESeq,Num,0,Res,WF).
1075 :- block suffix_seq(-,?,?,?,?).
1076 suffix_seq([],Max,Sze,Res,WF) :-
1077 (less_than_direct(Sze,Max)
1078 -> add_wd_error('index larger than size of sequence in suffix_sequence (\\|/)! ', '>'(Max,Sze),WF)
1079 ; true), empty_set_wf(Res,WF).
1080 suffix_seq([(int(N),El)|Tail],Max,SizeSoFar,Res,WF) :-
1081 ? suffix_seq2(N,El,Tail,Max,SizeSoFar,Res,WF).
1082 :- block suffix_seq2(-,?,?,?,?,?,?).
1083 suffix_seq2(N,El,Tail,Max,SizeSoFar,Res,WF) :-
1084 (less_than_equal_direct(N,Max), equal_object_wf(Res,PTail,suffix_seq2,WF)
1085 ;
1086 less_than_direct(Max,N),int_minus(int(N),int(Max),int(NN)),
1087 equal_cons_wf(Res,(int(NN),El),PTail,WF)
1088 ),
1089 (N>SizeSoFar -> (NewSizeSoFar=N)
1090 ; (NewSizeSoFar = SizeSoFar)),
1091 ? suffix_seq(Tail,Max,NewSizeSoFar,PTail,WF).
1092
1093
1094
1095 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:concat_sequence([],[(int(1),int(33))],[(int(1),int(33))],WF),WF)).
1096 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:concat_sequence([(int(1),int(22)),(int(2),int(33))],[(int(1),int(33)),(int(2),int(44))],[(int(2),int(33)),(int(3),int(33)),(int(1),int(22)),(int(4),int(44))],WF),WF)). % not wfdet because of pending label_el_nr from clpfd_lists
1097 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:concat_sequence([(int(1),int(22))],[(int(1),int(33))],[(int(2),int(33)),(int(1),int(22))],WF),WF)).
1098 :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:concat_sequence([(int(1),int(22))],[(int(1),int(33))],[(int(2),int(22)),(int(1),int(33))],WF),WF)).
1099 :- assert_must_succeed((bsets_clp:concat_sequence([],X,Y,_WF),
1100 X = [(int(1),int(1))], Y==X)).
1101 :- assert_must_succeed((bsets_clp:concat_sequence(X,[],Y,_WF), X = [(int(1),int(1))], Y==X)).
1102 :- assert_must_succeed((bsets_clp:concat_sequence([(int(1),int(1))],[],Y,_WF), Y==[(int(1),int(1))])).
1103 :- assert_must_succeed((bsets_clp:concat_sequence(X,X,Y,_WF),
1104 X = [(int(1),int(1))], kernel_objects:equal_object(Y,[(int(1),int(1)),(int(2),int(1))]))).
1105 :- assert_must_succeed((bsets_clp:concat_sequence(X,X,Y,_WF),
1106 X = [(int(2),int(88)),(int(1),int(77))],
1107 kernel_objects:equal_object(Y,[(int(1),int(77)),(int(2),int(88)),(int(3),int(77)),(int(4),int(88))]))).
1108
1109 :- block /* concat_sequence(-,-,?,?), */
1110 concat_sequence(?,-,-,?), concat_sequence(-,?,-,?).
1111 concat_sequence(S1,S2,Res,WF) :- Res==[],!, empty_set_wf(S1,WF), empty_set_wf(S2,WF).
1112 concat_sequence(S1,S2,Res,WF) :-
1113 (var(S1),var(S2) -> get_wait_flag(2,concat,WF,LWF) % we have at least two solutions; TODO maybe use cardinality as wait_flag?
1114 ; LWF=1),
1115 ? concat_sequence2(LWF,S1,S2,Res,WF).
1116
1117 :- block concat_sequence2(-,?,-,?,?), concat_sequence2(-,-,?,?,?).
1118 ?concat_sequence2(_,S1,S2,Res,WF) :- S1==[],!,equal_sequence(S2,Res,WF).
1119 concat_sequence2(_,S1,S2,Res,WF) :- S2==[],!,equal_sequence(S1,Res,WF).
1120 concat_sequence2(LWF,S1,S2,Res,WF) :-
1121 try_expand_and_convert_to_avl_with_check(S1,AS1,concat1),
1122 try_expand_and_convert_to_avl_with_check(S2,AS2,concat2),
1123 ? concat_sequence3(LWF,AS1,AS2,Res,WF).
1124
1125 concat_sequence3(_,S1,S2,Res,WF) :- nonvar(S1),is_custom_explicit_set(S1,concat_sequence),
1126 concat_custom_explicit_set(S1,S2,ERes,WF),!,
1127 equal_sequence(Res,ERes,WF).
1128 concat_sequence3(_LWF,S1,S2,Res,WF) :-
1129 %try_expand_custom_set_wf(S1,ES1,concat,WF),
1130 size_of_sequence(S1,int(Size1),WF),
1131 (number(Size1) -> true
1132 ; size_of_sequence(S2,Size2,WF),
1133 size_of_sequence(Res,SizeRes,WF),
1134 ? int_minus(SizeRes,Size2,int(Size1)),
1135 ? in_nat_range_wf(int(Size1),int(0),SizeRes,WF)
1136 % is this required: ?? ,in_nat_range_wf(Size2,int(0),SizeRes,WF)
1137 ),
1138 ? concat_sequence_aux(Size1,S1,S2,Res,WF).
1139
1140
1141 :- assert_must_succeed( (bsets_clp:equal_sequence([(int(1),A)|T1],[(int(1),int(22))|T2],_WF),
1142 A==int(22),T2=[],T1==[] )) .
1143 :- assert_must_succeed( (bsets_clp:equal_sequence([(int(1),A)|T],avl_set(node((int(2),string(a)),true,0,node((int(1),string(c)),true,0,empty,empty),node((int(3),string(b)),true,0,empty,empty))),_WF),
1144 check_eqeq(A,string(c)),
1145 kernel_objects:equal_object(T,[(int(2),B)|T2]), check_eqeq(B,string(a)),
1146 kernel_objects:equal_object(T2,[(int(3),C)]), check_eqeq(C,string(b))) ).
1147 % equal_object optimized for sequences; can infer that pairs with same index have same value
1148 % TO DO: complete and make more efficient
1149 %equal_sequence(X,Y,_WF) :- nonvar(X),nonvar(Y),
1150 % is_custom_explicit_set(X,eval_sequence), is_custom_explicit_set(Y,eval_sequence),!,
1151 % equal_explicit_sets(X,Y).
1152 equal_sequence(X,Y,WF) :- nonvar(X),nonvar(Y),
1153 get_seq_head(X,XI,XEl,XT), get_seq_head(Y,YI,YEl,YT), XI==YI,!,
1154 % THIS CURRENTLY ONLY CHECKS FRONTMOST indexes
1155 equal_object_wf(XEl,YEl,equal_sequence_1,WF),
1156 equal_sequence(XT,YT,WF).
1157 equal_sequence(X,Y,WF) :-
1158 /* (is_custom_explicit_set(Y) -> monitor_equal_sequence_againts_custom_set(X,Y,WF)
1159 ; is_custom_explicit_set(X) -> monitor_equal_sequence_againts_custom_set(Y,X,WF)
1160 ; true), does not seem to buy anything; equal_object already powerful enough */
1161 ? equal_object_wf(X,Y,equal_sequence_2,WF).
1162
1163 % enforces the constraint that there is only one possible elemenent per index:
1164 %:- block monitor_equal_sequence_againts_custom_set(-,?,?).
1165 %monitor_equal_sequence_againts_custom_set([],_,_) :- !.
1166 %monitor_equal_sequence_againts_custom_set([El|T],CS,WF) :- !,
1167 % element_of_custom_set_wf(El,CS,WF),
1168 % monitor_equal_sequence_againts_custom_set(T,CS,WF).
1169 %monitor_equal_sequence_againts_custom_set(_,_,_).
1170
1171 get_seq_head([(Idx,El)|Tail],Idx,El,Tail).
1172 %get_seq_head(avl_set(AVL),Idx,El,Tail) :- does not seem to buy anything; equal_object already powerful enough
1173 % custom_explicit_sets:avl_min_pair(AVL,Idx,El),
1174 % custom_explicit_sets:direct_remove_element_from_avl(AVL,(Idx,El),Tail). % TO DO: only compute if indexes ==
1175
1176
1177 :- block concat_sequence_aux(-,?,?,?,?).
1178 concat_sequence_aux(Size1,_S1,_S2,Res,WF) :- nonvar(Res),Res=avl_set(_),
1179 size_of_custom_explicit_set(Res,int(RSize),WF), number(RSize),
1180 Size1 > RSize,!, % S1 is longer than Res; no solution (prevent WD error below)
1181 fail.
1182 concat_sequence_aux(Size1,S1,S2,Res,WF) :- nonvar(Res),Res=avl_set(_),
1183 % split Result into prefix and suffix
1184 prefix_of_custom_explicit_set(Res,Size1,Prefix,WF), % we could call versions which do not check WD
1185 suffix_of_custom_explicit_set(Res,Size1,Postfix,WF),
1186 !,
1187 equal_sequence(S1,Prefix,WF), equal_sequence(S2,Postfix,WF).
1188 concat_sequence_aux(Size1,S1,S2,Res,WF) :-
1189 shift_seq_indexes(S2,Size1,NewS2,WF),
1190 % We can do something stronger than disjoint union: we know that the indexes are disjoint!
1191 % Hence: if (int(X),Y) : Res & (int(X),Z) : S1 => Y=Z
1192 % Hence: if (int(X),Y) : Res & (int(X),Z) : S2 => Y=Z
1193 unify_same_index_elements(S1,Res,WF),
1194 unify_same_index_elements(Res,S1,WF),
1195 unify_same_index_elements(NewS2,Res,WF),
1196 unify_same_index_elements(Res,NewS2,WF),
1197 ? disjoint_union_wf(S1,NewS2,Res,WF).
1198
1199 % Check if (int(X),Y) pairs in Seq2 have a matching (int(X),Z) in Seq1 and then unify(Y,Z)
1200 :- block unify_same_index_elements(-,?,?).
1201 unify_same_index_elements(avl_set(A),Seq,WF) :- !,
1202 unify_same_index_elements_aux(Seq,A,WF).
1203 unify_same_index_elements(_,_,_). % TO DO: maybe also support other partially instantiated lists
1204
1205 :- block unify_same_index_elements_aux(-,?,?).
1206 unify_same_index_elements_aux([],_,_) :- !.
1207 unify_same_index_elements_aux([(int(Idx),El)|T],A,WF) :- !,
1208 try_find_index_element(Idx,El,A,WF),
1209 unify_same_index_elements_aux(T,A,WF).
1210 unify_same_index_elements_aux(_,_,_).
1211
1212 :- block try_find_index_element(-,?,?,?).
1213 try_find_index_element(Idx,El,AVL,WF) :-
1214 ? avl_fetch_pair(int(Idx),AVL,AvlEl),
1215 !,
1216 % We have found an entry with the same index: El and AvlEl must be identical:
1217 equal_object_wf(El,AvlEl,try_find_index_element,WF).
1218 try_find_index_element(_Idx,_El,_AVL,_WF). % :- print(not_found(_Idx,_AVL)),nl.
1219
1220 % TO DO: add waitflags + use within partition_wf
1221 % computes union of two sets which are guaranteed to be disjoint: means that if two of three sets known the other one can be determined
1222
1223 :- assert_must_succeed(exhaustive_kernel_check_wf([commutative],bsets_clp:disjoint_union_wf([int(3)],[int(2),int(1)],[int(1),int(3),int(2)],WF),WF)).
1224 :- assert_must_succeed(exhaustive_kernel_check_wf([commutative],bsets_clp:disjoint_union_wf([],[int(2),int(1)],[int(1),int(2)],WF),WF)).
1225 :- assert_must_succeed(exhaustive_kernel_check_wf([commutative],bsets_clp:disjoint_union_wf([int(1),int(2)],[],[int(2),int(1)],WF),WF)).
1226 :- assert_must_succeed((bsets_clp:disjoint_union_wf([int(1)],[int(2)],Res,_WF),kernel_objects:equal_object(Res,[int(1),int(2)]))).
1227 :- assert_must_succeed((bsets_clp:disjoint_union_wf(A,B,[int(1)],_WF),B=[H],H==int(1),A==[])).
1228
1229 % a union where we know that Set1 and Set2 are disjoint
1230 % this means we can propagate elements of Set1/2 more easily to result
1231 disjoint_union_wf(Set1,Set2,Res,WF) :-
1232 (var(Res)
1233 -> disjoint_union_wf0(Set1,Set2,DRes,DRes,WF),
1234 equal_object_optimized(Res,DRes) % try and convert result to AVL
1235 ? ; disjoint_union_wf0(Set1,Set2,Res,Res,WF)).
1236
1237 % disjoint_union_wf0(Set1,Set2,UnionOfSet1Set2, SuperSet, WF)
1238 :- block disjoint_union_wf0(-,-,-,?,?).
1239 disjoint_union_wf0(Set1,Set2,Res,_,WF) :- Set1==[],!,equal_object_wf(Set2,Res,disjoint_union_wf0_1,WF).
1240 disjoint_union_wf0(Set1,Set2,Res,_,WF) :- Set2==[],!,equal_object_wf(Set1,Res,disjoint_union_wf0_2,WF).
1241 disjoint_union_wf0(Set1,Set2,Res,_,WF) :- Res==[],!,empty_set_wf(Set1,WF), empty_set_wf(Set2,WF).
1242 disjoint_union_wf0(Set1,Set2,Res,FullRes,WF) :-
1243 ((nonvar(Set1);nonvar(Set2)) -> true ; get_cardinality_powset_wait_flag(Res,disjoint_union_wf0,WF,_Card,CWF)),
1244 ? disjoint_union0(Set1,Set2,Res,FullRes,WF,CWF).
1245
1246 :- block disjoint_union0(-,-,?,?,?,-), disjoint_union0(-,?,-,-,?,?), disjoint_union0(?,-,-,-,?,?).
1247 disjoint_union0(Set1,Set2,Res,_,WF,_) :- Set1==[],!,equal_object_wf(Set2,Res,disjoint_union0_1,WF).
1248 disjoint_union0(Set1,Set2,Res,_,WF,_) :- Set2==[],!,equal_object_wf(Set1,Res,disjoint_union0_2,WF).
1249 disjoint_union0(S1,S2,Res,_F,WF,_CWF) :-
1250 ground_value(Res),
1251 ( ground_value(S1) -> !,
1252 check_subset_of_wf(S1,Res,WF), % TO DO: check if we can merge the check_subset and difference set in one predicate
1253 difference_set_wf(Res,S1,S2,WF)
1254 ; ground_value(S2) -> !,
1255 check_subset_of_wf(S2,Res,WF),
1256 ? difference_set_wf(Res,S2,S1,WF)
1257 ; var(S1),var(S2) -> !, % CWF nonvar
1258 % see test 1408; allows to generate subsets of Res and avoid enumeration warnings
1259 check_subset_of_wf(S1,Res,WF),
1260 %check_subset_of(S1,Res), % without waitflag: will generate ground version
1261 difference_set_wf(Res,S1,S2,WF)
1262 ).
1263 disjoint_union0(Set1,Set2,Res,_,WF,_) :- nonvar(Set1),
1264 is_custom_explicit_set_nonvar(Set1),
1265 union_of_explicit_set(Set1,Set2,Union), !, % TODO: if it fails: copy/propagate values to result?
1266 ? equal_object_wf(Union,Res,disjoint_union0_3,WF).
1267 disjoint_union0(Set1,Set2,Res,Full,WF,_) :-
1268 expand_custom_set_to_list_no_dups_wf(Set1,ESet1,_,disjoint_union0_1,WF),
1269 expand_custom_set_to_list_no_dups_wf(Set2,ESet2,_,disjoint_union0_2,WF),
1270 ? disj_union1(ESet1,ESet2,Res,Full,WF).
1271
1272 :- block disj_union1(-,-,?,?,?).
1273 disj_union1(X,Y,Res,FullRes,WF) :-
1274 ? var(X) -> disj_union2(Y,X,Res,FullRes,WF) ; disj_union2(X,Y,Res,FullRes,WF).
1275
1276 disj_union2([],Y,Res,_,_WF) :- equal_object_optimized(Y,Res,disj_union2).
1277 disj_union2([X|TX],Y,Res,FullRes,WF) :-
1278 ? remove_element_wf(X,Res,TR,WF), % was: equal_cons_wf(Res,X,TR,WF) but error was that it could force X to be a certain value
1279 ground_value_check(X,XV),
1280 (nonvar(XV) -> equal_cons_wf(Res,X,TR,WF)
1281 ; check_element_of_wf(X,FullRes,WF), % ensure that we set up proper constraints for X; e.g., for x \/ y = 1..10 & x /\ y = {}
1282 when(nonvar(XV), equal_cons_wf(Res,X,TR,WF))
1283 ), % ensure that we instantiate Res if TR known; otherwise we may get pending co-routines, e.g. test 506, SyracuseGrammar
1284 disj_union3(TX,Y,TR,FullRes,WF).
1285
1286 :- block disj_union3(-,-,-,?,?).
1287 disj_union3(X,Y,Res,_,WF) :- Res==[],!,empty_set_wf(X,WF),empty_set_wf(Y,WF).
1288 disj_union3(X,Y,Res,FullRes,WF) :- disj_union1(X,Y,Res,FullRes,WF).
1289
1290
1291 :- block disjoint_union_generalized_wf(-,?,?).
1292 %disjoint_union_generalized_wf([Set1|T],Res,_WF) :- T==[],!, % just one set; probably not covered at the moment (ast_cleanup simplifies partition with single set
1293 % equal_object(Set1,Res).
1294 disjoint_union_generalized_wf(ListOfSets,Res,WF) :-
1295 %expand_custom_set_to_list_wf(SetsOfSets,ESetsOfSets,_,disjoint_union_generalized_wf,WF), % this is a list of sets
1296 disjoint_union_generalized2(ListOfSets,[],Res,WF).
1297 :- block disjoint_union_generalized2(-,?,?,?).
1298 disjoint_union_generalized2([],S,Res,WF) :- !, equal_object_optimized_wf(S,Res,disjoint_union_generalized2,WF).
1299 disjoint_union_generalized2([H|T],UnionSoFar,Res,WF) :- !,
1300 disjoint_union_wf0(H,UnionSoFar,UnionSoFar2,Res,WF),
1301 %% print_message(called_disjoint_union(H,UnionSoFar,UnionSoFar2)), %%
1302 disjoint_union_generalized2(T,UnionSoFar2,Res,WF).
1303 disjoint_union_generalized2(L,S,Res,WF) :-
1304 add_internal_error('Not a list: ',disjoint_union_generalized2(L,S,Res,WF)),fail.
1305 % TO DO: if there are more than two sets: it may be interesting to set up constraint that
1306 % each set is a subset of the full set;
1307 % (would avoid enumeration warning in, e.g., x \/ y \/ z = 1..10 & x /\ y = {} & x /\ z = {} & y /\ z = {} & card(x)=card(y)+2 )
1308
1309 :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:concatentation_of_sequences([(int(1),[]),(int(3),[(int(1),int(22)),(int(2),int(33))]),(int(2),[(int(1),int(11))])],
1310 [(int(1),int(11)),(int(2),int(22)),(int(3),int(33))],_WF))).
1311 :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:concatentation_of_sequences([(int(1),[]),(int(2),[(int(1),int(33))])],[(int(1),int(33))],_WF))).
1312 :- assert_must_succeed((kernel_waitflags:init_wait_flags(WF),bsets_clp:concatentation_of_sequences([(int(1),[]),(int(2),[(int(1),int(55))])],Res,WF),
1313 kernel_waitflags:ground_wait_flags(WF),
1314 kernel_objects:equal_object(Res,[(int(1),int(55))]) )).
1315 :- assert_must_succeed((kernel_waitflags:init_wait_flags(WF),bsets_clp:concatentation_of_sequences([(int(1),[(int(1),int(22))]),(int(2),[(int(1),int(55))])],Res,WF),
1316 kernel_waitflags:ground_wait_flags(WF),
1317 kernel_objects:equal_object(Res,[(int(1),int(22)),(int(2),int(55))]) )).
1318 :- block concatentation_of_sequences(-,?,?).
1319 concatentation_of_sequences(SeqOfSeq,Res,WF) :-
1320 try_expand_and_convert_to_avl_with_check(SeqOfSeq,ES,conc),
1321 ? concs2(ES,Res,WF).
1322
1323 concs2(SeqOfSeq,Res,WF) :- is_custom_explicit_set(SeqOfSeq,conc),
1324 conc_custom_explicit_set(SeqOfSeq,CRes),!,
1325 equal_object_wf(CRes,Res,concs2,WF).
1326 concs2(SeqOfSeq,Res,WF) :- empty_set_wf(SeqOfSeq,WF),empty_set_wf(Res,WF).
1327 concs2(SeqOfSeq,Res,WF) :- not_empty_set_wf(SeqOfSeq,WF),
1328 front_sequence(SeqOfSeq,Front,WF),
1329 ? concatentation_of_sequences(Front,FrontRes,WF),
1330 ? last_sequence(SeqOfSeq,Last,WF),
1331 ? concat_sequence(FrontRes,Last,Res,WF).
1332
1333 :- assert_must_abort_wf(bsets_clp:tail_sequence([],_R,unknown,WF),WF).
1334 :- assert_must_abort_wf(bsets_clp:tail_sequence([],[],unknown,WF),WF).
1335 :- assert_must_succeed(exhaustive_kernel_succeed_check(
1336 bsets_clp:tail_sequence([(int(1),int(4)),(int(2),int(5))],[(int(1),int(5))],unknown,_WF)) ).
1337 :- assert_must_succeed(exhaustive_kernel_succeed_check( bsets_clp:tail_sequence([(int(1),int(4)),(int(3),int(6)),(int(2),int(5))],
1338 [(int(1),int(5)),(int(2),int(6))],unknown,_WF)) ).
1339 :- assert_must_succeed((bsets_clp:tail_sequence(X,R,unknown,_),
1340 X = [(int(1),int(6)),(int(2),int(5))],
1341 kernel_objects:equal_object(R,[(int(1),int(5))]) )).
1342 :- assert_must_succeed((bsets_clp:tail_sequence(X,[(int(1),int(5))],unknown,_),
1343 X = [(int(1),int(6)),(int(2),int(5))] )).
1344 :- assert_must_succeed((bsets_clp:tail_sequence(X,[(int(1),int(5)),(int(2),int(7))],unknown,_),
1345 X = [(int(1),int(6)),(int(2),int(5)),(int(3),int(7))] )).
1346 :- assert_must_succeed((bsets_clp:tail_sequence(X,[(int(2),int(7)),(int(1),int(5))],unknown,_),
1347 X = [(int(1),int(6)),(int(2),int(5)),(int(3),int(7))] )).
1348 :- block tail_sequence(-,?,?,?).
1349 tail_sequence(S1,Res,Span,WF) :- is_custom_explicit_set(S1,tail_sequence),
1350 tail_sequence_custom_explicit_set(S1,_,TRes,Span,WF),!,
1351 equal_object_wf(TRes,Res,tail_sequence,WF).
1352 tail_sequence(S1,Res,Span,WF) :- expand_custom_set_to_list_wf(S1,ES1,_,tail_sequence,WF),
1353 tail2(ES1,Res,Span,WF).
1354
1355 tail2([],_,Span,WF) :-
1356 add_wd_error_span('tail applied to empty sequence!',[],Span,WF).
1357 tail2([H|T],Res,_Span,WF) :- domain_subtraction_wf([int(1)],[H|T],IntRes,WF),
1358 shift_seq_indexes(IntRes,-1,Res,WF).
1359
1360
1361 :- assert_must_abort_wf(bsets_clp:first_sequence([],_R,unknown,WF),WF).
1362 :- assert_must_abort_wf(bsets_clp:first_sequence([],int(1),unknown,WF),WF).
1363 :- assert_must_succeed(exhaustive_kernel_succeed_check( bsets_clp:first_sequence([(int(1),int(4)),(int(2),int(5))],int(4),unknown,_WF)) ).
1364 :- assert_must_succeed(exhaustive_kernel_succeed_check( bsets_clp:first_sequence([(int(1),int(4)),(int(3),int(6)),(int(2),int(5))],int(4),unknown,_WF)) ).
1365 :- assert_must_succeed((bsets_clp:first_sequence(X,R,unknown,_WF),
1366 X = [(int(1),int(2)),(int(2),int(1))],
1367 R = int(2))).
1368
1369 :- block first_sequence(-,?,?,?).
1370 first_sequence([],_,Span,WF) :- !,add_wd_error_span('first applied to empty sequence!',[],Span,WF).
1371 first_sequence(Seq,Res,Span,WF) :- apply_to(Seq,int(1),Res,Span,WF).
1372
1373
1374
1375 :- assert_must_abort_wf(bsets_clp:front_sequence([],_R,WF),WF).
1376 :- assert_must_abort_wf(bsets_clp:front_sequence([],[],WF),WF).
1377 :- assert_must_succeed(exhaustive_kernel_succeed_check( bsets_clp:front_sequence([(int(1),int(4)),(int(2),int(5))],[(int(1),int(4))],_WF)) ).
1378 :- assert_must_succeed(exhaustive_kernel_succeed_check( bsets_clp:front_sequence([(int(1),int(4)),(int(3),int(6)),(int(2),int(5))],[(int(1),int(4)),(int(2),int(5))],_WF)) ).
1379 :- assert_must_succeed((kernel_waitflags:init_wait_flags(WF),bsets_clp:front_sequence(X,R,WF),
1380 X = [(int(1),int(2)),(int(2),int(55))],kernel_waitflags:ground_wait_flags(WF),
1381 kernel_objects:equal_object(R,[(int(1),int(2))]))).
1382 :- assert_must_succeed((kernel_waitflags:init_wait_flags(WF),bsets_clp:front_sequence(X,R,WF),
1383 X = [(int(3),int(33))|R], kernel_waitflags:ground_wait_flags(WF),
1384 kernel_objects:equal_object(R,[(int(1),int(2)),(int(2),int(55))]) )).
1385
1386 ?front_sequence(Seq,Res,WF) :- front_sequence(Seq,Res,unknown,WF).
1387 :- block front_sequence(-,?,?,?).
1388 front_sequence(S1,Res,_Span,WF) :-
1389 is_custom_explicit_set(S1,front_sequence),
1390 front_sequence_custom_explicit_set(S1,_,FRes),!,
1391 equal_object_wf(FRes,Res,front_sequence,WF).
1392 front_sequence(Seq,Res,Span,WF) :- expand_custom_set_to_list_wf(Seq,ESeq,_,front_sequence,WF),
1393 ? front2(ESeq,Res,Span,WF).
1394 front2([],_,Span,WF) :- add_wd_error_span('front applied to empty sequence!',[],Span,WF).
1395 front2([H|T],Res,_Span,WF) :- size_of_sequence([H|T],int(Size),WF),
1396 ? (number(Size) -> true ; size_of_sequence(Res,SizeRes,WF), int_plus(SizeRes,int(1),int(Size))),
1397 ? when(ground(Size), domain_subtraction_wf([int(Size)],[H|T],Res,WF)).
1398
1399
1400 :- assert_must_abort_wf(bsets_clp:last_sequence([],_R,WF),WF).
1401 :- assert_must_abort_wf(bsets_clp:last_sequence([],int(1),WF),WF).
1402 :- assert_must_succeed(exhaustive_kernel_succeed_check( bsets_clp:last_sequence([(int(1),int(4)),(int(2),int(5))],int(5),_WF)) ).
1403 :- assert_must_succeed(exhaustive_kernel_succeed_check( bsets_clp:last_sequence([(int(1),int(4)),(int(3),int(6)),(int(2),int(5))],int(6),_WF)) ).
1404 :- assert_must_succeed((bsets_clp:last_sequence(X,R,_WF),
1405 X = [(int(1),int(2)),(int(2),int(55))],R = int(55))).
1406 :- assert_must_succeed((bsets_clp:last_sequence(X,R,_WF), X = [(int(1),int(55))], R = int(55))).
1407 :- assert_must_succeed((bsets_clp:last_sequence([(int(1),[(int(1),int(22))]),(int(2),[(int(1),int(55))])],R,_WF), R == [(int(1),int(55))])).
1408
1409 ?last_sequence(Seq,Res,WF) :- last_sequence(Seq,Res,unknown,WF).
1410 :- block last_sequence(-,?,?,?).
1411 last_sequence(Seq,Res,_Span,WF) :-
1412 is_custom_explicit_set(Seq,last_sequence),
1413 last_sequence_explicit_set(Seq,Last), !,
1414 equal_object_wf(Last,Res,last_sequence,WF).
1415 last_sequence([],_,Span,WF) :- !,add_wd_error_span('last applied to empty sequence!',[],Span,WF).
1416 last_sequence(Seq,Res,Span,WF) :-
1417 size_of_sequence(Seq,int(Size),WF),
1418 ? last_sequence_aux(Size,Seq,Res,Span,WF).
1419 :- block last_sequence_aux(-,?,?,?,?).
1420 last_sequence_aux(Size,Seq,Res,Span,WF) :-
1421 ? apply_to(Seq,int(Size),Res,Span,WF).
1422
1423
1424 :- assert_must_succeed(exhaustive_kernel_check_wfdet( bsets_clp:rev_sequence([(int(1),int(4)),(int(2),int(5))],[(int(1),int(5)),(int(2),int(4))],WF),WF )).
1425 :- assert_must_succeed(exhaustive_kernel_check_wfdet( bsets_clp:rev_sequence([(int(1),int(4))],[(int(1),int(4))],WF),WF )).
1426 :- assert_must_succeed(exhaustive_kernel_check_wfdet( bsets_clp:rev_sequence([],[],WF),WF )).
1427 :- assert_must_succeed(exhaustive_kernel_check_wfdet( bsets_clp:rev_sequence([(int(1),int(4)),(int(3),int(6)),(int(2),int(5))],[(int(1),int(6)),(int(3),int(4)),(int(2),int(5))],WF),WF )).
1428 :- assert_must_succeed((bsets_clp:rev_sequence([],[],_WF))).
1429 :- assert_must_succeed((bsets_clp:rev_sequence(X,R,_WF),
1430 X = [(int(1),int(2)),(int(2),int(1))],
1431 kernel_objects:equal_object(R,[(int(2),int(2)),(int(1),int(1))]) )).
1432 :- assert_must_succeed((bsets_clp:rev_sequence(X,R,_WF),
1433 X = [(int(1),int(23)),(int(2),int(1)),(int(3),int(55))],
1434 kernel_objects:equal_object(R,[(int(3),int(23)),(int(2),int(1)),(int(1),int(55))]) )).
1435 :- assert_must_succeed((bsets_clp:rev_sequence(R,X,_WF),
1436 X = [(int(1),int(23)),(int(2),int(1)),(int(3),int(55))],
1437 kernel_objects:equal_object(R,[(int(3),int(23)),(int(2),int(1)),(int(1),int(55))]) )).
1438 :- assert_must_succeed((bsets_clp:rev_sequence(X,_R,_WF),
1439 X = [(int(2),int(1)),(int(1),int(23)),(int(3),int(55))] )).
1440 :- assert_must_succeed((bsets_clp:rev_sequence(_R,X,_WF),
1441 X = [(int(3),int(55)),(int(1),int(23)),(int(2),int(1))] )).
1442
1443 /* reverse of sequence */
1444 :- block rev_sequence(-,-,?).
1445 rev_sequence(S1,Res,WF) :-
1446 ? (nonvar(S1) -> rev_sequence2(S1,Res,WF)
1447 ; rev_sequence2(Res,S1,WF)).
1448
1449 rev_sequence2(S1,Res,WF) :- reverse_custom_explicit_set(S1,RS1),!,
1450 equal_object_wf(Res,RS1,WF).
1451 rev_sequence2(S1,Res,WF) :-
1452 expand_custom_set_to_list_wf(S1,ES1,_,rev_sequence2,WF),
1453 size_of_sequence(ES1,int(Size1),WF),
1454 % TO DO: we could also try and get the size from the result Res
1455 ? rev_sequence3(ES1,Size1,Res,WF).
1456
1457 :- block rev_sequence3(?,-,-,?).
1458 rev_sequence3(E,_Size,Res,WF) :- nonvar(Res), reverse_custom_explicit_set(Res,RevRes),!,
1459 equal_object_wf(E,RevRes,WF).
1460 rev_sequence3(E,Size,Res,WF) :- var(Size), !,
1461 % try to obtain size from result as well
1462 ? size_of_sequence(Res,int(Size),WF), rev_sequence3b(E,Size,Res,WF).
1463 rev_sequence3(E,S,R,WF) :- rev_sequence4(E,S,R,WF).
1464
1465 :- block rev_sequence3b(?,-,?,?).
1466 rev_sequence3b(E,S,R,WF) :- rev_sequence4(E,S,R,WF).
1467
1468 :- block rev_sequence4(-,?,?,?).
1469 rev_sequence4([],_,Res,WF) :- empty_set_wf(Res,WF).
1470 rev_sequence4([(int(N),El)|Tail],Size1,Res,WF) :-
1471 equal_cons_wf(Res,(NewN,El),RTail,WF),
1472 % compute NewN = Size - (N-1)
1473 int_minus(int(N),int(1),N1),
1474 int_minus(int(Size1),N1,NewN),
1475 (ground(NewN) -> true ; in_nat_range(NewN,int(0),int(Size1))),
1476 rev_sequence4(Tail,Size1,RTail,WF).
1477
1478
1479 /* --------- */
1480 /* RELATIONS */
1481 /* --------- */
1482
1483 %maplet(X,Y,(X,Y)).
1484
1485 % relation([]).
1486 % relation([(_X,_Y)|T]) :- relation(T).
1487
1488 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:relation_over_wf([(int(1),int(6)),(int(2),int(7)),(int(1),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
1489 :- assert_must_succeed(exhaustive_kernel_check( bsets_clp:relation_over([],[int(1),int(2)],[int(2)]) )).
1490 :- assert_must_succeed(exhaustive_kernel_succeed_check( bsets_clp:relation_over([(int(1),int(2))],[int(1),int(2)],[int(2)]) )).
1491 :- assert_must_succeed(exhaustive_kernel_succeed_check( bsets_clp:relation_over([([int(1)],[int(2)])],[[int(1)],[],[int(2)]],[[int(2)]]) )).
1492 :- assert_must_succeed(exhaustive_kernel_succeed_check( bsets_clp:relation_over([(pred_true /* bool_true */,pred_false /* bool_false */)],[pred_false /* bool_false */,pred_true /* bool_true */],[pred_false /* bool_false */]) )).
1493 :- assert_must_succeed(exhaustive_kernel_succeed_check( bsets_clp:relation_over([((pred_true /* bool_true */,int(2)),fd(1,'Name'))],[(pred_false /* bool_false */,int(1)),(pred_true /* bool_true */,int(2))],[fd(2,'Name'),fd(1,'Name')]) )).
1494 :- assert_must_succeed(exhaustive_kernel_succeed_check( bsets_clp:relation_over([((rec([field(a,fd(1,'Name'))]),int(2)),fd(1,'Name'))],[(rec([field(a,fd(1,'Name'))]),int(1)),(rec([field(a,fd(1,'Name'))]),int(2))],[fd(2,'Name'),fd(1,'Name')]) )).
1495 :- assert_must_succeed(exhaustive_kernel_succeed_check( bsets_clp:relation_over([((rec([field(a,fd(2,'Name')),field(b,fd(1,'Name'))]),int(2)),fd(1,'Name'))],[(rec([field(a,fd(1,'Name')),field(b,fd(1,'Name'))]),int(1)),(rec([field(a,fd(1,'Name')),field(b,fd(2,'Name'))]),int(2)),(rec([field(a,fd(2,'Name')),field(b,fd(1,'Name'))]),int(2))],[fd(2,'Name'),fd(1,'Name')]) )).
1496 :- assert_must_succeed(exhaustive_kernel_succeed_check( bsets_clp:relation_over([((pred_true /* bool_true */,int(2)),string('STRING1'))],[(pred_false /* bool_false */,int(1)),(pred_true /* bool_true */,int(2))],[string('STRING2'),string('STRING1')]) )).
1497 :- assert_must_succeed(exhaustive_kernel_succeed_check( /* multiple solutions !!*/ bsets_clp:relation_over([(int(1),int(2)),(int(2),int(2))],[int(1),int(2)],[int(2)]) )).
1498 :- assert_must_succeed(exhaustive_kernel_succeed_check( bsets_clp:relation_over([(int(1),int(2)),(int(1),int(3))],[int(1),int(2)],[int(3),int(2)]) )).
1499 :- assert_must_succeed(exhaustive_kernel_fail_check( bsets_clp:relation_over([(int(1),int(2)),(int(2),int(1))],[int(1),int(2)],[int(2)]) )).
1500 :- assert_must_fail(( bsets_clp:relation_over([(int(1),int(1))],[int(1),int(2)],[int(2)]) )).
1501 :- assert_must_succeed(( bsets_clp:relation_over(X,[int(1),int(2)],[int(3)]),
1502 X==[(int(1),int(3))] )).
1503 :- assert_must_succeed(( bsets_clp:relation_over(X,[int(1),int(2)],[int(3)]),
1504 X==[(int(1),int(3)),(int(2),int(3))] )).
1505 :- assert_must_succeed(( bsets_clp:relation_over(X,[int(1),int(2)],[int(4),int(5)]),
1506 X==[(int(2),int(4)),(int(2),int(5))] )).
1507
1508 relation_over(R,Dom,Ran) :- init_wait_flags(WF,[relation_over]),
1509 ? relation_over_wf(R,Dom,Ran,WF),
1510 ? ground_wait_flags(WF).
1511
1512 :- block relation_over_wf(-,-,-,?).
1513 relation_over_wf(R,Dom,Ran,WF) :-
1514 kernel_equality:get_cardinality_relation_over_wait_flag(Dom,Ran,WF,WFR,MaxCard,MaxNrOfRels),
1515 ? relation_over1(R,Dom,Ran,WF,WFR,MaxCard,MaxNrOfRels).
1516
1517 :- block relation_over1(-,?,?,?,-,?,?).
1518 relation_over1(FF,Domain,Range,WF,_WFR,_MaxCard,_MaxNrOfRels) :-
1519 nonvar(FF),
1520 custom_explicit_sets:is_definitely_maximal_set(Range),
1521 % we do not need the Range; this means we can match more closures (e.g., lambda)
1522 custom_explicit_sets:dom_for_specific_closure(FF,FFDomain,_,WF),!,
1523 check_domain_subset_for_closure_wf(FF,FFDomain,Domain,WF).
1524 relation_over1(FF,Domain,Range,WF,_WFR,_MaxCard,_MaxNrOfRels) :- nonvar(FF),
1525 custom_explicit_sets:dom_range_for_specific_closure(FF,FFDomain,FFRange,_,WF),!,
1526 check_domain_subset_for_closure_wf(FF,FFDomain,Domain,WF),
1527 check_range_subset_for_closure_wf(FF,FFRange,Range,WF).
