1 | | % (c) 2004-2024 Lehrstuhl fuer Softwaretechnik und Programmiersprachen, |
2 | | % Heinrich Heine Universitaet Duesseldorf |
3 | | % This software is licenced under EPL 1.0 (http://www.eclipse.org/org/documents/epl-v10.html) |
4 | | |
5 | | :- module(bsets_clp, |
6 | | [empty_sequence/1, |
7 | | is_sequence/2, is_sequence_wf/3, not_is_sequence/2, not_is_sequence_wf/3, |
8 | | not_is_non_empty_sequence_wf/3, |
9 | | injective_sequence_wf/3, |
10 | | not_injective_sequence/3, |
11 | | not_non_empty_injective_sequence/3, |
12 | | injective_non_empty_sequence/3, |
13 | | finite_non_empty_sequence/3, |
14 | | test_finite_non_empty_sequence/4, |
15 | | permutation_sequence_wf/3, |
16 | | not_permutation_sequence/3, |
17 | | size_of_sequence/3, |
18 | | prepend_sequence/4, append_sequence/4, prefix_sequence_wf/4, |
19 | | suffix_sequence/4, concat_sequence/4, |
20 | | disjoint_union_wf/4, |
21 | | concatentation_of_sequences/3, |
22 | | tail_sequence/4, first_sequence/4, front_sequence/4, last_sequence/4, |
23 | | rev_sequence/3, |
24 | | |
25 | | |
26 | | % maplet/3, |
27 | | % relation/1, |
28 | | relation_over/3, relation_over_wf/4, |
29 | | not_relation_over/4, |
30 | | domain_wf/3, |
31 | | |
32 | | range_wf/3, |
33 | | identity_relation_over_wf/3, in_identity/3, not_in_identity/3, |
34 | | invert_relation_wf/3, |
35 | | tuple_of/3, |
36 | | in_composition_wf/4, not_in_composition_wf/4, rel_composition_wf/5, |
37 | | direct_product_wf/4, |
38 | | parallel_product_wf/4, in_parallel_product_wf/4, not_in_parallel_product_wf/4, |
39 | | rel_iterate_wf/5, |
40 | | event_b_identity_for_type/3, |
41 | | |
42 | | not_partial_function/4, |
43 | | partial_function/3, partial_function_wf/4, partial_function_test_wf/5, |
44 | | |
45 | | total_function/3, total_function_wf/4, total_function_test_wf/5, |
46 | | |
47 | | % enumerate_total_bijection/3, |
48 | | total_bijection/3, total_bijection_wf/4, |
49 | | |
50 | | not_total_function/4, |
51 | | not_total_bijection/4, |
52 | | |
53 | | |
54 | | range_restriction_wf/4, range_subtraction_wf/4, |
55 | | in_range_restriction_wf/4, not_in_range_restriction_wf/4, |
56 | | in_range_subtraction_wf/4, not_in_range_subtraction_wf/4, |
57 | | domain_restriction_wf/4, domain_subtraction_wf/4, |
58 | | in_domain_restriction_wf/4, not_in_domain_restriction_wf/4, |
59 | | in_domain_subtraction_wf/4, not_in_domain_subtraction_wf/4, |
60 | | override_relation/4, |
61 | | in_override_relation_wf/4, not_in_override_relation_wf/4, |
62 | | image_wf/4, image_for_closure1_wf/4, |
63 | | special_operator_for_image/3, image_for_special_operator/5, apply_fun_for_special_operator/6, |
64 | | |
65 | | in_domain_wf/3, not_in_domain_wf/3, |
66 | | apply_to/4, apply_to/5, apply_to/6, |
67 | | override/5, |
68 | | |
69 | | %sum_over_range/2, mul_over_range/2, |
70 | | |
71 | | disjoint_union_generalized_wf/3, |
72 | | |
73 | | partial_surjection/3, not_partial_surjection_wf/4, |
74 | | partial_surjection_test_wf/5, |
75 | | |
76 | | total_relation_wf/4, |
77 | | not_total_relation_wf/4, |
78 | | |
79 | | surjection_relation_wf/4, total_surjection_relation_wf/4, |
80 | | not_surjection_relation_wf/4, not_total_surjection_relation_wf/4, |
81 | | |
82 | | total_surjection/3, total_surjection_wf/4, |
83 | | not_total_surjection_wf/4, |
84 | | |
85 | | partial_injection/3, partial_injection_wf/4, |
86 | | not_partial_injection/4, |
87 | | |
88 | | total_injection/3, total_injection_wf/4, |
89 | | not_total_injection/4, |
90 | | |
91 | | partial_bijection/3, partial_bijection_wf/4, |
92 | | not_partial_bijection/4, |
93 | | |
94 | | relational_trans_closure_wf/3, %relational_reflexive_closure/2, |
95 | | in_closure1_wf/3, not_in_closure1_wf/3 |
96 | | ]). |
97 | | |
98 | | |
99 | | :- use_module(library(terms)). |
100 | | :- use_module(self_check). |
101 | | |
102 | | :- use_module(debug). |
103 | | :- use_module(tools). |
104 | | |
105 | | :- use_module(module_information,[module_info/2]). |
106 | | :- module_info(group,kernel). |
107 | | :- module_info(description,'This module provides more advanced operations for the basic datatypes of ProB (mainly for relations, functions, sequences).'). |
108 | | |
109 | | :- use_module(tools_printing). |
110 | | |
111 | | :- use_module(delay). |
112 | | |
113 | | :- use_module(typechecker). |
114 | | :- use_module(error_manager). |
115 | | |
116 | | :- use_module(kernel_objects). |
117 | | :- use_module(kernel_records). |
118 | | :- use_module(kernel_tools). |
119 | | |
120 | | :- use_module(kernel_waitflags). |
121 | | :- use_module(kernel_equality,[equality_objects_wf/4]). |
122 | | |
123 | | :- use_module(custom_explicit_sets). |
124 | | :- use_module(avl_tools,[avl_fetch_pair/3]). |
125 | | :- use_module(bool_pred,[negate/2]). |
126 | | :- use_module(closures,[is_symbolic_closure/1]). |
127 | | :- use_module(bsyntaxtree, [conjunct_predicates/2, |
128 | | mark_bexpr_as_symbolic/2, |
129 | | create_texpr/4, |
130 | | safe_create_texpr/3, |
131 | | get_texpr_type/2 |
132 | | ]). |
133 | | |
134 | | /* --------- */ |
135 | | /* SEQUENCES */ |
136 | | /* ------- - */ |
137 | | |
138 | | :- assert_must_succeed((bsets_clp:empty_sequence([]))). |
139 | | :- assert_must_fail((bsets_clp:empty_sequence([int(1)]))). |
140 | ? | empty_sequence(X) :- empty_set(X). % TO DO: add WF |
141 | | |
142 | | :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:not_empty_sequence([(int(2),int(33)),(int(1),int(22))]))). |
143 | | :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:not_empty_sequence([(int(1),int(33))]))). |
144 | | :- assert_must_succeed(exhaustive_kernel_fail_check(bsets_clp:not_empty_sequence([]))). |
145 | | |
146 | | not_empty_sequence(X) :- var(X),!, |
147 | | X = [(int(1),_)|_]. |
148 | | not_empty_sequence(X) :- is_custom_explicit_set_nonvar(X),!, |
149 | | is_non_empty_explicit_set(X). |
150 | | not_empty_sequence([(int(_),_)|_]). % clousure, avl_set dealt with clause above |
151 | | |
152 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_empty_sequence_wf([(int(1),int(33))],WF),WF)). |
153 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_empty_sequence_wf([(int(1),pred_true),(int(2),pred_false)],WF),WF)). |
154 | | not_empty_sequence_wf(X,_WF) :- nonvar(X),!, not_empty_sequence(X). |
155 | | not_empty_sequence_wf(X,WF) :- |
156 | | (preferences:preference(use_smt_mode,true) -> not_empty_sequence(X) |
157 | | ; get_enumeration_starting_wait_flag(not_empty_sequence_wf,WF,LWF), |
158 | | not_empty_sequence_lwf(X,LWF)). |
159 | | |
160 | | :- block not_empty_sequence_lwf(-,-). |
161 | | not_empty_sequence_lwf(S,_) :- nonvar(S),!,not_empty_sequence(S). |
162 | | not_empty_sequence_lwf([(int(1),_)|_],_). |
163 | | |
164 | | :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:is_sequence([(int(1),int(22))],[int(22)]))). |
165 | | :- assert_must_succeed(bsets_clp:is_sequence(closure(['_zzzz_unit_tests'],[couple(integer,integer)],b(member(b(identifier('_zzzz_unit_tests'),couple(integer,integer),[generated]),b(value([(int(1),int(22))]),set(couple(integer,integer)),[])),pred,[])),[int(22)])). |
166 | | |
167 | | :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:is_sequence([(int(2),int(33)),(int(1),int(22))],[int(22),int(33),int(44)]))). |
168 | | :- assert_must_succeed(exhaustive_kernel_fail_check(bsets_clp:is_sequence([(int(2),int(33)),(int(1),int(23))],[int(22),int(33),int(44)]))). |
169 | | :- assert_must_succeed(exhaustive_kernel_fail_check(bsets_clp:is_sequence([(int(1),int(33)),(int(0),int(22))],[int(22),int(33),int(44)]))). |
170 | | :- assert_must_succeed(exhaustive_kernel_fail_check(bsets_clp:is_sequence([(int(3),int(33)),(int(1),int(22))],[int(22),int(33),int(44)]))). |
171 | | :- assert_must_succeed((is_sequence(R,global_set('Name')),R = [])). |
172 | | :- assert_must_succeed((is_sequence(R,global_set('Name')), |
173 | | R = [(int(2),fd(1,'Name')),(int(1),fd(2,'Name'))] )). |
174 | | :- assert_must_succeed((is_sequence(R,global_set('Name')), |
175 | | R = [(int(1),fd(2,'Name'))] )). |
176 | | :- assert_must_succeed((is_sequence(R,global_set('Name')), |
177 | | R = [(int(1),fd(1,'Name')),(int(2),fd(2,'Name'))] )). |
178 | | :- assert_must_succeed((is_sequence(R,global_set('Name')), |
179 | | R = [(int(2),fd(1,'Name')),(int(1),fd(1,'Name'))] )). |
180 | | :- assert_must_succeed((is_sequence([(int(2),fd(1,'Name')),(int(1),fd(1,'Name'))], |
181 | | global_set('Name')) )). |
182 | | :- assert_must_succeed((is_sequence(R,[int(1),int(2)]), |
183 | | R = [(int(2),int(2)),(int(1),int(1))] )). |
184 | | :- assert_must_fail((is_sequence(R,[int(1),int(2)]), |
185 | | R = [(int(2),int(2)),(int(3),int(1))] )). |
186 | | :- assert_must_fail((is_sequence(R,[int(1),int(2)]), |
187 | | R = [(int(2),int(2)),(int(1),int(3))] )). |
188 | | :- assert_must_fail((is_sequence(R,global_set('Name')), |
189 | | R = [(int(0),fd(1,'Name')),(int(1),fd(2,'Name'))] )). |
190 | | :- assert_must_succeed((is_sequence(X,global_set('Name')), |
191 | | (preferences:get_preference(randomise_enumeration_order,true) -> true |
192 | | ; kernel_objects:enumerate_basic_type(X,seq(global('Name')))), |
193 | | X = [(int(1),fd(1,'Name'))])). % can take a long time with RANDOMISE_ENUMERATION_ORDER |
194 | | |
195 | | is_sequence(X,Type) :- init_wait_flags(WF,[is_sequence]), |
196 | | is_sequence_wf(X,Type,WF), |
197 | ? | ground_wait_flags(WF). |
198 | | |
199 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:is_sequence_domain([int(1),int(2),int(3)],WF),WF)). |
200 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:is_sequence_domain([int(1)],WF),WF)). |
201 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:is_sequence_domain([],WF),WF)). |
202 | | :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:is_sequence_domain([int(0)],WF),WF)). |
203 | | :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:is_sequence_domain([int(2),int(3)],WF),WF)). |
204 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_is_sequence_domain([int(2),int(3)],WF),WF)). |
205 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_is_sequence_domain([int(0)],WF),WF)). |
206 | | :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:not_is_sequence_domain([int(1)],WF),WF)). |
207 | | :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:not_is_sequence_domain([],WF),WF)). |
208 | | |
209 | | % check if a set is the domain of a sequence, i.e., an interval 1..n with n>=0 |
210 | | :- use_module(custom_explicit_sets,[construct_interval_closure/3]). |
211 | | :- use_module(kernel_cardinality_attr,[finite_cardinality_as_int_wf/3]). |
212 | | :- block is_sequence_domain(-,?). |
213 | | is_sequence_domain(Domain,WF) :- |
214 | | finite_cardinality_as_int_wf(Domain,int(Max),WF), |
215 | | construct_interval_closure(1,Max,Interval), equal_object_wf(Domain,Interval,is_sequence_domain,WF). |
216 | | :- block not_is_sequence_domain(-,?). |
217 | | not_is_sequence_domain(Domain,WF) :- |
218 | | finite_cardinality_as_int_wf(Domain,int(Max),WF), |
219 | | construct_interval_closure(1,Max,Interval), not_equal_object_wf(Domain,Interval,WF). |
220 | | |
221 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:is_sequence_wf([(int(1),pred_true)], |
222 | | [pred_true,pred_false],WF),WF)). |
223 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:is_sequence_wf([(int(1),pred_true),(int(2),pred_false),(int(3),pred_true)], |
224 | | [pred_true,pred_false],WF),WF)). |
225 | | :- assert_must_succeed((bsets_clp:is_sequence_wf([(int(X),R)],[pred_true],_WF),X==1, R==pred_true)). |
226 | | :- assert_must_succeed((bsets_clp:is_sequence_wf([(int(X),R),(int(Y),R)],[pred_true],_WF),X=2, |
227 | | (preferences:preference(use_clpfd_solver,true) -> Y==1 ; Y=1), R==pred_true)). |
228 | | |
229 | | is_sequence_wf(Seq,Range,WF) :- is_sequence_wf_ex(Seq,Range,WF,_). |
230 | | % is_sequence_wf_ex also returns expansion; if it was done |
231 | | :- block is_sequence_wf_ex(-,?,?,?). |
232 | | is_sequence_wf_ex(FF,Range,WF,FF) :- |
233 | | nonvar(FF), FF = closure(_,_,_), |
234 | | custom_explicit_sets:is_definitely_maximal_set(Range), |
235 | | % we do not need the Range; this means we can match more closures (e.g., lambda) |
236 | | custom_explicit_sets:dom_for_specific_closure(FF,FFDomain,function(_),WF),!, |
237 | | is_sequence_domain(FFDomain,WF). |
238 | | is_sequence_wf_ex(Seq,Range,WF,Res) :- |
239 | | expand_and_convert_to_avl_set_warn(Seq,AER,is_sequence_wf_ex,'ARG : seq(?)',WF),!, |
240 | | is_avl_sequence(AER), |
241 | | is_avl_relation_over_range(AER,Range,WF), |
242 | | custom_explicit_sets:construct_avl_set(AER,Res). |
243 | | is_sequence_wf_ex(X,Type,WF,EX) :- |
244 | | % try_ensure_seq_numbering(X,1), |
245 | | expand_custom_set_to_list_wf(X,EX,_,is_sequence_wf_ex,WF), |
246 | | is_sequence2(EX,[],Type,0,_MinSize,WF). |
247 | | |
248 | | % will make this much faster x:seq(STRING) & card(x)=400 & 401:dom(x) (40 ms rather than > 2 secs) |
249 | | % but this does not work -eval_file /Users/leuschel/git_root/prob_examples/examples/Setlog/prob-ttf/plavis-TransData_SP_21_simplified.prob |
250 | | %:- block try_ensure_seq_numbering(-,?). |
251 | | %try_ensure_seq_numbering([H|T],NextNr) :- var(H),!, print(nr(NextNr)),nl, |
252 | | % H = (int(NextNr),_), N1 is NextNr+1, |
253 | | % try_ensure_seq_numbering(T,N1). |
254 | | %try_ensure_seq_numbering(_,_). |
255 | | |
256 | | :- block is_sequence2(-,?,?,?,?,?). |
257 | | is_sequence2([],IndexesSoFar,_Type,Size,MinSize,_WF) :- MinSize = Size, |
258 | | contiguous_set_of_indexes(IndexesSoFar,Size). |
259 | | /* not very good to do the checking at the end; can we move part of the checking earlier ? */ |
260 | | is_sequence2([(int(Idx),X)|Tail],IndexesSoFar,Type,Size,MinSize,WF) :- |
261 | | less_than_direct(0,Idx), %is_index_greater_zero(Idx), |
262 | | not_element_of_wf(int(Idx),IndexesSoFar,WF), |
263 | | check_element_of_wf(X,Type,WF), S1 is Size+1, |
264 | | clpfd_interface:clpfd_leq(Idx,MinSize,_Posted), |
265 | | (var(Tail) |
266 | | -> clpfd_interface:clpfd_domain(MinSize,Low,_Up), % TO DO: ensure that final size at least Low |
267 | | (number(Low),Low>S1 -> Tail = [_|_] % TO DO: proper reification; what if MinSize gets constrained later |
268 | | ; expand_seq_if_necessary(Idx,S1,Tail)) % the sequence must be longer; force it |
269 | | ; true |
270 | | ), |
271 | | is_sequence2(Tail,[int(Idx)|IndexesSoFar],Type,S1,MinSize,WF). |
272 | | |
273 | | :- block expand_seq_if_necessary(-,?,-). |
274 | | expand_seq_if_necessary(MinSize,S1,Tail) :- % TO DO: proper reification on MinSize above |
275 | | number(MinSize), MinSize>S1, (var(Tail) ; Tail==[]), |
276 | | !, |
277 | | Tail = [_|_]. |
278 | | expand_seq_if_necessary(_,_,_). |
279 | | |
280 | | :- block contiguous_set_of_indexes(-,?). |
281 | | contiguous_set_of_indexes([],_). |
282 | | contiguous_set_of_indexes([H|T],Size) :- contiguous_set_of_indexes1(T,H,Size). |
283 | | |
284 | | :- block contiguous_set_of_indexes1(-,?,?). |
285 | | contiguous_set_of_indexes1([],int(1),_). |
286 | | contiguous_set_of_indexes1([int(H2)|T],int(H1),Size) :- less_than_equal_direct(H1,Size), |
287 | | less_than_equal_direct(H2,Size), less_than_equal_indexes(T,[H1,H2],Size). |
288 | | |
289 | | |
290 | | less_than_equal_indexes([],All,_) :- clpfd_interface:clpfd_alldifferent(All). |
291 | | less_than_equal_indexes([int(H)|T],All,Size) :- less_than_equal_direct(H,Size),less_than_equal_indexes(T,[H|All],Size). |
292 | | |
293 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_is_sequence_wf([(int(1),int(6)),(int(2),int(7)),(int(4),int(7))],[int(7),int(6)],WF),WF)). |
294 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_is_sequence_wf([(int(1),int(6)),(int(2),int(7)),(int(3),int(8))],[int(7),int(6)],WF),WF)). |
295 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_is_sequence_wf([(int(1),int(6)),(int(2),int(7)),(int(1),int(7))],[int(7),int(6)],WF),WF)). |
296 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_is_sequence_wf([(int(2),int(6)),(int(3),int(7)),(int(4),int(7))],[int(7),int(6)],WF),WF)). |
297 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_is_sequence_wf([(int(1),int(6)),(int(0),int(7)),(int(2),int(7))],[int(7),int(6)],WF),WF)). |
298 | | :- assert_must_succeed(exhaustive_kernel_fail_check(bsets_clp:not_is_sequence([(int(1),int(22))],[int(22)]))). |
299 | | :- assert_must_succeed(exhaustive_kernel_fail_check(bsets_clp:not_is_sequence([(int(2),int(33)),(int(1),int(22))],[int(22),int(33),int(44)]))). |
300 | | :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:not_is_sequence([(int(2),int(33)),(int(1),int(23))],[int(22),int(33),int(44)]))). |
301 | | :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:not_is_sequence([(int(3),int(33)),(int(1),int(22))],[int(22),int(33),int(44)]))). |
302 | | :- assert_must_fail((not_is_sequence(R,global_set('Name')),R = [])). |
303 | | :- assert_must_fail((not_is_sequence(R,global_set('Name')), |
304 | | R = [(int(2),fd(1,'Name')),(int(1),fd(2,'Name'))] )). |
305 | | :- assert_must_fail((not_is_sequence(R,global_set('Name')), |
306 | | R = [(int(1),fd(2,'Name'))] )). |
307 | | :- assert_must_fail((not_is_sequence(R,global_set('Name')), |
308 | | R = [(int(1),fd(1,'Name')),(int(2),fd(2,'Name'))] )). |
309 | | :- assert_must_fail((not_is_sequence(R,global_set('Name')), |
310 | | R = [(int(2),fd(1,'Name')),(int(1),fd(1,'Name'))] )). |
311 | | :- assert_must_fail((not_is_sequence([(int(2),fd(1,'Name')),(int(1),fd(1,'Name'))], |
312 | | global_set('Name')) )). |
313 | | :- assert_must_fail((not_is_sequence(R,[int(1),int(2)]), |
314 | | R = [(int(2),int(2)),(int(1),int(1))] )). |
315 | | :- assert_must_succeed((not_is_sequence(R,[int(1),int(2)]), |
316 | | R = [(int(2),int(2)),(int(3),int(1))] )). |
317 | | :- assert_must_succeed((not_is_sequence(R,[int(1),int(2)]), |
318 | | R = [(int(2),int(2)),(int(1),int(3))] )). |
319 | | |
320 | | |
321 | | not_is_sequence(X,Type) :- init_wait_flags(WF,[not_is_sequence]), |
322 | | not_is_sequence_wf(X,Type,WF), |
323 | | ground_wait_flags(WF). |
324 | | |
325 | | :- block not_is_sequence_wf(-,?,?). |
326 | | not_is_sequence_wf(FF,Range,WF) :- nonvar(FF),custom_explicit_sets:is_definitely_maximal_set(Range), |
327 | | % we do not need the Range; this means we can match more closures (e.g., lambda) |
328 | | custom_explicit_sets:dom_for_specific_closure(FF,FFDomain,function(_),WF),!, |
329 | | not_is_sequence_domain(FFDomain,WF). |
330 | | not_is_sequence_wf(Seq,Range,WF) :- |
331 | | expand_and_convert_to_avl_set_warn(Seq,AER,not_is_sequence_wf,'ARG /: seq(?)',WF), |
332 | | !, |
333 | | (is_avl_sequence(AER) -> is_not_avl_relation_over_range(AER,Range,WF) |
334 | | ; true). |
335 | | not_is_sequence_wf(X,Type,WF) :- expand_custom_set_to_list_wf(X,EX,_Done,not_is_sequence_wf,WF), |
336 | | not_is_sequence2(EX,[],Type,WF). |
337 | | |
338 | | :- block not_is_sequence2(-,?,?,?). |
339 | ? | not_is_sequence2([],IndexesSoFar,_,_WF) :- not_contiguous_set_of_indexes(IndexesSoFar). |
340 | | not_is_sequence2([(int(Idx),X)|Tail],IndexesSoFar,Type,WF) :- |
341 | | membership_test_wf(IndexesSoFar,int(Idx),MemRes,WF), |
342 | ? | not_is_sequence3(MemRes,Idx,X,Tail,IndexesSoFar,Type,WF). |
343 | | |
344 | | :- block not_is_sequence3(-,?,?,?,?,?,?). |
345 | | not_is_sequence3(pred_true,_Idx,_X,_Tail,_IndexesSoFar,_Type,_WF). |
346 | | not_is_sequence3(pred_false,Idx,_X,_Tail,_IndexesSoFar,_Type,_WF) :- nonvar(Idx),Idx<1,!. |
347 | | not_is_sequence3(pred_false,Idx,X,Tail,IndexesSoFar,Type,WF) :- |
348 | | membership_test_wf(Type,X,MemRes,WF), |
349 | ? | not_is_sequence4(MemRes,Idx,Tail,IndexesSoFar,Type,WF). |
350 | | |
351 | | :- block not_is_sequence4(-,?,?,?,?,?). |
352 | | not_is_sequence4(pred_false,_Idx,_Tail,_IndexesSoFar,_Type,_WF). |
353 | | not_is_sequence4(pred_true,Idx,Tail,IndexesSoFar,Type,WF) :- |
354 | ? | not_is_sequence2(Tail,[int(Idx)|IndexesSoFar],Type,WF). |
355 | | |
356 | | not_contiguous_set_of_indexes(Indexes) :- |
357 | ? | when(ground(Indexes),(sort(Indexes,Sorted),not_contiguous_set_of_indexes2(Sorted,1))). |
358 | | not_contiguous_set_of_indexes2([int(N)|T],N1) :- |
359 | ? | when(?=(N,N1), |
360 | | ((N \= N1) ; (N=N1, N2 is N1+1, not_contiguous_set_of_indexes2(T,N2)))). |
361 | | |
362 | | |
363 | | |
364 | | |
365 | | |
366 | | :- assert_must_succeed(exhaustive_kernel_fail_check(bsets_clp:not_is_non_empty_sequence([(int(1),int(22))],[int(22)]))). |
367 | | :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:not_is_non_empty_sequence([(int(1),int(2))],[int(22)]))). |
368 | | :- assert_must_succeed((bsets_clp:not_is_non_empty_sequence(R,global_set('Name')),R = [])). |
369 | | :- assert_must_fail((bsets_clp:not_is_non_empty_sequence(R,global_set('Name')), |
370 | | R = [(int(2),fd(1,'Name')),(int(1),fd(2,'Name'))] )). |
371 | | :- assert_must_succeed((bsets_clp:not_is_non_empty_sequence(R,global_set('Name')), |
372 | | R = [(int(2),fd(1,'Name')),(int(4),fd(2,'Name'))] )). |
373 | | :- assert_must_fail((bsets_clp:not_is_non_empty_sequence(R,global_set('Name')), |
374 | | R = [(int(1),fd(1,'Name')),(int(2),fd(1,'Name'))] )). |
375 | | :- assert_must_succeed((bsets_clp:not_is_non_empty_sequence(R,[int(1),int(2)]), |
376 | | R = [(int(1),int(2)),(int(2),int(3))] )). |
377 | | |
378 | | % S /: seq1(T) |
379 | | not_is_non_empty_sequence_wf(S,T,_) :- not_is_non_empty_sequence(S,T). |
380 | | :- block not_is_non_empty_sequence(-,?). |
381 | | not_is_non_empty_sequence([],_) :- !. |
382 | | not_is_non_empty_sequence(X,Type) :- |
383 | | empty_sequence(X) ; not_is_sequence(X,Type). |
384 | | |
385 | | |
386 | | |
387 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:injective_sequence_wf([(int(1),int(22))],[int(22)],WF),WF)). |
388 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:injective_sequence_wf([(int(2),int(33)),(int(1),int(22))],[int(22),int(33),int(44)],WF),WF)). |
389 | | :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:injective_sequence_wf([(int(2),int(33)),(int(1),int(23))],[int(22),int(33),int(44)],WF),WF)). |
390 | | :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:injective_sequence_wf([(int(2),int(22)),(int(1),int(22))],[int(22),int(33),int(44)],WF),WF)). |
391 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:injective_sequence_wf([],global_set('Name'),WF),WF)). |
392 | | :- assert_must_succeed((bsets_clp:injective_sequence_wf(R,global_set('Name'),WF), |
393 | | kernel_waitflags:ground_det_wait_flag(WF), R = [(int(2),fd(1,'Name')),(int(1),fd(2,'Name'))] )). |
394 | | :- assert_must_succeed((bsets_clp:injective_sequence_wf(R,global_set('Name'),WF), |
395 | | ground_det_wait_flag(WF), R = [(int(1),fd(2,'Name'))] )). |
396 | | :- assert_must_succeed((bsets_clp:injective_sequence_wf(R,global_set('Name'),WF), |
397 | | ground_det_wait_flag(WF), R = [(int(1),fd(1,'Name')),(int(2),fd(2,'Name'))] )). |
398 | | :- assert_must_fail((bsets_clp:injective_sequence_wf(R,global_set('Name'),WF), |
399 | | ground_det_wait_flag(WF), R = [(int(2),fd(1,'Name')),(int(1),fd(1,'Name'))] )). |
400 | | :- assert_must_succeed(exhaustive_kernel_fail_check_wf(bsets_clp:injective_sequence_wf([(int(2),fd(1,'Name')),(int(1),fd(1,'Name'))], |
401 | | global_set('Name'),WF),WF) ). |
402 | | :- assert_must_succeed((bsets_clp:injective_sequence_wf(R,[int(1),int(2)],WF), |
403 | | ground_det_wait_flag(WF),R = [(int(2),int(2)),(int(1),int(1))] )). |
404 | | :- assert_must_fail((bsets_clp:injective_sequence_wf(R,[int(1),int(2)],WF), |
405 | | ground_det_wait_flag(WF),R = [(int(2),int(2)),(int(3),int(1))] )). |
406 | | :- assert_must_fail((bsets_clp:injective_sequence_wf(R,[int(1),int(2)],WF), |
407 | | ground_det_wait_flag(WF), R = [(int(2),int(2)),(int(1),int(3))] )). |
408 | | |
409 | | |
410 | | |
411 | | :- block injective_sequence_wf(-,-,?). |
412 | | injective_sequence_wf(Seq,Type,WF) :- /* corresponds to iseq */ |
413 | | nonvar(Seq), |
414 | | %expand_and_convert_to_avl_set_warn(Seq,AER,injective_sequence_wf_aux,'ARG : iseq(?)',WF), |
415 | | Seq=avl_set(AER), |
416 | | !, |
417 | | is_avl_sequence(AER), |
418 | | is_injective_avl_relation(AER,_ExactRange), % Should we check _ExactRange <: Type ?? |
419 | | is_avl_relation_over_range(AER,Type,WF). |
420 | | injective_sequence_wf(Seq,Type,WF) :- |
421 | | cardinality_as_int_for_wf(Type,MaxCard), |
422 | | custom_explicit_sets:blocking_nr_iseq(MaxCard,ISeqSize), |
423 | | block_get_wait_flag(ISeqSize,injective_sequence_wf,WF,LWF), |
424 | | injective_sequence_wf_aux(Seq,Type,MaxCard,WF,LWF). |
425 | | |
426 | | :- block injective_sequence_wf_aux(-,?,?,?,-). |
427 | | injective_sequence_wf_aux(Seq,Type,_,WF,_) :- /* corresponds to iseq */ |
428 | | nonvar(Seq), |
429 | | expand_and_convert_to_avl_set_warn(Seq,AER,injective_sequence_wf_aux,'ARG : iseq(?)',WF),!, |
430 | | %Seq=avl_set(AER), |
431 | | !, |
432 | | is_avl_sequence(AER), |
433 | | is_injective_avl_relation(AER,_ExactRange), % Should we check _ExactRange <: Type ?? |
434 | | is_avl_relation_over_range(AER,Type,WF). |
435 | | injective_sequence_wf_aux(Seq,Type,MaxCard,WF,LWF) :- |
436 | | expand_custom_set_to_list_wf(Seq,ESeq,_,injective_sequence_wf,WF), |
437 | | is_sequence_wf(ESeq,Type,WF), |
438 | | injective_sequence2(ESeq,0,[],Type,WF,MaxCard,LWF). |
439 | | |
440 | | :- block injective_sequence2(-,?,?,?,?,?,-),injective_sequence2(-,?,?,?,?,-,?). |
441 | | injective_sequence2([],_,_,_Type,_WF,_MaxCard,_LWF). |
442 | | injective_sequence2([(int(Index),X)|Tail],CardSoFar,SoFar,Type,WF,MaxCard,LWF) :- |
443 | | (number(MaxCard) -> CardSoFar< MaxCard, %less_than_equal_direct(Index,MaxCard) % does not enumerate index |
444 | | in_nat_range_wf(int(Index),int(0),int(MaxCard),WF) % ensures the index gets enumerated, see test 1914, x:iseq(50001..50002) & y:1..100005 & SIGMA(yy).(yy:dom(x)|x(yy)) = y & y>50002 |
445 | | ; true), |
446 | | check_element_of_wf(X,Type,WF), |
447 | | not_element_of_wf(X,SoFar,WF), |
448 | | add_new_element_wf(X,SoFar,SoFar2,WF), |
449 | | C1 is CardSoFar+1, |
450 | | (C1 == MaxCard -> Tail=[] ; true), |
451 | | injective_sequence2(Tail,C1,SoFar2,Type,WF,MaxCard,LWF). |
452 | | |
453 | | |
454 | | :- assert_must_succeed(exhaustive_kernel_fail_check_wf(bsets_clp:not_injective_sequence([(int(1),int(22))],[int(22)],WF),WF)). |
455 | | :- assert_must_succeed(exhaustive_kernel_fail_check_wf(bsets_clp:not_injective_sequence([(int(2),int(33)),(int(1),int(22))],[int(22),int(33),int(44)],WF),WF)). |
456 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_injective_sequence([(int(2),int(33)),(int(1),int(23))],[int(22),int(33),int(44)],WF),WF)). |
457 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_injective_sequence([(int(2),int(22)),(int(1),int(22))],[int(22),int(33),int(44)],WF),WF)). |
458 | | :- assert_must_fail((bsets_clp:not_injective_sequence(R,global_set('Name'),_WF),R = [])). |
459 | | :- assert_must_fail((bsets_clp:not_injective_sequence(R,global_set('Name'),WF), |
460 | | ground_det_wait_flag(WF), |
461 | | R = [(int(2),fd(1,'Name')),(int(1),fd(2,'Name'))] )). |
462 | | :- assert_must_fail((bsets_clp:not_injective_sequence(R,global_set('Name'),WF), |
463 | | ground_det_wait_flag(WF), |
464 | | R = [(int(1),fd(2,'Name'))] )). |
465 | | :- assert_must_fail((bsets_clp:not_injective_sequence(R,global_set('Name'),WF), |
466 | | ground_det_wait_flag(WF), |
467 | | R = [(int(1),fd(1,'Name')),(int(2),fd(2,'Name'))] )). |
468 | | :- assert_must_fail((bsets_clp:not_injective_sequence(R,[int(1),int(2)],WF), |
469 | | ground_det_wait_flag(WF), |
470 | | R = [(int(2),int(2)),(int(1),int(1))] )). |
471 | | :- assert_must_succeed((bsets_clp:not_injective_sequence(R,global_set('Name'),WF), |
472 | | ground_det_wait_flag(WF), |
473 | | R = [(int(2),fd(1,'Name')),(int(1),fd(1,'Name'))] )). |
474 | | :- assert_must_succeed((bsets_clp:not_injective_sequence([(int(2),fd(1,'Name')),(int(1),fd(1,'Name'))], |
475 | | global_set('Name'),WF), |
476 | | ground_det_wait_flag(WF) )). |
477 | | :- assert_must_succeed((bsets_clp:not_injective_sequence(R,[int(1),int(2)],WF), |
478 | | ground_det_wait_flag(WF), |
479 | | R = [(int(2),int(2)),(int(3),int(1))] )). |
480 | | :- assert_must_succeed((bsets_clp:not_injective_sequence(R,[int(1),int(2)],WF), |
481 | | ground_det_wait_flag(WF), |
482 | | R = [(int(2),int(2)),(int(1),int(3))] )). |
483 | | :- block not_injective_sequence(-,?,?), not_injective_sequence(?,-,?). |
484 | | not_injective_sequence(Seq,_,_) :- Seq==[],!,fail. |
485 | | not_injective_sequence(Seq,Type,WF) :- nonvar(Seq), |
486 | | expand_and_convert_to_avl_set_warn(Seq,AER,not_injective_sequence,'ARG /: iseq(?)',WF),!, |
487 | | (\+ is_avl_sequence(AER) -> true |
488 | | ; is_injective_avl_relation(AER,ExactRange) -> not_subset_of_wf(ExactRange,Type,WF) |
489 | | ; true). |
490 | | not_injective_sequence(Seq,Type,WF) :- /* corresponds to Iseq */ |
491 | | %get_middle_wait_flag(not_injective_sequence,WF,LWF), |
492 | | ground_value_check(Seq,SV), |
493 | | not_injective_sequence1(Seq,Type,WF,SV). |
494 | | :- block not_injective_sequence1(?,?,?,-). |
495 | | not_injective_sequence1(Seq,Type,WF,_) :- |
496 | | expand_custom_set_to_list_wf(Seq,ESeq,_,not_injective_sequence1,WF), |
497 | | (not_is_sequence_wf(ESeq,Type,WF) |
498 | | ; /* CHOICE POINT !! */ |
499 | | (is_sequence_wf(ESeq,Type,WF),not_injective_sequence2(ESeq,[],Type,WF))). |
500 | | :- block not_injective_sequence2(-,?,?,?). |
501 | | not_injective_sequence2([(int(_),X)|Tail],SoFar,Type,WF) :- |
502 | | membership_test_wf(SoFar,X,MemRes,WF), |
503 | | not_injective_sequence3(MemRes,X,Tail,SoFar,Type,WF). |
504 | | |
505 | | :- block not_injective_sequence3(-,?,?,?,?,?). |
506 | | not_injective_sequence3(pred_true,_X,_Tail,_SoFar,_Type,_WF). |
507 | | not_injective_sequence3(pred_false,X,Tail,SoFar,Type,WF) :- |
508 | | add_new_element_wf(X,SoFar,SoFar2,WF), |
509 | | not_injective_sequence2(Tail,SoFar2,Type,WF). |
510 | | |
511 | | :- assert_must_succeed(exhaustive_kernel_fail_check_wf(bsets_clp:not_non_empty_injective_sequence([(int(1),int(22))],[int(22)],WF),WF)). |
512 | | :- assert_must_succeed(exhaustive_kernel_fail_check_wf(bsets_clp:not_non_empty_injective_sequence([(int(2),int(33)),(int(1),int(22))],[int(22),int(33),int(44)],WF),WF)). |
513 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_non_empty_injective_sequence([(int(2),int(33)),(int(1),int(23))],[int(22),int(33),int(44)],WF),WF)). |
514 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_non_empty_injective_sequence([(int(2),int(33)),(int(1),int(33))],[int(44),int(33),int(22)],WF),WF)). |
515 | | :- assert_must_succeed((bsets_clp:not_non_empty_injective_sequence(R,global_set('Name'),WF), |
516 | | ground_det_wait_flag(WF), R = [])). |
517 | | :- assert_must_fail((bsets_clp:not_non_empty_injective_sequence(R,global_set('Name'),WF), |
518 | | ground_det_wait_flag(WF), R = [(int(1),fd(1,'Name')),(int(2),fd(2,'Name'))] )). |
519 | | :- assert_must_succeed((bsets_clp:not_non_empty_injective_sequence(R,[int(1),int(2)],WF), |
520 | | ground_det_wait_flag(WF), R = [(int(2),int(2)),(int(1),int(3))] )). |
521 | | |
522 | | :- block not_non_empty_injective_sequence(-,?,?). |
523 | | not_non_empty_injective_sequence([],_Type,_WF) :- !. |
524 | | not_non_empty_injective_sequence(X,Type,WF) :- |
525 | | empty_sequence(X) ; not_injective_sequence(X,Type,WF). |
526 | | |
527 | | |
528 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:injective_non_empty_sequence([(int(1),int(22))],[int(22)],WF),WF)). |
529 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:injective_non_empty_sequence([(int(2),int(33)),(int(1),int(22))],[int(22),int(33),int(44)],WF),WF)). |
530 | | :- assert_must_succeed(exhaustive_kernel_fail_check_wf(bsets_clp:injective_non_empty_sequence([(int(2),int(33)),(int(1),int(23))],[int(22),int(33),int(44)],WF),WF)). |
531 | | :- assert_must_succeed(exhaustive_kernel_fail_check_wf(bsets_clp:injective_non_empty_sequence([(int(2),int(44)),(int(1),int(44))],[int(22),int(33),int(44)],WF),WF)). |
532 | | :- assert_must_fail((bsets_clp:injective_non_empty_sequence(R,global_set('Name'),WF), |
533 | | ground_det_wait_flag(WF),R = [])). |
534 | | :- assert_must_succeed((bsets_clp:injective_non_empty_sequence(R,global_set('Name'),WF), |
535 | | ground_det_wait_flag(WF),R = [(int(1),fd(1,'Name')),(int(2),fd(2,'Name'))] )). |
536 | | :- block injective_non_empty_sequence(-,-,?). /* corresponds to iseq1 */ |
537 | | injective_non_empty_sequence(A,Type,WF) :- nonvar(A),A=avl_set(AS), !, |
538 | | injective_sequence_wf(avl_set(AS),Type,WF),is_non_empty_explicit_set_wf(avl_set(AS),WF). |
539 | | injective_non_empty_sequence(Seq,Type,WF) :- |
540 | | ((nonvar(Seq),Seq=closure(_,_,_)) -> try_expand_custom_set_wf(Seq,ESeq,injective_non_empty_sequence,WF) ; ESeq=Seq), |
541 | | injective_sequence_wf(ESeq,Type,WF),not_empty_sequence_wf(ESeq,WF). |
542 | | |
543 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:finite_non_empty_sequence([(int(1),int(22))],[int(22)],WF),WF)). |
544 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:finite_non_empty_sequence([(int(1),int(33)),(int(2),int(33))],[int(22),int(33)],WF),WF)). |
545 | | :- assert_must_fail((bsets_clp:finite_non_empty_sequence(R,global_set('Name'),WF),ground_det_wait_flag(WF),ground_det_wait_flag(WF),R = [])). |
546 | | :- assert_must_succeed((bsets_clp:finite_non_empty_sequence(R,global_set('Name'),WF), |
547 | | ground_det_wait_flag(WF),R = [(int(2),fd(1,'Name')),(int(1),fd(1,'Name'))] )). |
548 | | :- block finite_non_empty_sequence(-,?,?). |
549 | | finite_non_empty_sequence(Seq,Type,WF) :- /* corresponds to Seq1 */ |
550 | | is_sequence_wf_ex(Seq,Type,WF,ESeq), |
551 | | (var(ESeq) -> not_empty_sequence_wf(Seq,WF) ; not_empty_sequence_wf(ESeq,WF)). |
552 | | |
553 | | |
554 | | :- block test_finite_non_empty_sequence(-,?,-,?). |
555 | | test_finite_non_empty_sequence(Seq,_Type,Res,_WF) :- |
556 | | Seq == [],!, Res=pred_false. |
557 | | test_finite_non_empty_sequence(Seq,Type,Res,WF) :- var(Res),!, |
558 | | ground_value_check(Seq,GrSeq), |
559 | | test_finite_non_empty_sequence2(Res,Seq,Type,GrSeq,WF). % will trigger and enumerate Res below |
560 | | % Note: we cannot rely on Res being enumerated; e.g., in case a WD error occurs |
561 | | test_finite_non_empty_sequence(Seq,Type,Res,WF) :- |
562 | | test_finite_non_empty_sequence2(Res,Seq,Type,_,WF). |
563 | | |
564 | | % TODO: improve to incrementally check if something is a sequence |
565 | | :- block test_finite_non_empty_sequence2(-,?,?,-,?). |
566 | | test_finite_non_empty_sequence2(pred_true,Seq,Type,_,WF) :- |
567 | | finite_non_empty_sequence(Seq,Type,WF). |
568 | | test_finite_non_empty_sequence2(pred_false,Seq,Type,_,WF) :- |
569 | | not_is_non_empty_sequence_wf(Seq,Type,WF). |
570 | | |
571 | | |
572 | | |
573 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:permutation_sequence_wf([(int(1),int(22))],[int(22)],WF),WF)). |
574 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:permutation_sequence_wf([(int(2),int(33)),(int(1),int(22))],[int(22),int(33)],WF),WF)). |
575 | | :- assert_must_succeed(exhaustive_kernel_fail_check_wf(bsets_clp:permutation_sequence_wf([(int(2),int(33)),(int(1),int(23))],[int(23),int(33),int(44)],WF),WF)). |
576 | | :- assert_must_succeed(exhaustive_kernel_fail_check_wf(bsets_clp:permutation_sequence_wf([(int(2),int(44)),(int(1),int(44))],[int(44)],WF),WF)). |
577 | | :- assert_must_succeed((kernel_waitflags:init_wait_flags(WF),bsets_clp:permutation_sequence_wf(R,[int(1)],WF), |
578 | | ground_det_wait_flag(WF),R = [(int(1),int(1))] )). |
579 | | :- assert_must_succeed((kernel_waitflags:init_wait_flags(WF),bsets_clp:permutation_sequence_wf(R,[int(1),int(2)],WF), |
580 | | ground_det_wait_flag(WF),R = [(int(1),int(1)),(int(2),int(2))] )). |
581 | | :- assert_must_succeed((bsets_clp:permutation_sequence_wf(R,[int(1),int(2)],WF), |
582 | | ground_det_wait_flag(WF),R = [(int(1),int(2)),(int(2),int(1))] )). |
583 | | :- assert_must_succeed((kernel_waitflags:init_wait_flags(WF),bsets_clp:permutation_sequence_wf(R,[pred_true /* bool_true */,pred_false /* bool_false */],WF), kernel_waitflags:ground_wait_flags(WF), nonvar(R), |
584 | | R = [(int(1),pred_false /* bool_false */),(int(2),pred_true /* bool_true */)] )). |
585 | | :- assert_must_fail((kernel_waitflags:init_wait_flags(WF),bsets_clp:permutation_sequence_wf(R,[int(1)],WF), |
586 | | ground_det_wait_flag(WF),R = [(int(1),int(1)),(int(2),int(1))] )). |
587 | | :- assert_must_fail((kernel_waitflags:init_wait_flags(WF),bsets_clp:permutation_sequence_wf(R,global_set('Name'),WF),ground_det_wait_flag(WF),R = [])). |
588 | | :- assert_must_fail((kernel_waitflags:init_wait_flags(WF),bsets_clp:permutation_sequence_wf(R,global_set('Name'),WF), |
589 | | ground_det_wait_flag(WF),R = [(int(1),fd(1,'Name')),(int(2),fd(2,'Name'))] )). |
590 | | :- assert_must_succeed((bsets_clp:permutation_sequence_wf(R,global_set('Name'),WF), |
591 | | ground_det_wait_flag(WF), |
592 | | kernel_objects:equal_object(R,[(int(1),fd(1,'Name')),(int(3),fd(2,'Name')),(int(2),fd(3,'Name'))]) )). |
593 | | :- assert_must_fail((kernel_waitflags:init_wait_flags(WF),bsets_clp:permutation_sequence_wf(R,[int(1),int(2)],WF), |
594 | | ground_det_wait_flag(WF),R = [(int(1),int(1)),(int(2),int(3))] )). |
595 | | :- assert_must_fail((kernel_waitflags:init_wait_flags(WF),bsets_clp:permutation_sequence_wf(R,global_set('Name'),WF), |
596 | | ground_det_wait_flag(WF),R = [(int(2),fd(1,'Name')),(int(1),fd(1,'Name'))] )). |
597 | | :- assert_must_succeed((kernel_waitflags:init_wait_flags(WF),bsets_clp:permutation_sequence_wf(R,[int(4),int(3),int(2),int(1)],WF), |
598 | | ground_det_wait_flag(WF), R=[(int(1),int(1)),(int(2),int(2)),(int(3),int(3)),(int(4),int(4))])). |
599 | | |
600 | | :- block permutation_sequence_wf(-,-,?). |
601 | | permutation_sequence_wf(SeqFF,Type,WF) :- nonvar(SeqFF), |
602 | | custom_explicit_sets:dom_range_for_specific_closure(SeqFF,FFDomain,FFRange,function(bijection),WF),!, |
603 | | equal_object_wf(FFRange,Type,permutation_sequence_wf_1,WF), |
604 | | is_sequence_domain(FFDomain,WF). |
605 | | permutation_sequence_wf(Seq,Type,WF) :- |
606 | | expand_and_convert_to_avl_set_warn(Seq,AER,permutation_sequence_wf,'ARG : perm(?)',WF),!, |
607 | | is_avl_sequence(AER), |
608 | | is_injective_avl_relation(AER,Range), |
609 | | kernel_objects:equal_object_wf(Range,Type,permutation_sequence_wf_2,WF). |
610 | | permutation_sequence_wf(Seq,Type,WF) :- |
611 | | try_expand_custom_set_wf(Seq,ESeq,permutation_sequence_wf,WF), |
612 | | cardinality_as_int_wf(Type,int(Card),WF), |
613 | | when(nonvar(Card), (setup_sequence_wf(Card,SkelSeq,perm,WF), |
614 | | CardGround=true, |
615 | | kernel_objects:equal_object_wf(SkelSeq,ESeq,permutation_sequence_wf_3,WF))), |
616 | | %injective_sequence_wf(ESeq,Type,WF,LWF), |
617 | | surjective_iseq_0(SkelSeq,ESeq,Type,WF,Card,CardGround). |
618 | | % quick_all_different_range(ESeq,[],Type,WF). |
619 | | |
620 | | :- block surjective_iseq_0(-,-,?,?,?,-). |
621 | | surjective_iseq_0(SkelSeq,_ESeq,Type,WF,_Card,Ground) :- |
622 | | nonvar(Ground), |
623 | | nonvar(SkelSeq), |
624 | | preference(use_clpfd_solver,true), % try and use an optimized version calling global_cardinality in CLPFD module |
625 | ? | get_global_cardinality_list(Type,YType,GCL,_,WF), |
626 | | % this dramatically reduces runtime for NQueens40_perm; maybe we should do this only when necessary, i.e., when surjective_iseq blocks on PreviousRemoveDone |
627 | | % check why it slows down SortByPermutation_v2 |
628 | | !, |
629 | | global_cardinality_range(SkelSeq,[],YType,GCL,WF). |
630 | | surjective_iseq_0(_,ESeq,Type,WF,Card,_) :- |
631 | | %quick_propagate_range(ESeq,Type,WF), % ensure that we propagate type information to all elements; p:perm(5..20) & p(10)=21 will fail straightaway (surjective_iseq will block); |
632 | | % but this slows down EulerWay.mch ; maybe because it sets up enumerators ? TO DO: investigate |
633 | | surjective_iseq(ESeq,Type,WF,Card). |
634 | | |
635 | | %:- use_module(clpfd_interface,[clpfd_alldifferent/1]). |
636 | | % collect range and then call CLPFD global_cardinality using GCL (Global Cardinality List Ki-Vi) |
637 | | :- use_module(library(clpfd), [global_cardinality/3]). |
638 | | :- block global_cardinality_range(-,?,?,?,?). |
639 | | global_cardinality_range([],Acc,_Type,GCL,WF) :- |
640 | | global_cardinality(Acc,GCL,[consistency(value)]), |
641 | | add_fd_variables_for_labeling(Acc,WF). % this is needed for efficiency for NQueens40_perm !! |
642 | | global_cardinality_range([(_,Y)|T],Acc,Type,GCL,WF) :- |
643 | | get_simple_fd_value(Type,Y,FDYVAL), |
644 | | global_cardinality_range(T,[FDYVAL|Acc],Type,GCL,WF). |
645 | | |
646 | | |
647 | | :- use_module(library(avl), [avl_domain/2]). |
648 | | :- use_module(b_global_sets,[all_elements_of_type_wf/3,b_integer_set/1]). |
649 | | % try and convert a B set into a list suitable for calling clpfd:global_cardinality |
650 | | % get_global_cardinality_list(avl_set(A) % TO DO: extend to integer_lists |
651 | | get_global_cardinality_list(global_set(G),Type,GCL,list,WF) :- !, |
652 | | all_elements_of_type_wf(G,Values,WF), % can only work for finite sets, not for STRING, NATURAL, REAL, ... |
653 | | (b_integer_set(G) -> Type=integer ; Type=global(G)), |
654 | | findall(X-1,(get_simple_fd_value(Type,VV,X),member(VV,Values)),GCL). |
655 | | get_global_cardinality_list(avl_set(A),Type,GCL,list,_WF) :- !, |
656 | | A = node(TopValue,_True,_,_,_), |
657 | ? | get_simple_fd_value(Type,TopValue,_), % we have CLPFD values |
658 | | avl_domain(A,Values), |
659 | | findall(X-1,(get_simple_fd_value(Type,VV,X),member(VV,Values)),GCL). |
660 | | get_global_cardinality_list(Set,integer,GCL,interval(L1,U1),_WF) :- nonvar(Set), |
661 | | is_interval_closure_or_integerset(Set,L1,U1), number(L1),number(U1), |
662 | | global_cardinality_list_interval(L1,U1,GCL). |
663 | | |
