1 | % (c) 2009-2024 Lehrstuhl fuer Softwaretechnik und Programmiersprachen, | |
2 | % Heinrich Heine Universitaet Duesseldorf | |
3 | % This software is licenced under EPL 1.0 (http://www.eclipse.org/org/documents/epl-v10.html) | |
4 | ||
5 | :- module(b_interpreter_check,[imply_test_boolean_expression/7, | |
6 | equiv_test_boolean_expression/7, | |
7 | equiv_bidrectional_test_boolean_expression/7, | |
8 | get_priority_of_boolean_expression/2, get_priority_of_boolean_expression2/2, | |
9 | b_check_boolean_expression/5,b_check_boolean_expression/7, | |
10 | ||
11 | /* some lower-level propagation predicates */ | |
12 | imply/3, imply_true/2, | |
13 | b_check_forall_wf/8, b_check_exists_wf/7, | |
14 | ||
15 | reify_closure_with_small_cardinality/5, | |
16 | ||
17 | register_predicate/6, | |
18 | norm_pred_check/2, norm_expr_check/2, norm_check/2, | |
19 | ||
20 | conjoin/6, disjoin/6, | |
21 | check_less_than_equal/3 | |
22 | ]). | |
23 | ||
24 | /* A version for checking the truth value of boolean-expressions, | |
25 | the result is instantiated with pred_true/pred_false as soon as the result is known */ | |
26 | /* Warning: does not cover all expressions */ | |
27 | /* It provides SMT-like performance, for predicates involving arithmetic comparisons (<,...), | |
28 | equality, disequality and membership/not_membership | |
29 | It is not restricted to CNF | |
30 | */ | |
31 | ||
32 | :- meta_predicate wd_delay(0,-,-,-). | |
33 | :- meta_predicate wd_delay_block(0,-,-,-,-,-). | |
34 | :- meta_predicate wd_delay_until_needed(-,0). | |
35 | :- meta_predicate wd_delay_until_needed_block(-,-,0). | |
36 | ||
37 | :- use_module(debug). | |
38 | :- use_module(self_check). | |
39 | :- use_module(error_manager). | |
40 | :- use_module(b_interpreter,[b_compute_expression/5, b_not_test_boolean_expression/6, b_test_boolean_expression/6, b_test_boolean_expression/4]). | |
41 | :- use_module(kernel_waitflags). | |
42 | ||
43 | ||
44 | :- use_module(kernel_objects,[less_than_direct/2, less_than_equal_direct/2]). | |
45 | ||
46 | :- use_module(kernel_equality). | |
47 | ||
48 | :- use_module(tools). | |
49 | ||
50 | :- use_module(module_information,[module_info/2]). | |
51 | :- module_info(group,interpreter). | |
52 | :- module_info(description,'This module provides a reified interpreter for certain predicates.'). | |
53 | ||
54 | ||
55 | ||
56 | ||
57 | :- block imply_test_boolean_expression(-, ?,?,?,?,?,?). % TO DO: pass at least Ai to it | |
58 | imply_test_boolean_expression(PredRes1,PredRes2, RHS,LocalState,State,WF,Ai) :- | |
59 | (PredRes1=PredRes2 | |
60 | -> b_test_boolean_expression(RHS,LocalState,State,WF,Ai,_) | |
61 | ; true | |
62 | ). | |
63 | ||
64 | :- block equiv_test_boolean_expression(-, ?,?,?,?,?,?). | |
65 | equiv_test_boolean_expression(PredRes,PredRes, RHS,LocalState,State,WF,Ai) :- !, | |
66 | b_test_boolean_expression(RHS,LocalState,State,WF,Ai,_). | |
67 | equiv_test_boolean_expression(_PredRes,_, RHS,LocalState,State,WF,Ai) :- | |
68 | b_not_test_boolean_expression(RHS,LocalState,State,WF,Ai,_). | |