1528 relation_over1(R,Dom,Ran,WF,WFR,MaxCard,MaxNrOfRels) :- var(R),!,
1529 expand_custom_set_to_list_wf(R,ER,_,relation_over1,WF),
1530 ? relation_over2(ER,[],Dom,Ran,WF,WFR,MaxCard,MaxNrOfRels,none).
1531 relation_over1(R,Domain,Range,WF,_WFR,_MaxCard,_) :-
1532 expand_and_convert_to_avl_set_catch(R,AER,relation_over1,'ARG : ? <-> ?',ResultStatus,WF),!,
1533 (ResultStatus=avl_set
1534 ? -> is_avl_relation_over_domain(AER,Domain,WF),
1535 is_avl_relation_over_range(AER,Range,WF)
1536 ; (debug_mode(on) -> add_message_wf(relation_over,'SYMBOLIC <-> check: ',R,unknown,WF) ; true),
1537 symbolic_domain_subset_check(R,Domain,WF),
1538 symbolic_range_subset_check(R,Range,WF)
1539 ).
1540 relation_over1(R,Dom,Ran,WF,WFR,MaxCard,MaxNrOfRels) :-
1541 expand_custom_set_to_list_wf(R,ER,_,relation_over1,WF),
1542 ? relation_over2(ER,[],Dom,Ran,WF,WFR,MaxCard,MaxNrOfRels,none).
1543
1544 % check the domain of a symbolic closure value FF whose domain is FFDomain and expected domain is Domain:
1545 check_domain_subset_for_closure_wf(FF,FFDomain,Domain,WF) :-
1546 opt_push_wait_flag_call_stack_info(WF,b_operator_call(subset,
1547 [b_operator(domain,[FF]),Domain],unknown),WF2),
1548 check_subset_of_wf(FFDomain,Domain,WF2).
1549 % ditto for range
1550 check_range_subset_for_closure_wf(FF,FFRange,Range,WF) :-
1551 opt_push_wait_flag_call_stack_info(WF,b_operator_call(subset,
1552 [b_operator(range,[FF]),Range],unknown),WF2),
1553 check_subset_of_wf(FFRange,Range,WF2).
1554
1555
1556 % try and expand set to AVL and catch enumeration warning exceptions and set OK result value
1557 % if it succeeds with OK = avl_set -> we have an avl_set
1558 % if it fails: it cannot be expanded at the moment
1559 % if it retuns keep_symbolic: expansion cannot be performed and can never be performed; keep set symbolic
1560 expand_and_convert_to_avl_set_catch(R,_AS,_Origin,_Operator,_ResultStatus,_WF) :- var(R),!,fail.
1561 expand_and_convert_to_avl_set_catch(R,_AS,_Origin,_Operator,ResultStatus,_WF) :-
1562 is_infinite_explicit_set(R),!, % we could also use is_infinite_or_symbolic_closure
1563 ResultStatus=keep_symbolic.
1564 expand_and_convert_to_avl_set_catch(R,AS,Origin,Operator,ResultStatus,WF) :-
1565 catch(
1566 (expand_and_convert_to_avl_set(R,AS,Origin,Operator),ResultStatus=avl_set),
1567 enumeration_warning(_,_,_,_,_),
1568 (add_message_wf(Origin,'Attempting symbolic treatment, enumeration warning occured while expanding ARG for ',
1569 Operator,b(value(R),any,[]),WF),
1570 ResultStatus=keep_symbolic)).
1571
1572 expand_and_convert_to_avl_set_warn(R,_AS,_Origin,_Operator,_WF) :- var(R),!,fail.
1573 expand_and_convert_to_avl_set_warn(R,AS,Origin,Operator,WF) :-
1574 % TO DO: check for not fully instantiated closures, like memoization closures where ID not yet known
1575 % it is used before a cut: we need to expand straightaway without choice points
1576 (is_symbolic_closure(R)
1577 -> add_message_wf(Origin,'Expanding symbolic set argument ARG for predicate ',Operator,b(value(R),any,[]),WF)
1578 ; true),
1579 % TODO: instead of observe_enumeration_warnings we could push onto the call-stack and pass WF
1580 observe_enumeration_warnings(expand_and_convert_to_avl_set(R,AS,Origin,Operator),
1581 add_message_wf(Origin,'Enumeration warning occured while expanding argument ARG for predicate ',
1582 Operator,b(value(R),any,[]),WF)).
1583 %expand_and_convert_to_avl_set(R,AS,_,Operator,Values) :-
1584 % observe_enumeration_warnings(expand_and_convert_to_avl_set(R,AS,,),
1585 % display_warning_message(Operator,Values)).
1586 %display_warning_message(Operator,Values) :-
1587 % format(user_error,'Enumeration Warning for Operator ~w~n',[Operator]),
1588 % maplist(translate:print_bvalue,Values),nl.
1589
1590 :- block relation_over2(-,?,?,?,?,-,?,?,?).
1591 relation_over2([],_,_,_,_WF,_WFR,_MaxCard,_MaxNrOfRels,_LastPair).
1592 relation_over2(REL,SoFar,Domain,Range,WF,WFR,MaxCard,MaxNrOfRels,LastPair) :-
1593 (var(REL) -> NewLastPair=(X,Y) ; NewLastPair=none), %remember whether we freely chose X,Y
1594 REL = [(X,Y)|T],
1595 (number(MaxCard)
1596 -> MaxCard>0,C1 is MaxCard-1 ,(C1=0 -> T=[] ; true)
1597 ; C1=MaxCard),
1598 % TO DO: try to enumerate elements in order
1599 ordered_pair(LastPair,X,Y,not_equal),
1600 ? check_element_of_wf(X,Domain,WF),
1601 ? check_element_of_wf(Y,Range,WF),
1602 ? not_element_of_wf((X,Y),SoFar,WF),
1603 update_waitflag(MaxNrOfRels,WFR,NewWFR,WF),
1604 ? relation_over2(T,[(X,Y)|SoFar],Domain,Range,WF,NewWFR,C1,MaxNrOfRels,NewLastPair).
1605
1606 % check that new pair is greater than previous pair, if that pair was freely chosen
1607 ordered_pair(none,_,_,_).
1608 ordered_pair((LastX,LastY),NewX,NewY,Eq) :- ordered_value(LastX,NewX,EqualX),
1609 check_second_component(EqualX,LastY,NewY,Eq).
1610
1611 :- block check_second_component(-,?,?,?).
1612 check_second_component(equal,X,Y,EqRes) :- ordered_value(X,Y,EqRes).
1613 check_second_component(not_equal,_X,_Y,not_equal). % no need to check 2nd component
1614
1615 :- block ordered_value(-,?,?), ordered_value(?,-,?).
1616 ordered_value(pred_true /* bool_true */,B,Eq) :- !, (B=pred_true /* bool_true */ -> Eq=equal ; Eq=not_equal).
1617 ordered_value(pred_false /* bool_false */,B,Eq) :- !, B=pred_false /* bool_false */, Eq=equal.
1618 ordered_value(int(X),int(Y),Eq) :- !,
1619 kernel_objects:less_than_equal_direct(X,Y), equal_atomic_term(X,Y,Eq).
1620 ordered_value(fd(NrX,T),fd(NrY,T),Eq) :- !,
1621 kernel_objects:less_than_equal_direct(NrX,NrY),
1622 equal_atomic_term(NrX,NrY,Eq).
1623 ordered_value((X1,X2),(Y1,Y2),Eq) :- !, ordered_pair((X1,X2),Y1,Y2,Eq).
1624 ordered_value(string(X),string(Y),Eq) :- !, less_equal_atomic_term(X,Y,Eq).
1625 ordered_value(rec(FX),rec(FY),Eq) :- !,
1626 ordered_fields(FX,FY,Eq).
1627 ordered_value([],Y,Eq) :- !, (Y==[] -> Eq=equal ; Eq=not_equal). % empty set is the smallest set
1628 ordered_value(avl_set(A),Y,Eq) :- !,
1629 (Y==[] -> fail
1630 ; Y=avl_set(B) -> (A @< B -> Eq=not_equal ; A@>B -> fail ; Eq=equal)
1631 ; print(assuming_strictly_ordered(avl_set(A),Y)),nl,
1632 Eq=not_equal). % TO DO: treat sets better
1633 ordered_value([H|T],Y,Eq) :- !, ordered_value_cons(Y,H,T,Eq).
1634 ordered_value(term(floating(F1)),term(floating(F2)),Eq) :- !,
1635 kernel_reals:real_less_than_equal_wf(term(floating(F1)),term(floating(F2)),no_wf_available),
1636 equal_atomic_term(F1,F2,Eq).
1637 ordered_value(A,B,not_equal) :- print(assuming_strictly_ordered(A,B)),nl.
1638
1639 ordered_value_cons([],_,_,_) :- !,fail.
1640 ordered_value_cons([H2|T2],H,T,Eq) :- !,ordered_pair((H,T),H2,T2,Eq). % Note: order different than for avl_sets!
1641 ordered_value_cons(Y,H,T,not_equal) :- write(assuming_strictly_ordered([H|T],Y)),nl.
1642
1643 :- block ordered_fields(-,?,?).
1644 ordered_fields([],RHS,Eq) :- !,RHS=[], Eq=equal.
1645 ordered_fields([field(Name,ValX)|TX],RHS,Eq) :- !,RHS=[field(Name,ValY)|TY],
1646 ? ordered_value(ValX,ValY,Equal1), check_next_field(Equal1,TX,TY,Eq).
1647 ordered_fields(FX,FY,Eq) :- add_internal_error('Unknown fields: ',ordered_fields(FX,FY,Eq)), Eq=not_equal.
1648
1649 :- block check_next_field(-,?,?,?).
1650 ?check_next_field(equal,TX,TY,EqRes) :- ordered_fields(TX,TY,EqRes).
1651 check_next_field(not_equal,_X,_Y,not_equal). % no need to check next field
1652
1653 :- block less_equal_atomic_term(-,?,?), less_equal_atomic_term(?,-,?).
1654 less_equal_atomic_term(A,B,Res) :- (A==B -> Res=equal ; A @<B, Res=not_equal).
1655
1656 :- block equal_atomic_term(-,?,?), equal_atomic_term(?,-,?).
1657 equal_atomic_term(A,B,Res) :- (A==B -> Res=equal ; Res=not_equal).
1658
1659
1660 :- assert_must_succeed(exhaustive_kernel_check( bsets_clp:not_relation_over([(int(1),int(2)),(int(2),int(1))],[int(1),int(2)],[int(2)],_WF) )).
1661 :- assert_must_succeed(exhaustive_kernel_check( bsets_clp:not_relation_over([(int(1),int(2))],[],[int(2)],_WF) )).
1662 :- assert_must_succeed(exhaustive_kernel_fail_check( bsets_clp:not_relation_over([(int(1),pred_true)],[int(1)],[pred_true],_WF) )).
1663 :- assert_must_succeed(exhaustive_kernel_fail_check( bsets_clp:not_relation_over([],[int(1)],[pred_true],_WF) )).
1664 :- assert_must_succeed( bsets_clp:not_relation_over([(int(1),int(2))],[int(3)],[int(1),int(2)],_) ).
1665 :- assert_must_succeed( bsets_clp:not_relation_over([(int(1),int(2))],[int(1)],[int(3)],_) ).
1666 :- assert_must_succeed( bsets_clp:not_relation_over([(int(1),int(3)),(int(1),int(2))],[int(1)],[int(3)],_) ).
1667 :- assert_must_fail( bsets_clp:not_relation_over([(int(1),int(3))],[int(1)],[int(3)],_) ).
1668 :- assert_must_fail( bsets_clp:not_relation_over([],[int(1)],[int(3)],_) ).
1669 :- assert_must_fail( bsets_clp:not_relation_over([],[],[],_) ).
1670 :- block not_relation_over(-,?,?,?).
1671
1672 not_relation_over(FF,Domain,Range,WF) :- nonvar(FF),custom_explicit_sets:is_definitely_maximal_set(Range),
1673 % we do not need the Range; this means we can match more closures (e.g., lambda)
1674 custom_explicit_sets:dom_for_specific_closure(FF,FFDomain,_,WF),!,
1675 not_subset_of_wf(FFDomain,Domain,WF).
1676 not_relation_over(FF,Domain,Range,WF) :- nonvar(FF),
1677 custom_explicit_sets:dom_range_for_specific_closure(FF,FFDomain,FFRange,_,WF),!,
1678 not_both_subset_of(FFDomain,FFRange,Domain,Range,WF).
1679 /* could be slightly more efficient: but not clear if warrants additional complexity in code:
1680 not_relation_over(FF,Domain,Range,WF) :- nonvar(FF),
1681 check_element_can_be_decided(Domain), % ensures that check_element_of_wf will not block below
1682 check_element_can_be_decided(Range), % ensures that check_element_of_wf will not block below
1683 expand_and_convert_to_avl_set(FF,AER,no_relation_over,''),!,
1684 (is_avl_relation_over_domain(AER,Domain,WF)
1685 -> \+ is_avl_relation_over_range(AER,Range,WF)
1686 ; true).
1687 check_element_can_be_decided(X) :- var(X),!,fail.
1688 check_element_can_be_decided(avl_set(_)).
1689 check_element_can_be_decided([]).
1690 check_element_can_be_decided(closure(P,T,B)) :-
1691 custom_explicit_sets:is_interval_closure_or_integerset(closure(P,T,B),Low,Up),
1692 ground(Low), ground(Up).
1693 */
1694 not_relation_over(R,Dom,Ran,WF) :-
1695 expand_custom_set_to_list_wf(R,ER,_,not_relation_over,WF),
1696 %% print(not_rel(ER,Dom,Ran)),nl,
1697 not_relation_over2(ER,Dom,Ran,WF).
1698
1699
1700 %not_relation_over2(R,_,_) :- when(nonvar(R), (R\=[], R\=[_|_])) . % TYPE ERROR !
1701 :- block not_relation_over2(-,?,?,?).
1702 not_relation_over2([(X,Y)|T],Domain,Range,WF) :-
1703 membership_test_wf(Domain,X,MemRes,WF),
1704 not_relation_over3(MemRes,Y,T,Domain,Range,WF).
1705
1706 :- block not_relation_over3(-,?,?,?,?,?).
1707 not_relation_over3(pred_false,_Y,_T,_Domain,_Range,_WF).
1708 not_relation_over3(pred_true,Y,T,Domain,Range,WF) :-
1709 membership_test_wf(Range,Y,MemRes,WF),
1710 not_relation_over4(MemRes,T,Domain,Range,WF).
1711
1712 :- block not_relation_over4(-,?,?,?,?).
1713 not_relation_over4(pred_false,_T,_Domain,_Range,_WF).
1714 not_relation_over4(pred_true,T,Domain,Range,WF) :-
1715 not_relation_over2(T,Domain,Range,WF).
1716
1717
1718
1719 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:domain_wf([],[],WF),WF)).
1720 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:domain_wf([(int(1),int(3))],[int(1)],WF),WF)).
1721 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:domain_wf(
1722 [(int(0),int(55)),(int(2),int(3)),(int(1),int(3))],[int(1),int(2),int(0)],WF),WF)).
1723 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:domain_wf(
1724 [(int(99),int(55)),(int(2),int(3)),(int(99),int(4))],[int(2),int(99)],WF),WF)).
1725 :- assert_must_succeed((bsets_clp:domain_wf([],Res,_WF),Res=[])).
1726 :- assert_must_succeed((bsets_clp:domain_wf([(int(1),int(2))],Res,_WF),
1727 kernel_objects:equal_object(Res,[int(1)]))).
1728 :- assert_must_succeed((bsets_clp:domain_wf([(int(1),int(2)),(int(1),int(1))],Res,_WF),
1729 kernel_objects:equal_object(Res,[int(1)]))).
1730 :- assert_must_succeed((bsets_clp:domain_wf([(int(2),int(2)),(int(1),int(2))],Res,_WF),
1731 kernel_objects:equal_object(Res,[int(1),int(2)]))).
1732 :- assert_must_succeed((bsets_clp:domain_wf(X,Res,_WF),kernel_objects:equal_object(Res,[int(1),int(3),int(2)]),
1733 kernel_objects:equal_object(X,[(int(2),int(2)),(int(1),int(1)),(int(3),int(2))]))).
1734 :- assert_must_succeed((bsets_clp:domain_wf(X,Res,_WF),kernel_objects:equal_object(Res,[int(1),int(2)]),
1735 kernel_objects:equal_object(X,[(int(2),int(2)),(int(1),int(1)),(int(1),int(2))]))).
1736 :- assert_must_fail((bsets_clp:domain_wf(X,Res,_WF),kernel_objects:equal_object(Res,[int(1),int(2)]),
1737 kernel_objects:equal_object(X,[(int(2),int(2)),(int(1),int(1)),(int(3),int(2))]))).
1738
1739 :- block domain_wf(-,-,?).
1740 domain_wf(Rel,Res,WF) :- Res == [],!,
1741 empty_set_wf(Rel,WF).
1742 domain_wf(Rel,Res,WF) :- var(Rel),!, % hence Res must me nonvar
1743 (is_custom_explicit_set(Res,domain_wf)
1744 -> expand_custom_set_to_list_wf(Res,Res2,_,propagate_result_to_input2,WF) % avoid expanding twice
1745 ; Res2 = Res),
1746 propagate_result_to_input(Res2,Rel,domain,WF),
1747 domain_wf1(Rel,Res2,WF).
1748 ?domain_wf(Rel,Res,WF) :- domain_wf1(Rel,Res,WF).
1749
1750
1751 % propagate result of domain/range back to original relation
1752 propagate_result_to_input(Result,OriginalRel,DomOrRange,WF) :-
1753 propagate_empty_set_wf(Result,result,OriginalRel,WF), % this will trigger before LWF ground
1754 (preferences:preference(use_smt_mode,true)
1755 -> propagate_result_to_input1(Result,OriginalRel,1,DomOrRange)
1756 % hopefully full CHR implementation will avoid the need for this hack
1757 % ; kernel_objects:is_marked_to_be_computed(OriginalRel) -> true % get_last_wait_flag(propagate_result_to_input,WF,LWF)
1758 ;
1759 get_wait_flag(2000,propagate_result_to_input,WF,LWF), % TO DO: determine right value for Priority ?
1760 % higher number for data_validation mode seems slightly counterproductive (on private_source_not_available tests)
1761 propagate_result_to_input1(Result,OriginalRel,LWF,DomOrRange) % this slows down test 289 if not guarded, 1088 if guarded
1762 ).
1763
1764 :- block propagate_result_to_input1(-,?,?,?), propagate_result_to_input1(?,-,-,?).
1765 % Note: if arg 2 (Rel) is known we will not propagate
1766 propagate_result_to_input1([],Rel,_,_) :- !, empty_set(Rel).
1767 propagate_result_to_input1(Result,Input,LWF,DomOrRange) :-
1768 (kernel_objects:is_marked_to_be_computed(Input) -> true
1769 ; propagate_result_to_input2(Result,Input,LWF,DomOrRange)).
1770
1771 %:- block propagate_result_to_input2(-,?).
1772 :- block propagate_result_to_input2(-,?,?,?), propagate_result_to_input2(?,-,-,?).
1773 % maybe do in CHR in future: x:dom(R) => #z.(x,z) : R
1774 % TO DO: make stronger; also support avl_set ...
1775 propagate_result_to_input2([],_Rel,_,_) :- !. % nothing can be said; we could have repeated entries for previous domain elements
1776 propagate_result_to_input2([D|T],Rel,LWF,DomOrRange) :- %print(propagate_result_to_input2([D|T],Rel,LWF,DomOrRange)),nl,
1777 !,
1778 (Rel == [] -> fail % we would need more relation elements to generate the domain/range
1779 ; nonvar(Rel) -> true % no propagation
1780 ; (DomOrRange=domain -> Rel = [(D,_)|RT] ; Rel = [(_,D)|RT]),
1781 propagate_result_to_input2(T,RT,LWF,DomOrRange)
1782 ).
1783 propagate_result_to_input2(CS,Rel,LWF,DomOrRange) :- var(Rel), is_custom_explicit_set(CS),!,
1784 expand_custom_set_to_list(CS,Res,_,propagate_result_to_input2),
1785 propagate_result_to_input2(Res,Rel,LWF,DomOrRange).
1786 propagate_result_to_input2(_1,_2,_LWF,_DomOrRange).
1787
1788 :- block domain_wf1(-,?,?).
1789 domain_wf1(Rel,Res,WF) :- is_custom_explicit_set(Rel,domain_wf),
1790 domain_of_explicit_set_wf(Rel,Dom,WF), !,
1791 ? equal_object_wf(Dom,Res,domain_wf1,WF).
1792 domain_wf1(Rel,Res,WF) :-
1793 expand_custom_set_to_list_wf(Rel,Relation,_,domain_wf,WF),
1794 ? newdomain1(Relation,[],Res,WF),
1795 quick_propagate_domain(Relation,Res,WF).
1796
1797 :- block quick_propagate_domain(-,?,?).
1798 quick_propagate_domain([],_,_WF).
1799 quick_propagate_domain([(X,_)|T],FullRes,WF) :-
1800 quick_propagation_element_information(FullRes,X,WF,FullRes1), % should we use a stronger check ?
1801 quick_propagate_domain(T,FullRes1,WF).
1802
1803 %:- block newdomain1(-,?,-,?). % why was this commented out ?
1804 :- block newdomain1(-,?,?,?).
1805 /* newdomain1(Rel,SoFar,Res,WF) :- var(Rel), !,
1806 domain_propagate_result(Res,Rel,SoFar,WF). */
1807 ?newdomain1(Dom,SoFar,Res,WF) :- newdomain2(Dom,SoFar,Res,WF).
1808
1809 %:- block newdomain2(-,?,?,?).
1810 ?newdomain2([],_SoFar,Res,WF) :- empty_set_wf(Res,WF).
1811 newdomain2([(X,Y)|T],SoFar,Res,WF) :-
1812 (Res==[]
1813 -> MemRes=pred_true, % no new elements can appear, all Xs must already be in SoFar
1814 check_element_of_wf(X,SoFar,WF)
1815 ; membership_test_wf(SoFar,X,MemRes,WF),
1816 % now check that card of Relation is greater or equal to Result; if equal set MemRes to pred_false
1817 % if card(Result)=card(dom(Result)) => all elements in Result must be fresh domain elements
1818 card_greater_equal_check([(X,Y)|T],Res,MemRes)
1819 ),
1820 ? newdomain3(MemRes,X,T,SoFar,Res,WF).
1821
1822 :- block newdomain3(-,?,?,?,?,?).
1823 newdomain3(pred_true,_,T,SoFar,Res,WF) :- newdomain1(T,SoFar,Res,WF).
1824 newdomain3(pred_false,X,T,SoFar,Res,WF) :-
1825 kernel_objects:mark_as_non_free(X,domain), % X is linked to a particular Y -> it is not free
1826 add_element_wf(X,SoFar,SoFar2,WF),
1827 ? equal_cons_wf(Res,X,Res2,WF),
1828 ? newdomain1(T,SoFar2,Res2,WF).
1829
1830
1831 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:in_domain_wf(int(2),[(int(2),int(7))],WF),WF)).
1832 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:in_domain_wf(int(2),[(int(1),int(6)),(int(2),int(7))],WF),WF)). % used to be wfdet; but dom_symbolic can create existential quantifier, not all co-routines/... evaluated in wfdet
1833 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:in_domain_wf(int(22),[(int(1),int(6)),(int(22),int(7)),(int(33),int(7))],WF),WF)). % used to be wfdet (see above)
1834 :- assert_must_succeed((bsets_clp:in_domain_wf(int(1),[(int(1),int(2))],_))).
1835 :- assert_must_succeed((bsets_clp:in_domain_wf(int(3),[(int(1),int(2)),(int(3),int(4))],_))).
1836 :- assert_must_fail((bsets_clp:in_domain_wf(int(3),[],_))).
1837 :- assert_must_fail((bsets_clp:in_domain_wf(int(3),[(int(1),int(2))],_))).
1838 /* a more efficient version than using element_of and computing domain */
1839
1840 % just like not_empty_set_wf but instantiates with (El,_) as first element
1841 in_domain_wf(El,S,WF) :- var(S),!, force_in_domain_wf(El,S,WF).
1842 in_domain_wf(El,Rel,WF) :- in_domain_wf_lazy(El,Rel,WF).
1843
1844 :- use_module(kernel_non_empty_attr,[mark_var_set_as_non_empty/1]).
1845 % next is also used in apply_to/6
1846 force_in_domain_wf(El,S,WF) :-
1847 (preferences:preference(use_smt_mode,true) -> get_wait_flag0(WF,WF0),
1848 when(ground(WF0),delayed_force_in_domain_wf(El,S,WF))
1849 ; % TO DO: non-empty flag
1850 mark_var_set_as_non_empty(S),
1851 get_enumeration_starting_wait_flag(not_empty_domain_wf,WF,LWF), in_domain_lwf(El,S,LWF,WF)).
1852 % delay instantiating S somewhat: it can mess up many other optimisations
1853 % fixes trying to deconstruct infinite set enum warning for test 2022
1854 delayed_force_in_domain_wf(El,S,_WF) :- var(S),!, S=[(El,_)|_]. % TODO: mark _ as irrelevant
1855 delayed_force_in_domain_wf(El,Rel,WF) :- in_domain_wf_lazy(El,Rel,WF).
1856
1857 :- block in_domain_lwf(-,-,-,?).
1858 % was :- block in_domain_lwf(-,?,-,?). but this prevents instantiating El in case Rel becomes known ! see e.g. private_examples/ClearSy/ComparePv10Pv11/DebugPv10/ test 1952, 2270
1859 %:- block in_domain_lwf(-,-,?,?),in_domain_lwf(?,-,-,?). % this annotation fails test 1703
1860 in_domain_lwf(El,Rel,LWF,WF) :- % tools_printing:print_term_summary(in_domain_lwf(El,Rel,LWF)),
1861 (var(Rel) -> ground_value_check(El,GrVal),
1862 in_domain_lwf2(El,Rel,LWF,GrVal,WF) % we could also wait at least until WF0 is fully grounded?
1863 ; not_empty_set_unless_closure_wf(Rel,WF),
1864 in_domain_wf_lazy(El,Rel,WF)).
1865
1866 :- block in_domain_lwf2(?,-,-,-,?).
1867 in_domain_lwf2(El,Rel,_LWF,_Grval,WF) :- % tools_printing:print_term_summary(in_domain_lwf2(El,Rel,_LWF,_Grval)),
1868 (var(Rel) -> Rel = [(El,_)|_]
1869 % can create a choice point when unifying with large avl_set:, see rule_Rule_DB_PSR_0003_C
1870 % maybe we should delay even further
1871 ; not_empty_set_unless_closure_wf(Rel,WF),
1872 in_domain_wf_lazy(El,Rel,WF)).
1873
1874 not_empty_set_unless_closure_wf(closure(_,_,_),_) :- !. % do not check this; in_domain_wf or other call will find a solution anyway; no need to set up closure constraints twice
1875 not_empty_set_unless_closure_wf(Rel,WF) :- not_empty_set_wf(Rel,WF).
1876
1877 % does not instantiate to [(El,_)|_]
1878 :- block in_domain_wf_lazy(?,-,?).
1879 in_domain_wf_lazy(_DomainElement,[],_WF) :- !,fail.
1880 in_domain_wf_lazy(DomainElement,avl_set(A),_WF) :-
1881 ground_value(DomainElement), !,
1882 check_in_domain_of_avlset(DomainElement,A).
1883 % TO DO: check for infinite closures
1884 in_domain_wf_lazy(DomainElement,ES,WF) :-
1885 is_custom_explicit_set(ES,in_domain_wf_lazy),
1886 domain_of_explicit_set_wf(ES,Dom,WF),!,
1887 check_element_of_wf(DomainElement,Dom,WF).
1888 in_domain_wf_lazy(El,Rel,WF) :-
1889 expand_custom_set_to_list_wf(Rel,Relation,Done,in_domain_wf_lazy,WF),
1890 get_binary_choice_wait_flag(in_domain_wf_lazy(El),WF,LWF), % TO DO: get_pow2_binary_choice_priority(Len,Prio), get_binary_choice_wait_flag_exp_backoff
1891 % if Done == true -> we can use maybe clpfd_inlist or clpfd:element or quick_propagate
1892 quick_propagation_domain_element_list(Done,Relation,El,WF),
1893 in_domain2(El,Relation,WF,LWF).
1894
1895 % a custom implementation of quick_propagation_element_information for checking domain elements and lists only
1896 :- use_module(clpfd_lists,[try_in_fd_value_list_check/4]).
1897 :- block quick_propagation_domain_element_list(-,?,?,?).
1898 quick_propagation_domain_element_list(_,_,_,_) :- preferences:preference(use_clpfd_solver,false),!.
1899 quick_propagation_domain_element_list(_,_,El,_) :- ground(El),!.
1900 quick_propagation_domain_element_list(_,RelList,El,WF) :-
1901 try_in_fd_value_list_check(RelList,(El,_),couple_left(_),WF). % use couple_left to ignore range values
1902
1903
1904 :- block in_domain2(?,-,?,?).
1905 in_domain2(El,[(X,_Y)|T],WF,LWF) :-
1906 (T==[]
1907 -> equal_object_wf(El,X,in_domain2,WF)
1908 ; kernel_objects:equality_objects_lwf(El,X,EqRes,LWF,WF),
1909 in_domain3(EqRes,El,T,WF,LWF)
1910 ).
1911
1912 :- block in_domain3(-,?,?,?,?).
1913 in_domain3(pred_true,_El,_T,_WF,_LWF).
1914 in_domain3(pred_false,El,T,WF,LWF) :-
1915 get_new_subsidiary_wait_flag(LWF,in_domain2(El,T),WF,NewLWF), % not necessary if T only has single element
1916 in_domain2(El,T,WF,NewLWF).
1917
1918
1919 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_in_domain_wf(int(3),[],WF),WF)).
1920 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_in_domain_wf(int(3),[(int(2),int(7))],WF),WF)).
1921 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_in_domain_wf(int(3),[(int(2),int(7)),(int(4),int(3))],WF),WF)).
1922 :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:not_in_domain_wf(int(4),[(int(2),int(7)),(int(4),int(3))],WF),WF)).
1923 :- assert_must_fail((bsets_clp:not_in_domain_wf(int(1),[(int(1),int(2))],_))).
1924 :- assert_must_fail((bsets_clp:not_in_domain_wf(int(3),[(int(1),int(2)),(int(3),int(4))],_))).
1925 :- assert_must_succeed((bsets_clp:not_in_domain_wf(int(3),[],_))).
1926 :- assert_must_succeed((bsets_clp:not_in_domain_wf(int(3),[(int(1),int(2))],_))).
1927 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_in_domain_wf(int(3),[(int(1),int(2)),(int(2),int(3))],WF),WF)).
1928 /* a more efficient version than using not_element_of and computing domain */
1929
1930
1931 :- block not_in_domain_wf(?,-,?).
1932 not_in_domain_wf(DomainElement,ES,WF) :- is_custom_explicit_set(ES,not_in_domain),
1933 domain_of_explicit_set_wf(ES,Dom,WF),!,
1934 not_element_of_wf(DomainElement,Dom,WF).
1935 not_in_domain_wf(El,Rel,WF) :-
1936 expand_custom_set_to_list_wf(Rel,Relation,_,not_in_domain,WF),
1937 not_in_domain2(Relation,El,WF).
1938 :- block not_in_domain2(-,?,?).
1939 not_in_domain2([],_,_WF).
1940 not_in_domain2([(X,_Y)|T],E,WF) :- not_equal_object_wf(E,X,WF), not_in_domain2(T,E,WF).
1941
1942
1943
1944
1945 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:range_wf([],[],WF),WF)).
1946 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:range_wf([(int(1),int(3))],[int(3)],WF),WF)).
1947 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:range_wf(
1948 [(int(0),int(55)),(int(2),int(3)),(int(1),int(3))],[int(3),int(55)],WF),WF)).
1949 :- assert_must_succeed((bsets_clp:range_wf([],Res,_WF),Res=[])).
1950 :- assert_must_succeed((bsets_clp:range_wf([(int(1),int(2))],Res,_WF),
1951 kernel_objects:equal_object(Res,[int(2)]))).
1952 :- assert_must_succeed((bsets_clp:range_wf([(int(1),int(1)),(int(2),int(1))],Res,_WF),
1953 kernel_objects:equal_object(Res,[int(1)]))).
1954 :- assert_must_succeed((bsets_clp:range_wf([(int(1),int(2)),(int(1),int(1))],Res,_WF),
1955 kernel_objects:equal_object(Res,[int(1),int(2)]))).
1956 :- assert_must_succeed((bsets_clp:range_wf([(int(1),int(2)),(int(1),int(1)),(int(2),int(3))],Res,_WF),
1957 kernel_objects:equal_object(Res,[int(1),int(3),int(2)]))).
1958 :- assert_must_succeed((bsets_clp:range_wf(X,Res,_WF),
1959 X = [(int(1),int(2)),(int(1),int(1)),(int(2),int(3))],
1960 kernel_objects:equal_object(Res,[int(1),int(3),int(2)]))).
1961 :- assert_must_succeed((bsets_clp:range_wf(X,Res,WF), bsets_clp:domain_wf(X,Res2,WF), kernel_objects:equal_object(Res,Res2),
1962 X = [(int(1),int(2)),(int(1),int(1)),(int(2),int(2))])).
1963 :- assert_must_succeed((bsets_clp:range_wf(X,Res,WF), bsets_clp:domain_wf(X,Res2,WF), kernel_objects:equal_object(Res,Res2),
1964 X = [(int(2),int(1)),(int(1),int(2)),(int(2),int(2))])).
1965 :- assert_must_succeed((bsets_clp:range_wf(X,Res,WF), bsets_clp:domain_wf(X,Res2,WF), kernel_objects:equal_object(Res,Res2),
1966 X = [])).
1967 :- assert_must_succeed((bsets_clp:range_wf([([],[]),([int(0)],[int(0)]),
1968 ([int(0),int(1)],[int(0),int(1)]),([int(0),int(2)],[int(0),int(2)]),
1969 ([int(0),int(3)],[int(0),int(3)]),([int(0),int(4)],[int(0),int(4)]),([int(1)],[int(1)]),
1970 ([int(1),int(2)],[int(1),int(2)]),([int(1),int(3)],[int(1),int(3)]),
1971 ([int(1),int(4)],[int(1),int(4)]),([int(2)],[int(2)]),([int(2),int(3)],[int(2),int(3)]),
1972 ([int(2),int(4)],[int(2),int(4)]),([int(3)],[int(3)]),([int(3),int(4)],
1973 [int(3),int(4)]),([int(4)],[int(4)])],_Res,_WF))).
1974 :- assert_must_succeed((bsets_clp:range_wf([([],[]),([int(0)],[int(0)]),
1975 ([int(0),int(1)],[int(0),int(1)]),
1976 ([int(0),int(3)],[int(0),int(3)]),([int(0),int(4)],[int(0),int(4)]),([int(1)],[int(1)]),
1977 ([int(1),int(2)],[int(1),int(2)])],_Res,_WF))).
1978
1979
1980 :- block range_wf(-,-,?).
1981 range_wf(Rel,Res,WF) :- Res ==[],!, empty_set_wf(Rel,WF).
1982 range_wf(Rel,Res,WF) :- Rel ==[],!, empty_set_wf(Res,WF).
1983 ?range_wf(Rel,Res,WF) :- range_wf1(Rel,Res,WF),
1984 propagate_result_to_input(Res,Rel,range,WF).
1985
1986 :- block range_wf1(-,?,?).
1987 range_wf1(Rel,Res,WF) :-
1988 is_custom_explicit_set(Rel,range_wf1),
1989 range_of_explicit_set_wf(Rel,Range,WF), !,
1990 equal_object_wf(Range,Res,range_wf1,WF).
1991 range_wf1(Rel,Res,WF) :-
1992 % TO DO : propagate information that card of Res <= card of Rel; similar thing for domain
1993 expand_custom_set_to_list_wf(Rel,Relation,_,range_wf1,WF),
1994 ? newrange2(Relation,[],Res,WF),
1995 quick_propagate_range(Relation,Res,WF).
1996
1997
1998 :- block quick_propagate_range(-,?,?).
1999 quick_propagate_range([],_,_WF).
2000 quick_propagate_range([(_,Y)|T],FullRes,WF) :-
2001 quick_propagation_element_information(FullRes,Y,WF,FullRes1), % should we use a stronger check ?
2002 quick_propagate_range(T,FullRes1,WF).
2003
2004 :- block newrange2(-,?,?,?).
2005 newrange2([],_SoFar,Res,WF) :-
2006 empty_set_wf(Res,WF).
2007 newrange2([(X,Y)|T],SoFar,Res,WF) :-
2008 (Res==[]
2009 -> MemRes=pred_true, check_element_of_wf(Y,SoFar,WF)
2010 ; membership_test_wf(SoFar,Y,MemRes,WF),
2011 card_greater_equal_check([(X,Y)|T],Res,MemRes), % check that card of Relation is greater or equal to Result; if equal set MemRes to pred_false
2012 (var(MemRes) -> prop_empty_pred_true(Res,MemRes) %,print(delay_range(Y,T)),nl
2013 % TO DO: we could look further in T if we can decide membership for other elements in T ?
2014 ; true)
2015 ),
2016 ? newrange3(MemRes,Y,T,SoFar,Res,WF).
2017
2018 :- block prop_empty_pred_true(-,?).
2019 prop_empty_pred_true([],R) :- !, R=pred_true.
2020 prop_empty_pred_true(_,_).
2021
2022 % card_greater_equal_check(Set1,Set2,EqFlag) : check that cardinality of Set1 is greater or equal to that of Set2; set EqFlag to pred_false if they are equal
2023 % checking is stopped if EqFlag becomes nonvar
2024 % tested by testcase 1061
2025 :- block card_greater_equal_check(-,?,-), card_greater_equal_check(?,-,-).
2026 card_greater_equal_check(_,_,Flag) :- nonvar(Flag),!. % no longer required; even though we could prune failure !? done later in newrange2/newdomain2 ??!!
2027 card_greater_equal_check([],Set2,Flag) :- !,empty_set(Set2),
2028 Flag=pred_false. % Flag set indicates that both sets have same size
2029 card_greater_equal_check(_,[],_) :- !.
2030 card_greater_equal_check([_|T],[_|R],Flag) :- !, card_greater_equal_check(T,R,Flag).
2031 % To do: deal with AVL args as Result + also use efficient_card_for_set for closures
2032 %card_greater_equal_check([_|T],Set,Flag) :- efficient_card_for_set(B,CardB,CodeB),!,
2033 % f: 1..7 -->> 1..n & n>=7 & n<10 still does not work well
2034 % TO DO: can we merge code with check_card_greater_equal
2035 card_greater_equal_check(_,_,_).
2036
2037
2038 :- block newrange3(-,?,?,?,?,?).
2039 newrange3(pred_true,_Y,T,SoFar,Res,WF) :- newrange2(T,SoFar,Res,WF).