664 | | global_cardinality_list_interval(From,To,[]) :- From>To, !. |
665 | | global_cardinality_list_interval(From,To,[From-1|T]) :- |
666 | | F1 is From+1, global_cardinality_list_interval(F1,To,T). |
667 | | |
668 | | %try_get_simple_fd_value(Type,V,Val) :- nonvar(V),get_simple_fd_value(Type,V,Val). |
669 | | get_simple_fd_value(integer,int(X),X). |
670 | | get_simple_fd_value(global(T),fd(X,T),X). |
671 | | % try_get_simple_fd_value(pred_false,0). try_get_simple_fd_value(pred_true,1). ?? |
672 | | % TO DO: maybe also treat pairs ? but we need complete values; see module clpfd_lists ! |
673 | | |
674 | | setup_sequence_wf(0,R,_,_) :- !, R=[]. |
675 | | setup_sequence_wf(Card,_,PP,WF) :- \+ number(Card), !, |
676 | | add_error_wf(infinite_sequence,'Cannot generate infinite sequence for', PP,unkown,WF). % triggered in test 1979 |
677 | | setup_sequence_wf(Card,[(int(1),_)|T] ,_PP,_WF) :- Card>0, C1 is Card-1, |
678 | | setup_sequence(C1,T,2). |
679 | | setup_sequence(0,R,_) :- !, R=[]. |
680 | | setup_sequence(Card,[(int(Nr),_)|T], Nr ) :- Card>0, C1 is Card-1, |
681 | | N1 is Nr+1, |
682 | | setup_sequence(C1,T,N1). |
683 | | |
684 | | :- block surjective_iseq(?,?,?,-),surjective_iseq(?,-,?,?), surjective_iseq(-,?,?,?). |
685 | | surjective_iseq(avl_set(S),Type,WF,Done) :- |
686 | | expand_custom_set_wf(avl_set(S),ES,surjective_iseq,WF), |
687 | | surjective_iseq(ES,Type,WF,Done). |
688 | | surjective_iseq(closure(P,T,B),Type,WF,Done) :- |
689 | | expand_custom_set_wf(closure(P,T,B),ES,surjective_iseq,WF), |
690 | | surjective_iseq(ES,Type,WF,Done). |
691 | | % no case for global_set: cannot be a relation |
692 | | surjective_iseq([],T,WF,_) :- empty_set_wf(T,WF). |
693 | | surjective_iseq([(int(_Nr),El)|Tail],Type,WF,_PreviousRemoveDone) :- |
694 | | remove_element_wf(El,Type,NType,WF,Done), |
695 | | surjective_iseq(Tail,NType,WF,Done). |
696 | | :- assert_must_succeed(exhaustive_kernel_fail_check_wf(bsets_clp:not_permutation_sequence([(int(1),int(22))],[int(22)],WF),WF)). |
697 | | :- assert_must_succeed(exhaustive_kernel_fail_check_wf(bsets_clp:not_permutation_sequence([(int(2),int(33)),(int(1),int(22))],[int(22),int(33)],WF),WF)). |
698 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_permutation_sequence([(int(2),int(33)),(int(1),int(23))],[int(23),int(33),int(44)],WF),WF)). |
699 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_permutation_sequence([(int(2),int(44)),(int(1),int(44))],[int(44)],WF),WF)). |
700 | | :- assert_must_fail((bsets_clp:not_permutation_sequence(R,[int(1)],WF), |
701 | | ground_det_wait_flag(WF),R = [(int(1),int(1))] )). |
702 | | :- assert_must_fail((bsets_clp:not_permutation_sequence(R,[int(1),int(2)],WF), |
703 | | ground_det_wait_flag(WF),R = [(int(2),int(2)),(int(1),int(1))] )). |
704 | | :- assert_must_fail((bsets_clp:not_permutation_sequence(R,[int(1),int(2)],WF), |
705 | | ground_det_wait_flag(WF),R = [(int(1),int(2)),(int(2),int(1))] )). |
706 | | :- assert_must_fail((bsets_clp:not_permutation_sequence(R,global_set('Name'),WF), |
707 | | ground_det_wait_flag(WF), R = [(int(1),fd(1,'Name')),(int(3),fd(2,'Name')),(int(2),fd(3,'Name'))] )). |
708 | | :- assert_must_succeed((bsets_clp:not_permutation_sequence(R,[int(1)],WF), |
709 | | ground_det_wait_flag(WF),R = [(int(1),int(1)),(int(2),int(1))] )). |
710 | | :- assert_must_succeed((bsets_clp:not_permutation_sequence(R,global_set('Name'),_WF),R = [])). |
711 | | :- assert_must_succeed((bsets_clp:not_permutation_sequence(R,global_set('Name'),WF), |
712 | | ground_det_wait_flag(WF),R = [(int(1),fd(1,'Name')),(int(2),fd(2,'Name'))] )). |
713 | | :- assert_must_succeed((bsets_clp:not_permutation_sequence(R,[int(1),int(2)],WF), |
714 | | ground_det_wait_flag(WF),R = [(int(1),int(1)),(int(2),int(3))] )). |
715 | | :- assert_must_succeed((bsets_clp:not_permutation_sequence(R,global_set('Name'),WF), |
716 | | ground_det_wait_flag(WF),R = [(int(2),fd(1,'Name')),(int(1),fd(1,'Name'))] )). |
717 | | :- block not_permutation_sequence(-,?,?). |
718 | | not_permutation_sequence(SeqFF,Type,WF) :- nonvar(SeqFF), |
719 | | custom_explicit_sets:dom_range_for_specific_closure(SeqFF,FFDomain,FFRange,function(bijection),WF),!, |
720 | | equality_objects_wf(FFRange,Type,Result,WF), |
721 | | when(nonvar(Result),(Result=pred_false -> true ; not_is_sequence_domain(FFDomain,WF))). |
722 | | not_permutation_sequence(Seq,Type,WF) :- |
723 | | ground_value_check(Seq,SV), |
724 | ? | not_permutation_sequence1(Seq,Type,SV,WF). |
725 | | :- block not_permutation_sequence1(?,-,?,?), not_permutation_sequence1(?,?,-,?). |
726 | | not_permutation_sequence1(avl_set(A),Type,_,WF) :- is_ground_set(Type), !, Seq=avl_set(A), |
727 | | if(not_injective_sequence(Seq,Type,WF), |
728 | | true, % no backtracking required; we could even use regular if with -> |
729 | | not_surj_avl(Seq,Type,WF) |
730 | | ). |
731 | | not_permutation_sequence1(avl_set(A),Type,_,WF) :- !, Seq=avl_set(A), |
732 | | (not_injective_sequence(Seq,Type,WF) |
733 | | ; injective_sequence_wf(Seq,Type,WF), |
734 | | not_surj_avl(Seq,Type,WF)). |
735 | | not_permutation_sequence1(Seq,Type,_,WF) :- |
736 | | expand_custom_set_to_list_wf(Seq,ESeq,Done,not_permutation_sequence1,WF), |
737 | ? | not_permutation_sequence2(ESeq,Type,WF,Done). |
738 | | |
739 | | not_surj_avl(Seq,Type,WF) :- range_wf(Seq,Range,WF), |
740 | | not_equal_object_wf(Range,Type,WF). % TO DO: one could even just check cardinality as Seq is inj |
741 | | %expand_custom_set_to_list_wf(Seq,ESeq,_,not_permutation_sequence1,WF), |
742 | | % not_surjective_seq(ESeq,Type,WF). |
743 | | % check if it is a ground set that cannot be instantiated |
744 | | is_ground_set(V) :- var(V),!,fail. |
745 | | is_ground_set(avl_set(_)). |
746 | | is_ground_set(global_set(_)). |
747 | | is_ground_set([]). |
748 | | |
749 | | % here we could have a choice point in WF0 |
750 | | :- block not_permutation_sequence2(?,?,?,-). |
751 | | not_permutation_sequence2(Seq,Type,WF,_) :- not_injective_sequence(Seq,Type,WF). |
752 | | not_permutation_sequence2(Seq,Type,WF,_) :- |
753 | | injective_sequence_wf(Seq,Type,WF), not_surjective_seq(Seq,Type,WF). |
754 | | |
755 | | :- block not_surjective_seq(-,?,?). |
756 | | not_surjective_seq([],T,WF) :- not_empty_set_wf(T,WF). |
757 | | not_surjective_seq([(int(_),El)|Tail],Type,WF) :- |
758 | | delete_element_wf(El,Type,NType,WF), |
759 | | not_surjective_seq(Tail,NType,WF). |
760 | | |
761 | | :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:size_of_sequence([(int(1),int(22))],int(1),_WF))). |
762 | | :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:size_of_sequence([(int(2),int(22)),(int(1),int(22))],int(2),_WF))). |
763 | | :- assert_must_succeed(exhaustive_kernel_fail_check(bsets_clp:size_of_sequence([(int(2),int(22)),(int(1),int(22))],int(3),_WF))). |
764 | | :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:size_of_sequence([(int(2),int(22)),(int(1),int(22)),(int(3),int(33))],int(3),_WF))). |
765 | | :- assert_must_succeed((bsets_clp:size_of_sequence(X,R,_WF), |
766 | | X = [(int(1),int(2)),(int(2),int(1))], |
767 | | R = int(2))). |
768 | | :- assert_must_succeed((preferences:preference(use_clpfd_solver,false) -> true |
769 | | ; preferences:preference(use_smt_mode,false) -> true |
770 | | ; bsets_clp:size_of_sequence(X,R,_WF), R=int(RI), |
771 | | clpfd_interface:clpfd_geq2(RI,2,_), nonvar(X), X = [(I1,_),(I2,_)|T], |
772 | | I1==int(1), I2==int(2), T=[], RI==2 )). |
773 | | :- assert_must_succeed((bsets_clp:size_of_sequence(X,R,_WF),X = [(int(1),_),(int(2),_)],R = int(2))). |
774 | | :- assert_must_succeed((bsets_clp:size_of_sequence(X,_R,_WF),X =[(int(1),_),(int(2),_)] )). |
775 | | :- assert_must_succeed_any((bsets_clp:size_of_sequence(X,int(2),_WF),nonvar(X),X=[_|Y],nonvar(Y),Y=[_|Z],Z==[])). |
776 | | :- assert_must_succeed((bsets_clp:size_of_sequence([],int(0),_WF))). |
777 | | :- assert_must_succeed((bsets_clp:size_of_sequence([],int(0),_WF))). |
778 | | :- assert_must_succeed((bsets_clp:size_of_sequence([(int(1),int(4))],int(1),_WF))). |
779 | | :- assert_must_succeed((bsets_clp:size_of_sequence([],_,_WF))). |
780 | | :- assert_must_fail((bsets_clp:size_of_sequence(X,int(1),_WF), |
781 | | X = [(int(1),_),(int(2),_)|_])). |
782 | | :- block size_of_sequence(-,-,?). |
783 | ? | size_of_sequence(Seq,int(Res),WF) :- size_of_sequence1(Seq,Res,WF), |
784 | | set_up_sequence_skel(Seq,Res,WF). |
785 | | |
786 | | % setup sequence skeleton if we have some CLPFD bounds information about the size |
787 | | % currently still quite limited: only sets up if sequence is a variable; + does the setup only once |
788 | | :- use_module(library(clpfd), [(#<=>)/2]). |
789 | | :- use_module(clpfd_interface,[clpfd_domain/3]). |
790 | | set_up_sequence_skel(Seq,Res,WF) :- |
791 | | var(Seq), % to do: also deal with cases when Seq partially instantiated |
792 | | var(Res), |
793 | | preferences:preference(use_clpfd_solver,true), |
794 | | !, |
795 | | clpfd_interface:clpfd_geq2(Res,0,_), % assert that size must not be negative |
796 | | clpfd_interface:try_post_constraint((Res#>0) #<=> Trigger), % generate reified trigger for when we can instantiate Seq |
797 | | set_up_sequence_skel_aux(Seq,Res,Trigger,WF). |
798 | | set_up_sequence_skel(_,_,_). % TO DO: check if Size interval shrinks |
799 | | :- block set_up_sequence_skel_aux(-,?,-,?). |
800 | | set_up_sequence_skel_aux(Seq,_Res,_Trigger,_WF) :- |
801 | | nonvar(Seq), |
802 | | !. % to do: also deal with cases when Seq partially instantiated |
803 | | set_up_sequence_skel_aux(Seq,Res,_Trigger,_WF) :- |
804 | | (number(Res) ; preferences:preference(use_smt_mode,true)), |
805 | | !, |
806 | | gen_seq_for_res(Res,Seq). |
807 | | set_up_sequence_skel_aux(Seq,Res,_Trigger,WF) :- |
808 | | get_large_finite_wait_flag(set_up_sequence_skel,WF,LWF), % delay, avoid costly unification with partially instantaited list skeleton; TO DO: in future we may use the kernel_cardinality attribute instead |
809 | | when((nonvar(LWF) ; nonvar(Seq) ; nonvar(Res)), (nonvar(Seq) -> true ; gen_seq_for_res(Res,Seq))). |
810 | | |
811 | | gen_seq_for_res(Res,Seq) :- |
812 | | clpfd_domain(Res,FDLow,FDUp), % FDLow could also be 0 |
813 | | gen_sequence_skeleton(1,FDLow,FDUp,S), |
814 | | Seq=S. |
815 | | gen_sequence_skeleton(N,M,FDUp,S) :- N>M,!,(FDUp==M -> S=[] ; true). |
816 | | gen_sequence_skeleton(N,Max,FDUp,[(int(N),_)|T]) :- |
817 | | N1 is N+1, |
818 | | gen_sequence_skeleton(N1,Max,FDUp,T). |
819 | | |
820 | | :- block size_of_sequence1(-,-,?). |
821 | | size_of_sequence1(Seq,ResInt,WF) :- |
822 | | nonvar(Seq),is_custom_explicit_set_nonvar(Seq), |
823 | | size_of_custom_explicit_set(Seq,Size,WF),!, |
824 | ? | equal_object_wf(Size,int(ResInt),size_of_sequence1,WF). |
825 | | /* TO DO: CHECK BELOW: would it not be better to use cardinality ?? */ |
826 | | /* |
827 | | size_of_sequence1(Seq,Size,WF) :- !,kernel_cardinality_attr:finite_cardinality_as_int_wf(Seq,int(Size),WF), check_indexes(Seq,Size). |
828 | | |
829 | | construct_interval_closure(1,Size,Domain), |
830 | | total_function_wf(FF,Domain,Range,_WF) |
831 | | % we could also call total_function 1..Size --> _RangeType; would setup domain ? |
832 | | :- block check_indexes(-,?). |
833 | | check_indexes([],_) :- !. |
834 | | check_indexes([(int(X),_)|T],Size) :- !, |
835 | | less_than_equal_direct(X,Size), check_indexes(T,Size). |
836 | | check_indexes(_,_). |
837 | | */ |
838 | ? | size_of_sequence1(Seq,Size,_WF) :- Size==0,!, empty_sequence(Seq). |
839 | | size_of_sequence1(Seq,Size,WF) :- |
840 | | expand_custom_set_to_list_wf(Seq,ESeq,_,size_of_sequence1,WF), |
841 | ? | (var(ESeq),nonvar(Size) -> size_of_var_seq(ESeqR,0,Size), |
842 | | ESeqR=ESeq % unify after to do propagation in one go, without triggering coroutines inbetween |
843 | ? | ; size_of_seq2(ESeq,0,Size), |
844 | | (var(Size),var(ESeq) -> less_than_equal_direct(0,Size) % propagate that Size is positive |
845 | | ; true) |
846 | | ). |
847 | | /* small danger of expanding closure while still var !*/ |
848 | | :- block size_of_seq2(-,?,-). |
849 | | size_of_seq2([],Size,Size). |
850 | | size_of_seq2([I|Tail],SizeSoFar,Res) :- |
851 | | S2 is SizeSoFar + 1, |
852 | ? | check_index(I,Res), % don't instantiate I yet; allow other kernel_predicates to freely instantiate it |
853 | | less_than_equal_direct(S2,Res), |
854 | | %(ground(Res) -> safe_less_than_equal(size_of_seq2,S2,Res) ; true), |
855 | ? | size_of_seq2(Tail,S2,Res). |
856 | | size_of_var_seq([],Size,Size). |
857 | | size_of_var_seq([(int(S2),_)|Tail],SizeSoFar,Res) :- |
858 | | S2 is SizeSoFar + 1,safe_less_than_equal(size_of_var_seq,S2,Res), |
859 | ? | (var(Tail) -> size_of_var_seq(Tail,S2,Res) ; size_of_seq2(Tail,S2,Res)). |
860 | | |
861 | | |
862 | | :- block check_index(-,?). |
863 | ? | check_index((I,_),Res) :- check_index1(I,Res). |
864 | | :- block check_index1(-,?). |
865 | ? | check_index1(int(Idx),Res) :- less_than_equal_direct(Idx,Res). |
866 | | |
867 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:prepend_sequence(int(33),[(int(1),int(22))],[(int(2),int(22)),(int(1),int(33))],WF),WF)). |
868 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:prepend_sequence(int(33),[],[(int(1),int(33))],WF),WF)). |
869 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:prepend_sequence(int(33),[(int(2),int(44)),(int(1),int(22))],[(int(1),int(33)),(int(3),int(44)),(int(2),int(22))],WF),WF)). |
870 | | :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:prepend_sequence(int(33),[(int(1),int(22))],[(int(1),int(22)),(int(2),int(33))],WF),WF)). |
871 | | :- assert_must_succeed((bsets_clp:prepend_sequence(int(7),[],[(int(1),int(7))],_WF))). |
872 | | :- assert_must_succeed((bsets_clp:prepend_sequence(int(7),X,R,_WF), |
873 | | X = [(int(2),int(4)),(int(1),int(3))], |
874 | | kernel_objects:equal_object(R,[(int(1),int(7)),(int(2),int(3)),(int(3),int(4))]))). |
875 | | % code for insert_front operator: El -> Seq |
876 | | :- block prepend_sequence(?,-,-,?). |
877 | | prepend_sequence(El,Seq,Res,_WF) :- Seq==[],!, |
878 | | equal_object_optimized([(int(1),El)],Res,prepend_sequence). |
879 | | prepend_sequence(El,Seq,Res,WF) :- nonvar(Seq),is_custom_explicit_set(Seq,prepend_sequence), |
880 | | prepend_custom_explicit_set(Seq,El,ERes),!, |
881 | | equal_sequence(Res,ERes,WF). |
882 | | prepend_sequence(El,Seq,Res,WF) :- nonvar(Res),is_custom_explicit_set(Res,prepend_sequence), |
883 | | tail_sequence_custom_explicit_set(Res,First,Tail,unknown,WF),!, |
884 | | equal_object_wf(El,First,prepend_sequence,WF), |
885 | | equal_sequence(Seq,Tail,WF). |
886 | | prepend_sequence(El,Seq,Res,WF) :- |
887 | | equal_cons_wf(Res,(int(1),El),ShiftSeq,WF), |
888 | | shift_seq_indexes(Seq,1,ShiftSeq,WF). |
889 | | |
890 | | :- block shift_seq_indexes(-,-,?,?),shift_seq_indexes(-,?,-,?). |
891 | | shift_seq_indexes(Seq,Offset,ShiftedSeq,WF) :- |
892 | | Offset == 0,!, equal_sequence(Seq,ShiftedSeq,WF). |
893 | | shift_seq_indexes(Seq,Offset,ShiftedSeq,WF) :- nonvar(Seq),!, |
894 | | expand_custom_set_to_list_wf(Seq,ESeq,_,shift_seq_indexes,WF), |
895 | | shift_seq_indexes2(ESeq,Offset,ShiftedSeq,WF,Done), |
896 | | (Done == done |
897 | | -> true |
898 | | ; % also propagate in the other way: TO DO: make a more efficient fine-grained two-ways propagation; maybe using CHR |
899 | | NegOffset is -Offset, |
900 | | expand_custom_set_to_list_wf(ShiftedSeq,ESeq1,_,shift_seq_indexes,WF), |
901 | | shift_seq_indexes2(ESeq1,NegOffset,ESeq,WF,_)). |
902 | | shift_seq_indexes(Seq,Offset,ShiftedSeq,WF) :- NegOffset is -Offset, |
903 | | % compute in the other direction; TO DO: make a more efficient fine-grained two-ways propagation; maybe using CHR |
904 | | expand_custom_set_to_list_wf(ShiftedSeq,ESeq,_,shift_seq_indexes,WF), |
905 | | shift_seq_indexes2(ESeq,NegOffset,Seq,WF,Done), |
906 | | (Done == done |
907 | | -> true |
908 | | ; % also propagate in the original way: |
909 | | expand_custom_set_to_list_wf(Seq,ESeq1,_,shift_seq_indexes,WF), |
910 | | shift_seq_indexes2(ESeq1,Offset,ESeq,WF,_)). |
911 | | |
912 | | :- block shift_seq_indexes2(-,?,?,?,?). |
913 | ? | shift_seq_indexes2([],_,R,WF,Done) :- !, Done = done, empty_set_wf(R,WF). |
914 | | shift_seq_indexes2([Pair|Tail],Offset,Res,WF,Done) :- !, |
915 | | Pair = (int(N),El), |
916 | ? | equal_cons_wf(Res,(int(NewN),El),ShiftTail,WF), |
917 | | int_plus(int(N),int(Offset),int(NewN)), |
918 | | shift_seq_indexes2(Tail,Offset,ShiftTail,WF,Done). |
919 | | shift_seq_indexes2(Seq,Offset,Res,WF,Done) :- |
920 | | add_internal_error('Unexpected set argument: ',shift_seq_indexes2(Seq,Offset,Res,WF,Done)), fail. |
921 | | |
922 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:append_sequence([(int(1),int(22))],int(33),[(int(2),int(33)),(int(1),int(22))],WF),WF)). |
923 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:append_sequence([],int(33),[(int(1),int(33))],WF),WF)). |
924 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:append_sequence([(int(2),int(44)),(int(1),int(22))],int(33),[(int(1),int(22)),(int(3),int(33)),(int(2),int(44))],WF),WF)). |
925 | | :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:append_sequence([(int(1),int(22))],int(33),[(int(1),int(33)),(int(2),int(22))],WF),WF)). |
926 | | :- assert_must_succeed((bsets_clp:append_sequence([],int(7),[(int(1),int(7))],_WF))). |
927 | | :- assert_must_succeed((bsets_clp:append_sequence(X,int(7),R,_WF), |
928 | | X = [(int(2),int(4)),(int(1),int(3))], |
929 | | kernel_objects:equal_object(R,[(int(1),int(3)),(int(2),int(4)),(int(3),int(7))]))). |
930 | | |
931 | | % code for the insert_tail operator Seq<-El |
932 | | :- block append_sequence(-,?,-,?). |
933 | | append_sequence(Seq,El,Res,_WF) :- Seq==[],!, |
934 | | equal_object_optimized([(int(1),El)],Res,append_sequence). |
935 | | append_sequence(Seq,El,Res,WF) :- |
936 | | nonvar(Seq),is_custom_explicit_set_nonvar(Seq), |
937 | | append_custom_explicit_set(Seq,El,ERes,WF),!, |
938 | | equal_sequence(Res,ERes,WF). |
939 | | append_sequence(Seq,El,Res,WF) :- |
940 | | nonvar(Res),is_custom_explicit_set_nonvar(Res), |
941 | | % we know result: deconstruct into last El and front Seq |
942 | | front_sequence_custom_explicit_set(Res,Last,Front), !, |
943 | | equal_object_wf(El,Last,append_sequence,WF), |
944 | | equal_sequence(Seq,Front,WF). |
945 | | append_sequence(Seq,El,Res,WF) :- |
946 | | (var(Seq) -> size_of_sequence(Res,INewSize,WF), INewSize=int(NewSize) ; true), |
947 | | equal_cons_wf(Res,(int(NewSize),El),ResT,WF), |
948 | | append_sequence2(Seq,ResT,NewSize,WF). |
949 | | |
950 | | :- block append_sequence2(-,?,-,?). |
951 | | append_sequence2(Seq,ResT,_NewSize,WF) :- var(Seq),!, |
952 | | equal_sequence(Seq,ResT,WF). |
953 | | append_sequence2(Seq,ResT,NewSize,WF) :- |
954 | | try_expand_custom_set_wf(Seq,ESeq,append_sequence2,WF), |
955 | | equal_sequence(ESeq,ResT,WF), |
956 | | size_of_sequence(ESeq,Size,WF), |
957 | | int_plus(Size,int(1),int(NewSize)). |
958 | | |
959 | | :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:prefix_sequence([(int(1),int(22))],int(1),[(int(1),int(22))]))). |
960 | | :- assert_must_succeed(exhaustive_kernel_succeed_check(bsets_clp:prefix_sequence([(int(2),int(22)),(int(3),int(33)),(int(1),int(11))],int(2),[(int(1),int(11)),(int(2),int(22))]))). |
961 | | :- assert_must_succeed(exhaustive_kernel_fail_check(bsets_clp:prefix_sequence([(int(2),int(22)),(int(3),int(33)),(int(1),int(11))],int(3),[(int(1),int(11)),(int(2),int(22))]))). |
962 | | :- assert_must_succeed((bsets_clp:prefix_sequence(X,int(1),X),X = [(int(1),int(1))])). |
963 | | :- assert_must_succeed((bsets_clp:prefix_sequence(X,int(0),[]),X = [(int(1),int(1))])). |
964 | | :- assert_must_abort_wf((bsets_clp:prefix_sequence_wf(X,int(-1),_R,WF),X = [(int(1),int(1))]),WF). |
965 | | :- assert_must_succeed((bsets_clp:prefix_sequence(X,int(2),Y), |
966 | | X = [(int(2),int(3)),(int(3),int(4)),(int(1),int(1))], |
967 | | kernel_objects:equal_object(Y,[(int(1),int(1)),(int(2),int(3))]) )). |
968 | | :- assert_must_succeed((bsets_clp:prefix_sequence(X,int(1),Y), |
969 | | X = [(int(2),int(3)),(int(3),int(4)),(int(1),int(1))], |
970 | | kernel_objects:equal_object(Y,[(int(1),int(1))]) )). |
971 | | :- assert_must_succeed((bsets_clp:prefix_sequence(X,int(3),Y), |
972 | | X = [(int(2),int(3)),(int(3),int(4)),(int(1),int(1))], |
973 | | kernel_objects:equal_object(Y,X) )). |
974 | | |
975 | | prefix_sequence(Seq,N,R) :- init_wait_flags(WF,[prefix_sequence]), |
976 | ? | prefix_sequence_wf(Seq,N,R,WF), |
977 | ? | ground_wait_flags(WF). |
978 | | |
979 | | % Prefix of a sequence (s /|\ n) |
980 | | prefix_sequence_wf(Seq,int(Num),Res,WF) :- |
981 | ? | prefix_sequence1(Seq,Num,Res,WF), |
982 | ? | propagate_size(Res,Num,WF). |
983 | | |
984 | | % the size of the result of (s /|\ n) is the number n |
985 | | :- block propagate_size(-,-,?). |
986 | | propagate_size(Res,Num,WF) :- |
987 | | var(Res),!, |
988 | | (Num<0 -> preferences:preference(disprover_mode,false) % don't do anything; we may want to generate WD error |
989 | ? | ; Num < 4 -> size_of_sequence(Res,int(Num),WF) |
990 | | ; Prio is 1+Num // 100, |
991 | | get_wait_flag(Prio,propagate_size,WF,LWF), % avoid setting up very large skeletons too early |
992 | | block_size_of_sequence(LWF,Res,int(Num),WF) |
993 | | ). |
994 | | propagate_size(_,Num,_) :- number(Num), !. % no need to propagate |
995 | | propagate_size(_,_Num,_) :- \+ preferences:preference(find_abort_values,false), |
996 | | !. % do not propagate as we could prevent detection of WD errors below |
997 | | propagate_size([],Num,_WF) :- !, |
998 | | Num=0. % Note: this could prevent a wd-error being detected |
999 | | propagate_size(avl_set(A),Num,WF) :- var(Num), |
1000 | | % with partially instantated sets we get slowdowns (SimpleCSGGrammar2_SlowCLPFD) |
1001 | | % TO DO: treat list skeletons |
1002 | | !, |
1003 | ? | size_of_sequence(avl_set(A),int(Num),WF). % Note: this could prevent a wd-error being detected |
1004 | | propagate_size(_,_,_). % should we also propagate the other way around ? |
1005 | | |
1006 | | :- block block_size_of_sequence(-,?,?,?). |
1007 | | block_size_of_sequence(_,Seq,Size,WF) :- size_of_sequence(Seq,Size,WF). |
1008 | | |
1009 | | :- block prefix_sequence1(-,?,?,?), prefix_sequence1(?,-,?,?). |
1010 | | prefix_sequence1(_Seq,Num,Res,WF) :- Num==0,!, empty_set_wf(Res,WF). |
1011 | | prefix_sequence1(_Seq,Num,_Res,WF) :- Num<0,!, % according to version 1.8.8 of Atelier-B manual Num must be in 0..size(_Seq) |
1012 | | add_wd_error('negative index in prefix_sequence (/|\\)! ', Num,WF). |
1013 | | prefix_sequence1(Seq,Num,Res,WF) :- |
1014 | | is_custom_explicit_set(Seq,prefix), |
1015 | | prefix_of_custom_explicit_set(Seq,Num,ERes,WF),!, % TO DO: check Num <= size(Seq) |
1016 | | equal_object_wf(Res,ERes,prefix_sequence1,WF). |
1017 | | prefix_sequence1(Seq,Num,Res,WF) :- |
1018 | | expand_custom_set_to_list_wf(Seq,ESeq,_,prefix_sequence1,WF), |
1019 | | unify_same_index_elements(Res,ESeq,WF), |
1020 | | unify_same_index_elements(Seq,Res,WF), |
1021 | ? | prefix_seq(ESeq,Num,0,Res,WF). |
1022 | | :- block prefix_seq(-,?,?,?,?). |
1023 | | prefix_seq([],Max,Sze,Res,WF) :- |
1024 | | (less_than_direct(Sze,Max) |
1025 | | -> add_wd_error('index larger than size of sequence in prefix_sequence (/|\\)! ', (Max,Sze),WF) |
1026 | | ; true), |
1027 | | empty_set_wf(Res,WF). |
1028 | | %(less_than(int(_Sze),int(_Max)) |
1029 | | % -> (print_message('Index bigger than sequence size in prefix_sequence (/|\\) !'), |
1030 | | % print_message(Max)) |
1031 | | % /* in the AtelierB book this is allowed, in Wordsworth + AMN on web it is not ?? */ |
1032 | | % ; true). |
1033 | | prefix_seq([(int(N),El)|Tail],Max,SizeSoFar,Res,WF) :- |
1034 | ? | prefix_seq2(N,El,Tail,Max,SizeSoFar,Res,WF). |
1035 | | :- block prefix_seq2(-,?,?,?,?,?,?). |
1036 | | prefix_seq2(N,El,Tail,Max,SizeSoFar,Res,WF) :- % SizeSoFar is always ground |
1037 | ? | (less_than_equal_direct(N,Max), equal_cons_wf(Res,(int(N),El),PTail,WF) |
1038 | | ; |
1039 | | less_than_direct(Max,N), equal_object_wf(Res,PTail,prefix_seq2,WF) |
1040 | | ), |
1041 | | ( SizeSoFar<N -> NewSizeSoFar=N ; NewSizeSoFar = SizeSoFar ), |
1042 | ? | prefix_seq(Tail,Max,NewSizeSoFar,PTail,WF). |
1043 | | |
1044 | | :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:suffix_sequence([(int(1),int(22))],int(0),[(int(1),int(22))],WF),ground_det_wait_flag(WF))). |
1045 | | :- assert_must_succeed(exhaustive_kernel_succeed_check(bsets_clp:suffix_sequence([(int(2),int(22)),(int(3),int(33)),(int(1),int(11))],int(1),[(int(1),int(22)),(int(2),int(33))],_WF))). |
1046 | | :- assert_must_succeed(exhaustive_kernel_fail_check(bsets_clp:suffix_sequence([(int(2),int(22)),(int(3),int(33)),(int(1),int(11))],int(2),[(int(1),int(22)),(int(2),int(33))],_WF))). |
1047 | | :- assert_must_succeed((bsets_clp:suffix_sequence(X,int(0),X,_WF),X = [(int(1),int(1))])). |
1048 | | :- assert_must_succeed((bsets_clp:suffix_sequence(X,int(1),[],_WF),X = [(int(1),int(1))])). |
1049 | | :- assert_must_succeed((bsets_clp:suffix_sequence(X,int(2),Y,_WF), |
1050 | | X = [(int(2),int(3)),(int(3),int(4)),(int(1),int(1))], |
1051 | | kernel_objects:equal_object(Y,[(int(1),int(4))]) )). |
1052 | | :- assert_must_succeed((bsets_clp:suffix_sequence(X,int(1),Y,_WF), |
1053 | | X = [(int(2),int(3)),(int(3),int(4)),(int(1),int(1))], |
1054 | | kernel_objects:equal_object(Y,[(int(1),int(3)),(int(2),int(4))]) )). |
1055 | | :- assert_must_succeed((bsets_clp:suffix_sequence(X,int(2),Y,_WF), |
1056 | | X = [(int(2),int(3)),(int(3),int(4)),(int(1),int(1))], |
1057 | | kernel_objects:equal_object(Y,[(int(1),int(4))]) )). |
1058 | | :- assert_must_abort_wf(bsets_clp:suffix_sequence([(int(1),int(11)),(int(2),int(22))],int(-1),_R,WF),WF). |
1059 | | :- assert_must_abort_wf(bsets_clp:suffix_sequence([(int(1),int(11)),(int(2),int(22))],int(3),_R,WF),WF). |
1060 | | |
1061 | | % kernel_waitflags:assert_must_abort2_wf(bsets_clp:suffix_sequence([int(11),int(22)],int(-1),_R,WF),WF) |
1062 | | |
1063 | | % suffix of a sequence (s \|/ n); also called restrict at tail (Atelier B) or Drop |
1064 | | :- block suffix_sequence(-,?,?,?). |
1065 | | suffix_sequence(Seq,int(Num),Res,WF) :- |
1066 | ? | suffix_sequence1(Seq,Num,Res,WF). |
1067 | | :- block suffix_sequence1(?,-,?,?). |
1068 | | suffix_sequence1(Seq,Num,Res,WF) :- Num==0, !, equal_object_wf(Res,Seq,suffix_sequence1_1,WF). |
1069 | | suffix_sequence1(_Seq,Num,_Res,WF) :- Num<0, !, add_wd_error('negative index in suffix_sequence (\\|/)! ', Num,WF). |
1070 | | suffix_sequence1(Seq,Num,Res,WF) :- is_custom_explicit_set(Seq,suffix), |
1071 | | suffix_of_custom_explicit_set(Seq,Num,ERes,WF),!, |
1072 | | equal_object_wf(Res,ERes,suffix_sequence1_2,WF). |
1073 | | suffix_sequence1(Seq,Num,Res,WF) :- |
1074 | ? | expand_custom_set_to_list_wf(Seq,ESeq,_,suffix_sequence,WF), suffix_seq(ESeq,Num,0,Res,WF). |
1075 | | :- block suffix_seq(-,?,?,?,?). |
1076 | | suffix_seq([],Max,Sze,Res,WF) :- |
1077 | | (less_than_direct(Sze,Max) |
1078 | | -> add_wd_error('index larger than size of sequence in suffix_sequence (\\|/)! ', '>'(Max,Sze),WF) |
1079 | | ; true), empty_set_wf(Res,WF). |
1080 | | suffix_seq([(int(N),El)|Tail],Max,SizeSoFar,Res,WF) :- |
1081 | ? | suffix_seq2(N,El,Tail,Max,SizeSoFar,Res,WF). |
1082 | | :- block suffix_seq2(-,?,?,?,?,?,?). |
1083 | | suffix_seq2(N,El,Tail,Max,SizeSoFar,Res,WF) :- |
1084 | | (less_than_equal_direct(N,Max), equal_object_wf(Res,PTail,suffix_seq2,WF) |
1085 | | ; |
1086 | | less_than_direct(Max,N),int_minus(int(N),int(Max),int(NN)), |
1087 | | equal_cons_wf(Res,(int(NN),El),PTail,WF) |
1088 | | ), |
1089 | | (N>SizeSoFar -> (NewSizeSoFar=N) |
1090 | | ; (NewSizeSoFar = SizeSoFar)), |
1091 | ? | suffix_seq(Tail,Max,NewSizeSoFar,PTail,WF). |
1092 | | |
1093 | | |
1094 | | |
1095 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:concat_sequence([],[(int(1),int(33))],[(int(1),int(33))],WF),WF)). |
1096 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:concat_sequence([(int(1),int(22)),(int(2),int(33))],[(int(1),int(33)),(int(2),int(44))],[(int(2),int(33)),(int(3),int(33)),(int(1),int(22)),(int(4),int(44))],WF),WF)). % not wfdet because of pending label_el_nr from clpfd_lists |
1097 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:concat_sequence([(int(1),int(22))],[(int(1),int(33))],[(int(2),int(33)),(int(1),int(22))],WF),WF)). |
1098 | | :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:concat_sequence([(int(1),int(22))],[(int(1),int(33))],[(int(2),int(22)),(int(1),int(33))],WF),WF)). |
1099 | | :- assert_must_succeed((bsets_clp:concat_sequence([],X,Y,_WF), |
1100 | | X = [(int(1),int(1))], Y==X)). |
1101 | | :- assert_must_succeed((bsets_clp:concat_sequence(X,[],Y,_WF), X = [(int(1),int(1))], Y==X)). |
1102 | | :- assert_must_succeed((bsets_clp:concat_sequence([(int(1),int(1))],[],Y,_WF), Y==[(int(1),int(1))])). |
1103 | | :- assert_must_succeed((bsets_clp:concat_sequence(X,X,Y,_WF), |
1104 | | X = [(int(1),int(1))], kernel_objects:equal_object(Y,[(int(1),int(1)),(int(2),int(1))]))). |
1105 | | :- assert_must_succeed((bsets_clp:concat_sequence(X,X,Y,_WF), |
1106 | | X = [(int(2),int(88)),(int(1),int(77))], |
1107 | | kernel_objects:equal_object(Y,[(int(1),int(77)),(int(2),int(88)),(int(3),int(77)),(int(4),int(88))]))). |
1108 | | |
1109 | | :- block /* concat_sequence(-,-,?,?), */ |
1110 | | concat_sequence(?,-,-,?), concat_sequence(-,?,-,?). |
1111 | | concat_sequence(S1,S2,Res,WF) :- Res==[],!, empty_set_wf(S1,WF), empty_set_wf(S2,WF). |
1112 | | concat_sequence(S1,S2,Res,WF) :- |
1113 | | (var(S1),var(S2) -> get_wait_flag(2,concat,WF,LWF) % we have at least two solutions; TODO maybe use cardinality as wait_flag? |
1114 | | ; LWF=1), |
1115 | ? | concat_sequence2(LWF,S1,S2,Res,WF). |
1116 | | |
1117 | | :- block concat_sequence2(-,?,-,?,?), concat_sequence2(-,-,?,?,?). |
1118 | ? | concat_sequence2(_,S1,S2,Res,WF) :- S1==[],!,equal_sequence(S2,Res,WF). |
1119 | | concat_sequence2(_,S1,S2,Res,WF) :- S2==[],!,equal_sequence(S1,Res,WF). |
1120 | | concat_sequence2(LWF,S1,S2,Res,WF) :- |
1121 | | try_expand_and_convert_to_avl_with_check(S1,AS1,concat1), |
1122 | | try_expand_and_convert_to_avl_with_check(S2,AS2,concat2), |
1123 | ? | concat_sequence3(LWF,AS1,AS2,Res,WF). |
1124 | | |
1125 | | concat_sequence3(_,S1,S2,Res,WF) :- nonvar(S1),is_custom_explicit_set(S1,concat_sequence), |
1126 | | concat_custom_explicit_set(S1,S2,ERes,WF),!, |
1127 | | equal_sequence(Res,ERes,WF). |
1128 | | concat_sequence3(_LWF,S1,S2,Res,WF) :- |
1129 | | %try_expand_custom_set_wf(S1,ES1,concat,WF), |
1130 | | size_of_sequence(S1,int(Size1),WF), |
1131 | | (number(Size1) -> true |
1132 | | ; size_of_sequence(S2,Size2,WF), |
1133 | | size_of_sequence(Res,SizeRes,WF), |
1134 | ? | int_minus(SizeRes,Size2,int(Size1)), |
1135 | ? | in_nat_range_wf(int(Size1),int(0),SizeRes,WF) |
1136 | | % is this required: ?? ,in_nat_range_wf(Size2,int(0),SizeRes,WF) |
1137 | | ), |
1138 | ? | concat_sequence_aux(Size1,S1,S2,Res,WF). |
1139 | | |
1140 | | |
1141 | | :- assert_must_succeed( (bsets_clp:equal_sequence([(int(1),A)|T1],[(int(1),int(22))|T2],_WF), |
1142 | | A==int(22),T2=[],T1==[] )) . |
1143 | | :- assert_must_succeed( (bsets_clp:equal_sequence([(int(1),A)|T],avl_set(node((int(2),string(a)),true,0,node((int(1),string(c)),true,0,empty,empty),node((int(3),string(b)),true,0,empty,empty))),_WF), |
1144 | | check_eqeq(A,string(c)), |
1145 | | kernel_objects:equal_object(T,[(int(2),B)|T2]), check_eqeq(B,string(a)), |
1146 | | kernel_objects:equal_object(T2,[(int(3),C)]), check_eqeq(C,string(b))) ). |
1147 | | % equal_object optimized for sequences; can infer that pairs with same index have same value |
1148 | | % TO DO: complete and make more efficient |
1149 | | %equal_sequence(X,Y,_WF) :- nonvar(X),nonvar(Y), |
1150 | | % is_custom_explicit_set(X,eval_sequence), is_custom_explicit_set(Y,eval_sequence),!, |
1151 | | % equal_explicit_sets(X,Y). |
1152 | | equal_sequence(X,Y,WF) :- nonvar(X),nonvar(Y), |
1153 | | get_seq_head(X,XI,XEl,XT), get_seq_head(Y,YI,YEl,YT), XI==YI,!, |
1154 | | % THIS CURRENTLY ONLY CHECKS FRONTMOST indexes |
1155 | | equal_object_wf(XEl,YEl,equal_sequence_1,WF), |
1156 | | equal_sequence(XT,YT,WF). |
1157 | | equal_sequence(X,Y,WF) :- |
1158 | | /* (is_custom_explicit_set(Y) -> monitor_equal_sequence_againts_custom_set(X,Y,WF) |
1159 | | ; is_custom_explicit_set(X) -> monitor_equal_sequence_againts_custom_set(Y,X,WF) |
1160 | | ; true), does not seem to buy anything; equal_object already powerful enough */ |
1161 | ? | equal_object_wf(X,Y,equal_sequence_2,WF). |
1162 | | |
1163 | | % enforces the constraint that there is only one possible elemenent per index: |
1164 | | %:- block monitor_equal_sequence_againts_custom_set(-,?,?). |
1165 | | %monitor_equal_sequence_againts_custom_set([],_,_) :- !. |
1166 | | %monitor_equal_sequence_againts_custom_set([El|T],CS,WF) :- !, |
1167 | | % element_of_custom_set_wf(El,CS,WF), |
1168 | | % monitor_equal_sequence_againts_custom_set(T,CS,WF). |
1169 | | %monitor_equal_sequence_againts_custom_set(_,_,_). |
1170 | | |
1171 | | get_seq_head([(Idx,El)|Tail],Idx,El,Tail). |
1172 | | %get_seq_head(avl_set(AVL),Idx,El,Tail) :- does not seem to buy anything; equal_object already powerful enough |
1173 | | % custom_explicit_sets:avl_min_pair(AVL,Idx,El), |
1174 | | % custom_explicit_sets:direct_remove_element_from_avl(AVL,(Idx,El),Tail). % TO DO: only compute if indexes == |
1175 | | |
1176 | | |
1177 | | :- block concat_sequence_aux(-,?,?,?,?). |
1178 | | concat_sequence_aux(Size1,_S1,_S2,Res,WF) :- nonvar(Res),Res=avl_set(_), |
1179 | | size_of_custom_explicit_set(Res,int(RSize),WF), number(RSize), |
1180 | | Size1 > RSize,!, % S1 is longer than Res; no solution (prevent WD error below) |
1181 | | fail. |
1182 | | concat_sequence_aux(Size1,S1,S2,Res,WF) :- nonvar(Res),Res=avl_set(_), |
1183 | | % split Result into prefix and suffix |
1184 | | prefix_of_custom_explicit_set(Res,Size1,Prefix,WF), % we could call versions which do not check WD |
1185 | | suffix_of_custom_explicit_set(Res,Size1,Postfix,WF), |
1186 | | !, |
1187 | | equal_sequence(S1,Prefix,WF), equal_sequence(S2,Postfix,WF). |
1188 | | concat_sequence_aux(Size1,S1,S2,Res,WF) :- |
1189 | | shift_seq_indexes(S2,Size1,NewS2,WF), |
1190 | | % We can do something stronger than disjoint union: we know that the indexes are disjoint! |
1191 | | % Hence: if (int(X),Y) : Res & (int(X),Z) : S1 => Y=Z |
1192 | | % Hence: if (int(X),Y) : Res & (int(X),Z) : S2 => Y=Z |
1193 | | unify_same_index_elements(S1,Res,WF), |
1194 | | unify_same_index_elements(Res,S1,WF), |
1195 | | unify_same_index_elements(NewS2,Res,WF), |
1196 | | unify_same_index_elements(Res,NewS2,WF), |
1197 | ? | disjoint_union_wf(S1,NewS2,Res,WF). |
1198 | | |
1199 | | % Check if (int(X),Y) pairs in Seq2 have a matching (int(X),Z) in Seq1 and then unify(Y,Z) |
1200 | | :- block unify_same_index_elements(-,?,?). |
1201 | | unify_same_index_elements(avl_set(A),Seq,WF) :- !, |
1202 | | unify_same_index_elements_aux(Seq,A,WF). |
1203 | | unify_same_index_elements(_,_,_). % TO DO: maybe also support other partially instantiated lists |
1204 | | |
1205 | | :- block unify_same_index_elements_aux(-,?,?). |
1206 | | unify_same_index_elements_aux([],_,_) :- !. |
1207 | | unify_same_index_elements_aux([(int(Idx),El)|T],A,WF) :- !, |
1208 | | try_find_index_element(Idx,El,A,WF), |
1209 | | unify_same_index_elements_aux(T,A,WF). |
1210 | | unify_same_index_elements_aux(_,_,_). |
1211 | | |
1212 | | :- block try_find_index_element(-,?,?,?). |
1213 | | try_find_index_element(Idx,El,AVL,WF) :- |
1214 | ? | avl_fetch_pair(int(Idx),AVL,AvlEl), |
1215 | | !, |
1216 | | % We have found an entry with the same index: El and AvlEl must be identical: |
1217 | | equal_object_wf(El,AvlEl,try_find_index_element,WF). |
1218 | | try_find_index_element(_Idx,_El,_AVL,_WF). % :- print(not_found(_Idx,_AVL)),nl. |
1219 | | |
1220 | | % TO DO: add waitflags + use within partition_wf |
1221 | | % computes union of two sets which are guaranteed to be disjoint: means that if two of three sets known the other one can be determined |
1222 | | |
1223 | | :- assert_must_succeed(exhaustive_kernel_check_wf([commutative],bsets_clp:disjoint_union_wf([int(3)],[int(2),int(1)],[int(1),int(3),int(2)],WF),WF)). |
1224 | | :- assert_must_succeed(exhaustive_kernel_check_wf([commutative],bsets_clp:disjoint_union_wf([],[int(2),int(1)],[int(1),int(2)],WF),WF)). |
1225 | | :- assert_must_succeed(exhaustive_kernel_check_wf([commutative],bsets_clp:disjoint_union_wf([int(1),int(2)],[],[int(2),int(1)],WF),WF)). |
1226 | | :- assert_must_succeed((bsets_clp:disjoint_union_wf([int(1)],[int(2)],Res,_WF),kernel_objects:equal_object(Res,[int(1),int(2)]))). |
1227 | | :- assert_must_succeed((bsets_clp:disjoint_union_wf(A,B,[int(1)],_WF),B=[H],H==int(1),A==[])). |
1228 | | |
1229 | | % a union where we know that Set1 and Set2 are disjoint |
1230 | | % this means we can propagate elements of Set1/2 more easily to result |
1231 | | disjoint_union_wf(Set1,Set2,Res,WF) :- |
1232 | | (var(Res) |
1233 | | -> disjoint_union_wf0(Set1,Set2,DRes,DRes,WF), |
1234 | | equal_object_optimized(Res,DRes) % try and convert result to AVL |
1235 | ? | ; disjoint_union_wf0(Set1,Set2,Res,Res,WF)). |
1236 | | |
1237 | | % disjoint_union_wf0(Set1,Set2,UnionOfSet1Set2, SuperSet, WF) |
1238 | | :- block disjoint_union_wf0(-,-,-,?,?). |
1239 | | disjoint_union_wf0(Set1,Set2,Res,_,WF) :- Set1==[],!,equal_object_wf(Set2,Res,disjoint_union_wf0_1,WF). |
1240 | | disjoint_union_wf0(Set1,Set2,Res,_,WF) :- Set2==[],!,equal_object_wf(Set1,Res,disjoint_union_wf0_2,WF). |
1241 | | disjoint_union_wf0(Set1,Set2,Res,_,WF) :- Res==[],!,empty_set_wf(Set1,WF), empty_set_wf(Set2,WF). |
1242 | | disjoint_union_wf0(Set1,Set2,Res,FullRes,WF) :- |
1243 | | ((nonvar(Set1);nonvar(Set2)) -> true ; get_cardinality_powset_wait_flag(Res,disjoint_union_wf0,WF,_Card,CWF)), |
1244 | ? | disjoint_union0(Set1,Set2,Res,FullRes,WF,CWF). |
1245 | | |
1246 | | :- block disjoint_union0(-,-,?,?,?,-), disjoint_union0(-,?,-,-,?,?), disjoint_union0(?,-,-,-,?,?). |
1247 | | disjoint_union0(Set1,Set2,Res,_,WF,_) :- Set1==[],!,equal_object_wf(Set2,Res,disjoint_union0_1,WF). |
1248 | | disjoint_union0(Set1,Set2,Res,_,WF,_) :- Set2==[],!,equal_object_wf(Set1,Res,disjoint_union0_2,WF). |
1249 | | disjoint_union0(S1,S2,Res,_F,WF,_CWF) :- |
1250 | | ground_value(Res), |
1251 | | ( ground_value(S1) -> !, |
1252 | | check_subset_of_wf(S1,Res,WF), % TO DO: check if we can merge the check_subset and difference set in one predicate |
1253 | | difference_set_wf(Res,S1,S2,WF) |
1254 | | ; ground_value(S2) -> !, |
1255 | | check_subset_of_wf(S2,Res,WF), |
1256 | ? | difference_set_wf(Res,S2,S1,WF) |
1257 | | ; var(S1),var(S2) -> !, % CWF nonvar |
1258 | | % see test 1408; allows to generate subsets of Res and avoid enumeration warnings |
1259 | | check_subset_of_wf(S1,Res,WF), |
1260 | | %check_subset_of(S1,Res), % without waitflag: will generate ground version |
1261 | | difference_set_wf(Res,S1,S2,WF) |
1262 | | ). |
1263 | | disjoint_union0(Set1,Set2,Res,_,WF,_) :- nonvar(Set1), |
1264 | | is_custom_explicit_set_nonvar(Set1), |
1265 | | union_of_explicit_set(Set1,Set2,Union), !, % TODO: if it fails: copy/propagate values to result? |
1266 | ? | equal_object_wf(Union,Res,disjoint_union0_3,WF). |
1267 | | disjoint_union0(Set1,Set2,Res,Full,WF,_) :- |
1268 | | expand_custom_set_to_list_no_dups_wf(Set1,ESet1,_,disjoint_union0_1,WF), |
1269 | | expand_custom_set_to_list_no_dups_wf(Set2,ESet2,_,disjoint_union0_2,WF), |
1270 | ? | disj_union1(ESet1,ESet2,Res,Full,WF). |
1271 | | |
1272 | | :- block disj_union1(-,-,?,?,?). |
1273 | | disj_union1(X,Y,Res,FullRes,WF) :- |
1274 | ? | var(X) -> disj_union2(Y,X,Res,FullRes,WF) ; disj_union2(X,Y,Res,FullRes,WF). |
1275 | | |
1276 | | disj_union2([],Y,Res,_,_WF) :- equal_object_optimized(Y,Res,disj_union2). |
1277 | | disj_union2([X|TX],Y,Res,FullRes,WF) :- |
1278 | ? | remove_element_wf(X,Res,TR,WF), % was: equal_cons_wf(Res,X,TR,WF) but error was that it could force X to be a certain value |
1279 | | ground_value_check(X,XV), |
1280 | | (nonvar(XV) -> equal_cons_wf(Res,X,TR,WF) |
1281 | | ; check_element_of_wf(X,FullRes,WF), % ensure that we set up proper constraints for X; e.g., for x \/ y = 1..10 & x /\ y = {} |
1282 | | when(nonvar(XV), equal_cons_wf(Res,X,TR,WF)) |
1283 | | ), % ensure that we instantiate Res if TR known; otherwise we may get pending co-routines, e.g. test 506, SyracuseGrammar |
1284 | | disj_union3(TX,Y,TR,FullRes,WF). |
1285 | | |
1286 | | :- block disj_union3(-,-,-,?,?). |
1287 | | disj_union3(X,Y,Res,_,WF) :- Res==[],!,empty_set_wf(X,WF),empty_set_wf(Y,WF). |
1288 | | disj_union3(X,Y,Res,FullRes,WF) :- disj_union1(X,Y,Res,FullRes,WF). |
1289 | | |
1290 | | |
1291 | | :- block disjoint_union_generalized_wf(-,?,?). |
1292 | | %disjoint_union_generalized_wf([Set1|T],Res,_WF) :- T==[],!, % just one set; probably not covered at the moment (ast_cleanup simplifies partition with single set |
1293 | | % equal_object(Set1,Res). |
1294 | | disjoint_union_generalized_wf(ListOfSets,Res,WF) :- |
1295 | | %expand_custom_set_to_list_wf(SetsOfSets,ESetsOfSets,_,disjoint_union_generalized_wf,WF), % this is a list of sets |
1296 | | disjoint_union_generalized2(ListOfSets,[],Res,WF). |
1297 | | :- block disjoint_union_generalized2(-,?,?,?). |
1298 | | disjoint_union_generalized2([],S,Res,WF) :- !, equal_object_optimized_wf(S,Res,disjoint_union_generalized2,WF). |
1299 | | disjoint_union_generalized2([H|T],UnionSoFar,Res,WF) :- !, |
1300 | | disjoint_union_wf0(H,UnionSoFar,UnionSoFar2,Res,WF), |
1301 | | %% print_message(called_disjoint_union(H,UnionSoFar,UnionSoFar2)), %% |
1302 | | disjoint_union_generalized2(T,UnionSoFar2,Res,WF). |