69 | ||
70 | equiv_bidrectional_test_boolean_expression(PredResLHS,PredResRHS, _LHS,_RHS,_LocalState,_State,WF) :- | |
71 | PredResLHS=PredResRHS, | |
72 | (var(PredResLHS) | |
73 | -> % create a choice point to enumerate two possible solutions | |
74 | % important, e.g., for not((y > 0 & y * y > 20) <=> (y * y > 25 & y > 0)) | |
75 | get_last_wait_flag(equivalence,WF,LWF), | |
76 | enum_bool(PredResLHS,LWF) | |
77 | ; true). | |
78 | :- block enum_bool(-,-). | |
79 | enum_bool(pred_true,_). | |
80 | enum_bool(pred_false,_). | |
81 | /* | |
82 | :- block equiv_bidrectional_test_boolean_expression(-,-, ?,?,?,?,?). | |
83 | equiv_bidrectional_test_boolean_expression(PredResLHS,PredResRHS, LHS,RHS,LocalState,State,WF) :- | |
84 | ( PredResLHS == pred_true -> b_test_boolean_expression(RHS,LocalState,State,WF) | |
85 | ; PredResLHS == pred_false -> b_not_test_boolean_expression(RHS,LocalState,State,WF) | |
86 | ; PredResRHS == pred_true -> b_test_boolean_expression(LHS,LocalState,State,WF) | |
87 | ; PredResRHS == pred_false -> b_not_test_boolean_expression(LHS,LocalState,State,WF) | |
88 | ; add_error_fail(equiv,'Illegal values: ',equiv_bidrectional_test_boolean_expression(PredResLHS,PredResRHS)) | |
89 | ). | |
90 | */ | |
91 | ||
92 | % return starting priority for binary choice points; should be power of 2 | |
93 | get_priority_of_boolean_expression(priority(P),Prio) :- !, | |
94 | % case generated for disjoin by contains_fd_element, and not_in_difference_set_wf,not_in_intersection_set_wf,in_union_set_wf | |
95 | Prio=P. | |
96 | get_priority_of_boolean_expression(b(Expr,_,_Infos),Prio) :- !, | |
97 | % try to estimate a priority for performing a case split upon a predicate | |
98 | % i.e., forcing a predicate Expr to be true/false | |
99 | get_priority_of_boolean_expression2(Expr,Prio). | |
100 | get_priority_of_boolean_expression(E,Prio) :- | |
101 | add_internal_error('Boolean expression not properly wrapped: ',get_priority_of_boolean_expression(E,Prio)), | |
102 | get_priority_of_boolean_expression2(E,Prio). | |
103 | ||
104 | :- use_module(bsyntaxtree). | |
105 | get_priority_of_boolean_expression2(truth,1) :- !. %, nl,nl,print('TRUTH in disjunct/conjunct'),nl. | |
106 | get_priority_of_boolean_expression2(falsity,1) :- !. %, nl,nl,print('FALSITY in disjunct/conjunct'),nl. | |
107 | get_priority_of_boolean_expression2(_,R) :- | |
108 | preferences:preference(data_validation_mode,true), % in data validation mode we want to drive enumeration from data values only | |
109 | !, R=4096. | |
110 | get_priority_of_boolean_expression2(_,R) :- !, R=4. % force SMT style case-splitting; was 3 before using get_binary_choice_wait_flag_exp_backoff; raising this to 4 makes test 1358, 49 behave better (baload_R07 recognised possible) | |
111 | ||
112 | ||
113 | ||
114 | ||
115 | count_number_of_conjuncts(b(Expr,_,_Infos),Prio) :- !, | |
116 | count_number_of_conjuncts2(Expr,Prio). | |
117 | count_number_of_conjuncts(priority(_),Prio) :- !, Prio=1. | |
118 | count_number_of_conjuncts(B,Prio) :- | |