2040 newrange3(pred_false,Y,T,SoFar,Res,WF) :-
2041 kernel_objects:mark_as_non_free(Y,range), % Y is linked to a particular X -> it is not free
2042 add_element_wf(Y,SoFar,SoFar2,WF),
2043 ? equal_cons_wf(Res,Y,Res2,WF),
2044 newrange2(T,SoFar2,Res2,WF).
2045
2046
2047 :- assert_must_succeed((bsets_clp:identity_relation_over_wf([],Res,_WF),Res=[])).
2048 :- assert_must_succeed((bsets_clp:identity_relation_over_wf([int(1),int(2)],Res,_WF),
2049 Res=[(int(1),int(1)),(int(2),int(2))])).
2050 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:identity_relation_over_wf([int(2),int(4)],[(int(4),int(4)),(int(2),int(2))],WF),WF)).
2051 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:identity_relation_over_wf([int(1),int(2),int(4)],[(int(4),int(4)),(int(2),int(2)),(int(1),int(1))],WF),WF)).
2052 :- assert_must_fail((bsets_clp:identity_relation_over_wf([int(1)|_],_,_WF),fail)). /* check: no loop */
2053
2054 :- block identity_relation_over_wf(-,?,?).
2055 identity_relation_over_wf(Set1,IDRel,WF) :-
2056 expand_custom_set_to_list_wf(Set1,ESet1,_,identity_relation_over_wf,WF),
2057 identity_relation_over2(ESet1,IDRel,WF).
2058
2059 :- block identity_relation_over2(-,?,?).
2060 identity_relation_over2([],Res,WF) :- empty_set_wf(Res,WF).
2061 identity_relation_over2([X|T1],Res,WF) :- equal_cons_wf(Res,(X,X),T2,WF), % equal_object([(X,X)|T2],Res),
2062 identity_relation_over2(T1,T2,WF).
2063
2064
2065
2066 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:in_identity((int(1),int(1)),[int(1),int(2)],WF),WF)).
2067 :- assert_must_fail((bsets_clp:in_identity((int(1),int(2)),[int(1),int(2)],_WF))).
2068 :- assert_must_fail((bsets_clp:in_identity((int(3),int(3)),[int(1),int(2)],_WF))).
2069 :- assert_must_fail((bsets_clp:in_identity((int(1),int(2)),[],_WF))).
2070 in_identity((X,Y),Domain,WF) :-
2071 equal_object_wf(X,Y,in_identity,WF), check_element_of_wf(X,Domain,WF).
2072
2073 :- assert_must_fail((bsets_clp:not_in_identity((int(1),int(1)),[int(1),int(2)],_WF))).
2074 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_in_identity((int(1),int(2)),[int(1),int(2)],WF),WF)).
2075 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_in_identity((int(3),int(3)),[int(1),int(2)],WF),WF)).
2076 :- assert_must_succeed((bsets_clp:not_in_identity((int(1),int(2)),[],_WF))).
2077 not_in_identity((X,Y),Domain,WF) :-
2078 equality_objects_wf(X,Y,Eq,WF),
2079 not_in_id2(Eq,X,Domain,WF).
2080
2081 :- block not_in_id2(-,?,?,?).
2082 not_in_id2(pred_true,X,Domain,WF) :- not_element_of_wf(X,Domain,WF).
2083 not_in_id2(pred_false,_,_,_).
2084
2085
2086 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:invert_relation_wf([(int(1),int(2)),(int(3),int(4)),(int(5),int(6))], [(int(6),int(5)),(int(2),int(1)),(int(4),int(3))],WF),WF)).
2087 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:invert_relation_wf([(int(1),int(2))], [(int(2),int(1))],WF),WF)).
2088 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:invert_relation_wf([], [],WF),WF)).
2089 :- assert_must_succeed((bsets_clp:invert_relation_wf(X,X,_),X = [])).
2090 :- assert_must_succeed((bsets_clp:invert_relation_wf(X,X,_),X = [(int(2),int(2))])).
2091 :- assert_must_succeed((bsets_clp:invert_relation_wf(X,[(int(1),int(2)),(int(7),int(6))],_WF),
2092 X = [(int(2),int(1)),(int(6),int(7))])).
2093 :- assert_must_succeed((bsets_clp:invert_relation_wf([(int(1),int(2)),(int(7),int(6))],X,_WF),
2094 X = [(int(2),int(1)),(int(6),int(7))])).
2095 :- assert_must_succeed((bsets_clp:invert_relation_wf([(int(1),int(2)),(int(7),int(6))],
2096 [(int(6),int(7)),(int(2),int(1))],_WF))).
2097 :- assert_must_succeed((bsets_clp:invert_relation_wf(closure([a,b],[string,boolean],b(truth,pred,[])),
2098 closure([b,a],[boolean,string],b(truth,pred,[])),_WF))).
2099
2100 :- block invert_relation_wf(-,-,?).
2101 invert_relation_wf(R,IR,WF) :-
2102 % (nonvar(R) -> invert_relation2(R,IR) ; invert_relation2(IR,R)).
2103 invert_relation2(R,IR,WF). % , print_term_summary(invert_relation(R,IR)).
2104 /* Optimization for some types of closures: Instead of expanding the closures, we just
2105 swap the parameters. This does not work with closures wich have only one parameter
2106 wich is a pair */
2107 invert_relation2(CS,R,WF) :- nonvar(CS),is_custom_explicit_set_nonvar(CS),!,
2108 invert_explicit_set(CS,ICS), equal_object_wf(R,ICS,invert_relation2_1,WF).
2109 invert_relation2(R,CS,WF) :- nonvar(CS),is_custom_explicit_set_nonvar(CS),!,
2110 invert_explicit_set(CS,ICS), equal_object_wf(R,ICS,invert_relation2_2,WF).
2111 %invert_relation2(closure([P1,P2],[T1,T2],Clo),closure([P2,P1],[T2,T1],Clo)) :- !.
2112 invert_relation2(R,IR,WF) :- %try_expand_custom_set_wf(R,ER,invert,WF),
2113 % (nonvar(R) -> invert_relation3(R,IR)
2114 % ; invert_relation3(IR,R),(ground(IR)-> true ; invert_relation3(R,IR))).
2115 invert_relation3(R,IR,WF,1), invert_relation3(IR,R,WF,1).
2116
2117 :- block invert_relation3(-,?,?,?).
2118 invert_relation3(closure(P,T,B),Res,WF,_) :- invert_explicit_set(closure(P,T,B),ICS),
2119 equal_object_wf(Res,ICS,invert_relation3_1,WF).
2120 invert_relation3(avl_set(S),Res,WF,_) :- invert_explicit_set(avl_set(S),ICS),
2121 equal_object_wf(Res,ICS,invert_relation3_2,WF).
2122 invert_relation3([],Res,WF,_) :- empty_set_wf(Res,WF).
2123 invert_relation3([(X,Y)|T],Res,WF,Depth) :-
2124 D1 is Depth+1, get_wait_flag(D1,invert_relation3,WF,LWF),
2125 equal_cons_lwf(Res,(Y,X),IT,LWF,WF),
2126 invert_relation3(T,IT,WF,D1).
2127
2128
2129
2130
2131 tuple_of(X,Y,R) :- check_element_of((X,Y),R).
2132 %tuple_of_wf(X,Y,R,WF) :- check_element_of_wf((X,Y),R,WF).
2133
2134
2135 % RELATIONAL COMPOSITION (;)
2136
2137 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:in_composition_wf((int(11),int(22)),
2138 [(int(11),int(33))],[(int(33),int(22))],WF),WF)).
2139 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:in_composition_wf((int(11),int(22)),
2140 [(int(11),int(12)),(int(11),int(33))],
2141 [(int(33),int(12)),(int(33),int(22))],WF),WF)).
2142 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:in_composition_wf((int(11),int(12)),
2143 [(int(11),int(12)),(int(11),int(33))],
2144 [(int(33),int(12)),(int(33),int(22))],WF),WF)).
2145 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:in_composition_wf((int(11),int(22)),
2146 [(int(11),[int(33),int(32)])],
2147 [([int(32),int(33)],int(22))],WF),WF)).
2148 :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:in_composition_wf((int(11),int(33)),
2149 [(int(11),int(12)),(int(11),int(33))],
2150 [(int(33),int(12)),(int(33),int(22))],WF),WF)).
2151 % check if (X,Y) element of (F ; G)
2152 in_composition_wf((X,Y),F,G,WF) :-
2153 check_element_of_wf((X,Z1),F,WF), % no need to enumerate Z (TODO: check)
2154 equal_object_wf(Z1,Z2,check_element_of_wf,WF),
2155 check_element_of_wf((Z2,Y),G,WF).
2156
2157 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_in_composition_wf((int(11),int(33)),
2158 [(int(11),int(33))],[(int(33),int(22))],WF),WF)).
2159 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_in_composition_wf((int(33),int(22)),
2160 [(int(11),int(33))],[(int(33),int(22))],WF),WF)).
2161
2162 % just evaluates arguments; TODO: improve or at least pass Type (for symbolic composition)
2163 not_in_composition_wf(Couple,F,G,WF) :-
2164 rel_composition_wf(F,G,Comp,_UnknownType,WF),
2165 not_element_of_wf(Couple,Comp,WF).
2166
2167 :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:rel_composition([(int(1),int(2)),(int(3),int(4)),(int(5),int(6))], [(int(6),int(7)),(int(2),int(1)),(int(22),int(22)),(int(4),int(33))],
2168 [(int(1),int(1)),(int(5),int(7)),(int(3),int(33))]))).
2169 :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:rel_composition([], [(int(6),int(7)),(int(2),int(1)),(int(22),int(22)),(int(4),int(33))],[]))).
2170 :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:rel_composition([(int(6),int(7)),(int(2),int(1)),(int(22),int(22)),(int(4),int(33))],[],[]))).
2171 :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:rel_composition([],[],[]))).
2172 :- assert_must_succeed((bsets_clp:rel_composition([(int(1),int(2)),(int(7),int(6))],
2173 [(int(1),int(11))],X),X = [])).
2174 :- assert_must_succeed((bsets_clp:rel_composition([(int(1),int(2)),(int(7),int(6))],[],X),X = [])).
2175 :- assert_must_succeed((bsets_clp:rel_composition([(int(1),int(2)),(int(7),int(6))],
2176 [(int(2),int(11))],X),
2177 kernel_objects:equal_object(X,[(int(1),int(11))]))).
2178 :- assert_must_succeed((bsets_clp:rel_composition([(int(1),int(2)),(int(7),int(2))],[(int(2),int(11))],X),
2179 ground(X), bsets_clp:equal_object(X,[(int(1),int(11)),(int(7),int(11))]))).
2180 :- assert_must_succeed((bsets_clp:rel_composition([(int(1),int(2)),(int(7),int(5))],
2181 [(int(2),int(11)),(int(2),int(4))],X),
2182 kernel_objects:equal_object(X,[(int(1),int(11)),(int(1),int(4))]))).
2183 :- assert_must_succeed((bsets_clp:rel_composition([(int(1),int(2)),(int(1),int(5))],
2184 [(int(2),int(11)),(int(5),int(11))],X),
2185 kernel_objects:equal_object(X,[(int(1),int(11))]))).
2186 :- assert_must_succeed((bsets_clp:rel_composition([(int(1),[int(1)]),(int(1),[int(2),int(5)])],
2187 [([int(1),int(2)],int(13)),([int(5),int(2)],int(12))],X),
2188 kernel_objects:equal_object(X,[(int(1),int(12))]))).
2189
2190 rel_composition(Rel1,Rel2,Comp) :- % only used in unit_tests above
2191 init_wait_flags(WF,[rel_composition]),
2192 rel_composition_wf(Rel1,Rel2,Comp,_UnknownType,WF),
2193 ? ground_wait_flags(WF).
2194
2195 :- block rel_composition_wf(-,-,?,?,?).
2196 rel_composition_wf(Rel1,Rel2,Comp,_,WF) :-
2197 (Rel1==[] ; Rel2==[]),
2198 !,
2199 empty_set_wf(Comp,WF).
2200 rel_composition_wf(Rel1,Rel2,Comp,Type,WF) :- rel_composition1(Rel1,Rel2,Comp,Type,WF).
2201
2202 :- use_module(closures,[is_infinite_non_injective_closure/1]).
2203
2204 :- block rel_composition1(-,?,?,?,?),rel_composition1(?,-,?,?,?).
2205 rel_composition1(Rel1,Rel2,Comp,_,WF) :-
2206 (Rel1==[] ; Rel2==[]),!, empty_set_wf(Comp,WF).
2207 rel_composition1(Rel1,Rel2,Comp,Type,WF) :- keep_symbolic(Rel1),
2208 (Rel2 = avl_set(_), \+ is_infinite_non_injective_closure(Rel1)
2209 -> SYMBOLIC=false
2210 ; SYMBOLIC=symbolic),
2211 symbolic_composition(Rel1,Rel2,SYMBOLIC,Type,Rel3),
2212 !,
2213 ? equal_object_wf(Comp,Rel3,rel_composition1_0,WF).
2214
2215 rel_composition1(Rel1,Rel2,Comp,_,WF) :-
2216 rel_composition_for_explicit_set(Rel1,Rel2,Res),!, % treats finite Rel1 and avl_set for Rel2
2217 equal_object_wf(Res,Comp,rel_composition1_1,WF).
2218 rel_composition1(Rel1,Rel2,Comp,Type,WF) :- Rel2=closure(_,_,_),
2219 keep_symbolic(Rel2),
2220 % we know keep_symbolic(Rel1) is false
2221 (dom_for_specific_closure(Rel2,Domain,function(_),WF) % TO DO: also deal with relations; in SYMBOLIC mode this may be counter productive; see function_composition ast cleanup rule
2222 -> !,
2223 opt_push_wait_flag_call_stack_info(WF,b_operator_call(composition,[Rel1,Rel2],unknown),WF2),
2224 on_enumeration_warning(expand_custom_set_to_list_wf(Rel1,Relation1,_,rel_composition1,WF2),R=failed),
2225 (R==failed % expansion of Rel1 failed; use symbolic composition
2226 -> symbolic_composition(Rel1,Rel2,true,Type,Rel3),
2227 equal_object_optimized(Rel3,Comp,rel_composition1_4)
2228 ; rel_compose_with_inf_fun(Relation1,Domain,Rel2,Comp,WF2)
2229 % this is like map Rel2 over Rel1 in functional programmming
2230 )
2231 ; symbolic_composition(Rel1,Rel2,false,Type,Rel3),
2232 !,
2233 expand_custom_set_wf(Rel3,CRes,rel_composition,WF),% do we need to expand ?
2234 ? equal_object_optimized(CRes,Comp,rel_composition1_4)
2235 ).
2236 rel_composition1(Rel1,Rel2,Comp,_,WF) :-
2237 opt_push_wait_flag_call_stack_info(WF,b_operator_call(composition,[Rel1,Rel2],unknown),WF2),
2238 expand_custom_set_to_list_wf(Rel1,Relation1,_,rel_composition1_2,WF2),
2239 expand_custom_set_to_list_wf(Rel2,Relation2,_,rel_composition1_3,WF2),
2240 ? rel_compose2(Relation1,Relation2,Comp,WF2).
2241
2242
2243 :- use_module(btypechecker, [l_unify_types_strict/2]).
2244 symbolic_composition(Rel1,Rel2,SYMBOLIC,Type,Rel3) :-
2245 get_set_type(Type,couple(TX,TZ)),
2246 mnf_get_relation_types(Rel1,TX1,TY1),
2247 mnf_get_relation_types(Rel2,TY2,TZ2),
2248 (l_unify_types_strict([TX1,TY1,TZ],[TX,TY2,TZ2]) -> true
2249 ; add_internal_error('Could not unify range/domain types: ',l_unify_types_strict([TX1,TY1,TZ],[TX,TY2,TZ2])),
2250 fail
2251 ),
2252 ground((TX1,TY1,TZ)), % avoid creating a closure with non-ground type list
2253 rel_comp_closure(Rel1,Rel2,TX1,TY1,TZ,SYMBOLIC,Rel3).
2254 % generate a closure for {xx,zz | #(yy).(xx|->yy : Rel1 & yy|->zz : Rel2)}
2255 % TO DO: maybe detect special cases: Rel1 is a function/cartesian product, e.g., (((0 .. 76) * (0 .. 76)) * {FALSE}) ; {(FALSE|->0),(TRUE|->1)}
2256 :- use_module(bsyntaxtree, [conjunct_predicates_with_pos_info/3,update_used_ids/3 ]).
2257 rel_comp_closure(Rel1,Rel2,TX,TY,TZ,SYMBOLIC,closure(Args,Types,CBody)) :-
2258 Args = ['_rel_comp1','_rel_comp2'], Types = [TX,TZ],
2259 couple_member_pred('_rel_comp1',TX,'_zzzz_unary',TY,Rel1, Pred1),
2260 couple_member_pred('_zzzz_unary',TY,'_rel_comp2',TZ,Rel2, Pred2),
2261 UsedIds = ['_rel_comp1','_rel_comp2','_zzzz_unary'], % avoid having to call find_identifier_uses
2262 %conjunct_predicates([Pred1,Pred2],P12a), bsyntaxtree:check_computed_used_ids(P12a,UsedIds),
2263 %safe_create_texpr(conjunct(Pred1,Pred2),pred,[used_ids(UsedIds)],P12),
2264 conjunct_predicates_with_pos_info(Pred1,Pred2,P12a),
2265 update_used_ids(P12a,UsedIds,P12),
2266 %b_interpreter_components:create_unsimplified_exists([b(identifier('_zzzz_unary'),TY,[])],P12,Body),
2267 bsyntaxtree:create_exists_opt_liftable([b(identifier('_zzzz_unary'),TY,[])],P12,Body), % cf Thales_All/rule_zcpa2 test 2287
2268 (SYMBOLIC==symbolic
2269 -> mark_bexpr_as_symbolic(Body,CBody)
2270 ; CBody=Body).
2271
2272 % generate predicate for X|->Y : Rel
2273 couple_member_pred(X,TX,Y,TY,Rel, Pred) :-
2274 Pred = b(member(b(couple(b(identifier(X),TX,[]),
2275 b(identifier(Y),TY,[])),couple(TX,TY),[]),
2276 b(value(Rel),set(couple(TX,TY)),[])),pred,[]).
2277
2278
2279
2280 :- block rel_compose2(-,?,?,?).
2281 rel_compose2([],_,Out,WF) :- empty_set_wf(Out,WF).
2282 rel_compose2([(X,Y)|T],Rel2,Out,WF) :-
2283 ? rel_extract(Rel2,X,Y,OutXY,[],WF),
2284 % rel_extract(Rel2,X,Y,Out,OutRem),
2285 ? rel_compose2(T,Rel2,OutRem,WF),
2286 ? union_wf(OutRem,OutXY,Out,WF). % used to call union wihout wf; makes test 1394 fail
2287
2288 :- block rel_extract(-,?,?,?,?,?).
2289 rel_extract([],_,_,Rem,Rem,_WF). % should we use equal_object here ?????
2290 rel_extract([(Y1,Z)|T],X,Y,Res,Rem,WF) :-
2291 ? rel_extract(T,X,Y,CT,Rem,WF),
2292 ? equality_objects_wf(Y1,Y,EqRes,WF),
2293 rel_extract2(EqRes,Z,X,CT,Res).
2294
2295 :- block rel_extract2(-,?,?,?,?).
2296 rel_extract2(pred_true, Z, X,CT,Res) :- add_element((X,Z),CT,Res).
2297 rel_extract2(pred_false,_Z,_X,CT,Res) :- Res = CT.
2298
2299
2300 % relational composition of a finite relation with an infinite or symbolic function
2301 rel_compose_with_inf_fun(R,Dom,Fun,CompRes,WF) :- !,
2302 rel_compose_with_inf_fun_acc(R,Dom,Fun,[],CompRes,WF).
2303 :- block rel_compose_with_inf_fun_acc(-,?,?,?,?,?).
2304 rel_compose_with_inf_fun_acc([],_Dom,_Rel2,Acc,Comp,WF) :-
2305 equal_object_wf(Comp,Acc,rel_compose_with_inf_fun_acc,WF).
2306 rel_compose_with_inf_fun_acc([(X,Y)|T],Dom,Fun,Acc,CompRes,WF) :-
2307 membership_test_wf(Dom,Y,MemRes,WF), % check if Y is in the domain of the symbolic relation
2308 rel_compose_with_inf_fun_acc_aux(MemRes,X,Y,T,Dom,Fun,Acc,CompRes,WF).
2309
2310 :- block rel_compose_with_inf_fun_acc_aux(-,?,?,?, ?,?,?,?, ?).
2311 rel_compose_with_inf_fun_acc_aux(pred_true,X,Y,T,Dom,Fun,Acc,CompRes,WF) :-
2312 apply_to(Fun,Y,FY,WF), % TO DO: generalize to image so that we can apply it also to infinite relations ?
2313 add_element_wf((X,FY),Acc,NewAcc,WF),
2314 rel_compose_with_inf_fun_acc(T,Dom,Fun,NewAcc,CompRes,WF).
2315 rel_compose_with_inf_fun_acc_aux(pred_false,_X,_Y,T,Dom,Fun,Acc,Comp,WF) :-
2316 rel_compose_with_inf_fun_acc(T,Dom,Fun,Acc,Comp,WF).
2317
2318 % TO DO: if we obtain a list such as [(int(1),X),...] in Acc rather than an avl_set,
2319 % we may still be able to sort and avoid quadratic comparisons if e.g.
2320 % first component is a data-type where equality can be decided by unification (integer, bool, global(GS), ...)
2321 % we could put the optimisation into add_element_wf ?
2322 % TO DO: special version for avl_set as relation?
2323
2324 /*
2325 Note: old version; has performance problem, 2021/02_Feb/CDS
2326 the add_element_wf calls below can only construct/instantiate result when empty_set_wf reached
2327 and a lot of pending co-routines pile up for long relation lists
2328
2329 :- block rel_compose_with_inf_fun(-,?,?,?,?).
2330 rel_compose_with_inf_fun([],_Dom,_Rel2,Comp,WF) :- empty_set_wf(Comp,WF).
2331 rel_compose_with_inf_fun([(X,Y)|T],Dom,Fun,CompRes,WF) :-
2332 membership_test_wf(Dom,Y,MemRes,WF), rel_compose_with_inf_fun_aux(MemRes,X,Y,T,Dom,Fun,CompRes,WF).
2333
2334 :- block rel_compose_with_inf_fun_aux(-,?,?,?, ?,?,?,?).
2335 rel_compose_with_inf_fun_aux(pred_true,X,Y,T,Dom,Fun,CompRes,WF) :-
2336 apply_to(Fun,Y,FY,WF),
2337 add_element_wf((X,FY),CT,CompRes,WF),
2338 rel_compose_with_inf_fun(T,Dom,Fun,CT,WF).
2339 rel_compose_with_inf_fun_aux(pred_false,_X,_Y,T,Dom,Fun,Comp,WF) :-
2340 rel_compose_with_inf_fun(T,Dom,Fun,Comp,WF).
2341 */
2342
2343 :- assert_must_abort_wf(bsets_clp:rel_iterate_wf([],int(-1),_R,set(couple(integer,integer)),WF),WF).
2344 :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:rel_iterate_wf([], int(2),[],set(couple(integer,integer)),_WF))).
2345 :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:rel_iterate_wf([(int(1),int(2)),(int(3),int(4)),(int(5),int(6))], int(1),[(int(1),int(2)),(int(3),int(4)),(int(5),int(6))],set(couple(integer,integer)),_WF))).
2346 :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:rel_iterate_wf([(pred_true,pred_true)], int(0),
2347 [(pred_true,pred_true),(pred_false,pred_false)],set(couple(boolean,boolean)),_WF))).
2348 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:rel_iterate_wf([(int(1),int(2)),
2349 (int(2),int(4)),(int(4),int(6))], int(2),[(int(1),int(4)),(int(2),int(6))],
2350 set(couple(integer,integer)),WF),WF)).
2351 :- assert_must_succeed((bsets_clp:rel_iterate_wf(R,int(1),X,set(couple(integer,integer)),_WF), R=[],
2352 bsets_clp:equal_object(X,R))).
2353 :- assert_must_succeed((bsets_clp:rel_iterate_wf(R,int(1),X,set(couple(integer,integer)),_WF),
2354 R=[(int(1),int(2)),(int(2),int(3))],
2355 bsets_clp:equal_object(X,R))).
2356 :- assert_must_succeed((bsets_clp:rel_iterate_wf(R,int(2),X,set(couple(integer,integer)),_WF),
2357 R=[(int(1),int(2)),(int(2),int(3))],
2358 bsets_clp:equal_object(X,[(int(1),int(3))]))).
2359 :- assert_must_succeed((bsets_clp:rel_iterate_wf(R,int(3),X,set(couple(integer,integer)),_WF),
2360 R=[(int(1),int(2)),(int(2),int(3))],
2361 bsets_clp:equal_object(X,[]))).
2362 :- assert_must_succeed((bsets_clp:rel_iterate_wf(R,int(3),X,set(couple(integer,integer)),_WF),
2363 R=[(int(1),int(2)),(int(2),int(3)),(int(1),int(1))],
2364 bsets_clp:equal_object(X,[(int(1),int(1)),(int(1),int(2)),(int(1),int(3))]))).
2365
2366 rel_iterate_wf(Rel,int(Nr),Res,Type,WF) :-
2367 opt_push_wait_flag_call_stack_info(WF,b_operator_call(iterate,
2368 [Nr,Rel],unknown),WF2),
2369 rel_iterate1(Nr,Rel,Res,Type,WF2).
2370
2371 :- block rel_iterate1(-,?,?,?,?).
2372 rel_iterate1(X,Rel,Res,Type,WF) :-
2373 %value_variables(Rel,GrV),
2374 rel_iterate2(X,Rel,Res,Type,WF).
2375
2376 rel_iterate2(X,Rel,Res,Type,WF) :-
2377 ( X=1 -> equal_object_wf(Res,Rel,rel_iterate2,WF)
2378 ; X>1 -> X1 is X-1,
2379 rel_iterate2(X1,Rel,R1,Type,WF),
2380 rel_composition_wf(Rel,R1,Res,Type,WF)
2381 ; X=0 -> rel_iterate0(Rel,Type,Res,WF)
2382 ; add_wd_error('negative index in iterate',X,WF)
2383 ).
2384
2385 :- use_module(bsyntaxtree,[get_set_type/2]).
2386 :- block rel_iterate0(?,-,?,?).
2387 rel_iterate0(_Rel,EType,Res,WF) :-
2388 get_set_type(EType,couple(Type,Type)),
2389 event_b_identity_for_type(Type,Res,WF).
2390
2391 :- use_module(typing_tools,[is_infinite_type/1]).
2392 event_b_identity_for_type(Type,Res,WF) :-
2393 create_texpr(identifier('_zzzz_unary'),Type,[],TIdentifier1), % was [generated]
2394 create_texpr(identifier('_zzzz_binary'),Type,[],TIdentifier2), % was [generated]
2395 (is_infinite_type(Type) -> Info = [prob_annotation('SYMBOLIC')] ; Info =[]),
2396 create_texpr(equal(TIdentifier1,TIdentifier2),pred,Info,TPred),
2397 construct_closure(['_zzzz_unary','_zzzz_binary'],[Type,Type],TPred,CRes),
2398 % for small types we could do: all_objects_of_type(Type,All), identity_relation_over_wf(All,CRes,WF)
2399 %, print(constructed_eventb_identity(Res)),nl
2400 equal_object_wf(Res,CRes,WF).
2401
2402
2403 :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:direct_product_wf([],[(int(1),int(11))],[],_WF))).
2404 :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:direct_product_wf([(int(1),int(2)),(int(7),int(6))],
2405 [(int(1),int(11))],[(int(1),(int(2),int(11)))],_WF))).
2406 :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:direct_product_wf([(int(1),int(2)),(int(7),int(6))],
2407 [(int(2),int(11))],[],_WF))).
2408 :- assert_must_succeed((bsets_clp:direct_product_wf([(int(1),int(2)),(int(7),int(6))],
2409 [(int(2),int(11))],X,_WF),
2410 X = [])).
2411 :- assert_must_succeed((bsets_clp:direct_product_wf([(int(1),int(2)),(int(7),int(6))],
2412 [(int(1),int(11))],X,_WF),
2413 kernel_objects:equal_object(X,[(int(1),(int(2),int(11)))]))).
2414 :- assert_must_succeed((bsets_clp:direct_product_wf([(int(1),int(2)),(int(1),int(6))],
2415 [(int(1),int(11))],X,_WF),
2416 kernel_objects:equal_object(X,[(int(1),(int(2),int(11))),(int(1),(int(6),int(11)))]))).
2417 :- assert_must_succeed((bsets_clp:direct_product_wf([(int(1),int(2)),(int(2),int(6))],
2418 [(int(1),int(11)),(int(1),int(12))],X,_WF),
2419 kernel_objects:equal_object(X,[(int(1),(int(2),int(11))),(int(1),(int(2),int(12)))]))).
2420 :- assert_must_succeed((bsets_clp:direct_product_wf([(int(1),int(2)),(int(2),int(6))],
2421 [(int(1),int(11)),(int(1),int(12))],
2422 [(int(1),(int(2),int(11))),(int(1),(int(2),int(12)))],_WF))).
2423 :- assert_must_succeed((bsets_clp:direct_product_wf(avl_set(node((fd(1,'Name'),fd(2,'Name')),true,1,empty,node((fd(2,'Name'),fd(3,'Name')),true,0,empty,empty))),
2424 avl_set(node((fd(1,'Name'),fd(2,'Name')),true,1,empty,node((fd(2,'Name'),fd(3,'Name')),true,0,empty,empty))),
2425 avl_set(node((fd(1,'Name'),fd(2,'Name'),fd(2,'Name')),true,1,empty,node((fd(2,'Name'),fd(3,'Name'),fd(3,'Name')),true,0,empty,empty)))
2426 ,_WF))).
2427
2428 :- block direct_product_wf(-,?,?,?),direct_product_wf(?,-,?,?).
2429 direct_product_wf(Rel1,Rel2,Prod,WF) :-
2430 try_expand_and_convert_to_avl_with_check(Rel1,E1,direct_product), % to do: try_expand_and_convert_to_avl_unless_large_wf(Rel1,E1,WF),
2431 try_expand_and_convert_to_avl_with_check(Rel2,E2,direct_product),
2432 ? direct_product_wf1(E1,E2,Prod,WF).
2433
2434 direct_product_wf1(Rel1,Rel2,Prod,WF) :-
2435 direct_product_explicit_set(Rel1,Rel2,Res),!,
2436 equal_object_wf(Prod,Res,direct_product_wf1,WF).
2437 direct_product_wf1(Rel1,Rel2,Prod,WF) :-
2438 expand_custom_set_to_list_wf(Rel1,Relation1,_,direct_product_wf1_1,WF),
2439 expand_custom_set_to_list_wf(Rel2,Relation2,_,direct_product_wf1_2,WF),
2440 ? direct_product2(Relation1,Relation2,Prod,WF),
2441 ? direct_product_backwards(Relation1,Relation2,Prod,WF).
2442
2443 :- block direct_product2(-,?,?,?).
2444 direct_product2([],_,Out,WF) :- equal_object_wf(Out,[],direct_product2,WF).
2445 direct_product2([(X,Y)|T],Rel2,Out,WF) :-
2446 ? direct_product_tuple(Rel2,X,Y,Out,OutRem,WF),
2447 direct_product2(T,Rel2,OutRem,WF).
2448
2449 :- block direct_product_tuple(-,?,?,?,?,?).
2450 direct_product_tuple([],_,_,Res,Rem,WF) :- equal_object_optimized_wf(Res,Rem,direct_product_tuple,WF).
2451 direct_product_tuple([(X2,Z)|T],X,Y,Res,Rem,WF) :-
2452 direct_product_tuple(T,X,Y,CT,Rem,WF),
2453 equality_objects_wf(X2,X,EqRes,WF),
2454 ? direct_product_tuple3(EqRes,X,Y,Z,CT,Res,WF).
2455
2456 :- block direct_product_tuple3(-,?,?,?,?,?,?).
2457 direct_product_tuple3(pred_true,X,Y,Z,CT,Res,WF) :-
2458 ? equal_cons_wf(Res,(X,(Y,Z)),CT,WF). /* no need for add_element as output uniquely determines X,Y,Z !?*/
2459 direct_product_tuple3(pred_false,_X,_Y,_Z,CT,Res,WF) :- equal_object_optimized_wf(Res,CT,direct_product_tuple3,WF).
2460
2461 :- block direct_product_backwards(?,?,-,?).
2462 % Propagate information backwards from result to arguments
2463 direct_product_backwards(R1,R2,Prod,WF) :-
2464 ((ground_value(R1) ; ground_value(R2)) -> true
2465 ; expand_custom_set_to_list_wf(Prod,ProdList,_,direct_product_backwards,WF),
2466 ? direct_product_propagate_back(ProdList,R1,R2,WF)
2467 ).
2468
2469 :- block direct_product_propagate_back(-,?,?,?).
2470 direct_product_propagate_back([],_,_,_WF).
2471 direct_product_propagate_back([(X,(Y,Z))|T],R1,R2,WF) :-
2472 ? check_element_of_wf((X,Y),R1,WF), check_element_of_wf((X,Z),R2,WF),
2473 direct_product_propagate_back(T,R1,R2,WF).
2474
2475 :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:parallel_product([],[(int(3),int(4))],[]))).
2476 :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:parallel_product([(int(1),int(2))],
2477 [(int(3),int(4))],[((int(1),int(3)),(int(2),int(4)))]))).
2478 :- assert_must_succeed((bsets_clp:parallel_product([(int(1),int(2))],
2479 [(int(3),int(4))],X), ground(X),
2480 equal_object(X,[((int(1),int(3)),(int(2),int(4)))]))).
2481 :- assert_must_succeed((bsets_clp:parallel_product([(int(1),int(2))],
2482 [(int(3),int(4))],[((int(1),int(3)),(int(2),int(4)))]))).
2483 :- assert_must_succeed((bsets_clp:parallel_product([(int(1),int(2))], [],X),X == [])).
2484 :- assert_must_succeed((bsets_clp:parallel_product([], [(int(3),int(4))],X),X == [])).
2485
2486 ?parallel_product(Rel1,Rel2,Prod) :- parallel_product_wf(Rel1,Rel2,Prod,no_wf_available).
2487
2488 :- block parallel_product_wf(-,?,?,?),parallel_product_wf(?,-,?,?).
2489 % NOTE: we now have in_parallel_product; as such parallel products are kept symbolic
2490 %parallel_product_wf(Rel1,Rel2,Prod,WF) :- (keep_symbolic(Rel1) -> true ; keep_symbolic(Rel2)),
2491 % print_term_summary(parallel_product(Rel1,Rel2,Prod)),nl,
2492 %% % TO DO: generate closure
2493 % %{xy,mn|#(x,y,m,n).(xy=(x,y) & mn=(m,n) & (x,m):S & (y,n):R)}
2494 % fail.
2495 parallel_product_wf(Rel1,Rel2,Prod,WF) :-
2496 expand_custom_set_to_list_wf(Rel1,Relation1,_,parallel_product_1,WF),
2497 expand_custom_set_to_list_wf(Rel2,Relation2,_,parallel_product_2,WF),
2498 parallel_product2(Relation1,Relation2,ProdRes,WF),
2499 ? equal_object_optimized_wf(ProdRes,Prod,parallel_product,WF).
2500
2501 :- use_module(kernel_equality,[conjoin_test/4]).
2502 %(Rel1||Rel2) = {(x,y),(m,n)| (x,m):Rel1 & (y,n):Rel2}
2503
2504 % TO DO: use this in b_interpreter_check:
2505 in_parallel_product_test(((X,Y),(M,N)),Rel1,Rel2,Result,WF) :-
2506 ? conjoin_test(MemRes1,MemRes2,Result,WF),
2507 ? membership_test_wf(Rel1,(X,M),MemRes1,WF),
2508 membership_test_wf(Rel2,(Y,N),MemRes2,WF).
2509
2510 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:in_parallel_product_wf(((int(1),int(2)),(int(11),int(22))),[(int(1),int(11))],[(int(2),int(22))],WF),WF)).
2511
2512 in_parallel_product_wf(El,Rel1,Rel2,WF) :-
2513 in_parallel_product_test(El,Rel1,Rel2,pred_true,WF).
2514
2515
2516 :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:not_in_parallel_product_wf(((int(1),int(11)),(int(2),int(22))),[(int(1),int(11))],[(int(2),int(22))],_WF))).
2517
2518 not_in_parallel_product_wf(El,Rel1,Rel2,WF) :-
2519 ? in_parallel_product_test(El,Rel1,Rel2,pred_false,WF).
2520
2521
2522 :- block parallel_product2(-,?,?,?).
2523 parallel_product2([],_,Out,WF) :- empty_set_wf(Out,WF).
2524 parallel_product2([(X,Y)|T],Rel2,Out,WF) :-
2525 parallel_product_tuple(Rel2,X,Y,Out,Tail,WF),
2526 parallel_product2(T,Rel2,Tail,WF).
2527
2528 :- block parallel_product_tuple(-,?,?,?,?,?).
2529 parallel_product_tuple([],_,_,Tail1,Tail2,WF) :- equal_object_wf(Tail1,Tail2,parallel_product_tuple,WF).
2530 parallel_product_tuple([(X2,Y2)|T],X,Y,Rel2,Tail,WF) :-
2531 equal_object_wf(Rel2,[((X,X2),(Y,Y2))|RT],parallel_product_tuple,WF),
2532 parallel_product_tuple(T,X,Y,RT,Tail,WF).
2533
2534
2535 % -------------------------------------------------
2536
2537 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_partial_function([(int(1),int(6)),(int(2),int(7))],[int(1)],[int(7),int(6)],WF),WF)). %% with wf_det leads to residue custom_explicit_sets:b_not_test_closure_enum
2538 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_partial_function([(int(1),int(6)),(int(2),int(7))],[int(1),int(2)],[int(8),int(6)],WF),WF)).
2539 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_partial_function([(int(1),int(6)),(int(2),int(7)),(int(1),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
2540 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_partial_function([(int(1),int(6)),(int(1),int(7))],[int(1)],[int(7),int(6)],WF),WF)).
2541 :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:not_partial_function([(int(1),int(6)),(int(2),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
2542 :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:not_partial_function([(int(1),int(6))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
2543 :- assert_must_fail((bsets_clp:not_partial_function([],[int(1)],[int(7)],_WF))).
2544 :- assert_must_fail((bsets_clp:not_partial_function(X,[int(1)],[int(7)],_WF),
2545 X = [(int(1),int(7))])).
2546 :- assert_must_fail((bsets_clp:not_partial_function(X,[int(1),int(2)],[int(7)],_WF),
2547 X = [(int(2),int(7)),(int(1),int(7))])).
2548 :- assert_must_fail((bsets_clp:not_partial_function(X,[[(int(1),int(2))],[(int(1),int(3)),(int(2),int(3))]],
2549 [int(7),int(6)],_WF),
2550 X = [([(int(1),int(2))],int(7)),
2551 ([(int(2),int(3)),(int(1),int(3))],int(6))])).