1303 | | disjoint_union_generalized2(L,S,Res,WF) :- |
1304 | | add_internal_error('Not a list: ',disjoint_union_generalized2(L,S,Res,WF)),fail. |
1305 | | % TO DO: if there are more than two sets: it may be interesting to set up constraint that |
1306 | | % each set is a subset of the full set; |
1307 | | % (would avoid enumeration warning in, e.g., x \/ y \/ z = 1..10 & x /\ y = {} & x /\ z = {} & y /\ z = {} & card(x)=card(y)+2 ) |
1308 | | |
1309 | | :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:concatentation_of_sequences([(int(1),[]),(int(3),[(int(1),int(22)),(int(2),int(33))]),(int(2),[(int(1),int(11))])], |
1310 | | [(int(1),int(11)),(int(2),int(22)),(int(3),int(33))],_WF))). |
1311 | | :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:concatentation_of_sequences([(int(1),[]),(int(2),[(int(1),int(33))])],[(int(1),int(33))],_WF))). |
1312 | | :- assert_must_succeed((kernel_waitflags:init_wait_flags(WF),bsets_clp:concatentation_of_sequences([(int(1),[]),(int(2),[(int(1),int(55))])],Res,WF), |
1313 | | kernel_waitflags:ground_wait_flags(WF), |
1314 | | kernel_objects:equal_object(Res,[(int(1),int(55))]) )). |
1315 | | :- assert_must_succeed((kernel_waitflags:init_wait_flags(WF),bsets_clp:concatentation_of_sequences([(int(1),[(int(1),int(22))]),(int(2),[(int(1),int(55))])],Res,WF), |
1316 | | kernel_waitflags:ground_wait_flags(WF), |
1317 | | kernel_objects:equal_object(Res,[(int(1),int(22)),(int(2),int(55))]) )). |
1318 | | :- block concatentation_of_sequences(-,?,?). |
1319 | | concatentation_of_sequences(SeqOfSeq,Res,WF) :- |
1320 | | try_expand_and_convert_to_avl_with_check(SeqOfSeq,ES,conc), |
1321 | ? | concs2(ES,Res,WF). |
1322 | | |
1323 | | concs2(SeqOfSeq,Res,WF) :- is_custom_explicit_set(SeqOfSeq,conc), |
1324 | | conc_custom_explicit_set(SeqOfSeq,CRes),!, |
1325 | | equal_object_wf(CRes,Res,concs2,WF). |
1326 | | concs2(SeqOfSeq,Res,WF) :- empty_set_wf(SeqOfSeq,WF),empty_set_wf(Res,WF). |
1327 | | concs2(SeqOfSeq,Res,WF) :- not_empty_set_wf(SeqOfSeq,WF), |
1328 | | front_sequence(SeqOfSeq,Front,WF), |
1329 | ? | concatentation_of_sequences(Front,FrontRes,WF), |
1330 | ? | last_sequence(SeqOfSeq,Last,WF), |
1331 | ? | concat_sequence(FrontRes,Last,Res,WF). |
1332 | | |
1333 | | :- assert_must_abort_wf(bsets_clp:tail_sequence([],_R,unknown,WF),WF). |
1334 | | :- assert_must_abort_wf(bsets_clp:tail_sequence([],[],unknown,WF),WF). |
1335 | | :- assert_must_succeed(exhaustive_kernel_succeed_check( |
1336 | | bsets_clp:tail_sequence([(int(1),int(4)),(int(2),int(5))],[(int(1),int(5))],unknown,_WF)) ). |
1337 | | :- assert_must_succeed(exhaustive_kernel_succeed_check( bsets_clp:tail_sequence([(int(1),int(4)),(int(3),int(6)),(int(2),int(5))], |
1338 | | [(int(1),int(5)),(int(2),int(6))],unknown,_WF)) ). |
1339 | | :- assert_must_succeed((bsets_clp:tail_sequence(X,R,unknown,_), |
1340 | | X = [(int(1),int(6)),(int(2),int(5))], |
1341 | | kernel_objects:equal_object(R,[(int(1),int(5))]) )). |
1342 | | :- assert_must_succeed((bsets_clp:tail_sequence(X,[(int(1),int(5))],unknown,_), |
1343 | | X = [(int(1),int(6)),(int(2),int(5))] )). |
1344 | | :- assert_must_succeed((bsets_clp:tail_sequence(X,[(int(1),int(5)),(int(2),int(7))],unknown,_), |
1345 | | X = [(int(1),int(6)),(int(2),int(5)),(int(3),int(7))] )). |
1346 | | :- assert_must_succeed((bsets_clp:tail_sequence(X,[(int(2),int(7)),(int(1),int(5))],unknown,_), |
1347 | | X = [(int(1),int(6)),(int(2),int(5)),(int(3),int(7))] )). |
1348 | | :- block tail_sequence(-,?,?,?). |
1349 | | tail_sequence(S1,Res,Span,WF) :- is_custom_explicit_set(S1,tail_sequence), |
1350 | | tail_sequence_custom_explicit_set(S1,_,TRes,Span,WF),!, |
1351 | | equal_object_wf(TRes,Res,tail_sequence,WF). |
1352 | | tail_sequence(S1,Res,Span,WF) :- expand_custom_set_to_list_wf(S1,ES1,_,tail_sequence,WF), |
1353 | | tail2(ES1,Res,Span,WF). |
1354 | | |
1355 | | tail2([],_,Span,WF) :- |
1356 | | add_wd_error_span('tail applied to empty sequence!',[],Span,WF). |
1357 | | tail2([H|T],Res,_Span,WF) :- domain_subtraction_wf([int(1)],[H|T],IntRes,WF), |
1358 | | shift_seq_indexes(IntRes,-1,Res,WF). |
1359 | | |
1360 | | |
1361 | | :- assert_must_abort_wf(bsets_clp:first_sequence([],_R,unknown,WF),WF). |
1362 | | :- assert_must_abort_wf(bsets_clp:first_sequence([],int(1),unknown,WF),WF). |
1363 | | :- assert_must_succeed(exhaustive_kernel_succeed_check( bsets_clp:first_sequence([(int(1),int(4)),(int(2),int(5))],int(4),unknown,_WF)) ). |
1364 | | :- assert_must_succeed(exhaustive_kernel_succeed_check( bsets_clp:first_sequence([(int(1),int(4)),(int(3),int(6)),(int(2),int(5))],int(4),unknown,_WF)) ). |
1365 | | :- assert_must_succeed((bsets_clp:first_sequence(X,R,unknown,_WF), |
1366 | | X = [(int(1),int(2)),(int(2),int(1))], |
1367 | | R = int(2))). |
1368 | | |
1369 | | :- block first_sequence(-,?,?,?). |
1370 | | first_sequence([],_,Span,WF) :- !,add_wd_error_span('first applied to empty sequence!',[],Span,WF). |
1371 | | first_sequence(Seq,Res,Span,WF) :- apply_to(Seq,int(1),Res,Span,WF). |
1372 | | |
1373 | | |
1374 | | |
1375 | | :- assert_must_abort_wf(bsets_clp:front_sequence([],_R,WF),WF). |
1376 | | :- assert_must_abort_wf(bsets_clp:front_sequence([],[],WF),WF). |
1377 | | :- assert_must_succeed(exhaustive_kernel_succeed_check( bsets_clp:front_sequence([(int(1),int(4)),(int(2),int(5))],[(int(1),int(4))],_WF)) ). |
1378 | | :- assert_must_succeed(exhaustive_kernel_succeed_check( bsets_clp:front_sequence([(int(1),int(4)),(int(3),int(6)),(int(2),int(5))],[(int(1),int(4)),(int(2),int(5))],_WF)) ). |
1379 | | :- assert_must_succeed((kernel_waitflags:init_wait_flags(WF),bsets_clp:front_sequence(X,R,WF), |
1380 | | X = [(int(1),int(2)),(int(2),int(55))],kernel_waitflags:ground_wait_flags(WF), |
1381 | | kernel_objects:equal_object(R,[(int(1),int(2))]))). |
1382 | | :- assert_must_succeed((kernel_waitflags:init_wait_flags(WF),bsets_clp:front_sequence(X,R,WF), |
1383 | | X = [(int(3),int(33))|R], kernel_waitflags:ground_wait_flags(WF), |
1384 | | kernel_objects:equal_object(R,[(int(1),int(2)),(int(2),int(55))]) )). |
1385 | | |
1386 | ? | front_sequence(Seq,Res,WF) :- front_sequence(Seq,Res,unknown,WF). |
1387 | | :- block front_sequence(-,?,?,?). |
1388 | | front_sequence(S1,Res,_Span,WF) :- |
1389 | | is_custom_explicit_set(S1,front_sequence), |
1390 | | front_sequence_custom_explicit_set(S1,_,FRes),!, |
1391 | | equal_object_wf(FRes,Res,front_sequence,WF). |
1392 | | front_sequence(Seq,Res,Span,WF) :- expand_custom_set_to_list_wf(Seq,ESeq,_,front_sequence,WF), |
1393 | ? | front2(ESeq,Res,Span,WF). |
1394 | | front2([],_,Span,WF) :- add_wd_error_span('front applied to empty sequence!',[],Span,WF). |
1395 | | front2([H|T],Res,_Span,WF) :- size_of_sequence([H|T],int(Size),WF), |
1396 | ? | (number(Size) -> true ; size_of_sequence(Res,SizeRes,WF), int_plus(SizeRes,int(1),int(Size))), |
1397 | ? | when(ground(Size), domain_subtraction_wf([int(Size)],[H|T],Res,WF)). |
1398 | | |
1399 | | |
1400 | | :- assert_must_abort_wf(bsets_clp:last_sequence([],_R,WF),WF). |
1401 | | :- assert_must_abort_wf(bsets_clp:last_sequence([],int(1),WF),WF). |
1402 | | :- assert_must_succeed(exhaustive_kernel_succeed_check( bsets_clp:last_sequence([(int(1),int(4)),(int(2),int(5))],int(5),_WF)) ). |
1403 | | :- assert_must_succeed(exhaustive_kernel_succeed_check( bsets_clp:last_sequence([(int(1),int(4)),(int(3),int(6)),(int(2),int(5))],int(6),_WF)) ). |
1404 | | :- assert_must_succeed((bsets_clp:last_sequence(X,R,_WF), |
1405 | | X = [(int(1),int(2)),(int(2),int(55))],R = int(55))). |
1406 | | :- assert_must_succeed((bsets_clp:last_sequence(X,R,_WF), X = [(int(1),int(55))], R = int(55))). |
1407 | | :- assert_must_succeed((bsets_clp:last_sequence([(int(1),[(int(1),int(22))]),(int(2),[(int(1),int(55))])],R,_WF), R == [(int(1),int(55))])). |
1408 | | |
1409 | ? | last_sequence(Seq,Res,WF) :- last_sequence(Seq,Res,unknown,WF). |
1410 | | :- block last_sequence(-,?,?,?). |
1411 | | last_sequence(Seq,Res,_Span,WF) :- |
1412 | | is_custom_explicit_set(Seq,last_sequence), |
1413 | | last_sequence_explicit_set(Seq,Last), !, |
1414 | | equal_object_wf(Last,Res,last_sequence,WF). |
1415 | | last_sequence([],_,Span,WF) :- !,add_wd_error_span('last applied to empty sequence!',[],Span,WF). |
1416 | | last_sequence(Seq,Res,Span,WF) :- |
1417 | | size_of_sequence(Seq,int(Size),WF), |
1418 | ? | last_sequence_aux(Size,Seq,Res,Span,WF). |
1419 | | :- block last_sequence_aux(-,?,?,?,?). |
1420 | | last_sequence_aux(Size,Seq,Res,Span,WF) :- |
1421 | ? | apply_to(Seq,int(Size),Res,Span,WF). |
1422 | | |
1423 | | |
1424 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet( bsets_clp:rev_sequence([(int(1),int(4)),(int(2),int(5))],[(int(1),int(5)),(int(2),int(4))],WF),WF )). |
1425 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet( bsets_clp:rev_sequence([(int(1),int(4))],[(int(1),int(4))],WF),WF )). |
1426 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet( bsets_clp:rev_sequence([],[],WF),WF )). |
1427 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet( bsets_clp:rev_sequence([(int(1),int(4)),(int(3),int(6)),(int(2),int(5))],[(int(1),int(6)),(int(3),int(4)),(int(2),int(5))],WF),WF )). |
1428 | | :- assert_must_succeed((bsets_clp:rev_sequence([],[],_WF))). |
1429 | | :- assert_must_succeed((bsets_clp:rev_sequence(X,R,_WF), |
1430 | | X = [(int(1),int(2)),(int(2),int(1))], |
1431 | | kernel_objects:equal_object(R,[(int(2),int(2)),(int(1),int(1))]) )). |
1432 | | :- assert_must_succeed((bsets_clp:rev_sequence(X,R,_WF), |
1433 | | X = [(int(1),int(23)),(int(2),int(1)),(int(3),int(55))], |
1434 | | kernel_objects:equal_object(R,[(int(3),int(23)),(int(2),int(1)),(int(1),int(55))]) )). |
1435 | | :- assert_must_succeed((bsets_clp:rev_sequence(R,X,_WF), |
1436 | | X = [(int(1),int(23)),(int(2),int(1)),(int(3),int(55))], |
1437 | | kernel_objects:equal_object(R,[(int(3),int(23)),(int(2),int(1)),(int(1),int(55))]) )). |
1438 | | :- assert_must_succeed((bsets_clp:rev_sequence(X,_R,_WF), |
1439 | | X = [(int(2),int(1)),(int(1),int(23)),(int(3),int(55))] )). |
1440 | | :- assert_must_succeed((bsets_clp:rev_sequence(_R,X,_WF), |
1441 | | X = [(int(3),int(55)),(int(1),int(23)),(int(2),int(1))] )). |
1442 | | |
1443 | | /* reverse of sequence */ |
1444 | | :- block rev_sequence(-,-,?). |
1445 | | rev_sequence(S1,Res,WF) :- |
1446 | ? | (nonvar(S1) -> rev_sequence2(S1,Res,WF) |
1447 | | ; rev_sequence2(Res,S1,WF)). |
1448 | | |
1449 | | rev_sequence2(S1,Res,WF) :- reverse_custom_explicit_set(S1,RS1),!, |
1450 | | equal_object_wf(Res,RS1,WF). |
1451 | | rev_sequence2(S1,Res,WF) :- |
1452 | | expand_custom_set_to_list_wf(S1,ES1,_,rev_sequence2,WF), |
1453 | | size_of_sequence(ES1,int(Size1),WF), |
1454 | | % TO DO: we could also try and get the size from the result Res |
1455 | ? | rev_sequence3(ES1,Size1,Res,WF). |
1456 | | |
1457 | | :- block rev_sequence3(?,-,-,?). |
1458 | | rev_sequence3(E,_Size,Res,WF) :- nonvar(Res), reverse_custom_explicit_set(Res,RevRes),!, |
1459 | | equal_object_wf(E,RevRes,WF). |
1460 | | rev_sequence3(E,Size,Res,WF) :- var(Size), !, |
1461 | | % try to obtain size from result as well |
1462 | ? | size_of_sequence(Res,int(Size),WF), rev_sequence3b(E,Size,Res,WF). |
1463 | | rev_sequence3(E,S,R,WF) :- rev_sequence4(E,S,R,WF). |
1464 | | |
1465 | | :- block rev_sequence3b(?,-,?,?). |
1466 | | rev_sequence3b(E,S,R,WF) :- rev_sequence4(E,S,R,WF). |
1467 | | |
1468 | | :- block rev_sequence4(-,?,?,?). |
1469 | | rev_sequence4([],_,Res,WF) :- empty_set_wf(Res,WF). |
1470 | | rev_sequence4([(int(N),El)|Tail],Size1,Res,WF) :- |
1471 | | equal_cons_wf(Res,(NewN,El),RTail,WF), |
1472 | | % compute NewN = Size - (N-1) |
1473 | | int_minus(int(N),int(1),N1), |
1474 | | int_minus(int(Size1),N1,NewN), |
1475 | | (ground(NewN) -> true ; in_nat_range(NewN,int(0),int(Size1))), |
1476 | | rev_sequence4(Tail,Size1,RTail,WF). |
1477 | | |
1478 | | |
1479 | | /* --------- */ |
1480 | | /* RELATIONS */ |
1481 | | /* --------- */ |
1482 | | |
1483 | | %maplet(X,Y,(X,Y)). |
1484 | | |
1485 | | % relation([]). |
1486 | | % relation([(_X,_Y)|T]) :- relation(T). |
1487 | | |
1488 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:relation_over_wf([(int(1),int(6)),(int(2),int(7)),(int(1),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)). |
1489 | | :- assert_must_succeed(exhaustive_kernel_check( bsets_clp:relation_over([],[int(1),int(2)],[int(2)]) )). |
1490 | | :- assert_must_succeed(exhaustive_kernel_succeed_check( bsets_clp:relation_over([(int(1),int(2))],[int(1),int(2)],[int(2)]) )). |
1491 | | :- assert_must_succeed(exhaustive_kernel_succeed_check( bsets_clp:relation_over([([int(1)],[int(2)])],[[int(1)],[],[int(2)]],[[int(2)]]) )). |
1492 | | :- assert_must_succeed(exhaustive_kernel_succeed_check( bsets_clp:relation_over([(pred_true /* bool_true */,pred_false /* bool_false */)],[pred_false /* bool_false */,pred_true /* bool_true */],[pred_false /* bool_false */]) )). |
1493 | | :- assert_must_succeed(exhaustive_kernel_succeed_check( bsets_clp:relation_over([((pred_true /* bool_true */,int(2)),fd(1,'Name'))],[(pred_false /* bool_false */,int(1)),(pred_true /* bool_true */,int(2))],[fd(2,'Name'),fd(1,'Name')]) )). |
1494 | | :- assert_must_succeed(exhaustive_kernel_succeed_check( bsets_clp:relation_over([((rec([field(a,fd(1,'Name'))]),int(2)),fd(1,'Name'))],[(rec([field(a,fd(1,'Name'))]),int(1)),(rec([field(a,fd(1,'Name'))]),int(2))],[fd(2,'Name'),fd(1,'Name')]) )). |
1495 | | :- assert_must_succeed(exhaustive_kernel_succeed_check( bsets_clp:relation_over([((rec([field(a,fd(2,'Name')),field(b,fd(1,'Name'))]),int(2)),fd(1,'Name'))],[(rec([field(a,fd(1,'Name')),field(b,fd(1,'Name'))]),int(1)),(rec([field(a,fd(1,'Name')),field(b,fd(2,'Name'))]),int(2)),(rec([field(a,fd(2,'Name')),field(b,fd(1,'Name'))]),int(2))],[fd(2,'Name'),fd(1,'Name')]) )). |
1496 | | :- assert_must_succeed(exhaustive_kernel_succeed_check( bsets_clp:relation_over([((pred_true /* bool_true */,int(2)),string('STRING1'))],[(pred_false /* bool_false */,int(1)),(pred_true /* bool_true */,int(2))],[string('STRING2'),string('STRING1')]) )). |
1497 | | :- assert_must_succeed(exhaustive_kernel_succeed_check( /* multiple solutions !!*/ bsets_clp:relation_over([(int(1),int(2)),(int(2),int(2))],[int(1),int(2)],[int(2)]) )). |
1498 | | :- assert_must_succeed(exhaustive_kernel_succeed_check( bsets_clp:relation_over([(int(1),int(2)),(int(1),int(3))],[int(1),int(2)],[int(3),int(2)]) )). |
1499 | | :- assert_must_succeed(exhaustive_kernel_fail_check( bsets_clp:relation_over([(int(1),int(2)),(int(2),int(1))],[int(1),int(2)],[int(2)]) )). |
1500 | | :- assert_must_fail(( bsets_clp:relation_over([(int(1),int(1))],[int(1),int(2)],[int(2)]) )). |
1501 | | :- assert_must_succeed(( bsets_clp:relation_over(X,[int(1),int(2)],[int(3)]), |
1502 | | X==[(int(1),int(3))] )). |
1503 | | :- assert_must_succeed(( bsets_clp:relation_over(X,[int(1),int(2)],[int(3)]), |
1504 | | X==[(int(1),int(3)),(int(2),int(3))] )). |
1505 | | :- assert_must_succeed(( bsets_clp:relation_over(X,[int(1),int(2)],[int(4),int(5)]), |
1506 | | X==[(int(2),int(4)),(int(2),int(5))] )). |
1507 | | |
1508 | | relation_over(R,Dom,Ran) :- init_wait_flags(WF,[relation_over]), |
1509 | ? | relation_over_wf(R,Dom,Ran,WF), |
1510 | ? | ground_wait_flags(WF). |
1511 | | |
1512 | | :- block relation_over_wf(-,-,-,?). |
1513 | | relation_over_wf(R,Dom,Ran,WF) :- |
1514 | | kernel_equality:get_cardinality_relation_over_wait_flag(Dom,Ran,WF,WFR,MaxCard,MaxNrOfRels), |
1515 | ? | relation_over1(R,Dom,Ran,WF,WFR,MaxCard,MaxNrOfRels). |
1516 | | |
1517 | | :- block relation_over1(-,?,?,?,-,?,?). |
1518 | | relation_over1(FF,Domain,Range,WF,_WFR,_MaxCard,_MaxNrOfRels) :- |
1519 | | nonvar(FF), |
1520 | | custom_explicit_sets:is_definitely_maximal_set(Range), |
1521 | | % we do not need the Range; this means we can match more closures (e.g., lambda) |
1522 | | custom_explicit_sets:dom_for_specific_closure(FF,FFDomain,_,WF),!, |
1523 | | check_domain_subset_for_closure_wf(FF,FFDomain,Domain,WF). |
1524 | | relation_over1(FF,Domain,Range,WF,_WFR,_MaxCard,_MaxNrOfRels) :- nonvar(FF), |
1525 | | custom_explicit_sets:dom_range_for_specific_closure(FF,FFDomain,FFRange,_,WF),!, |
1526 | | check_domain_subset_for_closure_wf(FF,FFDomain,Domain,WF), |
1527 | | check_range_subset_for_closure_wf(FF,FFRange,Range,WF). |
1528 | | relation_over1(R,Dom,Ran,WF,WFR,MaxCard,MaxNrOfRels) :- var(R),!, |
1529 | | expand_custom_set_to_list_wf(R,ER,_,relation_over1,WF), |
1530 | ? | relation_over2(ER,[],Dom,Ran,WF,WFR,MaxCard,MaxNrOfRels,none). |
1531 | | relation_over1(R,Domain,Range,WF,_WFR,_MaxCard,_) :- |
1532 | | expand_and_convert_to_avl_set_catch(R,AER,relation_over1,'ARG : ? <-> ?',ResultStatus,WF),!, |
1533 | | (ResultStatus=avl_set |
1534 | ? | -> is_avl_relation_over_domain(AER,Domain,WF), |
1535 | | is_avl_relation_over_range(AER,Range,WF) |
1536 | | ; (debug_mode(on) -> add_message_wf(relation_over,'SYMBOLIC <-> check: ',R,unknown,WF) ; true), |
1537 | | symbolic_domain_subset_check(R,Domain,WF), |
1538 | | symbolic_range_subset_check(R,Range,WF) |
1539 | | ). |
1540 | | relation_over1(R,Dom,Ran,WF,WFR,MaxCard,MaxNrOfRels) :- |
1541 | | expand_custom_set_to_list_wf(R,ER,_,relation_over1,WF), |
1542 | ? | relation_over2(ER,[],Dom,Ran,WF,WFR,MaxCard,MaxNrOfRels,none). |
1543 | | |
1544 | | % check the domain of a symbolic closure value FF whose domain is FFDomain and expected domain is Domain: |
1545 | | check_domain_subset_for_closure_wf(FF,FFDomain,Domain,WF) :- |
1546 | | opt_push_wait_flag_call_stack_info(WF,b_operator_call(subset, |
1547 | | [b_operator(domain,[FF]),Domain],unknown),WF2), |
1548 | | check_subset_of_wf(FFDomain,Domain,WF2). |
1549 | | % ditto for range |
1550 | | check_range_subset_for_closure_wf(FF,FFRange,Range,WF) :- |
1551 | | opt_push_wait_flag_call_stack_info(WF,b_operator_call(subset, |
1552 | | [b_operator(range,[FF]),Range],unknown),WF2), |
1553 | | check_subset_of_wf(FFRange,Range,WF2). |
1554 | | |
1555 | | |
1556 | | % try and expand set to AVL and catch enumeration warning exceptions and set OK result value |
1557 | | % if it succeeds with OK = avl_set -> we have an avl_set |
1558 | | % if it fails: it cannot be expanded at the moment |
1559 | | % if it retuns keep_symbolic: expansion cannot be performed and can never be performed; keep set symbolic |
1560 | | expand_and_convert_to_avl_set_catch(R,_AS,_Origin,_Operator,_ResultStatus,_WF) :- var(R),!,fail. |
1561 | | expand_and_convert_to_avl_set_catch(R,_AS,_Origin,_Operator,ResultStatus,_WF) :- |
1562 | | is_infinite_explicit_set(R),!, % we could also use is_infinite_or_symbolic_closure |
1563 | | ResultStatus=keep_symbolic. |
1564 | | expand_and_convert_to_avl_set_catch(R,AS,Origin,Operator,ResultStatus,WF) :- |
1565 | | catch( |
1566 | | (expand_and_convert_to_avl_set(R,AS,Origin,Operator),ResultStatus=avl_set), |
1567 | | enumeration_warning(_,_,_,_,_), |
1568 | | (add_message_wf(Origin,'Attempting symbolic treatment, enumeration warning occured while expanding ARG for ', |
1569 | | Operator,b(value(R),any,[]),WF), |
1570 | | ResultStatus=keep_symbolic)). |
1571 | | |
1572 | | expand_and_convert_to_avl_set_warn(R,_AS,_Origin,_Operator,_WF) :- var(R),!,fail. |
1573 | | expand_and_convert_to_avl_set_warn(R,AS,Origin,Operator,WF) :- |
1574 | | % TO DO: check for not fully instantiated closures, like memoization closures where ID not yet known |
1575 | | % it is used before a cut: we need to expand straightaway without choice points |
1576 | | (is_symbolic_closure(R) |
1577 | | -> add_message_wf(Origin,'Expanding symbolic set argument ARG for predicate ',Operator,b(value(R),any,[]),WF) |
1578 | | ; true), |
1579 | | % TODO: instead of observe_enumeration_warnings we could push onto the call-stack and pass WF |
1580 | | observe_enumeration_warnings(expand_and_convert_to_avl_set(R,AS,Origin,Operator), |
1581 | | add_message_wf(Origin,'Enumeration warning occured while expanding argument ARG for predicate ', |
1582 | | Operator,b(value(R),any,[]),WF)). |
1583 | | %expand_and_convert_to_avl_set(R,AS,_,Operator,Values) :- |
1584 | | % observe_enumeration_warnings(expand_and_convert_to_avl_set(R,AS,,), |
1585 | | % display_warning_message(Operator,Values)). |
1586 | | %display_warning_message(Operator,Values) :- |
1587 | | % format(user_error,'Enumeration Warning for Operator ~w~n',[Operator]), |
1588 | | % maplist(translate:print_bvalue,Values),nl. |
1589 | | |
1590 | | :- block relation_over2(-,?,?,?,?,-,?,?,?). |
1591 | | relation_over2([],_,_,_,_WF,_WFR,_MaxCard,_MaxNrOfRels,_LastPair). |
1592 | | relation_over2(REL,SoFar,Domain,Range,WF,WFR,MaxCard,MaxNrOfRels,LastPair) :- |
1593 | | (var(REL) -> NewLastPair=(X,Y) ; NewLastPair=none), %remember whether we freely chose X,Y |
1594 | | REL = [(X,Y)|T], |
1595 | | (number(MaxCard) |
1596 | | -> MaxCard>0,C1 is MaxCard-1 ,(C1=0 -> T=[] ; true) |
1597 | | ; C1=MaxCard), |
1598 | | % TO DO: try to enumerate elements in order |
1599 | | ordered_pair(LastPair,X,Y,not_equal), |
1600 | ? | check_element_of_wf(X,Domain,WF), |
1601 | ? | check_element_of_wf(Y,Range,WF), |
1602 | ? | not_element_of_wf((X,Y),SoFar,WF), |
1603 | | update_waitflag(MaxNrOfRels,WFR,NewWFR,WF), |
1604 | ? | relation_over2(T,[(X,Y)|SoFar],Domain,Range,WF,NewWFR,C1,MaxNrOfRels,NewLastPair). |
1605 | | |
1606 | | % check that new pair is greater than previous pair, if that pair was freely chosen |
1607 | | ordered_pair(none,_,_,_). |
1608 | | ordered_pair((LastX,LastY),NewX,NewY,Eq) :- ordered_value(LastX,NewX,EqualX), |
1609 | | check_second_component(EqualX,LastY,NewY,Eq). |
1610 | | |
1611 | | :- block check_second_component(-,?,?,?). |
1612 | | check_second_component(equal,X,Y,EqRes) :- ordered_value(X,Y,EqRes). |
1613 | | check_second_component(not_equal,_X,_Y,not_equal). % no need to check 2nd component |
1614 | | |
1615 | | :- block ordered_value(-,?,?), ordered_value(?,-,?). |
1616 | | ordered_value(pred_true /* bool_true */,B,Eq) :- !, (B=pred_true /* bool_true */ -> Eq=equal ; Eq=not_equal). |
1617 | | ordered_value(pred_false /* bool_false */,B,Eq) :- !, B=pred_false /* bool_false */, Eq=equal. |
1618 | | ordered_value(int(X),int(Y),Eq) :- !, |
1619 | | kernel_objects:less_than_equal_direct(X,Y), equal_atomic_term(X,Y,Eq). |
1620 | | ordered_value(fd(NrX,T),fd(NrY,T),Eq) :- !, |
1621 | | kernel_objects:less_than_equal_direct(NrX,NrY), |
1622 | | equal_atomic_term(NrX,NrY,Eq). |
1623 | | ordered_value((X1,X2),(Y1,Y2),Eq) :- !, ordered_pair((X1,X2),Y1,Y2,Eq). |
1624 | | ordered_value(string(X),string(Y),Eq) :- !, less_equal_atomic_term(X,Y,Eq). |
1625 | | ordered_value(rec(FX),rec(FY),Eq) :- !, |
1626 | | ordered_fields(FX,FY,Eq). |
1627 | | ordered_value([],Y,Eq) :- !, (Y==[] -> Eq=equal ; Eq=not_equal). % empty set is the smallest set |
1628 | | ordered_value(avl_set(A),Y,Eq) :- !, |
1629 | | (Y==[] -> fail |
1630 | | ; Y=avl_set(B) -> (A @< B -> Eq=not_equal ; A@>B -> fail ; Eq=equal) |
1631 | | ; print(assuming_strictly_ordered(avl_set(A),Y)),nl, |
1632 | | Eq=not_equal). % TO DO: treat sets better |
1633 | | ordered_value([H|T],Y,Eq) :- !, ordered_value_cons(Y,H,T,Eq). |
1634 | | ordered_value(term(floating(F1)),term(floating(F2)),Eq) :- !, |
1635 | | kernel_reals:real_less_than_equal_wf(term(floating(F1)),term(floating(F2)),no_wf_available), |
1636 | | equal_atomic_term(F1,F2,Eq). |
1637 | | ordered_value(A,B,not_equal) :- print(assuming_strictly_ordered(A,B)),nl. |
1638 | | |
1639 | | ordered_value_cons([],_,_,_) :- !,fail. |
1640 | | ordered_value_cons([H2|T2],H,T,Eq) :- !,ordered_pair((H,T),H2,T2,Eq). % Note: order different than for avl_sets! |
1641 | | ordered_value_cons(Y,H,T,not_equal) :- write(assuming_strictly_ordered([H|T],Y)),nl. |
1642 | | |
1643 | | :- block ordered_fields(-,?,?). |
1644 | | ordered_fields([],RHS,Eq) :- !,RHS=[], Eq=equal. |
1645 | | ordered_fields([field(Name,ValX)|TX],RHS,Eq) :- !,RHS=[field(Name,ValY)|TY], |
1646 | ? | ordered_value(ValX,ValY,Equal1), check_next_field(Equal1,TX,TY,Eq). |
1647 | | ordered_fields(FX,FY,Eq) :- add_internal_error('Unknown fields: ',ordered_fields(FX,FY,Eq)), Eq=not_equal. |
1648 | | |
1649 | | :- block check_next_field(-,?,?,?). |
1650 | ? | check_next_field(equal,TX,TY,EqRes) :- ordered_fields(TX,TY,EqRes). |
1651 | | check_next_field(not_equal,_X,_Y,not_equal). % no need to check next field |
1652 | | |
1653 | | :- block less_equal_atomic_term(-,?,?), less_equal_atomic_term(?,-,?). |
1654 | | less_equal_atomic_term(A,B,Res) :- (A==B -> Res=equal ; A @<B, Res=not_equal). |
1655 | | |
1656 | | :- block equal_atomic_term(-,?,?), equal_atomic_term(?,-,?). |
1657 | | equal_atomic_term(A,B,Res) :- (A==B -> Res=equal ; Res=not_equal). |
1658 | | |
1659 | | |
1660 | | :- assert_must_succeed(exhaustive_kernel_check( bsets_clp:not_relation_over([(int(1),int(2)),(int(2),int(1))],[int(1),int(2)],[int(2)],_WF) )). |
1661 | | :- assert_must_succeed(exhaustive_kernel_check( bsets_clp:not_relation_over([(int(1),int(2))],[],[int(2)],_WF) )). |
1662 | | :- assert_must_succeed(exhaustive_kernel_fail_check( bsets_clp:not_relation_over([(int(1),pred_true)],[int(1)],[pred_true],_WF) )). |
1663 | | :- assert_must_succeed(exhaustive_kernel_fail_check( bsets_clp:not_relation_over([],[int(1)],[pred_true],_WF) )). |
1664 | | :- assert_must_succeed( bsets_clp:not_relation_over([(int(1),int(2))],[int(3)],[int(1),int(2)],_) ). |
1665 | | :- assert_must_succeed( bsets_clp:not_relation_over([(int(1),int(2))],[int(1)],[int(3)],_) ). |
1666 | | :- assert_must_succeed( bsets_clp:not_relation_over([(int(1),int(3)),(int(1),int(2))],[int(1)],[int(3)],_) ). |
1667 | | :- assert_must_fail( bsets_clp:not_relation_over([(int(1),int(3))],[int(1)],[int(3)],_) ). |
1668 | | :- assert_must_fail( bsets_clp:not_relation_over([],[int(1)],[int(3)],_) ). |
1669 | | :- assert_must_fail( bsets_clp:not_relation_over([],[],[],_) ). |
1670 | | :- block not_relation_over(-,?,?,?). |
1671 | | |
1672 | | not_relation_over(FF,Domain,Range,WF) :- nonvar(FF),custom_explicit_sets:is_definitely_maximal_set(Range), |
1673 | | % we do not need the Range; this means we can match more closures (e.g., lambda) |
1674 | | custom_explicit_sets:dom_for_specific_closure(FF,FFDomain,_,WF),!, |
1675 | | not_subset_of_wf(FFDomain,Domain,WF). |
1676 | | not_relation_over(FF,Domain,Range,WF) :- nonvar(FF), |
1677 | | custom_explicit_sets:dom_range_for_specific_closure(FF,FFDomain,FFRange,_,WF),!, |
1678 | | not_both_subset_of(FFDomain,FFRange,Domain,Range,WF). |
1679 | | /* could be slightly more efficient: but not clear if warrants additional complexity in code: |
1680 | | not_relation_over(FF,Domain,Range,WF) :- nonvar(FF), |
1681 | | check_element_can_be_decided(Domain), % ensures that check_element_of_wf will not block below |
1682 | | check_element_can_be_decided(Range), % ensures that check_element_of_wf will not block below |
1683 | | expand_and_convert_to_avl_set(FF,AER,no_relation_over,''),!, |
1684 | | (is_avl_relation_over_domain(AER,Domain,WF) |
1685 | | -> \+ is_avl_relation_over_range(AER,Range,WF) |
1686 | | ; true). |
1687 | | check_element_can_be_decided(X) :- var(X),!,fail. |
1688 | | check_element_can_be_decided(avl_set(_)). |
1689 | | check_element_can_be_decided([]). |
1690 | | check_element_can_be_decided(closure(P,T,B)) :- |
1691 | | custom_explicit_sets:is_interval_closure_or_integerset(closure(P,T,B),Low,Up), |
1692 | | ground(Low), ground(Up). |
1693 | | */ |
1694 | | not_relation_over(R,Dom,Ran,WF) :- |
1695 | | expand_custom_set_to_list_wf(R,ER,_,not_relation_over,WF), |
1696 | | %% print(not_rel(ER,Dom,Ran)),nl, |
1697 | | not_relation_over2(ER,Dom,Ran,WF). |
1698 | | |
1699 | | |
1700 | | %not_relation_over2(R,_,_) :- when(nonvar(R), (R\=[], R\=[_|_])) . % TYPE ERROR ! |
1701 | | :- block not_relation_over2(-,?,?,?). |
1702 | | not_relation_over2([(X,Y)|T],Domain,Range,WF) :- |
1703 | | membership_test_wf(Domain,X,MemRes,WF), |
1704 | | not_relation_over3(MemRes,Y,T,Domain,Range,WF). |
1705 | | |
1706 | | :- block not_relation_over3(-,?,?,?,?,?). |
1707 | | not_relation_over3(pred_false,_Y,_T,_Domain,_Range,_WF). |
1708 | | not_relation_over3(pred_true,Y,T,Domain,Range,WF) :- |
1709 | | membership_test_wf(Range,Y,MemRes,WF), |
1710 | | not_relation_over4(MemRes,T,Domain,Range,WF). |
1711 | | |
1712 | | :- block not_relation_over4(-,?,?,?,?). |
1713 | | not_relation_over4(pred_false,_T,_Domain,_Range,_WF). |
1714 | | not_relation_over4(pred_true,T,Domain,Range,WF) :- |
1715 | | not_relation_over2(T,Domain,Range,WF). |
1716 | | |
1717 | | |
1718 | | |
1719 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:domain_wf([],[],WF),WF)). |
1720 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:domain_wf([(int(1),int(3))],[int(1)],WF),WF)). |
1721 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:domain_wf( |
1722 | | [(int(0),int(55)),(int(2),int(3)),(int(1),int(3))],[int(1),int(2),int(0)],WF),WF)). |
1723 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:domain_wf( |
1724 | | [(int(99),int(55)),(int(2),int(3)),(int(99),int(4))],[int(2),int(99)],WF),WF)). |
1725 | | :- assert_must_succeed((bsets_clp:domain_wf([],Res,_WF),Res=[])). |
1726 | | :- assert_must_succeed((bsets_clp:domain_wf([(int(1),int(2))],Res,_WF), |
1727 | | kernel_objects:equal_object(Res,[int(1)]))). |
1728 | | :- assert_must_succeed((bsets_clp:domain_wf([(int(1),int(2)),(int(1),int(1))],Res,_WF), |
1729 | | kernel_objects:equal_object(Res,[int(1)]))). |
1730 | | :- assert_must_succeed((bsets_clp:domain_wf([(int(2),int(2)),(int(1),int(2))],Res,_WF), |
1731 | | kernel_objects:equal_object(Res,[int(1),int(2)]))). |
1732 | | :- assert_must_succeed((bsets_clp:domain_wf(X,Res,_WF),kernel_objects:equal_object(Res,[int(1),int(3),int(2)]), |
1733 | | kernel_objects:equal_object(X,[(int(2),int(2)),(int(1),int(1)),(int(3),int(2))]))). |
1734 | | :- assert_must_succeed((bsets_clp:domain_wf(X,Res,_WF),kernel_objects:equal_object(Res,[int(1),int(2)]), |
1735 | | kernel_objects:equal_object(X,[(int(2),int(2)),(int(1),int(1)),(int(1),int(2))]))). |
1736 | | :- assert_must_fail((bsets_clp:domain_wf(X,Res,_WF),kernel_objects:equal_object(Res,[int(1),int(2)]), |
1737 | | kernel_objects:equal_object(X,[(int(2),int(2)),(int(1),int(1)),(int(3),int(2))]))). |
1738 | | |
1739 | | :- block domain_wf(-,-,?). |
1740 | | domain_wf(Rel,Res,WF) :- Res == [],!, |
1741 | | empty_set_wf(Rel,WF). |
1742 | | domain_wf(Rel,Res,WF) :- var(Rel),!, % hence Res must me nonvar |
1743 | | (is_custom_explicit_set(Res,domain_wf) |
1744 | | -> expand_custom_set_to_list_wf(Res,Res2,_,propagate_result_to_input2,WF) % avoid expanding twice |
1745 | | ; Res2 = Res), |
1746 | | propagate_result_to_input(Res2,Rel,domain,WF), |
1747 | | domain_wf1(Rel,Res2,WF). |
1748 | ? | domain_wf(Rel,Res,WF) :- domain_wf1(Rel,Res,WF). |
1749 | | |
1750 | | |
1751 | | % propagate result of domain/range back to original relation |
1752 | | propagate_result_to_input(Result,OriginalRel,DomOrRange,WF) :- |
1753 | | propagate_empty_set_wf(Result,result,OriginalRel,WF), % this will trigger before LWF ground |
1754 | | (preferences:preference(use_smt_mode,true) |
1755 | | -> propagate_result_to_input1(Result,OriginalRel,1,DomOrRange) |
1756 | | % hopefully full CHR implementation will avoid the need for this hack |
1757 | | % ; kernel_objects:is_marked_to_be_computed(OriginalRel) -> true % get_last_wait_flag(propagate_result_to_input,WF,LWF) |
1758 | | ; |
1759 | | get_wait_flag(2000,propagate_result_to_input,WF,LWF), % TO DO: determine right value for Priority ? |
1760 | | % higher number for data_validation mode seems slightly counterproductive (on private_source_not_available tests) |
1761 | | propagate_result_to_input1(Result,OriginalRel,LWF,DomOrRange) % this slows down test 289 if not guarded, 1088 if guarded |
1762 | | ). |
1763 | | |
1764 | | :- block propagate_result_to_input1(-,?,?,?), propagate_result_to_input1(?,-,-,?). |
1765 | | % Note: if arg 2 (Rel) is known we will not propagate |
1766 | | propagate_result_to_input1([],Rel,_,_) :- !, empty_set(Rel). |
1767 | | propagate_result_to_input1(Result,Input,LWF,DomOrRange) :- |
1768 | | (kernel_objects:is_marked_to_be_computed(Input) -> true |
1769 | | ; propagate_result_to_input2(Result,Input,LWF,DomOrRange)). |
1770 | | |
1771 | | %:- block propagate_result_to_input2(-,?). |
1772 | | :- block propagate_result_to_input2(-,?,?,?), propagate_result_to_input2(?,-,-,?). |
1773 | | % maybe do in CHR in future: x:dom(R) => #z.(x,z) : R |
1774 | | % TO DO: make stronger; also support avl_set ... |
1775 | | propagate_result_to_input2([],_Rel,_,_) :- !. % nothing can be said; we could have repeated entries for previous domain elements |
1776 | | propagate_result_to_input2([D|T],Rel,LWF,DomOrRange) :- %print(propagate_result_to_input2([D|T],Rel,LWF,DomOrRange)),nl, |
1777 | | !, |
1778 | | (Rel == [] -> fail % we would need more relation elements to generate the domain/range |
1779 | | ; nonvar(Rel) -> true % no propagation |
1780 | | ; (DomOrRange=domain -> Rel = [(D,_)|RT] ; Rel = [(_,D)|RT]), |
1781 | | propagate_result_to_input2(T,RT,LWF,DomOrRange) |
1782 | | ). |
1783 | | propagate_result_to_input2(CS,Rel,LWF,DomOrRange) :- var(Rel), is_custom_explicit_set(CS),!, |
1784 | | expand_custom_set_to_list(CS,Res,_,propagate_result_to_input2), |
1785 | | propagate_result_to_input2(Res,Rel,LWF,DomOrRange). |
1786 | | propagate_result_to_input2(_1,_2,_LWF,_DomOrRange). |
1787 | | |
1788 | | :- block domain_wf1(-,?,?). |
1789 | | domain_wf1(Rel,Res,WF) :- is_custom_explicit_set(Rel,domain_wf), |
1790 | | domain_of_explicit_set_wf(Rel,Dom,WF), !, |
1791 | ? | equal_object_wf(Dom,Res,domain_wf1,WF). |
1792 | | domain_wf1(Rel,Res,WF) :- |
1793 | | expand_custom_set_to_list_wf(Rel,Relation,_,domain_wf,WF), |
1794 | ? | newdomain1(Relation,[],Res,WF), |
1795 | | quick_propagate_domain(Relation,Res,WF). |
1796 | | |
1797 | | :- block quick_propagate_domain(-,?,?). |
1798 | | quick_propagate_domain([],_,_WF). |
1799 | | quick_propagate_domain([(X,_)|T],FullRes,WF) :- |
1800 | | quick_propagation_element_information(FullRes,X,WF,FullRes1), % should we use a stronger check ? |
1801 | | quick_propagate_domain(T,FullRes1,WF). |
1802 | | |
1803 | | %:- block newdomain1(-,?,-,?). % why was this commented out ? |
1804 | | :- block newdomain1(-,?,?,?). |
1805 | | /* newdomain1(Rel,SoFar,Res,WF) :- var(Rel), !, |
1806 | | domain_propagate_result(Res,Rel,SoFar,WF). */ |
1807 | ? | newdomain1(Dom,SoFar,Res,WF) :- newdomain2(Dom,SoFar,Res,WF). |
1808 | | |
1809 | | %:- block newdomain2(-,?,?,?). |
1810 | ? | newdomain2([],_SoFar,Res,WF) :- empty_set_wf(Res,WF). |
1811 | | newdomain2([(X,Y)|T],SoFar,Res,WF) :- |
1812 | | (Res==[] |
1813 | | -> MemRes=pred_true, % no new elements can appear, all Xs must already be in SoFar |
1814 | | check_element_of_wf(X,SoFar,WF) |
1815 | | ; membership_test_wf(SoFar,X,MemRes,WF), |
1816 | | % now check that card of Relation is greater or equal to Result; if equal set MemRes to pred_false |
1817 | | % if card(Result)=card(dom(Result)) => all elements in Result must be fresh domain elements |
1818 | | card_greater_equal_check([(X,Y)|T],Res,MemRes) |
1819 | | ), |
1820 | ? | newdomain3(MemRes,X,T,SoFar,Res,WF). |
1821 | | |
1822 | | :- block newdomain3(-,?,?,?,?,?). |
1823 | | newdomain3(pred_true,_,T,SoFar,Res,WF) :- newdomain1(T,SoFar,Res,WF). |
1824 | | newdomain3(pred_false,X,T,SoFar,Res,WF) :- |
1825 | | kernel_objects:mark_as_non_free(X,domain), % X is linked to a particular Y -> it is not free |
1826 | | add_element_wf(X,SoFar,SoFar2,WF), |
1827 | ? | equal_cons_wf(Res,X,Res2,WF), |
1828 | ? | newdomain1(T,SoFar2,Res2,WF). |
1829 | | |
1830 | | |
1831 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:in_domain_wf(int(2),[(int(2),int(7))],WF),WF)). |
1832 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:in_domain_wf(int(2),[(int(1),int(6)),(int(2),int(7))],WF),WF)). % used to be wfdet; but dom_symbolic can create existential quantifier, not all co-routines/... evaluated in wfdet |
1833 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:in_domain_wf(int(22),[(int(1),int(6)),(int(22),int(7)),(int(33),int(7))],WF),WF)). % used to be wfdet (see above) |
1834 | | :- assert_must_succeed((bsets_clp:in_domain_wf(int(1),[(int(1),int(2))],_))). |
1835 | | :- assert_must_succeed((bsets_clp:in_domain_wf(int(3),[(int(1),int(2)),(int(3),int(4))],_))). |
1836 | | :- assert_must_fail((bsets_clp:in_domain_wf(int(3),[],_))). |
1837 | | :- assert_must_fail((bsets_clp:in_domain_wf(int(3),[(int(1),int(2))],_))). |
1838 | | /* a more efficient version than using element_of and computing domain */ |
1839 | | |
1840 | | % just like not_empty_set_wf but instantiates with (El,_) as first element |
1841 | | in_domain_wf(El,S,WF) :- var(S),!, force_in_domain_wf(El,S,WF). |
1842 | | in_domain_wf(El,Rel,WF) :- in_domain_wf_lazy(El,Rel,WF). |
1843 | | |
1844 | | :- use_module(kernel_non_empty_attr,[mark_var_set_as_non_empty/1]). |
1845 | | % next is also used in apply_to/6 |
1846 | | force_in_domain_wf(El,S,WF) :- |
1847 | | (preferences:preference(use_smt_mode,true) -> get_wait_flag0(WF,WF0), |
1848 | | when(ground(WF0),delayed_force_in_domain_wf(El,S,WF)) |
1849 | | ; % TO DO: non-empty flag |
1850 | | mark_var_set_as_non_empty(S), |
1851 | | get_enumeration_starting_wait_flag(not_empty_domain_wf,WF,LWF), in_domain_lwf(El,S,LWF,WF)). |
1852 | | % delay instantiating S somewhat: it can mess up many other optimisations |
1853 | | % fixes trying to deconstruct infinite set enum warning for test 2022 |
1854 | | delayed_force_in_domain_wf(El,S,_WF) :- var(S),!, S=[(El,_)|_]. % TODO: mark _ as irrelevant |
1855 | | delayed_force_in_domain_wf(El,Rel,WF) :- in_domain_wf_lazy(El,Rel,WF). |
1856 | | |
1857 | | :- block in_domain_lwf(-,-,-,?). |
1858 | | % was :- block in_domain_lwf(-,?,-,?). but this prevents instantiating El in case Rel becomes known ! see e.g. private_examples/ClearSy/ComparePv10Pv11/DebugPv10/ test 1952, 2270 |
1859 | | %:- block in_domain_lwf(-,-,?,?),in_domain_lwf(?,-,-,?). % this annotation fails test 1703 |
1860 | | in_domain_lwf(El,Rel,LWF,WF) :- % tools_printing:print_term_summary(in_domain_lwf(El,Rel,LWF)), |
1861 | | (var(Rel) -> ground_value_check(El,GrVal), |
1862 | | in_domain_lwf2(El,Rel,LWF,GrVal,WF) % we could also wait at least until WF0 is fully grounded? |
1863 | | ; not_empty_set_unless_closure_wf(Rel,WF), |
1864 | | in_domain_wf_lazy(El,Rel,WF)). |
1865 | | |
1866 | | :- block in_domain_lwf2(?,-,-,-,?). |
1867 | | in_domain_lwf2(El,Rel,_LWF,_Grval,WF) :- % tools_printing:print_term_summary(in_domain_lwf2(El,Rel,_LWF,_Grval)), |
1868 | | (var(Rel) -> Rel = [(El,_)|_] |
1869 | | % can create a choice point when unifying with large avl_set:, see rule_Rule_DB_PSR_0003_C |
1870 | | % maybe we should delay even further |
1871 | | ; not_empty_set_unless_closure_wf(Rel,WF), |
1872 | | in_domain_wf_lazy(El,Rel,WF)). |
1873 | | |
1874 | | not_empty_set_unless_closure_wf(closure(_,_,_),_) :- !. % do not check this; in_domain_wf or other call will find a solution anyway; no need to set up closure constraints twice |
1875 | | not_empty_set_unless_closure_wf(Rel,WF) :- not_empty_set_wf(Rel,WF). |
1876 | | |
1877 | | % does not instantiate to [(El,_)|_] |
1878 | | :- block in_domain_wf_lazy(?,-,?). |
1879 | | in_domain_wf_lazy(_DomainElement,[],_WF) :- !,fail. |
1880 | | in_domain_wf_lazy(DomainElement,avl_set(A),_WF) :- |
1881 | | ground_value(DomainElement), !, |
1882 | | check_in_domain_of_avlset(DomainElement,A). |
1883 | | % TO DO: check for infinite closures |
1884 | | in_domain_wf_lazy(DomainElement,ES,WF) :- |
1885 | | is_custom_explicit_set(ES,in_domain_wf_lazy), |
1886 | | domain_of_explicit_set_wf(ES,Dom,WF),!, |
1887 | | check_element_of_wf(DomainElement,Dom,WF). |
1888 | | in_domain_wf_lazy(El,Rel,WF) :- |
1889 | | expand_custom_set_to_list_wf(Rel,Relation,Done,in_domain_wf_lazy,WF), |
1890 | | get_binary_choice_wait_flag(in_domain_wf_lazy(El),WF,LWF), % TO DO: get_pow2_binary_choice_priority(Len,Prio), get_binary_choice_wait_flag_exp_backoff |
1891 | | % if Done == true -> we can use maybe clpfd_inlist or clpfd:element or quick_propagate |
1892 | | quick_propagation_domain_element_list(Done,Relation,El,WF), |
1893 | | in_domain2(El,Relation,WF,LWF). |
1894 | | |
1895 | | % a custom implementation of quick_propagation_element_information for checking domain elements and lists only |
1896 | | :- use_module(clpfd_lists,[try_in_fd_value_list_check/4]). |
1897 | | :- block quick_propagation_domain_element_list(-,?,?,?). |
1898 | | quick_propagation_domain_element_list(_,_,_,_) :- preferences:preference(use_clpfd_solver,false),!. |
1899 | | quick_propagation_domain_element_list(_,_,El,_) :- ground(El),!. |
1900 | | quick_propagation_domain_element_list(_,RelList,El,WF) :- |
1901 | | try_in_fd_value_list_check(RelList,(El,_),couple_left(_),WF). % use couple_left to ignore range values |
1902 | | |
1903 | | |
1904 | | :- block in_domain2(?,-,?,?). |
1905 | | in_domain2(El,[(X,_Y)|T],WF,LWF) :- |
1906 | | (T==[] |
1907 | | -> equal_object_wf(El,X,in_domain2,WF) |
1908 | | ; kernel_objects:equality_objects_lwf(El,X,EqRes,LWF,WF), |
1909 | | in_domain3(EqRes,El,T,WF,LWF) |
1910 | | ). |
1911 | | |
1912 | | :- block in_domain3(-,?,?,?,?). |
1913 | | in_domain3(pred_true,_El,_T,_WF,_LWF). |
1914 | | in_domain3(pred_false,El,T,WF,LWF) :- |
1915 | | get_new_subsidiary_wait_flag(LWF,in_domain2(El,T),WF,NewLWF), % not necessary if T only has single element |
1916 | | in_domain2(El,T,WF,NewLWF). |
1917 | | |
1918 | | |
1919 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_in_domain_wf(int(3),[],WF),WF)). |
1920 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_in_domain_wf(int(3),[(int(2),int(7))],WF),WF)). |
1921 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_in_domain_wf(int(3),[(int(2),int(7)),(int(4),int(3))],WF),WF)). |