119 | add_internal_error('Expression not wrapped: ',count_number_of_conjuncts(B,Prio)),Prio=1. | |
120 | count_number_of_conjuncts2(conjunct(A,B),Nr) :- !, count_number_of_conjuncts(A,NA), | |
121 | count_number_of_conjuncts(B,NB), Nr is NA+NB. | |
122 | count_number_of_conjuncts2(norm_conjunct(_,RHS),Res) :- length(RHS,Len),!, | |
123 | Res is Len+1. | |
124 | count_number_of_conjuncts2(negation(A),Nr) :- !, count_number_of_disjuncts(A,Nr). | |
125 | count_number_of_conjuncts2(_,1). | |
126 | ||
127 | :- public count_number_of_disjuncts/2. %currently commented out above | |
128 | count_number_of_disjuncts(b(Expr,_,_Infos),Prio) :- !, | |
129 | count_number_of_disjuncts2(Expr,Prio). | |
130 | count_number_of_disjuncts(priority(_),Prio) :- !, Prio=1. | |
131 | count_number_of_disjuncts(B,Prio) :- | |
132 | add_internal_error('Expression not wrapped: ',count_number_of_disjuncts(B,Prio)),Prio=1. | |
133 | count_number_of_disjuncts2(disjunct(A,B),Nr) :- !, count_number_of_disjuncts(A,NA), | |
134 | count_number_of_disjuncts(B,NB), Nr is NA+NB. | |
135 | count_number_of_disjuncts2(norm_disjunct(_,RHS),Res) :- length(RHS,Len),!, | |
136 | Res is Len+1. | |
137 | count_number_of_disjuncts2(negation(A),Nr) :- !, count_number_of_conjuncts(A,Nr). | |
138 | count_number_of_disjuncts2(_,1). | |
139 | ||
140 | ||
141 | ||
142 | % we need to ensure that b_check_boolean_expression does not create a choice point on its own | |
143 | ||
144 | b_check_boolean_expression(b(Expr,_,Infos),LS,S,WF,Res) :- | |
145 | (composed(Expr) -> empty_avl(Ai) | |
146 | ; Ai = no_avl), % simple expression: no sharing is possible: no need to register expressions | |
147 | create_wfwd_needed(WF,WFD), | |
148 | b_check_boolean_expression2(Expr,Infos,LS,S,WFD,Res,Ai,_). | |
149 | ||
150 | composed(negation(_)). | |
151 | composed(conjunct(_,_)). | |
152 | composed(disjunct(_,_)). | |
153 | composed(implication(_,_)). | |
154 | composed(equivalence(_,_)). | |
155 | composed(let_predicate(_,_,_)). | |
156 | composed(lazy_let_pred(_,_,_)). | |
157 | ||
158 | b_check_boolean_expression(E,LS,S,WF,Res,Ai,Ao) :- | |
159 | % WFD adds information about WD context: wfwd(WF_store, ExpectedVal, Val,Infos) | |
160 | % when Val becomes nonvar: if Val==ExpectedVal we need the value of E, otherwise it should be discarded | |
161 | create_wfwd_needed(WF,WFD), | |
162 | b_check_boolean_expression1(E,LS,S,WFD,Res,Ai,Ao). | |
163 | ||
164 | b_check_boolean_expression0(WDE,WDV,Expr,LS,S,WF,Res,Ai,Ao) :- | |
165 | create_wfwd(WF,WDE,WDV,WFD), | |
166 | b_check_boolean_expression1(Expr,LS,S,WFD,Res,Ai,Ao). | |
167 | ||
168 | ||
169 | b_check_boolean_expression1(b(Expr,_,Infos),LS,S,WFD,Res,Ai,Ao) :- get_wd(WFD,WDE,WDV),!, | |
170 | % print('check : '), translate:print_bexpr(b(Expr,pred,Infos)),nl, | |
171 | (nonvar(WDV),WDE \= WDV % the expression is not needed | |
172 | -> Ai=Ao, | |
173 | (var(Res) | |
174 | -> Res=pred_false % set it to false, value does not matter; note: predicate is not reused | |
175 | ; true) | |
176 | ; b_check_boolean_expression2(Expr,Infos,LS,S,WFD,Res,Ai,Ao)). | |