2552 :- assert_must_fail((bsets_clp:not_partial_function(X,[[(int(1),int(2))],[(int(1),int(3)),(int(2),int(3))]],
2553 [int(7),int(6)],_WF),
2554 X = [([(int(2),int(3)),(int(1),int(3))],int(6))])).
2555 :- assert_must_fail((bsets_clp:not_partial_function(X,[[(int(1),int(2))],[(int(1),int(3)),(int(2),int(3))]],
2556 [int(7),int(6)],_WF),
2557 X = [([(int(1),int(2))],int(7)),
2558 ([(int(2),int(3)),(int(1),int(3))],int(6))])).
2559 :- assert_must_fail((bsets_clp:not_partial_function(X,[int(1)],[[int(7),int(6)]],_WF),
2560 X = [(int(1),[int(6),int(7)])])).
2561 :- assert_must_fail((bsets_clp:not_partial_function(X,[int(1),int(2)],[int(7),int(6)],_WF),
2562 X = [(int(2),int(7)),(int(1),int(7))])).
2563 :- assert_must_succeed((bsets_clp:not_partial_function(X,[int(1),int(2)],[int(7),int(6)],_WF),
2564 X = [(int(2),int(7)),(int(2),int(6))])).
2565 :- assert_must_succeed((bsets_clp:not_partial_function(X,[int(1),int(2)],[int(7),int(6)],_WF),
2566 X = [(int(2),int(7)),(int(1),int(2))])).
2567 :- assert_must_succeed((bsets_clp:not_partial_function(X,[int(1),int(2)],[int(7),int(6)],_WF),
2568 X = [(int(2),int(7)),(int(3),int(6))])).
2569 :- assert_must_succeed((bsets_clp:not_partial_function(X,[int(1),int(2)],[int(7),int(6)],_WF),
2570 X = [(int(2),int(7)),(int(2),int(5))])).
2571 :- assert_must_succeed((bsets_clp:not_partial_function(X,[int(1),int(2)],[int(7),int(6)],_WF),
2572 X = [(int(1),int(7)),(int(2),int(6)),(int(2),int(7))])).
2573 :- assert_must_fail((bsets_clp:not_partial_function(X,global_set('NATURAL1'),global_set('NATURAL1'),_WF),
2574 X = [(int(1),int(7)),(int(5),int(75))])).
2575 :- assert_must_fail((bsets_clp:not_partial_function(X,global_set('NATURAL'),global_set('NATURAL1'),_WF),
2576 X = [(int(1),int(7)),(int(0),int(7))])).
2577 :- assert_must_succeed((bsets_clp:not_partial_function(X,global_set('NATURAL'),global_set('NATURAL1'),_WF),
2578 X = [(int(1),int(7)),(int(-1),int(7))])).
2579 :- assert_must_succeed((bsets_clp:not_partial_function(X,global_set('NATURAL1'),global_set('NATURAL1'),_WF),
2580 X = [(int(1),int(7)),(int(0),int(7))])).
2581 :- assert_must_fail((bsets_clp:not_partial_function(X,global_set('Name'),global_set('Code'),_WF),
2582 X = [(fd(1,'Name'),fd(1,'Code'))])).
2583 :- assert_must_fail((bsets_clp:not_partial_function(X,global_set('NATURAL'),global_set('Code'),_WF),
2584 X = [(int(1),fd(1,'Code')),(int(0),fd(1,'Code')),(int(88),fd(2,'Code'))])).
2585 :- assert_must_fail((bsets_clp:not_partial_function(X,global_set('NATURAL'),global_set('Code'),_WF),
2586 X = [(int(1),fd(1,'Code')),(int(0),fd(1,'Code')),(int(2),fd(2,'Code'))])).
2587 :- assert_must_succeed((bsets_clp:not_partial_function([(fd(1,'Code'),int(1)),(fd(1,'Code'),int(2))],
2588 global_set('Code'),global_set('NAT1'),_WF) )).
2589
2590 :- block not_partial_function(-,?,?,?).
2591 not_partial_function([],_Domain,_Range,_WF) :- !,fail.
2592 not_partial_function(FF,Domain,Range,WF) :- nonvar(FF),custom_explicit_sets:is_definitely_maximal_set(Range),
2593 % we do not need the Range; this means we can match more closures (e.g., lambda)
2594 custom_explicit_sets:dom_for_specific_closure(FF,FFDomain,function(_),WF),!,
2595 not_subset_of_wf(FFDomain,Domain,WF).
2596 not_partial_function(FF,Domain,Range,WF) :- nonvar(FF),
2597 custom_explicit_sets:dom_range_for_specific_closure(FF,FFDomain,FFRange,function(_),WF),!,
2598 not_both_subset_of(FFDomain,FFRange,Domain,Range,WF).
2599 not_partial_function(FF,Domain,Range,WF) :- nonvar(FF), FF=closure(P,T,Pred),
2600 % example: f = %t.(t : NATURAL|t + 100) & f /: NATURAL +-> NATURAL
2601 is_lambda_value_domain_closure(P,T,Pred, FFDomain,_Expr),
2602 get_range_id_expression(P,T,TRangeID),!,
2603 subset_test(FFDomain,Domain,SubRes,WF),
2604 when(nonvar(SubRes),
2605 (SubRes=pred_false -> true % not a subset -> it is not a partial function over the domain
2606 ; check_not_lambda_closure_range(P,T,Pred,TRangeID,Range,WF))).
2607 not_partial_function(R,Domain,Range,WF) :-
2608 expand_and_convert_to_avl_set_warn(R,AER,not_partial_function,'ARG /: ? +-> ?',WF),!,
2609 % TO DO: expand_and_convert_to_avl_set_catch and provide symbolic treatment similar to partial_function
2610 % e.g., to support f = NATURAL1 * {22,33} & not(f: NATURAL1 +-> NATURAL)
2611 is_not_avl_partial_function(AER,Domain,Range,WF).
2612 not_partial_function(R,Domain,Range,WF) :-
2613 expand_custom_set_to_list_wf(R,ER,_,not_partial_function,WF),
2614 not_pf(ER,[],Domain,Range,WF).
2615
2616 is_not_avl_partial_function(AER,Domain,Range,WF) :-
2617 (is_avl_partial_function(AER)
2618 -> is_not_avl_relation_over_domain_range(AER,Domain,Range,WF)
2619 ; true
2620 ).
2621
2622 :- block not_pf(-,?,?,?,?).
2623 not_pf([],_,_,_,_) :- fail.
2624 not_pf([(X,Y)|T],SoFar,Dom,Ran,WF) :-
2625 membership_test_wf_with_force(SoFar,X,MemRes,WF),
2626 not_pf2(MemRes,X,Y,T,SoFar,Dom,Ran,WF).
2627
2628 :- block not_pf2(-,?,?,?,?,?,?,?).
2629 not_pf2(pred_true,_X,_Y,_T,_SoFar,_Dom,_Ran,_WF). /* then not a function */
2630 not_pf2(pred_false,X,Y,T,SoFar,Dom,Ran,WF) :-
2631 membership_test_wf_with_force(Dom,X,MemRes,WF), % creates a choice point in SMT mode
2632 not_pf2a(MemRes,X,Y,T,SoFar,Dom,Ran,WF).
2633
2634 :- block not_pf2a(-,?,?,?,?,?,?,?).
2635 not_pf2a(pred_false,_X,_Y,_T,_SoFar,_Dom,_Ran,_WF). /* function, but domain wrong */
2636 not_pf2a(pred_true,X,Y,T,SoFar,Dom,Ran,WF) :-
2637 remove_element_wf_if_not_infinite_or_closure(X,Dom,Dom2,WF,_LWF,Done), %% provide _LWF ??
2638 not_pf2b(Done,X,Y,T,SoFar,Dom2,Ran,WF).
2639
2640 :- block not_pf2b(-, ?,?,?, ?,?,?, ?).
2641 not_pf2b(_Done, X,Y,T, SoFar,Dom2,Ran, WF) :-
2642 add_element_wf(X,SoFar,SoFar2,WF),
2643 (T==[] -> not_element_of_wf(Y,Ran,WF)
2644 ; membership_test_wf_with_force(Ran,Y,MemRes,WF),
2645 prop_empty_pred_false(T,MemRes), % if T=[] -> Y must not be in Ran
2646 not_pf3(MemRes,T,SoFar2,Dom2,Ran,WF)).
2647
2648 :- block prop_empty_pred_false(-,?).
2649 prop_empty_pred_false([],R) :- !, R=pred_false.
2650 prop_empty_pred_false(_,_).
2651
2652 :- block not_pf3(-,?,?,?,?,?).
2653 not_pf3(pred_false,_T,_SoFar,_Dom2,_Ran,_WF). /* illegal range */
2654 not_pf3(pred_true,T,SoFar,Dom2,Ran,WF) :-
2655 not_pf(T,SoFar,Dom2,Ran,WF).
2656
2657 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:partial_function_wf([(int(1),int(6)),(int(2),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
2658 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:partial_function_wf([(int(1),int(1)),(int(2),int(1))],global_set('NATURAL'),global_set('NATURAL'),WF),WF)).
2659 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:partial_function_wf([(int(2),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
2660 :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:partial_function_wf([(int(2),int(6)),(int(2),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
2661 :- assert_must_succeed((bsets_clp:partial_function([],[int(1)],[int(7)]))).
2662 :- assert_must_succeed((bsets_clp:partial_function(X,[int(1)],[int(7)]),
2663 X = [(int(1),int(7))])).
2664 :- assert_must_succeed((bsets_clp:partial_function(X,[int(1),int(2)],[int(7)]),
2665 equal_object(X,[(int(2),int(7)),(int(1),int(7))]))).
2666 :- assert_must_succeed((findall(X,bsets_clp:partial_function(X,[int(1),int(2)],[int(7)]),L),
2667 length(L,Len), Len >= 4,
2668 (preferences:get_preference(convert_comprehension_sets_into_closures,true) -> true ; Len=4) )).
2669 :- assert_must_succeed((bsets_clp:partial_function(X,[[(int(1),int(2))],[(int(1),int(3)),(int(2),int(3))]],
2670 [int(7),int(6)]),
2671 equal_object(X,[([(int(1),int(2))],int(7)),
2672 ([(int(2),int(3)),(int(1),int(3))],int(6))]))).
2673 :- assert_must_succeed((bsets_clp:partial_function_wf(X,[[(int(1),int(2))],[(int(1),int(3)),(int(2),int(3))]],
2674 [int(7),int(6)],_WF),
2675 X = [([(int(2),int(3)),(int(1),int(3))],int(6))])).
2676 :- assert_must_succeed((bsets_clp:partial_function_wf(X,[[(int(1),int(2))],[(int(1),int(3)),(int(2),int(3))]],
2677 [int(7),int(6)],_WF),
2678 X = [([(int(1),int(2))],int(7)),
2679 ([(int(2),int(3)),(int(1),int(3))],int(6))])).
2680 :- assert_must_succeed((bsets_clp:partial_function_wf(X,[int(1)],[[int(7),int(6)]],_WF),
2681 X = [(int(1),[int(6),int(7)])])).
2682 :- assert_must_succeed((bsets_clp:partial_function_wf(X,global_set('NATURAL1'),global_set('NATURAL1'),_WF),
2683 X = [(int(1),int(7)),(int(5),int(75))])).
2684 :- assert_must_succeed((bsets_clp:partial_function_wf(X,global_set('NATURAL'),global_set('NATURAL1'),_WF),
2685 X = [(int(1),int(7)),(int(0),int(7))])).
2686 :- assert_must_fail((bsets_clp:partial_function_wf(X,global_set('NATURAL'),global_set('NATURAL1'),_WF),
2687 X = [(int(1),int(7)),(int(-1),int(7))])).
2688 :- assert_must_fail((bsets_clp:partial_function_wf(X,global_set('NATURAL1'),global_set('NATURAL1'),_WF),
2689 X = [(int(1),int(7)),(int(0),int(7))])).
2690 :- assert_must_fail((bsets_clp:partial_function_wf(X,[int(1),int(2)],[int(7),int(6)],_WF),
2691 X = [(int(2),int(7)),(int(2),int(6))])).
2692 :- assert_must_succeed((bsets_clp:partial_function_wf(X,global_set('Name'),global_set('Code'),_WF),
2693 X = [(fd(1,'Name'),fd(1,'Code'))])).
2694 :- assert_must_succeed((bsets_clp:partial_function_wf(X,global_set('NATURAL'),global_set('Code'),_WF),
2695 X = [(int(1),fd(1,'Code')),(int(0),fd(1,'Code')),(int(88),fd(2,'Code'))])).
2696 :- assert_must_succeed((bsets_clp:partial_function_wf(X,global_set('NATURAL'),global_set('Code'),_WF),
2697 X = [(int(1),fd(1,'Code')),(int(0),fd(1,'Code')),(int(2),fd(2,'Code'))])).
2698
2699 partial_function(R,Domain,Range) :- init_wait_flags(WF,[partial_function]),
2700 partial_function_wf(R,Domain,Range,WF),
2701 ? ground_wait_flags(WF).
2702
2703 :- use_module(kernel_equality,[get_cardinality_powset_wait_flag/5]).
2704 :- use_module(closures,[is_lambda_value_domain_closure/5]).
2705 :- block partial_function_wf(-,-,?,?).
2706 partial_function_wf(R,_Domain,_Range,_WF) :- R==[], !.
2707 partial_function_wf(R,Domain,Range,WF) :- (Domain==[] ; Range==[]), !, empty_set_wf(R,WF).
2708 partial_function_wf(FF,Domain,Range,WF) :- nonvar(FF),
2709 custom_explicit_sets:is_definitely_maximal_set(Range),
2710 % we do not need the Range; this means we can match more closures (e.g., lambda)
2711 custom_explicit_sets:dom_for_specific_closure(FF,FFDomain,function(_),WF),!,
2712 check_domain_subset_for_closure_wf(FF,FFDomain,Domain,WF).
2713 partial_function_wf(FF,Domain,Range,WF) :- nonvar(FF),
2714 % TODO: this will fail if is_definitely_maximal_set was true above !
2715 custom_explicit_sets:dom_range_for_specific_closure(FF,FFDomain,FFRange,function(_),WF),!,
2716 % same as for total_function_wf check
2717 check_domain_subset_for_closure_wf(FF,FFDomain,Domain,WF),
2718 check_range_subset_for_closure_wf(FF,FFRange,Range,WF).
2719 partial_function_wf(FF,Domain,Range,WF) :- nonvar(FF), FF=closure(P,T,Pred),
2720 % example: f = %x.(x:NATURAL1|x+1) & f: NATURAL1 +-> NATURAL
2721 is_lambda_value_domain_closure(P,T,Pred, FFDomain,_Expr),
2722 get_range_id_expression(P,T,TRangeID),
2723 !,
2724 check_domain_subset_for_closure_wf(FF,FFDomain,Domain,WF),
2725 opt_push_wait_flag_call_stack_info(WF,b_operator_call(subset,
2726 [b_operator(range,[FF]),Range],unknown),WF3),
2727 check_lambda_closure_range(P,T,Pred,TRangeID,Range,WF3). % we could use symbolic_range_subset_check
2728 partial_function_wf(R,Domain,Range,WF) :-
2729 expand_and_convert_to_avl_set_catch(R,AER,partial_function_wf,'ARG : ? +-> ?',ResultStatus,WF),!,
2730 (ResultStatus=avl_set
2731 ? -> is_avl_partial_function_over(AER,Domain,Range,WF)
2732 ; % keep symbolic
2733 (debug_mode(off) -> true ; print('SYMBOLIC +-> check : '),translate:print_bvalue(R),nl),
2734 % can deal with, e.g., f = %x.(x:NATURAL|x+1) & g = f <+ {0|->0} & g : INTEGER +-> INTEGER
2735 symbolic_domain_subset_check(R,Domain,WF),
2736 symbolic_range_subset_check(R,Range,WF),
2737 symbolic_functionality_check(R,WF)
2738 ).
2739 partial_function_wf(R,Domain,Range,WF) :-
2740 get_cardinality_powset_wait_flag(Domain,partial_function_wf,WF,Card,CWF),
2741 % probably we should compute real cardinality of set of partial functions over Domain +-> Range ?
2742 % the powset waitflag uses 2^Card as priority; is the number of partial functions when Range contains just a single element
2743 % slows down test 1088: TO DO investigate
2744 % get_cardinality_partial_function_wait_flag(Domain,Range,partial_function_wf,WF,Card,_,CWF),
2745 %% Maybe we should only enumerate partial functions for domain variables ; e.g., not f <+ {x |-> y} : T +-> S
2746 %% print_bt_message(pf_dom_card(Card)),nl, %%%
2747 % probably we should use a special version when R is var
2748 propagate_empty_set_wf(Domain,dom_pf,R,WF),
2749 propagate_empty_set_wf(Range,ran_pf,R,WF),
2750 ? (var(R) -> pf_var_r(R,var,Domain,Range,Card,WF,CWF) ; pf_var_r(R,nonvar,Domain,Range,Card,WF,CWF)).
2751
2752 % symbolic dom(R) <: Domain check for closures
2753 symbolic_domain_subset_check(R,Domain,WF) :-
2754 opt_push_wait_flag_call_stack_info(WF,b_operator_call(subset,
2755 [b_operator(domain,[R]),Domain],unknown),WF2),
2756 domain_subtraction_wf(Domain,R,Res,WF2), % works symbolically
2757 (debug_mode(off) -> true ; print('Domain Violations: '),translate:print_bvalue(Res),nl),
2758 empty_set_wf(Res,WF2). % empty_set does a symbolic treatment calling gen_typed_ids and b_not_test_exists:
2759 % symbolic ran(R) <: Range check for closures
2760 symbolic_range_subset_check(R,Range,WF) :-
2761 opt_push_wait_flag_call_stack_info(WF,b_operator_call(subset,
2762 [b_operator(range,[R]),Range],unknown),WF2),
2763 range_subtraction_wf(R,Range,Res,WF2), % works symbolically
2764 (debug_mode(off) -> true ; print('Range Violations: '),translate:print_bvalue(Res),nl),
2765 empty_set_wf(Res,WF2). % works symbolically
2766 symbolic_functionality_check(Closure,WF) :-
2767 custom_explicit_sets:symbolic_functionality_check_closure(Closure,ViolationsClosure),!,
2768 (debug_mode(off) -> true ; print('FUNCTIONALITY Violations: '),translate:print_bvalue(ViolationsClosure),nl),
2769 empty_set_wf(ViolationsClosure,WF). % works symbolically
2770 symbolic_functionality_check(R,WF) :-
2771 add_error_wf(symbolic_functionality_check,'Could not check functionality of:',R,R,WF).
2772
2773 symbolic_injectivity_check(Closure,WF) :-
2774 custom_explicit_sets:symbolic_injectivity_check_closure(Closure,ViolationsClosure),!,
2775 (debug_mode(off) -> true ; print('INJECTIVITY Violations: '),translate:print_bvalue(ViolationsClosure),nl),
2776 empty_set_wf(ViolationsClosure,WF). % works symbolically
2777 symbolic_injectivity_check(R,WF) :-
2778 add_error_wf(symbolic_functionality_check,'Could not check injectivity of:',R,R,WF).
2779
2780
2781 is_avl_partial_function_over(AER,Domain,Range,WF) :-
2782 is_avl_partial_function(AER),
2783 ? is_avl_relation_over_domain(AER,Domain,WF),
2784 ? is_avl_relation_over_range(AER,Range,WF).
2785
2786 % symbolically check that the range of lambda closure is a subset of a given Range
2787 % TRangeID is obtained by calling get_range_id_expression(P,T,TRangeID)
2788 check_lambda_closure_range(P,T,Pred,TRangeID,Range,WF) :-
2789 opt_push_wait_flag_call_stack_info(WF,b_operator_call(subset,
2790 [b_operator(range,[closure(P,T,Pred)]),Range],unknown),WF2),
2791 % CHECK not(#P.(Pred & TRangeID /: Range))
2792 get_not_in_range_pred_aux(Pred,TRangeID,Range,Pred2),
2793 is_empty_closure_wf(P,T,Pred2,WF2). % do we need to rename _lambda_result_ using rename_lambda_result_id ?
2794 % now the negation thereof:
2795 check_not_lambda_closure_range(P,T,Pred,TRangeID,Range,WF) :-
2796 opt_push_wait_flag_call_stack_info(WF,b_operator_call(not_subset,
2797 [b_operator(range,[closure(P,T,Pred)]),Range],unknown),WF2),
2798 % CHECK (#P.(Pred & TRangeID /: Range))
2799 get_not_in_range_pred_aux(Pred,TRangeID,Range,Pred2),
2800 is_non_empty_closure_wf(P,T,Pred2,WF2).
2801 test_lambda_closure_range(P,T,Pred,TRangeID,Range,Res,WF) :-
2802 opt_push_wait_flag_call_stack_info(WF,b_operator_call(subset, % it is actually a reify check
2803 [b_operator(range,[closure(P,T,Pred)]),Range],unknown),WF2),
2804 % reify not(#P.(Pred & TRangeID /: Range))
2805 get_not_in_range_pred_aux(Pred,TRangeID,Range,Pred2),
2806 test_empty_closure_wf(P,T,Pred2,Res,WF2).
2807
2808 get_not_in_range_pred_aux(Pred,TRangeID,Range,NewPred) :- % construct (Pred & TRangeID /: Range)
2809 ExpectedRange = b(value(Range),set(RanT),[]),
2810 get_texpr_type(TRangeID,RanT),
2811 safe_create_texpr(not_member(TRangeID,ExpectedRange),pred,NotMemCheck),
2812 conjunct_predicates([Pred,NotMemCheck],NewPred).
2813
2814
2815 % if first argument is empty, second argument must also be empty
2816 :- block propagate_empty_set_wf(-,?,?,?).
2817 propagate_empty_set_wf([],_PP,A,WF) :- !, %print(prop_empty(_PP,A)),nl,
2818 kernel_objects:empty_set_wf(A,WF). % TO DO: add WF
2819 propagate_empty_set_wf(_,_,_,_).
2820
2821 :- block pf_var_r(-,?,?,?,?,?,-).
2822 pf_var_r(R,var,Domain,Range,_Card,WF,_CWF) :- % if R was var: see if it is now an AVL set; otherwise we have already checked it
2823 expand_and_convert_to_avl_set_warn(R,AER,pf_var_r,'ARG : ? +-> ?',WF),!,
2824 ? is_avl_partial_function_over(AER,Domain,Range,WF).
2825 pf_var_r(R,_,Domain,Range,Card,WF,CWF) :-
2826 expand_custom_set_to_list_wf(R,ER,_,partial_function_wf,WF),
2827 %get_last_wait_flag(partial_fun(Domain),WF,LWF),
2828 ? pf_w(ER,[],Domain,Range,Card,_Large,WF,CWF).
2829
2830 pf_w(T,SoFar,Dom,Ran,Card,Large,WF,LWF) :-
2831 (Card==0 -> T=[]
2832 ? ; pf(T,SoFar,Dom,Ran,Card,Large,WF,LWF)).
2833
2834 :- block pf(-,?,?,?,?,?,?,-).
2835 pf(LIST,_,_,_,_,_WF,_,_LWF) :- LIST==[],!. % avoid leaving choicepoint
2836 pf(AVL,SoFar,Dom,Ran,Card,Large,WF,LWF) :- nonvar(AVL),AVL=avl_set(_A),
2837 add_internal_error('AVL arg: ',pf(AVL,SoFar,Dom,Ran,Card,Large,WF,LWF)),fail.
2838 pf([],_,_,_,_,_WF,_,_LWF).
2839 pf(LIST,SoFar,Dom,Ran,Card,Large,WF,LWF) :-
2840 (var(LIST) -> ListWasVar = true ; ListWasVar = false), % is ListWasVar = true we are doing the enumeration driven by LWF being ground
2841 LIST = [(X,Y)|T],
2842 dec_card(Card,NC),/* Card ensures we do not build too big lists */
2843 Dom \== [],
2844 ? remove_domain_element(ListWasVar,X,Y,Dom,Dom2,Large,WF,LWF,Done),
2845 ? check_element_of_wf(Y,Ran,WF),
2846 ? pf1(Done, X,Y,T,SoFar,Dom2,Ran,NC,Large,WF,LWF).
2847
2848 :- block dec_card(-,?).
2849 dec_card(inf,NewC) :- !, NewC=inf.
2850 dec_card(inf_overflow,NewC) :- !, NewC=inf_overflow.
2851 dec_card(C,NewC) :- C>0, NewC is C-1.
2852
2853 :- block pf1(-, ?,?,?,?,?,?,?,?,?,?).
2854 pf1(_Done, X,_Y,T,SoFar,Dom2,Ran,Card,Large,WF,LWF) :-
2855 not_element_of_wf(X,SoFar,WF), /* check that it is a function */
2856 %% check_element_of_wf(Y,Ran,WF), % this check is now done above in pf
2857 add_new_element_wf(X,SoFar,SoFar2,WF),
2858 ? pf_w(T,SoFar2,Dom2,Ran,Card,Large,WF,LWF).
2859
2860 remove_domain_element(ListWasVar,X,Y,Dom,Dom2,Large,WF,LWF,Done) :- compute_large(Dom,Large),
2861 ((ListWasVar==true,var(X),var(Y),Large==false,
2862 preference(convert_comprehension_sets_into_closures,false), % not in symbolic mode
2863 ground_value(Dom))
2864 -> %% (X, Y are free and we drive the enumeration: we can influence which element is taken from Dom
2865 remove_a_minimal_element(X,Dom,Dom2,WF,Done) %%%%%%%%%% added Jul 15 2008
2866 ? ; remove_element_wf_if_not_infinite_or_closure(X,Dom,Dom2,WF,LWF,Done)
2867 ).
2868 compute_large(Dom,Large) :- % check if the domain is large; ensure that we compute this only once
2869 (nonvar(Large) -> true
2870 ; var(Dom) -> true
2871 ; dont_expand_this_explicit_set(Dom) -> Large=large
2872 ; Large=false).
2873
2874 :- assert_must_succeed(( bsets_clp:remove_a_minimal_element(X,[int(1)],R,_WF,Done),
2875 X==int(1), Done==true, R=[] )).
2876 :- assert_must_succeed(( init_wait_flags(WF), bsets_clp:remove_a_minimal_element(X,[int(1),int(2),int(3)],R,WF,Done), ground_wait_flags(WF),
2877 X==int(2), Done==true, R=[int(3)] )).
2878 :- assert_must_succeed(( init_wait_flags(WF), bsets_clp:remove_a_minimal_element(X,[int(1),int(2),int(3)],R,WF,Done), ground_wait_flags(WF),
2879 X==int(1), R=[int(2),int(3)], Done==true )).
2880 :- assert_must_succeed(( init_wait_flags(WF), bsets_clp:remove_a_minimal_element(X,[int(1),int(2),int(3)],R,WF,Done), ground_wait_flags(WF),
2881 X==int(3), R=[], Done==true )).
2882 :- assert_must_succeed(( init_wait_flags(WF), CL=closure(['_zzzz_binary'],[integer],b(member( b(identifier('_zzzz_binary'),integer,[]),
2883 b(interval(b(value(int(1)),integer,[]),b(value(int(10)),integer,[])),set(integer),[])),pred,[])),
2884 bsets_clp:remove_a_minimal_element(X,CL,R,WF,Done), ground_wait_flags(WF),
2885 X=int(9), Done==true, kernel_objects:equal_object(R,[int(10)]) )).
2886
2887 /* usage: restrict number of possible choices if element to remove is free */
2888 /* select one element; and disallow all elements appearing before it in the list */
2889 remove_a_minimal_element(X,Set,Res,WF,Done) :-
2890 expand_custom_set_to_list_wf(Set,ESet,EDone,remove_a_minimal_element,WF),
2891 remove_a_minimal_element2(X,ESet,EDone,Res,WF,Done).
2892
2893 :- use_module(kernel_equality,[get_cardinality_wait_flag/4]).
2894 :- block remove_a_minimal_element2(?,?,-,?,?,?).
2895 remove_a_minimal_element2(X,ESet,EDone,Res,WF,Done) :- var(ESet),
2896 % should not happen as we wait for EDone
2897 add_internal_error('Illegal call: ',remove_a_minimal_element2(X,ESet,EDone,Res,WF,Done)),
2898 fail.
2899 remove_a_minimal_element2(X,ESet,_EDone,Res,WF,Done) :-
2900 ESet \= [],
2901 (ESet = [El]
2902 -> X=El, empty_set_wf(Res,WF), Done=true % only one choice
2903 ; get_cardinality_wait_flag(ESet,remove_a_minimal_element2,WF,CWF),
2904 remove_a_minimal_element3(X,ESet,Res,WF,Done,CWF)
2905 ).
2906
2907 :- block remove_a_minimal_element3(?,?,?,?,?,-).
2908 remove_a_minimal_element3(X,ESet,Res,WF,Done,_) :- var(Res), !,
2909 append(_,[X|TRes],ESet), % WHAT IF Res has been instantiated in the meantime ???
2910 equal_object_wf(Res,TRes,remove_a_minimal_element2_2,WF),Done=true.
2911 remove_a_minimal_element3(X,ESet,Res,WF,Done,_) :- %print(remove_min_nonvar_res(Res)),nl,
2912 equal_cons_wf(ESet,X,Res,WF), Done=true.
2913
2914
2915 % reified version of partial function test partial_function_wf:
2916 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:partial_function_test_wf([],[int(1),int(2)],[int(7),int(6)],pred_true,WF),WF)).
2917 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:partial_function_test_wf([(int(2),int(6))],[int(1),int(2)],[int(7),int(6)],pred_true,WF),WF)).
2918 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:partial_function_test_wf([(int(1),int(6)),(int(2),int(7))],[int(1),int(2)],[int(7),int(6)],pred_true,WF),WF)).
2919 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:partial_function_test_wf([(int(2),int(8))],[int(1),int(2)],[int(7),int(6)],pred_false,WF),WF)).
2920 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:partial_function_test_wf([(int(3),int(7))],[int(1),int(2)],[int(7),int(6)],pred_false,WF),WF)).
2921 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:partial_function_test_wf([(int(1),int(7)),(int(1),int(6))],[int(1),int(2)],[int(7),int(6)],pred_false,WF),WF)).
2922
2923 :- use_module(kernel_equality,[subset_test/4]).
2924 :- block partial_function_test_wf(-,?,?,-,?), partial_function_test_wf(?,-,-,-,?).
2925 partial_function_test_wf(FF,Domain,Range,Res,WF) :- Res==pred_true,!,
2926 ? partial_function_wf(FF,Domain,Range,WF).
2927 partial_function_test_wf(FF,Domain,Range,Res,WF) :- Res==pred_false,!,
2928 not_partial_function(FF,Domain,Range,WF). % TO DO: remove not_partial_function to use check_is_partial_function?
2929 partial_function_test_wf(FF,Domain,Range,Res,WF) :- nonvar(FF),
2930 custom_explicit_sets:is_definitely_maximal_set(Range),
2931 % we do not need the Range; this means we can match more closures (e.g., lambda)
2932 custom_explicit_sets:dom_for_specific_closure(FF,FFDomain,function(_),WF),!,
2933 subset_test(FFDomain,Domain,Res,WF).
2934 partial_function_test_wf(FF,Domain,Range,Res,WF) :- nonvar(FF),
2935 % TODO: this will fail if is_definitely_maximal_set was true above !
2936 custom_explicit_sets:dom_range_for_specific_closure(FF,FFDomain,FFRange,function(_),WF),!,
2937 % same as for total_function_wf check
2938 subset_test(FFDomain,Domain,DomainOk,WF),
2939 (DomainOk==pred_false -> Res = pred_false
2940 ; conjoin_test(DomainOk,RangeOk,Res,WF),
2941 subset_test(FFRange,Range,RangeOk,WF)).
2942 partial_function_test_wf(FF,Domain,Range,Res,WF) :- nonvar(FF), FF=closure(P,T,Pred),
2943 % example: f = %x.(x:NATURAL1|x+1) & f: NATURAL1 +-> NATURAL
2944 is_lambda_value_domain_closure(P,T,Pred, FFDomain,_Expr),
2945 get_range_id_expression(P,T,TRangeID),
2946 !,
2947 subset_test(FFDomain,Domain,DomainOk,WF),
2948 (DomainOk == pred_false -> Res=pred_false
2949 ; conjoin_test(DomainOk,RangeOk,Res,WF),
2950 test_lambda_closure_range(P,T,Pred,TRangeID,Range,RangeOk,WF)
2951 ).
2952 partial_function_test_wf(R,Domain,Range,Res,WF) :-
2953 expand_and_convert_to_avl_set_warn(R,AER,partial_function_test_wf,'ARG : ? +-> ?',WF),!,
2954 % TO DO: use expand_and_convert_to_avl_set_catch
2955 (is_avl_partial_function(AER)
2956 -> % TO DO: we could do something similar to this instead: is_not_avl_relation_over_domain_range
2957 domain_of_explicit_set_wf(avl_set(AER),FFDomain,WF),
2958 subset_test(FFDomain,Domain,DomainOk,WF),
2959 (DomainOk == pred_false -> Res=pred_false
2960 ; range_of_explicit_set_wf(avl_set(AER),FFRange,WF),
2961 conjoin_test(DomainOk,RangeOk,Res,WF),
2962 subset_test(FFRange,Range,RangeOk,WF)
2963 )
2964 ; Res=pred_false).
2965 partial_function_test_wf(R,Domain,Range,Res,WF) :-
2966 expand_custom_set_to_list_wf(R,ER,_,partial_function_test_wf,WF),
2967 check_is_partial_function_acc_wf(ER,[],Domain,Range,Res,WF).
2968
2969 :- block check_is_partial_function_acc_wf(-,?,?,?,?,?).
2970 check_is_partial_function_acc_wf([],_,_,_,Res,_WF) :- !, Res=pred_true.
2971 check_is_partial_function_acc_wf([(A,FA)|T],Acc,Dom,Ran,Res,WF) :- !,
2972 check_pair_in_domain_range(A,FA,Dom,Ran,MemResDomRan,WF),
2973 (MemResDomRan==pred_false
2974 -> Res = pred_false
2975 ; membership_test_wf(Acc,A,MemResNotFunc,WF),
2976 negate(MemResNotFunc,MemResFunctionality),
2977 conjoin_test(MemResDomRan,MemResFunctionality,PF_Head,WF),
2978 (PF_Head == pred_false -> Res = pred_false
2979 ; T==[] -> Res=PF_Head
2980 ; add_element_wf(A,Acc,NewAcc,WF),
2981 conjoin_test(PF_Head,PF_Tail,Res,WF),
2982 check_is_partial_function_acc_wf(T,NewAcc,Dom,Ran,PF_Tail,WF))
2983 ).
2984
2985 check_pair_in_domain_range(A,FA,Dom,Ran,MemResDomRan,WF) :-
2986 membership_test_wf(Dom, A,MemResDom,WF), % use membership_test_wf_with_force for SMT mode ??
2987 (MemResDom == pred_false -> MemResDomRan = pred_false
2988 ; membership_test_wf(Ran,FA,MemResRan,WF),
2989 conjoin_test(MemResDom,MemResRan,MemResDomRan,WF)).
2990
2991 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:total_function_wf([(int(1),int(6)),(int(2),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
2992 :- assert_must_succeed((bsets_clp:total_function(X,[int(1)],[int(7)]),
2993 X = [(int(1),int(7))])).
2994 :- assert_must_succeed((bsets_clp:total_function(X,[int(1),int(2)],[int(7),int(6)]),
2995 kernel_objects:equal_object(X,[(int(2),int(7)),(int(1),int(7))]))).
2996 :- assert_must_succeed((bsets_clp:total_function(X,[[(int(1),int(2))],[(int(1),int(3))]],[int(7),int(6)]),
2997 kernel_objects:equal_object(X,[([(int(1),int(3))],int(7)),([(int(1),int(2))],int(7))]))).
2998 :- assert_must_succeed((bsets_clp:total_function(X,[[(int(1),int(2))],[(int(1),int(3)),(int(2),int(3))]],
2999 [int(7),int(6)]),
3000 kernel_objects:equal_object(X,[([(int(1),int(2))],int(7)),
3001 ([(int(2),int(3)),(int(1),int(3))],int(6))]))).
3002 :- assert_must_succeed((bsets_clp:total_function(X,[int(1)],[[int(7),int(6)]]),
3003 kernel_objects:equal_object(X,[(int(1),[int(6),int(7)])]))).
3004 :- assert_must_succeed((bsets_clp:total_function(X,[[(int(1),int(2))],[(int(1),int(3)),(int(2),int(3))]],
3005 [[int(7),int(6)]]),
3006 kernel_objects:equal_object(X,[([(int(1),int(2))],[int(6),int(7)]),
3007 ([(int(2),int(3)),(int(1),int(3))],[int(6),int(7)])]))).
3008 :- assert_must_succeed((bsets_clp:total_function(X,[ [(int(1),int(3)),(int(2),int(3))]],
3009 [int(6)]),
3010 kernel_objects:equal_object(X,[ ([(int(2),int(3)),(int(1),int(3))], int(6)) ]))).
3011 :- assert_must_succeed((bsets_clp:total_function(X,global_set('Name'),
3012 [[],[fd(1,'Code'),fd(2,'Code')],[fd(1,'Code')],[fd(2,'Code')]]),
3013 kernel_objects:enumerate_basic_type(X,set(couple(global('Name'),set(global('Code'))))),
3014 kernel_objects:equal_object(X,[(fd(3,'Name'),[fd(2,'Code')]),(fd(1,'Name'),[fd(2,'Code')]),(fd(2,'Name'),[])]))).
3015
3016 %:- assert_must_succeed(( kernel_waitflags:init_wait_flags(WF),bsets_clp:total_function_wf(TF,global_set('Code'),
3017 % closure([zzzz],[set(set(couple(integer,boolean)))],
3018 % member(identifier(zzzz),
3019 % pow_subset(value(closure([zzzz],[set(couple(integer,boolean))],
3020 % member('ListExpression'(['Identifier'(zzzz)]),
3021 % 'Seq'(value([pred_true /* bool_true */,pred_false /* bool_false */])))))))),WF),
3022 % kernel_objects:equal_object(TF,[ (fd(1,'Code'), [[],[(int(1),pred_true /* bool_true */)],[(int(1),pred_true /* bool_true */),(int(2),pred_true /* bool_true */)]]),
3023 % (fd(2,'Code'), [[],[(int(1),pred_true /* bool_true */)],[(int(1),pred_true /* bool_true */),(int(2),pred_true /* bool_true */)]]) ]),
3024 % kernel_waitflags:ground_wait_flags(WF) )).
3025
3026 :- assert_must_succeed((bsets_clp:total_function([],[],[int(7)]))).
3027
3028 :- assert_must_fail((bsets_clp:total_function([],[int(1)],[int(7)]))).