1922 | | :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:not_in_domain_wf(int(4),[(int(2),int(7)),(int(4),int(3))],WF),WF)). |
1923 | | :- assert_must_fail((bsets_clp:not_in_domain_wf(int(1),[(int(1),int(2))],_))). |
1924 | | :- assert_must_fail((bsets_clp:not_in_domain_wf(int(3),[(int(1),int(2)),(int(3),int(4))],_))). |
1925 | | :- assert_must_succeed((bsets_clp:not_in_domain_wf(int(3),[],_))). |
1926 | | :- assert_must_succeed((bsets_clp:not_in_domain_wf(int(3),[(int(1),int(2))],_))). |
1927 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_in_domain_wf(int(3),[(int(1),int(2)),(int(2),int(3))],WF),WF)). |
1928 | | /* a more efficient version than using not_element_of and computing domain */ |
1929 | | |
1930 | | |
1931 | | :- block not_in_domain_wf(?,-,?). |
1932 | | not_in_domain_wf(DomainElement,ES,WF) :- is_custom_explicit_set(ES,not_in_domain), |
1933 | | domain_of_explicit_set_wf(ES,Dom,WF),!, |
1934 | | not_element_of_wf(DomainElement,Dom,WF). |
1935 | | not_in_domain_wf(El,Rel,WF) :- |
1936 | | expand_custom_set_to_list_wf(Rel,Relation,_,not_in_domain,WF), |
1937 | | not_in_domain2(Relation,El,WF). |
1938 | | :- block not_in_domain2(-,?,?). |
1939 | | not_in_domain2([],_,_WF). |
1940 | | not_in_domain2([(X,_Y)|T],E,WF) :- not_equal_object_wf(E,X,WF), not_in_domain2(T,E,WF). |
1941 | | |
1942 | | |
1943 | | |
1944 | | |
1945 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:range_wf([],[],WF),WF)). |
1946 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:range_wf([(int(1),int(3))],[int(3)],WF),WF)). |
1947 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:range_wf( |
1948 | | [(int(0),int(55)),(int(2),int(3)),(int(1),int(3))],[int(3),int(55)],WF),WF)). |
1949 | | :- assert_must_succeed((bsets_clp:range_wf([],Res,_WF),Res=[])). |
1950 | | :- assert_must_succeed((bsets_clp:range_wf([(int(1),int(2))],Res,_WF), |
1951 | | kernel_objects:equal_object(Res,[int(2)]))). |
1952 | | :- assert_must_succeed((bsets_clp:range_wf([(int(1),int(1)),(int(2),int(1))],Res,_WF), |
1953 | | kernel_objects:equal_object(Res,[int(1)]))). |
1954 | | :- assert_must_succeed((bsets_clp:range_wf([(int(1),int(2)),(int(1),int(1))],Res,_WF), |
1955 | | kernel_objects:equal_object(Res,[int(1),int(2)]))). |
1956 | | :- assert_must_succeed((bsets_clp:range_wf([(int(1),int(2)),(int(1),int(1)),(int(2),int(3))],Res,_WF), |
1957 | | kernel_objects:equal_object(Res,[int(1),int(3),int(2)]))). |
1958 | | :- assert_must_succeed((bsets_clp:range_wf(X,Res,_WF), |
1959 | | X = [(int(1),int(2)),(int(1),int(1)),(int(2),int(3))], |
1960 | | kernel_objects:equal_object(Res,[int(1),int(3),int(2)]))). |
1961 | | :- assert_must_succeed((bsets_clp:range_wf(X,Res,WF), bsets_clp:domain_wf(X,Res2,WF), kernel_objects:equal_object(Res,Res2), |
1962 | | X = [(int(1),int(2)),(int(1),int(1)),(int(2),int(2))])). |
1963 | | :- assert_must_succeed((bsets_clp:range_wf(X,Res,WF), bsets_clp:domain_wf(X,Res2,WF), kernel_objects:equal_object(Res,Res2), |
1964 | | X = [(int(2),int(1)),(int(1),int(2)),(int(2),int(2))])). |
1965 | | :- assert_must_succeed((bsets_clp:range_wf(X,Res,WF), bsets_clp:domain_wf(X,Res2,WF), kernel_objects:equal_object(Res,Res2), |
1966 | | X = [])). |
1967 | | :- assert_must_succeed((bsets_clp:range_wf([([],[]),([int(0)],[int(0)]), |
1968 | | ([int(0),int(1)],[int(0),int(1)]),([int(0),int(2)],[int(0),int(2)]), |
1969 | | ([int(0),int(3)],[int(0),int(3)]),([int(0),int(4)],[int(0),int(4)]),([int(1)],[int(1)]), |
1970 | | ([int(1),int(2)],[int(1),int(2)]),([int(1),int(3)],[int(1),int(3)]), |
1971 | | ([int(1),int(4)],[int(1),int(4)]),([int(2)],[int(2)]),([int(2),int(3)],[int(2),int(3)]), |
1972 | | ([int(2),int(4)],[int(2),int(4)]),([int(3)],[int(3)]),([int(3),int(4)], |
1973 | | [int(3),int(4)]),([int(4)],[int(4)])],_Res,_WF))). |
1974 | | :- assert_must_succeed((bsets_clp:range_wf([([],[]),([int(0)],[int(0)]), |
1975 | | ([int(0),int(1)],[int(0),int(1)]), |
1976 | | ([int(0),int(3)],[int(0),int(3)]),([int(0),int(4)],[int(0),int(4)]),([int(1)],[int(1)]), |
1977 | | ([int(1),int(2)],[int(1),int(2)])],_Res,_WF))). |
1978 | | |
1979 | | |
1980 | | :- block range_wf(-,-,?). |
1981 | | range_wf(Rel,Res,WF) :- Res ==[],!, empty_set_wf(Rel,WF). |
1982 | | range_wf(Rel,Res,WF) :- Rel ==[],!, empty_set_wf(Res,WF). |
1983 | ? | range_wf(Rel,Res,WF) :- range_wf1(Rel,Res,WF), |
1984 | | propagate_result_to_input(Res,Rel,range,WF). |
1985 | | |
1986 | | :- block range_wf1(-,?,?). |
1987 | | range_wf1(Rel,Res,WF) :- |
1988 | | is_custom_explicit_set(Rel,range_wf1), |
1989 | | range_of_explicit_set_wf(Rel,Range,WF), !, |
1990 | | equal_object_wf(Range,Res,range_wf1,WF). |
1991 | | range_wf1(Rel,Res,WF) :- |
1992 | | % TO DO : propagate information that card of Res <= card of Rel; similar thing for domain |
1993 | | expand_custom_set_to_list_wf(Rel,Relation,_,range_wf1,WF), |
1994 | ? | newrange2(Relation,[],Res,WF), |
1995 | | quick_propagate_range(Relation,Res,WF). |
1996 | | |
1997 | | |
1998 | | :- block quick_propagate_range(-,?,?). |
1999 | | quick_propagate_range([],_,_WF). |
2000 | | quick_propagate_range([(_,Y)|T],FullRes,WF) :- |
2001 | | quick_propagation_element_information(FullRes,Y,WF,FullRes1), % should we use a stronger check ? |
2002 | | quick_propagate_range(T,FullRes1,WF). |
2003 | | |
2004 | | :- block newrange2(-,?,?,?). |
2005 | | newrange2([],_SoFar,Res,WF) :- |
2006 | | empty_set_wf(Res,WF). |
2007 | | newrange2([(X,Y)|T],SoFar,Res,WF) :- |
2008 | | (Res==[] |
2009 | | -> MemRes=pred_true, check_element_of_wf(Y,SoFar,WF) |
2010 | | ; membership_test_wf(SoFar,Y,MemRes,WF), |
2011 | | card_greater_equal_check([(X,Y)|T],Res,MemRes), % check that card of Relation is greater or equal to Result; if equal set MemRes to pred_false |
2012 | | (var(MemRes) -> prop_empty_pred_true(Res,MemRes) %,print(delay_range(Y,T)),nl |
2013 | | % TO DO: we could look further in T if we can decide membership for other elements in T ? |
2014 | | ; true) |
2015 | | ), |
2016 | ? | newrange3(MemRes,Y,T,SoFar,Res,WF). |
2017 | | |
2018 | | :- block prop_empty_pred_true(-,?). |
2019 | | prop_empty_pred_true([],R) :- !, R=pred_true. |
2020 | | prop_empty_pred_true(_,_). |
2021 | | |
2022 | | % card_greater_equal_check(Set1,Set2,EqFlag) : check that cardinality of Set1 is greater or equal to that of Set2; set EqFlag to pred_false if they are equal |
2023 | | % checking is stopped if EqFlag becomes nonvar |
2024 | | % tested by testcase 1061 |
2025 | | :- block card_greater_equal_check(-,?,-), card_greater_equal_check(?,-,-). |
2026 | | card_greater_equal_check(_,_,Flag) :- nonvar(Flag),!. % no longer required; even though we could prune failure !? done later in newrange2/newdomain2 ??!! |
2027 | | card_greater_equal_check([],Set2,Flag) :- !,empty_set(Set2), |
2028 | | Flag=pred_false. % Flag set indicates that both sets have same size |
2029 | | card_greater_equal_check(_,[],_) :- !. |
2030 | | card_greater_equal_check([_|T],[_|R],Flag) :- !, card_greater_equal_check(T,R,Flag). |
2031 | | % To do: deal with AVL args as Result + also use efficient_card_for_set for closures |
2032 | | %card_greater_equal_check([_|T],Set,Flag) :- efficient_card_for_set(B,CardB,CodeB),!, |
2033 | | % f: 1..7 -->> 1..n & n>=7 & n<10 still does not work well |
2034 | | % TO DO: can we merge code with check_card_greater_equal |
2035 | | card_greater_equal_check(_,_,_). |
2036 | | |
2037 | | |
2038 | | :- block newrange3(-,?,?,?,?,?). |
2039 | | newrange3(pred_true,_Y,T,SoFar,Res,WF) :- newrange2(T,SoFar,Res,WF). |
2040 | | newrange3(pred_false,Y,T,SoFar,Res,WF) :- |
2041 | | kernel_objects:mark_as_non_free(Y,range), % Y is linked to a particular X -> it is not free |
2042 | | add_element_wf(Y,SoFar,SoFar2,WF), |
2043 | ? | equal_cons_wf(Res,Y,Res2,WF), |
2044 | | newrange2(T,SoFar2,Res2,WF). |
2045 | | |
2046 | | |
2047 | | :- assert_must_succeed((bsets_clp:identity_relation_over_wf([],Res,_WF),Res=[])). |
2048 | | :- assert_must_succeed((bsets_clp:identity_relation_over_wf([int(1),int(2)],Res,_WF), |
2049 | | Res=[(int(1),int(1)),(int(2),int(2))])). |
2050 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:identity_relation_over_wf([int(2),int(4)],[(int(4),int(4)),(int(2),int(2))],WF),WF)). |
2051 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:identity_relation_over_wf([int(1),int(2),int(4)],[(int(4),int(4)),(int(2),int(2)),(int(1),int(1))],WF),WF)). |
2052 | | :- assert_must_fail((bsets_clp:identity_relation_over_wf([int(1)|_],_,_WF),fail)). /* check: no loop */ |
2053 | | |
2054 | | :- block identity_relation_over_wf(-,?,?). |
2055 | | identity_relation_over_wf(Set1,IDRel,WF) :- |
2056 | | expand_custom_set_to_list_wf(Set1,ESet1,_,identity_relation_over_wf,WF), |
2057 | | identity_relation_over2(ESet1,IDRel,WF). |
2058 | | |
2059 | | :- block identity_relation_over2(-,?,?). |
2060 | | identity_relation_over2([],Res,WF) :- empty_set_wf(Res,WF). |
2061 | | identity_relation_over2([X|T1],Res,WF) :- equal_cons_wf(Res,(X,X),T2,WF), % equal_object([(X,X)|T2],Res), |
2062 | | identity_relation_over2(T1,T2,WF). |
2063 | | |
2064 | | |
2065 | | |
2066 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:in_identity((int(1),int(1)),[int(1),int(2)],WF),WF)). |
2067 | | :- assert_must_fail((bsets_clp:in_identity((int(1),int(2)),[int(1),int(2)],_WF))). |
2068 | | :- assert_must_fail((bsets_clp:in_identity((int(3),int(3)),[int(1),int(2)],_WF))). |
2069 | | :- assert_must_fail((bsets_clp:in_identity((int(1),int(2)),[],_WF))). |
2070 | | in_identity((X,Y),Domain,WF) :- |
2071 | | equal_object_wf(X,Y,in_identity,WF), check_element_of_wf(X,Domain,WF). |
2072 | | |
2073 | | :- assert_must_fail((bsets_clp:not_in_identity((int(1),int(1)),[int(1),int(2)],_WF))). |
2074 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_in_identity((int(1),int(2)),[int(1),int(2)],WF),WF)). |
2075 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_in_identity((int(3),int(3)),[int(1),int(2)],WF),WF)). |
2076 | | :- assert_must_succeed((bsets_clp:not_in_identity((int(1),int(2)),[],_WF))). |
2077 | | not_in_identity((X,Y),Domain,WF) :- |
2078 | | equality_objects_wf(X,Y,Eq,WF), |
2079 | | not_in_id2(Eq,X,Domain,WF). |
2080 | | |
2081 | | :- block not_in_id2(-,?,?,?). |
2082 | | not_in_id2(pred_true,X,Domain,WF) :- not_element_of_wf(X,Domain,WF). |
2083 | | not_in_id2(pred_false,_,_,_). |
2084 | | |
2085 | | |
2086 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:invert_relation_wf([(int(1),int(2)),(int(3),int(4)),(int(5),int(6))], [(int(6),int(5)),(int(2),int(1)),(int(4),int(3))],WF),WF)). |
2087 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:invert_relation_wf([(int(1),int(2))], [(int(2),int(1))],WF),WF)). |
2088 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:invert_relation_wf([], [],WF),WF)). |
2089 | | :- assert_must_succeed((bsets_clp:invert_relation_wf(X,X,_),X = [])). |
2090 | | :- assert_must_succeed((bsets_clp:invert_relation_wf(X,X,_),X = [(int(2),int(2))])). |
2091 | | :- assert_must_succeed((bsets_clp:invert_relation_wf(X,[(int(1),int(2)),(int(7),int(6))],_WF), |
2092 | | X = [(int(2),int(1)),(int(6),int(7))])). |
2093 | | :- assert_must_succeed((bsets_clp:invert_relation_wf([(int(1),int(2)),(int(7),int(6))],X,_WF), |
2094 | | X = [(int(2),int(1)),(int(6),int(7))])). |
2095 | | :- assert_must_succeed((bsets_clp:invert_relation_wf([(int(1),int(2)),(int(7),int(6))], |
2096 | | [(int(6),int(7)),(int(2),int(1))],_WF))). |
2097 | | :- assert_must_succeed((bsets_clp:invert_relation_wf(closure([a,b],[string,boolean],b(truth,pred,[])), |
2098 | | closure([b,a],[boolean,string],b(truth,pred,[])),_WF))). |
2099 | | |
2100 | | :- block invert_relation_wf(-,-,?). |
2101 | | invert_relation_wf(R,IR,WF) :- |
2102 | | % (nonvar(R) -> invert_relation2(R,IR) ; invert_relation2(IR,R)). |
2103 | | invert_relation2(R,IR,WF). % , print_term_summary(invert_relation(R,IR)). |
2104 | | /* Optimization for some types of closures: Instead of expanding the closures, we just |
2105 | | swap the parameters. This does not work with closures wich have only one parameter |
2106 | | wich is a pair */ |
2107 | | invert_relation2(CS,R,WF) :- nonvar(CS),is_custom_explicit_set_nonvar(CS),!, |
2108 | | invert_explicit_set(CS,ICS), equal_object_wf(R,ICS,invert_relation2_1,WF). |
2109 | | invert_relation2(R,CS,WF) :- nonvar(CS),is_custom_explicit_set_nonvar(CS),!, |
2110 | | invert_explicit_set(CS,ICS), equal_object_wf(R,ICS,invert_relation2_2,WF). |
2111 | | %invert_relation2(closure([P1,P2],[T1,T2],Clo),closure([P2,P1],[T2,T1],Clo)) :- !. |
2112 | | invert_relation2(R,IR,WF) :- %try_expand_custom_set_wf(R,ER,invert,WF), |
2113 | | % (nonvar(R) -> invert_relation3(R,IR) |
2114 | | % ; invert_relation3(IR,R),(ground(IR)-> true ; invert_relation3(R,IR))). |
2115 | | invert_relation3(R,IR,WF,1), invert_relation3(IR,R,WF,1). |
2116 | | |
2117 | | :- block invert_relation3(-,?,?,?). |
2118 | | invert_relation3(closure(P,T,B),Res,WF,_) :- invert_explicit_set(closure(P,T,B),ICS), |
2119 | | equal_object_wf(Res,ICS,invert_relation3_1,WF). |
2120 | | invert_relation3(avl_set(S),Res,WF,_) :- invert_explicit_set(avl_set(S),ICS), |
2121 | | equal_object_wf(Res,ICS,invert_relation3_2,WF). |
2122 | | invert_relation3([],Res,WF,_) :- empty_set_wf(Res,WF). |
2123 | | invert_relation3([(X,Y)|T],Res,WF,Depth) :- |
2124 | | D1 is Depth+1, get_wait_flag(D1,invert_relation3,WF,LWF), |
2125 | | equal_cons_lwf(Res,(Y,X),IT,LWF,WF), |
2126 | | invert_relation3(T,IT,WF,D1). |
2127 | | |
2128 | | |
2129 | | |
2130 | | |
2131 | | tuple_of(X,Y,R) :- check_element_of((X,Y),R). |
2132 | | %tuple_of_wf(X,Y,R,WF) :- check_element_of_wf((X,Y),R,WF). |
2133 | | |
2134 | | |
2135 | | % RELATIONAL COMPOSITION (;) |
2136 | | |
2137 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:in_composition_wf((int(11),int(22)), |
2138 | | [(int(11),int(33))],[(int(33),int(22))],WF),WF)). |
2139 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:in_composition_wf((int(11),int(22)), |
2140 | | [(int(11),int(12)),(int(11),int(33))], |
2141 | | [(int(33),int(12)),(int(33),int(22))],WF),WF)). |
2142 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:in_composition_wf((int(11),int(12)), |
2143 | | [(int(11),int(12)),(int(11),int(33))], |
2144 | | [(int(33),int(12)),(int(33),int(22))],WF),WF)). |
2145 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:in_composition_wf((int(11),int(22)), |
2146 | | [(int(11),[int(33),int(32)])], |
2147 | | [([int(32),int(33)],int(22))],WF),WF)). |
2148 | | :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:in_composition_wf((int(11),int(33)), |
2149 | | [(int(11),int(12)),(int(11),int(33))], |
2150 | | [(int(33),int(12)),(int(33),int(22))],WF),WF)). |
2151 | | % check if (X,Y) element of (F ; G) |
2152 | | in_composition_wf((X,Y),F,G,WF) :- |
2153 | | check_element_of_wf((X,Z1),F,WF), % no need to enumerate Z (TODO: check) |
2154 | | equal_object_wf(Z1,Z2,check_element_of_wf,WF), |
2155 | | check_element_of_wf((Z2,Y),G,WF). |
2156 | | |
2157 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_in_composition_wf((int(11),int(33)), |
2158 | | [(int(11),int(33))],[(int(33),int(22))],WF),WF)). |
2159 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_in_composition_wf((int(33),int(22)), |
2160 | | [(int(11),int(33))],[(int(33),int(22))],WF),WF)). |
2161 | | |
2162 | | % just evaluates arguments; TODO: improve or at least pass Type (for symbolic composition) |
2163 | | not_in_composition_wf(Couple,F,G,WF) :- |
2164 | | rel_composition_wf(F,G,Comp,_UnknownType,WF), |
2165 | | not_element_of_wf(Couple,Comp,WF). |
2166 | | |
2167 | | :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:rel_composition([(int(1),int(2)),(int(3),int(4)),(int(5),int(6))], [(int(6),int(7)),(int(2),int(1)),(int(22),int(22)),(int(4),int(33))], |
2168 | | [(int(1),int(1)),(int(5),int(7)),(int(3),int(33))]))). |
2169 | | :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:rel_composition([], [(int(6),int(7)),(int(2),int(1)),(int(22),int(22)),(int(4),int(33))],[]))). |
2170 | | :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:rel_composition([(int(6),int(7)),(int(2),int(1)),(int(22),int(22)),(int(4),int(33))],[],[]))). |
2171 | | :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:rel_composition([],[],[]))). |
2172 | | :- assert_must_succeed((bsets_clp:rel_composition([(int(1),int(2)),(int(7),int(6))], |
2173 | | [(int(1),int(11))],X),X = [])). |
2174 | | :- assert_must_succeed((bsets_clp:rel_composition([(int(1),int(2)),(int(7),int(6))],[],X),X = [])). |
2175 | | :- assert_must_succeed((bsets_clp:rel_composition([(int(1),int(2)),(int(7),int(6))], |
2176 | | [(int(2),int(11))],X), |
2177 | | kernel_objects:equal_object(X,[(int(1),int(11))]))). |
2178 | | :- assert_must_succeed((bsets_clp:rel_composition([(int(1),int(2)),(int(7),int(2))],[(int(2),int(11))],X), |
2179 | | ground(X), bsets_clp:equal_object(X,[(int(1),int(11)),(int(7),int(11))]))). |
2180 | | :- assert_must_succeed((bsets_clp:rel_composition([(int(1),int(2)),(int(7),int(5))], |
2181 | | [(int(2),int(11)),(int(2),int(4))],X), |
2182 | | kernel_objects:equal_object(X,[(int(1),int(11)),(int(1),int(4))]))). |
2183 | | :- assert_must_succeed((bsets_clp:rel_composition([(int(1),int(2)),(int(1),int(5))], |
2184 | | [(int(2),int(11)),(int(5),int(11))],X), |
2185 | | kernel_objects:equal_object(X,[(int(1),int(11))]))). |
2186 | | :- assert_must_succeed((bsets_clp:rel_composition([(int(1),[int(1)]),(int(1),[int(2),int(5)])], |
2187 | | [([int(1),int(2)],int(13)),([int(5),int(2)],int(12))],X), |
2188 | | kernel_objects:equal_object(X,[(int(1),int(12))]))). |
2189 | | |
2190 | | rel_composition(Rel1,Rel2,Comp) :- % only used in unit_tests above |
2191 | | init_wait_flags(WF,[rel_composition]), |
2192 | | rel_composition_wf(Rel1,Rel2,Comp,_UnknownType,WF), |
2193 | ? | ground_wait_flags(WF). |
2194 | | |
2195 | | :- block rel_composition_wf(-,-,?,?,?). |
2196 | | rel_composition_wf(Rel1,Rel2,Comp,_,WF) :- |
2197 | | (Rel1==[] ; Rel2==[]), |
2198 | | !, |
2199 | | empty_set_wf(Comp,WF). |
2200 | | rel_composition_wf(Rel1,Rel2,Comp,Type,WF) :- rel_composition1(Rel1,Rel2,Comp,Type,WF). |
2201 | | |
2202 | | :- use_module(closures,[is_infinite_non_injective_closure/1]). |
2203 | | |
2204 | | :- block rel_composition1(-,?,?,?,?),rel_composition1(?,-,?,?,?). |
2205 | | rel_composition1(Rel1,Rel2,Comp,_,WF) :- |
2206 | | (Rel1==[] ; Rel2==[]),!, empty_set_wf(Comp,WF). |
2207 | | rel_composition1(Rel1,Rel2,Comp,Type,WF) :- keep_symbolic(Rel1), |
2208 | | (Rel2 = avl_set(_), \+ is_infinite_non_injective_closure(Rel1) |
2209 | | -> SYMBOLIC=false |
2210 | | ; SYMBOLIC=symbolic), |
2211 | | symbolic_composition(Rel1,Rel2,SYMBOLIC,Type,Rel3), |
2212 | | !, |
2213 | ? | equal_object_wf(Comp,Rel3,rel_composition1_0,WF). |
2214 | | |
2215 | | rel_composition1(Rel1,Rel2,Comp,_,WF) :- |
2216 | | rel_composition_for_explicit_set(Rel1,Rel2,Res),!, % treats finite Rel1 and avl_set for Rel2 |
2217 | | equal_object_wf(Res,Comp,rel_composition1_1,WF). |
2218 | | rel_composition1(Rel1,Rel2,Comp,Type,WF) :- Rel2=closure(_,_,_), |
2219 | | keep_symbolic(Rel2), |
2220 | | % we know keep_symbolic(Rel1) is false |
2221 | | (dom_for_specific_closure(Rel2,Domain,function(_),WF) % TO DO: also deal with relations; in SYMBOLIC mode this may be counter productive; see function_composition ast cleanup rule |
2222 | | -> !, |
2223 | | opt_push_wait_flag_call_stack_info(WF,b_operator_call(composition,[Rel1,Rel2],unknown),WF2), |
2224 | | on_enumeration_warning(expand_custom_set_to_list_wf(Rel1,Relation1,_,rel_composition1,WF2),R=failed), |
2225 | | (R==failed % expansion of Rel1 failed; use symbolic composition |
2226 | | -> symbolic_composition(Rel1,Rel2,true,Type,Rel3), |
2227 | | equal_object_optimized(Rel3,Comp,rel_composition1_4) |
2228 | | ; rel_compose_with_inf_fun(Relation1,Domain,Rel2,Comp,WF2) |
2229 | | % this is like map Rel2 over Rel1 in functional programmming |
2230 | | ) |
2231 | | ; symbolic_composition(Rel1,Rel2,false,Type,Rel3), |
2232 | | !, |
2233 | | expand_custom_set_wf(Rel3,CRes,rel_composition,WF),% do we need to expand ? |
2234 | ? | equal_object_optimized(CRes,Comp,rel_composition1_4) |
2235 | | ). |
2236 | | rel_composition1(Rel1,Rel2,Comp,_,WF) :- |
2237 | | opt_push_wait_flag_call_stack_info(WF,b_operator_call(composition,[Rel1,Rel2],unknown),WF2), |
2238 | | expand_custom_set_to_list_wf(Rel1,Relation1,_,rel_composition1_2,WF2), |
2239 | | expand_custom_set_to_list_wf(Rel2,Relation2,_,rel_composition1_3,WF2), |
2240 | ? | rel_compose2(Relation1,Relation2,Comp,WF2). |
2241 | | |
2242 | | |
2243 | | :- use_module(btypechecker, [l_unify_types_strict/2]). |
2244 | | symbolic_composition(Rel1,Rel2,SYMBOLIC,Type,Rel3) :- |
2245 | | get_set_type(Type,couple(TX,TZ)), |
2246 | | mnf_get_relation_types(Rel1,TX1,TY1), |
2247 | | mnf_get_relation_types(Rel2,TY2,TZ2), |
2248 | | (l_unify_types_strict([TX1,TY1,TZ],[TX,TY2,TZ2]) -> true |
2249 | | ; add_internal_error('Could not unify range/domain types: ',l_unify_types_strict([TX1,TY1,TZ],[TX,TY2,TZ2])), |
2250 | | fail |
2251 | | ), |
2252 | | ground((TX1,TY1,TZ)), % avoid creating a closure with non-ground type list |
2253 | | rel_comp_closure(Rel1,Rel2,TX1,TY1,TZ,SYMBOLIC,Rel3). |
2254 | | % generate a closure for {xx,zz | #(yy).(xx|->yy : Rel1 & yy|->zz : Rel2)} |
2255 | | % TO DO: maybe detect special cases: Rel1 is a function/cartesian product, e.g., (((0 .. 76) * (0 .. 76)) * {FALSE}) ; {(FALSE|->0),(TRUE|->1)} |
2256 | | :- use_module(bsyntaxtree, [conjunct_predicates_with_pos_info/3,update_used_ids/3 ]). |
2257 | | rel_comp_closure(Rel1,Rel2,TX,TY,TZ,SYMBOLIC,closure(Args,Types,CBody)) :- |
2258 | | Args = ['_rel_comp1','_rel_comp2'], Types = [TX,TZ], |
2259 | | couple_member_pred('_rel_comp1',TX,'_zzzz_unary',TY,Rel1, Pred1), |
2260 | | couple_member_pred('_zzzz_unary',TY,'_rel_comp2',TZ,Rel2, Pred2), |
2261 | | UsedIds = ['_rel_comp1','_rel_comp2','_zzzz_unary'], % avoid having to call find_identifier_uses |
2262 | | %conjunct_predicates([Pred1,Pred2],P12a), bsyntaxtree:check_computed_used_ids(P12a,UsedIds), |
2263 | | %safe_create_texpr(conjunct(Pred1,Pred2),pred,[used_ids(UsedIds)],P12), |
2264 | | conjunct_predicates_with_pos_info(Pred1,Pred2,P12a), |
2265 | | update_used_ids(P12a,UsedIds,P12), |
2266 | | %b_interpreter_components:create_unsimplified_exists([b(identifier('_zzzz_unary'),TY,[])],P12,Body), |
2267 | | bsyntaxtree:create_exists_opt_liftable([b(identifier('_zzzz_unary'),TY,[])],P12,Body), % cf Thales_All/rule_zcpa2 test 2287 |
2268 | | (SYMBOLIC==symbolic |
2269 | | -> mark_bexpr_as_symbolic(Body,CBody) |
2270 | | ; CBody=Body). |
2271 | | |
2272 | | % generate predicate for X|->Y : Rel |
2273 | | couple_member_pred(X,TX,Y,TY,Rel, Pred) :- |
2274 | | Pred = b(member(b(couple(b(identifier(X),TX,[]), |
2275 | | b(identifier(Y),TY,[])),couple(TX,TY),[]), |
2276 | | b(value(Rel),set(couple(TX,TY)),[])),pred,[]). |
2277 | | |
2278 | | |
2279 | | |
2280 | | :- block rel_compose2(-,?,?,?). |
2281 | | rel_compose2([],_,Out,WF) :- empty_set_wf(Out,WF). |
2282 | | rel_compose2([(X,Y)|T],Rel2,Out,WF) :- |
2283 | ? | rel_extract(Rel2,X,Y,OutXY,[],WF), |
2284 | | % rel_extract(Rel2,X,Y,Out,OutRem), |
2285 | ? | rel_compose2(T,Rel2,OutRem,WF), |
2286 | ? | union_wf(OutRem,OutXY,Out,WF). % used to call union wihout wf; makes test 1394 fail |
2287 | | |
2288 | | :- block rel_extract(-,?,?,?,?,?). |
2289 | | rel_extract([],_,_,Rem,Rem,_WF). % should we use equal_object here ????? |
2290 | | rel_extract([(Y1,Z)|T],X,Y,Res,Rem,WF) :- |
2291 | ? | rel_extract(T,X,Y,CT,Rem,WF), |
2292 | ? | equality_objects_wf(Y1,Y,EqRes,WF), |
2293 | | rel_extract2(EqRes,Z,X,CT,Res). |
2294 | | |
2295 | | :- block rel_extract2(-,?,?,?,?). |
2296 | | rel_extract2(pred_true, Z, X,CT,Res) :- add_element((X,Z),CT,Res). |
2297 | | rel_extract2(pred_false,_Z,_X,CT,Res) :- Res = CT. |
2298 | | |
2299 | | |
2300 | | % relational composition of a finite relation with an infinite or symbolic function |
2301 | | rel_compose_with_inf_fun(R,Dom,Fun,CompRes,WF) :- !, |
2302 | | rel_compose_with_inf_fun_acc(R,Dom,Fun,[],CompRes,WF). |
2303 | | :- block rel_compose_with_inf_fun_acc(-,?,?,?,?,?). |
2304 | | rel_compose_with_inf_fun_acc([],_Dom,_Rel2,Acc,Comp,WF) :- |
2305 | | equal_object_wf(Comp,Acc,rel_compose_with_inf_fun_acc,WF). |
2306 | | rel_compose_with_inf_fun_acc([(X,Y)|T],Dom,Fun,Acc,CompRes,WF) :- |
2307 | | membership_test_wf(Dom,Y,MemRes,WF), % check if Y is in the domain of the symbolic relation |
2308 | | rel_compose_with_inf_fun_acc_aux(MemRes,X,Y,T,Dom,Fun,Acc,CompRes,WF). |
2309 | | |
2310 | | :- block rel_compose_with_inf_fun_acc_aux(-,?,?,?, ?,?,?,?, ?). |
2311 | | rel_compose_with_inf_fun_acc_aux(pred_true,X,Y,T,Dom,Fun,Acc,CompRes,WF) :- |
2312 | | apply_to(Fun,Y,FY,WF), % TO DO: generalize to image so that we can apply it also to infinite relations ? |
2313 | | add_element_wf((X,FY),Acc,NewAcc,WF), |
2314 | | rel_compose_with_inf_fun_acc(T,Dom,Fun,NewAcc,CompRes,WF). |
2315 | | rel_compose_with_inf_fun_acc_aux(pred_false,_X,_Y,T,Dom,Fun,Acc,Comp,WF) :- |
2316 | | rel_compose_with_inf_fun_acc(T,Dom,Fun,Acc,Comp,WF). |
2317 | | |
2318 | | % TO DO: if we obtain a list such as [(int(1),X),...] in Acc rather than an avl_set, |
2319 | | % we may still be able to sort and avoid quadratic comparisons if e.g. |
2320 | | % first component is a data-type where equality can be decided by unification (integer, bool, global(GS), ...) |
2321 | | % we could put the optimisation into add_element_wf ? |
2322 | | % TO DO: special version for avl_set as relation? |
2323 | | |
2324 | | /* |
2325 | | Note: old version; has performance problem, 2021/02_Feb/CDS |
2326 | | the add_element_wf calls below can only construct/instantiate result when empty_set_wf reached |
2327 | | and a lot of pending co-routines pile up for long relation lists |
2328 | | |
2329 | | :- block rel_compose_with_inf_fun(-,?,?,?,?). |
2330 | | rel_compose_with_inf_fun([],_Dom,_Rel2,Comp,WF) :- empty_set_wf(Comp,WF). |
2331 | | rel_compose_with_inf_fun([(X,Y)|T],Dom,Fun,CompRes,WF) :- |
2332 | | membership_test_wf(Dom,Y,MemRes,WF), rel_compose_with_inf_fun_aux(MemRes,X,Y,T,Dom,Fun,CompRes,WF). |
2333 | | |
2334 | | :- block rel_compose_with_inf_fun_aux(-,?,?,?, ?,?,?,?). |
2335 | | rel_compose_with_inf_fun_aux(pred_true,X,Y,T,Dom,Fun,CompRes,WF) :- |
2336 | | apply_to(Fun,Y,FY,WF), |
2337 | | add_element_wf((X,FY),CT,CompRes,WF), |
2338 | | rel_compose_with_inf_fun(T,Dom,Fun,CT,WF). |
2339 | | rel_compose_with_inf_fun_aux(pred_false,_X,_Y,T,Dom,Fun,Comp,WF) :- |
2340 | | rel_compose_with_inf_fun(T,Dom,Fun,Comp,WF). |
2341 | | */ |
2342 | | |
2343 | | :- assert_must_abort_wf(bsets_clp:rel_iterate_wf([],int(-1),_R,set(couple(integer,integer)),WF),WF). |
2344 | | :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:rel_iterate_wf([], int(2),[],set(couple(integer,integer)),_WF))). |
2345 | | :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:rel_iterate_wf([(int(1),int(2)),(int(3),int(4)),(int(5),int(6))], int(1),[(int(1),int(2)),(int(3),int(4)),(int(5),int(6))],set(couple(integer,integer)),_WF))). |
2346 | | :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:rel_iterate_wf([(pred_true,pred_true)], int(0), |
2347 | | [(pred_true,pred_true),(pred_false,pred_false)],set(couple(boolean,boolean)),_WF))). |
2348 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:rel_iterate_wf([(int(1),int(2)), |
2349 | | (int(2),int(4)),(int(4),int(6))], int(2),[(int(1),int(4)),(int(2),int(6))], |
2350 | | set(couple(integer,integer)),WF),WF)). |
2351 | | :- assert_must_succeed((bsets_clp:rel_iterate_wf(R,int(1),X,set(couple(integer,integer)),_WF), R=[], |
2352 | | bsets_clp:equal_object(X,R))). |
2353 | | :- assert_must_succeed((bsets_clp:rel_iterate_wf(R,int(1),X,set(couple(integer,integer)),_WF), |
2354 | | R=[(int(1),int(2)),(int(2),int(3))], |
2355 | | bsets_clp:equal_object(X,R))). |
2356 | | :- assert_must_succeed((bsets_clp:rel_iterate_wf(R,int(2),X,set(couple(integer,integer)),_WF), |
2357 | | R=[(int(1),int(2)),(int(2),int(3))], |
2358 | | bsets_clp:equal_object(X,[(int(1),int(3))]))). |
2359 | | :- assert_must_succeed((bsets_clp:rel_iterate_wf(R,int(3),X,set(couple(integer,integer)),_WF), |
2360 | | R=[(int(1),int(2)),(int(2),int(3))], |
2361 | | bsets_clp:equal_object(X,[]))). |
2362 | | :- assert_must_succeed((bsets_clp:rel_iterate_wf(R,int(3),X,set(couple(integer,integer)),_WF), |
2363 | | R=[(int(1),int(2)),(int(2),int(3)),(int(1),int(1))], |
2364 | | bsets_clp:equal_object(X,[(int(1),int(1)),(int(1),int(2)),(int(1),int(3))]))). |
2365 | | |
2366 | | rel_iterate_wf(Rel,int(Nr),Res,Type,WF) :- |
2367 | | opt_push_wait_flag_call_stack_info(WF,b_operator_call(iterate, |
2368 | | [Nr,Rel],unknown),WF2), |
2369 | | rel_iterate1(Nr,Rel,Res,Type,WF2). |
2370 | | |
2371 | | :- block rel_iterate1(-,?,?,?,?). |
2372 | | rel_iterate1(X,Rel,Res,Type,WF) :- |
2373 | | %value_variables(Rel,GrV), |
2374 | | rel_iterate2(X,Rel,Res,Type,WF). |
2375 | | |
2376 | | rel_iterate2(X,Rel,Res,Type,WF) :- |
2377 | | ( X=1 -> equal_object_wf(Res,Rel,rel_iterate2,WF) |
2378 | | ; X>1 -> X1 is X-1, |
2379 | | rel_iterate2(X1,Rel,R1,Type,WF), |
2380 | | rel_composition_wf(Rel,R1,Res,Type,WF) |
2381 | | ; X=0 -> rel_iterate0(Rel,Type,Res,WF) |
2382 | | ; add_wd_error('negative index in iterate',X,WF) |
2383 | | ). |
2384 | | |
2385 | | :- use_module(bsyntaxtree,[get_set_type/2]). |
2386 | | :- block rel_iterate0(?,-,?,?). |
2387 | | rel_iterate0(_Rel,EType,Res,WF) :- |
2388 | | get_set_type(EType,couple(Type,Type)), |
2389 | | event_b_identity_for_type(Type,Res,WF). |
2390 | | |
2391 | | :- use_module(typing_tools,[is_infinite_type/1]). |
2392 | | event_b_identity_for_type(Type,Res,WF) :- |
2393 | | create_texpr(identifier('_zzzz_unary'),Type,[],TIdentifier1), % was [generated] |
2394 | | create_texpr(identifier('_zzzz_binary'),Type,[],TIdentifier2), % was [generated] |
2395 | | (is_infinite_type(Type) -> Info = [prob_annotation('SYMBOLIC')] ; Info =[]), |
2396 | | create_texpr(equal(TIdentifier1,TIdentifier2),pred,Info,TPred), |
2397 | | construct_closure(['_zzzz_unary','_zzzz_binary'],[Type,Type],TPred,CRes), |
2398 | | % for small types we could do: all_objects_of_type(Type,All), identity_relation_over_wf(All,CRes,WF) |
2399 | | %, print(constructed_eventb_identity(Res)),nl |
2400 | | equal_object_wf(Res,CRes,WF). |
2401 | | |
2402 | | |
2403 | | :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:direct_product_wf([],[(int(1),int(11))],[],_WF))). |
2404 | | :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:direct_product_wf([(int(1),int(2)),(int(7),int(6))], |
2405 | | [(int(1),int(11))],[(int(1),(int(2),int(11)))],_WF))). |
2406 | | :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:direct_product_wf([(int(1),int(2)),(int(7),int(6))], |
2407 | | [(int(2),int(11))],[],_WF))). |
2408 | | :- assert_must_succeed((bsets_clp:direct_product_wf([(int(1),int(2)),(int(7),int(6))], |
2409 | | [(int(2),int(11))],X,_WF), |
2410 | | X = [])). |
2411 | | :- assert_must_succeed((bsets_clp:direct_product_wf([(int(1),int(2)),(int(7),int(6))], |
2412 | | [(int(1),int(11))],X,_WF), |
2413 | | kernel_objects:equal_object(X,[(int(1),(int(2),int(11)))]))). |
2414 | | :- assert_must_succeed((bsets_clp:direct_product_wf([(int(1),int(2)),(int(1),int(6))], |
2415 | | [(int(1),int(11))],X,_WF), |
2416 | | kernel_objects:equal_object(X,[(int(1),(int(2),int(11))),(int(1),(int(6),int(11)))]))). |
2417 | | :- assert_must_succeed((bsets_clp:direct_product_wf([(int(1),int(2)),(int(2),int(6))], |
2418 | | [(int(1),int(11)),(int(1),int(12))],X,_WF), |
2419 | | kernel_objects:equal_object(X,[(int(1),(int(2),int(11))),(int(1),(int(2),int(12)))]))). |
2420 | | :- assert_must_succeed((bsets_clp:direct_product_wf([(int(1),int(2)),(int(2),int(6))], |
2421 | | [(int(1),int(11)),(int(1),int(12))], |
2422 | | [(int(1),(int(2),int(11))),(int(1),(int(2),int(12)))],_WF))). |
2423 | | :- assert_must_succeed((bsets_clp:direct_product_wf(avl_set(node((fd(1,'Name'),fd(2,'Name')),true,1,empty,node((fd(2,'Name'),fd(3,'Name')),true,0,empty,empty))), |
2424 | | avl_set(node((fd(1,'Name'),fd(2,'Name')),true,1,empty,node((fd(2,'Name'),fd(3,'Name')),true,0,empty,empty))), |
2425 | | avl_set(node((fd(1,'Name'),fd(2,'Name'),fd(2,'Name')),true,1,empty,node((fd(2,'Name'),fd(3,'Name'),fd(3,'Name')),true,0,empty,empty))) |
2426 | | ,_WF))). |
2427 | | |
2428 | | :- block direct_product_wf(-,?,?,?),direct_product_wf(?,-,?,?). |
2429 | | direct_product_wf(Rel1,Rel2,Prod,WF) :- |
2430 | | try_expand_and_convert_to_avl_with_check(Rel1,E1,direct_product), % to do: try_expand_and_convert_to_avl_unless_large_wf(Rel1,E1,WF), |
2431 | | try_expand_and_convert_to_avl_with_check(Rel2,E2,direct_product), |
2432 | ? | direct_product_wf1(E1,E2,Prod,WF). |
2433 | | |
2434 | | direct_product_wf1(Rel1,Rel2,Prod,WF) :- |
2435 | | direct_product_explicit_set(Rel1,Rel2,Res),!, |
2436 | | equal_object_wf(Prod,Res,direct_product_wf1,WF). |
2437 | | direct_product_wf1(Rel1,Rel2,Prod,WF) :- |
2438 | | expand_custom_set_to_list_wf(Rel1,Relation1,_,direct_product_wf1_1,WF), |
2439 | | expand_custom_set_to_list_wf(Rel2,Relation2,_,direct_product_wf1_2,WF), |
2440 | ? | direct_product2(Relation1,Relation2,Prod,WF), |
2441 | ? | direct_product_backwards(Relation1,Relation2,Prod,WF). |
2442 | | |
2443 | | :- block direct_product2(-,?,?,?). |
2444 | | direct_product2([],_,Out,WF) :- equal_object_wf(Out,[],direct_product2,WF). |
2445 | | direct_product2([(X,Y)|T],Rel2,Out,WF) :- |
2446 | ? | direct_product_tuple(Rel2,X,Y,Out,OutRem,WF), |
2447 | | direct_product2(T,Rel2,OutRem,WF). |
2448 | | |
2449 | | :- block direct_product_tuple(-,?,?,?,?,?). |
2450 | | direct_product_tuple([],_,_,Res,Rem,WF) :- equal_object_optimized_wf(Res,Rem,direct_product_tuple,WF). |
2451 | | direct_product_tuple([(X2,Z)|T],X,Y,Res,Rem,WF) :- |
2452 | | direct_product_tuple(T,X,Y,CT,Rem,WF), |
2453 | | equality_objects_wf(X2,X,EqRes,WF), |
2454 | ? | direct_product_tuple3(EqRes,X,Y,Z,CT,Res,WF). |
2455 | | |
2456 | | :- block direct_product_tuple3(-,?,?,?,?,?,?). |
2457 | | direct_product_tuple3(pred_true,X,Y,Z,CT,Res,WF) :- |
2458 | ? | equal_cons_wf(Res,(X,(Y,Z)),CT,WF). /* no need for add_element as output uniquely determines X,Y,Z !?*/ |
2459 | | direct_product_tuple3(pred_false,_X,_Y,_Z,CT,Res,WF) :- equal_object_optimized_wf(Res,CT,direct_product_tuple3,WF). |
2460 | | |
2461 | | :- block direct_product_backwards(?,?,-,?). |
2462 | | % Propagate information backwards from result to arguments |
2463 | | direct_product_backwards(R1,R2,Prod,WF) :- |
2464 | | ((ground_value(R1) ; ground_value(R2)) -> true |
2465 | | ; expand_custom_set_to_list_wf(Prod,ProdList,_,direct_product_backwards,WF), |
2466 | ? | direct_product_propagate_back(ProdList,R1,R2,WF) |
2467 | | ). |
2468 | | |
2469 | | :- block direct_product_propagate_back(-,?,?,?). |
2470 | | direct_product_propagate_back([],_,_,_WF). |
2471 | | direct_product_propagate_back([(X,(Y,Z))|T],R1,R2,WF) :- |
2472 | ? | check_element_of_wf((X,Y),R1,WF), check_element_of_wf((X,Z),R2,WF), |
2473 | | direct_product_propagate_back(T,R1,R2,WF). |
2474 | | |
2475 | | :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:parallel_product([],[(int(3),int(4))],[]))). |
2476 | | :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:parallel_product([(int(1),int(2))], |
2477 | | [(int(3),int(4))],[((int(1),int(3)),(int(2),int(4)))]))). |
2478 | | :- assert_must_succeed((bsets_clp:parallel_product([(int(1),int(2))], |
2479 | | [(int(3),int(4))],X), ground(X), |
2480 | | equal_object(X,[((int(1),int(3)),(int(2),int(4)))]))). |
2481 | | :- assert_must_succeed((bsets_clp:parallel_product([(int(1),int(2))], |
2482 | | [(int(3),int(4))],[((int(1),int(3)),(int(2),int(4)))]))). |
2483 | | :- assert_must_succeed((bsets_clp:parallel_product([(int(1),int(2))], [],X),X == [])). |
2484 | | :- assert_must_succeed((bsets_clp:parallel_product([], [(int(3),int(4))],X),X == [])). |
2485 | | |
2486 | ? | parallel_product(Rel1,Rel2,Prod) :- parallel_product_wf(Rel1,Rel2,Prod,no_wf_available). |
2487 | | |
2488 | | :- block parallel_product_wf(-,?,?,?),parallel_product_wf(?,-,?,?). |
2489 | | % NOTE: we now have in_parallel_product; as such parallel products are kept symbolic |
2490 | | %parallel_product_wf(Rel1,Rel2,Prod,WF) :- (keep_symbolic(Rel1) -> true ; keep_symbolic(Rel2)), |
2491 | | % print_term_summary(parallel_product(Rel1,Rel2,Prod)),nl, |
2492 | | %% % TO DO: generate closure |
2493 | | % %{xy,mn|#(x,y,m,n).(xy=(x,y) & mn=(m,n) & (x,m):S & (y,n):R)} |
2494 | | % fail. |
2495 | | parallel_product_wf(Rel1,Rel2,Prod,WF) :- |
2496 | | expand_custom_set_to_list_wf(Rel1,Relation1,_,parallel_product_1,WF), |
2497 | | expand_custom_set_to_list_wf(Rel2,Relation2,_,parallel_product_2,WF), |
2498 | | parallel_product2(Relation1,Relation2,ProdRes,WF), |
2499 | ? | equal_object_optimized_wf(ProdRes,Prod,parallel_product,WF). |
2500 | | |
2501 | | :- use_module(kernel_equality,[conjoin_test/4]). |
2502 | | %(Rel1||Rel2) = {(x,y),(m,n)| (x,m):Rel1 & (y,n):Rel2} |
2503 | | |
2504 | | % TO DO: use this in b_interpreter_check: |
2505 | | in_parallel_product_test(((X,Y),(M,N)),Rel1,Rel2,Result,WF) :- |
2506 | ? | conjoin_test(MemRes1,MemRes2,Result,WF), |
2507 | ? | membership_test_wf(Rel1,(X,M),MemRes1,WF), |
2508 | | membership_test_wf(Rel2,(Y,N),MemRes2,WF). |
2509 | | |
2510 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:in_parallel_product_wf(((int(1),int(2)),(int(11),int(22))),[(int(1),int(11))],[(int(2),int(22))],WF),WF)). |
2511 | | |
2512 | | in_parallel_product_wf(El,Rel1,Rel2,WF) :- |
2513 | | in_parallel_product_test(El,Rel1,Rel2,pred_true,WF). |
2514 | | |
2515 | | |
2516 | | :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:not_in_parallel_product_wf(((int(1),int(11)),(int(2),int(22))),[(int(1),int(11))],[(int(2),int(22))],_WF))). |
2517 | | |
2518 | | not_in_parallel_product_wf(El,Rel1,Rel2,WF) :- |
2519 | ? | in_parallel_product_test(El,Rel1,Rel2,pred_false,WF). |
2520 | | |
2521 | | |
2522 | | :- block parallel_product2(-,?,?,?). |
2523 | | parallel_product2([],_,Out,WF) :- empty_set_wf(Out,WF). |
2524 | | parallel_product2([(X,Y)|T],Rel2,Out,WF) :- |
2525 | | parallel_product_tuple(Rel2,X,Y,Out,Tail,WF), |
2526 | | parallel_product2(T,Rel2,Tail,WF). |
2527 | | |
2528 | | :- block parallel_product_tuple(-,?,?,?,?,?). |
2529 | | parallel_product_tuple([],_,_,Tail1,Tail2,WF) :- equal_object_wf(Tail1,Tail2,parallel_product_tuple,WF). |
2530 | | parallel_product_tuple([(X2,Y2)|T],X,Y,Rel2,Tail,WF) :- |
2531 | | equal_object_wf(Rel2,[((X,X2),(Y,Y2))|RT],parallel_product_tuple,WF), |
2532 | | parallel_product_tuple(T,X,Y,RT,Tail,WF). |
2533 | | |
2534 | | |
2535 | | % ------------------------------------------------- |
2536 | | |
2537 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_partial_function([(int(1),int(6)),(int(2),int(7))],[int(1)],[int(7),int(6)],WF),WF)). %% with wf_det leads to residue custom_explicit_sets:b_not_test_closure_enum |
2538 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_partial_function([(int(1),int(6)),(int(2),int(7))],[int(1),int(2)],[int(8),int(6)],WF),WF)). |
2539 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_partial_function([(int(1),int(6)),(int(2),int(7)),(int(1),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)). |
2540 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_partial_function([(int(1),int(6)),(int(1),int(7))],[int(1)],[int(7),int(6)],WF),WF)). |
2541 | | :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:not_partial_function([(int(1),int(6)),(int(2),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)). |
2542 | | :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:not_partial_function([(int(1),int(6))],[int(1),int(2)],[int(7),int(6)],WF),WF)). |
2543 | | :- assert_must_fail((bsets_clp:not_partial_function([],[int(1)],[int(7)],_WF))). |
2544 | | :- assert_must_fail((bsets_clp:not_partial_function(X,[int(1)],[int(7)],_WF), |
2545 | | X = [(int(1),int(7))])). |
2546 | | :- assert_must_fail((bsets_clp:not_partial_function(X,[int(1),int(2)],[int(7)],_WF), |
2547 | | X = [(int(2),int(7)),(int(1),int(7))])). |
2548 | | :- assert_must_fail((bsets_clp:not_partial_function(X,[[(int(1),int(2))],[(int(1),int(3)),(int(2),int(3))]], |
2549 | | [int(7),int(6)],_WF), |
2550 | | X = [([(int(1),int(2))],int(7)), |
2551 | | ([(int(2),int(3)),(int(1),int(3))],int(6))])). |
2552 | | :- assert_must_fail((bsets_clp:not_partial_function(X,[[(int(1),int(2))],[(int(1),int(3)),(int(2),int(3))]], |
2553 | | [int(7),int(6)],_WF), |
2554 | | X = [([(int(2),int(3)),(int(1),int(3))],int(6))])). |
2555 | | :- assert_must_fail((bsets_clp:not_partial_function(X,[[(int(1),int(2))],[(int(1),int(3)),(int(2),int(3))]], |
2556 | | [int(7),int(6)],_WF), |
2557 | | X = [([(int(1),int(2))],int(7)), |
2558 | | ([(int(2),int(3)),(int(1),int(3))],int(6))])). |
2559 | | :- assert_must_fail((bsets_clp:not_partial_function(X,[int(1)],[[int(7),int(6)]],_WF), |
2560 | | X = [(int(1),[int(6),int(7)])])). |
2561 | | :- assert_must_fail((bsets_clp:not_partial_function(X,[int(1),int(2)],[int(7),int(6)],_WF), |
2562 | | X = [(int(2),int(7)),(int(1),int(7))])). |
2563 | | :- assert_must_succeed((bsets_clp:not_partial_function(X,[int(1),int(2)],[int(7),int(6)],_WF), |
2564 | | X = [(int(2),int(7)),(int(2),int(6))])). |
2565 | | :- assert_must_succeed((bsets_clp:not_partial_function(X,[int(1),int(2)],[int(7),int(6)],_WF), |
2566 | | X = [(int(2),int(7)),(int(1),int(2))])). |
2567 | | :- assert_must_succeed((bsets_clp:not_partial_function(X,[int(1),int(2)],[int(7),int(6)],_WF), |
2568 | | X = [(int(2),int(7)),(int(3),int(6))])). |
2569 | | :- assert_must_succeed((bsets_clp:not_partial_function(X,[int(1),int(2)],[int(7),int(6)],_WF), |
2570 | | X = [(int(2),int(7)),(int(2),int(5))])). |