3029 :- assert_must_fail((bsets_clp:total_function(X,[int(1),int(2)],[int(7),int(6)]),
3030 kernel_objects:equal_object(X,[(int(2),int(7)),(int(2),int(6))]))).
3031 :- assert_must_fail((bsets_clp:total_function(X,[int(1),int(2)],[int(7),int(6)]),
3032 kernel_objects:equal_object(X,[(int(2),int(7)),(int(1),int(5))]))).
3033 :- assert_must_fail((bsets_clp:total_function(X,[int(1),int(2)],[int(7),int(6)]),
3034 kernel_objects:equal_object(X,[(int(2),int(7))]))).
3035 :- assert_must_fail((bsets_clp:total_function(X,[[(int(1),int(2))],[(int(1),int(3)),(int(2),int(3))]],
3036 [int(7),int(6)]),
3037 kernel_objects:equal_object(X,[([(int(1),int(2))],int(7)),
3038 ([(int(1),int(3)),(int(1),int(3))],int(6))]))).
3039 :- assert_must_fail((bsets_clp:total_function(X,[[(int(1),int(2))],[(int(1),int(3)),(int(2),int(3))]],
3040 [int(7),int(6)]),
3041 kernel_objects:equal_object(X,[([(int(1),int(3)),(int(1),int(3))],int(6))]))).
3042
3043 total_function(R,Domain,Range) :- init_wait_flags(WF,[total_function]),
3044 total_function_wf(R,Domain,Range,WF),
3045 ? ground_wait_flags(WF).
3046
3047
3048 :- assert_must_succeed((bsets_clp:total_function_wf(X,[int(1),int(2)],[int(7),int(6)],_WF),
3049 nonvar(X),X=[(A,B),(C,D)],A==int(1),C==int(2),\+ ground(B),\+ ground(D), B=int(7),D=int(7) )).
3050
3051 :- block total_function_wf(-,-,-,?).
3052 total_function_wf(FF,Domain,_Range,WF) :- FF == [],!,
3053 empty_set_wf(Domain,WF).
3054 total_function_wf(FF,Domain,Range,WF) :-
3055 Range == [],!,
3056 empty_set_wf(FF,WF), empty_set_wf(Domain,WF).
3057 total_function_wf(FF,Domain,Range,WF) :-
3058 % TO DO: if FF or Domain nonvar but \= [] -> check if other variable becomes []
3059 ? total_function_wf1(FF,Domain,Range,WF).
3060
3061 :- block total_function_wf1(?,-,?,?).
3062 total_function_wf1(FF,Domain,_Range,WF) :-
3063 FF==[],!,
3064 empty_set_wf(Domain,WF).
3065 total_function_wf1(FF,Domain,Range,WF) :-
3066 custom_explicit_sets:is_definitely_maximal_set(Range),
3067 % we do not need the Range; this means we can match more closures (e.g., lambda)
3068 (nonvar(FF),
3069 custom_explicit_sets:dom_for_specific_closure(FF,FFDomain,function(_),WF)
3070 -> !,
3071 equal_object_wf(FFDomain,Domain,total_function_wf1_1,WF)
3072 ; var(FF),
3073 get_wait_flag1(WF,WF1), var(WF1),
3074 \+ (custom_explicit_sets:get_card_for_specific_custom_set(Domain,Card), number(Card)),
3075 % we have a total_function over a possibly infinite domain,
3076 % better wait: maybe a recursive of other closure will be produced for FF
3077 !,
3078 when( (nonvar(FF) ; nonvar(WF1)), total_function_wf1(FF,Domain,Range,WF))
3079 ).
3080 total_function_wf1(FF,Domain,Range,WF) :- nonvar(FF),
3081 custom_explicit_sets:dom_range_for_specific_closure(FF,FFDomain,FFRange,function(_),WF),!,
3082 equal_object_wf(FFDomain,Domain,total_function_wf1_2,WF),
3083 check_range_subset_for_closure_wf(FF,FFRange,Range,WF).
3084 total_function_wf1(R,Domain,Range,WF) :- nonvar(R), R=avl_set(AEF), !,
3085 total_function_avl_set(AEF,Domain,Range,WF).
3086 total_function_wf1(FF,Domain,Range,WF) :-
3087 % want to replace FF by closure: needs to be a variable!
3088 var(FF),
3089 % if the total function can not be build up explicitly (i.e. infinite domain)
3090 % TODO: can / should this be relaxed?
3091 custom_explicit_sets:is_infinite_explicit_set(Domain), % get_card_for_specific_custom_set or is_infinite_or_symbolic_closure
3092 % TO DO: delay if Domain infinite or closure and not yet known and range is type
3093 kernel_objects:infer_value_type(Domain,set(DomT)),
3094 kernel_objects:infer_value_type(Range,set(RanT)),
3095 !,
3096 % IDEA : TF = %x.(x:Domain|DEFAULT) <+ SFF, where SFF is partial function and DEFAULT is some default value
3097 % build up a partial function instead (fulfilling all constraints)
3098 % better? : %x.(x:Domain|IF x:dom(SFF) THEN SFF(x) ELSE DEFAULT)?
3099 partial_function_wf(SFF,Domain,Range,WF),
3100 % next, build up a total function mapping everything to a default value
3101 % this function will be overriden by the partial function to fulfilling
3102 % given constraints
3103 % 1. identifiers for closure
3104 create_texpr(identifier('__domid__'),DomT,[],TDomId),
3105 create_texpr(identifier('__ranid__'),RanT,[],TRanId),
3106 % 2. domain identifier might take all values of the domain
3107 create_texpr(member(TDomId,b(value(Domain),set(DomT),[])),pred,[],DomMember),
3108 % 3. pick a single value for the range identifier
3109 check_element_of_wf(RangeElement,Range,WF),
3110 %% external_functions:observe_value(RangeElement,"range"),external_functions:observe_value(SFF,"pf"),
3111 create_texpr(equal(TRanId,b(value(RangeElement),RanT,[])),pred,[],RanMember),
3112 % 4. conjunct and form closure (should be treated symbolically)
3113 conjunct_predicates([RanMember,DomMember],Pred),
3114 Default = closure(['__domid__','__ranid__'],[DomT,RanT],Pred),
3115 % 5. override default values where needed
3116 override_relation(Default,SFF,FF,WF),
3117 get_last_wait_flag(enum_symb_tf,WF,LastWF),
3118 when(nonvar(LastWF), % if we enum too early test 1619 fails; see also test 2022
3119 % as partial_function_wf does not fully enumerate the new variable SFF we may have to enumerate SFF; see test 2328
3120 (enumerate_basic_type_wf(RangeElement,RanT,WF),
3121 enumerate_basic_type_wf(SFF,set(couple(DomT,RanT)),WF)
3122 )).
3123 total_function_wf1(R,Domain,Range,WF) :-
3124 try_expand_and_convert_to_avl_with_check(Domain,EDomain,keep_intervals(1000),total_function), % avoid multiple expansions, but useless when dom_for_lambda_closure case triggers below ! TO DO: fix
3125 % TO DO: maybe avoid converting intervals which are not fully instantiated ?
3126 % TODO: done by clause above? % TO DO ?: if Range singleton set {R} and Domain infinite: return %x.(x:Domain|R); if Range not empty choose one element
3127 try_expand_and_convert_to_avl_unless_large_wf(R,ER,WF),
3128 propagate_empty_set_wf(Range,tf_range,ER,WF), % if the range of a total function is empty then the function must be empty
3129 ? total_function_wf2(ER,EDomain,Range,WF).
3130
3131 :- block total_function_wf2(?,-,?,?).
3132 total_function_wf2(R,Domain,Range,WF) :- nonvar(R), R=avl_set(AEF), !,
3133 total_function_avl_set(AEF,Domain,Range,WF).
3134 total_function_wf2(R,Domain,Range,WF) :-
3135 cardinality_as_int_wf(Domain,int(Card),WF),
3136 ? total_function_wf3(R,Card,Domain,Range,WF).
3137
3138 :- use_module(kernel_card_arithmetic,[is_inf_or_overflow_card/1]).
3139 total_function_wf3(FF,Card,Domain,Range,WF) :-
3140 nonvar(FF),
3141 (number(Card) -> (Card >= 1000 -> true ; is_symbolic_closure(FF)) ; true),
3142 % note: we can have symbolic closures with a finite domain: /*@symbolic */ %p.(p:BOOL|(%t.(t:NATURAL|t+100)))
3143 custom_explicit_sets:dom_for_lambda_closure(FF,FFDomain),
3144 % we have a lambda closure where we cannot determine the range,
3145 % otherwise dom_range_for_specific_closure would have succeeded
3146 % example: f = %x.(x:NATURAL1|x+1) & f: NATURAL1 --> NATURAL
3147 FF = closure(P,T,Pred),
3148 get_range_id_expression(P,T,TRangeID),
3149 !,
3150 equal_object_wf(FFDomain,Domain,total_function1_closure,WF),
3151 % CHECK not(#P.(Pred & P /: Range))
3152 check_lambda_closure_range(P,T,Pred,TRangeID,Range,WF).
3153 total_function_wf3(R,Card,Domain,Range,WF) :- nonvar(Card),is_inf_or_overflow_card(Card),!,
3154 when(nonvar(R), total_function_symbolic(R,Domain,Range,WF)).
3155 total_function_wf3(R,Card,Domain,Range,WF) :-
3156 card_convert_int_to_peano(Card,PeanoCard),
3157 ((nonvar(R);ground(PeanoCard))
3158 -> true
3159 ; get_last_wait_flag(total_fun(Domain),WF,WF1)),
3160 ? when((nonvar(R);ground(PeanoCard);
3161 (nonvar(PeanoCard),nonvar(WF1))), /* mal 12/5/04: changed , into ; 17/3/2008: added WF1 */
3162 /* reason for delaying nonvar(Card): Card grounded bit by bit by cardinality; avoid
3163 triggering too early and missing tf_var */
3164 total_function1(R,Card,PeanoCard,Domain,Range,WF
3165 )).
3166
3167 :- use_module(library(lists),[last/2]).
3168 % for a closure get the identifier or proj expression that represents range values
3169 get_range_id_expression([PairID],[Type],Res) :- !,
3170 Type = couple(_,TX),
3171 TP = b(identifier(PairID),Type,[]),
3172 safe_create_texpr(second_of_pair(TP),TX,Res). % prj2(PairID) ,
3173 %TO DO: test this e.g. with f = /*@symbolic*/ {x|x:NATURAL1*INTEGER & prj2(INTEGER,INTEGER)(x)=prj1(INTEGER,INTEGER)(x)+1} & f: NATURAL1 --> NATURAL
3174 % but currently lambda closure detection in dom_for_lambda_closure cannot handle such closures anyway
3175 get_range_id_expression(P,T,b(identifier(ID),Type,[])) :- last(P,ID), last(T,Type).
3176
3177 total_function_avl_set(AEF,Domain,Range,WF) :-
3178 (Domain = avl_set(Dom) -> is_avl_total_function_over_domain(AEF,Dom)
3179 ; is_avl_partial_function(AEF),
3180 domain_of_explicit_set_wf(avl_set(AEF),AEF_Domain,WF),
3181 equal_object_wf(AEF_Domain,Domain,total_function_avl_set,WF)
3182 ),
3183 is_avl_relation_over_range(AEF,Range,WF).
3184
3185 total_function_symbolic(FF,Domain,Range,WF) :-
3186 (debug_mode(off) -> true ; print('SYMBOLIC --> check : '),translate:print_bvalue(FF),nl),
3187 % can deal with, e.g., f = %x.(x:NATURAL|x+1) & g = f <+ {0|->0} & g : INTEGER +-> INTEGER
3188 domain_wf(FF,Domain,WF),
3189 symbolic_range_subset_check(FF,Range,WF),
3190 symbolic_functionality_check(FF,WF).
3191
3192 total_function1(FF,Card,PeanoCard,Domain,Range,WF) :- nonvar(Card),is_inf_or_overflow_card(Card),
3193 nonvar(PeanoCard),is_inf_or_overflow_card(PeanoCard),!,
3194 total_function_symbolic(FF,Domain,Range,WF).
3195 total_function1(FF,_,_,Domain,Range,WF) :-
3196 expand_and_convert_to_avl_set_catch(FF,AEF,total_function1,'ARG : ? --> ?',ResultStatus,WF),!,
3197 (ResultStatus=avl_set -> total_function_avl_set(AEF,Domain,Range,WF)
3198 ; % keep symbolic
3199 % TO DO: ensure no pending co-routine infinite_peano in card_convert_int_to_peano
3200 total_function_symbolic(FF,Domain,Range,WF)
3201 ).
3202 total_function1(R,_,Card,Domain,Range,WF) :-
3203 try_expand_custom_set_wf(R,ER,total_function1,WF),
3204 ? total_function2(ER,Card,Domain,Range,WF).
3205
3206 total_function2(ER,Card,Domain,Range,WF) :-
3207 var(ER),ground(Card),!,
3208 tf_var(TotalFunction,[],Card,Domain,Range,WF),
3209 ER=TotalFunction.
3210 total_function2(ER,Card,Domain,Range,WF) :-
3211 (ground(Card)
3212 -> get_wait_flag(0,tot_fun,WF,LWF) % we seem to know the domain exactly now; see e.g. test 1316
3213 ; get_wait_flag(2,total_function2,WF,LWF)), % ensure we don't start binding function as soon as Card is bound; important for test 1393; should we use another priority ?
3214 ? tf(ER,[],Card,Domain,Range,WF,LWF).
3215
3216 :- block tf(-,?,-,?,?,?,?),tf(-,?,?,?,?,?,-).
3217 tf([],_,0,Dom,_,WF,_) :- empty_set_wf(Dom,WF).
3218 tf(FUN,SoFar,s(Card),Dom,Ran,WF,LWF) :- var(FUN),nonvar(Dom), % try setting up skeleton for total fun
3219 remove_exact_first_element(X,Dom,Dom2),not_element_of_wf(X,SoFar,WF),var(FUN),!,
3220 ? FUN = [(X,Y)|T], tf1(X,Y,T,SoFar,Card,Dom2,Ran,WF,LWF).
3221 tf([(X,Y)|T],SoFar,s(Card),Dom,Ran,WF,LWF) :-
3222 not_element_of_wf(X,SoFar,WF),
3223 remove_element_wf(X,Dom,Dom2,WF), %mal: 17/3/08 changed to _wf version
3224 ? tf1(X,Y,T,SoFar,Card,Dom2,Ran,WF,LWF).
3225 tf(CS,SoFar,Card,Dom,Ran,WF,LWF) :- nonvar(CS), is_custom_explicit_set(CS),
3226 expand_custom_set_to_list_wf(CS,ER,_,tf,WF),
3227 tf(ER,SoFar,Card,Dom,Ran,WF,LWF).
3228 tf1(X,Y,T,SoFar,Card,Dom2,Ran,WF,LWF) :-
3229 check_element_of_wf(Y,Ran,WF),
3230 %when((nonvar(T);nonvar(Card)), /* mal 12/5/04: changed , into ; */
3231 add_new_element_wf(X,SoFar,SoFar2,WF), %%% try_expand_and_convert_to_avl
3232 ? tf(T,SoFar2,Card,Dom2,Ran,WF,LWF).
3233
3234 :- block tf_var(-,?,-,?,?,?).
3235 tf_var(F,_,Card,Dom,_,WF) :- Card==0,!,F=[],empty_set_wf(Dom,WF). % avoid choice point
3236 tf_var([],_,0,Dom,_,WF) :- empty_set_wf(Dom,WF).
3237 tf_var([(X,Y)|T],SoFar,s(Card),Dom,Ran,WF) :-
3238 /* supposes that X + Y are unbound */
3239 /* TO DO: rewrite like enumerate <-------------------------- */
3240 ((var(X),var(Y)) -> true ; (print_message(warning,'Nonvar in tf_var: '),
3241 print_message(warning,((X,Y))))),
3242 remove_exact_first_element(X,Dom,Dom2),
3243 not_element_of_wf(X,SoFar,WF),
3244 check_element_of_wf(Y,Ran,WF),
3245 add_new_element_wf(X,SoFar,SoFar2,WF),
3246 tf_var(T,SoFar2,Card,Dom2,Ran,WF).
3247
3248
3249
3250 :- assert_must_succeed((bsets_clp:total_bijection(X,[int(1)],[int(7)]),
3251 X = [(int(1),int(7))])).
3252 :- assert_must_succeed((bsets_clp:total_bijection(X,[int(1),int(2)],[int(7),int(8)]),
3253 kernel_objects:equal_object(X,[(int(2),int(8)),(int(1),int(7))]))).
3254 :- assert_must_fail((bsets_clp:total_bijection(X,[int(1)],[int(7),int(3)]),
3255 X = [(int(1),int(7))])).
3256 :- assert_must_fail((bsets_clp:total_bijection(X,[int(1),int(2)],[int(3)]),
3257 X = [(int(1),int(3)),(int(2),int(3))])).
3258 :- assert_must_fail((bsets_clp:total_bijection(X,[int(1),int(2)],[int(7),int(8)]),
3259 kernel_objects:equal_object(X,[(int(2),int(7)),(int(1),int(7))]))).
3260 :- assert_must_fail((bsets_clp:total_bijection(X,[int(1),int(2)],[int(7),int(8)]),
3261 X = [(int(1),int(7)),(int(1),int(8))])).
3262
3263
3264
3265 total_bijection(R,Domain,Range) :- init_wait_flags(WF,[total_bijection]),
3266 total_bijection_wf(R,Domain,Range,WF),
3267 ? ground_wait_flags(WF).
3268
3269 :- block total_bijection_wf(?,-,?,?).
3270 total_bijection_wf(FF,Domain,Range,WF) :- nonvar(FF),
3271 custom_explicit_sets:dom_range_for_specific_closure(FF,FFDomain,FFRange,function(bijection),WF),!,
3272 equal_object_wf(FFDomain,Domain,total_bijection_wf_1,WF),
3273 equal_object_wf(FFRange,Range,total_bijection_wf_2,WF).
3274 %(R,Domain,Range,WF) :- Domain==Range,!, print(eq_domain_range),nl, total_injection_wf(R,Domain,Range,WF).
3275 total_bijection_wf(R,Domain,Range,WF) :-
3276 same_cardinality_wf(Domain,Range,WF),
3277 total_injection_wf2(R,Domain,Range,WF). % TO DO: use cardinality_as_int_wf ? makes test 1194 fail
3278
3279 %Note: we used to call custom code: total_bijection_wf2(R,Domain,Card,Range,WF).
3280 % total_injection_wf2 gives a considerable performance boost, e.g., for test 1222 ClearSy/alloc_large.mch or NQueens with >->>
3281
3282 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_total_function([(int(1),int(6)),(int(2),int(7))],[int(1),int(2),int(3)],[int(7),int(6)],WF),WF)).
3283 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_total_function([(int(1),int(6)),(int(2),int(7))],[int(1),int(2)],[int(8),int(6)],WF),WF)).
3284 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_total_function([(int(1),int(6)),(int(2),int(7)),(int(1),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
3285 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_total_function([(int(1),int(6)),(int(1),int(7))],[int(1)],[int(7),int(6)],WF),WF)).
3286 :- assert_must_fail((bsets_clp:not_total_function(X,[int(1)],[int(7)],_WF),
3287 X = [(int(1),int(7))])).
3288 :- assert_must_fail((bsets_clp:not_total_function(X,[int(1),int(2)],[int(7),int(6)],_WF),
3289 X = [(int(2),int(7)),(int(1),int(7))])).
3290 :- assert_must_succeed((bsets_clp:not_total_function([],[int(1)],[int(7)],_WF))).
3291 :- assert_must_succeed((bsets_clp:not_total_function([],[global_set('NAT1')],[global_set('Name')],_WF))).
3292 :- assert_must_succeed((bsets_clp:not_total_function([(int(7),int(7))],[int(1)],[int(7)],_WF))).
3293 :- assert_must_succeed((bsets_clp:not_total_function([(int(1),int(7)), (int(2),int(1))],
3294 [int(1),int(2)],[int(7)],_WF))).
3295 :- assert_must_succeed((bsets_clp:not_total_function(X,[int(1),int(2)],[int(7),int(6)],_WF),
3296 X = [(int(2),int(7)),(int(2),int(6))])).
3297
3298 :- block not_total_function(-,?,?,?), not_total_function(?,-,?,?).
3299 not_total_function(FF,Domain,Range,WF) :- nonvar(FF),custom_explicit_sets:is_definitely_maximal_set(Range),
3300 % we do not need the Range; this means we can match more closures (e.g., lambda)
3301 custom_explicit_sets:dom_for_specific_closure(FF,FFDomain,function(_),WF),!,
3302 not_equal_object_wf(FFDomain,Domain,WF).
3303 not_total_function(FF,Domain,Range,WF) :- nonvar(FF),
3304 custom_explicit_sets:dom_range_for_specific_closure(FF,FFDomain,FFRange,function(_),WF),!,
3305 equality_objects_wf(FFDomain,Domain,Result,WF), % not yet implemented ! % TODO ! -> sub_set,equal,super_set
3306 when(nonvar(Result),(Result=pred_false -> true ; not_subset_of_wf(FFRange,Range,WF))).
3307 not_total_function(FF,Domain,Range,WF) :- nonvar(FF), FF=closure(P,T,Pred),
3308 % example: f = %t.(t : NATURAL|t + 100) & f /: NATURAL +-> NATURAL
3309 is_lambda_value_domain_closure(P,T,Pred, FFDomain,_Expr),
3310 get_range_id_expression(P,T,TRangeID),!,
3311 equality_objects_wf(FFDomain,Domain,SubRes,WF), % compare: subset_test for not_partial_function
3312 when(nonvar(SubRes),
3313 (SubRes=pred_false -> true % not equal -> it is not a total function over the domain
3314 ; check_not_lambda_closure_range(P,T,Pred,TRangeID,Range,WF))).
3315 not_total_function(R,Domain,Range,WF) :-
3316 try_expand_and_convert_to_avl_with_check(R,ER,not_total_function_range),
3317 try_expand_and_convert_to_avl_unless_large_wf(Range,ERange,WF),
3318 not_total_function2(ER,Domain,ERange,WF).
3319
3320 % repeat block, in case Domain or R is a closure
3321 :- block not_total_function2(-,?,?,?), not_total_function2(?,-,?,?).
3322 not_total_function2(R,Domain,Range,WF) :-
3323 expand_and_convert_to_avl_set_warn(R,AER,not_total_function2,'ARG /: ? --> ?',WF),
3324 !,
3325 not_total_function_avl(AER,Domain,Range,WF).
3326 not_total_function2(R,Domain,ERange,WF) :-
3327 expand_custom_set_to_list_wf(R,ER,_,not_total_function2,WF),
3328 try_expand_and_convert_to_avl_with_check(Domain,EDomain,keep_intervals(1000),not_total_function_domain),
3329 not_tf(ER,[],EDomain,ERange,WF).
3330
3331 not_total_function_avl(_AER,Domain,_Range,_WF) :- is_infinite_explicit_set(Domain),!,
3332 true. % a finite AVL set cannot be a total function over an infinite domain
3333 not_total_function_avl(AER,Domain,Range,WF) :-
3334 expand_and_convert_to_avl_set_warn(Domain,ADom,not_total_function2,'? /: ARG --> ?',WF),
3335 !,
3336 (is_avl_total_function_over_domain(AER,ADom)
3337 ->
3338 is_not_avl_relation_over_range(AER,Range,WF)
3339 ; true
3340 ).
3341 not_total_function_avl(AER,EDomain,ERange,WF) :-
3342 expand_custom_set_to_list_wf(avl_set(AER),ER,_,not_total_function_avl,WF),
3343 not_tf(ER,[],EDomain,ERange,WF).
3344
3345
3346 :- use_module(kernel_equality,[membership_test_wf_with_force/4]).
3347
3348 :- block not_tf(-,?,?,?,?).
3349 not_tf([],_,Domain,_,WF) :- not_empty_set_wf(Domain,WF).
3350 not_tf([(X,Y)|T],SoFar,Dom,Ran,WF) :- membership_test_wf_with_force(SoFar,X,MemRes,WF),
3351 not_tf2(MemRes,X,Y,T,SoFar,Dom,Ran,WF).
3352
3353 :- block not_tf2(-,?,?,?, ?,?,?,?). %, not_tf2(?,?,?,?, -,?,?), not_tf2(?,?,?,?, ?,-,?).
3354 not_tf2(pred_true,_X,_,_T,_SoFar,_Dom,_Ran,_WF).% :- check_element_of_lazy(X,SoFar,WF).
3355 not_tf2(pred_false,X,Y,T,SoFar,Dom,Ran,WF) :-
3356 %not_element_of_wf(X,SoFar,WF),
3357 membership_test_wf_with_force(Dom,X,MemRes,WF),
3358 not_tf3(MemRes,X,Y,T,SoFar,Dom,Ran,WF).
3359
3360 :- block not_tf3(-, ?,?,?,?, ?,?,?).
3361 not_tf3(pred_false,_X,_Y,_T,_SoFar,_Dom,_Ran,_WF).
3362 not_tf3(pred_true,X,Y,T,SoFar,Dom,Ran,WF) :-
3363 remove_element_wf(X,Dom,Dom2,WF),
3364 membership_test_wf_with_force(Ran,Y,MemRes,WF),
3365 not_tf4(MemRes,X,Y,T,SoFar,Dom2,Ran,WF).
3366
3367 :- block not_tf4(-, ?,?,?,?, ?,?,?).
3368 not_tf4(pred_false,_X,_Y,_T,_SoFar,_Dom2,_Ran,_WF).
3369 not_tf4(pred_true,X,_Y,T,SoFar,Dom2,Ran,WF) :-
3370 %check_element_of_wf(Y,Ran,WF), %DO WE NEED THIS ????
3371 add_new_element_wf(X,SoFar,SoFar2,WF),
3372 not_tf(T,SoFar2,Dom2,Ran,WF).
3373
3374
3375
3376 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_total_bijection([(int(1),int(6)),(int(2),int(7))],[int(1),int(2),int(3)],[int(7),int(6)],WF),WF)).
3377 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_total_bijection([(int(1),int(6)),(int(2),int(7))],[int(1),int(2)],[int(8),int(6)],WF),WF)).
3378 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_total_bijection([(int(1),int(6)),(int(2),int(7)),(int(1),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
3379 :- assert_must_fail((bsets_clp:not_total_bijection(X,[int(1)],[int(7)],_WF),
3380 X = [(int(1),int(7))])).
3381 :- assert_must_fail((bsets_clp:not_total_bijection(X,[int(1),int(2)],[int(7),int(6)],_WF),
3382 X = [(int(2),int(7)),(int(1),int(6))])).
3383 :- assert_must_fail((bsets_clp:not_total_bijection(X,[int(1),int(2)],[int(7),int(6)],_WF),
3384 X = [(int(1),int(7)),(int(2),int(6))])).
3385 :- assert_must_succeed((bsets_clp:not_total_bijection(X,[int(1),int(2)],[int(3)],_WF),
3386 X = [(int(1),int(3)),(int(2),int(3))])).
3387 :- assert_must_succeed((bsets_clp:not_total_bijection(X,[int(1),int(2)],[int(7),int(6)],_WF),
3388 X = [(int(2),int(7)),(int(1),int(7))])).
3389 :- assert_must_succeed((bsets_clp:not_total_bijection(X,[int(1)],[int(7),int(8)],_WF),
3390 X = [(int(1),int(7))])).
3391 :- assert_must_succeed((bsets_clp:not_total_bijection(X,[int(1),int(2)],[int(7)],_WF),
3392 X = [(int(2),int(7))])).
3393 :- assert_must_succeed((bsets_clp:not_total_bijection([],[int(1)],[int(7)],_WF))).
3394 :- assert_must_succeed((bsets_clp:not_total_bijection([(int(7),int(7))],[int(1)],[int(7)],_WF))).
3395 :- assert_must_succeed((bsets_clp:not_total_bijection([(int(1),int(7)), (int(2),int(1))],
3396 [int(1),int(2)],[int(7)],_WF))).
3397 :- assert_must_succeed((bsets_clp:not_total_bijection(X,[int(1),int(2)],[int(7),int(6)],_WF),
3398 X = [(int(2),int(7)),(int(2),int(6))])).
3399
3400 :- block not_total_bijection(-,?,?,?), not_total_bijection(?,-,?,?).
3401 not_total_bijection(FF,Domain,Range,WF) :-
3402 custom_explicit_sets:dom_range_for_specific_closure(FF,FFDomain,FFRange,function(bijection),WF),!,
3403 not_equal_object_wf((FFDomain,FFRange),(Domain,Range),WF).
3404 not_total_bijection(avl_set(_),Domain,_Range,_WF) :-
3405 is_infinite_explicit_set(Domain),!.
3406 % a finite set cannot be a total bijection over an infinite domain, see test 1641
3407 not_total_bijection(R,Domain,Range,WF) :-
3408 try_expand_custom_set_wf(R,ER,not_total_bijection,WF),
3409 not_tot_bij(ER,[],Domain,Range,WF).
3410
3411 :- block not_tot_bij(-,?,?,?,?).
3412 not_tot_bij([],_,Domain,Range,WF) :- empty_not_tot_bij(Domain,Range,WF).
3413 not_tot_bij([(X,Y)|T],SoFar,Dom,Ran,WF) :- membership_test_wf(SoFar,X,MemRes,WF),
3414 not_tot_bij2(MemRes,X,Y,T,SoFar,Dom,Ran,WF).
3415
3416 :- use_module(kernel_equality,[empty_set_test_wf/3]).
3417 :- block empty_not_tot_bij(-,?,?).
3418 empty_not_tot_bij(Domain,Range,WF) :-
3419 empty_set_test_wf(Domain,EqRes,WF),
3420 empty_not_tot_bij2(EqRes,Range,WF).
3421 :- block empty_not_tot_bij2(-,?,?).
3422 empty_not_tot_bij2(pred_false,_,_).
3423 empty_not_tot_bij2(pred_true,Range,WF) :- not_empty_set_wf(Range,WF).
3424
3425 :- block not_tot_bij2(-,?,?,?,?,?,?,?).
3426 not_tot_bij2(pred_true,_X,_,_T,_SoFar,_Dom,_Ran,_WF).
3427 not_tot_bij2(pred_false,X,Y,T,SoFar,Dom,Ran,WF) :-
3428 membership_test_wf(Dom,X,MemRes,WF),
3429 not_tot_bij3(MemRes,X,Y,T,SoFar,Dom,Ran,WF).
3430
3431 :- block not_tot_bij3(-,?,?,?,?,?,?,?).
3432 not_tot_bij3(pred_false,_X,_,_T,_SoFar,_Dom,_Ran,_WF). % X not a member of domain
3433 not_tot_bij3(pred_true,X,Y,T,SoFar,Dom,Ran,WF) :-
3434 remove_element_wf(X,Dom,Dom2,WF),
3435 membership_test_wf(Ran,Y,MemRes,WF),
3436 not_tot_bij4(MemRes,X,Y,T,SoFar,Dom2,Ran,WF).
3437
3438 :- block not_tot_bij4(-,?,?,?,?,?,?,?).
3439 not_tot_bij4(pred_false,_X,_,_T,_SoFar,_Dom2,_Ran,_WF). % Y not a member of range
3440 not_tot_bij4(pred_true,X,Y,T,SoFar,Dom2,Ran,WF) :-
3441 remove_element_wf(Y,Ran,Ran2,WF),
3442 add_element_wf(X,SoFar,SoFar2,WF),
3443 not_tot_bij(T,SoFar2,Dom2,Ran2,WF).
3444
3445
3446
3447 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:range_restriction_wf([(int(1),int(2)),(int(2),int(3))],[int(3)],[(int(2),int(3))],WF),WF)).
3448 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:range_restriction_wf([(int(1),int(2)),(int(2),int(3))],[int(2),int(3)],[(int(1),int(2)),(int(2),int(3))],WF),WF)).
3449 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:range_restriction_wf([],[int(2),int(3)],[],WF),WF)).
3450 :- assert_must_succeed((bsets_clp:range_restriction_wf([],[int(1)],[],_WF))).
3451 :- assert_must_succeed((bsets_clp:range_restriction_wf([],[],[],_WF))).
3452 :- assert_must_succeed((bsets_clp:range_restriction_wf([(int(1),int(2))],[int(1)],[],_WF))).
3453 :- assert_must_succeed((bsets_clp:range_restriction_wf([(int(1),int(2))],[int(2)],[(int(1),int(2))],_WF))).
3454 :- assert_must_succeed((bsets_clp:range_restriction_wf(X,[fd(3,'Name')],R,_WF),
3455 X = [(int(1),fd(3,'Name')),(int(2),fd(3,'Name'))],
3456 kernel_objects:equal_object(X,R))).
3457 :- assert_must_succeed((bsets_clp:range_restriction_wf(X,Y,R,_WF),
3458 X = [(int(1),fd(3,'Name')),(int(2),fd(3,'Name'))],Y=global_set('Name'),
3459 kernel_objects:equal_object(X,R))).
3460 :- assert_must_fail((bsets_clp:range_restriction_wf(X,[fd(3,'Name')],R,_WF),
3461 X = [(int(1),fd(3,'Name')),(int(2),fd(1,'Name'))],
3462 kernel_objects:equal_object(X,R))).
3463
3464 :- block range_restriction_wf(-,?,?,?),range_restriction_wf(?,-,-,?).
3465
3466 range_restriction_wf(R,S,Res,WF) :- /* R |> S */
3467 ok_to_try_restriction_explicit_set(S,R,Res),
3468 range_restriction_explicit_set_wf(R,S,SR,WF),!,
3469 equal_object_wf(SR,Res,range_restriction,WF).
3470 range_restriction_wf(R,S,Res,WF) :- /* R |> S */
3471 expand_custom_set_to_list_wf(R,ER,_,range_restriction,WF),
3472 ? relation_restriction_wf(ER,S,Res,pred_true,range,WF).
3473
3474 % heuristic: should we try restriction_explicit_set or
3475 % is relation_restriction with its stronger constraint propagation better
3476 ok_to_try_restriction_explicit_set(S,R,Res) :-
3477 nonvar(S),
3478 (var(Res) -> true
3479 ; S=avl_set(_),
3480 nonvar(R), R=avl_set(_) % otherwise constraint propagation from normal relation_restriction better
3481 ).
3482
3483 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:range_subtraction_wf([],[int(2)],[],WF),WF)).
3484 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:range_subtraction_wf([(int(1),int(2)),(int(2),int(3))],[int(2)],[(int(2),int(3))],WF),WF)).
3485 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:range_subtraction_wf([(int(1),int(2)),(int(2),int(3))],[],[(int(1),int(2)),(int(2),int(3))],WF),WF)).
3486 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:range_subtraction_wf([(int(1),int(2)),(int(2),int(3))],[int(1)],[(int(1),int(2)),(int(2),int(3))],WF),WF)).
3487
3488 :- block range_subtraction_wf(-,?,?,?),range_subtraction_wf(?,-,-,?).
3489 range_subtraction_wf(R,S,Res,WF) :- /* R |>> S */
3490 S==[],!,
3491 equal_object_wf(R,Res,range_subtraction1,WF).
3492 range_subtraction_wf(R,S,Res,WF) :- /* R |>> S */
3493 ok_to_try_restriction_explicit_set(S,R,Res),
3494 range_subtraction_explicit_set_wf(R,S,SR,WF),!,
3495 equal_object_wf(SR,Res,range_subtraction2,WF).
3496 range_subtraction_wf(R,S,Res,WF) :- /* R |>> S */
3497 expand_custom_set_to_list_wf(R,ER,_,range_subtraction,WF),
3498 ? relation_restriction_wf(ER,S,Res,pred_false,range,WF).
3499
3500 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:in_range_restriction_wf((int(2),int(3)),[(int(2),int(3)),(int(1),int(3))],[int(33),int(3)],WF),WF)).
3501 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:in_range_restriction_wf((int(1),int(3)),[(int(2),int(3)),(int(1),int(3))],[int(3)],WF),WF)).
3502
3503 :- block in_range_restriction_wf(-,-,-,?).
3504 in_range_restriction_wf(Pair,Rel,Set,WF) :-
3505 ? (treat_arg_symbolically(Set) ; treat_arg_symbolically(Rel)
3506 ; preference(convert_comprehension_sets_into_closures,true)),
3507 !,
3508 Rel \== [], % avoid setting up check_element_of for X then
3509 % x |-> y : Rel |>> Set <=> x|->y : Rel & y: Set
3510 check_element_of_wf(Pair,Rel,WF),
3511 Pair = (_,P2),
3512 check_element_of_wf(P2,Set,WF).
3513 in_range_restriction_wf(Pair,Rel,Set,WF) :-
3514 range_restriction_wf(Rel,Set,Res,WF),
3515 check_element_of_wf(Pair,Res,WF).
3516
3517 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_in_range_restriction_wf((int(2),int(3)),[(int(2),int(3)),(int(1),int(3))],[int(1),int(2)],WF),WF)).
3518 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_in_range_restriction_wf((int(11),int(3)),[(int(2),int(3)),(int(1),int(3))],[int(33),int(2)],WF),WF)).
3519
3520 :- block not_in_range_restriction_wf(-,-,-,?).
3521 not_in_range_restriction_wf(Pair,Rel,Set,WF) :-
3522 range_restriction_wf(Rel,Set,Res,WF),
3523 not_element_of_wf(Pair,Res,WF).
3524
3525 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:in_range_subtraction_wf((int(2),int(3)),[(int(2),int(3)),(int(1),int(3))],[int(33),int(1)],WF),WF)).
3526 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:in_range_subtraction_wf((int(1),int(3)),[(int(2),int(3)),(int(1),int(3))],[],WF),WF)).
3527
3528 :- block in_range_subtraction_wf(-,-,-,?).
3529 in_range_subtraction_wf(Pair,Rel,Set,WF) :-
3530 ? (treat_arg_symbolically(Set) ; treat_arg_symbolically(Rel)
3531 ; preference(convert_comprehension_sets_into_closures,true)),
3532 !,
3533 Rel \== [], % avoid setting up check_element_of for X then
3534 % x |-> y : Rel |>> Set <=> x|->y : Rel & y/: Set
3535 check_element_of_wf(Pair,Rel,WF),
3536 Pair = (_,P2),
3537 not_element_of_wf(P2,Set,WF).
3538 in_range_subtraction_wf(Pair,Rel,Set,WF) :-
3539 range_subtraction_wf(Rel,Set,Res,WF),
3540 check_element_of_wf(Pair,Res,WF).
3541
3542 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_in_range_subtraction_wf((int(2),int(3)),[(int(2),int(3)),(int(1),int(3))],[int(3),int(2)],WF),WF)).
3543 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_in_range_subtraction_wf((int(11),int(3)),[(int(2),int(3)),(int(1),int(3))],[int(33),int(2)],WF),WF)).
3544
3545 :- block not_in_range_subtraction_wf(-,-,-,?).
3546 not_in_range_subtraction_wf(Pair,Rel,Set,WF) :-
3547 range_subtraction_wf(Rel,Set,Res,WF),
3548 not_element_of_wf(Pair,Res,WF).