2571 | | :- assert_must_succeed((bsets_clp:not_partial_function(X,[int(1),int(2)],[int(7),int(6)],_WF), |
2572 | | X = [(int(1),int(7)),(int(2),int(6)),(int(2),int(7))])). |
2573 | | :- assert_must_fail((bsets_clp:not_partial_function(X,global_set('NATURAL1'),global_set('NATURAL1'),_WF), |
2574 | | X = [(int(1),int(7)),(int(5),int(75))])). |
2575 | | :- assert_must_fail((bsets_clp:not_partial_function(X,global_set('NATURAL'),global_set('NATURAL1'),_WF), |
2576 | | X = [(int(1),int(7)),(int(0),int(7))])). |
2577 | | :- assert_must_succeed((bsets_clp:not_partial_function(X,global_set('NATURAL'),global_set('NATURAL1'),_WF), |
2578 | | X = [(int(1),int(7)),(int(-1),int(7))])). |
2579 | | :- assert_must_succeed((bsets_clp:not_partial_function(X,global_set('NATURAL1'),global_set('NATURAL1'),_WF), |
2580 | | X = [(int(1),int(7)),(int(0),int(7))])). |
2581 | | :- assert_must_fail((bsets_clp:not_partial_function(X,global_set('Name'),global_set('Code'),_WF), |
2582 | | X = [(fd(1,'Name'),fd(1,'Code'))])). |
2583 | | :- assert_must_fail((bsets_clp:not_partial_function(X,global_set('NATURAL'),global_set('Code'),_WF), |
2584 | | X = [(int(1),fd(1,'Code')),(int(0),fd(1,'Code')),(int(88),fd(2,'Code'))])). |
2585 | | :- assert_must_fail((bsets_clp:not_partial_function(X,global_set('NATURAL'),global_set('Code'),_WF), |
2586 | | X = [(int(1),fd(1,'Code')),(int(0),fd(1,'Code')),(int(2),fd(2,'Code'))])). |
2587 | | :- assert_must_succeed((bsets_clp:not_partial_function([(fd(1,'Code'),int(1)),(fd(1,'Code'),int(2))], |
2588 | | global_set('Code'),global_set('NAT1'),_WF) )). |
2589 | | |
2590 | | :- block not_partial_function(-,?,?,?). |
2591 | | not_partial_function([],_Domain,_Range,_WF) :- !,fail. |
2592 | | not_partial_function(FF,Domain,Range,WF) :- nonvar(FF),custom_explicit_sets:is_definitely_maximal_set(Range), |
2593 | | % we do not need the Range; this means we can match more closures (e.g., lambda) |
2594 | | custom_explicit_sets:dom_for_specific_closure(FF,FFDomain,function(_),WF),!, |
2595 | | not_subset_of_wf(FFDomain,Domain,WF). |
2596 | | not_partial_function(FF,Domain,Range,WF) :- nonvar(FF), |
2597 | | custom_explicit_sets:dom_range_for_specific_closure(FF,FFDomain,FFRange,function(_),WF),!, |
2598 | | not_both_subset_of(FFDomain,FFRange,Domain,Range,WF). |
2599 | | not_partial_function(FF,Domain,Range,WF) :- nonvar(FF), FF=closure(P,T,Pred), |
2600 | | % example: f = %t.(t : NATURAL|t + 100) & f /: NATURAL +-> NATURAL |
2601 | | is_lambda_value_domain_closure(P,T,Pred, FFDomain,_Expr), |
2602 | | get_range_id_expression(P,T,TRangeID),!, |
2603 | | subset_test(FFDomain,Domain,SubRes,WF), |
2604 | | when(nonvar(SubRes), |
2605 | | (SubRes=pred_false -> true % not a subset -> it is not a partial function over the domain |
2606 | | ; check_not_lambda_closure_range(P,T,Pred,TRangeID,Range,WF))). |
2607 | | not_partial_function(R,Domain,Range,WF) :- |
2608 | | expand_and_convert_to_avl_set_warn(R,AER,not_partial_function,'ARG /: ? +-> ?',WF),!, |
2609 | | % TO DO: expand_and_convert_to_avl_set_catch and provide symbolic treatment similar to partial_function |
2610 | | % e.g., to support f = NATURAL1 * {22,33} & not(f: NATURAL1 +-> NATURAL) |
2611 | | is_not_avl_partial_function(AER,Domain,Range,WF). |
2612 | | not_partial_function(R,Domain,Range,WF) :- |
2613 | | expand_custom_set_to_list_wf(R,ER,_,not_partial_function,WF), |
2614 | | not_pf(ER,[],Domain,Range,WF). |
2615 | | |
2616 | | is_not_avl_partial_function(AER,Domain,Range,WF) :- |
2617 | | (is_avl_partial_function(AER) |
2618 | | -> is_not_avl_relation_over_domain_range(AER,Domain,Range,WF) |
2619 | | ; true |
2620 | | ). |
2621 | | |
2622 | | :- block not_pf(-,?,?,?,?). |
2623 | | not_pf([],_,_,_,_) :- fail. |
2624 | | not_pf([(X,Y)|T],SoFar,Dom,Ran,WF) :- |
2625 | | membership_test_wf_with_force(SoFar,X,MemRes,WF), |
2626 | | not_pf2(MemRes,X,Y,T,SoFar,Dom,Ran,WF). |
2627 | | |
2628 | | :- block not_pf2(-,?,?,?,?,?,?,?). |
2629 | | not_pf2(pred_true,_X,_Y,_T,_SoFar,_Dom,_Ran,_WF). /* then not a function */ |
2630 | | not_pf2(pred_false,X,Y,T,SoFar,Dom,Ran,WF) :- |
2631 | | membership_test_wf_with_force(Dom,X,MemRes,WF), % creates a choice point in SMT mode |
2632 | | not_pf2a(MemRes,X,Y,T,SoFar,Dom,Ran,WF). |
2633 | | |
2634 | | :- block not_pf2a(-,?,?,?,?,?,?,?). |
2635 | | not_pf2a(pred_false,_X,_Y,_T,_SoFar,_Dom,_Ran,_WF). /* function, but domain wrong */ |
2636 | | not_pf2a(pred_true,X,Y,T,SoFar,Dom,Ran,WF) :- |
2637 | | remove_element_wf_if_not_infinite_or_closure(X,Dom,Dom2,WF,_LWF,Done), %% provide _LWF ?? |
2638 | | not_pf2b(Done,X,Y,T,SoFar,Dom2,Ran,WF). |
2639 | | |
2640 | | :- block not_pf2b(-, ?,?,?, ?,?,?, ?). |
2641 | | not_pf2b(_Done, X,Y,T, SoFar,Dom2,Ran, WF) :- |
2642 | | add_element_wf(X,SoFar,SoFar2,WF), |
2643 | | (T==[] -> not_element_of_wf(Y,Ran,WF) |
2644 | | ; membership_test_wf_with_force(Ran,Y,MemRes,WF), |
2645 | | prop_empty_pred_false(T,MemRes), % if T=[] -> Y must not be in Ran |
2646 | | not_pf3(MemRes,T,SoFar2,Dom2,Ran,WF)). |
2647 | | |
2648 | | :- block prop_empty_pred_false(-,?). |
2649 | | prop_empty_pred_false([],R) :- !, R=pred_false. |
2650 | | prop_empty_pred_false(_,_). |
2651 | | |
2652 | | :- block not_pf3(-,?,?,?,?,?). |
2653 | | not_pf3(pred_false,_T,_SoFar,_Dom2,_Ran,_WF). /* illegal range */ |
2654 | | not_pf3(pred_true,T,SoFar,Dom2,Ran,WF) :- |
2655 | | not_pf(T,SoFar,Dom2,Ran,WF). |
2656 | | |
2657 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:partial_function_wf([(int(1),int(6)),(int(2),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)). |
2658 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:partial_function_wf([(int(1),int(1)),(int(2),int(1))],global_set('NATURAL'),global_set('NATURAL'),WF),WF)). |
2659 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:partial_function_wf([(int(2),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)). |
2660 | | :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:partial_function_wf([(int(2),int(6)),(int(2),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)). |
2661 | | :- assert_must_succeed((bsets_clp:partial_function([],[int(1)],[int(7)]))). |
2662 | | :- assert_must_succeed((bsets_clp:partial_function(X,[int(1)],[int(7)]), |
2663 | | X = [(int(1),int(7))])). |
2664 | | :- assert_must_succeed((bsets_clp:partial_function(X,[int(1),int(2)],[int(7)]), |
2665 | | equal_object(X,[(int(2),int(7)),(int(1),int(7))]))). |
2666 | | :- assert_must_succeed((findall(X,bsets_clp:partial_function(X,[int(1),int(2)],[int(7)]),L), |
2667 | | length(L,Len), Len >= 4, |
2668 | | (preferences:get_preference(convert_comprehension_sets_into_closures,true) -> true ; Len=4) )). |
2669 | | :- assert_must_succeed((bsets_clp:partial_function(X,[[(int(1),int(2))],[(int(1),int(3)),(int(2),int(3))]], |
2670 | | [int(7),int(6)]), |
2671 | | equal_object(X,[([(int(1),int(2))],int(7)), |
2672 | | ([(int(2),int(3)),(int(1),int(3))],int(6))]))). |
2673 | | :- assert_must_succeed((bsets_clp:partial_function_wf(X,[[(int(1),int(2))],[(int(1),int(3)),(int(2),int(3))]], |
2674 | | [int(7),int(6)],_WF), |
2675 | | X = [([(int(2),int(3)),(int(1),int(3))],int(6))])). |
2676 | | :- assert_must_succeed((bsets_clp:partial_function_wf(X,[[(int(1),int(2))],[(int(1),int(3)),(int(2),int(3))]], |
2677 | | [int(7),int(6)],_WF), |
2678 | | X = [([(int(1),int(2))],int(7)), |
2679 | | ([(int(2),int(3)),(int(1),int(3))],int(6))])). |
2680 | | :- assert_must_succeed((bsets_clp:partial_function_wf(X,[int(1)],[[int(7),int(6)]],_WF), |
2681 | | X = [(int(1),[int(6),int(7)])])). |
2682 | | :- assert_must_succeed((bsets_clp:partial_function_wf(X,global_set('NATURAL1'),global_set('NATURAL1'),_WF), |
2683 | | X = [(int(1),int(7)),(int(5),int(75))])). |
2684 | | :- assert_must_succeed((bsets_clp:partial_function_wf(X,global_set('NATURAL'),global_set('NATURAL1'),_WF), |
2685 | | X = [(int(1),int(7)),(int(0),int(7))])). |
2686 | | :- assert_must_fail((bsets_clp:partial_function_wf(X,global_set('NATURAL'),global_set('NATURAL1'),_WF), |
2687 | | X = [(int(1),int(7)),(int(-1),int(7))])). |
2688 | | :- assert_must_fail((bsets_clp:partial_function_wf(X,global_set('NATURAL1'),global_set('NATURAL1'),_WF), |
2689 | | X = [(int(1),int(7)),(int(0),int(7))])). |
2690 | | :- assert_must_fail((bsets_clp:partial_function_wf(X,[int(1),int(2)],[int(7),int(6)],_WF), |
2691 | | X = [(int(2),int(7)),(int(2),int(6))])). |
2692 | | :- assert_must_succeed((bsets_clp:partial_function_wf(X,global_set('Name'),global_set('Code'),_WF), |
2693 | | X = [(fd(1,'Name'),fd(1,'Code'))])). |
2694 | | :- assert_must_succeed((bsets_clp:partial_function_wf(X,global_set('NATURAL'),global_set('Code'),_WF), |
2695 | | X = [(int(1),fd(1,'Code')),(int(0),fd(1,'Code')),(int(88),fd(2,'Code'))])). |
2696 | | :- assert_must_succeed((bsets_clp:partial_function_wf(X,global_set('NATURAL'),global_set('Code'),_WF), |
2697 | | X = [(int(1),fd(1,'Code')),(int(0),fd(1,'Code')),(int(2),fd(2,'Code'))])). |
2698 | | |
2699 | | partial_function(R,Domain,Range) :- init_wait_flags(WF,[partial_function]), |
2700 | | partial_function_wf(R,Domain,Range,WF), |
2701 | ? | ground_wait_flags(WF). |
2702 | | |
2703 | | :- use_module(kernel_equality,[get_cardinality_powset_wait_flag/5]). |
2704 | | :- use_module(closures,[is_lambda_value_domain_closure/5]). |
2705 | | :- block partial_function_wf(-,-,?,?). |
2706 | | partial_function_wf(R,_Domain,_Range,_WF) :- R==[], !. |
2707 | | partial_function_wf(R,Domain,Range,WF) :- (Domain==[] ; Range==[]), !, empty_set_wf(R,WF). |
2708 | | partial_function_wf(FF,Domain,Range,WF) :- nonvar(FF), |
2709 | | custom_explicit_sets:is_definitely_maximal_set(Range), |
2710 | | % we do not need the Range; this means we can match more closures (e.g., lambda) |
2711 | | custom_explicit_sets:dom_for_specific_closure(FF,FFDomain,function(_),WF),!, |
2712 | | check_domain_subset_for_closure_wf(FF,FFDomain,Domain,WF). |
2713 | | partial_function_wf(FF,Domain,Range,WF) :- nonvar(FF), |
2714 | | % TODO: this will fail if is_definitely_maximal_set was true above ! |
2715 | | custom_explicit_sets:dom_range_for_specific_closure(FF,FFDomain,FFRange,function(_),WF),!, |
2716 | | % same as for total_function_wf check |
2717 | | check_domain_subset_for_closure_wf(FF,FFDomain,Domain,WF), |
2718 | | check_range_subset_for_closure_wf(FF,FFRange,Range,WF). |
2719 | | partial_function_wf(FF,Domain,Range,WF) :- nonvar(FF), FF=closure(P,T,Pred), |
2720 | | % example: f = %x.(x:NATURAL1|x+1) & f: NATURAL1 +-> NATURAL |
2721 | | is_lambda_value_domain_closure(P,T,Pred, FFDomain,_Expr), |
2722 | | get_range_id_expression(P,T,TRangeID), |
2723 | | !, |
2724 | | check_domain_subset_for_closure_wf(FF,FFDomain,Domain,WF), |
2725 | | opt_push_wait_flag_call_stack_info(WF,b_operator_call(subset, |
2726 | | [b_operator(range,[FF]),Range],unknown),WF3), |
2727 | | check_lambda_closure_range(P,T,Pred,TRangeID,Range,WF3). % we could use symbolic_range_subset_check |
2728 | | partial_function_wf(R,Domain,Range,WF) :- |
2729 | | expand_and_convert_to_avl_set_catch(R,AER,partial_function_wf,'ARG : ? +-> ?',ResultStatus,WF),!, |
2730 | | (ResultStatus=avl_set |
2731 | ? | -> is_avl_partial_function_over(AER,Domain,Range,WF) |
2732 | | ; % keep symbolic |
2733 | | (debug_mode(off) -> true ; print('SYMBOLIC +-> check : '),translate:print_bvalue(R),nl), |
2734 | | % can deal with, e.g., f = %x.(x:NATURAL|x+1) & g = f <+ {0|->0} & g : INTEGER +-> INTEGER |
2735 | | symbolic_domain_subset_check(R,Domain,WF), |
2736 | | symbolic_range_subset_check(R,Range,WF), |
2737 | | symbolic_functionality_check(R,WF) |
2738 | | ). |
2739 | | partial_function_wf(R,Domain,Range,WF) :- |
2740 | | get_cardinality_powset_wait_flag(Domain,partial_function_wf,WF,Card,CWF), |
2741 | | % probably we should compute real cardinality of set of partial functions over Domain +-> Range ? |
2742 | | % the powset waitflag uses 2^Card as priority; is the number of partial functions when Range contains just a single element |
2743 | | % slows down test 1088: TO DO investigate |
2744 | | % get_cardinality_partial_function_wait_flag(Domain,Range,partial_function_wf,WF,Card,_,CWF), |
2745 | | %% Maybe we should only enumerate partial functions for domain variables ; e.g., not f <+ {x |-> y} : T +-> S |
2746 | | %% print_bt_message(pf_dom_card(Card)),nl, %%% |
2747 | | % probably we should use a special version when R is var |
2748 | | propagate_empty_set_wf(Domain,dom_pf,R,WF), |
2749 | | propagate_empty_set_wf(Range,ran_pf,R,WF), |
2750 | ? | (var(R) -> pf_var_r(R,var,Domain,Range,Card,WF,CWF) ; pf_var_r(R,nonvar,Domain,Range,Card,WF,CWF)). |
2751 | | |
2752 | | % symbolic dom(R) <: Domain check for closures |
2753 | | symbolic_domain_subset_check(R,Domain,WF) :- |
2754 | | opt_push_wait_flag_call_stack_info(WF,b_operator_call(subset, |
2755 | | [b_operator(domain,[R]),Domain],unknown),WF2), |
2756 | | domain_subtraction_wf(Domain,R,Res,WF2), % works symbolically |
2757 | | (debug_mode(off) -> true ; print('Domain Violations: '),translate:print_bvalue(Res),nl), |
2758 | | empty_set_wf(Res,WF2). % empty_set does a symbolic treatment calling gen_typed_ids and b_not_test_exists: |
2759 | | % symbolic ran(R) <: Range check for closures |
2760 | | symbolic_range_subset_check(R,Range,WF) :- |
2761 | | opt_push_wait_flag_call_stack_info(WF,b_operator_call(subset, |
2762 | | [b_operator(range,[R]),Range],unknown),WF2), |
2763 | | range_subtraction_wf(R,Range,Res,WF2), % works symbolically |
2764 | | (debug_mode(off) -> true ; print('Range Violations: '),translate:print_bvalue(Res),nl), |
2765 | | empty_set_wf(Res,WF2). % works symbolically |
2766 | | symbolic_functionality_check(Closure,WF) :- |
2767 | | custom_explicit_sets:symbolic_functionality_check_closure(Closure,ViolationsClosure),!, |
2768 | | (debug_mode(off) -> true ; print('FUNCTIONALITY Violations: '),translate:print_bvalue(ViolationsClosure),nl), |
2769 | | empty_set_wf(ViolationsClosure,WF). % works symbolically |
2770 | | symbolic_functionality_check(R,WF) :- |
2771 | | add_error_wf(symbolic_functionality_check,'Could not check functionality of:',R,R,WF). |
2772 | | |
2773 | | symbolic_injectivity_check(Closure,WF) :- |
2774 | | custom_explicit_sets:symbolic_injectivity_check_closure(Closure,ViolationsClosure),!, |
2775 | | (debug_mode(off) -> true ; print('INJECTIVITY Violations: '),translate:print_bvalue(ViolationsClosure),nl), |
2776 | | empty_set_wf(ViolationsClosure,WF). % works symbolically |
2777 | | symbolic_injectivity_check(R,WF) :- |
2778 | | add_error_wf(symbolic_functionality_check,'Could not check injectivity of:',R,R,WF). |
2779 | | |
2780 | | |
2781 | | is_avl_partial_function_over(AER,Domain,Range,WF) :- |
2782 | | is_avl_partial_function(AER), |
2783 | ? | is_avl_relation_over_domain(AER,Domain,WF), |
2784 | ? | is_avl_relation_over_range(AER,Range,WF). |
2785 | | |
2786 | | % symbolically check that the range of lambda closure is a subset of a given Range |
2787 | | % TRangeID is obtained by calling get_range_id_expression(P,T,TRangeID) |
2788 | | check_lambda_closure_range(P,T,Pred,TRangeID,Range,WF) :- |
2789 | | opt_push_wait_flag_call_stack_info(WF,b_operator_call(subset, |
2790 | | [b_operator(range,[closure(P,T,Pred)]),Range],unknown),WF2), |
2791 | | % CHECK not(#P.(Pred & TRangeID /: Range)) |
2792 | | get_not_in_range_pred_aux(Pred,TRangeID,Range,Pred2), |
2793 | | is_empty_closure_wf(P,T,Pred2,WF2). % do we need to rename _lambda_result_ using rename_lambda_result_id ? |
2794 | | % now the negation thereof: |
2795 | | check_not_lambda_closure_range(P,T,Pred,TRangeID,Range,WF) :- |
2796 | | opt_push_wait_flag_call_stack_info(WF,b_operator_call(not_subset, |
2797 | | [b_operator(range,[closure(P,T,Pred)]),Range],unknown),WF2), |
2798 | | % CHECK (#P.(Pred & TRangeID /: Range)) |
2799 | | get_not_in_range_pred_aux(Pred,TRangeID,Range,Pred2), |
2800 | | is_non_empty_closure_wf(P,T,Pred2,WF2). |
2801 | | test_lambda_closure_range(P,T,Pred,TRangeID,Range,Res,WF) :- |
2802 | | opt_push_wait_flag_call_stack_info(WF,b_operator_call(subset, % it is actually a reify check |
2803 | | [b_operator(range,[closure(P,T,Pred)]),Range],unknown),WF2), |
2804 | | % reify not(#P.(Pred & TRangeID /: Range)) |
2805 | | get_not_in_range_pred_aux(Pred,TRangeID,Range,Pred2), |
2806 | | test_empty_closure_wf(P,T,Pred2,Res,WF2). |
2807 | | |
2808 | | get_not_in_range_pred_aux(Pred,TRangeID,Range,NewPred) :- % construct (Pred & TRangeID /: Range) |
2809 | | ExpectedRange = b(value(Range),set(RanT),[]), |
2810 | | get_texpr_type(TRangeID,RanT), |
2811 | | safe_create_texpr(not_member(TRangeID,ExpectedRange),pred,NotMemCheck), |
2812 | | conjunct_predicates([Pred,NotMemCheck],NewPred). |
2813 | | |
2814 | | |
2815 | | % if first argument is empty, second argument must also be empty |
2816 | | :- block propagate_empty_set_wf(-,?,?,?). |
2817 | | propagate_empty_set_wf([],_PP,A,WF) :- !, %print(prop_empty(_PP,A)),nl, |
2818 | | kernel_objects:empty_set_wf(A,WF). % TO DO: add WF |
2819 | | propagate_empty_set_wf(_,_,_,_). |
2820 | | |
2821 | | :- block pf_var_r(-,?,?,?,?,?,-). |
2822 | | pf_var_r(R,var,Domain,Range,_Card,WF,_CWF) :- % if R was var: see if it is now an AVL set; otherwise we have already checked it |
2823 | | expand_and_convert_to_avl_set_warn(R,AER,pf_var_r,'ARG : ? +-> ?',WF),!, |
2824 | ? | is_avl_partial_function_over(AER,Domain,Range,WF). |
2825 | | pf_var_r(R,_,Domain,Range,Card,WF,CWF) :- |
2826 | | expand_custom_set_to_list_wf(R,ER,_,partial_function_wf,WF), |
2827 | | %get_last_wait_flag(partial_fun(Domain),WF,LWF), |
2828 | ? | pf_w(ER,[],Domain,Range,Card,_Large,WF,CWF). |
2829 | | |
2830 | | pf_w(T,SoFar,Dom,Ran,Card,Large,WF,LWF) :- |
2831 | | (Card==0 -> T=[] |
2832 | ? | ; pf(T,SoFar,Dom,Ran,Card,Large,WF,LWF)). |
2833 | | |
2834 | | :- block pf(-,?,?,?,?,?,?,-). |
2835 | | pf(LIST,_,_,_,_,_WF,_,_LWF) :- LIST==[],!. % avoid leaving choicepoint |
2836 | | pf(AVL,SoFar,Dom,Ran,Card,Large,WF,LWF) :- nonvar(AVL),AVL=avl_set(_A), |
2837 | | add_internal_error('AVL arg: ',pf(AVL,SoFar,Dom,Ran,Card,Large,WF,LWF)),fail. |
2838 | | pf([],_,_,_,_,_WF,_,_LWF). |
2839 | | pf(LIST,SoFar,Dom,Ran,Card,Large,WF,LWF) :- |
2840 | | (var(LIST) -> ListWasVar = true ; ListWasVar = false), % is ListWasVar = true we are doing the enumeration driven by LWF being ground |
2841 | | LIST = [(X,Y)|T], |
2842 | | dec_card(Card,NC),/* Card ensures we do not build too big lists */ |
2843 | | Dom \== [], |
2844 | ? | remove_domain_element(ListWasVar,X,Y,Dom,Dom2,Large,WF,LWF,Done), |
2845 | ? | check_element_of_wf(Y,Ran,WF), |
2846 | ? | pf1(Done, X,Y,T,SoFar,Dom2,Ran,NC,Large,WF,LWF). |
2847 | | |
2848 | | :- block dec_card(-,?). |
2849 | | dec_card(inf,NewC) :- !, NewC=inf. |
2850 | | dec_card(inf_overflow,NewC) :- !, NewC=inf_overflow. |
2851 | | dec_card(C,NewC) :- C>0, NewC is C-1. |
2852 | | |
2853 | | :- block pf1(-, ?,?,?,?,?,?,?,?,?,?). |
2854 | | pf1(_Done, X,_Y,T,SoFar,Dom2,Ran,Card,Large,WF,LWF) :- |
2855 | | not_element_of_wf(X,SoFar,WF), /* check that it is a function */ |
2856 | | %% check_element_of_wf(Y,Ran,WF), % this check is now done above in pf |
2857 | | add_new_element_wf(X,SoFar,SoFar2,WF), |
2858 | ? | pf_w(T,SoFar2,Dom2,Ran,Card,Large,WF,LWF). |
2859 | | |
2860 | | remove_domain_element(ListWasVar,X,Y,Dom,Dom2,Large,WF,LWF,Done) :- compute_large(Dom,Large), |
2861 | | ((ListWasVar==true,var(X),var(Y),Large==false, |
2862 | | preference(convert_comprehension_sets_into_closures,false), % not in symbolic mode |
2863 | | ground_value(Dom)) |
2864 | | -> %% (X, Y are free and we drive the enumeration: we can influence which element is taken from Dom |
2865 | | remove_a_minimal_element(X,Dom,Dom2,WF,Done) %%%%%%%%%% added Jul 15 2008 |
2866 | ? | ; remove_element_wf_if_not_infinite_or_closure(X,Dom,Dom2,WF,LWF,Done) |
2867 | | ). |
2868 | | compute_large(Dom,Large) :- % check if the domain is large; ensure that we compute this only once |
2869 | | (nonvar(Large) -> true |
2870 | | ; var(Dom) -> true |
2871 | | ; dont_expand_this_explicit_set(Dom) -> Large=large |
2872 | | ; Large=false). |
2873 | | |
2874 | | :- assert_must_succeed(( bsets_clp:remove_a_minimal_element(X,[int(1)],R,_WF,Done), |
2875 | | X==int(1), Done==true, R=[] )). |
2876 | | :- assert_must_succeed(( init_wait_flags(WF), bsets_clp:remove_a_minimal_element(X,[int(1),int(2),int(3)],R,WF,Done), ground_wait_flags(WF), |
2877 | | X==int(2), Done==true, R=[int(3)] )). |
2878 | | :- assert_must_succeed(( init_wait_flags(WF), bsets_clp:remove_a_minimal_element(X,[int(1),int(2),int(3)],R,WF,Done), ground_wait_flags(WF), |
2879 | | X==int(1), R=[int(2),int(3)], Done==true )). |
2880 | | :- assert_must_succeed(( init_wait_flags(WF), bsets_clp:remove_a_minimal_element(X,[int(1),int(2),int(3)],R,WF,Done), ground_wait_flags(WF), |
2881 | | X==int(3), R=[], Done==true )). |
2882 | | :- assert_must_succeed(( init_wait_flags(WF), CL=closure(['_zzzz_binary'],[integer],b(member( b(identifier('_zzzz_binary'),integer,[]), |
2883 | | b(interval(b(value(int(1)),integer,[]),b(value(int(10)),integer,[])),set(integer),[])),pred,[])), |
2884 | | bsets_clp:remove_a_minimal_element(X,CL,R,WF,Done), ground_wait_flags(WF), |
2885 | | X=int(9), Done==true, kernel_objects:equal_object(R,[int(10)]) )). |
2886 | | |
2887 | | /* usage: restrict number of possible choices if element to remove is free */ |
2888 | | /* select one element; and disallow all elements appearing before it in the list */ |
2889 | | remove_a_minimal_element(X,Set,Res,WF,Done) :- |
2890 | | expand_custom_set_to_list_wf(Set,ESet,EDone,remove_a_minimal_element,WF), |
2891 | | remove_a_minimal_element2(X,ESet,EDone,Res,WF,Done). |
2892 | | |
2893 | | :- use_module(kernel_equality,[get_cardinality_wait_flag/4]). |
2894 | | :- block remove_a_minimal_element2(?,?,-,?,?,?). |
2895 | | remove_a_minimal_element2(X,ESet,EDone,Res,WF,Done) :- var(ESet), |
2896 | | % should not happen as we wait for EDone |
2897 | | add_internal_error('Illegal call: ',remove_a_minimal_element2(X,ESet,EDone,Res,WF,Done)), |
2898 | | fail. |
2899 | | remove_a_minimal_element2(X,ESet,_EDone,Res,WF,Done) :- |
2900 | | ESet \= [], |
2901 | | (ESet = [El] |
2902 | | -> X=El, empty_set_wf(Res,WF), Done=true % only one choice |
2903 | | ; get_cardinality_wait_flag(ESet,remove_a_minimal_element2,WF,CWF), |
2904 | | remove_a_minimal_element3(X,ESet,Res,WF,Done,CWF) |
2905 | | ). |
2906 | | |
2907 | | :- block remove_a_minimal_element3(?,?,?,?,?,-). |
2908 | | remove_a_minimal_element3(X,ESet,Res,WF,Done,_) :- var(Res), !, |
2909 | | append(_,[X|TRes],ESet), % WHAT IF Res has been instantiated in the meantime ??? |
2910 | | equal_object_wf(Res,TRes,remove_a_minimal_element2_2,WF),Done=true. |
2911 | | remove_a_minimal_element3(X,ESet,Res,WF,Done,_) :- %print(remove_min_nonvar_res(Res)),nl, |
2912 | | equal_cons_wf(ESet,X,Res,WF), Done=true. |
2913 | | |
2914 | | |
2915 | | % reified version of partial function test partial_function_wf: |
2916 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:partial_function_test_wf([],[int(1),int(2)],[int(7),int(6)],pred_true,WF),WF)). |
2917 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:partial_function_test_wf([(int(2),int(6))],[int(1),int(2)],[int(7),int(6)],pred_true,WF),WF)). |
2918 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:partial_function_test_wf([(int(1),int(6)),(int(2),int(7))],[int(1),int(2)],[int(7),int(6)],pred_true,WF),WF)). |
2919 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:partial_function_test_wf([(int(2),int(8))],[int(1),int(2)],[int(7),int(6)],pred_false,WF),WF)). |
2920 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:partial_function_test_wf([(int(3),int(7))],[int(1),int(2)],[int(7),int(6)],pred_false,WF),WF)). |
2921 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:partial_function_test_wf([(int(1),int(7)),(int(1),int(6))],[int(1),int(2)],[int(7),int(6)],pred_false,WF),WF)). |
2922 | | |
2923 | | :- use_module(kernel_equality,[subset_test/4]). |
2924 | | :- block partial_function_test_wf(-,?,?,-,?), partial_function_test_wf(?,-,-,-,?). |
2925 | | partial_function_test_wf(FF,Domain,Range,Res,WF) :- Res==pred_true,!, |
2926 | ? | partial_function_wf(FF,Domain,Range,WF). |
2927 | | partial_function_test_wf(FF,Domain,Range,Res,WF) :- Res==pred_false,!, |
2928 | | not_partial_function(FF,Domain,Range,WF). % TO DO: remove not_partial_function to use check_is_partial_function? |
2929 | | partial_function_test_wf(FF,Domain,Range,Res,WF) :- nonvar(FF), |
2930 | | custom_explicit_sets:is_definitely_maximal_set(Range), |
2931 | | % we do not need the Range; this means we can match more closures (e.g., lambda) |
2932 | | custom_explicit_sets:dom_for_specific_closure(FF,FFDomain,function(_),WF),!, |
2933 | | subset_test(FFDomain,Domain,Res,WF). |
2934 | | partial_function_test_wf(FF,Domain,Range,Res,WF) :- nonvar(FF), |
2935 | | % TODO: this will fail if is_definitely_maximal_set was true above ! |
2936 | | custom_explicit_sets:dom_range_for_specific_closure(FF,FFDomain,FFRange,function(_),WF),!, |
2937 | | % same as for total_function_wf check |
2938 | | subset_test(FFDomain,Domain,DomainOk,WF), |
2939 | | (DomainOk==pred_false -> Res = pred_false |
2940 | | ; conjoin_test(DomainOk,RangeOk,Res,WF), |
2941 | | subset_test(FFRange,Range,RangeOk,WF)). |
2942 | | partial_function_test_wf(FF,Domain,Range,Res,WF) :- nonvar(FF), FF=closure(P,T,Pred), |
2943 | | % example: f = %x.(x:NATURAL1|x+1) & f: NATURAL1 +-> NATURAL |
2944 | | is_lambda_value_domain_closure(P,T,Pred, FFDomain,_Expr), |
2945 | | get_range_id_expression(P,T,TRangeID), |
2946 | | !, |
2947 | | subset_test(FFDomain,Domain,DomainOk,WF), |
2948 | | (DomainOk == pred_false -> Res=pred_false |
2949 | | ; conjoin_test(DomainOk,RangeOk,Res,WF), |
2950 | | test_lambda_closure_range(P,T,Pred,TRangeID,Range,RangeOk,WF) |
2951 | | ). |
2952 | | partial_function_test_wf(R,Domain,Range,Res,WF) :- |
2953 | | expand_and_convert_to_avl_set_warn(R,AER,partial_function_test_wf,'ARG : ? +-> ?',WF),!, |
2954 | | % TO DO: use expand_and_convert_to_avl_set_catch |
2955 | | (is_avl_partial_function(AER) |
2956 | | -> % TO DO: we could do something similar to this instead: is_not_avl_relation_over_domain_range |
2957 | | domain_of_explicit_set_wf(avl_set(AER),FFDomain,WF), |
2958 | | subset_test(FFDomain,Domain,DomainOk,WF), |
2959 | | (DomainOk == pred_false -> Res=pred_false |
2960 | | ; range_of_explicit_set_wf(avl_set(AER),FFRange,WF), |
2961 | | conjoin_test(DomainOk,RangeOk,Res,WF), |
2962 | | subset_test(FFRange,Range,RangeOk,WF) |
2963 | | ) |
2964 | | ; Res=pred_false). |
2965 | | partial_function_test_wf(R,Domain,Range,Res,WF) :- |
2966 | | expand_custom_set_to_list_wf(R,ER,_,partial_function_test_wf,WF), |
2967 | | check_is_partial_function_acc_wf(ER,[],Domain,Range,Res,WF). |
2968 | | |
2969 | | :- block check_is_partial_function_acc_wf(-,?,?,?,?,?). |
2970 | | check_is_partial_function_acc_wf([],_,_,_,Res,_WF) :- !, Res=pred_true. |
2971 | | check_is_partial_function_acc_wf([(A,FA)|T],Acc,Dom,Ran,Res,WF) :- !, |
2972 | | check_pair_in_domain_range(A,FA,Dom,Ran,MemResDomRan,WF), |
2973 | | (MemResDomRan==pred_false |
2974 | | -> Res = pred_false |
2975 | | ; membership_test_wf(Acc,A,MemResNotFunc,WF), |
2976 | | negate(MemResNotFunc,MemResFunctionality), |
2977 | | conjoin_test(MemResDomRan,MemResFunctionality,PF_Head,WF), |
2978 | | (PF_Head == pred_false -> Res = pred_false |
2979 | | ; T==[] -> Res=PF_Head |
2980 | | ; add_element_wf(A,Acc,NewAcc,WF), |
2981 | | conjoin_test(PF_Head,PF_Tail,Res,WF), |
2982 | | check_is_partial_function_acc_wf(T,NewAcc,Dom,Ran,PF_Tail,WF)) |
2983 | | ). |
2984 | | |
2985 | | check_pair_in_domain_range(A,FA,Dom,Ran,MemResDomRan,WF) :- |
2986 | | membership_test_wf(Dom, A,MemResDom,WF), % use membership_test_wf_with_force for SMT mode ?? |
2987 | | (MemResDom == pred_false -> MemResDomRan = pred_false |
2988 | | ; membership_test_wf(Ran,FA,MemResRan,WF), |
2989 | | conjoin_test(MemResDom,MemResRan,MemResDomRan,WF)). |
2990 | | |
2991 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:total_function_wf([(int(1),int(6)),(int(2),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)). |
2992 | | :- assert_must_succeed((bsets_clp:total_function(X,[int(1)],[int(7)]), |
2993 | | X = [(int(1),int(7))])). |
2994 | | :- assert_must_succeed((bsets_clp:total_function(X,[int(1),int(2)],[int(7),int(6)]), |
2995 | | kernel_objects:equal_object(X,[(int(2),int(7)),(int(1),int(7))]))). |
2996 | | :- assert_must_succeed((bsets_clp:total_function(X,[[(int(1),int(2))],[(int(1),int(3))]],[int(7),int(6)]), |
2997 | | kernel_objects:equal_object(X,[([(int(1),int(3))],int(7)),([(int(1),int(2))],int(7))]))). |
2998 | | :- assert_must_succeed((bsets_clp:total_function(X,[[(int(1),int(2))],[(int(1),int(3)),(int(2),int(3))]], |
2999 | | [int(7),int(6)]), |
3000 | | kernel_objects:equal_object(X,[([(int(1),int(2))],int(7)), |
3001 | | ([(int(2),int(3)),(int(1),int(3))],int(6))]))). |
3002 | | :- assert_must_succeed((bsets_clp:total_function(X,[int(1)],[[int(7),int(6)]]), |
3003 | | kernel_objects:equal_object(X,[(int(1),[int(6),int(7)])]))). |
3004 | | :- assert_must_succeed((bsets_clp:total_function(X,[[(int(1),int(2))],[(int(1),int(3)),(int(2),int(3))]], |
3005 | | [[int(7),int(6)]]), |
3006 | | kernel_objects:equal_object(X,[([(int(1),int(2))],[int(6),int(7)]), |
3007 | | ([(int(2),int(3)),(int(1),int(3))],[int(6),int(7)])]))). |
3008 | | :- assert_must_succeed((bsets_clp:total_function(X,[ [(int(1),int(3)),(int(2),int(3))]], |
3009 | | [int(6)]), |
3010 | | kernel_objects:equal_object(X,[ ([(int(2),int(3)),(int(1),int(3))], int(6)) ]))). |
3011 | | :- assert_must_succeed((bsets_clp:total_function(X,global_set('Name'), |
3012 | | [[],[fd(1,'Code'),fd(2,'Code')],[fd(1,'Code')],[fd(2,'Code')]]), |
3013 | | kernel_objects:enumerate_basic_type(X,set(couple(global('Name'),set(global('Code'))))), |
3014 | | kernel_objects:equal_object(X,[(fd(3,'Name'),[fd(2,'Code')]),(fd(1,'Name'),[fd(2,'Code')]),(fd(2,'Name'),[])]))). |
3015 | | |
3016 | | %:- assert_must_succeed(( kernel_waitflags:init_wait_flags(WF),bsets_clp:total_function_wf(TF,global_set('Code'), |
3017 | | % closure([zzzz],[set(set(couple(integer,boolean)))], |
3018 | | % member(identifier(zzzz), |
3019 | | % pow_subset(value(closure([zzzz],[set(couple(integer,boolean))], |
3020 | | % member('ListExpression'(['Identifier'(zzzz)]), |
3021 | | % 'Seq'(value([pred_true /* bool_true */,pred_false /* bool_false */])))))))),WF), |
3022 | | % kernel_objects:equal_object(TF,[ (fd(1,'Code'), [[],[(int(1),pred_true /* bool_true */)],[(int(1),pred_true /* bool_true */),(int(2),pred_true /* bool_true */)]]), |
3023 | | % (fd(2,'Code'), [[],[(int(1),pred_true /* bool_true */)],[(int(1),pred_true /* bool_true */),(int(2),pred_true /* bool_true */)]]) ]), |
3024 | | % kernel_waitflags:ground_wait_flags(WF) )). |
3025 | | |
3026 | | :- assert_must_succeed((bsets_clp:total_function([],[],[int(7)]))). |
3027 | | |
3028 | | :- assert_must_fail((bsets_clp:total_function([],[int(1)],[int(7)]))). |
3029 | | :- assert_must_fail((bsets_clp:total_function(X,[int(1),int(2)],[int(7),int(6)]), |
3030 | | kernel_objects:equal_object(X,[(int(2),int(7)),(int(2),int(6))]))). |
3031 | | :- assert_must_fail((bsets_clp:total_function(X,[int(1),int(2)],[int(7),int(6)]), |
3032 | | kernel_objects:equal_object(X,[(int(2),int(7)),(int(1),int(5))]))). |
3033 | | :- assert_must_fail((bsets_clp:total_function(X,[int(1),int(2)],[int(7),int(6)]), |
3034 | | kernel_objects:equal_object(X,[(int(2),int(7))]))). |
3035 | | :- assert_must_fail((bsets_clp:total_function(X,[[(int(1),int(2))],[(int(1),int(3)),(int(2),int(3))]], |
3036 | | [int(7),int(6)]), |
3037 | | kernel_objects:equal_object(X,[([(int(1),int(2))],int(7)), |
3038 | | ([(int(1),int(3)),(int(1),int(3))],int(6))]))). |
3039 | | :- assert_must_fail((bsets_clp:total_function(X,[[(int(1),int(2))],[(int(1),int(3)),(int(2),int(3))]], |
3040 | | [int(7),int(6)]), |
3041 | | kernel_objects:equal_object(X,[([(int(1),int(3)),(int(1),int(3))],int(6))]))). |
3042 | | |
3043 | | total_function(R,Domain,Range) :- init_wait_flags(WF,[total_function]), |
3044 | | total_function_wf(R,Domain,Range,WF), |
3045 | ? | ground_wait_flags(WF). |
3046 | | |
3047 | | |
3048 | | :- assert_must_succeed((bsets_clp:total_function_wf(X,[int(1),int(2)],[int(7),int(6)],_WF), |
3049 | | nonvar(X),X=[(A,B),(C,D)],A==int(1),C==int(2),\+ ground(B),\+ ground(D), B=int(7),D=int(7) )). |
3050 | | |
3051 | | :- block total_function_wf(-,-,-,?). |
3052 | | total_function_wf(FF,Domain,_Range,WF) :- FF == [],!, |
3053 | | empty_set_wf(Domain,WF). |
3054 | | total_function_wf(FF,Domain,Range,WF) :- |
3055 | | Range == [],!, |
3056 | | empty_set_wf(FF,WF), empty_set_wf(Domain,WF). |
3057 | | total_function_wf(FF,Domain,Range,WF) :- |
3058 | | % TO DO: if FF or Domain nonvar but \= [] -> check if other variable becomes [] |
3059 | ? | total_function_wf1(FF,Domain,Range,WF). |
3060 | | |
3061 | | :- block total_function_wf1(?,-,?,?). |
3062 | | total_function_wf1(FF,Domain,_Range,WF) :- |
3063 | | FF==[],!, |
3064 | | empty_set_wf(Domain,WF). |
3065 | | total_function_wf1(FF,Domain,Range,WF) :- |
3066 | | custom_explicit_sets:is_definitely_maximal_set(Range), |
3067 | | % we do not need the Range; this means we can match more closures (e.g., lambda) |
3068 | | (nonvar(FF), |
3069 | | custom_explicit_sets:dom_for_specific_closure(FF,FFDomain,function(_),WF) |
3070 | | -> !, |
3071 | | equal_object_wf(FFDomain,Domain,total_function_wf1_1,WF) |
3072 | | ; var(FF), |
3073 | | get_wait_flag1(WF,WF1), var(WF1), |
3074 | | \+ (custom_explicit_sets:get_card_for_specific_custom_set(Domain,Card), number(Card)), |
3075 | | % we have a total_function over a possibly infinite domain, |
3076 | | % better wait: maybe a recursive of other closure will be produced for FF |
3077 | | !, |
3078 | | when( (nonvar(FF) ; nonvar(WF1)), total_function_wf1(FF,Domain,Range,WF)) |
3079 | | ). |
3080 | | total_function_wf1(FF,Domain,Range,WF) :- nonvar(FF), |
3081 | | custom_explicit_sets:dom_range_for_specific_closure(FF,FFDomain,FFRange,function(_),WF),!, |
3082 | | equal_object_wf(FFDomain,Domain,total_function_wf1_2,WF), |
3083 | | check_range_subset_for_closure_wf(FF,FFRange,Range,WF). |
3084 | | total_function_wf1(R,Domain,Range,WF) :- nonvar(R), R=avl_set(AEF), !, |
3085 | | total_function_avl_set(AEF,Domain,Range,WF). |
3086 | | total_function_wf1(FF,Domain,Range,WF) :- |
3087 | | % want to replace FF by closure: needs to be a variable! |
3088 | | var(FF), |
3089 | | % if the total function can not be build up explicitly (i.e. infinite domain) |
3090 | | % TODO: can / should this be relaxed? |
3091 | | custom_explicit_sets:is_infinite_explicit_set(Domain), % get_card_for_specific_custom_set or is_infinite_or_symbolic_closure |
3092 | | % TO DO: delay if Domain infinite or closure and not yet known and range is type |
3093 | | kernel_objects:infer_value_type(Domain,set(DomT)), |
3094 | | kernel_objects:infer_value_type(Range,set(RanT)), |
3095 | | !, |
3096 | | % IDEA : TF = %x.(x:Domain|DEFAULT) <+ SFF, where SFF is partial function and DEFAULT is some default value |
3097 | | % build up a partial function instead (fulfilling all constraints) |
3098 | | % better? : %x.(x:Domain|IF x:dom(SFF) THEN SFF(x) ELSE DEFAULT)? |
3099 | | partial_function_wf(SFF,Domain,Range,WF), |
3100 | | % next, build up a total function mapping everything to a default value |
3101 | | % this function will be overriden by the partial function to fulfilling |
3102 | | % given constraints |
3103 | | % 1. identifiers for closure |
3104 | | create_texpr(identifier('__domid__'),DomT,[],TDomId), |
3105 | | create_texpr(identifier('__ranid__'),RanT,[],TRanId), |
3106 | | % 2. domain identifier might take all values of the domain |
3107 | | create_texpr(member(TDomId,b(value(Domain),set(DomT),[])),pred,[],DomMember), |
3108 | | % 3. pick a single value for the range identifier |
3109 | | check_element_of_wf(RangeElement,Range,WF), |
3110 | | %% external_functions:observe_value(RangeElement,"range"),external_functions:observe_value(SFF,"pf"), |
3111 | | create_texpr(equal(TRanId,b(value(RangeElement),RanT,[])),pred,[],RanMember), |
3112 | | % 4. conjunct and form closure (should be treated symbolically) |
3113 | | conjunct_predicates([RanMember,DomMember],Pred), |
3114 | | Default = closure(['__domid__','__ranid__'],[DomT,RanT],Pred), |
3115 | | % 5. override default values where needed |
3116 | | override_relation(Default,SFF,FF,WF), |
3117 | | get_last_wait_flag(enum_symb_tf,WF,LastWF), |
3118 | | when(nonvar(LastWF), % if we enum too early test 1619 fails; see also test 2022 |
3119 | | % as partial_function_wf does not fully enumerate the new variable SFF we may have to enumerate SFF; see test 2328 |
3120 | | (enumerate_basic_type_wf(RangeElement,RanT,WF), |
3121 | | enumerate_basic_type_wf(SFF,set(couple(DomT,RanT)),WF) |
3122 | | )). |
3123 | | total_function_wf1(R,Domain,Range,WF) :- |
3124 | | try_expand_and_convert_to_avl_with_check(Domain,EDomain,keep_intervals(1000),total_function), % avoid multiple expansions, but useless when dom_for_lambda_closure case triggers below ! TO DO: fix |
3125 | | % TO DO: maybe avoid converting intervals which are not fully instantiated ? |
3126 | | % TODO: done by clause above? % TO DO ?: if Range singleton set {R} and Domain infinite: return %x.(x:Domain|R); if Range not empty choose one element |
3127 | | try_expand_and_convert_to_avl_unless_large_wf(R,ER,WF), |
3128 | | propagate_empty_set_wf(Range,tf_range,ER,WF), % if the range of a total function is empty then the function must be empty |
3129 | ? | total_function_wf2(ER,EDomain,Range,WF). |
3130 | | |
3131 | | :- block total_function_wf2(?,-,?,?). |
3132 | | total_function_wf2(R,Domain,Range,WF) :- nonvar(R), R=avl_set(AEF), !, |
3133 | | total_function_avl_set(AEF,Domain,Range,WF). |
3134 | | total_function_wf2(R,Domain,Range,WF) :- |
3135 | | cardinality_as_int_wf(Domain,int(Card),WF), |
3136 | ? | total_function_wf3(R,Card,Domain,Range,WF). |
3137 | | |
3138 | | :- use_module(kernel_card_arithmetic,[is_inf_or_overflow_card/1]). |
3139 | | total_function_wf3(FF,Card,Domain,Range,WF) :- |
3140 | | nonvar(FF), |
3141 | | (number(Card) -> (Card >= 1000 -> true ; is_symbolic_closure(FF)) ; true), |
3142 | | % note: we can have symbolic closures with a finite domain: /*@symbolic */ %p.(p:BOOL|(%t.(t:NATURAL|t+100))) |
3143 | | custom_explicit_sets:dom_for_lambda_closure(FF,FFDomain), |
3144 | | % we have a lambda closure where we cannot determine the range, |
3145 | | % otherwise dom_range_for_specific_closure would have succeeded |
3146 | | % example: f = %x.(x:NATURAL1|x+1) & f: NATURAL1 --> NATURAL |
3147 | | FF = closure(P,T,Pred), |
3148 | | get_range_id_expression(P,T,TRangeID), |
3149 | | !, |
3150 | | equal_object_wf(FFDomain,Domain,total_function1_closure,WF), |
3151 | | % CHECK not(#P.(Pred & P /: Range)) |
3152 | | check_lambda_closure_range(P,T,Pred,TRangeID,Range,WF). |
3153 | | total_function_wf3(R,Card,Domain,Range,WF) :- nonvar(Card),is_inf_or_overflow_card(Card),!, |
3154 | | when(nonvar(R), total_function_symbolic(R,Domain,Range,WF)). |
3155 | | total_function_wf3(R,Card,Domain,Range,WF) :- |
3156 | | card_convert_int_to_peano(Card,PeanoCard), |
3157 | | ((nonvar(R);ground(PeanoCard)) |
3158 | | -> true |
3159 | | ; get_last_wait_flag(total_fun(Domain),WF,WF1)), |
3160 | ? | when((nonvar(R);ground(PeanoCard); |
3161 | | (nonvar(PeanoCard),nonvar(WF1))), /* mal 12/5/04: changed , into ; 17/3/2008: added WF1 */ |
3162 | | /* reason for delaying nonvar(Card): Card grounded bit by bit by cardinality; avoid |
3163 | | triggering too early and missing tf_var */ |
3164 | | total_function1(R,Card,PeanoCard,Domain,Range,WF |
3165 | | )). |
3166 | | |
3167 | | :- use_module(library(lists),[last/2]). |
3168 | | % for a closure get the identifier or proj expression that represents range values |
3169 | | get_range_id_expression([PairID],[Type],Res) :- !, |
3170 | | Type = couple(_,TX), |
3171 | | TP = b(identifier(PairID),Type,[]), |
3172 | | safe_create_texpr(second_of_pair(TP),TX,Res). % prj2(PairID) , |
3173 | | %TO DO: test this e.g. with f = /*@symbolic*/ {x|x:NATURAL1*INTEGER & prj2(INTEGER,INTEGER)(x)=prj1(INTEGER,INTEGER)(x)+1} & f: NATURAL1 --> NATURAL |
3174 | | % but currently lambda closure detection in dom_for_lambda_closure cannot handle such closures anyway |
3175 | | get_range_id_expression(P,T,b(identifier(ID),Type,[])) :- last(P,ID), last(T,Type). |
3176 | | |
3177 | | total_function_avl_set(AEF,Domain,Range,WF) :- |
3178 | | (Domain = avl_set(Dom) -> is_avl_total_function_over_domain(AEF,Dom) |
3179 | | ; is_avl_partial_function(AEF), |
3180 | | domain_of_explicit_set_wf(avl_set(AEF),AEF_Domain,WF), |
3181 | | equal_object_wf(AEF_Domain,Domain,total_function_avl_set,WF) |
3182 | | ), |
3183 | | is_avl_relation_over_range(AEF,Range,WF). |
3184 | | |
3185 | | total_function_symbolic(FF,Domain,Range,WF) :- |
3186 | | (debug_mode(off) -> true ; print('SYMBOLIC --> check : '),translate:print_bvalue(FF),nl), |
3187 | | % can deal with, e.g., f = %x.(x:NATURAL|x+1) & g = f <+ {0|->0} & g : INTEGER +-> INTEGER |
3188 | | domain_wf(FF,Domain,WF), |
3189 | | symbolic_range_subset_check(FF,Range,WF), |
3190 | | symbolic_functionality_check(FF,WF). |
3191 | | |
3192 | | total_function1(FF,Card,PeanoCard,Domain,Range,WF) :- nonvar(Card),is_inf_or_overflow_card(Card), |
3193 | | nonvar(PeanoCard),is_inf_or_overflow_card(PeanoCard),!, |
3194 | | total_function_symbolic(FF,Domain,Range,WF). |
3195 | | total_function1(FF,_,_,Domain,Range,WF) :- |
3196 | | expand_and_convert_to_avl_set_catch(FF,AEF,total_function1,'ARG : ? --> ?',ResultStatus,WF),!, |
3197 | | (ResultStatus=avl_set -> total_function_avl_set(AEF,Domain,Range,WF) |