3549
3550
3551
3552 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:in_domain_restriction_wf((int(2),int(3)),[int(33),int(2)],[(int(2),int(3)),(int(1),int(3))],WF),WF)).
3553 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:in_domain_restriction_wf((int(1),int(3)),[int(1)],[(int(2),int(3)),(int(1),int(3))],WF),WF)).
3554
3555 :- block in_domain_restriction_wf(-,-,-,?).
3556 in_domain_restriction_wf(Pair,Set,Rel,WF) :-
3557 ? (treat_arg_symbolically(Set) ; treat_arg_symbolically(Rel)
3558 ; preference(convert_comprehension_sets_into_closures,true)),
3559 !,
3560 Rel \== [], % avoid setting up check_element_of for X then
3561 % x |-> y : Set <| Rel <=> x|->y : Rel & x: Set
3562 check_element_of_wf(Pair,Rel,WF),
3563 Pair = (P1,_),
3564 check_element_of_wf(P1,Set,WF).
3565 in_domain_restriction_wf(Pair,Set,Rel,WF) :-
3566 domain_restriction_wf(Set,Rel,Res,WF),
3567 check_element_of_wf(Pair,Res,WF).
3568
3569 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_in_domain_restriction_wf((int(2),int(3)),[int(33),int(1)],[(int(2),int(3)),(int(1),int(3))],WF),WF)).
3570 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_in_domain_restriction_wf((int(11),int(3)),[int(11),int(2)],[(int(2),int(3)),(int(1),int(3))],WF),WF)).
3571
3572 :- block not_in_domain_restriction_wf(-,-,-,?).
3573 not_in_domain_restriction_wf(Pair,Set,Rel,WF) :-
3574 domain_restriction_wf(Set,Rel,Res,WF),
3575 not_element_of_wf(Pair,Res,WF).
3576
3577 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:domain_restriction_wf([int(2),int(4)],[(int(1),int(4)),(int(2),int(3))],[(int(2),int(3))],WF),WF)).
3578 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:domain_restriction_wf([int(1),int(2)],[(int(1),int(2)),(int(2),int(3))],[(int(1),int(2)),(int(2),int(3))],WF),WF)).
3579 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:domain_restriction_wf([int(2),int(3)],[],[],WF),WF)).
3580 :- assert_must_succeed((bsets_clp:domain_restriction_wf([int(1)],[],[],_WF))).
3581 :- assert_must_succeed((bsets_clp:domain_restriction_wf([int(1)],[],R,_WF), R==[])).
3582 :- assert_must_fail((bsets_clp:domain_restriction_wf(_,[],R,_WF), R=[int(_)|_])).
3583 :- assert_must_succeed((bsets_clp:domain_restriction_wf([int(2)],[(int(1),int(2))],[],_WF))).
3584 :- assert_must_succeed((bsets_clp:domain_restriction_wf([],[(int(1),int(2))],[],_WF))).
3585 :- assert_must_succeed((bsets_clp:domain_restriction_wf([int(1)],[(int(1),int(2))],[(int(1),int(2))],_WF))).
3586 :- assert_must_succeed((bsets_clp:domain_restriction_wf([int(1)],[(int(1),int(2)),(int(2),_)],_,_WF))).
3587 :- assert_must_succeed((bsets_clp:domain_restriction_wf([int(2),int(1)],X,R,_WF),
3588 X = [(int(1),fd(3,'Name')),(int(2),fd(3,'Name'))],
3589 kernel_objects:equal_object(X,R))).
3590
3591
3592 :- block domain_restriction_wf(?,-,?,?),domain_restriction_wf(-,?,-,?).
3593 domain_restriction_wf(S,R,Res,WF) :- /* S <| R */
3594 ok_to_try_restriction_explicit_set(S,R,Res),
3595 domain_restriction_explicit_set_wf(S,R,SR,WF),!,
3596 equal_object_wf(SR,Res,domain_restriction,WF).
3597 domain_restriction_wf(S,R,Res,WF) :- /* S <| R */
3598 expand_custom_set_to_list_wf(R,ER,_,domain_restriction,WF),
3599 ? relation_restriction_wf(ER,S,Res,pred_true,domain,WF).
3600
3601 % a predicate to compute domain/range restriction/subtraction
3602 :- block relation_restriction_wf(?,-,- ,?,?,?),
3603 relation_restriction_wf(-,?,? ,?,?,?).
3604 relation_restriction_wf([],_S,Res,_AddWhen,_DomOrRange,WF) :-
3605 ? empty_set_wf(Res,WF).
3606 relation_restriction_wf([(X,Y)|T],S,Res,AddWhen,DomOrRange,WF) :-
3607 (DomOrRange=domain
3608 -> membership_test_wf(S,X,MemRes,WF) % TO DO: pass WF !
3609 ; membership_test_wf(S,Y,MemRes,WF)),
3610 (nonvar(MemRes)
3611 %MemRes==AddWhen % MemRes already set; we will ensure that (X,Y) in Res below; this slows down Alstom Compilation Regle !
3612 % doing the membership_test on the result Res if MemRes\==AddWhen only makes sense if we cannot fully compute the restriction ?? i.e. if T is not a closed list ?
3613 -> true %,(MemRes==AddWhen -> true ; print_term_summary(relation_restriction([(X,Y)|T],S,Res,AddWhen,DomOrRange)),nl)
3614 ; (AddWhen=pred_true -> InResult=MemRes
3615 ; negate(InResult,MemRes)), % from bool_pred
3616 ? membership_test_wf(Res,(X,Y),InResult,WF)
3617 % TO DO: same for explicit version; gets called e.g. if S = 1..n (1..n <| [1,2,3] = [1,2])
3618 % can now solve e.g. {x|x <| [1,2,3] = [1,2] & card(x)=2} = {{1,2}}
3619 % or x <| s = [1,2,3] \/ {29|->29} & x <: 1..100 & s = %i.(i:1..50|i)
3620 ),
3621 ? relation_restriction_aux(MemRes,X,Y,T,S,Res,AddWhen,DomOrRange,WF).
3622 :- block relation_restriction_aux(-,?,?,?,?,?, ?,?,?).
3623 relation_restriction_aux(MemRes,X,Y,T,S,Res,AddWhen,DomOrRange,WF) :-
3624 MemRes==AddWhen,!, % (X,Y) should be added to result
3625 % TO DO: collect result until we delay ? and then do equal_object ?
3626 ? equal_cons(Res,(X,Y),RT), % was : equal_object([(X,Y)|RT],Res),
3627 %equal_cons_wf(Res,(X,Y),RT,WF), % makes tests 982, 1302, 1303 fail; TO DO: investigate
3628 %when(nonvar(RT), % causes problem for test 982
3629 ? relation_restriction_wf(T,S,RT,AddWhen,DomOrRange,WF).
3630 relation_restriction_aux(_MemRes,_X,_,T,S,RT,AddWhen,DomOrRange,WF) :-
3631 % the couple is filtered out
3632 ? relation_restriction_wf(T,S,RT,AddWhen,DomOrRange,WF).
3633
3634
3635 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:domain_subtraction_wf([int(1),int(3)],[(int(1),int(4)),(int(2),int(3))],[(int(2),int(3))],WF),WF)).
3636 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:domain_subtraction_wf([int(3),int(4)],[(int(1),int(2)),(int(2),int(3))],[(int(1),int(2)),(int(2),int(3))],WF),WF)).
3637 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:domain_subtraction_wf([int(1)],[],[],WF),WF)).
3638 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:domain_subtraction_wf([],[(int(11),int(21))],[(int(11),int(21))],WF),WF)).
3639 :- assert_must_succeed((bsets_clp:domain_subtraction_wf([int(1)],[(int(1),int(2))],[],_WF))).
3640 :- assert_must_succeed((bsets_clp:domain_subtraction_wf([int(3)],[(int(1),int(2))],[(int(1),int(2))],_WF))).
3641 :- assert_must_succeed((bsets_clp:domain_subtraction_wf([int(1)],[(int(1),int(2)),(int(2),int(X))],R,_WF),
3642 R=[(int(2),int(YY))], YY==X)).
3643 :- assert_must_succeed((bsets_clp:domain_subtraction_wf([int(5),int(3)],X,R,_WF),
3644 X = [(int(1),fd(3,'Name')),(int(2),fd(3,'Name'))],
3645 kernel_objects:equal_object(X,R))).
3646 :- block domain_subtraction_wf(?,-,?,?),domain_subtraction_wf(-,?,-,?).
3647 domain_subtraction_wf(S,R,Res,WF) :- S==[],!,
3648 equal_object_wf(R,Res,domain_subtraction1,WF).
3649 domain_subtraction_wf(S,R,Res,WF) :- /* S <<| R */
3650 ok_to_try_restriction_explicit_set(S,R,Res),
3651 domain_subtraction_explicit_set_wf(S,R,SR,WF),!,
3652 equal_object_wf(SR,Res,domain_subtraction2,WF).
3653 domain_subtraction_wf(S,R,Res,WF) :- /* S <<| R */
3654 expand_custom_set_to_list_wf(R,ER,_,domain_subtraction,WF),
3655 try_expand_and_convert_to_avl_with_check(S,AS,keep_intervals(500),domain_subtraction),
3656 % (ground(ER) -> domain_subtraction_acc(ER,AS,[],Res) ;
3657 ? relation_restriction_wf(ER,AS,Res,pred_false,domain,WF)
3658 % )
3659 .
3660
3661
3662
3663 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:in_domain_subtraction_wf((int(2),int(3)),[int(33),int(1)],[(int(2),int(3)),(int(1),int(3))],WF),WF)).
3664 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:in_domain_subtraction_wf((int(2),int(3)),[],[(int(2),int(3)),(int(1),int(3))],WF),WF)).
3665
3666 :- block in_domain_subtraction_wf(-,-,-,?).
3667
3668 in_domain_subtraction_wf(Pair,Set,Rel,WF) :-
3669 ? (treat_arg_symbolically(Set) ; treat_arg_symbolically(Rel)
3670 ; preference(convert_comprehension_sets_into_closures,true)),
3671 !,
3672 Rel \== [], % avoid setting up check_element_of for X then
3673 % x |-> y : Set <<| Rel <=> x|->y : Rel & x/: Set
3674 check_element_of_wf(Pair,Rel,WF),
3675 Pair = (P1,_),
3676 not_element_of_wf(P1,Set,WF).
3677 in_domain_subtraction_wf(Pair,Set,Rel,WF) :-
3678 domain_subtraction_wf(Set,Rel,Res,WF),
3679 check_element_of_wf(Pair,Res,WF).
3680
3681
3682 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_in_domain_subtraction_wf((int(2),int(3)),[int(33),int(2)],[(int(2),int(3)),(int(1),int(3))],WF),WF)).
3683 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_in_domain_subtraction_wf((int(11),int(3)),[int(33),int(2)],[(int(2),int(3)),(int(1),int(3))],WF),WF)).
3684
3685 :- block not_in_domain_subtraction_wf(-,-,-,?).
3686 not_in_domain_subtraction_wf(Pair,Set,Rel,WF) :-
3687 domain_subtraction_wf(Set,Rel,Res,WF),
3688 not_element_of_wf(Pair,Res,WF).
3689
3690 % similar to kernel_objects, but adds case for [_|_]
3691 treat_arg_symbolically(X) :- var(X),!.
3692 treat_arg_symbolically([H|T]) :- \+ ground(H) ; treat_arg_symbolically(T).
3693 treat_arg_symbolically(global_set(_)).
3694 treat_arg_symbolically(freetype(_)).
3695 treat_arg_symbolically(closure(P,T,B)) :- \+ kernel_objects:small_interval(P,T,B).
3696
3697 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:override_relation([(int(1),int(2))],[(int(1),int(3))],[(int(1),int(3))],WF),WF)).
3698 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:override_relation([(int(1),int(2))],[(int(2),int(3))],[(int(1),int(2)),(int(2),int(3))],WF),WF)).
3699 :- assert_must_succeed((bsets_clp:override_relation([(int(1),int(2)),(int(2),int(4))],[(int(1),int(3))],X,_WF),
3700 kernel_objects:equal_object(X,[(int(2),int(4)),(int(1),int(3))]))).
3701 :- assert_must_succeed((bsets_clp:override_relation([(int(1),int(2)),(int(2),int(4))],[(int(3),int(6))],X,_WF),
3702 kernel_objects:equal_object(X,[(int(2),int(4)),(int(1),int(2)),(int(3),int(6))]))).
3703
3704 :- block override_relation(-,-,?,?). % overwrite AST node
3705 override_relation(R,S,Res,WF) :- R==[],!, equal_object_wf(S,Res,override_relation1,WF).
3706 override_relation(R,S,Res,WF) :- S==[],!, equal_object_wf(R,Res,override_relation2,WF).
3707 override_relation(R,S,Res,WF) :- Res==[],!, empty_set_wf(S,WF), empty_set_wf(R,WF).
3708 override_relation(R,S,Res,WF) :- /* R <+ S */
3709 override_custom_explicit_set_wf(R,S,ORes,WF),!,
3710 equal_object_wf(ORes,Res,override_relation3,WF).
3711 override_relation(R,S,Res,WF) :- /* R <+ S */
3712 domain_wf(S,DS,WF),
3713 domain_subtraction_wf(DS,R,DSR,WF),
3714 union_wf(DSR,S,Res,WF). % in principle we could call disjoint_union_wf, but fails 1112, 1751
3715
3716 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:in_override_relation_wf((int(1),int(2)),[(int(1),int(2))],[(int(2),int(3))],WF),WF)).
3717 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:in_override_relation_wf((int(2),int(3)),[(int(1),int(2))],[(int(2),int(3))],WF),WF)).
3718 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:in_override_relation_wf((int(2),int(3)),[(int(1),int(2)),(int(2),int(4))],[(int(2),int(3))],WF),WF)).
3719 :- assert_must_succeed(exhaustive_kernel_fail_check_wf(bsets_clp:in_override_relation_wf((int(2),int(4)),[(int(1),int(2)),(int(2),int(4))],[(int(2),int(3))],WF),WF)).
3720
3721 :- block in_override_relation_wf(-,-,-,?).
3722 in_override_relation_wf(Pair,Rel1,S,WF) :- S==[],!, % Pair: Rel1 <+ S
3723 check_element_of_wf(Pair,Rel1,WF).
3724 in_override_relation_wf(Pair,Rel1,S,WF) :- Rel1==[],!,
3725 check_element_of_wf(Pair,S,WF).
3726 in_override_relation_wf((X,Y),Rel1,S,WF) :-
3727 ? (treat_arg_symbolically(S) ; treat_arg_symbolically(Rel1)
3728 ; preference(convert_comprehension_sets_into_closures,true)),
3729 !,
3730 domain_wf(S,DS,WF),
3731 membership_test_wf(DS,X,MemRes,WF),
3732 in_override_aux(MemRes,X,Y,Rel1,S,WF).
3733 in_override_relation_wf(Pair,Rel1,S,WF) :-
3734 override_relation(Rel1,S,Res,WF),
3735 check_element_of_wf(Pair,Res,WF).
3736
3737 :- block in_override_aux(-,?,?,?,?,?).
3738 in_override_aux(pred_true,X,Y,_R,S,WF) :-
3739 check_element_of_wf((X,Y),S,WF).
3740 in_override_aux(pred_false,X,Y,R,_S,WF) :-
3741 check_element_of_wf((X,Y),R,WF).
3742
3743 :- assert_must_succeed(exhaustive_kernel_fail_check_wf(bsets_clp:not_in_override_relation_wf((int(2),int(3)),[(int(1),int(2)),(int(2),int(4))],[(int(2),int(3))],WF),WF)).
3744 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_in_override_relation_wf((int(2),int(4)),[(int(1),int(2)),(int(2),int(4))],[(int(2),int(3))],WF),WF)).
3745
3746 :- block not_in_override_relation_wf(-,-,-,?).
3747 not_in_override_relation_wf(Pair,Rel1,S,WF) :- S==[],!, % Pair: Rel1 <+ S
3748 not_element_of_wf(Pair,Rel1,WF).
3749 not_in_override_relation_wf(Pair,Rel1,S,WF) :- Rel1==[],!,
3750 not_element_of_wf(Pair,S,WF).
3751 not_in_override_relation_wf((X,Y),Rel1,S,WF) :-
3752 ? (treat_arg_symbolically(S) ; treat_arg_symbolically(Rel1)
3753 ; preference(convert_comprehension_sets_into_closures,true)),
3754 !,
3755 domain_wf(S,DS,WF),
3756 membership_test_wf(DS,X,MemRes,WF),
3757 not_in_override_aux(MemRes,X,Y,Rel1,S,WF).
3758 not_in_override_relation_wf(Pair,Rel1,S,WF) :-
3759 override_relation(Rel1,S,Res,WF),
3760 not_element_of_wf(Pair,Res,WF).
3761
3762 :- block not_in_override_aux(-,?,?,?,?,?).
3763 not_in_override_aux(pred_true,X,Y,_R,S,WF) :-
3764 not_element_of_wf((X,Y),S,WF).
3765 not_in_override_aux(pred_false,X,Y,R,_S,WF) :-
3766 not_element_of_wf((X,Y),R,WF).
3767
3768 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:override([],int(1),int(3),[(int(1),int(3))],WF),WF)).
3769 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:override([(int(1),int(2)),(int(2),int(6))],int(1),int(3),[(int(1),int(3)),(int(2),int(6))],WF),WF)).
3770 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:override([(int(1),int(2)),(int(2),int(6))],int(2),int(3),[(int(1),int(2)),(int(2),int(3))],WF),WF)).
3771
3772 % override for a single pair
3773 :- block override(-,?,?,?,?), override(?,-,?,?,?),
3774 override(?,?,-,?,?). % also wait on Y; try to generate avl if possible; can only be used in substitution anyway
3775 /* R <+ {X |-> Y} as used by substitution R(X) := Y */
3776 override(R,X,Y,Res,WF) :-
3777 override_pair_explicit_set(R,X,Y,ORes),!,
3778 equal_object_wf(ORes,Res,override1,WF).
3779 override(R,X,Y,Res,WF) :-
3780 if(try_expand_custom_set_to_list(R,ER,_,override),
3781 (
3782 override2(ER,X,Y,[(X,Y)],ORes,WF),
3783 ? equal_object_wf(ORes,Res,override2,WF)),
3784 ( %print_term_summary(exception(R)), % Virtual Timeout exception occured
3785 override_relation(R,[(X,Y)],Res,WF)
3786 )).
3787
3788 :- block override2(-,?,?,?,?,?).
3789 override2([],_X,_Y,Remainder,Res,WF) :- equal_object_optimized_wf(Remainder,Res,override2,WF). %equal_object(Remainder,Res).
3790 override2([(V,W)|T],X,Y,Remainder,Res,WF) :-
3791 equality_objects_wf(V,X,EqRes,WF),
3792 override2c(EqRes,V,W,T,X,Y,Remainder,Res,WF).
3793
3794 :- block override2c(-, ?,?,?, ?,?,?,?,?).
3795 override2c(pred_true,_V,_W,T,X,Y,_Remainder,Res,WF) :-
3796 equal_cons_wf(Res,(X,Y),T2,WF),
3797 override2(T,X,Y,[],T2,WF). /* set remainder to [], we have already added (X,Y) */
3798 override2c(pred_false,V,W,T,X,Y,Remainder,Res,WF) :-
3799 equal_cons_wf(Res,(V,W),T2,WF),
3800 override2(T,X,Y,Remainder,T2,WF).
3801
3802
3803
3804 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:image_wf([(int(1),int(2))],[int(1)],[int(2)],WF),WF)).
3805 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:image_wf([(int(1),int(2)),(int(2),int(2)),(int(3),int(3))],[int(1),int(2)],[int(2)],WF),WF)).
3806 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:image_wf([(int(1),int(2)),(int(2),int(2)),(int(1),int(3)),(int(4),int(4))],[int(1),int(2)],[int(2),int(3)],WF),WF)).
3807 :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:image_wf([(int(1),int(2)),(int(2),int(2)),(int(1),int(3)),(int(4),int(4))],[int(2)],[int(2),int(3)],WF),WF)).
3808 :- assert_must_succeed(bsets_clp:image_wf([(int(1),int(2))],[int(1)],[int(2)],_WF)).
3809 :- assert_must_succeed(bsets_clp:image_wf([(int(1),int(2))],[int(2)],[],_WF)).
3810 :- assert_must_succeed(bsets_clp:image_wf([(int(1),int(2))],[int(3)],[],_WF)).
3811 :- assert_must_succeed((bsets_clp:image_wf([(int(1),int(2)),(int(1),int(3))],
3812 [int(X)],R,_WF), X=1, kernel_objects:equal_object(R,[int(2),int(3)]))).
3813 :- assert_must_succeed((bsets_clp:image_wf([([int(1),int(2)],int(6)),
3814 ([int(1),int(2),int(3)],int(7)),
3815 ([int(2),int(1)],int(8))],
3816 [[int(X),int(1)]],R,_WF), X=2,
3817 kernel_objects:equal_object(R,[int(6),int(8)]))).
3818 :- assert_must_succeed(bsets_clp:image_wf([(int(1),int(2)),(int(2),int(2))],[int(1),int(2)],[int(2)],_WF)).
3819 :- assert_must_fail(bsets_clp:image_wf([(int(1),int(2))],[int(1)],[int(1)],_WF)).
3820 :- assert_must_fail(bsets_clp:image_wf([(int(1),int(2))],[int(1)],[],_WF)).
3821
3822
3823 :- block image_wf(-,?,?,?).
3824 image_wf(Rel,_,Res,WF) :- Rel==[],!,empty_set_wf(Res,WF).
3825 image_wf(Rel,S,Res,WF) :-
3826 image_for_id_closure(Rel,S,Img),!, % we don't require S to be known here
3827 equal_object_wf(Img,Res,image_wf_id_closure,WF).
3828 image_wf(Rel,S,Res,WF) :-
3829 image_wf0(Rel,S,Res,WF).
3830
3831 :- block image_wf0(?,-,?,?).
3832 image_wf0(Rel,S,Res,WF) :- /* Res = Rel[S] */
3833 (S==[] -> empty_set_wf(Res,WF)
3834 ; opt_push_wait_flag_call_stack_info(WF,b_operator_call(image,[Rel,S],unknown),WF2),
3835 image1(Rel,S,Res,WF2) ).
3836
3837 keep_symbolic(R) :- var(R),!,fail.
3838 keep_symbolic(closure(_,_,_)) :- preferences:get_preference(convert_comprehension_sets_into_closures,true),!.
3839 keep_symbolic(R) :- dont_expand_this_explicit_set(R).
3840
3841 :- block image1(-,?,?,?).
3842 image1(Rel,S,Res,WF) :-
3843 image_for_explicit_set(Rel,S,Img,WF),!,
3844 equal_object_wf(Img,Res,image1_1,WF),
3845 quick_propagate_subset_range(Res,Rel,WF).
3846 %image1(Rel,S,Res,WF) :- expand_custom_set_to_list(S,ES),!, image_of_set(ES,Rel,Res,WF).
3847 image1(Rel,Set,Res,WF) :-
3848 keep_symbolic(Rel),
3849 (preferences:get_preference(convert_comprehension_sets_into_closures,true), % in this case keep_symbolic is always true
3850 nonvar(Set),is_infinite_explicit_set(Set) % in this case we have to expand Rel below; what if Rel also infinite ?? --> TO DO : symbolic treatment
3851 -> debug_println(9,infinite_for_image1(Set)),
3852 fail
3853 ; true),
3854 ( dom_for_specific_closure(Rel,Domain,function(_),WF)
3855 -> !,
3856 expand_custom_set_to_list_wf(Set,ESet,_,image1,WF), % TO DO: what if keep_symbolic(Set)
3857 image_for_inf_fun(ESet,Domain,Rel,[],Res,WF)
3858 ; get_relation_types(Rel,DomType,RangeType),!,
3859 image_symbolic(Set,Rel,DomType,RangeType,Res,WF)
3860 ).
3861 image1(Rel,S,Res,WF) :-
3862 on_enumeration_warning(expand_custom_set_to_list_wf(Rel,Relation,_,image1_2,WF), R=failed),
3863 % bad if Rel is a big closure ! image_for_list_relation(Relation,S,Res).
3864 (R==failed -> write(failed),nl,
3865 mnf_get_relation_types(Rel,DomType,RangeType),% must succeed, as Rel is a closure with types
3866 image_symbolic(S,Rel,DomType,RangeType,Res,WF) % does not treat special case image_for_inf_fun
3867 ; propagate_singleton_image(Relation,S,Res,WF),
3868 % TO DO: we could propagate cardinality constraints about Relation,S and Res
3869 % we could also try to infer all_different constraints in case card(S)=card(Res) and f is a function
3870 image_for_list_relation(Relation,S,[],Res,WF)
3871 ).
3872
3873 image_symbolic(Set,Rel,DomType,RangeType,Res,WF) :-
3874 expand_custom_set_to_list_wf(Set,ESet,_,image1_2,WF),
3875 (is_symbolic_closure(Rel)
3876 -> Symbolic=symbolic_try_expand, ground_value_check((Rel,ESet),GRel) % also wait for ESet to be ground so that we can catch enumeration warning exceptions, cf. test 2428 when theorem and foralls not expanded
3877 ; Symbolic=expand, ground_value_check(Rel,GRel)
3878 ),
3879 when(nonvar(GRel), image_for_large_relation(ESet,Rel,Symbolic,DomType,RangeType,[],Res,WF)).
3880 % Alternative: We could compute closure by calculating {yy|#(xx).(xx:Set & xx|->yy:Rel)}
3881 % image_closure(Set,Rel,DomType,RangeType,Closure ),
3882
3883 % propagate that f[{x}] = {r1,...,rk} => x|->ri : f (or {x}*{r1,...,rk} <: f); see test 1532
3884 propagate_singleton_image(R,S,Res,_) :-
3885 (var(S) ; var(Res) ; nonvar(R), is_custom_explicit_set(R,psi)), !.
3886 propagate_singleton_image(Relation,S,avl_set(Res),WF) :-
3887 custom_explicit_sets:singleton_set(S,El), % we have the image by a singleton set {El}
3888 expand_custom_set_to_list_wf(avl_set(Res),LR,_,prop_singleton,WF),
3889 !,
3890 l_check_element_of(LR, El, Relation, WF). % propagate x|->ri : f (will force membership)
3891 propagate_singleton_image(_,_,_,_).
3892
3893 l_check_element_of([],_,_,_).
3894 l_check_element_of([H|T],El,Relation,WF) :-
3895 check_element_of_wf((El,H),Relation,WF),
3896 l_check_element_of(T,El,Relation,WF).
3897
3898 % quick_propagate_in_range(Set, Relation,WF) : propagate that Set <: ran(Relation)
3899 :- block quick_propagate_subset_range(-,?,?).
3900 quick_propagate_subset_range(avl_set(_),_,_) :- !.
3901 quick_propagate_subset_range([],_,_) :- !.
3902 quick_propagate_subset_range([H|T],Relation,WF) :- is_custom_explicit_set(Relation,range_wf1),
3903 range_of_explicit_set_wf(Relation,Range,WF), !,
3904 quick_propagation_element_information(Range,H,WF,NewRange),
3905 quick_propagate_subset_range2(T,NewRange,WF).
3906 quick_propagate_subset_range(_,_,_).
3907
3908 :- block quick_propagate_subset_range2(-,?,?).
3909 quick_propagate_subset_range2([H|T],NewRange,WF) :- !,
3910 quick_propagation_element_information(NewRange,H,WF,NewRange1),
3911 quick_propagate_subset_range2(T,NewRange1,WF).
3912 quick_propagate_subset_range2(_,_,_).
3913
3914 :- use_module(btypechecker, [unify_types_strict/2]).
3915 get_relation_types(Value,Domain,Range) :-
3916 kernel_objects:infer_value_type(Value,VT),
3917 unify_types_strict(VT,set(couple(Domain,Range))). % deal also with seq types
3918 % VT=set(couple(Domain,Range)).
3919 % a version that must not fail:
3920 mnf_get_relation_types(Value,Domain,Range) :-
3921 (get_relation_types(Value,Domain,Range) -> true
3922 ; add_internal_error('Failed: ',get_relation_types(Value,Domain,Range)),
3923 Domain=any, Range=any).
3924
3925 :- block image_for_large_relation(-,?,?,?,?,?,?,?), image_for_large_relation(?,?,?,?,?,-,?,?).
3926 ?image_for_large_relation([],_,_,_,_,Acc,Res,WF) :- equal_object_wf(Acc,Res,WF).
3927 image_for_large_relation([XX|T],Rel,Symbolic,DomType,RangeType,Acc,Res,WF) :-
3928 get_image_singleton_closure(XX,DomType,RangeType,Rel, Par,TPara,Body),
3929 expand_closure_direct_if_possible(Symbolic,Par,TPara,Body,ImagesForXX,WF),
3930 union_wf(Acc,ImagesForXX,NewAcc,WF),
3931 (T == [] -> equal_object_wf(NewAcc,Res,WF)
3932 ; image_for_large_relation(T,Rel,Symbolic,DomType,RangeType,NewAcc,Res,WF)).
3933
3934 get_image_singleton_closure(XX,DomType,RangeType,Rel, [yy], [RangeType], Body) :-
3935 Body = b(member(b(couple(b(value(XX),DomType,[]),
3936 b(identifier(yy),RangeType,[])),couple(DomType,RangeType),[]),
3937 b(value(Rel),set(couple(DomType,RangeType)),[])),pred,[]).
3938 % TO DO: simplify above if we have Rel = closure(P,T,B); which we usually will
3939
3940 expand_closure_direct_if_possible(symbolic_try_expand,Par,Types,Body,Result,WF) :- !,
3941 catch_enumeration_warning_exceptions(
3942 custom_explicit_sets:expand_normal_closure_direct(Par,Types,Body,Result,_Done,WF),
3943 (mark_bexpr_as_symbolic(Body,SBody),
3944 Result = closure(Par,Types,SBody) % TODO: we could set definitely_symbolic for next iteration
3945 ),
3946 false,
3947 ignore(image_for_large_relation)).
3948 expand_closure_direct_if_possible(definitely_symbolic,Par,Types,Body,Result,_WF) :- !,
3949 mark_bexpr_as_symbolic(Body,SBody),
3950 Result = closure(Par,Types,SBody).
3951 expand_closure_direct_if_possible(_,Par,Types,Body,Result,WF) :-
3952 % do not memoize this (many different values):
3953 custom_explicit_sets:expand_normal_closure_direct(Par,Types,Body,Result,_Done,WF).
3954
3955
3956 /* no longer used
3957 % construct a closure for {yy|#(xx).(xx:Set & xx|->yy:Rel)}
3958 image_closure(Set,Rel,DomType,RangeType,Closure ) :- custom_explicit_sets:singleton_set(Set,XX),!,
3959 % do not set up existential quantifier if Set is singleton set
3960 Closure = closure([yy],[RangeType],Body),
3961 Body = b(member(b(couple(b(value(XX),DomType,[]),
3962 b(identifier(yy),RangeType,[])),couple(DomType,RangeType),[]),
3963 b(value(Rel),set(couple(DomType,RangeType)),[])),pred,[]).
3964 image_closure(Set,Rel,DomType,RangeType,Closure ) :-
3965 Closure = closure([yy],[RangeType],Body),
3966 couple_member_pred(xx,DomType,yy,RangeType,Rel, Predxxyy),
3967 Body = b(exists([b(identifier(xx),DomType,[])],
3968 b(conjunct(
3969 b(member(b(identifier(xx),DomType,[]),b(value(Set),set(DomType),[])),pred,[]), % TO DO : force evaluation !
3970 Predxxyy),
3971 pred,[])),pred,[used_ids([yy])]).
3972 */
3973
3974 % very similar to rel_compose_with_inf_fun, indeed f[S] = ran((id(S);f))
3975 :- block image_for_inf_fun(-,?,?,?,?,?).
3976 image_for_inf_fun([],_Dom,_Rel2,Acc,Comp,WF) :- equal_object_wf(Acc,Comp,WF).
3977 image_for_inf_fun([X|T],Dom,Fun,Acc,CompRes,WF) :-
3978 membership_test_wf(Dom,X,MemRes,WF),
3979 image_for_inf_fun_aux(MemRes,X,T,Dom,Fun,Acc,CompRes,WF).
3980
3981 :- block image_for_inf_fun_aux(-,?,?, ?,?,?,?,?).
3982 image_for_inf_fun_aux(pred_true,X,T,Dom,Fun,Acc,CompRes,WF) :-
3983 apply_to(Fun,X,FX,WF), % TO DO: generalize to image so that we can apply it also to infinite relations ?
3984 add_element_wf(FX,Acc,NewAcc,WF), % will block until Acc Known !!
3985 % TO DO USE: equal_cons_wf(CompRes,FX,CT,WF) + accumulator !,
3986 image_for_inf_fun(T,Dom,Fun,NewAcc,CompRes,WF).
3987 image_for_inf_fun_aux(pred_false,_X,T,Dom,Fun,Acc,Comp,WF) :-
3988 image_for_inf_fun(T,Dom,Fun,Acc,Comp,WF).
3989
3990
3991 /*
3992 :- block image_of_set(-,?,?,?,?), image_of_set(?,?,-,?,?).
3993 image_of_set([],Rel,ImageSoFar,Res,WF) :- equal_object(ImageSoFar,Res).
3994 image_of_set([H|T],Rel,ImageSoFar,Res,WF) :-
3995 image_of_element(Rel,H,ImageSoFar,SF2,WF),
3996 image_of_set(T,Rel,SF2,Res,WF).
3997
3998 image_of_element([],_,Acc,Res,WF) :- equal_object(Acc,Res).
3999 image_of_element([(A,B)|T],H,Acc,Res,WF) :- equality....
4000 image_of_element(avl_set(),H,Acc,Res,WF) :- ....
4001 image_of_element(closure(),....
4002 */
4003
4004 % Computing the image of a relation which is stored as a list: traverse the relation
4005 :- block image_for_list_relation(-,?,?,?,?).
4006 ?image_for_list_relation([],_,_,Res,WF) :- empty_set_wf(Res,WF).
4007 image_for_list_relation([(X,Y)|T],S,ImageSoFar,Res,WF) :-
4008 ((T==[], definitely_not_empty(Res))
4009 -> MemRes=pred_true, % we need at least one more element for Res
4010 check_element_of_wf(X,S,WF)
4011 ; (Res==[],ImageSoFar==[]) -> MemRes=pred_false, not_element_of_wf(X,S,WF) % Result empty: X cannot be in S
4012 ; membership_test_wf(S,X,MemRes,WF)
4013 ),
4014 ? image4(MemRes,Y,T,S,ImageSoFar,Res,WF).
4015
4016 definitely_not_empty(Set) :- nonvar(Set), Set \== [], \+ functor(Set,closure,3). % Set \= closure(_,_,_).
4017
4018 :- block image4(-, ?,?,?, ?,?,?).
4019 image4(pred_true, Y,T,S, ImageSoFar,Res,WF) :-
4020 (Res==[]
4021 -> MemRes=pred_true, check_element_of_wf(Y,ImageSoFar,WF)
4022 ; membership_test_wf(ImageSoFar,Y,MemRes,WF)
4023 ),
4024 ? image5(MemRes,Y,T,S,ImageSoFar,Res,WF).
4025 image4(pred_false, _Y,T,S, ImageSoFar,Res,WF) :-
4026 ? image_for_list_relation(T,S,ImageSoFar,Res,WF).
4027
4028 :- block image5(-, ?,?,? ,?,?,?).
4029 image5(pred_true,_Y,T,S,ImageSoFar,Res,WF) :- /* we have already added Y to the image */
4030 image_for_list_relation(T,S,ImageSoFar,Res,WF).
4031 image5(pred_false,Y,T,S,ImageSoFar,Res,WF) :-
4032 add_element_wf(Y,ImageSoFar,ImageSoFar2,WF),
4033 kernel_objects:mark_as_non_free(Y,image), % Y has been added to image, no longer freely choosable
4034 equal_cons_wf(Res,Y,Res2,WF),
4035 ? image_for_list_relation(T,S,ImageSoFar2,Res2,WF).
4036
4037
4038
4039 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:image_for_closure1_wf([(int(1),int(2)),(int(2),int(1)),(int(3),int(3))],[int(2)],[int(1),int(2)],WF),WF)).
4040 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:image_for_closure1_wf([(int(1),int(2)),(int(2),int(1)),(int(3),int(3))],[],[],WF),WF)).
4041 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:image_for_closure1_wf([(int(1),int(2)),(int(2),int(1)),(int(3),int(3))],[int(3)],[int(3)],WF),WF)).
4042 % version for computing closure1(Rel)[S]
4043 :- block image_for_closure1_wf(-,?,?,?),image_for_closure1_wf(?,-,?,?).
4044 image_for_closure1_wf(Rel,S,Res,WF) :- (Rel==[] ; S==[]),!,empty_set_wf(Res,WF).
4045 image_for_closure1_wf(Rel,Set,Res,WF) :-
4046 try_expand_and_convert_to_avl_unless_large_wf(Set,ESet,WF),
4047 ? image_for_closure1_wf_aux(Rel,ESet,Res,WF).
4048
4049 :- use_module(library(avl),[avl_height/2]).
4050 image_for_closure1_wf_aux(Rel,S,Res,WF) :-
4051 ((nonvar(S),S=avl_set(_))
4052 -> closure1_for_explicit_set_from(Rel,S,Closure1Rel),!,
4053 % if S is known: start from S (currently only deals with Rel=avl_set(_)
4054 range_wf(Closure1Rel,Res,WF)
4055 ; Rel=avl_set(AR), avl_height(AR,AR_Height),
4056 ((set_smaller_than(S,4),AR_Height>4)
4057 -> !, % TO DO: we could do the same for small S if Rel is large
4058 when(ground(S), (expand_and_convert_to_avl_set(S,ES,image_for_closure1_wf_aux,'closure1(ARG)[?]') ->
4059 closure1_for_explicit_set_from(Rel,avl_set(ES),Closure1Rel),
4060 range_wf(Closure1Rel,Res,WF)
4061 ; image_for_closure1_iterate(Rel,S,[],Res,WF,first_iteration(S))
4062 ))
4063 ; % Don't do this if avl_height too large; then it is probably better to compute the image for S only
4064 AR_Height < 13, % how big should we make this magic constant; or should we time-out ? 2^14=16384
4065 closure1_for_explicit_set(Rel,Closure1Rel),!, % we can compute it effiently; don't use code below
4066 image_wf(Closure1Rel,S,Res,WF)
4067 )
4068 ).
4069 image_for_closure1_wf_aux(Rel,S,Res,WF) :-
4070 ? propagate_result_in_range(Rel,S,Res,WF),
4071 ? image_for_closure1_iterate(Rel,S,[],Res,WF,first_iteration(S)).
4072
4073 % no need to treat avl_sets; already covered as special case above
4074 set_smaller_than([],_).
4075 set_smaller_than([_|T],N) :- N>1, nonvar(T), N1 is N-1, set_smaller_than(T,N1).