3198 | | ; % keep symbolic |
3199 | | % TO DO: ensure no pending co-routine infinite_peano in card_convert_int_to_peano |
3200 | | total_function_symbolic(FF,Domain,Range,WF) |
3201 | | ). |
3202 | | total_function1(R,_,Card,Domain,Range,WF) :- |
3203 | | try_expand_custom_set_wf(R,ER,total_function1,WF), |
3204 | ? | total_function2(ER,Card,Domain,Range,WF). |
3205 | | |
3206 | | total_function2(ER,Card,Domain,Range,WF) :- |
3207 | | var(ER),ground(Card),!, |
3208 | | tf_var(TotalFunction,[],Card,Domain,Range,WF), |
3209 | | ER=TotalFunction. |
3210 | | total_function2(ER,Card,Domain,Range,WF) :- |
3211 | | (ground(Card) |
3212 | | -> get_wait_flag(0,tot_fun,WF,LWF) % we seem to know the domain exactly now; see e.g. test 1316 |
3213 | | ; get_wait_flag(2,total_function2,WF,LWF)), % ensure we don't start binding function as soon as Card is bound; important for test 1393; should we use another priority ? |
3214 | ? | tf(ER,[],Card,Domain,Range,WF,LWF). |
3215 | | |
3216 | | :- block tf(-,?,-,?,?,?,?),tf(-,?,?,?,?,?,-). |
3217 | | tf([],_,0,Dom,_,WF,_) :- empty_set_wf(Dom,WF). |
3218 | | tf(FUN,SoFar,s(Card),Dom,Ran,WF,LWF) :- var(FUN),nonvar(Dom), % try setting up skeleton for total fun |
3219 | | remove_exact_first_element(X,Dom,Dom2),not_element_of_wf(X,SoFar,WF),var(FUN),!, |
3220 | ? | FUN = [(X,Y)|T], tf1(X,Y,T,SoFar,Card,Dom2,Ran,WF,LWF). |
3221 | | tf([(X,Y)|T],SoFar,s(Card),Dom,Ran,WF,LWF) :- |
3222 | | not_element_of_wf(X,SoFar,WF), |
3223 | | remove_element_wf(X,Dom,Dom2,WF), %mal: 17/3/08 changed to _wf version |
3224 | ? | tf1(X,Y,T,SoFar,Card,Dom2,Ran,WF,LWF). |
3225 | | tf(CS,SoFar,Card,Dom,Ran,WF,LWF) :- nonvar(CS), is_custom_explicit_set(CS), |
3226 | | expand_custom_set_to_list_wf(CS,ER,_,tf,WF), |
3227 | | tf(ER,SoFar,Card,Dom,Ran,WF,LWF). |
3228 | | tf1(X,Y,T,SoFar,Card,Dom2,Ran,WF,LWF) :- |
3229 | | check_element_of_wf(Y,Ran,WF), |
3230 | | %when((nonvar(T);nonvar(Card)), /* mal 12/5/04: changed , into ; */ |
3231 | | add_new_element_wf(X,SoFar,SoFar2,WF), %%% try_expand_and_convert_to_avl |
3232 | ? | tf(T,SoFar2,Card,Dom2,Ran,WF,LWF). |
3233 | | |
3234 | | :- block tf_var(-,?,-,?,?,?). |
3235 | | tf_var(F,_,Card,Dom,_,WF) :- Card==0,!,F=[],empty_set_wf(Dom,WF). % avoid choice point |
3236 | | tf_var([],_,0,Dom,_,WF) :- empty_set_wf(Dom,WF). |
3237 | | tf_var([(X,Y)|T],SoFar,s(Card),Dom,Ran,WF) :- |
3238 | | /* supposes that X + Y are unbound */ |
3239 | | /* TO DO: rewrite like enumerate <-------------------------- */ |
3240 | | ((var(X),var(Y)) -> true ; (print_message(warning,'Nonvar in tf_var: '), |
3241 | | print_message(warning,((X,Y))))), |
3242 | | remove_exact_first_element(X,Dom,Dom2), |
3243 | | not_element_of_wf(X,SoFar,WF), |
3244 | | check_element_of_wf(Y,Ran,WF), |
3245 | | add_new_element_wf(X,SoFar,SoFar2,WF), |
3246 | | tf_var(T,SoFar2,Card,Dom2,Ran,WF). |
3247 | | |
3248 | | |
3249 | | |
3250 | | :- assert_must_succeed((bsets_clp:total_bijection(X,[int(1)],[int(7)]), |
3251 | | X = [(int(1),int(7))])). |
3252 | | :- assert_must_succeed((bsets_clp:total_bijection(X,[int(1),int(2)],[int(7),int(8)]), |
3253 | | kernel_objects:equal_object(X,[(int(2),int(8)),(int(1),int(7))]))). |
3254 | | :- assert_must_fail((bsets_clp:total_bijection(X,[int(1)],[int(7),int(3)]), |
3255 | | X = [(int(1),int(7))])). |
3256 | | :- assert_must_fail((bsets_clp:total_bijection(X,[int(1),int(2)],[int(3)]), |
3257 | | X = [(int(1),int(3)),(int(2),int(3))])). |
3258 | | :- assert_must_fail((bsets_clp:total_bijection(X,[int(1),int(2)],[int(7),int(8)]), |
3259 | | kernel_objects:equal_object(X,[(int(2),int(7)),(int(1),int(7))]))). |
3260 | | :- assert_must_fail((bsets_clp:total_bijection(X,[int(1),int(2)],[int(7),int(8)]), |
3261 | | X = [(int(1),int(7)),(int(1),int(8))])). |
3262 | | |
3263 | | |
3264 | | |
3265 | | total_bijection(R,Domain,Range) :- init_wait_flags(WF,[total_bijection]), |
3266 | | total_bijection_wf(R,Domain,Range,WF), |
3267 | ? | ground_wait_flags(WF). |
3268 | | |
3269 | | :- block total_bijection_wf(?,-,?,?). |
3270 | | total_bijection_wf(FF,Domain,Range,WF) :- nonvar(FF), |
3271 | | custom_explicit_sets:dom_range_for_specific_closure(FF,FFDomain,FFRange,function(bijection),WF),!, |
3272 | | equal_object_wf(FFDomain,Domain,total_bijection_wf_1,WF), |
3273 | | equal_object_wf(FFRange,Range,total_bijection_wf_2,WF). |
3274 | | %(R,Domain,Range,WF) :- Domain==Range,!, print(eq_domain_range),nl, total_injection_wf(R,Domain,Range,WF). |
3275 | | total_bijection_wf(R,Domain,Range,WF) :- |
3276 | | same_cardinality_wf(Domain,Range,WF), |
3277 | | total_injection_wf2(R,Domain,Range,WF). % TO DO: use cardinality_as_int_wf ? makes test 1194 fail |
3278 | | |
3279 | | %Note: we used to call custom code: total_bijection_wf2(R,Domain,Card,Range,WF). |
3280 | | % total_injection_wf2 gives a considerable performance boost, e.g., for test 1222 ClearSy/alloc_large.mch or NQueens with >->> |
3281 | | |
3282 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_total_function([(int(1),int(6)),(int(2),int(7))],[int(1),int(2),int(3)],[int(7),int(6)],WF),WF)). |
3283 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_total_function([(int(1),int(6)),(int(2),int(7))],[int(1),int(2)],[int(8),int(6)],WF),WF)). |
3284 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_total_function([(int(1),int(6)),(int(2),int(7)),(int(1),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)). |
3285 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_total_function([(int(1),int(6)),(int(1),int(7))],[int(1)],[int(7),int(6)],WF),WF)). |
3286 | | :- assert_must_fail((bsets_clp:not_total_function(X,[int(1)],[int(7)],_WF), |
3287 | | X = [(int(1),int(7))])). |
3288 | | :- assert_must_fail((bsets_clp:not_total_function(X,[int(1),int(2)],[int(7),int(6)],_WF), |
3289 | | X = [(int(2),int(7)),(int(1),int(7))])). |
3290 | | :- assert_must_succeed((bsets_clp:not_total_function([],[int(1)],[int(7)],_WF))). |
3291 | | :- assert_must_succeed((bsets_clp:not_total_function([],[global_set('NAT1')],[global_set('Name')],_WF))). |
3292 | | :- assert_must_succeed((bsets_clp:not_total_function([(int(7),int(7))],[int(1)],[int(7)],_WF))). |
3293 | | :- assert_must_succeed((bsets_clp:not_total_function([(int(1),int(7)), (int(2),int(1))], |
3294 | | [int(1),int(2)],[int(7)],_WF))). |
3295 | | :- assert_must_succeed((bsets_clp:not_total_function(X,[int(1),int(2)],[int(7),int(6)],_WF), |
3296 | | X = [(int(2),int(7)),(int(2),int(6))])). |
3297 | | |
3298 | | :- block not_total_function(-,?,?,?), not_total_function(?,-,?,?). |
3299 | | not_total_function(FF,Domain,Range,WF) :- nonvar(FF),custom_explicit_sets:is_definitely_maximal_set(Range), |
3300 | | % we do not need the Range; this means we can match more closures (e.g., lambda) |
3301 | | custom_explicit_sets:dom_for_specific_closure(FF,FFDomain,function(_),WF),!, |
3302 | | not_equal_object_wf(FFDomain,Domain,WF). |
3303 | | not_total_function(FF,Domain,Range,WF) :- nonvar(FF), |
3304 | | custom_explicit_sets:dom_range_for_specific_closure(FF,FFDomain,FFRange,function(_),WF),!, |
3305 | | equality_objects_wf(FFDomain,Domain,Result,WF), % not yet implemented ! % TODO ! -> sub_set,equal,super_set |
3306 | | when(nonvar(Result),(Result=pred_false -> true ; not_subset_of_wf(FFRange,Range,WF))). |
3307 | | not_total_function(FF,Domain,Range,WF) :- nonvar(FF), FF=closure(P,T,Pred), |
3308 | | % example: f = %t.(t : NATURAL|t + 100) & f /: NATURAL +-> NATURAL |
3309 | | is_lambda_value_domain_closure(P,T,Pred, FFDomain,_Expr), |
3310 | | get_range_id_expression(P,T,TRangeID),!, |
3311 | | equality_objects_wf(FFDomain,Domain,SubRes,WF), % compare: subset_test for not_partial_function |
3312 | | when(nonvar(SubRes), |
3313 | | (SubRes=pred_false -> true % not equal -> it is not a total function over the domain |
3314 | | ; check_not_lambda_closure_range(P,T,Pred,TRangeID,Range,WF))). |
3315 | | not_total_function(R,Domain,Range,WF) :- |
3316 | | try_expand_and_convert_to_avl_with_check(R,ER,not_total_function_range), |
3317 | | try_expand_and_convert_to_avl_unless_large_wf(Range,ERange,WF), |
3318 | | not_total_function2(ER,Domain,ERange,WF). |
3319 | | |
3320 | | % repeat block, in case Domain or R is a closure |
3321 | | :- block not_total_function2(-,?,?,?), not_total_function2(?,-,?,?). |
3322 | | not_total_function2(R,Domain,Range,WF) :- |
3323 | | expand_and_convert_to_avl_set_warn(R,AER,not_total_function2,'ARG /: ? --> ?',WF), |
3324 | | !, |
3325 | | not_total_function_avl(AER,Domain,Range,WF). |
3326 | | not_total_function2(R,Domain,ERange,WF) :- |
3327 | | expand_custom_set_to_list_wf(R,ER,_,not_total_function2,WF), |
3328 | | try_expand_and_convert_to_avl_with_check(Domain,EDomain,keep_intervals(1000),not_total_function_domain), |
3329 | | not_tf(ER,[],EDomain,ERange,WF). |
3330 | | |
3331 | | not_total_function_avl(_AER,Domain,_Range,_WF) :- is_infinite_explicit_set(Domain),!, |
3332 | | true. % a finite AVL set cannot be a total function over an infinite domain |
3333 | | not_total_function_avl(AER,Domain,Range,WF) :- |
3334 | | expand_and_convert_to_avl_set_warn(Domain,ADom,not_total_function2,'? /: ARG --> ?',WF), |
3335 | | !, |
3336 | | (is_avl_total_function_over_domain(AER,ADom) |
3337 | | -> |
3338 | | is_not_avl_relation_over_range(AER,Range,WF) |
3339 | | ; true |
3340 | | ). |
3341 | | not_total_function_avl(AER,EDomain,ERange,WF) :- |
3342 | | expand_custom_set_to_list_wf(avl_set(AER),ER,_,not_total_function_avl,WF), |
3343 | | not_tf(ER,[],EDomain,ERange,WF). |
3344 | | |
3345 | | |
3346 | | :- use_module(kernel_equality,[membership_test_wf_with_force/4]). |
3347 | | |
3348 | | :- block not_tf(-,?,?,?,?). |
3349 | | not_tf([],_,Domain,_,WF) :- not_empty_set_wf(Domain,WF). |
3350 | | not_tf([(X,Y)|T],SoFar,Dom,Ran,WF) :- membership_test_wf_with_force(SoFar,X,MemRes,WF), |
3351 | | not_tf2(MemRes,X,Y,T,SoFar,Dom,Ran,WF). |
3352 | | |
3353 | | :- block not_tf2(-,?,?,?, ?,?,?,?). %, not_tf2(?,?,?,?, -,?,?), not_tf2(?,?,?,?, ?,-,?). |
3354 | | not_tf2(pred_true,_X,_,_T,_SoFar,_Dom,_Ran,_WF).% :- check_element_of_lazy(X,SoFar,WF). |
3355 | | not_tf2(pred_false,X,Y,T,SoFar,Dom,Ran,WF) :- |
3356 | | %not_element_of_wf(X,SoFar,WF), |
3357 | | membership_test_wf_with_force(Dom,X,MemRes,WF), |
3358 | | not_tf3(MemRes,X,Y,T,SoFar,Dom,Ran,WF). |
3359 | | |
3360 | | :- block not_tf3(-, ?,?,?,?, ?,?,?). |
3361 | | not_tf3(pred_false,_X,_Y,_T,_SoFar,_Dom,_Ran,_WF). |
3362 | | not_tf3(pred_true,X,Y,T,SoFar,Dom,Ran,WF) :- |
3363 | | remove_element_wf(X,Dom,Dom2,WF), |
3364 | | membership_test_wf_with_force(Ran,Y,MemRes,WF), |
3365 | | not_tf4(MemRes,X,Y,T,SoFar,Dom2,Ran,WF). |
3366 | | |
3367 | | :- block not_tf4(-, ?,?,?,?, ?,?,?). |
3368 | | not_tf4(pred_false,_X,_Y,_T,_SoFar,_Dom2,_Ran,_WF). |
3369 | | not_tf4(pred_true,X,_Y,T,SoFar,Dom2,Ran,WF) :- |
3370 | | %check_element_of_wf(Y,Ran,WF), %DO WE NEED THIS ???? |
3371 | | add_new_element_wf(X,SoFar,SoFar2,WF), |
3372 | | not_tf(T,SoFar2,Dom2,Ran,WF). |
3373 | | |
3374 | | |
3375 | | |
3376 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_total_bijection([(int(1),int(6)),(int(2),int(7))],[int(1),int(2),int(3)],[int(7),int(6)],WF),WF)). |
3377 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_total_bijection([(int(1),int(6)),(int(2),int(7))],[int(1),int(2)],[int(8),int(6)],WF),WF)). |
3378 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_total_bijection([(int(1),int(6)),(int(2),int(7)),(int(1),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)). |
3379 | | :- assert_must_fail((bsets_clp:not_total_bijection(X,[int(1)],[int(7)],_WF), |
3380 | | X = [(int(1),int(7))])). |
3381 | | :- assert_must_fail((bsets_clp:not_total_bijection(X,[int(1),int(2)],[int(7),int(6)],_WF), |
3382 | | X = [(int(2),int(7)),(int(1),int(6))])). |
3383 | | :- assert_must_fail((bsets_clp:not_total_bijection(X,[int(1),int(2)],[int(7),int(6)],_WF), |
3384 | | X = [(int(1),int(7)),(int(2),int(6))])). |
3385 | | :- assert_must_succeed((bsets_clp:not_total_bijection(X,[int(1),int(2)],[int(3)],_WF), |
3386 | | X = [(int(1),int(3)),(int(2),int(3))])). |
3387 | | :- assert_must_succeed((bsets_clp:not_total_bijection(X,[int(1),int(2)],[int(7),int(6)],_WF), |
3388 | | X = [(int(2),int(7)),(int(1),int(7))])). |
3389 | | :- assert_must_succeed((bsets_clp:not_total_bijection(X,[int(1)],[int(7),int(8)],_WF), |
3390 | | X = [(int(1),int(7))])). |
3391 | | :- assert_must_succeed((bsets_clp:not_total_bijection(X,[int(1),int(2)],[int(7)],_WF), |
3392 | | X = [(int(2),int(7))])). |
3393 | | :- assert_must_succeed((bsets_clp:not_total_bijection([],[int(1)],[int(7)],_WF))). |
3394 | | :- assert_must_succeed((bsets_clp:not_total_bijection([(int(7),int(7))],[int(1)],[int(7)],_WF))). |
3395 | | :- assert_must_succeed((bsets_clp:not_total_bijection([(int(1),int(7)), (int(2),int(1))], |
3396 | | [int(1),int(2)],[int(7)],_WF))). |
3397 | | :- assert_must_succeed((bsets_clp:not_total_bijection(X,[int(1),int(2)],[int(7),int(6)],_WF), |
3398 | | X = [(int(2),int(7)),(int(2),int(6))])). |
3399 | | |
3400 | | :- block not_total_bijection(-,?,?,?), not_total_bijection(?,-,?,?). |
3401 | | not_total_bijection(FF,Domain,Range,WF) :- |
3402 | | custom_explicit_sets:dom_range_for_specific_closure(FF,FFDomain,FFRange,function(bijection),WF),!, |
3403 | | not_equal_object_wf((FFDomain,FFRange),(Domain,Range),WF). |
3404 | | not_total_bijection(avl_set(_),Domain,_Range,_WF) :- |
3405 | | is_infinite_explicit_set(Domain),!. |
3406 | | % a finite set cannot be a total bijection over an infinite domain, see test 1641 |
3407 | | not_total_bijection(R,Domain,Range,WF) :- |
3408 | | try_expand_custom_set_wf(R,ER,not_total_bijection,WF), |
3409 | | not_tot_bij(ER,[],Domain,Range,WF). |
3410 | | |
3411 | | :- block not_tot_bij(-,?,?,?,?). |
3412 | | not_tot_bij([],_,Domain,Range,WF) :- empty_not_tot_bij(Domain,Range,WF). |
3413 | | not_tot_bij([(X,Y)|T],SoFar,Dom,Ran,WF) :- membership_test_wf(SoFar,X,MemRes,WF), |
3414 | | not_tot_bij2(MemRes,X,Y,T,SoFar,Dom,Ran,WF). |
3415 | | |
3416 | | :- use_module(kernel_equality,[empty_set_test_wf/3]). |
3417 | | :- block empty_not_tot_bij(-,?,?). |
3418 | | empty_not_tot_bij(Domain,Range,WF) :- |
3419 | | empty_set_test_wf(Domain,EqRes,WF), |
3420 | | empty_not_tot_bij2(EqRes,Range,WF). |
3421 | | :- block empty_not_tot_bij2(-,?,?). |
3422 | | empty_not_tot_bij2(pred_false,_,_). |
3423 | | empty_not_tot_bij2(pred_true,Range,WF) :- not_empty_set_wf(Range,WF). |
3424 | | |
3425 | | :- block not_tot_bij2(-,?,?,?,?,?,?,?). |
3426 | | not_tot_bij2(pred_true,_X,_,_T,_SoFar,_Dom,_Ran,_WF). |
3427 | | not_tot_bij2(pred_false,X,Y,T,SoFar,Dom,Ran,WF) :- |
3428 | | membership_test_wf(Dom,X,MemRes,WF), |
3429 | | not_tot_bij3(MemRes,X,Y,T,SoFar,Dom,Ran,WF). |
3430 | | |
3431 | | :- block not_tot_bij3(-,?,?,?,?,?,?,?). |
3432 | | not_tot_bij3(pred_false,_X,_,_T,_SoFar,_Dom,_Ran,_WF). % X not a member of domain |
3433 | | not_tot_bij3(pred_true,X,Y,T,SoFar,Dom,Ran,WF) :- |
3434 | | remove_element_wf(X,Dom,Dom2,WF), |
3435 | | membership_test_wf(Ran,Y,MemRes,WF), |
3436 | | not_tot_bij4(MemRes,X,Y,T,SoFar,Dom2,Ran,WF). |
3437 | | |
3438 | | :- block not_tot_bij4(-,?,?,?,?,?,?,?). |
3439 | | not_tot_bij4(pred_false,_X,_,_T,_SoFar,_Dom2,_Ran,_WF). % Y not a member of range |
3440 | | not_tot_bij4(pred_true,X,Y,T,SoFar,Dom2,Ran,WF) :- |
3441 | | remove_element_wf(Y,Ran,Ran2,WF), |
3442 | | add_element_wf(X,SoFar,SoFar2,WF), |
3443 | | not_tot_bij(T,SoFar2,Dom2,Ran2,WF). |
3444 | | |
3445 | | |
3446 | | |
3447 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:range_restriction_wf([(int(1),int(2)),(int(2),int(3))],[int(3)],[(int(2),int(3))],WF),WF)). |
3448 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:range_restriction_wf([(int(1),int(2)),(int(2),int(3))],[int(2),int(3)],[(int(1),int(2)),(int(2),int(3))],WF),WF)). |
3449 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:range_restriction_wf([],[int(2),int(3)],[],WF),WF)). |
3450 | | :- assert_must_succeed((bsets_clp:range_restriction_wf([],[int(1)],[],_WF))). |
3451 | | :- assert_must_succeed((bsets_clp:range_restriction_wf([],[],[],_WF))). |
3452 | | :- assert_must_succeed((bsets_clp:range_restriction_wf([(int(1),int(2))],[int(1)],[],_WF))). |
3453 | | :- assert_must_succeed((bsets_clp:range_restriction_wf([(int(1),int(2))],[int(2)],[(int(1),int(2))],_WF))). |
3454 | | :- assert_must_succeed((bsets_clp:range_restriction_wf(X,[fd(3,'Name')],R,_WF), |
3455 | | X = [(int(1),fd(3,'Name')),(int(2),fd(3,'Name'))], |
3456 | | kernel_objects:equal_object(X,R))). |
3457 | | :- assert_must_succeed((bsets_clp:range_restriction_wf(X,Y,R,_WF), |
3458 | | X = [(int(1),fd(3,'Name')),(int(2),fd(3,'Name'))],Y=global_set('Name'), |
3459 | | kernel_objects:equal_object(X,R))). |
3460 | | :- assert_must_fail((bsets_clp:range_restriction_wf(X,[fd(3,'Name')],R,_WF), |
3461 | | X = [(int(1),fd(3,'Name')),(int(2),fd(1,'Name'))], |
3462 | | kernel_objects:equal_object(X,R))). |
3463 | | |
3464 | | :- block range_restriction_wf(-,?,?,?),range_restriction_wf(?,-,-,?). |
3465 | | |
3466 | | range_restriction_wf(R,S,Res,WF) :- /* R |> S */ |
3467 | | ok_to_try_restriction_explicit_set(S,R,Res), |
3468 | | range_restriction_explicit_set_wf(R,S,SR,WF),!, |
3469 | | equal_object_wf(SR,Res,range_restriction,WF). |
3470 | | range_restriction_wf(R,S,Res,WF) :- /* R |> S */ |
3471 | | expand_custom_set_to_list_wf(R,ER,_,range_restriction,WF), |
3472 | ? | relation_restriction_wf(ER,S,Res,pred_true,range,WF). |
3473 | | |
3474 | | % heuristic: should we try restriction_explicit_set or |
3475 | | % is relation_restriction with its stronger constraint propagation better |
3476 | | ok_to_try_restriction_explicit_set(S,R,Res) :- |
3477 | | nonvar(S), |
3478 | | (var(Res) -> true |
3479 | | ; S=avl_set(_), |
3480 | | nonvar(R), R=avl_set(_) % otherwise constraint propagation from normal relation_restriction better |
3481 | | ). |
3482 | | |
3483 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:range_subtraction_wf([],[int(2)],[],WF),WF)). |
3484 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:range_subtraction_wf([(int(1),int(2)),(int(2),int(3))],[int(2)],[(int(2),int(3))],WF),WF)). |
3485 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:range_subtraction_wf([(int(1),int(2)),(int(2),int(3))],[],[(int(1),int(2)),(int(2),int(3))],WF),WF)). |
3486 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:range_subtraction_wf([(int(1),int(2)),(int(2),int(3))],[int(1)],[(int(1),int(2)),(int(2),int(3))],WF),WF)). |
3487 | | |
3488 | | :- block range_subtraction_wf(-,?,?,?),range_subtraction_wf(?,-,-,?). |
3489 | | range_subtraction_wf(R,S,Res,WF) :- /* R |>> S */ |
3490 | | S==[],!, |
3491 | | equal_object_wf(R,Res,range_subtraction1,WF). |
3492 | | range_subtraction_wf(R,S,Res,WF) :- /* R |>> S */ |
3493 | | ok_to_try_restriction_explicit_set(S,R,Res), |
3494 | | range_subtraction_explicit_set_wf(R,S,SR,WF),!, |
3495 | | equal_object_wf(SR,Res,range_subtraction2,WF). |
3496 | | range_subtraction_wf(R,S,Res,WF) :- /* R |>> S */ |
3497 | | expand_custom_set_to_list_wf(R,ER,_,range_subtraction,WF), |
3498 | ? | relation_restriction_wf(ER,S,Res,pred_false,range,WF). |
3499 | | |
3500 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:in_range_restriction_wf((int(2),int(3)),[(int(2),int(3)),(int(1),int(3))],[int(33),int(3)],WF),WF)). |
3501 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:in_range_restriction_wf((int(1),int(3)),[(int(2),int(3)),(int(1),int(3))],[int(3)],WF),WF)). |
3502 | | |
3503 | | :- block in_range_restriction_wf(-,-,-,?). |
3504 | | in_range_restriction_wf(Pair,Rel,Set,WF) :- |
3505 | ? | (treat_arg_symbolically(Set) ; treat_arg_symbolically(Rel) |
3506 | | ; preference(convert_comprehension_sets_into_closures,true)), |
3507 | | !, |
3508 | | Rel \== [], % avoid setting up check_element_of for X then |
3509 | | % x |-> y : Rel |>> Set <=> x|->y : Rel & y: Set |
3510 | | check_element_of_wf(Pair,Rel,WF), |
3511 | | Pair = (_,P2), |
3512 | | check_element_of_wf(P2,Set,WF). |
3513 | | in_range_restriction_wf(Pair,Rel,Set,WF) :- |
3514 | | range_restriction_wf(Rel,Set,Res,WF), |
3515 | | check_element_of_wf(Pair,Res,WF). |
3516 | | |
3517 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_in_range_restriction_wf((int(2),int(3)),[(int(2),int(3)),(int(1),int(3))],[int(1),int(2)],WF),WF)). |
3518 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_in_range_restriction_wf((int(11),int(3)),[(int(2),int(3)),(int(1),int(3))],[int(33),int(2)],WF),WF)). |
3519 | | |
3520 | | :- block not_in_range_restriction_wf(-,-,-,?). |
3521 | | not_in_range_restriction_wf(Pair,Rel,Set,WF) :- |
3522 | | range_restriction_wf(Rel,Set,Res,WF), |
3523 | | not_element_of_wf(Pair,Res,WF). |
3524 | | |
3525 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:in_range_subtraction_wf((int(2),int(3)),[(int(2),int(3)),(int(1),int(3))],[int(33),int(1)],WF),WF)). |
3526 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:in_range_subtraction_wf((int(1),int(3)),[(int(2),int(3)),(int(1),int(3))],[],WF),WF)). |
3527 | | |
3528 | | :- block in_range_subtraction_wf(-,-,-,?). |
3529 | | in_range_subtraction_wf(Pair,Rel,Set,WF) :- |
3530 | ? | (treat_arg_symbolically(Set) ; treat_arg_symbolically(Rel) |
3531 | | ; preference(convert_comprehension_sets_into_closures,true)), |
3532 | | !, |
3533 | | Rel \== [], % avoid setting up check_element_of for X then |
3534 | | % x |-> y : Rel |>> Set <=> x|->y : Rel & y/: Set |
3535 | | check_element_of_wf(Pair,Rel,WF), |
3536 | | Pair = (_,P2), |
3537 | | not_element_of_wf(P2,Set,WF). |
3538 | | in_range_subtraction_wf(Pair,Rel,Set,WF) :- |
3539 | | range_subtraction_wf(Rel,Set,Res,WF), |
3540 | | check_element_of_wf(Pair,Res,WF). |
3541 | | |
3542 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_in_range_subtraction_wf((int(2),int(3)),[(int(2),int(3)),(int(1),int(3))],[int(3),int(2)],WF),WF)). |
3543 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_in_range_subtraction_wf((int(11),int(3)),[(int(2),int(3)),(int(1),int(3))],[int(33),int(2)],WF),WF)). |
3544 | | |
3545 | | :- block not_in_range_subtraction_wf(-,-,-,?). |
3546 | | not_in_range_subtraction_wf(Pair,Rel,Set,WF) :- |
3547 | | range_subtraction_wf(Rel,Set,Res,WF), |
3548 | | not_element_of_wf(Pair,Res,WF). |
3549 | | |
3550 | | |
3551 | | |
3552 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:in_domain_restriction_wf((int(2),int(3)),[int(33),int(2)],[(int(2),int(3)),(int(1),int(3))],WF),WF)). |
3553 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:in_domain_restriction_wf((int(1),int(3)),[int(1)],[(int(2),int(3)),(int(1),int(3))],WF),WF)). |
3554 | | |
3555 | | :- block in_domain_restriction_wf(-,-,-,?). |
3556 | | in_domain_restriction_wf(Pair,Set,Rel,WF) :- |
3557 | ? | (treat_arg_symbolically(Set) ; treat_arg_symbolically(Rel) |
3558 | | ; preference(convert_comprehension_sets_into_closures,true)), |
3559 | | !, |
3560 | | Rel \== [], % avoid setting up check_element_of for X then |
3561 | | % x |-> y : Set <| Rel <=> x|->y : Rel & x: Set |
3562 | | check_element_of_wf(Pair,Rel,WF), |
3563 | | Pair = (P1,_), |
3564 | | check_element_of_wf(P1,Set,WF). |
3565 | | in_domain_restriction_wf(Pair,Set,Rel,WF) :- |
3566 | | domain_restriction_wf(Set,Rel,Res,WF), |
3567 | | check_element_of_wf(Pair,Res,WF). |
3568 | | |
3569 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_in_domain_restriction_wf((int(2),int(3)),[int(33),int(1)],[(int(2),int(3)),(int(1),int(3))],WF),WF)). |
3570 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_in_domain_restriction_wf((int(11),int(3)),[int(11),int(2)],[(int(2),int(3)),(int(1),int(3))],WF),WF)). |
3571 | | |
3572 | | :- block not_in_domain_restriction_wf(-,-,-,?). |
3573 | | not_in_domain_restriction_wf(Pair,Set,Rel,WF) :- |
3574 | | domain_restriction_wf(Set,Rel,Res,WF), |
3575 | | not_element_of_wf(Pair,Res,WF). |
3576 | | |
3577 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:domain_restriction_wf([int(2),int(4)],[(int(1),int(4)),(int(2),int(3))],[(int(2),int(3))],WF),WF)). |
3578 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:domain_restriction_wf([int(1),int(2)],[(int(1),int(2)),(int(2),int(3))],[(int(1),int(2)),(int(2),int(3))],WF),WF)). |
3579 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:domain_restriction_wf([int(2),int(3)],[],[],WF),WF)). |
3580 | | :- assert_must_succeed((bsets_clp:domain_restriction_wf([int(1)],[],[],_WF))). |
3581 | | :- assert_must_succeed((bsets_clp:domain_restriction_wf([int(1)],[],R,_WF), R==[])). |
3582 | | :- assert_must_fail((bsets_clp:domain_restriction_wf(_,[],R,_WF), R=[int(_)|_])). |
3583 | | :- assert_must_succeed((bsets_clp:domain_restriction_wf([int(2)],[(int(1),int(2))],[],_WF))). |
3584 | | :- assert_must_succeed((bsets_clp:domain_restriction_wf([],[(int(1),int(2))],[],_WF))). |
3585 | | :- assert_must_succeed((bsets_clp:domain_restriction_wf([int(1)],[(int(1),int(2))],[(int(1),int(2))],_WF))). |
3586 | | :- assert_must_succeed((bsets_clp:domain_restriction_wf([int(1)],[(int(1),int(2)),(int(2),_)],_,_WF))). |
3587 | | :- assert_must_succeed((bsets_clp:domain_restriction_wf([int(2),int(1)],X,R,_WF), |
3588 | | X = [(int(1),fd(3,'Name')),(int(2),fd(3,'Name'))], |
3589 | | kernel_objects:equal_object(X,R))). |
3590 | | |
3591 | | |
3592 | | :- block domain_restriction_wf(?,-,?,?),domain_restriction_wf(-,?,-,?). |
3593 | | domain_restriction_wf(S,R,Res,WF) :- /* S <| R */ |
3594 | | ok_to_try_restriction_explicit_set(S,R,Res), |
3595 | | domain_restriction_explicit_set_wf(S,R,SR,WF),!, |
3596 | | equal_object_wf(SR,Res,domain_restriction,WF). |
3597 | | domain_restriction_wf(S,R,Res,WF) :- /* S <| R */ |
3598 | | expand_custom_set_to_list_wf(R,ER,_,domain_restriction,WF), |
3599 | ? | relation_restriction_wf(ER,S,Res,pred_true,domain,WF). |
3600 | | |
3601 | | % a predicate to compute domain/range restriction/subtraction |
3602 | | :- block relation_restriction_wf(?,-,- ,?,?,?), |
3603 | | relation_restriction_wf(-,?,? ,?,?,?). |
3604 | | relation_restriction_wf([],_S,Res,_AddWhen,_DomOrRange,WF) :- |
3605 | ? | empty_set_wf(Res,WF). |
3606 | | relation_restriction_wf([(X,Y)|T],S,Res,AddWhen,DomOrRange,WF) :- |
3607 | | (DomOrRange=domain |
3608 | | -> membership_test_wf(S,X,MemRes,WF) % TO DO: pass WF ! |
3609 | | ; membership_test_wf(S,Y,MemRes,WF)), |
3610 | | (nonvar(MemRes) |
3611 | | %MemRes==AddWhen % MemRes already set; we will ensure that (X,Y) in Res below; this slows down Alstom Compilation Regle ! |
3612 | | % doing the membership_test on the result Res if MemRes\==AddWhen only makes sense if we cannot fully compute the restriction ?? i.e. if T is not a closed list ? |
3613 | | -> true %,(MemRes==AddWhen -> true ; print_term_summary(relation_restriction([(X,Y)|T],S,Res,AddWhen,DomOrRange)),nl) |
3614 | | ; (AddWhen=pred_true -> InResult=MemRes |
3615 | | ; negate(InResult,MemRes)), % from bool_pred |
3616 | ? | membership_test_wf(Res,(X,Y),InResult,WF) |
3617 | | % TO DO: same for explicit version; gets called e.g. if S = 1..n (1..n <| [1,2,3] = [1,2]) |
3618 | | % can now solve e.g. {x|x <| [1,2,3] = [1,2] & card(x)=2} = {{1,2}} |
3619 | | % or x <| s = [1,2,3] \/ {29|->29} & x <: 1..100 & s = %i.(i:1..50|i) |
3620 | | ), |
3621 | ? | relation_restriction_aux(MemRes,X,Y,T,S,Res,AddWhen,DomOrRange,WF). |
3622 | | :- block relation_restriction_aux(-,?,?,?,?,?, ?,?,?). |
3623 | | relation_restriction_aux(MemRes,X,Y,T,S,Res,AddWhen,DomOrRange,WF) :- |
3624 | | MemRes==AddWhen,!, % (X,Y) should be added to result |
3625 | | % TO DO: collect result until we delay ? and then do equal_object ? |
3626 | ? | equal_cons(Res,(X,Y),RT), % was : equal_object([(X,Y)|RT],Res), |
3627 | | %equal_cons_wf(Res,(X,Y),RT,WF), % makes tests 982, 1302, 1303 fail; TO DO: investigate |
3628 | | %when(nonvar(RT), % causes problem for test 982 |
3629 | ? | relation_restriction_wf(T,S,RT,AddWhen,DomOrRange,WF). |
3630 | | relation_restriction_aux(_MemRes,_X,_,T,S,RT,AddWhen,DomOrRange,WF) :- |
3631 | | % the couple is filtered out |
3632 | ? | relation_restriction_wf(T,S,RT,AddWhen,DomOrRange,WF). |
3633 | | |
3634 | | |
3635 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:domain_subtraction_wf([int(1),int(3)],[(int(1),int(4)),(int(2),int(3))],[(int(2),int(3))],WF),WF)). |
3636 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:domain_subtraction_wf([int(3),int(4)],[(int(1),int(2)),(int(2),int(3))],[(int(1),int(2)),(int(2),int(3))],WF),WF)). |
3637 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:domain_subtraction_wf([int(1)],[],[],WF),WF)). |
3638 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:domain_subtraction_wf([],[(int(11),int(21))],[(int(11),int(21))],WF),WF)). |
3639 | | :- assert_must_succeed((bsets_clp:domain_subtraction_wf([int(1)],[(int(1),int(2))],[],_WF))). |
3640 | | :- assert_must_succeed((bsets_clp:domain_subtraction_wf([int(3)],[(int(1),int(2))],[(int(1),int(2))],_WF))). |
3641 | | :- assert_must_succeed((bsets_clp:domain_subtraction_wf([int(1)],[(int(1),int(2)),(int(2),int(X))],R,_WF), |
3642 | | R=[(int(2),int(YY))], YY==X)). |
3643 | | :- assert_must_succeed((bsets_clp:domain_subtraction_wf([int(5),int(3)],X,R,_WF), |
3644 | | X = [(int(1),fd(3,'Name')),(int(2),fd(3,'Name'))], |
3645 | | kernel_objects:equal_object(X,R))). |
3646 | | :- block domain_subtraction_wf(?,-,?,?),domain_subtraction_wf(-,?,-,?). |
3647 | | domain_subtraction_wf(S,R,Res,WF) :- S==[],!, |
3648 | | equal_object_wf(R,Res,domain_subtraction1,WF). |
3649 | | domain_subtraction_wf(S,R,Res,WF) :- /* S <<| R */ |
3650 | | ok_to_try_restriction_explicit_set(S,R,Res), |
3651 | | domain_subtraction_explicit_set_wf(S,R,SR,WF),!, |
3652 | | equal_object_wf(SR,Res,domain_subtraction2,WF). |
3653 | | domain_subtraction_wf(S,R,Res,WF) :- /* S <<| R */ |
3654 | | expand_custom_set_to_list_wf(R,ER,_,domain_subtraction,WF), |
3655 | | try_expand_and_convert_to_avl_with_check(S,AS,keep_intervals(500),domain_subtraction), |
3656 | | % (ground(ER) -> domain_subtraction_acc(ER,AS,[],Res) ; |
3657 | ? | relation_restriction_wf(ER,AS,Res,pred_false,domain,WF) |
3658 | | % ) |
3659 | | . |
3660 | | |
3661 | | |
3662 | | |
3663 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:in_domain_subtraction_wf((int(2),int(3)),[int(33),int(1)],[(int(2),int(3)),(int(1),int(3))],WF),WF)). |
3664 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:in_domain_subtraction_wf((int(2),int(3)),[],[(int(2),int(3)),(int(1),int(3))],WF),WF)). |
3665 | | |
3666 | | :- block in_domain_subtraction_wf(-,-,-,?). |
3667 | | |
3668 | | in_domain_subtraction_wf(Pair,Set,Rel,WF) :- |
3669 | ? | (treat_arg_symbolically(Set) ; treat_arg_symbolically(Rel) |
3670 | | ; preference(convert_comprehension_sets_into_closures,true)), |
3671 | | !, |
3672 | | Rel \== [], % avoid setting up check_element_of for X then |
3673 | | % x |-> y : Set <<| Rel <=> x|->y : Rel & x/: Set |
3674 | | check_element_of_wf(Pair,Rel,WF), |
3675 | | Pair = (P1,_), |
3676 | | not_element_of_wf(P1,Set,WF). |
3677 | | in_domain_subtraction_wf(Pair,Set,Rel,WF) :- |
3678 | | domain_subtraction_wf(Set,Rel,Res,WF), |
3679 | | check_element_of_wf(Pair,Res,WF). |
3680 | | |
3681 | | |
3682 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_in_domain_subtraction_wf((int(2),int(3)),[int(33),int(2)],[(int(2),int(3)),(int(1),int(3))],WF),WF)). |
3683 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_in_domain_subtraction_wf((int(11),int(3)),[int(33),int(2)],[(int(2),int(3)),(int(1),int(3))],WF),WF)). |
3684 | | |
3685 | | :- block not_in_domain_subtraction_wf(-,-,-,?). |
3686 | | not_in_domain_subtraction_wf(Pair,Set,Rel,WF) :- |
3687 | | domain_subtraction_wf(Set,Rel,Res,WF), |
3688 | | not_element_of_wf(Pair,Res,WF). |
3689 | | |
3690 | | % similar to kernel_objects, but adds case for [_|_] |
3691 | | treat_arg_symbolically(X) :- var(X),!. |
3692 | | treat_arg_symbolically([H|T]) :- \+ ground(H) ; treat_arg_symbolically(T). |
3693 | | treat_arg_symbolically(global_set(_)). |
3694 | | treat_arg_symbolically(freetype(_)). |
3695 | | treat_arg_symbolically(closure(P,T,B)) :- \+ kernel_objects:small_interval(P,T,B). |
3696 | | |
3697 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:override_relation([(int(1),int(2))],[(int(1),int(3))],[(int(1),int(3))],WF),WF)). |
3698 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:override_relation([(int(1),int(2))],[(int(2),int(3))],[(int(1),int(2)),(int(2),int(3))],WF),WF)). |
3699 | | :- assert_must_succeed((bsets_clp:override_relation([(int(1),int(2)),(int(2),int(4))],[(int(1),int(3))],X,_WF), |
3700 | | kernel_objects:equal_object(X,[(int(2),int(4)),(int(1),int(3))]))). |
3701 | | :- assert_must_succeed((bsets_clp:override_relation([(int(1),int(2)),(int(2),int(4))],[(int(3),int(6))],X,_WF), |
3702 | | kernel_objects:equal_object(X,[(int(2),int(4)),(int(1),int(2)),(int(3),int(6))]))). |
3703 | | |
3704 | | :- block override_relation(-,-,?,?). % overwrite AST node |
3705 | | override_relation(R,S,Res,WF) :- R==[],!, equal_object_wf(S,Res,override_relation1,WF). |
3706 | | override_relation(R,S,Res,WF) :- S==[],!, equal_object_wf(R,Res,override_relation2,WF). |
3707 | | override_relation(R,S,Res,WF) :- Res==[],!, empty_set_wf(S,WF), empty_set_wf(R,WF). |
3708 | | override_relation(R,S,Res,WF) :- /* R <+ S */ |
3709 | | override_custom_explicit_set_wf(R,S,ORes,WF),!, |
3710 | | equal_object_wf(ORes,Res,override_relation3,WF). |
3711 | | override_relation(R,S,Res,WF) :- /* R <+ S */ |
3712 | | domain_wf(S,DS,WF), |
3713 | | domain_subtraction_wf(DS,R,DSR,WF), |
3714 | | union_wf(DSR,S,Res,WF). % in principle we could call disjoint_union_wf, but fails 1112, 1751 |
3715 | | |
3716 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:in_override_relation_wf((int(1),int(2)),[(int(1),int(2))],[(int(2),int(3))],WF),WF)). |
3717 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:in_override_relation_wf((int(2),int(3)),[(int(1),int(2))],[(int(2),int(3))],WF),WF)). |
3718 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:in_override_relation_wf((int(2),int(3)),[(int(1),int(2)),(int(2),int(4))],[(int(2),int(3))],WF),WF)). |
3719 | | :- assert_must_succeed(exhaustive_kernel_fail_check_wf(bsets_clp:in_override_relation_wf((int(2),int(4)),[(int(1),int(2)),(int(2),int(4))],[(int(2),int(3))],WF),WF)). |
3720 | | |
3721 | | :- block in_override_relation_wf(-,-,-,?). |
3722 | | in_override_relation_wf(Pair,Rel1,S,WF) :- S==[],!, % Pair: Rel1 <+ S |
3723 | | check_element_of_wf(Pair,Rel1,WF). |
3724 | | in_override_relation_wf(Pair,Rel1,S,WF) :- Rel1==[],!, |
3725 | | check_element_of_wf(Pair,S,WF). |
3726 | | in_override_relation_wf((X,Y),Rel1,S,WF) :- |
3727 | ? | (treat_arg_symbolically(S) ; treat_arg_symbolically(Rel1) |
3728 | | ; preference(convert_comprehension_sets_into_closures,true)), |
3729 | | !, |
3730 | | domain_wf(S,DS,WF), |
3731 | | membership_test_wf(DS,X,MemRes,WF), |
3732 | | in_override_aux(MemRes,X,Y,Rel1,S,WF). |
3733 | | in_override_relation_wf(Pair,Rel1,S,WF) :- |
3734 | | override_relation(Rel1,S,Res,WF), |
3735 | | check_element_of_wf(Pair,Res,WF). |
3736 | | |
3737 | | :- block in_override_aux(-,?,?,?,?,?). |
3738 | | in_override_aux(pred_true,X,Y,_R,S,WF) :- |
3739 | | check_element_of_wf((X,Y),S,WF). |
3740 | | in_override_aux(pred_false,X,Y,R,_S,WF) :- |
3741 | | check_element_of_wf((X,Y),R,WF). |
3742 | | |
3743 | | :- assert_must_succeed(exhaustive_kernel_fail_check_wf(bsets_clp:not_in_override_relation_wf((int(2),int(3)),[(int(1),int(2)),(int(2),int(4))],[(int(2),int(3))],WF),WF)). |
3744 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_in_override_relation_wf((int(2),int(4)),[(int(1),int(2)),(int(2),int(4))],[(int(2),int(3))],WF),WF)). |
3745 | | |
3746 | | :- block not_in_override_relation_wf(-,-,-,?). |
3747 | | not_in_override_relation_wf(Pair,Rel1,S,WF) :- S==[],!, % Pair: Rel1 <+ S |
3748 | | not_element_of_wf(Pair,Rel1,WF). |
3749 | | not_in_override_relation_wf(Pair,Rel1,S,WF) :- Rel1==[],!, |
3750 | | not_element_of_wf(Pair,S,WF). |
3751 | | not_in_override_relation_wf((X,Y),Rel1,S,WF) :- |
3752 | ? | (treat_arg_symbolically(S) ; treat_arg_symbolically(Rel1) |
3753 | | ; preference(convert_comprehension_sets_into_closures,true)), |
3754 | | !, |
3755 | | domain_wf(S,DS,WF), |
3756 | | membership_test_wf(DS,X,MemRes,WF), |
3757 | | not_in_override_aux(MemRes,X,Y,Rel1,S,WF). |
3758 | | not_in_override_relation_wf(Pair,Rel1,S,WF) :- |
3759 | | override_relation(Rel1,S,Res,WF), |
3760 | | not_element_of_wf(Pair,Res,WF). |
3761 | | |
3762 | | :- block not_in_override_aux(-,?,?,?,?,?). |
3763 | | not_in_override_aux(pred_true,X,Y,_R,S,WF) :- |
3764 | | not_element_of_wf((X,Y),S,WF). |
3765 | | not_in_override_aux(pred_false,X,Y,R,_S,WF) :- |
3766 | | not_element_of_wf((X,Y),R,WF). |
3767 | | |
3768 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:override([],int(1),int(3),[(int(1),int(3))],WF),WF)). |
3769 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:override([(int(1),int(2)),(int(2),int(6))],int(1),int(3),[(int(1),int(3)),(int(2),int(6))],WF),WF)). |
3770 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:override([(int(1),int(2)),(int(2),int(6))],int(2),int(3),[(int(1),int(2)),(int(2),int(3))],WF),WF)). |
3771 | | |
3772 | | % override for a single pair |
3773 | | :- block override(-,?,?,?,?), override(?,-,?,?,?), |
3774 | | override(?,?,-,?,?). % also wait on Y; try to generate avl if possible; can only be used in substitution anyway |
3775 | | /* R <+ {X |-> Y} as used by substitution R(X) := Y */ |
3776 | | override(R,X,Y,Res,WF) :- |
3777 | | override_pair_explicit_set(R,X,Y,ORes),!, |
3778 | | equal_object_wf(ORes,Res,override1,WF). |
3779 | | override(R,X,Y,Res,WF) :- |
3780 | | if(try_expand_custom_set_to_list(R,ER,_,override), |
3781 | | ( |
3782 | | override2(ER,X,Y,[(X,Y)],ORes,WF), |
3783 | ? | equal_object_wf(ORes,Res,override2,WF)), |
3784 | | ( %print_term_summary(exception(R)), % Virtual Timeout exception occured |
3785 | | override_relation(R,[(X,Y)],Res,WF) |
3786 | | )). |
3787 | | |
3788 | | :- block override2(-,?,?,?,?,?). |
3789 | | override2([],_X,_Y,Remainder,Res,WF) :- equal_object_optimized_wf(Remainder,Res,override2,WF). %equal_object(Remainder,Res). |
3790 | | override2([(V,W)|T],X,Y,Remainder,Res,WF) :- |
3791 | | equality_objects_wf(V,X,EqRes,WF), |
3792 | | override2c(EqRes,V,W,T,X,Y,Remainder,Res,WF). |
3793 | | |
3794 | | :- block override2c(-, ?,?,?, ?,?,?,?,?). |
3795 | | override2c(pred_true,_V,_W,T,X,Y,_Remainder,Res,WF) :- |
3796 | | equal_cons_wf(Res,(X,Y),T2,WF), |
3797 | | override2(T,X,Y,[],T2,WF). /* set remainder to [], we have already added (X,Y) */ |
3798 | | override2c(pred_false,V,W,T,X,Y,Remainder,Res,WF) :- |
3799 | | equal_cons_wf(Res,(V,W),T2,WF), |
3800 | | override2(T,X,Y,Remainder,T2,WF). |
3801 | | |
3802 | | |
3803 | | |
3804 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:image_wf([(int(1),int(2))],[int(1)],[int(2)],WF),WF)). |
3805 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:image_wf([(int(1),int(2)),(int(2),int(2)),(int(3),int(3))],[int(1),int(2)],[int(2)],WF),WF)). |
3806 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:image_wf([(int(1),int(2)),(int(2),int(2)),(int(1),int(3)),(int(4),int(4))],[int(1),int(2)],[int(2),int(3)],WF),WF)). |
3807 | | :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:image_wf([(int(1),int(2)),(int(2),int(2)),(int(1),int(3)),(int(4),int(4))],[int(2)],[int(2),int(3)],WF),WF)). |
3808 | | :- assert_must_succeed(bsets_clp:image_wf([(int(1),int(2))],[int(1)],[int(2)],_WF)). |
3809 | | :- assert_must_succeed(bsets_clp:image_wf([(int(1),int(2))],[int(2)],[],_WF)). |
3810 | | :- assert_must_succeed(bsets_clp:image_wf([(int(1),int(2))],[int(3)],[],_WF)). |
3811 | | :- assert_must_succeed((bsets_clp:image_wf([(int(1),int(2)),(int(1),int(3))], |
3812 | | [int(X)],R,_WF), X=1, kernel_objects:equal_object(R,[int(2),int(3)]))). |
3813 | | :- assert_must_succeed((bsets_clp:image_wf([([int(1),int(2)],int(6)), |
3814 | | ([int(1),int(2),int(3)],int(7)), |
3815 | | ([int(2),int(1)],int(8))], |
3816 | | [[int(X),int(1)]],R,_WF), X=2, |
3817 | | kernel_objects:equal_object(R,[int(6),int(8)]))). |
3818 | | :- assert_must_succeed(bsets_clp:image_wf([(int(1),int(2)),(int(2),int(2))],[int(1),int(2)],[int(2)],_WF)). |
3819 | | :- assert_must_fail(bsets_clp:image_wf([(int(1),int(2))],[int(1)],[int(1)],_WF)). |
3820 | | :- assert_must_fail(bsets_clp:image_wf([(int(1),int(2))],[int(1)],[],_WF)). |
3821 | | |
3822 | | |
3823 | | :- block image_wf(-,?,?,?). |
3824 | | image_wf(Rel,_,Res,WF) :- Rel==[],!,empty_set_wf(Res,WF). |
3825 | | image_wf(Rel,S,Res,WF) :- |
3826 | | image_for_id_closure(Rel,S,Img),!, % we don't require S to be known here |
3827 | | equal_object_wf(Img,Res,image_wf_id_closure,WF). |
3828 | | image_wf(Rel,S,Res,WF) :- |
3829 | | image_wf0(Rel,S,Res,WF). |
3830 | | |
3831 | | :- block image_wf0(?,-,?,?). |
3832 | | image_wf0(Rel,S,Res,WF) :- /* Res = Rel[S] */ |
3833 | | (S==[] -> empty_set_wf(Res,WF) |
3834 | | ; opt_push_wait_flag_call_stack_info(WF,b_operator_call(image,[Rel,S],unknown),WF2), |
3835 | | image1(Rel,S,Res,WF2) ). |
3836 | | |
3837 | | keep_symbolic(R) :- var(R),!,fail. |
3838 | | keep_symbolic(closure(_,_,_)) :- preferences:get_preference(convert_comprehension_sets_into_closures,true),!. |
3839 | | keep_symbolic(R) :- dont_expand_this_explicit_set(R). |
3840 | | |
3841 | | :- block image1(-,?,?,?). |
3842 | | image1(Rel,S,Res,WF) :- |
3843 | | image_for_explicit_set(Rel,S,Img,WF),!, |
3844 | | equal_object_wf(Img,Res,image1_1,WF), |
3845 | | quick_propagate_subset_range(Res,Rel,WF). |
3846 | | %image1(Rel,S,Res,WF) :- expand_custom_set_to_list(S,ES),!, image_of_set(ES,Rel,Res,WF). |
3847 | | image1(Rel,Set,Res,WF) :- |
3848 | | keep_symbolic(Rel), |
3849 | | (preferences:get_preference(convert_comprehension_sets_into_closures,true), % in this case keep_symbolic is always true |
3850 | | nonvar(Set),is_infinite_explicit_set(Set) % in this case we have to expand Rel below; what if Rel also infinite ?? --> TO DO : symbolic treatment |
3851 | | -> debug_println(9,infinite_for_image1(Set)), |
3852 | | fail |
3853 | | ; true), |
3854 | | ( dom_for_specific_closure(Rel,Domain,function(_),WF) |
3855 | | -> !, |
3856 | | expand_custom_set_to_list_wf(Set,ESet,_,image1,WF), % TO DO: what if keep_symbolic(Set) |
3857 | | image_for_inf_fun(ESet,Domain,Rel,[],Res,WF) |
3858 | | ; get_relation_types(Rel,DomType,RangeType),!, |
3859 | | image_symbolic(Set,Rel,DomType,RangeType,Res,WF) |
3860 | | ). |
3861 | | image1(Rel,S,Res,WF) :- |
3862 | | on_enumeration_warning(expand_custom_set_to_list_wf(Rel,Relation,_,image1_2,WF), R=failed), |
3863 | | % bad if Rel is a big closure ! image_for_list_relation(Relation,S,Res). |
3864 | | (R==failed -> write(failed),nl, |
3865 | | mnf_get_relation_types(Rel,DomType,RangeType),% must succeed, as Rel is a closure with types |
3866 | | image_symbolic(S,Rel,DomType,RangeType,Res,WF) % does not treat special case image_for_inf_fun |
3867 | | ; propagate_singleton_image(Relation,S,Res,WF), |
3868 | | % TO DO: we could propagate cardinality constraints about Relation,S and Res |
3869 | | % we could also try to infer all_different constraints in case card(S)=card(Res) and f is a function |
3870 | | image_for_list_relation(Relation,S,[],Res,WF) |
3871 | | ). |
3872 | | |
3873 | | image_symbolic(Set,Rel,DomType,RangeType,Res,WF) :- |
3874 | | expand_custom_set_to_list_wf(Set,ESet,_,image1_2,WF), |
3875 | | (is_symbolic_closure(Rel) |
3876 | | -> Symbolic=symbolic_try_expand, ground_value_check((Rel,ESet),GRel) % also wait for ESet to be ground so that we can catch enumeration warning exceptions, cf. test 2428 when theorem and foralls not expanded |
3877 | | ; Symbolic=expand, ground_value_check(Rel,GRel) |
3878 | | ), |
3879 | | when(nonvar(GRel), image_for_large_relation(ESet,Rel,Symbolic,DomType,RangeType,[],Res,WF)). |
3880 | | % Alternative: We could compute closure by calculating {yy|#(xx).(xx:Set & xx|->yy:Rel)} |
3881 | | % image_closure(Set,Rel,DomType,RangeType,Closure ), |
3882 | | |
3883 | | % propagate that f[{x}] = {r1,...,rk} => x|->ri : f (or {x}*{r1,...,rk} <: f); see test 1532 |
3884 | | propagate_singleton_image(R,S,Res,_) :- |
3885 | | (var(S) ; var(Res) ; nonvar(R), is_custom_explicit_set(R,psi)), !. |
3886 | | propagate_singleton_image(Relation,S,avl_set(Res),WF) :- |
3887 | | custom_explicit_sets:singleton_set(S,El), % we have the image by a singleton set {El} |
3888 | | expand_custom_set_to_list_wf(avl_set(Res),LR,_,prop_singleton,WF), |
3889 | | !, |
3890 | | l_check_element_of(LR, El, Relation, WF). % propagate x|->ri : f (will force membership) |
3891 | | propagate_singleton_image(_,_,_,_). |
3892 | | |
3893 | | l_check_element_of([],_,_,_). |
3894 | | l_check_element_of([H|T],El,Relation,WF) :- |
3895 | | check_element_of_wf((El,H),Relation,WF), |
3896 | | l_check_element_of(T,El,Relation,WF). |
3897 | | |
3898 | | % quick_propagate_in_range(Set, Relation,WF) : propagate that Set <: ran(Relation) |
3899 | | :- block quick_propagate_subset_range(-,?,?). |
3900 | | quick_propagate_subset_range(avl_set(_),_,_) :- !. |
3901 | | quick_propagate_subset_range([],_,_) :- !. |
3902 | | quick_propagate_subset_range([H|T],Relation,WF) :- is_custom_explicit_set(Relation,range_wf1), |
3903 | | range_of_explicit_set_wf(Relation,Range,WF), !, |
3904 | | quick_propagation_element_information(Range,H,WF,NewRange), |
3905 | | quick_propagate_subset_range2(T,NewRange,WF). |
3906 | | quick_propagate_subset_range(_,_,_). |
3907 | | |
3908 | | :- block quick_propagate_subset_range2(-,?,?). |
3909 | | quick_propagate_subset_range2([H|T],NewRange,WF) :- !, |
3910 | | quick_propagation_element_information(NewRange,H,WF,NewRange1), |
3911 | | quick_propagate_subset_range2(T,NewRange1,WF). |
3912 | | quick_propagate_subset_range2(_,_,_). |
3913 | | |
3914 | | :- use_module(btypechecker, [unify_types_strict/2]). |
3915 | | get_relation_types(Value,Domain,Range) :- |
3916 | | kernel_objects:infer_value_type(Value,VT), |
3917 | | unify_types_strict(VT,set(couple(Domain,Range))). % deal also with seq types |
3918 | | % VT=set(couple(Domain,Range)). |
3919 | | % a version that must not fail: |
3920 | | mnf_get_relation_types(Value,Domain,Range) :- |
3921 | | (get_relation_types(Value,Domain,Range) -> true |
3922 | | ; add_internal_error('Failed: ',get_relation_types(Value,Domain,Range)), |
3923 | | Domain=any, Range=any). |
3924 | | |
3925 | | :- block image_for_large_relation(-,?,?,?,?,?,?,?), image_for_large_relation(?,?,?,?,?,-,?,?). |
3926 | ? | image_for_large_relation([],_,_,_,_,Acc,Res,WF) :- equal_object_wf(Acc,Res,WF). |
3927 | | image_for_large_relation([XX|T],Rel,Symbolic,DomType,RangeType,Acc,Res,WF) :- |
3928 | | get_image_singleton_closure(XX,DomType,RangeType,Rel, Par,TPara,Body), |
3929 | | expand_closure_direct_if_possible(Symbolic,Par,TPara,Body,ImagesForXX,WF), |
3930 | | union_wf(Acc,ImagesForXX,NewAcc,WF), |
3931 | | (T == [] -> equal_object_wf(NewAcc,Res,WF) |
3932 | | ; image_for_large_relation(T,Rel,Symbolic,DomType,RangeType,NewAcc,Res,WF)). |
3933 | | |
3934 | | get_image_singleton_closure(XX,DomType,RangeType,Rel, [yy], [RangeType], Body) :- |
3935 | | Body = b(member(b(couple(b(value(XX),DomType,[]), |
3936 | | b(identifier(yy),RangeType,[])),couple(DomType,RangeType),[]), |
3937 | | b(value(Rel),set(couple(DomType,RangeType)),[])),pred,[]). |
3938 | | % TO DO: simplify above if we have Rel = closure(P,T,B); which we usually will |
3939 | | |
3940 | | expand_closure_direct_if_possible(symbolic_try_expand,Par,Types,Body,Result,WF) :- !, |
3941 | | catch_enumeration_warning_exceptions( |
3942 | | custom_explicit_sets:expand_normal_closure_direct(Par,Types,Body,Result,_Done,WF), |
3943 | | (mark_bexpr_as_symbolic(Body,SBody), |
3944 | | Result = closure(Par,Types,SBody) % TODO: we could set definitely_symbolic for next iteration |
3945 | | ), |
3946 | | false, |
3947 | | ignore(image_for_large_relation)). |
3948 | | expand_closure_direct_if_possible(definitely_symbolic,Par,Types,Body,Result,_WF) :- !, |
3949 | | mark_bexpr_as_symbolic(Body,SBody), |
3950 | | Result = closure(Par,Types,SBody). |
3951 | | expand_closure_direct_if_possible(_,Par,Types,Body,Result,WF) :- |
3952 | | % do not memoize this (many different values): |
3953 | | custom_explicit_sets:expand_normal_closure_direct(Par,Types,Body,Result,_Done,WF). |
3954 | | |
3955 | | |
3956 | | /* no longer used |
3957 | | % construct a closure for {yy|#(xx).(xx:Set & xx|->yy:Rel)} |
3958 | | image_closure(Set,Rel,DomType,RangeType,Closure ) :- custom_explicit_sets:singleton_set(Set,XX),!, |
3959 | | % do not set up existential quantifier if Set is singleton set |
3960 | | Closure = closure([yy],[RangeType],Body), |
3961 | | Body = b(member(b(couple(b(value(XX),DomType,[]), |
3962 | | b(identifier(yy),RangeType,[])),couple(DomType,RangeType),[]), |
3963 | | b(value(Rel),set(couple(DomType,RangeType)),[])),pred,[]). |
3964 | | image_closure(Set,Rel,DomType,RangeType,Closure ) :- |
3965 | | Closure = closure([yy],[RangeType],Body), |
3966 | | couple_member_pred(xx,DomType,yy,RangeType,Rel, Predxxyy), |
3967 | | Body = b(exists([b(identifier(xx),DomType,[])], |
3968 | | b(conjunct( |
3969 | | b(member(b(identifier(xx),DomType,[]),b(value(Set),set(DomType),[])),pred,[]), % TO DO : force evaluation ! |
3970 | | Predxxyy), |
3971 | | pred,[])),pred,[used_ids([yy])]). |
3972 | | */ |
3973 | | |
3974 | | % very similar to rel_compose_with_inf_fun, indeed f[S] = ran((id(S);f)) |
3975 | | :- block image_for_inf_fun(-,?,?,?,?,?). |
3976 | | image_for_inf_fun([],_Dom,_Rel2,Acc,Comp,WF) :- equal_object_wf(Acc,Comp,WF). |
3977 | | image_for_inf_fun([X|T],Dom,Fun,Acc,CompRes,WF) :- |
3978 | | membership_test_wf(Dom,X,MemRes,WF), |
3979 | | image_for_inf_fun_aux(MemRes,X,T,Dom,Fun,Acc,CompRes,WF). |
3980 | | |
3981 | | :- block image_for_inf_fun_aux(-,?,?, ?,?,?,?,?). |
3982 | | image_for_inf_fun_aux(pred_true,X,T,Dom,Fun,Acc,CompRes,WF) :- |
3983 | | apply_to(Fun,X,FX,WF), % TO DO: generalize to image so that we can apply it also to infinite relations ? |
3984 | | add_element_wf(FX,Acc,NewAcc,WF), % will block until Acc Known !! |
3985 | | % TO DO USE: equal_cons_wf(CompRes,FX,CT,WF) + accumulator !, |
3986 | | image_for_inf_fun(T,Dom,Fun,NewAcc,CompRes,WF). |
3987 | | image_for_inf_fun_aux(pred_false,_X,T,Dom,Fun,Acc,Comp,WF) :- |
3988 | | image_for_inf_fun(T,Dom,Fun,Acc,Comp,WF). |
3989 | | |
3990 | | |
3991 | | /* |
3992 | | :- block image_of_set(-,?,?,?,?), image_of_set(?,?,-,?,?). |
3993 | | image_of_set([],Rel,ImageSoFar,Res,WF) :- equal_object(ImageSoFar,Res). |
3994 | | image_of_set([H|T],Rel,ImageSoFar,Res,WF) :- |
3995 | | image_of_element(Rel,H,ImageSoFar,SF2,WF), |
3996 | | image_of_set(T,Rel,SF2,Res,WF). |
3997 | | |
3998 | | image_of_element([],_,Acc,Res,WF) :- equal_object(Acc,Res). |
3999 | | image_of_element([(A,B)|T],H,Acc,Res,WF) :- equality.... |
4000 | | image_of_element(avl_set(),H,Acc,Res,WF) :- .... |
4001 | | image_of_element(closure(),.... |
4002 | | */ |
4003 | | |
4004 | | % Computing the image of a relation which is stored as a list: traverse the relation |
4005 | | :- block image_for_list_relation(-,?,?,?,?). |
4006 | ? | image_for_list_relation([],_,_,Res,WF) :- empty_set_wf(Res,WF). |
4007 | | image_for_list_relation([(X,Y)|T],S,ImageSoFar,Res,WF) :- |
4008 | | ((T==[], definitely_not_empty(Res)) |
4009 | | -> MemRes=pred_true, % we need at least one more element for Res |
4010 | | check_element_of_wf(X,S,WF) |
4011 | | ; (Res==[],ImageSoFar==[]) -> MemRes=pred_false, not_element_of_wf(X,S,WF) % Result empty: X cannot be in S |
4012 | | ; membership_test_wf(S,X,MemRes,WF) |
4013 | | ), |
4014 | ? | image4(MemRes,Y,T,S,ImageSoFar,Res,WF). |
4015 | | |
4016 | | definitely_not_empty(Set) :- nonvar(Set), Set \== [], \+ functor(Set,closure,3). % Set \= closure(_,_,_). |
4017 | | |
4018 | | :- block image4(-, ?,?,?, ?,?,?). |
4019 | | image4(pred_true, Y,T,S, ImageSoFar,Res,WF) :- |
4020 | | (Res==[] |
4021 | | -> MemRes=pred_true, check_element_of_wf(Y,ImageSoFar,WF) |
4022 | | ; membership_test_wf(ImageSoFar,Y,MemRes,WF) |
4023 | | ), |
4024 | ? | image5(MemRes,Y,T,S,ImageSoFar,Res,WF). |
4025 | | image4(pred_false, _Y,T,S, ImageSoFar,Res,WF) :- |
4026 | ? | image_for_list_relation(T,S,ImageSoFar,Res,WF). |
4027 | | |
4028 | | :- block image5(-, ?,?,? ,?,?,?). |
4029 | | image5(pred_true,_Y,T,S,ImageSoFar,Res,WF) :- /* we have already added Y to the image */ |
4030 | | image_for_list_relation(T,S,ImageSoFar,Res,WF). |
4031 | | image5(pred_false,Y,T,S,ImageSoFar,Res,WF) :- |
4032 | | add_element_wf(Y,ImageSoFar,ImageSoFar2,WF), |
4033 | | kernel_objects:mark_as_non_free(Y,image), % Y has been added to image, no longer freely choosable |
4034 | | equal_cons_wf(Res,Y,Res2,WF), |
4035 | ? | image_for_list_relation(T,S,ImageSoFar2,Res2,WF). |
4036 | | |
4037 | | |
4038 | | |
4039 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:image_for_closure1_wf([(int(1),int(2)),(int(2),int(1)),(int(3),int(3))],[int(2)],[int(1),int(2)],WF),WF)). |
4040 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:image_for_closure1_wf([(int(1),int(2)),(int(2),int(1)),(int(3),int(3))],[],[],WF),WF)). |
4041 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:image_for_closure1_wf([(int(1),int(2)),(int(2),int(1)),(int(3),int(3))],[int(3)],[int(3)],WF),WF)). |
4042 | | % version for computing closure1(Rel)[S] |
4043 | | :- block image_for_closure1_wf(-,?,?,?),image_for_closure1_wf(?,-,?,?). |
4044 | | image_for_closure1_wf(Rel,S,Res,WF) :- (Rel==[] ; S==[]),!,empty_set_wf(Res,WF). |
4045 | | image_for_closure1_wf(Rel,Set,Res,WF) :- |
4046 | | try_expand_and_convert_to_avl_unless_large_wf(Set,ESet,WF), |
4047 | ? | image_for_closure1_wf_aux(Rel,ESet,Res,WF). |
4048 | | |
4049 | | :- use_module(library(avl),[avl_height/2]). |
4050 | | image_for_closure1_wf_aux(Rel,S,Res,WF) :- |
4051 | | ((nonvar(S),S=avl_set(_)) |
4052 | | -> closure1_for_explicit_set_from(Rel,S,Closure1Rel),!, |
4053 | | % if S is known: start from S (currently only deals with Rel=avl_set(_) |
4054 | | range_wf(Closure1Rel,Res,WF) |
4055 | | ; Rel=avl_set(AR), avl_height(AR,AR_Height), |
4056 | | ((set_smaller_than(S,4),AR_Height>4) |
4057 | | -> !, % TO DO: we could do the same for small S if Rel is large |
4058 | | when(ground(S), (expand_and_convert_to_avl_set(S,ES,image_for_closure1_wf_aux,'closure1(ARG)[?]') -> |
4059 | | closure1_for_explicit_set_from(Rel,avl_set(ES),Closure1Rel), |
4060 | | range_wf(Closure1Rel,Res,WF) |
4061 | | ; image_for_closure1_iterate(Rel,S,[],Res,WF,first_iteration(S)) |
4062 | | )) |
4063 | | ; % Don't do this if avl_height too large; then it is probably better to compute the image for S only |
4064 | | AR_Height < 13, % how big should we make this magic constant; or should we time-out ? 2^14=16384 |
4065 | | closure1_for_explicit_set(Rel,Closure1Rel),!, % we can compute it effiently; don't use code below |
4066 | | image_wf(Closure1Rel,S,Res,WF) |
4067 | | ) |
4068 | | ). |
4069 | | image_for_closure1_wf_aux(Rel,S,Res,WF) :- |
4070 | ? | propagate_result_in_range(Rel,S,Res,WF), |
4071 | ? | image_for_closure1_iterate(Rel,S,[],Res,WF,first_iteration(S)). |
4072 | | |
4073 | | % no need to treat avl_sets; already covered as special case above |
4074 | | set_smaller_than([],_). |
4075 | | set_smaller_than([_|T],N) :- N>1, nonvar(T), N1 is N-1, set_smaller_than(T,N1). |
4076 | | |
4077 | | image_for_closure1_iterate(Rel,S,Acc,Res,WF,FIRST) :- |
4078 | | image_wf0(Rel,S,Res1,WF), |
4079 | | ground_value_check(Res1,RV), |
4080 | ? | image_for_closure1_check_fix(RV,Rel,Acc,Res1,Res,WF,FIRST). |
4081 | | |
4082 | | :- block image_for_closure1_check_fix(-,?,?,?,?,?,?). |
4083 | | image_for_closure1_check_fix(_,Rel,Acc,Res1,Res,WF,FIRST) :- |
4084 | | %try_expand_and_convert_to_avl_unless_large_wf(Res1,ERes1,WF), |
4085 | | difference_set(Res1,Acc,New), |
4086 | | try_expand_and_convert_to_avl(New,ENew), % we compute difference_set below; we most definitely will need an explicit finite representation |
4087 | | (not_empty_set_wf(ENew,WF), |
4088 | | union(ENew,Acc,Acc1), % Note: we do not call union_wf - should we do this |
4089 | | % upon first iteration remove also S from New -> New2 and pass New2 to image_for_closure1_iterate |
4090 | | % TO DO: investigate whether this also makes sense for further iterations; always remove S |
4091 | | (FIRST=first_iteration(S) -> difference_set(ENew,S,New2) ; New2=ENew), |
4092 | ? | image_for_closure1_iterate(Rel,New2,Acc1,Res,WF,not_first) |
4093 | | ; |
4094 | ? | empty_set_wf(ENew,WF),equal_object_optimized_wf(Acc,Res,image_for_closure1_check_fix,WF)). |
4095 | | |
4096 | | % propagate information that if closure1(Rel)[.] = Res => Res <: range(Rel) |
4097 | | % x: 1..n --> 1..n & closure1(x)[{1}] = {} & n=100 |
4098 | | :- block propagate_result_in_range(?,?,-,?). |
4099 | | propagate_result_in_range(Rel,_S,_Res,_WF) :- |
4100 | | ground_value(Rel),!. % no propagation required |
4101 | | propagate_result_in_range(Rel,S,[],WF) :- !, |
4102 | | domain_wf(Rel,Domain,WF), |
4103 | | not_subset_of_wf(S,Domain,WF). |
4104 | | propagate_result_in_range(Rel,_,Res,WF) :- |
4105 | | range_wf(Rel,Range,WF), |
4106 | ? | check_subset_of_wf(Res,Range,WF). |
4107 | | |
4108 | | :- use_module(probsrc(avl_tools),[avl_height_less_than/2]). |
4109 | | |
4110 | | % version for computing iterate(K,Rel)[S] |
4111 | | % iteration |
4112 | | :- block image_for_iterate_wf(?,-,?,?,?,?), image_for_iterate_wf(?,?,-,?,?,?). |
4113 | | image_for_iterate_wf(_Rel,_K,S,Res,_,WF) :- S==[],!,empty_set_wf(Res,WF). |
4114 | | image_for_iterate_wf(Rel,int(K),S,Res,Type,WF) :- |
4115 | | image_for_iterate_k(K,Rel,S,Res,Type,WF). |
4116 | | |
4117 | | :- block image_for_iterate_k(-,?,?,?,?,?). |
4118 | | image_for_iterate_k(K,Rel,S,Res,Type,WF) :- |
4119 | | nonvar(Rel), |
4120 | | Rel=avl_set(AVL), |
4121 | | (var(S) -> avl_height_less_than(AVL,11) ; avl_height_less_than(AVL,3)), |
4122 | | !, % compute the iteration once; possibly better constraint propagation and performance if S enumerated |
4123 | | % e.g. x:{1,10,20} & iterate({1|->10,20|->1,10|->20},2)(x) = 20 |
4124 | | rel_iterate_wf(Rel,int(K),RelIterated,Type,WF), |
4125 | | image_wf(RelIterated,S,Res,WF). |
4126 | | image_for_iterate_k(K,Rel,S,Res,_,WF) :- |
4127 | | image_for_iterate_k_loop(K,Rel,S,Res,WF). |
4128 | | |
4129 | | :- block image_for_iterate_k_loop(?,?,-,?,?). |
4130 | | image_for_iterate_k_loop(0,_Rel,Acc,Result,WF) :- !, |
4131 | | equal_object_optimized_wf(Acc,Result,image_for_iterate_k,WF). |
4132 | | image_for_iterate_k_loop(K,Rel,Acc,Result,WF) :- |
4133 | | image_wf0(Rel,Acc,Acc1,WF), % we could try and detect fix point if K> some limit or time for iteration is measurable |
4134 | | if((K>10, K mod 10 =:= 0, % check for fixpoint every 10 iterations |
4135 | | nonvar(Acc1), Acc1=avl_set(_), quick_custom_explicit_set_approximate_size(Acc1,Size1), |
4136 | | quick_custom_explicit_set_approximate_size(Acc,Size0), |
4137 | | Size0=Size1, % only check for equality if approximate sizes match |
4138 | | equal_explicit_sets_wf(Acc,Acc1,WF)), |
4139 | | K1=0, % fixpoint found, no need to continue iterating |
4140 | | K1 is K-1), |
4141 | | image_for_iterate_k_loop(K1,Rel,Acc1,Result,WF). |
4142 | | |
4143 | | special_operator_for_image(b(Rel,Type,_),Kind,Args) :- special_image_aux(Rel,Type,Kind,Args). |
4144 | | special_image_aux(closure(Rel),_,closure,[Rel]). % we have closure1(Rel)[Set] -> avoid computing full closure |
4145 | | special_image_aux(iteration(Rel,K),Type,iteration(Type),[Rel,K]). |
4146 | | % TODO: reflexive closure, id_closure (this will probably be more natural as special case for a value) |
4147 | | |
4148 | | image_for_special_operator(closure,[Rel],S,Res,WF) :- image_for_closure1_wf(Rel,S,Res,WF). |
4149 | | image_for_special_operator(iteration(Type),[Rel,K],S,Res,WF) :- |
4150 | | image_for_iterate_wf(Rel,K,S,Res,Type,WF). |
4151 | | |
4152 | | :- use_module(kernel_objects,[singleton_set_element/4]). |
4153 | | apply_fun_for_special_operator(Kind,EArgs,FunArg,Res,WF,Span) :- |
4154 | | InitialSet = [FunArg], % TODO: try convert to AVL, note: closure1 not really useful in fun. application context |
4155 | | image_for_special_operator(Kind,EArgs,InitialSet,SetRes,WF), |
4156 | | singleton_set_element(SetRes,Res,Span,WF). |
4157 | | |
4158 | | % iterate(%x.(x:NATURAL|x+2),2000)(20) much faster this way, 15 ms vs 4 seconds |
4159 | | % iterate(%x.(x:NATURAL|x+2),2000)[{20}]: ditto |
4160 | | |
4161 | | |
4162 | | % ----------------------------------- |
4163 | | |
4164 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:apply_to([(int(2),int(22))],int(2),int(22),WF),WF)). |
4165 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:apply_to([(int(1),int(22)),(int(3),int(33)),(int(4),int(44))],int(3),int(33),WF),WF)). % used to be wfdet (see in_domain_wf above) |
4166 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:apply_to([(int(1),[int(22)]),(int(3),[int(32),int(33)]),(int(4),[int(44)])],int(3),[int(32),int(33)],WF),WF)). % used to be wfdet (see in_domain_wf above) |
4167 | | :- assert_must_succeed(bsets_clp:apply_to([(int(1),int(2))],int(1),int(2),_WF)). |
4168 | | :- assert_must_succeed((bsets_clp:apply_to(F,int(3),int(2),_WF),F=[(int(3),int(2)),(int(2),int(1))])). |
4169 | | :- assert_must_succeed((bsets_clp:apply_to(F,X,int(1),_WF),F=[(int(3),int(2)),(int(2),int(1))],X=int(2))). |
4170 | | :- assert_must_succeed((bsets_clp:apply_to(F,int(3),_,_WF),F=[(int(3),[int(2),int(3)]),(int(2),[])])). |
4171 | | |
4172 | | :- assert_must_fail(bsets_clp:apply_to([(int(1),int(2)),(int(1),int(3))],int(1),int(3),_WF)). |
4173 | | /* input not a function */ |
4174 | | apply_to(R,X,Y,WF) :- apply_to(R,X,Y,unknown,unknown,WF). |
4175 | ? | apply_to(R,X,Y,Span,WF) :- apply_to(R,X,Y,unknown,Span,WF). |
4176 | | |
4177 | | % comment in to perform profiling at function call level; can lead to big slowdowns |
4178 | | %:- load_files(library(system), [when(compile_time), imports([environ/2])]). |
4179 | | %:- use_module(source_profiler,[opt_add_source_location_hits/2]). |
4180 | | %apply_to(_R,_X,_Y,_FunctionType,Span,_WF) :- opt_add_source_location_hits(Span,1),fail. |
4181 | | |
4182 | | :- block apply_to(-,-,-,?,?,?). |
4183 | | apply_to(R,X,Y,_FunctionType,Span,WF) :- |
4184 | | % we could check if WD condition discharged in Span |
4185 | | (\+ preferences:preference(find_abort_values,false) ; preference(data_validation_mode,true)), |
4186 | | !, |
4187 | | apply_to_var_block_abort(R,X,Y,R,Span,WF). % we have to know R before we can do anything |
4188 | | apply_to(R,X,Y,FunctionType,Span,WF) :- |
4189 | | (var(R),var(X) -> force_in_domain_wf(X,R,WF) ; true), |
4190 | ? | apply_to1(R,X,Y,R,FunctionType,Span,WF). |
4191 | | |
4192 | | |
4193 | | |
4194 | | :- use_module(preferences,[preference/2]). |
4195 | | :- use_module(clpfd_tables,[can_translate_function_to_element_constraint/2,check_apply_with_element_constraint/5]). |
4196 | | :- block apply_to1(-,-,?,?,?,?,?). |
4197 | | apply_to1(R,X,Y,InitialRel,FunctionType,Span,WF) :- |
4198 | | (var(R) -> apply_to_var(R,X,Y,InitialRel,Span,WF) |
4199 | | ; R\=[], can_translate_function_to_element_constraint(R,FunctionType) -> |
4200 | | check_apply_with_element_constraint(R,X,Y,FunctionType,WF) |
4201 | ? | ; apply_to_nonvar(R,X,Y,InitialRel,Span,WF), |
4202 | | propagate_range_membership(R,Y) |
4203 | | ). |
4204 | | :- block apply_to2(-,-,?,?,?,?). |
4205 | | apply_to2(R,X,Y,InitialRel,Span,WF) :- |
4206 | | (var(R) |
4207 | | -> apply_to_var(R,X,Y,InitialRel,Span,WF) |
4208 | ? | ; apply_to_nonvar(R,X,Y,InitialRel,Span,WF) |
4209 | | ). |
4210 | | |
4211 | | :- use_module(clpfd_lists,[get_finite_fdset_information/2,combine_fdset_information/3, |
4212 | | assert_fdset_information/2,get_fdset_information/2]). |
4213 | | % tested in test 1478; initially slows down NQueens |
4214 | | %:- block propagate_range_membership(-,?). % not necessary |
4215 | | propagate_range_membership([(_,RanEl)|T],X) :- nonvar(RanEl), |
4216 | | preferences:preference(use_clpfd_solver,true), |
4217 | | preferences:preference(find_abort_values,false), |
4218 | | get_finite_fdset_information(RanEl,Info), % TO DO: try and detect if we can apply element/3 from clpfd |
4219 | | \+ ground(X), |
4220 | | get_fdset_information(X,InfoX), |
4221 | | Info \= InfoX, % avoids NQueens slowdown; TO DO: check if more precise than InfoX; otherwise no use in collecting info |
4222 | | !, |
4223 | | propagate_range_membership(T,Info,X). |
4224 | | propagate_range_membership(_,_). |
4225 | | :- block propagate_range_membership(-,?,?). |
4226 | | propagate_range_membership([],Info,El) :- !, |
4227 | | % note: the information for the first few elements might have become more precise; TO DO: wait until list known and then propagate ?+ keep on propagating ?? |
4228 | | assert_fdset_information(Info,El). |
4229 | | propagate_range_membership([(_,RanEl)|T],Acc,X) :- |
4230 | | nonvar(RanEl), % otherwise we have no info: we may just as well stop |
4231 | | get_finite_fdset_information(RanEl,RInfo), |
4232 | | combine_fdset_information(Acc,RInfo,NewAcc), |
4233 | | NewAcc \= no_fdset_info, |
4234 | | !, |
4235 | | propagate_range_membership(T,NewAcc,X). |
4236 | | propagate_range_membership(_,_,_). |
4237 | | |
4238 | | |
4239 | | apply_to_var(R,X,Y,InitialRel,Span,WF) :- |
4240 | | mark_var_set_as_non_empty(R), |
4241 | | get_wait_flag(1.0,apply_to_var,WF,WF1), % see tests 1393, 1562?? |
4242 | | % was: get_wait_flag0(WF,WF1), but see test 1706 (in conjunction for improvement for test 2033) |
4243 | | when(((nonvar(WF1),ground(X));nonvar(R)), % only instantiate R when X sufficiently instantiated (TO DO: maybe use some for of equality_objects with existing relation R set up so far ??) |
4244 | | (var(R) -> |
4245 | | R=[(X,Y)|Tail], |
4246 | | optional_functionality_check(Tail,X,WF) |
4247 | | ; apply_to_nonvar(R,X,Y,InitialRel,Span,WF))). |
4248 | | |
4249 | | :- block apply_to_var_block_abort(-,?,?,?,?,?). |
4250 | | apply_to_var_block_abort(R,X,Y,InitialRel,Span,WF) :- |
4251 | | apply_to_nonvar(R,X,Y,InitialRel,Span,WF). |
4252 | | |
4253 | | optional_functionality_check(Tail,X,WF) :- |
4254 | | preferences:preference(disprover_mode,true),!, |
4255 | | not_in_domain_wf(X,Tail,WF). % we assert that R is a function ; when disproving we can assume well-definedness |
4256 | | % Note: this can cut down the search space ; see e.g. test 1230 (but e.g. it will not find a problem with test 1169, RULE_r967_1) |
4257 | | optional_functionality_check(_,_X,_WF). % TO DO: maybe lazily check if we have other elements with X as first arg if find_abort_values is true |
4258 | | |
4259 | | |
4260 | | :- use_module(closures,[is_recursive_closure/3]). |
4261 | | :- use_module(memoization,[is_memoization_closure/4,apply_to_memoize/8]). |
4262 | | :- load_files(library(system), [when(compile_time), imports([environ/2])]). |
4263 | | :- if(\+ environ(no_wd_checking,true)). |
4264 | | apply_to_nonvar([],X,_Y,InitialRel,Span,WF) :- |
4265 | | \+ preferences:preference(find_abort_values,false), |
4266 | | add_wd_error_span('function applied outside of domain (#2): ', '@fun'(X,InitialRel),Span,WF). |
4267 | | :- endif. |
4268 | | apply_to_nonvar([(X2,Y2)|T],X,Y,InitialRel,Span,WF) :- |
4269 | | equality_objects_wf(X2,X,EqRes,WF), |
4270 | | % this check on Y2 below is important if both Y and Y2 are instantiated but X,X2 not yet |
4271 | | % example: aload_R07_cbc.mch (Savary) or cbc_sequence check for R08_ByteArray for aload_R07 event (test 1349) |
4272 | | % however: slows down test 583 ! |
4273 | | (var(EqRes) -> equality_objects_wf(Y2,Y,EqResY,WF), |
4274 | | prop_apply_eqxy(EqResY,EqRes) % propagate: if Y/=Y2 => X/=X2 |
4275 | | ; EqResY=not_called), |
4276 | ? | apply_to4(EqRes,EqResY,Y2,T,X,Y,InitialRel,Span,WF). |
4277 | | apply_to_nonvar(avl_set(A),X,Y,_InitialRel,Span,WF) :- |
4278 | | apply_to_avl_set(A,X,Y,Span,WF). |
4279 | | apply_to_nonvar(closure(P,T,B),X,Y,_InitialRel,Span,WF) :- |
4280 | | %is_custom_explicit_set(Closure,apply), % should also work for avl_set,... |
4281 | | (is_memoization_closure(P,T,B,MemoID) |
4282 | | % Function application with memoization; currently enabled by add /*@desc memo */ pragma to abstract constant |
4283 | | -> apply_to_memoize(MemoID,P,T,B,X,Y,Span,WF) |
4284 | | ; is_recursive_closure(P,T,B) % TO DO: maybe we should do the same for functions marked as memoize symbolic/uni-directional/computed ? (although we have new rule for check_element_of_function_closure which makes this redundant ??) |
4285 | | -> % print_term_summary(apply_recursive_closure(X,P,T,B)), |
4286 | | %hit_profiler:add_profile_hit(rec_apply_closure_to_nonvar(X,Y,P,T,B,Span,WF)), |
4287 | | ground_value_check(X,XV), block_apply_closure_to_nonvar_groundx(XV,X,Y,P,T,B,Span,WF) |
4288 | | ; %hit_profiler:add_profile_hit(apply_closure_to_nonvar(X,Y,P,T,B,Span,WF)), |
4289 | | apply_closure_to_nonvar(X,Y,P,T,B,Span,WF)). |
4290 | | |
4291 | | |
4292 | | :- block block_apply_closure_to_nonvar_groundx(-,?,?, ?,?,?, ?,?). |
4293 | | block_apply_closure_to_nonvar_groundx(_,X,Y, P,T,B, Span,WF) :- apply_closure_to_nonvar_groundx(X,Y,P,T,B,Span,WF). |
4294 | | |
4295 | | apply_closure_to_nonvar_groundx(X,Y,P,T,B,Span,WF) :- |
4296 | | kernel_tools:ground_bexpr(B), |
4297 | | !, % then if the element of function succeeds there is no need to check WD |
4298 | | if(check_element_of_function_closure(X,Y,P,T,B,WF), |
4299 | | true, % No need to check for well-definedness; no pending choice points |
4300 | | apply_closure_to_nonvar_wd_check(X,P,T,B,Span,WF) % here we need to check; it could be that the result Y was instantiated |
4301 | | ). |
4302 | | apply_closure_to_nonvar_groundx(X,Y,P,T,B,Span,WF) :- |
4303 | | apply_closure_to_nonvar(X,Y,P,T,B,Span,WF). |
4304 | | |
4305 | | % if we first check preferences:preference(find_abort_values,false) to avoid a choice |
4306 | | % point, we get a big slow-down on Alstom models; e.g., vesg_Mar12 |
4307 | | % WARNING: This choice point can be set up in WF0 ! |
4308 | | apply_closure_to_nonvar(X,Y,P,T,B,_,WF) :- |
4309 | | (preferences:preference(find_abort_values,true) -> true ; !), % slow down ???! |
4310 | | check_element_of_function_closure(X,Y,P,T,B,WF) . |
4311 | | apply_closure_to_nonvar(X,_,P,T,B,Span,WF) :- % removing this clause doubles runtime of COMPUTE_GRADIENT_CHANGE |
4312 | | apply_closure_to_nonvar_wd_check(X,P,T,B,Span,WF). |
4313 | | |
4314 | | apply_closure_to_nonvar_wd_check(X,P,T,B,Span,WF) :- |
4315 | | \+ preferences:preference(find_abort_values,false), |
4316 | | not_in_domain_wf(X,closure(P,T,B),WF), |
4317 | | when((ground(X),ground(closure(P,T,B))), |
4318 | | add_wd_error_span('function applied outside of domain (#3): ', '@fun'(X,closure(P,T,B)),Span,WF)). |
4319 | | |
4320 | | |
4321 | | % propagate equality_objects between range and domain elements for function application: |
4322 | | :- block prop_apply_eqxy(-,-). |
4323 | | prop_apply_eqxy(Eqy,Eqx) :- var(Eqy),!, (Eqx = pred_true -> Eqy = pred_true ; true). |
4324 | | prop_apply_eqxy(pred_false,pred_false). |
4325 | | prop_apply_eqxy(pred_true,_). |
4326 | | |
4327 | | :- block apply_to4(-,?,?, -,?,?,?,?,?). |
4328 | | apply_to4(EqResX,EqResY,Y2, Tail,X,Y,InitialRel,Span,WF) :- |
4329 | | var(EqResX),!, % Tail bound |
4330 | | (Tail == [] |
4331 | | -> (preferences:preference(find_abort_values,false) |
4332 | | -> EqResX = pred_true, |
4333 | | apply_to4(EqResX,EqResY,Y2, Tail,X,Y,InitialRel,Span,WF) |
4334 | | ; apply_to4_block(EqResX,EqResY,Y2, Tail,X,Y,InitialRel,Span,WF) |
4335 | | ) |
4336 | | ; Tail = avl_set(_) -> apply_to4_block(EqResX,EqResY,Y2, Tail,X,Y,InitialRel,Span,WF) % TO DO: improve ! (e.g., expand to list if small or check if X can be in domain,...) |
4337 | | ; Tail = closure(_,_,_) -> apply_to4_block(EqResX,EqResY,Y2, Tail,X,Y,InitialRel,Span,WF) |
4338 | | ; Tail \= [_|_] -> add_internal_error('Illegal Tail: ',apply_to4(EqResX,EqResY,Y2, Tail,X,Y,InitialRel,Span,WF)),fail |
4339 | | ; Tail = [(X3,Y3)|T3], % setup equality check with X3, purpose: detect, e.g., when no other element in tail can match we can force EqResX to pred_true |
4340 | ? | apply_to4_call5(EqResX,EqResY,Y2, Tail,X,Y,InitialRel,Span,WF, X3,Y3,T3) |
4341 | | ). |
4342 | | apply_to4(pred_true,EqResY,Y2, Tail,X,Y,_InitialRel,_,WF) :- |
4343 | ? | (EqResY==not_called -> equal_object_wf(Y2,Y,apply_to4,WF) ; EqResY = pred_true), |
4344 | | optional_functionality_check(Tail,X,WF). |
4345 | ? | apply_to4(pred_false,_EqResY,_Y2,T,X,Y,InitialRel,Span,WF) :- apply_to2(T,X,Y,InitialRel,Span,WF). |
4346 | | |
4347 | | % we delay setting up equality_objects until X3 is at least partially known, see test 1715 Alstom_essai2_boucle1 |
4348 | | % TO DO: we could check if X3==X above |
4349 | | :- block apply_to4_call5(-,?,?, ?,?,?,?,?,?, -,?,?). |
4350 | | apply_to4_call5(EqResX,EqResY,Y2, Tail,X,Y,InitialRel,Span,WF, _X3,_Y3,_T3) :- nonvar(EqResX),!, |
4351 | | apply_to4(EqResX,EqResY,Y2,Tail,X,Y,InitialRel,Span,WF). |
4352 | | apply_to4_call5(EqResX,EqResY,Y2, _Tail,X,Y,InitialRel,Span,WF, X3,Y3,T3) :- % X3 must now be bound |
4353 | | equality_objects_wf(X3,X,EqRes3,WF), |
4354 | ? | apply_to5(EqResX,EqResY,EqRes3, Y2,X3,Y3,T3, X,Y, InitialRel,Span,WF). |
4355 | | |
4356 | | % version which wait suntil first argument known |
4357 | | :- block apply_to4_block(-,?,?, ?,?,?,?,?,?). |
4358 | | apply_to4_block(EqResX,EqResY,Y2, Tail,X,Y,InitialRel,Span,WF) :- |
4359 | | apply_to4(EqResX,EqResY,Y2, Tail,X,Y,InitialRel,Span,WF). |
4360 | | |
4361 | | |
4362 | | % apply_to5: implements a watched-literal style treatment of function application |
4363 | | % we watch whether X unifies with two elements of the function, if only one element left we can force equality |
4364 | | % TEST: |
4365 | | % f : 11..23 +-> 1..10 & f = {a|->2, b|->3, c|->4} & card({a,b,c})=3 & f(x)=r & a>b & b>c & x>b |
4366 | | :- block apply_to5(-,?,-, ?,?,?,?, ?,?, ?,?,?),apply_to5(-,?,?, ?,?,?,-, ?,?, ?,?,?). |
4367 | | apply_to5(EqRes,EqResY,EqRes3, Y2,_X3,Y3,T3, X,Y, InitialRel,Span,WF) :- |
4368 | | var(EqRes),!, |
4369 | | % EqRes3 and T3 must be known; TO DO: improve predicate so that we have to wait on T3 only when EqRes3=pred_false |
4370 | | (EqRes3 = pred_false -> % we cannot match next element, move tail one forward |
4371 | | (T3 = [] -> EqRes=pred_true ; true), |
4372 | | apply_to4(EqRes,EqResY,Y2,T3,X,Y,InitialRel,Span,WF) |
4373 | | ; /* EqRes3 = pred_true */ |
4374 | | % we match the next entry in the list; discard Y2 and jump to (X3,Y3) and return as solution |
4375 | ? | equal_object_wf(Y3,Y,apply_to6,WF), optional_functionality_check(T3,X,WF), |
4376 | | % TO DO: we could also do equality_objects if necessary between Y and Y3, as in apply_to4 for Y and Y2 |
4377 | | opt_force_false(EqRes) |
4378 | | ). |
4379 | | apply_to5(pred_true,EqResY,EqRes3, Y2,X3,Y3,T3, X,Y, _InitialRel,_Span,WF) :- |
4380 | | (EqResY==not_called -> equal_object_wf(Y2,Y,apply_to5,WF) ; EqResY = pred_true), |
4381 | | opt_force_false(EqRes3), |
4382 | | optional_functionality_check([(X3,Y3)|T3],X,WF). |
4383 | | apply_to5(pred_false,_EqResY,EqRes3, _Y2,_X3,Y3,T3, X,Y, InitialRel,Span,WF) :- |
4384 | | (var(EqRes3) -> % it can be that EqRes3 is about to be triggered |
4385 | | equality_objects_wf(Y3,Y,EqResY3,WF), |
4386 | | prop_apply_eqxy(EqResY3,EqRes3) % propagate: if Y/=Y3 => X/=X3 |
4387 | | ; EqResY3=not_called), |
4388 | | apply_to4(EqRes3,EqResY3,Y3, T3,X,Y,InitialRel,Span,WF). |
4389 | | |
4390 | | opt_force_false(EqRes) :- |
4391 | | (preference(find_abort_values,false) -> EqRes=pred_false |
4392 | | ; true). % TO DO: if EqRes becomes pred_true: raise abort_error as the relation was not a function |
4393 | | |
4394 | | |
4395 | | |
4396 | | /********************************************/ |
4397 | | /* surjection_relation(R,Domain,Range) */ |
4398 | | /* R : Domain <->> Range */ |
4399 | | /********************************************/ |
4400 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:surjection_relation_wf([(int(1),int(6)),(int(2),int(7)),(int(1),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)). % used to be wfdet (see in_domain_wf above) |
4401 | | :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:surjection_relation_wf([(int(1),int(6)),(int(2),int(6))],[int(1),int(2)],[int(6),int(7)],WF),WF)). |
4402 | | |
4403 | | surjection_relation_wf(R,Domain,Range,WF) :- |
4404 | | is_surjective(R,Range,WF), |
4405 | | % TODO: is not optimal since ran(R)<:Range is already implied by is_surjective and |
4406 | | % checked a second time by relation_over_wf/4 |
4407 | ? | relation_over_wf(R,Domain,Range,WF). |
4408 | | |
4409 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_surjection_relation_wf([(int(1),int(6)),(int(2),int(6))],[int(1),int(2)],[int(6),int(7)],WF),WF)). |
4410 | | |
4411 | | not_surjection_relation_wf(R,Domain,Range,WF) :- |
4412 | | expand_custom_set_to_list_wf(R,ER,Done,not_surjection_relation_wf,WF), |
4413 | | not_tot_surj_rel(ER,Done,[],Domain,Range,Range,WF). |
4414 | | |
4415 | | /*********************************************/ |
4416 | | /* total_surjection_relation(R,Domain,Range) */ |
4417 | | /* R : Domain <<->> Range */ |
4418 | | /*********************************************/ |
4419 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:total_surjection_relation_wf([(int(1),int(6)),(int(2),int(7)),(int(1),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)). |
4420 | | :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:total_surjection_relation_wf([(int(1),int(6)),(int(1),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)). |
4421 | | |
4422 | | |
4423 | | :- assert_must_succeed((findall(R,bsets_clp:total_surjection_relation(R,[int(1)],[int(11),int(12)]),L), |
4424 | | lists:maplist(sort,L,SL), sort(SL,SSL), % added May15th due to change in domain_wf (bsets_clp:propagate_result_to_input); TO DO: see if we can go back to just one solution |
4425 | | length(SSL,1))). |
4426 | | %:- assert_must_succeed((findall(R,bsets_clp:total_surjection_relation(R,[int(1),int(2)],[int(11),int(12)]),L), length(L,7))). |
4427 | | % the new domain predicate also instantiates from result; meaning that duplicate solutions are now generated |
4428 | | :- assert_must_succeed((findall(SR,(bsets_clp:total_surjection_relation(R,[int(1),int(2)],[int(11),int(12)]),sort(R,SR)),L), sort(L,SL),length(SL,7))). |
4429 | | :- assert_must_succeed((findall(R,bsets_clp:total_surjection_relation(R,[int(1),int(2)],[int(11)]),L), |
4430 | | length(L,1))). |
4431 | | |
4432 | | total_surjection_relation(R,Domain,Range) :- init_wait_flags(WF,[total_surjection_relation]), |
4433 | ? | total_surjection_relation_wf(R,Domain,Range,WF), ground_wait_flags(WF). |
4434 | | |
4435 | | total_surjection_relation_wf(R,Domain,Range,WF) :- |
4436 | ? | relation_over_wf(R,Domain,Range,WF), |
4437 | | check_relation_is_total(R,Domain,WF), % calls domain which now instantiates R if Domain known |
4438 | | check_relation_is_surjective(R,Range,WF). |
4439 | | |
4440 | | |
4441 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_total_surjection_relation_wf([(int(1),int(6)),(int(1),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)). |
4442 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_total_surjection_relation_wf([(int(1),int(6)),(int(2),int(6))],[int(1),int(2)],[int(7),int(6)],WF),WF)). |
4443 | | :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:not_total_surjection_relation_wf([(int(1),int(6)),(int(2),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)). |
4444 | | |
4445 | | not_total_surjection_relation_wf(R,Domain,Range,WF) :- |
4446 | | expand_custom_set_to_list_wf(R,ER,Done,not_total_surjection_relation_wf,WF), |
4447 | ? | not_tot_surj_rel(ER,Done,Domain,Domain,Range,Range,WF). |
4448 | | |
4449 | | |
4450 | | /********************************************/ |
4451 | | /* partial_surjection(R,DomType,RangeType) */ |
4452 | | /* R : DomType +->> RangeType */ |
4453 | | /********************************************/ |
4454 | | |
4455 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:partial_surjection_wf([(int(1),int(6)),(int(2),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)). % used to be wfdet (see in_domain_wf above) |
4456 | | :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:partial_surjection_wf([(int(1),int(6)),(int(2),int(7))],[int(1),int(2)],[int(7),int(6),int(2)],WF),WF)). |
4457 | | :- assert_must_succeed((bsets_clp:partial_surjection(X,[int(1),int(2)],[int(7),int(6)]), |
4458 | | kernel_objects:equal_object(X,[(int(2),int(7)),(int(1),int(6))]))). |
4459 | | :- assert_must_succeed((bsets_clp:partial_surjection(X,[int(1),int(2),int(3)],global_set('Name')), |
4460 | | kernel_objects:equal_object(X,[(int(2),fd(1,'Name')),(int(1),fd(2,'Name')),(int(3),fd(3,'Name'))]))). |
4461 | | :- assert_must_succeed((bsets_clp:partial_surjection_wf(X,[int(1),int(2),int(3)],global_set('Name'),_WF), |
4462 | | kernel_objects:equal_object(X,[(int(2),fd(1,'Name')),(int(1),fd(2,'Name')),(int(3),fd(3,'Name'))]))). |
4463 | | :- assert_must_succeed((bsets_clp:partial_surjection(X,[int(1),int(2),int(3)],[int(7),int(6)]), |
4464 | | kernel_objects:equal_object(X,[(int(2),int(7)),(int(1),int(6))]))). |
4465 | | :- assert_must_succeed_multiple((bsets_clp:partial_surjection(X,[int(1),int(2),int(3),int(4)],[int(7),int(6)]), |
4466 | | kernel_objects:equal_object(X,[(int(2),int(7)),(int(1),int(6)),(int(3),int(6))]))). /* mult. */ |
4467 | | :- assert_must_succeed((X=[(int(2),int(7)),(int(1),int(6)),(int(3),int(6))], |
4468 | | bsets_clp:partial_surjection(X,[int(1),int(2),int(3),int(4)],[int(7),int(6)]))). |
4469 | | :- assert_must_fail((bsets_clp:partial_surjection(X,[int(1),int(2)],[int(7),int(6)]), |
4470 | | X = [(int(2),int(7)),(int(1),int(6)),(int(1),int(7))])). |
4471 | | :- assert_must_fail((bsets_clp:partial_surjection(X,[int(1),int(2)],[int(7),int(6)]), |
4472 | | X = [(int(2),int(7)),(int(1),int(7))])). |
4473 | | :- assert_must_fail((bsets_clp:partial_surjection(X,[int(1),int(2),int(3)],[int(7),int(6)]), |
4474 | | X = [(int(2),int(7)),(int(1),int(6)),(int(3),int(8))])). |
4475 | | :- assert_must_succeed_multiple((bsets_clp:partial_surjection(_X, |
4476 | | [int(1),int(2),int(3),int(4),int(5),int(6),int(7)],[int(2),int(3),int(4)]) )). |
4477 | | :- assert_must_fail((bsets_clp:partial_surjection(X,[int(1),int(2)],[int(7),int(6)]), |
4478 | | X = [(int(2),int(7)),(int(2),int(6))])). |
4479 | | |
4480 | | partial_surjection(R,Domain,Range) :- init_wait_flags(WF,[partial_surjection]), |
4481 | | partial_surjection_wf(R,Domain,Range,WF), |
4482 | ? | ground_wait_flags(WF). |
4483 | | |
4484 | | :- block partial_surjection_wf(-,-,?,?). |
4485 | | partial_surjection_wf(R,Domain,Range,WF) :- |
4486 | | check_card_greater_equal(Domain,geq,Range,CardDom,CardRange), |
4487 | | (surjection_has_to_be_total_injection(CardDom,CardRange) |
4488 | | % LAW: card(setX) = card(setY) => ff: setX +->> setY <=> ff: setX >-> setY |
4489 | ? | -> total_function_wf(R,Domain,Range,WF), |
4490 | | injective(R,WF) |
4491 | | ; is_surjective(R,Range,WF), |
4492 | | partial_function_wf(R,Domain,Range,WF) |
4493 | | ). |
4494 | | |
4495 | | |
4496 | | % check_card_greater_equal(A,B) : quick check that card(A) >= card(B); also works with infinite cardinality |
4497 | | % TO DO: replace by a better constraint propagating predicate (also working for partially instantiated lists,...) |
4498 | | % compared with computing card and setting up < constraint: will only compute card if it can be done efficiently + deals with inf |