4076
4077 image_for_closure1_iterate(Rel,S,Acc,Res,WF,FIRST) :-
4078 image_wf0(Rel,S,Res1,WF),
4079 ground_value_check(Res1,RV),
4080 ? image_for_closure1_check_fix(RV,Rel,Acc,Res1,Res,WF,FIRST).
4081
4082 :- block image_for_closure1_check_fix(-,?,?,?,?,?,?).
4083 image_for_closure1_check_fix(_,Rel,Acc,Res1,Res,WF,FIRST) :-
4084 %try_expand_and_convert_to_avl_unless_large_wf(Res1,ERes1,WF),
4085 difference_set(Res1,Acc,New),
4086 try_expand_and_convert_to_avl(New,ENew), % we compute difference_set below; we most definitely will need an explicit finite representation
4087 (not_empty_set_wf(ENew,WF),
4088 union(ENew,Acc,Acc1), % Note: we do not call union_wf - should we do this
4089 % upon first iteration remove also S from New -> New2 and pass New2 to image_for_closure1_iterate
4090 % TO DO: investigate whether this also makes sense for further iterations; always remove S
4091 (FIRST=first_iteration(S) -> difference_set(ENew,S,New2) ; New2=ENew),
4092 ? image_for_closure1_iterate(Rel,New2,Acc1,Res,WF,not_first)
4093 ;
4094 ? empty_set_wf(ENew,WF),equal_object_optimized_wf(Acc,Res,image_for_closure1_check_fix,WF)).
4095
4096 % propagate information that if closure1(Rel)[.] = Res => Res <: range(Rel)
4097 % x: 1..n --> 1..n & closure1(x)[{1}] = {} & n=100
4098 :- block propagate_result_in_range(?,?,-,?).
4099 propagate_result_in_range(Rel,_S,_Res,_WF) :-
4100 ground_value(Rel),!. % no propagation required
4101 propagate_result_in_range(Rel,S,[],WF) :- !,
4102 domain_wf(Rel,Domain,WF),
4103 not_subset_of_wf(S,Domain,WF).
4104 propagate_result_in_range(Rel,_,Res,WF) :-
4105 range_wf(Rel,Range,WF),
4106 ? check_subset_of_wf(Res,Range,WF).
4107
4108 :- use_module(probsrc(avl_tools),[avl_height_less_than/2]).
4109
4110 % version for computing iterate(K,Rel)[S]
4111 % iteration
4112 :- block image_for_iterate_wf(?,-,?,?,?,?), image_for_iterate_wf(?,?,-,?,?,?).
4113 image_for_iterate_wf(_Rel,_K,S,Res,_,WF) :- S==[],!,empty_set_wf(Res,WF).
4114 image_for_iterate_wf(Rel,int(K),S,Res,Type,WF) :-
4115 image_for_iterate_k(K,Rel,S,Res,Type,WF).
4116
4117 :- block image_for_iterate_k(-,?,?,?,?,?).
4118 image_for_iterate_k(K,Rel,S,Res,Type,WF) :-
4119 nonvar(Rel),
4120 Rel=avl_set(AVL),
4121 (var(S) -> avl_height_less_than(AVL,11) ; avl_height_less_than(AVL,3)),
4122 !, % compute the iteration once; possibly better constraint propagation and performance if S enumerated
4123 % e.g. x:{1,10,20} & iterate({1|->10,20|->1,10|->20},2)(x) = 20
4124 rel_iterate_wf(Rel,int(K),RelIterated,Type,WF),
4125 image_wf(RelIterated,S,Res,WF).
4126 image_for_iterate_k(K,Rel,S,Res,_,WF) :-
4127 image_for_iterate_k_loop(K,Rel,S,Res,WF).
4128
4129 :- block image_for_iterate_k_loop(?,?,-,?,?).
4130 image_for_iterate_k_loop(0,_Rel,Acc,Result,WF) :- !,
4131 equal_object_optimized_wf(Acc,Result,image_for_iterate_k,WF).
4132 image_for_iterate_k_loop(K,Rel,Acc,Result,WF) :-
4133 image_wf0(Rel,Acc,Acc1,WF), % we could try and detect fix point if K> some limit or time for iteration is measurable
4134 if((K>10, K mod 10 =:= 0, % check for fixpoint every 10 iterations
4135 nonvar(Acc1), Acc1=avl_set(_), quick_custom_explicit_set_approximate_size(Acc1,Size1),
4136 quick_custom_explicit_set_approximate_size(Acc,Size0),
4137 Size0=Size1, % only check for equality if approximate sizes match
4138 equal_explicit_sets_wf(Acc,Acc1,WF)),
4139 K1=0, % fixpoint found, no need to continue iterating
4140 K1 is K-1),
4141 image_for_iterate_k_loop(K1,Rel,Acc1,Result,WF).
4142
4143 special_operator_for_image(b(Rel,Type,_),Kind,Args) :- special_image_aux(Rel,Type,Kind,Args).
4144 special_image_aux(closure(Rel),_,closure,[Rel]). % we have closure1(Rel)[Set] -> avoid computing full closure
4145 special_image_aux(iteration(Rel,K),Type,iteration(Type),[Rel,K]).
4146 % TODO: reflexive closure, id_closure (this will probably be more natural as special case for a value)
4147
4148 image_for_special_operator(closure,[Rel],S,Res,WF) :- image_for_closure1_wf(Rel,S,Res,WF).
4149 image_for_special_operator(iteration(Type),[Rel,K],S,Res,WF) :-
4150 image_for_iterate_wf(Rel,K,S,Res,Type,WF).
4151
4152 :- use_module(kernel_objects,[singleton_set_element/4]).
4153 apply_fun_for_special_operator(Kind,EArgs,FunArg,Res,WF,Span) :-
4154 InitialSet = [FunArg], % TODO: try convert to AVL, note: closure1 not really useful in fun. application context
4155 image_for_special_operator(Kind,EArgs,InitialSet,SetRes,WF),
4156 singleton_set_element(SetRes,Res,Span,WF).
4157
4158 % iterate(%x.(x:NATURAL|x+2),2000)(20) much faster this way, 15 ms vs 4 seconds
4159 % iterate(%x.(x:NATURAL|x+2),2000)[{20}]: ditto
4160
4161
4162 % -----------------------------------
4163
4164 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:apply_to([(int(2),int(22))],int(2),int(22),WF),WF)).
4165 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:apply_to([(int(1),int(22)),(int(3),int(33)),(int(4),int(44))],int(3),int(33),WF),WF)). % used to be wfdet (see in_domain_wf above)
4166 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:apply_to([(int(1),[int(22)]),(int(3),[int(32),int(33)]),(int(4),[int(44)])],int(3),[int(32),int(33)],WF),WF)). % used to be wfdet (see in_domain_wf above)
4167 :- assert_must_succeed(bsets_clp:apply_to([(int(1),int(2))],int(1),int(2),_WF)).
4168 :- assert_must_succeed((bsets_clp:apply_to(F,int(3),int(2),_WF),F=[(int(3),int(2)),(int(2),int(1))])).
4169 :- assert_must_succeed((bsets_clp:apply_to(F,X,int(1),_WF),F=[(int(3),int(2)),(int(2),int(1))],X=int(2))).
4170 :- assert_must_succeed((bsets_clp:apply_to(F,int(3),_,_WF),F=[(int(3),[int(2),int(3)]),(int(2),[])])).
4171
4172 :- assert_must_fail(bsets_clp:apply_to([(int(1),int(2)),(int(1),int(3))],int(1),int(3),_WF)).
4173 /* input not a function */
4174 apply_to(R,X,Y,WF) :- apply_to(R,X,Y,unknown,unknown,WF).
4175 ?apply_to(R,X,Y,Span,WF) :- apply_to(R,X,Y,unknown,Span,WF).
4176
4177 % comment in to perform profiling at function call level; can lead to big slowdowns
4178 %:- load_files(library(system), [when(compile_time), imports([environ/2])]).
4179 %:- use_module(source_profiler,[opt_add_source_location_hits/2]).
4180 %apply_to(_R,_X,_Y,_FunctionType,Span,_WF) :- opt_add_source_location_hits(Span,1),fail.
4181
4182 :- block apply_to(-,-,-,?,?,?).
4183 apply_to(R,X,Y,_FunctionType,Span,WF) :-
4184 % we could check if WD condition discharged in Span
4185 (\+ preferences:preference(find_abort_values,false) ; preference(data_validation_mode,true)),
4186 !,
4187 apply_to_var_block_abort(R,X,Y,R,Span,WF). % we have to know R before we can do anything
4188 apply_to(R,X,Y,FunctionType,Span,WF) :-
4189 (var(R),var(X) -> force_in_domain_wf(X,R,WF) ; true),
4190 ? apply_to1(R,X,Y,R,FunctionType,Span,WF).
4191
4192
4193
4194 :- use_module(preferences,[preference/2]).
4195 :- use_module(clpfd_tables,[can_translate_function_to_element_constraint/2,check_apply_with_element_constraint/5]).
4196 :- block apply_to1(-,-,?,?,?,?,?).
4197 apply_to1(R,X,Y,InitialRel,FunctionType,Span,WF) :-
4198 (var(R) -> apply_to_var(R,X,Y,InitialRel,Span,WF)
4199 ; R\=[], can_translate_function_to_element_constraint(R,FunctionType) ->
4200 check_apply_with_element_constraint(R,X,Y,FunctionType,WF)
4201 ? ; apply_to_nonvar(R,X,Y,InitialRel,Span,WF),
4202 propagate_range_membership(R,Y)
4203 ).
4204 :- block apply_to2(-,-,?,?,?,?).
4205 apply_to2(R,X,Y,InitialRel,Span,WF) :-
4206 (var(R)
4207 -> apply_to_var(R,X,Y,InitialRel,Span,WF)
4208 ? ; apply_to_nonvar(R,X,Y,InitialRel,Span,WF)
4209 ).
4210
4211 :- use_module(clpfd_lists,[get_finite_fdset_information/2,combine_fdset_information/3,
4212 assert_fdset_information/2,get_fdset_information/2]).
4213 % tested in test 1478; initially slows down NQueens
4214 %:- block propagate_range_membership(-,?). % not necessary
4215 propagate_range_membership([(_,RanEl)|T],X) :- nonvar(RanEl),
4216 preferences:preference(use_clpfd_solver,true),
4217 preferences:preference(find_abort_values,false),
4218 get_finite_fdset_information(RanEl,Info), % TO DO: try and detect if we can apply element/3 from clpfd
4219 \+ ground(X),
4220 get_fdset_information(X,InfoX),
4221 Info \= InfoX, % avoids NQueens slowdown; TO DO: check if more precise than InfoX; otherwise no use in collecting info
4222 !,
4223 propagate_range_membership(T,Info,X).
4224 propagate_range_membership(_,_).
4225 :- block propagate_range_membership(-,?,?).
4226 propagate_range_membership([],Info,El) :- !,
4227 % note: the information for the first few elements might have become more precise; TO DO: wait until list known and then propagate ?+ keep on propagating ??
4228 assert_fdset_information(Info,El).
4229 propagate_range_membership([(_,RanEl)|T],Acc,X) :-
4230 nonvar(RanEl), % otherwise we have no info: we may just as well stop
4231 get_finite_fdset_information(RanEl,RInfo),
4232 combine_fdset_information(Acc,RInfo,NewAcc),
4233 NewAcc \= no_fdset_info,
4234 !,
4235 propagate_range_membership(T,NewAcc,X).
4236 propagate_range_membership(_,_,_).
4237
4238
4239 apply_to_var(R,X,Y,InitialRel,Span,WF) :-
4240 mark_var_set_as_non_empty(R),
4241 get_wait_flag(1.0,apply_to_var,WF,WF1), % see tests 1393, 1562??
4242 % was: get_wait_flag0(WF,WF1), but see test 1706 (in conjunction for improvement for test 2033)
4243 when(((nonvar(WF1),ground(X));nonvar(R)), % only instantiate R when X sufficiently instantiated (TO DO: maybe use some for of equality_objects with existing relation R set up so far ??)
4244 (var(R) ->
4245 R=[(X,Y)|Tail],
4246 optional_functionality_check(Tail,X,WF)
4247 ; apply_to_nonvar(R,X,Y,InitialRel,Span,WF))).
4248
4249 :- block apply_to_var_block_abort(-,?,?,?,?,?).
4250 apply_to_var_block_abort(R,X,Y,InitialRel,Span,WF) :-
4251 apply_to_nonvar(R,X,Y,InitialRel,Span,WF).
4252
4253 optional_functionality_check(Tail,X,WF) :-
4254 preferences:preference(disprover_mode,true),!,
4255 not_in_domain_wf(X,Tail,WF). % we assert that R is a function ; when disproving we can assume well-definedness
4256 % Note: this can cut down the search space ; see e.g. test 1230 (but e.g. it will not find a problem with test 1169, RULE_r967_1)
4257 optional_functionality_check(_,_X,_WF). % TO DO: maybe lazily check if we have other elements with X as first arg if find_abort_values is true
4258
4259
4260 :- use_module(closures,[is_recursive_closure/3]).
4261 :- use_module(memoization,[is_memoization_closure/4,apply_to_memoize/8]).
4262 :- load_files(library(system), [when(compile_time), imports([environ/2])]).
4263 :- if(\+ environ(no_wd_checking,true)).
4264 apply_to_nonvar([],X,_Y,InitialRel,Span,WF) :-
4265 \+ preferences:preference(find_abort_values,false),
4266 add_wd_error_span('function applied outside of domain (#2): ', '@fun'(X,InitialRel),Span,WF).
4267 :- endif.
4268 apply_to_nonvar([(X2,Y2)|T],X,Y,InitialRel,Span,WF) :-
4269 equality_objects_wf(X2,X,EqRes,WF),
4270 % this check on Y2 below is important if both Y and Y2 are instantiated but X,X2 not yet
4271 % example: aload_R07_cbc.mch (Savary) or cbc_sequence check for R08_ByteArray for aload_R07 event (test 1349)
4272 % however: slows down test 583 !
4273 (var(EqRes) -> equality_objects_wf(Y2,Y,EqResY,WF),
4274 prop_apply_eqxy(EqResY,EqRes) % propagate: if Y/=Y2 => X/=X2
4275 ; EqResY=not_called),
4276 ? apply_to4(EqRes,EqResY,Y2,T,X,Y,InitialRel,Span,WF).
4277 apply_to_nonvar(avl_set(A),X,Y,_InitialRel,Span,WF) :-
4278 apply_to_avl_set(A,X,Y,Span,WF).
4279 apply_to_nonvar(closure(P,T,B),X,Y,_InitialRel,Span,WF) :-
4280 %is_custom_explicit_set(Closure,apply), % should also work for avl_set,...
4281 (is_memoization_closure(P,T,B,MemoID)
4282 % Function application with memoization; currently enabled by add /*@desc memo */ pragma to abstract constant
4283 -> apply_to_memoize(MemoID,P,T,B,X,Y,Span,WF)
4284 ; is_recursive_closure(P,T,B) % TO DO: maybe we should do the same for functions marked as memoize symbolic/uni-directional/computed ? (although we have new rule for check_element_of_function_closure which makes this redundant ??)
4285 -> % print_term_summary(apply_recursive_closure(X,P,T,B)),
4286 %hit_profiler:add_profile_hit(rec_apply_closure_to_nonvar(X,Y,P,T,B,Span,WF)),
4287 ground_value_check(X,XV), block_apply_closure_to_nonvar_groundx(XV,X,Y,P,T,B,Span,WF)
4288 ; %hit_profiler:add_profile_hit(apply_closure_to_nonvar(X,Y,P,T,B,Span,WF)),
4289 apply_closure_to_nonvar(X,Y,P,T,B,Span,WF)).
4290
4291
4292 :- block block_apply_closure_to_nonvar_groundx(-,?,?, ?,?,?, ?,?).
4293 block_apply_closure_to_nonvar_groundx(_,X,Y, P,T,B, Span,WF) :- apply_closure_to_nonvar_groundx(X,Y,P,T,B,Span,WF).
4294
4295 apply_closure_to_nonvar_groundx(X,Y,P,T,B,Span,WF) :-
4296 kernel_tools:ground_bexpr(B),
4297 !, % then if the element of function succeeds there is no need to check WD
4298 if(check_element_of_function_closure(X,Y,P,T,B,WF),
4299 true, % No need to check for well-definedness; no pending choice points
4300 apply_closure_to_nonvar_wd_check(X,P,T,B,Span,WF) % here we need to check; it could be that the result Y was instantiated
4301 ).
4302 apply_closure_to_nonvar_groundx(X,Y,P,T,B,Span,WF) :-
4303 apply_closure_to_nonvar(X,Y,P,T,B,Span,WF).
4304
4305 % if we first check preferences:preference(find_abort_values,false) to avoid a choice
4306 % point, we get a big slow-down on Alstom models; e.g., vesg_Mar12
4307 % WARNING: This choice point can be set up in WF0 !
4308 apply_closure_to_nonvar(X,Y,P,T,B,_,WF) :-
4309 (preferences:preference(find_abort_values,true) -> true ; !), % slow down ???!
4310 check_element_of_function_closure(X,Y,P,T,B,WF) .
4311 apply_closure_to_nonvar(X,_,P,T,B,Span,WF) :- % removing this clause doubles runtime of COMPUTE_GRADIENT_CHANGE
4312 apply_closure_to_nonvar_wd_check(X,P,T,B,Span,WF).
4313
4314 apply_closure_to_nonvar_wd_check(X,P,T,B,Span,WF) :-
4315 \+ preferences:preference(find_abort_values,false),
4316 not_in_domain_wf(X,closure(P,T,B),WF),
4317 when((ground(X),ground(closure(P,T,B))),
4318 add_wd_error_span('function applied outside of domain (#3): ', '@fun'(X,closure(P,T,B)),Span,WF)).
4319
4320
4321 % propagate equality_objects between range and domain elements for function application:
4322 :- block prop_apply_eqxy(-,-).
4323 prop_apply_eqxy(Eqy,Eqx) :- var(Eqy),!, (Eqx = pred_true -> Eqy = pred_true ; true).
4324 prop_apply_eqxy(pred_false,pred_false).
4325 prop_apply_eqxy(pred_true,_).
4326
4327 :- block apply_to4(-,?,?, -,?,?,?,?,?).
4328 apply_to4(EqResX,EqResY,Y2, Tail,X,Y,InitialRel,Span,WF) :-
4329 var(EqResX),!, % Tail bound
4330 (Tail == []
4331 -> (preferences:preference(find_abort_values,false)
4332 -> EqResX = pred_true,
4333 apply_to4(EqResX,EqResY,Y2, Tail,X,Y,InitialRel,Span,WF)
4334 ; apply_to4_block(EqResX,EqResY,Y2, Tail,X,Y,InitialRel,Span,WF)
4335 )
4336 ; Tail = avl_set(_) -> apply_to4_block(EqResX,EqResY,Y2, Tail,X,Y,InitialRel,Span,WF) % TO DO: improve ! (e.g., expand to list if small or check if X can be in domain,...)
4337 ; Tail = closure(_,_,_) -> apply_to4_block(EqResX,EqResY,Y2, Tail,X,Y,InitialRel,Span,WF)
4338 ; Tail \= [_|_] -> add_internal_error('Illegal Tail: ',apply_to4(EqResX,EqResY,Y2, Tail,X,Y,InitialRel,Span,WF)),fail
4339 ; Tail = [(X3,Y3)|T3], % setup equality check with X3, purpose: detect, e.g., when no other element in tail can match we can force EqResX to pred_true
4340 ? apply_to4_call5(EqResX,EqResY,Y2, Tail,X,Y,InitialRel,Span,WF, X3,Y3,T3)
4341 ).
4342 apply_to4(pred_true,EqResY,Y2, Tail,X,Y,_InitialRel,_,WF) :-
4343 ? (EqResY==not_called -> equal_object_wf(Y2,Y,apply_to4,WF) ; EqResY = pred_true),
4344 optional_functionality_check(Tail,X,WF).
4345 ?apply_to4(pred_false,_EqResY,_Y2,T,X,Y,InitialRel,Span,WF) :- apply_to2(T,X,Y,InitialRel,Span,WF).
4346
4347 % we delay setting up equality_objects until X3 is at least partially known, see test 1715 Alstom_essai2_boucle1
4348 % TO DO: we could check if X3==X above
4349 :- block apply_to4_call5(-,?,?, ?,?,?,?,?,?, -,?,?).
4350 apply_to4_call5(EqResX,EqResY,Y2, Tail,X,Y,InitialRel,Span,WF, _X3,_Y3,_T3) :- nonvar(EqResX),!,
4351 apply_to4(EqResX,EqResY,Y2,Tail,X,Y,InitialRel,Span,WF).
4352 apply_to4_call5(EqResX,EqResY,Y2, _Tail,X,Y,InitialRel,Span,WF, X3,Y3,T3) :- % X3 must now be bound
4353 equality_objects_wf(X3,X,EqRes3,WF),
4354 ? apply_to5(EqResX,EqResY,EqRes3, Y2,X3,Y3,T3, X,Y, InitialRel,Span,WF).
4355
4356 % version which wait suntil first argument known
4357 :- block apply_to4_block(-,?,?, ?,?,?,?,?,?).
4358 apply_to4_block(EqResX,EqResY,Y2, Tail,X,Y,InitialRel,Span,WF) :-
4359 apply_to4(EqResX,EqResY,Y2, Tail,X,Y,InitialRel,Span,WF).
4360
4361
4362 % apply_to5: implements a watched-literal style treatment of function application
4363 % we watch whether X unifies with two elements of the function, if only one element left we can force equality
4364 % TEST:
4365 % f : 11..23 +-> 1..10 & f = {a|->2, b|->3, c|->4} & card({a,b,c})=3 & f(x)=r & a>b & b>c & x>b
4366 :- block apply_to5(-,?,-, ?,?,?,?, ?,?, ?,?,?),apply_to5(-,?,?, ?,?,?,-, ?,?, ?,?,?).
4367 apply_to5(EqRes,EqResY,EqRes3, Y2,_X3,Y3,T3, X,Y, InitialRel,Span,WF) :-
4368 var(EqRes),!,
4369 % EqRes3 and T3 must be known; TO DO: improve predicate so that we have to wait on T3 only when EqRes3=pred_false
4370 (EqRes3 = pred_false -> % we cannot match next element, move tail one forward
4371 (T3 = [] -> EqRes=pred_true ; true),
4372 apply_to4(EqRes,EqResY,Y2,T3,X,Y,InitialRel,Span,WF)
4373 ; /* EqRes3 = pred_true */
4374 % we match the next entry in the list; discard Y2 and jump to (X3,Y3) and return as solution
4375 ? equal_object_wf(Y3,Y,apply_to6,WF), optional_functionality_check(T3,X,WF),
4376 % TO DO: we could also do equality_objects if necessary between Y and Y3, as in apply_to4 for Y and Y2
4377 opt_force_false(EqRes)
4378 ).
4379 apply_to5(pred_true,EqResY,EqRes3, Y2,X3,Y3,T3, X,Y, _InitialRel,_Span,WF) :-
4380 (EqResY==not_called -> equal_object_wf(Y2,Y,apply_to5,WF) ; EqResY = pred_true),
4381 opt_force_false(EqRes3),
4382 optional_functionality_check([(X3,Y3)|T3],X,WF).
4383 apply_to5(pred_false,_EqResY,EqRes3, _Y2,_X3,Y3,T3, X,Y, InitialRel,Span,WF) :-
4384 (var(EqRes3) -> % it can be that EqRes3 is about to be triggered
4385 equality_objects_wf(Y3,Y,EqResY3,WF),
4386 prop_apply_eqxy(EqResY3,EqRes3) % propagate: if Y/=Y3 => X/=X3
4387 ; EqResY3=not_called),
4388 apply_to4(EqRes3,EqResY3,Y3, T3,X,Y,InitialRel,Span,WF).
4389
4390 opt_force_false(EqRes) :-
4391 (preference(find_abort_values,false) -> EqRes=pred_false
4392 ; true). % TO DO: if EqRes becomes pred_true: raise abort_error as the relation was not a function
4393
4394
4395
4396 /********************************************/
4397 /* surjection_relation(R,Domain,Range) */
4398 /* R : Domain <->> Range */
4399 /********************************************/
4400 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:surjection_relation_wf([(int(1),int(6)),(int(2),int(7)),(int(1),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)). % used to be wfdet (see in_domain_wf above)
4401 :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:surjection_relation_wf([(int(1),int(6)),(int(2),int(6))],[int(1),int(2)],[int(6),int(7)],WF),WF)).
4402
4403 surjection_relation_wf(R,Domain,Range,WF) :-
4404 is_surjective(R,Range,WF),
4405 % TODO: is not optimal since ran(R)<:Range is already implied by is_surjective and
4406 % checked a second time by relation_over_wf/4
4407 ? relation_over_wf(R,Domain,Range,WF).
4408
4409 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_surjection_relation_wf([(int(1),int(6)),(int(2),int(6))],[int(1),int(2)],[int(6),int(7)],WF),WF)).
4410
4411 not_surjection_relation_wf(R,Domain,Range,WF) :-
4412 expand_custom_set_to_list_wf(R,ER,Done,not_surjection_relation_wf,WF),
4413 not_tot_surj_rel(ER,Done,[],Domain,Range,Range,WF).
4414
4415 /*********************************************/
4416 /* total_surjection_relation(R,Domain,Range) */
4417 /* R : Domain <<->> Range */
4418 /*********************************************/
4419 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:total_surjection_relation_wf([(int(1),int(6)),(int(2),int(7)),(int(1),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
4420 :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:total_surjection_relation_wf([(int(1),int(6)),(int(1),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
4421
4422
4423 :- assert_must_succeed((findall(R,bsets_clp:total_surjection_relation(R,[int(1)],[int(11),int(12)]),L),
4424 lists:maplist(sort,L,SL), sort(SL,SSL), % added May15th due to change in domain_wf (bsets_clp:propagate_result_to_input); TO DO: see if we can go back to just one solution
4425 length(SSL,1))).
4426 %:- assert_must_succeed((findall(R,bsets_clp:total_surjection_relation(R,[int(1),int(2)],[int(11),int(12)]),L), length(L,7))).
4427 % the new domain predicate also instantiates from result; meaning that duplicate solutions are now generated
4428 :- assert_must_succeed((findall(SR,(bsets_clp:total_surjection_relation(R,[int(1),int(2)],[int(11),int(12)]),sort(R,SR)),L), sort(L,SL),length(SL,7))).
4429 :- assert_must_succeed((findall(R,bsets_clp:total_surjection_relation(R,[int(1),int(2)],[int(11)]),L),
4430 length(L,1))).
4431
4432 total_surjection_relation(R,Domain,Range) :- init_wait_flags(WF,[total_surjection_relation]),
4433 ? total_surjection_relation_wf(R,Domain,Range,WF), ground_wait_flags(WF).
4434
4435 total_surjection_relation_wf(R,Domain,Range,WF) :-
4436 ? relation_over_wf(R,Domain,Range,WF),
4437 check_relation_is_total(R,Domain,WF), % calls domain which now instantiates R if Domain known
4438 check_relation_is_surjective(R,Range,WF).
4439
4440
4441 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_total_surjection_relation_wf([(int(1),int(6)),(int(1),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
4442 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_total_surjection_relation_wf([(int(1),int(6)),(int(2),int(6))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
4443 :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:not_total_surjection_relation_wf([(int(1),int(6)),(int(2),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
4444
4445 not_total_surjection_relation_wf(R,Domain,Range,WF) :-
4446 expand_custom_set_to_list_wf(R,ER,Done,not_total_surjection_relation_wf,WF),
4447 ? not_tot_surj_rel(ER,Done,Domain,Domain,Range,Range,WF).
4448
4449
4450 /********************************************/
4451 /* partial_surjection(R,DomType,RangeType) */
4452 /* R : DomType +->> RangeType */
4453 /********************************************/
4454
4455 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:partial_surjection_wf([(int(1),int(6)),(int(2),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)). % used to be wfdet (see in_domain_wf above)
4456 :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:partial_surjection_wf([(int(1),int(6)),(int(2),int(7))],[int(1),int(2)],[int(7),int(6),int(2)],WF),WF)).
4457 :- assert_must_succeed((bsets_clp:partial_surjection(X,[int(1),int(2)],[int(7),int(6)]),
4458 kernel_objects:equal_object(X,[(int(2),int(7)),(int(1),int(6))]))).
4459 :- assert_must_succeed((bsets_clp:partial_surjection(X,[int(1),int(2),int(3)],global_set('Name')),
4460 kernel_objects:equal_object(X,[(int(2),fd(1,'Name')),(int(1),fd(2,'Name')),(int(3),fd(3,'Name'))]))).
4461 :- assert_must_succeed((bsets_clp:partial_surjection_wf(X,[int(1),int(2),int(3)],global_set('Name'),_WF),
4462 kernel_objects:equal_object(X,[(int(2),fd(1,'Name')),(int(1),fd(2,'Name')),(int(3),fd(3,'Name'))]))).
4463 :- assert_must_succeed((bsets_clp:partial_surjection(X,[int(1),int(2),int(3)],[int(7),int(6)]),
4464 kernel_objects:equal_object(X,[(int(2),int(7)),(int(1),int(6))]))).
4465 :- assert_must_succeed_multiple((bsets_clp:partial_surjection(X,[int(1),int(2),int(3),int(4)],[int(7),int(6)]),
4466 kernel_objects:equal_object(X,[(int(2),int(7)),(int(1),int(6)),(int(3),int(6))]))). /* mult. */
4467 :- assert_must_succeed((X=[(int(2),int(7)),(int(1),int(6)),(int(3),int(6))],
4468 bsets_clp:partial_surjection(X,[int(1),int(2),int(3),int(4)],[int(7),int(6)]))).
4469 :- assert_must_fail((bsets_clp:partial_surjection(X,[int(1),int(2)],[int(7),int(6)]),
4470 X = [(int(2),int(7)),(int(1),int(6)),(int(1),int(7))])).
4471 :- assert_must_fail((bsets_clp:partial_surjection(X,[int(1),int(2)],[int(7),int(6)]),
4472 X = [(int(2),int(7)),(int(1),int(7))])).
4473 :- assert_must_fail((bsets_clp:partial_surjection(X,[int(1),int(2),int(3)],[int(7),int(6)]),
4474 X = [(int(2),int(7)),(int(1),int(6)),(int(3),int(8))])).
4475 :- assert_must_succeed_multiple((bsets_clp:partial_surjection(_X,
4476 [int(1),int(2),int(3),int(4),int(5),int(6),int(7)],[int(2),int(3),int(4)]) )).
4477 :- assert_must_fail((bsets_clp:partial_surjection(X,[int(1),int(2)],[int(7),int(6)]),
4478 X = [(int(2),int(7)),(int(2),int(6))])).
4479
4480 partial_surjection(R,Domain,Range) :- init_wait_flags(WF,[partial_surjection]),
4481 partial_surjection_wf(R,Domain,Range,WF),
4482 ? ground_wait_flags(WF).
4483
4484 :- block partial_surjection_wf(-,-,?,?).
4485 partial_surjection_wf(R,Domain,Range,WF) :-
4486 check_card_greater_equal(Domain,geq,Range,CardDom,CardRange),
4487 (surjection_has_to_be_total_injection(CardDom,CardRange)
4488 % LAW: card(setX) = card(setY) => ff: setX +->> setY <=> ff: setX >-> setY
4489 ? -> total_function_wf(R,Domain,Range,WF),
4490 injective(R,WF)
4491 ; is_surjective(R,Range,WF),
4492 partial_function_wf(R,Domain,Range,WF)
4493 ).
4494
4495
4496 % check_card_greater_equal(A,B) : quick check that card(A) >= card(B); also works with infinite cardinality
4497 % TO DO: replace by a better constraint propagating predicate (also working for partially instantiated lists,...)
4498 % compared with computing card and setting up < constraint: will only compute card if it can be done efficiently + deals with inf
4499 % check_card_greater_equal(SetA,EQ,SetB) ; EQ=eq or geq
4500 :- block check_card_greater_equal(-,?,?,?,?).
4501 check_card_greater_equal([],_,R,0,0) :- !, empty_set(R).
4502 check_card_greater_equal(A,EQ,B,CA,CB) :- check_card_greater_equal2(A,EQ,B,CA,CB).
4503
4504 :- use_module(inf_arith,[block_inf_greater_equal/2]).
4505 :- block check_card_greater_equal2(?,?,-,?,?).
4506 check_card_greater_equal2(A,EQ,B,CardA,CardB) :-
4507 efficient_card_for_set(A,CardA,CodeA),
4508 efficient_card_for_set(B,CardB,CodeB),!,
4509 call(CodeA), call(CodeB),
4510 (EQ=eq -> CardA=CardB ; block_inf_greater_equal(CardA,CardB)).
4511 check_card_greater_equal2(_A,_,_B,'?','?').
4512
4513
4514 :- block is_surjective(-,-,?).
4515 is_surjective(R,Range,WF) :-
4516 (var(R) -> setup_surj_range(Range,R,WF)
4517 ; range_wf(R,Range,WF)).
4518
4519 setup_surj_range(Range,R,WF) :-
4520 setup_range(Range,Res,DONE,WF),
4521 equal_when_done(Res,R,DONE).
4522 :- block equal_when_done(?,?,-).
4523 ?equal_when_done(Res,R,_DONE) :- equal_object(Res,R).
4524
4525
4526 :- block setup_range(-,?,?,?).
4527 setup_range(global_set(G),Res,DONE,WF) :-
4528 expand_custom_set_wf(global_set(G),ES,setup_range,WF),
4529 setup_range(ES,Res,DONE,WF).
4530 setup_range(freetype(ID),Res,DONE,WF) :-
4531 expand_custom_set_wf(freetype(ID),ES,setup_range,WF), setup_range(ES,Res,DONE,WF).
4532 setup_range(avl_set(S),Res,DONE,WF) :-
4533 expand_custom_set_wf(avl_set(S),ES,setup_range,WF), setup_range(ES,Res,DONE,WF).
4534 setup_range(closure(P,T,B),Res,DONE,WF) :-
4535 expand_custom_set_wf(closure(P,T,B),ES,setup_range,WF), setup_range(ES,Res,DONE,WF).
4536 setup_range([],_,done,_WF).
4537 setup_range([H|T],[(_,H)|ST],DONE,WF) :- setup_range(T,ST,DONE,WF).
4538
4539
4540
4541 :- assert_must_succeed(exhaustive_kernel_fail_check_wf(bsets_clp:not_partial_surjection_wf([(int(1),int(6)),(int(2),int(7))],
4542 [int(1),int(2)],[int(7),int(6)],WF),WF)).
4543 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_partial_surjection_wf([(int(1),int(6)),(int(2),int(7))],[int(1),int(2)],
4544 [int(7),int(6),int(2)],WF),WF)).
4545 :- assert_must_fail((bsets_clp:not_partial_surjection(X,[int(1),int(2)],[int(7),int(6)]),
4546 X = [(int(2),int(7)),(int(1),int(6))])).
4547 :- assert_must_succeed((bsets_clp:not_partial_surjection(X,[int(1),int(2)],[int(7),int(6)]),
4548 X = [(int(2),int(7)),(int(2),int(6))])).
4549 :- assert_must_fail((bsets_clp:not_partial_surjection(X,[int(1),int(2),int(3)],[int(7),int(6)]),
4550 X = [(int(2),int(7)),(int(1),int(6))])).
4551 :- assert_must_succeed((bsets_clp:not_partial_surjection(X,[int(1),int(2)],[int(7),int(6)]),
4552 X = [(int(2),int(7)),(int(1),int(6)),(int(1),int(7))])).
4553 :- assert_must_succeed((bsets_clp:not_partial_surjection(X,[int(1),int(2)],[int(7),int(6)]),
4554 X = [(int(2),int(7)),(int(1),int(7))])).
4555 :- assert_must_succeed((bsets_clp:not_partial_surjection(X,[int(1),int(2),int(3)],[int(7),int(6)]),
4556 X = [(int(2),int(7)),(int(1),int(6)),(int(3),int(8))])).
4557
4558
4559
4560 /* /: Domain +->> Range */
4561 not_partial_surjection(R,Domain,Range) :- init_wait_flags(WF,[not_partial_surjection]),
4562 not_partial_surjection_wf(R,Domain,Range,WF),
4563 ground_wait_flags(WF).
4564
4565 :- block not_partial_surjection_wf(-,?,?,?).
4566 not_partial_surjection_wf(R,DomType,RangeType,WF) :-
4567 partial_surjection_test_wf(R,DomType,RangeType,pred_false,WF).
4568
4569
4570 %not_surjective_relation_wf(R,DomType,RType,WF) :-
4571 % invert_relation_wf(R,IR,WF),
4572 % not_total_relation_wf(IR,RType,DomType,WF).
4573
4574
4575 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:partial_surjection_test_wf([(int(1),int(6)),(int(2),int(7))],[int(1),int(2)],[int(7),int(6)],pred_true,WF),WF)).
4576 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:partial_surjection_test_wf([(int(1),int(6)),(int(2),int(7))],[int(1),int(2)],[int(7),int(6),int(2)],pred_false,WF),WF)).
4577
4578 partial_surjection_test_wf(R,DomType,RangeType,PredRes,WF) :-
4579 partial_function_test_wf(R,DomType,RangeType,IsPF,WF),
4580 (IsPF==pred_false -> PredRes=pred_false
4581 ; range_wf(R,RelRan,WF),
4582 ? conjoin_test(IsPF,IsSurjective,PredRes,WF),
4583 ? subset_test(RangeType,RelRan,IsSurjective,WF)
4584 ).
4585
4586
4587 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:total_relation_wf([(int(1),int(6)),(int(2),int(7)),(int(1),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
4588 :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:total_relation_wf([(int(1),int(6)),(int(1),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
4589
4590 :- assert_must_succeed((bsets_clp:total_relation_wf(X,[int(1),int(2)],[int(7),int(6)],_WF),
4591 kernel_objects:equal_object(X,[(int(2),int(7)),(int(1),int(6))]))).
4592 :- assert_must_succeed((bsets_clp:total_relation_wf(X,[int(1),int(2)],[int(7),int(6)],_WF),
4593 kernel_objects:equal_object(X,[(int(2),int(7)),(int(1),int(7))]))).
4594 :- assert_must_succeed((bsets_clp:total_relation_wf(X,[int(1),int(2)],[int(7),int(6)],_WF),
4595 kernel_objects:equal_object(X,[(int(2),int(7)),(int(1),int(6)),(int(1),int(7))]))).
4596 :- assert_must_fail((bsets_clp:total_relation_wf(X,[int(1),int(2)],[int(7),int(6)],_WF),
4597 kernel_objects:equal_object(X,[(int(2),int(7)),(int(2),int(6))]))).
4598 :- assert_must_fail((bsets_clp:total_relation_wf(X,[int(1),int(2)],[int(7),int(6)],_WF),
4599 kernel_objects:equal_object(X,[(int(2),int(7))]))).