4499 | | % check_card_greater_equal(SetA,EQ,SetB) ; EQ=eq or geq |
4500 | | :- block check_card_greater_equal(-,?,?,?,?). |
4501 | | check_card_greater_equal([],_,R,0,0) :- !, empty_set(R). |
4502 | | check_card_greater_equal(A,EQ,B,CA,CB) :- check_card_greater_equal2(A,EQ,B,CA,CB). |
4503 | | |
4504 | | :- use_module(inf_arith,[block_inf_greater_equal/2]). |
4505 | | :- block check_card_greater_equal2(?,?,-,?,?). |
4506 | | check_card_greater_equal2(A,EQ,B,CardA,CardB) :- |
4507 | | efficient_card_for_set(A,CardA,CodeA), |
4508 | | efficient_card_for_set(B,CardB,CodeB),!, |
4509 | | call(CodeA), call(CodeB), |
4510 | | (EQ=eq -> CardA=CardB ; block_inf_greater_equal(CardA,CardB)). |
4511 | | check_card_greater_equal2(_A,_,_B,'?','?'). |
4512 | | |
4513 | | |
4514 | | :- block is_surjective(-,-,?). |
4515 | | is_surjective(R,Range,WF) :- |
4516 | | (var(R) -> setup_surj_range(Range,R,WF) |
4517 | | ; range_wf(R,Range,WF)). |
4518 | | |
4519 | | setup_surj_range(Range,R,WF) :- |
4520 | | setup_range(Range,Res,DONE,WF), |
4521 | | equal_when_done(Res,R,DONE). |
4522 | | :- block equal_when_done(?,?,-). |
4523 | ? | equal_when_done(Res,R,_DONE) :- equal_object(Res,R). |
4524 | | |
4525 | | |
4526 | | :- block setup_range(-,?,?,?). |
4527 | | setup_range(global_set(G),Res,DONE,WF) :- |
4528 | | expand_custom_set_wf(global_set(G),ES,setup_range,WF), |
4529 | | setup_range(ES,Res,DONE,WF). |
4530 | | setup_range(freetype(ID),Res,DONE,WF) :- |
4531 | | expand_custom_set_wf(freetype(ID),ES,setup_range,WF), setup_range(ES,Res,DONE,WF). |
4532 | | setup_range(avl_set(S),Res,DONE,WF) :- |
4533 | | expand_custom_set_wf(avl_set(S),ES,setup_range,WF), setup_range(ES,Res,DONE,WF). |
4534 | | setup_range(closure(P,T,B),Res,DONE,WF) :- |
4535 | | expand_custom_set_wf(closure(P,T,B),ES,setup_range,WF), setup_range(ES,Res,DONE,WF). |
4536 | | setup_range([],_,done,_WF). |
4537 | | setup_range([H|T],[(_,H)|ST],DONE,WF) :- setup_range(T,ST,DONE,WF). |
4538 | | |
4539 | | |
4540 | | |
4541 | | :- assert_must_succeed(exhaustive_kernel_fail_check_wf(bsets_clp:not_partial_surjection_wf([(int(1),int(6)),(int(2),int(7))], |
4542 | | [int(1),int(2)],[int(7),int(6)],WF),WF)). |
4543 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_partial_surjection_wf([(int(1),int(6)),(int(2),int(7))],[int(1),int(2)], |
4544 | | [int(7),int(6),int(2)],WF),WF)). |
4545 | | :- assert_must_fail((bsets_clp:not_partial_surjection(X,[int(1),int(2)],[int(7),int(6)]), |
4546 | | X = [(int(2),int(7)),(int(1),int(6))])). |
4547 | | :- assert_must_succeed((bsets_clp:not_partial_surjection(X,[int(1),int(2)],[int(7),int(6)]), |
4548 | | X = [(int(2),int(7)),(int(2),int(6))])). |
4549 | | :- assert_must_fail((bsets_clp:not_partial_surjection(X,[int(1),int(2),int(3)],[int(7),int(6)]), |
4550 | | X = [(int(2),int(7)),(int(1),int(6))])). |
4551 | | :- assert_must_succeed((bsets_clp:not_partial_surjection(X,[int(1),int(2)],[int(7),int(6)]), |
4552 | | X = [(int(2),int(7)),(int(1),int(6)),(int(1),int(7))])). |
4553 | | :- assert_must_succeed((bsets_clp:not_partial_surjection(X,[int(1),int(2)],[int(7),int(6)]), |
4554 | | X = [(int(2),int(7)),(int(1),int(7))])). |
4555 | | :- assert_must_succeed((bsets_clp:not_partial_surjection(X,[int(1),int(2),int(3)],[int(7),int(6)]), |
4556 | | X = [(int(2),int(7)),(int(1),int(6)),(int(3),int(8))])). |
4557 | | |
4558 | | |
4559 | | |
4560 | | /* /: Domain +->> Range */ |
4561 | | not_partial_surjection(R,Domain,Range) :- init_wait_flags(WF,[not_partial_surjection]), |
4562 | | not_partial_surjection_wf(R,Domain,Range,WF), |
4563 | | ground_wait_flags(WF). |
4564 | | |
4565 | | :- block not_partial_surjection_wf(-,?,?,?). |
4566 | | not_partial_surjection_wf(R,DomType,RangeType,WF) :- |
4567 | | partial_surjection_test_wf(R,DomType,RangeType,pred_false,WF). |
4568 | | |
4569 | | |
4570 | | %not_surjective_relation_wf(R,DomType,RType,WF) :- |
4571 | | % invert_relation_wf(R,IR,WF), |
4572 | | % not_total_relation_wf(IR,RType,DomType,WF). |
4573 | | |
4574 | | |
4575 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:partial_surjection_test_wf([(int(1),int(6)),(int(2),int(7))],[int(1),int(2)],[int(7),int(6)],pred_true,WF),WF)). |
4576 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:partial_surjection_test_wf([(int(1),int(6)),(int(2),int(7))],[int(1),int(2)],[int(7),int(6),int(2)],pred_false,WF),WF)). |
4577 | | |
4578 | | partial_surjection_test_wf(R,DomType,RangeType,PredRes,WF) :- |
4579 | | partial_function_test_wf(R,DomType,RangeType,IsPF,WF), |
4580 | | (IsPF==pred_false -> PredRes=pred_false |
4581 | | ; range_wf(R,RelRan,WF), |
4582 | ? | conjoin_test(IsPF,IsSurjective,PredRes,WF), |
4583 | ? | subset_test(RangeType,RelRan,IsSurjective,WF) |
4584 | | ). |
4585 | | |
4586 | | |
4587 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:total_relation_wf([(int(1),int(6)),(int(2),int(7)),(int(1),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)). |
4588 | | :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:total_relation_wf([(int(1),int(6)),(int(1),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)). |
4589 | | |
4590 | | :- assert_must_succeed((bsets_clp:total_relation_wf(X,[int(1),int(2)],[int(7),int(6)],_WF), |
4591 | | kernel_objects:equal_object(X,[(int(2),int(7)),(int(1),int(6))]))). |
4592 | | :- assert_must_succeed((bsets_clp:total_relation_wf(X,[int(1),int(2)],[int(7),int(6)],_WF), |
4593 | | kernel_objects:equal_object(X,[(int(2),int(7)),(int(1),int(7))]))). |
4594 | | :- assert_must_succeed((bsets_clp:total_relation_wf(X,[int(1),int(2)],[int(7),int(6)],_WF), |
4595 | | kernel_objects:equal_object(X,[(int(2),int(7)),(int(1),int(6)),(int(1),int(7))]))). |
4596 | | :- assert_must_fail((bsets_clp:total_relation_wf(X,[int(1),int(2)],[int(7),int(6)],_WF), |
4597 | | kernel_objects:equal_object(X,[(int(2),int(7)),(int(2),int(6))]))). |
4598 | | :- assert_must_fail((bsets_clp:total_relation_wf(X,[int(1),int(2)],[int(7),int(6)],_WF), |
4599 | | kernel_objects:equal_object(X,[(int(2),int(7))]))). |
4600 | | :- assert_must_fail((bsets_clp:total_relation_wf(X,[int(1),int(2)],[int(7),int(6)],_WF), |
4601 | | kernel_objects:equal_object(X,[(int(2),int(7)),(int(1),int(6)),(int(1),int(8))]))). |
4602 | | :- assert_must_fail((bsets_clp:total_relation_wf(X,[int(1),int(2)],[int(7),int(6)],_WF), |
4603 | | kernel_objects:equal_object(X,[(int(2),int(7)),(int(3),int(6)),(int(1),int(7))]))). |
4604 | | :- assert_must_fail((bsets_clp:total_relation_wf(X,[int(1),int(2)],[int(7),int(6)],_WF), |
4605 | | kernel_objects:equal_object(X,[]))). |
4606 | | |
4607 | | /****************************************/ |
4608 | | /* total_relation_wf(R,Domain,Range,WF) */ |
4609 | | /* R : Domain <<-> Range */ |
4610 | | /****************************************/ |
4611 | | |
4612 | ? | total_relation_wf(R,Domain,Range,WF) :- relation_over_wf(R,Domain,Range,WF), |
4613 | | check_relation_is_total(R,Domain,WF). |
4614 | | |
4615 | | % this predicates assume that the relation's range and domain have already been checked |
4616 | | check_relation_is_total(Relation,Domain,WF) :- domain_wf(Relation,Domain,WF). |
4617 | | check_relation_is_surjective(Relation,Range,WF) :- |
4618 | | range_wf(Relation,Range,WF). % we could also call is_surjective (which does setup_surj_range) ? |
4619 | | |
4620 | | :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:not_total_relation_wf([(int(1),int(6)),(int(2),int(7)),(int(1),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)). |
4621 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_total_relation_wf([(int(1),int(6)),(int(1),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)). |
4622 | | :- assert_must_fail((bsets_clp:not_total_relation_wf(X,[int(1),int(2)],[int(7),int(6)],_WF), |
4623 | | X = [(int(2),int(7)),(int(1),int(6))])). |
4624 | | :- assert_must_fail((bsets_clp:not_total_relation_wf(X,[int(1),int(2)],[int(7),int(6)],_WF), |
4625 | | X = [(int(2),int(7)),(int(1),int(7))])). |
4626 | | :- assert_must_fail((bsets_clp:not_total_relation_wf(X,[int(1),int(2)],[int(7),int(6)],_WF), |
4627 | | X = [(int(2),int(7)),(int(1),int(6)),(int(1),int(7))])). |
4628 | | :- assert_must_succeed((bsets_clp:not_total_relation_wf(X,[int(1),int(2)],[int(7),int(6)],_WF), |
4629 | | X = [(int(2),int(7)),(int(2),int(6))])). |
4630 | | :- assert_must_succeed((bsets_clp:not_total_relation_wf(X,[int(1),int(2)],[int(7),int(6)],_WF), |
4631 | | X = [(int(2),int(7))])). |
4632 | | :- assert_must_succeed((bsets_clp:not_total_relation_wf(X,[int(1),int(2)],[int(7),int(6)],_WF), |
4633 | | X = [(int(2),int(7)),(int(1),int(6)),(int(1),int(8))])). |
4634 | | :- assert_must_succeed((bsets_clp:not_total_relation_wf(X,[int(1),int(2)],[int(7),int(6)],_WF), |
4635 | | X = [(int(2),int(7)),(int(3),int(6)),(int(1),int(7))])). |
4636 | | |
4637 | | :- block not_total_relation_wf(-,?,?,?). |
4638 | | not_total_relation_wf(FF,Domain,Range,WF) :- nonvar(FF),custom_explicit_sets:is_definitely_maximal_set(Range), |
4639 | | % we do not need the Range; this means we can match more closures (e.g., lambda) |
4640 | | custom_explicit_sets:dom_for_specific_closure(FF,FFDomain,function(_),WF),!, |
4641 | | not_equal_object_wf(FFDomain,Domain,WF). |
4642 | | not_total_relation_wf(FF,Domain,Range,WF) :- nonvar(FF), |
4643 | | custom_explicit_sets:dom_range_for_specific_closure(FF,FFDomain,FFRange,function(_),WF),!, |
4644 | | equality_objects_wf(FFDomain,Domain,Result,WF), % not yet implemented ! % TODO ! -> sub_set,equal,super_set |
4645 | | when(nonvar(Result),(Result=pred_false -> true ; not_subset_of_wf(FFRange,Range,WF))). |
4646 | | not_total_relation_wf(R,Domain,Range,WF) :- |
4647 | | expand_custom_set_to_list_wf(R,ER,Done,not_total_relation_wf,WF), |
4648 | ? | not_tot_surj_rel(ER,Done,Domain,Domain,[],Range,WF). % empty DelRange means we don't do surjective test |
4649 | | |
4650 | | % can be used to check not total, not surj, not total surj relation |
4651 | | :- block not_tot_surj_rel(-,?,?,?,?,?,?). |
4652 | | not_tot_surj_rel([],_,DelDomain,_,DelRange,_,WF) :- |
4653 | ? | at_least_one_set_not_empty(DelDomain,DelRange,WF). |
4654 | | not_tot_surj_rel([_|_],Done,DelDom,Dom,_DelRan,_Ran,_WF) :- nonvar(Done), |
4655 | | Done \= no_check_to_be_done, |
4656 | | nonvar(DelDom),DelDom \= [], |
4657 | | nonvar(Dom),is_infinite_explicit_set(Dom), |
4658 | | !. % a finite expanded list can never be a total relation over an infinite domain |
4659 | | not_tot_surj_rel([(X,Y)|T],_Done,DelDom,Dom,DelRan,Ran,WF) :- |
4660 | | membership_test_wf(Dom,X,MemRes,WF), |
4661 | ? | not_tr2(MemRes,X,Y,T,DelDom,Dom,DelRan,Ran,WF). |
4662 | | |
4663 | | % check if one of the two sets is non-empty |
4664 | | at_least_one_set_not_empty(Set1,Set2,_) :- (Set=Set1 ; Set=Set2), |
4665 | | nonvar(Set), |
4666 | | (Set=avl_set(_) ; Set=[_|_]), % we can avoid leaving choice point |
4667 | | !. |
4668 | | at_least_one_set_not_empty(Set1,_,WF) :- not_empty_set_wf(Set1,WF). |
4669 | | at_least_one_set_not_empty(Set1,Set2,WF) :- empty_set_wf(Set1,WF),not_empty_set_wf(Set2,WF). |
4670 | | |
4671 | | :- block not_tr2(-,?,?,?,?,?,?,?,?). |
4672 | | not_tr2(pred_false,_X,_Y,_T,_DelDom,_Dom,_DelRan,_Ran,_WF). |
4673 | | not_tr2(pred_true,X,Y,T,DelDom,Dom,DelRan,Ran,WF) :- |
4674 | | delete_element_wf(X,DelDom,DelDom2,WF), % set DelDom initially to [] to avoid totality check |
4675 | | membership_test_wf(Ran,Y,MemRes,WF), |
4676 | ? | not_tr3(MemRes,Y,T,DelDom2,Dom,DelRan,Ran,WF). |
4677 | | |
4678 | | :- block not_tr3(-,?,?,?,?,?,?,?). |
4679 | | not_tr3(pred_false,_Y,_T,_DelDom2,_Dom,_DelRan,_Ran,_WF). |
4680 | | not_tr3(pred_true,Y,T,DelDom2,Dom,DelRan,Ran,WF) :- |
4681 | | delete_element_wf(Y,DelRan,DelRan2,WF), % set DelRan initially to [] to avoid surjection check |
4682 | ? | not_tot_surj_rel(T,no_check_to_be_done,DelDom2,Dom,DelRan2,Ran,WF). |
4683 | | |
4684 | | /******************************************/ |
4685 | | /* total_surjection(R,DomType,RangeType) */ |
4686 | | /* R : DomType -->> RangeType */ |
4687 | | /******************************************/ |
4688 | | |
4689 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:total_surjection_wf([(int(2),int(6)),(int(1),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)). % used to be wfdet (see in_domain_wf above) |
4690 | | :- assert_must_succeed(exhaustive_kernel_succeed_check((bsets_clp:total_surjection_wf([(int(2),int(6)),(int(1),int(7)),(int(3),int(7))],[int(1),int(2),int(3)],[int(7),int(6)],WF),kernel_waitflags:ground_det_wait_flag(WF)))). %% TO DO: get rid of multiple solutions |
4691 | | :- assert_must_succeed((bsets_clp:total_surjection(X,[int(1)],[int(7)]), |
4692 | | kernel_objects:equal_object(X,[(int(1),int(7))]))). |
4693 | | :- assert_must_succeed((bsets_clp:total_surjection(X,[int(1),int(2)],[int(7),int(6)]), |
4694 | | kernel_objects:equal_object(X,[(int(2),int(7)),(int(1),int(6))]))). |
4695 | | :- assert_must_succeed((bsets_clp:total_surjection(X,[int(1),int(2)],[int(7)]), |
4696 | | kernel_objects:equal_object(X,[(int(2),int(7)),(int(1),int(7))]))). |
4697 | | :- assert_must_fail((bsets_clp:total_surjection([],[int(1)],[int(7)]))). |
4698 | | :- assert_must_fail((bsets_clp:total_surjection([(int(7),int(7))],[int(1)],[int(7)]))). |
4699 | | :- assert_must_fail((bsets_clp:total_surjection([(int(1),int(7)), (int(2),int(1))], |
4700 | | [int(1),int(2)],[int(7)]))). |
4701 | | :- assert_must_fail((bsets_clp:total_surjection(X,[int(1),int(2)],[int(7),int(6)]), |
4702 | | kernel_objects:equal_object(X,[(int(2),int(7)),(int(2),int(6))]))). |
4703 | | |
4704 | | |
4705 | | total_surjection(R,Domain,Range) :- init_wait_flags(WF), |
4706 | | total_surjection_wf(R,Domain,Range,WF), |
4707 | ? | ground_wait_flags(WF). |
4708 | | |
4709 | | :- block total_surjection_wf(-,-,?,?). |
4710 | | total_surjection_wf(R,DomType,RangeType,WF) :- |
4711 | | check_card_greater_equal(DomType,geq,RangeType,CardDom,CardRange), |
4712 | ? | total_function_wf(R,DomType,RangeType,WF), |
4713 | | % setup_surj_range(RangeType,R,WF). |
4714 | | (surjection_has_to_be_total_injection(CardDom,CardRange) |
4715 | | % LAW: card(setX) = card(setY) => ff: setX -->> setY <=> ff: setX >-> setY |
4716 | | -> injective(R,WF) % if domain and range have same cardinality: injection ensures surjectivity, and is more efficient to check/propagate; example when using queens 1..n -->> 1..n for NQueens |
4717 | | ; check_relation_is_surjective(R,RangeType,WF)). |
4718 | | % invert_relation_wf(R,IR,WF), total_relation_wf(IR,RangeType,DomType,WF). |
4719 | | |
4720 | | surjection_has_to_be_total_injection(CardDom,CardRange) :- number(CardDom), CardDom=CardRange. |
4721 | | % TO DO: determine the difference in size between Dom and Range and count how many times a range element can occur multiple times (would give better incremental checking) |
4722 | | |
4723 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_total_surjection_wf([(int(2),int(6)),(int(1),int(7))],[int(1),int(2),int(3)],[int(7),int(6)],WF),WF)). |
4724 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_total_surjection_wf([(int(2),int(6)),(int(1),int(6))],[int(1),int(2)],[int(7),int(6)],WF),WF)). |
4725 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_total_surjection_wf([(int(2),int(6)),(int(1),int(6)),(int(1),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)). |
4726 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_total_surjection_wf([(int(2),int(6)),(int(1),int(7)),(int(3),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)). |
4727 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_total_surjection_wf([(int(2),int(6)),(int(1),int(7)),(int(3),int(8))],[int(1),int(2),int(3)],[int(7),int(6)],WF),WF)). |
4728 | | :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:not_total_surjection_wf([(int(2),int(6)),(int(1),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)). |
4729 | | |
4730 | | :- block not_total_surjection_wf(-,?,?,?), not_total_surjection_wf(?,-,-,?). |
4731 | | not_total_surjection_wf(R,DomType,RangeType,WF) :- |
4732 | | total_function_test_wf(R,DomType,RangeType,PredRes,WF), |
4733 | | not_total_surjection2(PredRes,R,DomType,RangeType,WF). |
4734 | | :- block not_total_surjection2(-,?,?,?,?). |
4735 | | not_total_surjection2(pred_false,_R,_DomType,_RangeType,_WF). |
4736 | | not_total_surjection2(pred_true,R,_DomType,RangeType,WF) :- |
4737 | | range_wf(R,RelRange,WF), |
4738 | | opt_push_wait_flag_call_stack_info(WF,b_operator_call(not_subset, |
4739 | | [RangeType,b_operator(range,[R])],unknown),WF2), |
4740 | | not_subset_of_wf(RangeType,RelRange,WF2). |
4741 | | %not_surjective_relation_wf(R,DomType,RangeType,WF). |
4742 | | |
4743 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:total_function_test_wf([(int(2),int(6)),(int(1),int(7)),(int(3),int(8))],[int(1),int(2),int(3)],[int(7),int(6)],pred_false,WF),WF)). |
4744 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:total_function_test_wf([(int(2),int(6)),(int(1),int(7)),(int(3),int(6))],[int(1),int(2),int(3)],[int(7),int(6)],pred_true,WF),WF)). % used to be wfdet (see in_domain_wf above) |
4745 | | :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:total_function_test_wf([(int(2),int(6)),(int(1),int(7))],[int(1),int(2)],[int(7),int(6)],pred_false,WF),WF)). |
4746 | | |
4747 | | % reified total function check: |
4748 | | total_function_test_wf(R,DomType,RangeType,PredRes,WF) :- |
4749 | | partial_function_test_wf(R,DomType,RangeType,IsPF,WF), |
4750 | | (IsPF==pred_false -> PredRes=pred_false |
4751 | | ; domain_wf(R,RelDom,WF), |
4752 | ? | conjoin_test(IsPF,IsTotal,PredRes,WF), |
4753 | | opt_push_wait_flag_call_stack_info(WF,b_operator_call(subset, |
4754 | | [DomType,b_operator(domain,[R])],unknown),WF2), |
4755 | ? | subset_test(DomType,RelDom,IsTotal,WF2) |
4756 | | ). |
4757 | | |
4758 | | /*******************************************/ |
4759 | | /* partial_injection(R,DomType,RangeType) */ |
4760 | | /* R : DomType >+> RangeType */ |
4761 | | /*******************************************/ |
4762 | | |
4763 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:partial_injection_wf([(int(1),int(6)),(int(2),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)). |
4764 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:partial_injection_wf([(int(1),int(6)),(int(4),int(7)),(int(2),int(8))],[int(1),int(2),int(3),int(4)],[int(7),int(6),int(8),int(9)],WF),WF)). |
4765 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:partial_injection_wf([(int(2),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)). |
4766 | | :- assert_must_succeed((bsets_clp:partial_injection(X,[int(1)],[int(7)]), |
4767 | | kernel_objects:equal_object(X,[(int(1),int(7))]))). |
4768 | | :- assert_must_succeed((bsets_clp:partial_injection(X,[int(1),int(2)],[int(7),int(6)]), |
4769 | | kernel_objects:equal_object(X,[(int(2),int(7)),(int(1),int(6))]))). |
4770 | | :- assert_must_fail((bsets_clp:partial_injection(X,[int(1),int(2)],[int(7)]), |
4771 | | kernel_objects:equal_object(X,[(int(2),int(7)),(int(1),int(7))]))). |
4772 | | :- assert_must_succeed((bsets_clp:partial_injection([],[int(1)],[int(7)]))). |
4773 | | :- assert_must_fail((bsets_clp:partial_injection([(int(7),int(7))],[int(1)],[int(7)]))). |
4774 | | :- assert_must_fail((bsets_clp:partial_injection([(int(1),int(7)), (int(2),int(1))], |
4775 | | [int(1),int(2)],[int(7)]))). |
4776 | | :- assert_must_fail((bsets_clp:partial_injection(X,[int(1),int(2)],[int(7),int(6)]), |
4777 | | kernel_objects:equal_object(X,[(int(2),int(7)),(int(2),int(6))]))). |
4778 | | |
4779 | | |
4780 | | partial_injection(R,Domain,Range) :- init_wait_flags(WF), |
4781 | | partial_injection_wf(R,Domain,Range,WF), |
4782 | ? | ground_wait_flags(WF). |
4783 | | |
4784 | | :- block partial_injection_wf(-,-,?,?). |
4785 | | partial_injection_wf(FF,Domain,Range,WF) :- nonvar(FF), |
4786 | | custom_explicit_sets:dom_range_for_specific_closure(FF,FFDomain,FFRange,function(bijection),WF),!, |
4787 | | check_domain_subset_for_closure_wf(FF,FFDomain,Domain,WF), |
4788 | | check_range_subset_for_closure_wf(FF,FFRange,Range,WF). |
4789 | | partial_injection_wf(R,DomType,RangeType,WF) :- |
4790 | | try_expand_and_convert_to_avl_unless_large_wf(R,ER,WF), % should we use very_large? |
4791 | | partial_function_wf(ER,DomType,RangeType,WF), |
4792 | | injective(ER,WF). |
4793 | | % invert_relation_wf(R,IR,WF), |
4794 | | % partial_function_wf(IR,RangeType,DomType,WF). |
4795 | | |
4796 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:injective([(int(1),int(6)),(int(4),int(7)),(int(2),int(8))],WF),WF)). |
4797 | | :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:injective([(int(1),int(6)),(int(4),int(7)),(int(2),int(7))],WF),WF)). |
4798 | | |
4799 | | :- block injective(-,?). |
4800 | | injective(FF,WF) :- |
4801 | | custom_explicit_sets:dom_range_for_specific_closure(FF,_FFDomain,_FFRange,function(bijection),WF),!. |
4802 | | injective(avl_set(AVL),_WF) :- !, |
4803 | | is_injective_avl_relation(AVL,_Range). % seems slightly faster than injective/3 code below |
4804 | | injective(closure(P,T,B),WF) :- !, |
4805 | | symbolic_injectivity_check(closure(P,T,B),WF). |
4806 | | injective(Rel,WF) :- expand_custom_set_to_list_wf(Rel,ERel,_,injective,WF), |
4807 | | injective(ERel,[],WF). |
4808 | | |
4809 | | %:- use_module(library(lists),[maplist/3]). |
4810 | | % for FD-sets we could setup all_different constraint |
4811 | | :- block injective(-,?,?). |
4812 | | injective([],_SoFar,_). |
4813 | | % (maplist(get_fd_val,SoFar,FDL) -> clpfd:all_distinct(FDL) ; true). %clpfd_interface:clpfd_alldifferent(FDL) ; true). |
4814 | | %get_fd_val(int(H),H). |
4815 | | injective([(_From,To)|T],SoFar,WF) :- |
4816 | | not_element_of_wf(To,SoFar,WF), /* check that it is injective */ |
4817 | | add_new_element_wf(To,SoFar,SoFar2,WF), %SoFar2=[To|SoFar], could also work and be faster ? |
4818 | | injective(T,SoFar2,WF). |
4819 | | % no case for global_set: it cannot be a relation; two cases below not required because of expand_custom_set_to_list |
4820 | | %injective(avl_set(S),SoFar,WF) :- expand_custom_set_wf(avl_set(S),ES,inj,WF), injective(ES,SoFar,WF). |
4821 | | %injective(closure(P,T,B),SoFar,WF) :- expand_custom_set_wf(closure(P,T,B),ES,inj,WF), injective(ES,SoFar,WF). |
4822 | | |
4823 | | |
4824 | | |
4825 | | /* /: Dom >+> R */ |
4826 | | |
4827 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_partial_injection([(int(1),int(6)),(int(2),int(6))],[int(1),int(2)],[int(7),int(6)],WF),WF)). |
4828 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_partial_injection([(int(1),int(6)),(int(1),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)). |
4829 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_partial_injection([(int(1),int(6)),(int(2),int(8))],[int(1),int(2)],[int(7),int(6)],WF),WF)). |
4830 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_partial_injection([(int(1),int(6)),(int(3),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)). |
4831 | | |
4832 | | :- block not_partial_injection(-,?,?,?). |
4833 | | not_partial_injection(R,DomType,RangeType,WF) :- |
4834 | | partial_function_test_wf(R,DomType,RangeType,IsPF,WF), |
4835 | | not_partial_injection2(IsPF,R,DomType,RangeType,WF). |
4836 | | |
4837 | | :- block not_partial_injection2(-,?,?,?,?). |
4838 | | not_partial_injection2(pred_false,_R,_DomType,_RType,_WF). |
4839 | | not_partial_injection2(pred_true,R,DomType,RType,WF) :- |
4840 | | not_injection_wf(R,DomType,RType,WF). |
4841 | | |
4842 | | not_injection_wf(R,DomType,RType,WF) :- |
4843 | | invert_relation_wf(R,IR,WF), |
4844 | | not_partial_function(IR,RType,DomType,WF). |
4845 | | |
4846 | | /*****************************************/ |
4847 | | /* total_injection(R,DomType,RangeType) */ |
4848 | | /* R : DomType >-> RangeType */ |
4849 | | /*****************************************/ |
4850 | | |
4851 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:total_injection_wf([(int(1),int(6)),(int(2),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)). |
4852 | | :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:total_injection_wf([(int(1),int(6)),(int(2),int(6))],[int(1),int(2)],[int(7),int(6)],WF),WF)). |
4853 | | :- assert_must_succeed(exhaustive_kernel_fail_check_wf(bsets_clp:not_total_injection([(int(1),int(6)),(int(2),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)). |
4854 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_total_injection([(int(1),int(6)),(int(2),int(6))],[int(1),int(2)],[int(7),int(6)],WF),WF)). |
4855 | | :- assert_must_succeed((bsets_clp:total_injection(X,[int(1)],[int(7)]), |
4856 | | kernel_objects:equal_object(X,[(int(1),int(7))]))). |
4857 | | :- assert_must_succeed((bsets_clp:total_injection(X,[int(1),int(2)],[int(7),int(6)]), |
4858 | | kernel_objects:equal_object(X,[(int(2),int(7)),(int(1),int(6))]))). |
4859 | | :- assert_must_fail((bsets_clp:total_injection(X,[int(1),int(2)],[int(7)]), |
4860 | | kernel_objects:equal_object(X,[(int(2),int(7)),(int(1),int(7))]))). |
4861 | | :- assert_must_fail((bsets_clp:total_injection([],[int(1)],[int(7)]))). |
4862 | | :- assert_must_fail((bsets_clp:total_injection([(int(7),int(7))],[int(1)],[int(7)]))). |
4863 | | :- assert_must_fail((bsets_clp:total_injection([(int(1),int(7)), (int(2),int(1))], |
4864 | | [int(1),int(2)],[int(7)]))). |
4865 | | :- assert_must_fail((bsets_clp:total_injection(X,[int(1),int(2)],[int(7),int(6)]), |
4866 | | kernel_objects:equal_object(X,[(int(2),int(7)),(int(2),int(6))]))). |
4867 | | |
4868 | | |
4869 | | total_injection(R,Domain,Range) :- init_wait_flags(WF), |
4870 | | total_injection_wf(R,Domain,Range,WF), |
4871 | ? | ground_wait_flags(WF). |
4872 | | |
4873 | | :- block total_injection_wf(-,-,?,?). % with just ?,-,?,? we may wait too long to start injective check |
4874 | | % Note: no need to check: dom_range_for_specific_closure(FF,FFDomain,FFRange,function(bijection)), |
4875 | | total_injection_wf(R,DomType,RangeType,WF) :- |
4876 | | check_card_greater_equal(RangeType,geq,DomType,_,_), % there must be more Range elements than domain elements; pigeonhole principle |
4877 | ? | total_injection_wf2(R,DomType,RangeType,WF). |
4878 | | total_injection_wf2(R,DomType,RangeType,WF) :- |
4879 | | try_expand_and_convert_to_avl_unless_large_wf(R,ER,WF), |
4880 | ? | total_function_wf(ER,DomType,RangeType,WF), |
4881 | | injective(ER,WF). |
4882 | | |
4883 | | |
4884 | | :- block not_total_injection(-,?,?,?), not_total_injection(?,-,-,?). |
4885 | | not_total_injection(R,DomType,RangeType,WF) :- |
4886 | | total_function_test_wf(R,DomType,RangeType,PredRes,WF), |
4887 | | not_total_injection2(PredRes,R,DomType,RangeType,WF). |
4888 | | |
4889 | | :- block not_total_injection2(-,?,?,?,?). |
4890 | | not_total_injection2(pred_false,_R,_Dom,_Ran,_WF). |
4891 | | not_total_injection2(pred_true,R,DomType,RangeType,WF) :- |
4892 | | % TO DO: replace DomType and RangeType by full Type |
4893 | | not_injection_wf(R,DomType,RangeType,WF). |
4894 | | |
4895 | | /***********************************/ |
4896 | | /* partial_bijection(R,DomType,RangeType) */ |
4897 | | /* R : DomType >+>> RangeType */ |
4898 | | /***********************************/ |
4899 | | |
4900 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:partial_bijection_wf([(int(1),int(6)),(int(2),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)). % used to be wfdet (see in_domain_wf above) |
4901 | | :- assert_must_succeed(exhaustive_kernel_fail_check_wfdet(bsets_clp:partial_bijection_wf([(int(1),int(6)),(int(2),int(6))],[int(1),int(2)],[int(7),int(6)],WF),WF)). |
4902 | | :- assert_must_succeed((partial_bijection(X,[int(1),int(2)],[int(7),int(6)]), |
4903 | | kernel_objects:equal_object(X,[(int(1),int(6)),(int(2),int(7))]))). |
4904 | | :- assert_must_succeed((partial_bijection(X,[int(1),int(2),int(3),int(4)],[int(7),int(6)]), |
4905 | | X = [(int(2),int(7)),(int(3),int(6))])). |
4906 | | :- assert_must_fail((partial_bijection(X,[int(1),int(2)],[int(7),int(6),int(5)]), |
4907 | | X = [(int(2),int(7)),(int(1),int(6))])). |
4908 | | |
4909 | | partial_bijection(R,Domain,Range) :- init_wait_flags(WF), |
4910 | | partial_bijection_wf(R,Domain,Range,WF), |
4911 | ? | ground_wait_flags(WF). |
4912 | | |
4913 | | partial_bijection_wf(R,DomType,RangeType,WF) :- |
4914 | | partial_injection_wf(R,DomType,RangeType,WF), |
4915 | ? | partial_surjection_wf(R,DomType,RangeType,WF). |
4916 | | |
4917 | | :- assert_must_succeed(exhaustive_kernel_fail_check_wf(bsets_clp:not_partial_bijection([(int(1),int(6)),(int(2),int(7))],[int(1),int(2)],[int(7),int(6)],WF),WF)). |
4918 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_partial_bijection([(int(1),int(6)),(int(2),int(6))],[int(1),int(2)],[int(7),int(6)],WF),WF)). |
4919 | | |
4920 | | :- assert_must_succeed(exhaustive_kernel_fail_check_wf(bsets_clp:not_partial_bijection([(int(2),int(7)),(int(1),int(6))],[int(1),int(2)],[int(7),int(6)],WF),WF)). |
4921 | | |
4922 | | :- assert_must_succeed(exhaustive_kernel_fail_check_wf(bsets_clp:not_partial_bijection([(int(2),int(7)),(int(3),int(6))],[int(1),int(2),int(3),int(4)],[int(7),int(6)],WF),WF)). |
4923 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:not_partial_bijection([(int(2),int(7)),(int(1),int(6))],[int(1),int(2)],[int(7),int(6),int(5)],WF),WF)). |
4924 | | |
4925 | | |
4926 | | :- block not_partial_bijection(-,?,?,?), not_partial_bijection(?,-,-,?). |
4927 | | not_partial_bijection(R,DomType,RangeType,WF) :- |
4928 | | % >+>> = +->> + injective |
4929 | | partial_surjection_test_wf(R,DomType,RangeType,PredRes,WF), |
4930 | | not_partial_bijection2(PredRes,R,DomType,RangeType,WF). |
4931 | | |
4932 | | :- block not_partial_bijection2(-,?,?,?,?). |
4933 | | not_partial_bijection2(pred_false,_R,_DomType,_RangeType,_WF). |
4934 | | not_partial_bijection2(pred_true,R,DomType,RangeType,WF) :- |
4935 | | not_injection_wf(R,DomType,RangeType,WF). |
4936 | | |
4937 | | |
4938 | | |
4939 | | /* The transitive (not reflexive) closure of a relation (closure1) */ |
4940 | | |
4941 | | :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:relational_trans_closure([(int(1),int(2)),(int(2),int(6))],[(int(1),int(2)),(int(1),int(6)),(int(2),int(6))]))). |
4942 | | :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:relational_trans_closure([(int(1),int(2)),(int(2),int(6)),(int(1),int(3))],[(int(1),int(2)),(int(1),int(3)),(int(1),int(6)),(int(2),int(6))]))). |
4943 | | :- assert_must_succeed(exhaustive_kernel_check(bsets_clp:relational_trans_closure([(int(6),int(7)),(int(1),int(2)),(int(2),int(6)),(int(1),int(3))],[(int(1),int(2)),(int(1),int(3)),(int(1),int(6)),(int(2),int(6)),(int(1),int(7)),(int(2),int(7)),(int(6),int(7))]))). |
4944 | | :- assert_must_succeed((bsets_clp:relational_trans_closure([(int(1),int(4))],X), |
4945 | | kernel_objects:equal_object(X,[(int(1),int(4))]))). |
4946 | | :- assert_must_succeed((bsets_clp:relational_trans_closure([(int(1),int(4)),(int(4),int(2))],X), |
4947 | | kernel_objects:equal_object(X,[(int(1),int(4)),(int(4),int(2)), |
4948 | | (int(1),int(2))]))). |
4949 | | :- assert_must_succeed((bsets_clp:relational_trans_closure([(int(1),int(4)),(int(4),int(2)),(int(2),int(3))],X), |
4950 | | kernel_objects:equal_object(X,[(int(1),int(4)),(int(4),int(2)),(int(2),int(3)), |
4951 | | (int(4),int(3)),(int(1),int(2)),(int(1),int(3))]))). |
4952 | | :- assert_must_succeed((bsets_clp:relational_trans_closure([(int(A),int(2)),(int(2),int(6))], |
4953 | | [(int(1),int(2)),(int(1),int(6)),(int(2),int(6))]),A=1)). |
4954 | | |
4955 | | relational_trans_closure(Rel,Res) :- relational_trans_closure_wf(Rel,Res,no_wf_available). |
4956 | | |
4957 | | % transitive closure for relations (closure1) |
4958 | | :- block relational_trans_closure_wf(-,?,?). |
4959 | | relational_trans_closure_wf(Relation,Result,WF) :- |
4960 | | try_expand_and_convert_to_avl_with_check(Relation,ARelation,relational_trans_closure_wf), |
4961 | | relational_trans_closure2(ARelation,Result,WF). |
4962 | | :- block relational_trans_closure2(-,?,?). |
4963 | | relational_trans_closure2(ARelation,Result,WF) :- |
4964 | | (closure1_for_explicit_set(ARelation,Res) |
4965 | | -> kernel_objects:equal_object_wf(Res,Result,relational_trans_closure_wf,WF) |
4966 | | ; expand_custom_set_to_list_wf(ARelation,ERelation,_,relational_trans_closure2,WF), |
4967 | | is_full_relation(ERelation,WaitVar), % still required?? |
4968 | | % we could do a check_subset_of_wf(ERelation,Resul,WF) if Result is nonvar and ERelation not ground |
4969 | | compute_trans_closure(ERelation,Result,WaitVar,WF) |
4970 | | ). |
4971 | | |
4972 | | :- block compute_trans_closure(?,?,-,?). |
4973 | | compute_trans_closure(Relation,Result,_,WF) :- |
4974 | ? | compute_trans_closure2(Relation,1,Result,WF). |
4975 | | |
4976 | | compute_trans_closure2(Relation,Cnt,Result,WF) :- |
4977 | | one_closure_iteration(Relation,Relation,Relation,Result1,Added,Done,WF), |
4978 | ? | compute_trans_closure3(Relation,Cnt,Result1,Added,Done,Result,WF). |
4979 | | |
4980 | | :- block compute_trans_closure3(?,?,?,?,-,?,?). |
4981 | | compute_trans_closure3(Relation,Cnt,Result1,Added,_Done,Result,WF) :- |
4982 | | ( equal_object_wf(Result1,Relation,relational_trans_closure_wf,WF), % should we do equality_objects here? |
4983 | | equal_object_optimized_wf(Result,Result1,compute_trans_closure,WF) |
4984 | | ; |
4985 | | Added==possibly_added, |
4986 | | not_equal_object_wf(Result1,Relation,WF), % not a fixpoint; continue |
4987 | | IterCnt is Cnt+1, |
4988 | ? | compute_trans_closure2(Result1,IterCnt,Result,WF) |
4989 | | ). |
4990 | | |
4991 | | :- block one_closure_iteration(?,?,-,?,?,?,?). |
4992 | | one_closure_iteration([],_,IterRes,OutRel,Added,Done,WF) :- |
4993 | | equal_object_wf(IterRes,OutRel,one_closure_iteration,WF), |
4994 | | (var(Added) -> Added=not_added ; true), |
4995 | | Done=done. |
4996 | | one_closure_iteration([(X,Y)|T],ExpandedPreviousRel,PreviousRel,OutRel,Added,Done,WF) :- |
4997 | | add_tuples(ExpandedPreviousRel,X,Y,PreviousRel,IntRel,Added,DoneTuples,WF), |
4998 | ? | one_closure_iteration_block(DoneTuples,T,ExpandedPreviousRel,IntRel,OutRel,Added,Done,WF). |
4999 | | |
5000 | | :- block one_closure_iteration_block(-,?,?,?,?,?,?,?). |
5001 | | one_closure_iteration_block(_,T,ExpandedPreviousRel,IntRel,OutRel,Added,Done,WF) :- |
5002 | ? | one_closure_iteration(T,ExpandedPreviousRel,IntRel,OutRel,Added,Done,WF). |
5003 | | |
5004 | | add_tuples([],_,_,OutRel,OutRel,_Added,done,_). |
5005 | | add_tuples([(X,Y)|T],OX,OY,InRel,OutRel,Added,Done,WF) :- |
5006 | | % add tuple (X,OY) if we have Y=OX |
5007 | | equality_objects_wf(Y,OX,EqRes,WF), |
5008 | ? | add_tuples_aux(EqRes,X,T,OX,OY,InRel,OutRel,Added,Done,WF). |
5009 | | |
5010 | | :- block add_tuples_aux(-,?,?,?,?,?,?,?,?,?). |
5011 | | add_tuples_aux(pred_true,X,T,OX,OY,InRel,OutRel,possibly_added,Done,WF) :- |
5012 | | add_element_wf((X,OY),InRel,IntRel,WF), % add transitive couple X -> OY |
5013 | ? | add_tuples(T,OX,OY,IntRel,OutRel,_,Done,WF). |
5014 | | add_tuples_aux(pred_false,_X,T,OX,OY,InRel,OutRel,Added,Done,WF) :- % no transitive couple needed |
5015 | ? | add_tuples(T,OX,OY,InRel,OutRel,Added,Done,WF). |
5016 | | |
5017 | | |
5018 | | :- assert_must_succeed((is_full_relation(X,R),var(R),X=[],R==true)). |
5019 | | :- assert_must_succeed((is_full_relation(X,R),var(R),X=[(A,B)|T],var(R),A=int(1),var(R),B=A,var(R),T=[],R==true)). |
5020 | | :- block is_full_relation(-,?). |
5021 | | is_full_relation([],R) :- !,R=true. |
5022 | ? | is_full_relation([H|T],W) :- !, is_full_relation_aux(H,T,W). |
5023 | | is_full_relation(X,R) :- |
5024 | | add_internal_error('Illegal Set for is_full_relation: ',is_full_relation(X,R)),fail. |
5025 | | |
5026 | | :- block is_full_relation_aux(-,?,?). |
5027 | ? | is_full_relation_aux((X,Y),T,W) :- !, is_full_relation_aux2(X,Y,T,W). |
5028 | | is_full_relation_aux(X,T,W) :- |
5029 | | add_internal_error('Illegal Set for is_full_relation: ',is_full_relation_aux(X,T,W)),fail. |
5030 | | :- block is_full_relation_aux2(-,?,?,?), is_full_relation_aux2(?,-,?,?). |
5031 | ? | is_full_relation_aux2(_X,_Y,T,W) :- is_full_relation(T,W). |
5032 | | |
5033 | | /* ------------------ */ |
5034 | | |
5035 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:in_closure1_wf((int(1),int(3)),[(int(1),int(2)),(int(2),int(1)),(int(2),int(3))],WF),WF)). % used to be wfdet (see in_domain_wf above) |
5036 | | |
5037 | | in_closure1_wf(Pair,Relation,WF) :- %Pair = (_A,B), |
5038 | | %in_domain_wf_lazy(A,Relation,WF), % done below |
5039 | | %check_element_of_wf((_,B),Relation,WF), % multiple solutions for _, see test 634, 637 |
5040 | ? | in_closure1_membership_test_wf(Pair,Relation,pred_true,WF). |
5041 | | |
5042 | | |
5043 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:not_in_closure1_wf((int(1),int(3)),[(int(1),int(2)),(int(2),int(1)),(int(3),int(3))],WF),WF)). |
5044 | | |
5045 | | not_in_closure1_wf(Pair,Relation,WF) :- |
5046 | ? | in_closure1_membership_test_wf(Pair,Relation,pred_false,WF). |
5047 | | |
5048 | | :- assert_must_succeed((bsets_clp:in_closure1_membership_test_wf((int(1),int(2)),[],Res,_WF),Res==pred_false)). |
5049 | | :- assert_must_succeed((bsets_clp:in_closure1_membership_test_wf((int(1),int(2)),[(int(1),int(2))],Res,_WF),Res==pred_true)). |
5050 | | :- assert_must_succeed((bsets_clp:in_closure1_membership_test_wf((int(1),int(2)),[(int(1),int(3))],Res,_WF),Res==pred_false)). |
5051 | | :- assert_must_succeed((bsets_clp:in_closure1_membership_test_wf((int(1),int(2)),[(int(1),int(3)),(int(3),int(2))],Res,_WF),Res==pred_true)). |
5052 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:in_closure1_membership_test_wf((int(1),int(2)),[(int(1),int(3)),(int(3),int(2))],pred_true,WF),WF)). % used to be wfdet (see in_domain_wf above) |
5053 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:in_closure1_membership_test_wf((int(11),int(3)),[(int(11),int(3))],pred_true,WF),WF)). |
5054 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:in_closure1_membership_test_wf((int(11),int(3)),[(int(11),int(33))],pred_false,WF),WF)). |
5055 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:in_closure1_membership_test_wf((int(1),int(3)),[(int(11),int(3))],pred_false,WF),WF)). |
5056 | | :- assert_must_succeed(exhaustive_kernel_check_wf(bsets_clp:in_closure1_membership_test_wf((int(11),int(22)),[(int(11),int(3)),(int(33),int(2)),(int(3),int(22)),(int(11),int(3))],pred_true,WF),WF)). % used to be wfdet (see in_domain_wf above) |
5057 | | :- assert_must_succeed(exhaustive_kernel_check_wfdet(bsets_clp:in_closure1_membership_test_wf((int(11),int(11)),[(int(11),int(3))],pred_false,WF),WF)). |
5058 | | |
5059 | | :- block force_in_domain(-,?,?,?). |
5060 | | force_in_domain(pred_false,_A,_Relation,_WF). |
5061 | | force_in_domain(pred_true,A,Relation,WF) :- % force A to be in domain, avoid enumeration warnings,... |
5062 | | % maybe only for non-ground A |
5063 | | in_domain_wf_lazy(A,Relation,WF). % slowdown Loop.mch (tests 634, 637) if we use in_domain_wf ? |
5064 | | |
5065 | | % (x,y) : closure1(Rel) |
5066 | | :- block in_closure1_membership_test_wf(?,-,?,?). |
5067 | | in_closure1_membership_test_wf((A,B),CSRelation,MemRes,WF) :- |
5068 | | is_custom_explicit_set(CSRelation,in_closure1), |
5069 | | !, |
5070 | ? | image_for_closure1_wf(CSRelation,[A],Image,WF), |
5071 | | force_in_domain(MemRes,A,CSRelation,WF), |
5072 | | membership_test_wf(Image,B,MemRes,WF). |
5073 | | in_closure1_membership_test_wf((X,Y),Relation,MemRes,WF) :- |
5074 | | expand_custom_set_to_list_wf(Relation,ERelation,_,in_closure1_membership_test_wf,WF), |
5075 | | Discarded = [], % pairs discarded in current iteration |
5076 | | force_in_domain(MemRes,X,Relation,WF), |
5077 | | in_closure1_membership_test_wf2(ERelation,X,Y,Discarded,MemRes,WF). |
5078 | | |
5079 | | :- block in_closure1_membership_test_wf2(-,?,?,?,?,?). |
5080 | | in_closure1_membership_test_wf2([],_X,_Y,_,MemRes,_WF) :- MemRes=pred_false. |
5081 | | in_closure1_membership_test_wf2([(V,W)|Rest],X,Y,Discarded,MemRes,WF) :- % TO DO: Rest==[] --> |
5082 | | equality_objects_wf(V,X,VXResult,WF), |
5083 | | in_closure1_membership_test_wf3(VXResult,V,W,Rest,X,Y,Discarded,MemRes,WF). |
5084 | | |
5085 | | :- block in_closure1_membership_test_wf3(-,?,?,?,?,?,?,?,?). |
5086 | | in_closure1_membership_test_wf3(pred_false,V,W,Rest,X,Y,Discarded,MemRes,WF) :- |
5087 | | in_closure1_membership_test_wf2(Rest,X,Y,[(V,W)|Discarded],MemRes,WF). |
5088 | | in_closure1_membership_test_wf3(pred_true,V,W,Rest,X,Y,Discarded,MemRes,WF) :- % V=X |
5089 | | propagate_false(MemRes,WYResult), |
5090 | | % TODO: Res=[],Discarded=[] -> MemRes=WYResult |
5091 | | equality_objects_wf(W,Y,WYResult,WF), % MemRes = pred_false => WYResult = pred_false |
5092 | | in_closure1_membership_test_wf4(WYResult,V,W,Rest,X,Y,Discarded,MemRes,WF). |
5093 | | |
5094 | | :- block in_closure1_membership_test_wf4(-,?,?,?,?,?,?,?,?). |
5095 | | in_closure1_membership_test_wf4(pred_false,_V,W,Rest,X,Y,Discarded,MemRes,WF) :- |
5096 | | append(Discarded,Rest,Restart), |
5097 | | in_closure1_membership_test_wf2(Restart,W,Y,[],MemRes1,WF), |
5098 | | propagate_false(MemRes,MemRes1), % MemRes = pred_false -> MemRes1=pred_false |
5099 | | when(nonvar(MemRes1), |
5100 | | (MemRes1=pred_true -> MemRes=pred_true |
5101 | | ; in_closure1_membership_test_wf2(Rest,X,Y,Discarded,MemRes,WF) % (V,W) not in Discarded: was not useful |
5102 | | )). |
5103 | | in_closure1_membership_test_wf4(pred_true,_V,_W,_Rest,_X,_Y,_Discarded,MemRes,_WF) :- % W=Y |
5104 | | MemRes = pred_true. |
5105 | | /* ------------------ */ |
5106 | | |
5107 | | :- block propagate_false(-,?). |
5108 | | propagate_false(pred_false,pred_false). |
5109 | | propagate_false(pred_true,_). |
5110 | | |