4600 :- assert_must_fail((bsets_clp:total_relation_wf(X,[int(1),int(2)],[int(7),int(6)],_WF),
4601 kernel_objects:equal_object(X,[(int(2),int(7)),(int(1),int(6)),(int(1),int(8))]))).
4602 :- assert_must_fail((bsets_clp:total_relation_wf(X,[int(1),int(2)],[int(7),int(6)],_WF),
4603 kernel_objects:equal_object(X,[(int(2),int(7)),(int(3),int(6)),(int(1),int(7))]))).
4604 :- assert_must_fail((bsets_clp:total_relation_wf(X,[int(1),int(2)],[int(7),int(6)],_WF),
4605 kernel_objects:equal_object(X,[]))).
4606
4607 /****************************************/
4608 /* total_relation_wf(R,Domain,Range,WF) */
4609 /* R : Domain <<-> Range */
4610 /****************************************/
4611
4612 ?total_relation_wf(R,Domain,Range,WF) :- relation_over_wf(R,Domain,Range,WF),
4613 check_relation_is_total(R,Domain,WF).
4614
4615 % this predicates assume that the relation's range and domain have already been checked
4616 check_relation_is_total(Relation,Domain,WF) :- domain_wf(Relation,Domain,WF).
4617 check_relation_is_surjective(Relation,Range,WF) :-
4618 range_wf(Relation,Range,WF). % we could also call is_surjective (which does setup_surj_range) ?
4619
4620 :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:not_total_relation_wf([(int(1),int(6)),(int(2),int(7)),(int(1),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
4621 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_total_relation_wf([(int(1),int(6)),(int(1),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
4622 :- assert_must_fail((bsets_clp:not_total_relation_wf(X,[int(1),int(2)],[int(7),int(6)],_WF),
4623 X = [(int(2),int(7)),(int(1),int(6))])).
4624 :- assert_must_fail((bsets_clp:not_total_relation_wf(X,[int(1),int(2)],[int(7),int(6)],_WF),
4625 X = [(int(2),int(7)),(int(1),int(7))])).
4626 :- assert_must_fail((bsets_clp:not_total_relation_wf(X,[int(1),int(2)],[int(7),int(6)],_WF),
4627 X = [(int(2),int(7)),(int(1),int(6)),(int(1),int(7))])).
4628 :- assert_must_succeed((bsets_clp:not_total_relation_wf(X,[int(1),int(2)],[int(7),int(6)],_WF),
4629 X = [(int(2),int(7)),(int(2),int(6))])).
4630 :- assert_must_succeed((bsets_clp:not_total_relation_wf(X,[int(1),int(2)],[int(7),int(6)],_WF),
4631 X = [(int(2),int(7))])).
4632 :- assert_must_succeed((bsets_clp:not_total_relation_wf(X,[int(1),int(2)],[int(7),int(6)],_WF),
4633 X = [(int(2),int(7)),(int(1),int(6)),(int(1),int(8))])).
4634 :- assert_must_succeed((bsets_clp:not_total_relation_wf(X,[int(1),int(2)],[int(7),int(6)],_WF),
4635 X = [(int(2),int(7)),(int(3),int(6)),(int(1),int(7))])).
4636
4637 :- block not_total_relation_wf(-,?,?,?).
4638 not_total_relation_wf(FF,Domain,Range,WF) :- nonvar(FF),custom_explicit_sets:is_definitely_maximal_set(Range),
4639 % we do not need the Range; this means we can match more closures (e.g., lambda)
4640 custom_explicit_sets:dom_for_specific_closure(FF,FFDomain,function(_),WF),!,
4641 not_equal_object_wf(FFDomain,Domain,WF).
4642 not_total_relation_wf(FF,Domain,Range,WF) :- nonvar(FF),
4643 custom_explicit_sets:dom_range_for_specific_closure(FF,FFDomain,FFRange,function(_),WF),!,
4644 equality_objects_wf(FFDomain,Domain,Result,WF), % not yet implemented ! % TODO ! -> sub_set,equal,super_set
4645 when(nonvar(Result),(Result=pred_false -> true ; not_subset_of_wf(FFRange,Range,WF))).
4646 not_total_relation_wf(R,Domain,Range,WF) :-
4647 expand_custom_set_to_list_wf(R,ER,Done,not_total_relation_wf,WF),
4648 ? not_tot_surj_rel(ER,Done,Domain,Domain,[],Range,WF). % empty DelRange means we don't do surjective test
4649
4650 % can be used to check not total, not surj, not total surj relation
4651 :- block not_tot_surj_rel(-,?,?,?,?,?,?).
4652 not_tot_surj_rel([],_,DelDomain,_,DelRange,_,WF) :-
4653 ? at_least_one_set_not_empty(DelDomain,DelRange,WF).
4654 not_tot_surj_rel([_|_],Done,DelDom,Dom,_DelRan,_Ran,_WF) :- nonvar(Done),
4655 Done \= no_check_to_be_done,
4656 nonvar(DelDom),DelDom \= [],
4657 nonvar(Dom),is_infinite_explicit_set(Dom),
4658 !. % a finite expanded list can never be a total relation over an infinite domain
4659 not_tot_surj_rel([(X,Y)|T],_Done,DelDom,Dom,DelRan,Ran,WF) :-
4660 membership_test_wf(Dom,X,MemRes,WF),
4661 ? not_tr2(MemRes,X,Y,T,DelDom,Dom,DelRan,Ran,WF).
4662
4663 % check if one of the two sets is non-empty
4664 at_least_one_set_not_empty(Set1,Set2,_) :- (Set=Set1 ; Set=Set2),
4665 nonvar(Set),
4666 (Set=avl_set(_) ; Set=[_|_]), % we can avoid leaving choice point
4667 !.
4668 at_least_one_set_not_empty(Set1,_,WF) :- not_empty_set_wf(Set1,WF).
4669 at_least_one_set_not_empty(Set1,Set2,WF) :- empty_set_wf(Set1,WF),not_empty_set_wf(Set2,WF).
4670
4671 :- block not_tr2(-,?,?,?,?,?,?,?,?).
4672 not_tr2(pred_false,_X,_Y,_T,_DelDom,_Dom,_DelRan,_Ran,_WF).
4673 not_tr2(pred_true,X,Y,T,DelDom,Dom,DelRan,Ran,WF) :-
4674 delete_element_wf(X,DelDom,DelDom2,WF), % set DelDom initially to [] to avoid totality check
4675 membership_test_wf(Ran,Y,MemRes,WF),
4676 ? not_tr3(MemRes,Y,T,DelDom2,Dom,DelRan,Ran,WF).
4677
4678 :- block not_tr3(-,?,?,?,?,?,?,?).
4679 not_tr3(pred_false,_Y,_T,_DelDom2,_Dom,_DelRan,_Ran,_WF).
4680 not_tr3(pred_true,Y,T,DelDom2,Dom,DelRan,Ran,WF) :-
4681 delete_element_wf(Y,DelRan,DelRan2,WF), % set DelRan initially to [] to avoid surjection check
4682 ? not_tot_surj_rel(T,no_check_to_be_done,DelDom2,Dom,DelRan2,Ran,WF).
4683
4684 /******************************************/
4685 /* total_surjection(R,DomType,RangeType) */
4686 /* R : DomType -->> RangeType */
4687 /******************************************/
4688
4689 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:total_surjection_wf([(int(2),int(6)),(int(1),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)). % used to be wfdet (see in_domain_wf above)
4690 :- assert_must_succeed(exhaustive_kernel_succeed_check((bsets_clp:total_surjection_wf([(int(2),int(6)),(int(1),int(7)),(int(3),int(7))],[int(1),int(2),int(3)],[int(7),int(6)],WF),kernel_waitflags:ground_det_wait_flag(WF)))). %% TO DO: get rid of multiple solutions
4691 :- assert_must_succeed((bsets_clp:total_surjection(X,[int(1)],[int(7)]),
4692 kernel_objects:equal_object(X,[(int(1),int(7))]))).
4693 :- assert_must_succeed((bsets_clp:total_surjection(X,[int(1),int(2)],[int(7),int(6)]),
4694 kernel_objects:equal_object(X,[(int(2),int(7)),(int(1),int(6))]))).
4695 :- assert_must_succeed((bsets_clp:total_surjection(X,[int(1),int(2)],[int(7)]),
4696 kernel_objects:equal_object(X,[(int(2),int(7)),(int(1),int(7))]))).
4697 :- assert_must_fail((bsets_clp:total_surjection([],[int(1)],[int(7)]))).
4698 :- assert_must_fail((bsets_clp:total_surjection([(int(7),int(7))],[int(1)],[int(7)]))).
4699 :- assert_must_fail((bsets_clp:total_surjection([(int(1),int(7)), (int(2),int(1))],
4700 [int(1),int(2)],[int(7)]))).
4701 :- assert_must_fail((bsets_clp:total_surjection(X,[int(1),int(2)],[int(7),int(6)]),
4702 kernel_objects:equal_object(X,[(int(2),int(7)),(int(2),int(6))]))).
4703
4704
4705 total_surjection(R,Domain,Range) :- init_wait_flags(WF),
4706 total_surjection_wf(R,Domain,Range,WF),
4707 ? ground_wait_flags(WF).
4708
4709 :- block total_surjection_wf(-,-,?,?).
4710 total_surjection_wf(R,DomType,RangeType,WF) :-
4711 check_card_greater_equal(DomType,geq,RangeType,CardDom,CardRange),
4712 ? total_function_wf(R,DomType,RangeType,WF),
4713 % setup_surj_range(RangeType,R,WF).
4714 (surjection_has_to_be_total_injection(CardDom,CardRange)
4715 % LAW: card(setX) = card(setY) => ff: setX -->> setY <=> ff: setX >-> setY
4716 -> injective(R,WF) % if domain and range have same cardinality: injection ensures surjectivity, and is more efficient to check/propagate; example when using queens 1..n -->> 1..n for NQueens
4717 ; check_relation_is_surjective(R,RangeType,WF)).
4718 % invert_relation_wf(R,IR,WF), total_relation_wf(IR,RangeType,DomType,WF).
4719
4720 surjection_has_to_be_total_injection(CardDom,CardRange) :- number(CardDom), CardDom=CardRange.
4721 % TO DO: determine the difference in size between Dom and Range and count how many times a range element can occur multiple times (would give better incremental checking)
4722
4723 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_total_surjection_wf([(int(2),int(6)),(int(1),int(7))],[int(1),int(2),int(3)],[int(7),int(6)],WF),WF)).
4724 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_total_surjection_wf([(int(2),int(6)),(int(1),int(6))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
4725 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_total_surjection_wf([(int(2),int(6)),(int(1),int(6)),(int(1),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
4726 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_total_surjection_wf([(int(2),int(6)),(int(1),int(7)),(int(3),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
4727 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_total_surjection_wf([(int(2),int(6)),(int(1),int(7)),(int(3),int(8))],[int(1),int(2),int(3)],[int(7),int(6)],WF),WF)).
4728 :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:not_total_surjection_wf([(int(2),int(6)),(int(1),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
4729
4730 :- block not_total_surjection_wf(-,?,?,?), not_total_surjection_wf(?,-,-,?).
4731 not_total_surjection_wf(R,DomType,RangeType,WF) :-
4732 total_function_test_wf(R,DomType,RangeType,PredRes,WF),
4733 not_total_surjection2(PredRes,R,DomType,RangeType,WF).
4734 :- block not_total_surjection2(-,?,?,?,?).
4735 not_total_surjection2(pred_false,_R,_DomType,_RangeType,_WF).
4736 not_total_surjection2(pred_true,R,_DomType,RangeType,WF) :-
4737 range_wf(R,RelRange,WF),
4738 opt_push_wait_flag_call_stack_info(WF,b_operator_call(not_subset,
4739 [RangeType,b_operator(range,[R])],unknown),WF2),
4740 not_subset_of_wf(RangeType,RelRange,WF2).
4741 %not_surjective_relation_wf(R,DomType,RangeType,WF).
4742
4743 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:total_function_test_wf([(int(2),int(6)),(int(1),int(7)),(int(3),int(8))],[int(1),int(2),int(3)],[int(7),int(6)],pred_false,WF),WF)).
4744 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:total_function_test_wf([(int(2),int(6)),(int(1),int(7)),(int(3),int(6))],[int(1),int(2),int(3)],[int(7),int(6)],pred_true,WF),WF)). % used to be wfdet (see in_domain_wf above)
4745 :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:total_function_test_wf([(int(2),int(6)),(int(1),int(7))],[int(1),int(2)],[int(7),int(6)],pred_false,WF),WF)).
4746
4747 % reified total function check:
4748 total_function_test_wf(R,DomType,RangeType,PredRes,WF) :-
4749 partial_function_test_wf(R,DomType,RangeType,IsPF,WF),
4750 (IsPF==pred_false -> PredRes=pred_false
4751 ; domain_wf(R,RelDom,WF),
4752 ? conjoin_test(IsPF,IsTotal,PredRes,WF),
4753 opt_push_wait_flag_call_stack_info(WF,b_operator_call(subset,
4754 [DomType,b_operator(domain,[R])],unknown),WF2),
4755 ? subset_test(DomType,RelDom,IsTotal,WF2)
4756 ).
4757
4758 /*******************************************/
4759 /* partial_injection(R,DomType,RangeType) */
4760 /* R : DomType >+> RangeType */
4761 /*******************************************/
4762
4763 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:partial_injection_wf([(int(1),int(6)),(int(2),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
4764 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:partial_injection_wf([(int(1),int(6)),(int(4),int(7)),(int(2),int(8))],[int(1),int(2),int(3),int(4)],[int(7),int(6),int(8),int(9)],WF),WF)).
4765 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:partial_injection_wf([(int(2),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
4766 :- assert_must_succeed((bsets_clp:partial_injection(X,[int(1)],[int(7)]),
4767 kernel_objects:equal_object(X,[(int(1),int(7))]))).
4768 :- assert_must_succeed((bsets_clp:partial_injection(X,[int(1),int(2)],[int(7),int(6)]),
4769 kernel_objects:equal_object(X,[(int(2),int(7)),(int(1),int(6))]))).
4770 :- assert_must_fail((bsets_clp:partial_injection(X,[int(1),int(2)],[int(7)]),
4771 kernel_objects:equal_object(X,[(int(2),int(7)),(int(1),int(7))]))).
4772 :- assert_must_succeed((bsets_clp:partial_injection([],[int(1)],[int(7)]))).
4773 :- assert_must_fail((bsets_clp:partial_injection([(int(7),int(7))],[int(1)],[int(7)]))).
4774 :- assert_must_fail((bsets_clp:partial_injection([(int(1),int(7)), (int(2),int(1))],
4775 [int(1),int(2)],[int(7)]))).
4776 :- assert_must_fail((bsets_clp:partial_injection(X,[int(1),int(2)],[int(7),int(6)]),
4777 kernel_objects:equal_object(X,[(int(2),int(7)),(int(2),int(6))]))).
4778
4779
4780 partial_injection(R,Domain,Range) :- init_wait_flags(WF),
4781 partial_injection_wf(R,Domain,Range,WF),
4782 ? ground_wait_flags(WF).
4783
4784 :- block partial_injection_wf(-,-,?,?).
4785 partial_injection_wf(FF,Domain,Range,WF) :- nonvar(FF),
4786 custom_explicit_sets:dom_range_for_specific_closure(FF,FFDomain,FFRange,function(bijection),WF),!,
4787 check_domain_subset_for_closure_wf(FF,FFDomain,Domain,WF),
4788 check_range_subset_for_closure_wf(FF,FFRange,Range,WF).
4789 partial_injection_wf(R,DomType,RangeType,WF) :-
4790 try_expand_and_convert_to_avl_unless_large_wf(R,ER,WF), % should we use very_large?
4791 partial_function_wf(ER,DomType,RangeType,WF),
4792 injective(ER,WF).
4793 % invert_relation_wf(R,IR,WF),
4794 % partial_function_wf(IR,RangeType,DomType,WF).
4795
4796 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:injective([(int(1),int(6)),(int(4),int(7)),(int(2),int(8))],WF),WF)).
4797 :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:injective([(int(1),int(6)),(int(4),int(7)),(int(2),int(7))],WF),WF)).
4798
4799 :- block injective(-,?).
4800 injective(FF,WF) :-
4801 custom_explicit_sets:dom_range_for_specific_closure(FF,_FFDomain,_FFRange,function(bijection),WF),!.
4802 injective(avl_set(AVL),_WF) :- !,
4803 is_injective_avl_relation(AVL,_Range). % seems slightly faster than injective/3 code below
4804 injective(closure(P,T,B),WF) :- !,
4805 symbolic_injectivity_check(closure(P,T,B),WF).
4806 injective(Rel,WF) :- expand_custom_set_to_list_wf(Rel,ERel,_,injective,WF),
4807 injective(ERel,[],WF).
4808
4809 %:- use_module(library(lists),[maplist/3]).
4810 % for FD-sets we could setup all_different constraint
4811 :- block injective(-,?,?).
4812 injective([],_SoFar,_).
4813 % (maplist(get_fd_val,SoFar,FDL) -> clpfd:all_distinct(FDL) ; true). %clpfd_interface:clpfd_alldifferent(FDL) ; true).
4814 %get_fd_val(int(H),H).
4815 injective([(_From,To)|T],SoFar,WF) :-
4816 not_element_of_wf(To,SoFar,WF), /* check that it is injective */
4817 add_new_element_wf(To,SoFar,SoFar2,WF), %SoFar2=[To|SoFar], could also work and be faster ?
4818 injective(T,SoFar2,WF).
4819 % no case for global_set: it cannot be a relation; two cases below not required because of expand_custom_set_to_list
4820 %injective(avl_set(S),SoFar,WF) :- expand_custom_set_wf(avl_set(S),ES,inj,WF), injective(ES,SoFar,WF).
4821 %injective(closure(P,T,B),SoFar,WF) :- expand_custom_set_wf(closure(P,T,B),ES,inj,WF), injective(ES,SoFar,WF).
4822
4823
4824
4825 /* /: Dom >+> R */
4826
4827 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_partial_injection([(int(1),int(6)),(int(2),int(6))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
4828 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_partial_injection([(int(1),int(6)),(int(1),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
4829 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_partial_injection([(int(1),int(6)),(int(2),int(8))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
4830 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_partial_injection([(int(1),int(6)),(int(3),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
4831
4832 :- block not_partial_injection(-,?,?,?).
4833 not_partial_injection(R,DomType,RangeType,WF) :-
4834 partial_function_test_wf(R,DomType,RangeType,IsPF,WF),
4835 not_partial_injection2(IsPF,R,DomType,RangeType,WF).
4836
4837 :- block not_partial_injection2(-,?,?,?,?).
4838 not_partial_injection2(pred_false,_R,_DomType,_RType,_WF).
4839 not_partial_injection2(pred_true,R,DomType,RType,WF) :-
4840 not_injection_wf(R,DomType,RType,WF).
4841
4842 not_injection_wf(R,DomType,RType,WF) :-
4843 invert_relation_wf(R,IR,WF),
4844 not_partial_function(IR,RType,DomType,WF).
4845
4846 /*****************************************/
4847 /* total_injection(R,DomType,RangeType) */
4848 /* R : DomType >-> RangeType */
4849 /*****************************************/
4850
4851 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:total_injection_wf([(int(1),int(6)),(int(2),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
4852 :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:total_injection_wf([(int(1),int(6)),(int(2),int(6))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
4853 :- assert_must_succeed(exhaustive_kernel_fail_check_wf(bsets_clp:not_total_injection([(int(1),int(6)),(int(2),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
4854 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_total_injection([(int(1),int(6)),(int(2),int(6))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
4855 :- assert_must_succeed((bsets_clp:total_injection(X,[int(1)],[int(7)]),
4856 kernel_objects:equal_object(X,[(int(1),int(7))]))).
4857 :- assert_must_succeed((bsets_clp:total_injection(X,[int(1),int(2)],[int(7),int(6)]),
4858 kernel_objects:equal_object(X,[(int(2),int(7)),(int(1),int(6))]))).
4859 :- assert_must_fail((bsets_clp:total_injection(X,[int(1),int(2)],[int(7)]),
4860 kernel_objects:equal_object(X,[(int(2),int(7)),(int(1),int(7))]))).
4861 :- assert_must_fail((bsets_clp:total_injection([],[int(1)],[int(7)]))).
4862 :- assert_must_fail((bsets_clp:total_injection([(int(7),int(7))],[int(1)],[int(7)]))).
4863 :- assert_must_fail((bsets_clp:total_injection([(int(1),int(7)), (int(2),int(1))],
4864 [int(1),int(2)],[int(7)]))).
4865 :- assert_must_fail((bsets_clp:total_injection(X,[int(1),int(2)],[int(7),int(6)]),
4866 kernel_objects:equal_object(X,[(int(2),int(7)),(int(2),int(6))]))).
4867
4868
4869 total_injection(R,Domain,Range) :- init_wait_flags(WF),
4870 total_injection_wf(R,Domain,Range,WF),
4871 ? ground_wait_flags(WF).
4872
4873 :- block total_injection_wf(-,-,?,?). % with just ?,-,?,? we may wait too long to start injective check
4874 % Note: no need to check: dom_range_for_specific_closure(FF,FFDomain,FFRange,function(bijection)),
4875 total_injection_wf(R,DomType,RangeType,WF) :-
4876 check_card_greater_equal(RangeType,geq,DomType,_,_), % there must be more Range elements than domain elements; pigeonhole principle
4877 ? total_injection_wf2(R,DomType,RangeType,WF).
4878 total_injection_wf2(R,DomType,RangeType,WF) :-
4879 try_expand_and_convert_to_avl_unless_large_wf(R,ER,WF),
4880 ? total_function_wf(ER,DomType,RangeType,WF),
4881 injective(ER,WF).
4882
4883
4884 :- block not_total_injection(-,?,?,?), not_total_injection(?,-,-,?).
4885 not_total_injection(R,DomType,RangeType,WF) :-
4886 total_function_test_wf(R,DomType,RangeType,PredRes,WF),
4887 not_total_injection2(PredRes,R,DomType,RangeType,WF).
4888
4889 :- block not_total_injection2(-,?,?,?,?).
4890 not_total_injection2(pred_false,_R,_Dom,_Ran,_WF).
4891 not_total_injection2(pred_true,R,DomType,RangeType,WF) :-
4892 % TO DO: replace DomType and RangeType by full Type
4893 not_injection_wf(R,DomType,RangeType,WF).
4894
4895 /***********************************/
4896 /* partial_bijection(R,DomType,RangeType) */
4897 /* R : DomType >+>> RangeType */
4898 /***********************************/
4899
4900 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:partial_bijection_wf([(int(1),int(6)),(int(2),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)). % used to be wfdet (see in_domain_wf above)
4901 :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:partial_bijection_wf([(int(1),int(6)),(int(2),int(6))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
4902 :- assert_must_succeed((partial_bijection(X,[int(1),int(2)],[int(7),int(6)]),
4903 kernel_objects:equal_object(X,[(int(1),int(6)),(int(2),int(7))]))).
4904 :- assert_must_succeed((partial_bijection(X,[int(1),int(2),int(3),int(4)],[int(7),int(6)]),
4905 X = [(int(2),int(7)),(int(3),int(6))])).
4906 :- assert_must_fail((partial_bijection(X,[int(1),int(2)],[int(7),int(6),int(5)]),
4907 X = [(int(2),int(7)),(int(1),int(6))])).
4908
4909 partial_bijection(R,Domain,Range) :- init_wait_flags(WF),
4910 partial_bijection_wf(R,Domain,Range,WF),
4911 ? ground_wait_flags(WF).
4912
4913 partial_bijection_wf(R,DomType,RangeType,WF) :-
4914 partial_injection_wf(R,DomType,RangeType,WF),
4915 ? partial_surjection_wf(R,DomType,RangeType,WF).
4916
4917 :- assert_must_succeed(exhaustive_kernel_fail_check_wf(bsets_clp:not_partial_bijection([(int(1),int(6)),(int(2),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
4918 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_partial_bijection([(int(1),int(6)),(int(2),int(6))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
4919
4920 :- assert_must_succeed(exhaustive_kernel_fail_check_wf(bsets_clp:not_partial_bijection([(int(2),int(7)),(int(1),int(6))],[int(1),int(2)],[int(7),int(6)],WF),WF)).
4921
4922 :- assert_must_succeed(exhaustive_kernel_fail_check_wf(bsets_clp:not_partial_bijection([(int(2),int(7)),(int(3),int(6))],[int(1),int(2),int(3),int(4)],[int(7),int(6)],WF),WF)).
4923 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_partial_bijection([(int(2),int(7)),(int(1),int(6))],[int(1),int(2)],[int(7),int(6),int(5)],WF),WF)).
4924
4925
4926 :- block not_partial_bijection(-,?,?,?), not_partial_bijection(?,-,-,?).
4927 not_partial_bijection(R,DomType,RangeType,WF) :-
4928 % >+>> = +->> + injective
4929 partial_surjection_test_wf(R,DomType,RangeType,PredRes,WF),
4930 not_partial_bijection2(PredRes,R,DomType,RangeType,WF).
4931
4932 :- block not_partial_bijection2(-,?,?,?,?).
4933 not_partial_bijection2(pred_false,_R,_DomType,_RangeType,_WF).
4934 not_partial_bijection2(pred_true,R,DomType,RangeType,WF) :-
4935 not_injection_wf(R,DomType,RangeType,WF).
4936
4937
4938
4939 /* The transitive (not reflexive) closure of a relation (closure1) */
4940
4941 :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:relational_trans_closure([(int(1),int(2)),(int(2),int(6))],[(int(1),int(2)),(int(1),int(6)),(int(2),int(6))]))).
4942 :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:relational_trans_closure([(int(1),int(2)),(int(2),int(6)),(int(1),int(3))],[(int(1),int(2)),(int(1),int(3)),(int(1),int(6)),(int(2),int(6))]))).
4943 :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:relational_trans_closure([(int(6),int(7)),(int(1),int(2)),(int(2),int(6)),(int(1),int(3))],[(int(1),int(2)),(int(1),int(3)),(int(1),int(6)),(int(2),int(6)),(int(1),int(7)),(int(2),int(7)),(int(6),int(7))]))).
4944 :- assert_must_succeed((bsets_clp:relational_trans_closure([(int(1),int(4))],X),
4945 kernel_objects:equal_object(X,[(int(1),int(4))]))).
4946 :- assert_must_succeed((bsets_clp:relational_trans_closure([(int(1),int(4)),(int(4),int(2))],X),
4947 kernel_objects:equal_object(X,[(int(1),int(4)),(int(4),int(2)),
4948 (int(1),int(2))]))).
4949 :- assert_must_succeed((bsets_clp:relational_trans_closure([(int(1),int(4)),(int(4),int(2)),(int(2),int(3))],X),
4950 kernel_objects:equal_object(X,[(int(1),int(4)),(int(4),int(2)),(int(2),int(3)),
4951 (int(4),int(3)),(int(1),int(2)),(int(1),int(3))]))).
4952 :- assert_must_succeed((bsets_clp:relational_trans_closure([(int(A),int(2)),(int(2),int(6))],
4953 [(int(1),int(2)),(int(1),int(6)),(int(2),int(6))]),A=1)).
4954
4955 relational_trans_closure(Rel,Res) :- relational_trans_closure_wf(Rel,Res,no_wf_available).
4956
4957 % transitive closure for relations (closure1)
4958 :- block relational_trans_closure_wf(-,?,?).
4959 relational_trans_closure_wf(Relation,Result,WF) :-
4960 try_expand_and_convert_to_avl_with_check(Relation,ARelation,relational_trans_closure_wf),
4961 relational_trans_closure2(ARelation,Result,WF).
4962 :- block relational_trans_closure2(-,?,?).
4963 relational_trans_closure2(ARelation,Result,WF) :-
4964 (closure1_for_explicit_set(ARelation,Res)
4965 -> kernel_objects:equal_object_wf(Res,Result,relational_trans_closure_wf,WF)
4966 ; expand_custom_set_to_list_wf(ARelation,ERelation,_,relational_trans_closure2,WF),
4967 is_full_relation(ERelation,WaitVar), % still required??
4968 % we could do a check_subset_of_wf(ERelation,Resul,WF) if Result is nonvar and ERelation not ground
4969 compute_trans_closure(ERelation,Result,WaitVar,WF)
4970 ).
4971
4972 :- block compute_trans_closure(?,?,-,?).
4973 compute_trans_closure(Relation,Result,_,WF) :-
4974 ? compute_trans_closure2(Relation,1,Result,WF).
4975
4976 compute_trans_closure2(Relation,Cnt,Result,WF) :-
4977 one_closure_iteration(Relation,Relation,Relation,Result1,Added,Done,WF),
4978 ? compute_trans_closure3(Relation,Cnt,Result1,Added,Done,Result,WF).
4979
4980 :- block compute_trans_closure3(?,?,?,?,-,?,?).
4981 compute_trans_closure3(Relation,Cnt,Result1,Added,_Done,Result,WF) :-
4982 ( equal_object_wf(Result1,Relation,relational_trans_closure_wf,WF), % should we do equality_objects here?
4983 equal_object_optimized_wf(Result,Result1,compute_trans_closure,WF)
4984 ;
4985 Added==possibly_added,
4986 not_equal_object_wf(Result1,Relation,WF), % not a fixpoint; continue
4987 IterCnt is Cnt+1,
4988 ? compute_trans_closure2(Result1,IterCnt,Result,WF)
4989 ).
4990
4991 :- block one_closure_iteration(?,?,-,?,?,?,?).
4992 one_closure_iteration([],_,IterRes,OutRel,Added,Done,WF) :-
4993 equal_object_wf(IterRes,OutRel,one_closure_iteration,WF),
4994 (var(Added) -> Added=not_added ; true),
4995 Done=done.
4996 one_closure_iteration([(X,Y)|T],ExpandedPreviousRel,PreviousRel,OutRel,Added,Done,WF) :-
4997 add_tuples(ExpandedPreviousRel,X,Y,PreviousRel,IntRel,Added,DoneTuples,WF),
4998 ? one_closure_iteration_block(DoneTuples,T,ExpandedPreviousRel,IntRel,OutRel,Added,Done,WF).
4999
5000 :- block one_closure_iteration_block(-,?,?,?,?,?,?,?).
5001 one_closure_iteration_block(_,T,ExpandedPreviousRel,IntRel,OutRel,Added,Done,WF) :-
5002 ? one_closure_iteration(T,ExpandedPreviousRel,IntRel,OutRel,Added,Done,WF).
5003
5004 add_tuples([],_,_,OutRel,OutRel,_Added,done,_).
5005 add_tuples([(X,Y)|T],OX,OY,InRel,OutRel,Added,Done,WF) :-
5006 % add tuple (X,OY) if we have Y=OX
5007 equality_objects_wf(Y,OX,EqRes,WF),
5008 ? add_tuples_aux(EqRes,X,T,OX,OY,InRel,OutRel,Added,Done,WF).
5009
5010 :- block add_tuples_aux(-,?,?,?,?,?,?,?,?,?).
5011 add_tuples_aux(pred_true,X,T,OX,OY,InRel,OutRel,possibly_added,Done,WF) :-
5012 add_element_wf((X,OY),InRel,IntRel,WF), % add transitive couple X -> OY
5013 ? add_tuples(T,OX,OY,IntRel,OutRel,_,Done,WF).
5014 add_tuples_aux(pred_false,_X,T,OX,OY,InRel,OutRel,Added,Done,WF) :- % no transitive couple needed
5015 ? add_tuples(T,OX,OY,InRel,OutRel,Added,Done,WF).
5016
5017
5018 :- assert_must_succeed((is_full_relation(X,R),var(R),X=[],R==true)).
5019 :- assert_must_succeed((is_full_relation(X,R),var(R),X=[(A,B)|T],var(R),A=int(1),var(R),B=A,var(R),T=[],R==true)).
5020 :- block is_full_relation(-,?).
5021 is_full_relation([],R) :- !,R=true.
5022 ?is_full_relation([H|T],W) :- !, is_full_relation_aux(H,T,W).
5023 is_full_relation(X,R) :-
5024 add_internal_error('Illegal Set for is_full_relation: ',is_full_relation(X,R)),fail.
5025
5026 :- block is_full_relation_aux(-,?,?).
5027 ?is_full_relation_aux((X,Y),T,W) :- !, is_full_relation_aux2(X,Y,T,W).
5028 is_full_relation_aux(X,T,W) :-
5029 add_internal_error('Illegal Set for is_full_relation: ',is_full_relation_aux(X,T,W)),fail.
5030 :- block is_full_relation_aux2(-,?,?,?), is_full_relation_aux2(?,-,?,?).
5031 ?is_full_relation_aux2(_X,_Y,T,W) :- is_full_relation(T,W).
5032
5033 /* ------------------ */
5034
5035 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:in_closure1_wf((int(1),int(3)),[(int(1),int(2)),(int(2),int(1)),(int(2),int(3))],WF),WF)). % used to be wfdet (see in_domain_wf above)
5036
5037 in_closure1_wf(Pair,Relation,WF) :- %Pair = (_A,B),
5038 %in_domain_wf_lazy(A,Relation,WF), % done below
5039 %check_element_of_wf((_,B),Relation,WF), % multiple solutions for _, see test 634, 637
5040 ? in_closure1_membership_test_wf(Pair,Relation,pred_true,WF).
5041
5042
5043 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_in_closure1_wf((int(1),int(3)),[(int(1),int(2)),(int(2),int(1)),(int(3),int(3))],WF),WF)).
5044
5045 not_in_closure1_wf(Pair,Relation,WF) :-
5046 ? in_closure1_membership_test_wf(Pair,Relation,pred_false,WF).
5047
5048 :- assert_must_succeed((bsets_clp:in_closure1_membership_test_wf((int(1),int(2)),[],Res,_WF),Res==pred_false)).
5049 :- assert_must_succeed((bsets_clp:in_closure1_membership_test_wf((int(1),int(2)),[(int(1),int(2))],Res,_WF),Res==pred_true)).
5050 :- assert_must_succeed((bsets_clp:in_closure1_membership_test_wf((int(1),int(2)),[(int(1),int(3))],Res,_WF),Res==pred_false)).
5051 :- assert_must_succeed((bsets_clp:in_closure1_membership_test_wf((int(1),int(2)),[(int(1),int(3)),(int(3),int(2))],Res,_WF),Res==pred_true)).
5052 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:in_closure1_membership_test_wf((int(1),int(2)),[(int(1),int(3)),(int(3),int(2))],pred_true,WF),WF)). % used to be wfdet (see in_domain_wf above)
5053 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:in_closure1_membership_test_wf((int(11),int(3)),[(int(11),int(3))],pred_true,WF),WF)).
5054 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:in_closure1_membership_test_wf((int(11),int(3)),[(int(11),int(33))],pred_false,WF),WF)).
5055 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:in_closure1_membership_test_wf((int(1),int(3)),[(int(11),int(3))],pred_false,WF),WF)).
5056 :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:in_closure1_membership_test_wf((int(11),int(22)),[(int(11),int(3)),(int(33),int(2)),(int(3),int(22)),(int(11),int(3))],pred_true,WF),WF)). % used to be wfdet (see in_domain_wf above)
5057 :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:in_closure1_membership_test_wf((int(11),int(11)),[(int(11),int(3))],pred_false,WF),WF)).
5058
5059 :- block force_in_domain(-,?,?,?).
5060 force_in_domain(pred_false,_A,_Relation,_WF).
5061 force_in_domain(pred_true,A,Relation,WF) :- % force A to be in domain, avoid enumeration warnings,...
5062 % maybe only for non-ground A
5063 in_domain_wf_lazy(A,Relation,WF). % slowdown Loop.mch (tests 634, 637) if we use in_domain_wf ?
5064
5065 % (x,y) : closure1(Rel)
5066 :- block in_closure1_membership_test_wf(?,-,?,?).
5067 in_closure1_membership_test_wf((A,B),CSRelation,MemRes,WF) :-
5068 is_custom_explicit_set(CSRelation,in_closure1),
5069 !,
5070 ? image_for_closure1_wf(CSRelation,[A],Image,WF),
5071 force_in_domain(MemRes,A,CSRelation,WF),
5072 membership_test_wf(Image,B,MemRes,WF).
5073 in_closure1_membership_test_wf((X,Y),Relation,MemRes,WF) :-
5074 expand_custom_set_to_list_wf(Relation,ERelation,_,in_closure1_membership_test_wf,WF),
5075 Discarded = [], % pairs discarded in current iteration
5076 force_in_domain(MemRes,X,Relation,WF),
5077 in_closure1_membership_test_wf2(ERelation,X,Y,Discarded,MemRes,WF).
5078
5079 :- block in_closure1_membership_test_wf2(-,?,?,?,?,?).
5080 in_closure1_membership_test_wf2([],_X,_Y,_,MemRes,_WF) :- MemRes=pred_false.
5081 in_closure1_membership_test_wf2([(V,W)|Rest],X,Y,Discarded,MemRes,WF) :- % TO DO: Rest==[] -->
5082 equality_objects_wf(V,X,VXResult,WF),
5083 in_closure1_membership_test_wf3(VXResult,V,W,Rest,X,Y,Discarded,MemRes,WF).
5084
5085 :- block in_closure1_membership_test_wf3(-,?,?,?,?,?,?,?,?).
5086 in_closure1_membership_test_wf3(pred_false,V,W,Rest,X,Y,Discarded,MemRes,WF) :-
5087 in_closure1_membership_test_wf2(Rest,X,Y,[(V,W)|Discarded],MemRes,WF).
5088 in_closure1_membership_test_wf3(pred_true,V,W,Rest,X,Y,Discarded,MemRes,WF) :- % V=X
5089 propagate_false(MemRes,WYResult),
5090 % TODO: Res=[],Discarded=[] -> MemRes=WYResult
5091 equality_objects_wf(W,Y,WYResult,WF), % MemRes = pred_false => WYResult = pred_false
5092 in_closure1_membership_test_wf4(WYResult,V,W,Rest,X,Y,Discarded,MemRes,WF).
5093
5094 :- block in_closure1_membership_test_wf4(-,?,?,?,?,?,?,?,?).
5095 in_closure1_membership_test_wf4(pred_false,_V,W,Rest,X,Y,Discarded,MemRes,WF) :-
5096 append(Discarded,Rest,Restart),
5097 in_closure1_membership_test_wf2(Restart,W,Y,[],MemRes1,WF),
5098 propagate_false(MemRes,MemRes1), % MemRes = pred_false -> MemRes1=pred_false
5099 when(nonvar(MemRes1),
5100 (MemRes1=pred_true -> MemRes=pred_true
5101 ; in_closure1_membership_test_wf2(Rest,X,Y,Discarded,MemRes,WF) % (V,W) not in Discarded: was not useful
5102 )).
5103 in_closure1_membership_test_wf4(pred_true,_V,_W,_Rest,_X,_Y,_Discarded,MemRes,_WF) :- % W=Y
5104 MemRes = pred_true.
5105 /* ------------------ */
5106
5107 :- block propagate_false(-,?).
5108 propagate_false(pred_false,pred_false).
5109 propagate_false(pred_true,_).
5110