177 | b_check_boolean_expression1(E,LS,S,WFD,Res,Ai,Ao) :- | |
178 | add_internal_error('Boolean expression not properly wrapped: ',b_check_boolean_expression1(E,LS,S,WFD,Res,Ai,Ao)), | |
179 | b_check_boolean_expression2(E,[],LS,S,WFD,Res,Ai,Ao). | |
180 | ||
181 | % normalise conjunction into flat list of conjuncts | |
182 | normalise_conjunct(b(E,_,Info)) --> normalise_conjunct2(E,Info). | |
183 | normalise_conjunct2(conjunct(A,B),_) --> !,normalise_conjunct(A),normalise_conjunct(B). | |
184 | normalise_conjunct2(F,Info) --> [b(F,pred,Info)]. | |
185 | ||
186 | construct_norm_conjunct(A,b(B,pred,Info)) :- construct_norm_conjunct2(A,B,Info). | |
187 | construct_norm_conjunct2([],truth,[]). | |
188 | construct_norm_conjunct2([H|T],Res,Info) :- | |
189 | (T==[] -> H=b(Res,pred,Info) ; Res=norm_conjunct(H,T),Info=[]). | |
190 | % TO DO: build up member(contains_wd_condition,Infos) | |
191 | ||
192 | ||
193 | % normalise disjunction into flat list of disjuncts | |
194 | normalise_disjunct(b(E,_,Info)) --> normalise_disjunct2(E,Info). | |
195 | normalise_disjunct2(disjunct(A,B),_) --> !,normalise_disjunct(A),normalise_disjunct(B). | |
196 | normalise_disjunct2(F,Info) --> [b(F,pred,Info)]. | |
197 | ||
198 | construct_norm_disjunct(A,b(B,pred,Info)) :- construct_norm_disjunct2(A,B,Info). | |
199 | construct_norm_disjunct2([],falsity,[]). | |
200 | construct_norm_disjunct2([H|T],Res,Info) :- | |
201 | (T==[] -> H=b(Res,pred,Info) ; Res=norm_disjunct(H,T),Info=[]). | |
202 | ||
203 | can_negate_expression(b(Expr,pred,I),b(NExpr,pred,I)) :- can_negate2(Expr,NExpr). | |
204 | can_negate2(equal(A,B),not_equal(A,B)). | |
205 | can_negate2(not_equal(A,B),equal(A,B)). | |
206 | can_negate2(member(A,B),not_member(A,B)). | |
207 | can_negate2(not_member(A,B),member(A,B)). | |
208 | can_negate2(subset(A,B),not_subset(A,B)). | |
209 | can_negate2(not_subset(A,B),subset(A,B)). | |
210 | can_negate2(subset_strict(A,B),not_subset_strict(A,B)). | |
211 | can_negate2(not_subset_strict(A,B),subset_strict(A,B)). | |
212 | can_negate2(greater_equal(A,B),less(A,B)). | |
213 | can_negate2(less(A,B),greater_equal(A,B)). | |
214 | can_negate2(less_equal(A,B),greater(A,B)). | |
215 | can_negate2(greater(A,B),less_equal(A,B)). | |
216 | can_negate2(less_real(A,B),less_equal_real(B,A)). | |
217 | can_negate2(less_equal_real(A,B),less_real(B,A)). | |
218 | ||
219 | b_check_boolean_expression2(truth,_,_,_,_WFD,Res,Ai,Ao) :- !,Res=pred_true, Ai=Ao. | |
220 | b_check_boolean_expression2(falsity,_,_,_,_WFD,Res,Ai,Ao) :- !,Res=pred_false, Ai=Ao. | |
221 | b_check_boolean_expression2(negation(BExpr),_,LocalState,State,WFD,Res,Ai,Ao) :- !, | |
222 | (can_negate_expression(BExpr,NBExpr) | |
223 | -> /* avoid introducing negate propagator; maybe not necessary */ | |
224 | b_check_boolean_expression1(NBExpr,LocalState,State,WFD,Res,Ai,Ao) | |
225 | ; negate(NR,Res), | |
226 | b_check_boolean_expression1(BExpr,LocalState,State,WFD,NR,Ai,Ao)). | |
227 | b_check_boolean_expression2(conjunct(LHS,RHS),CInfo,LocalState,State,WFD,Res,Ai,Ao) :- !, | |
228 | normalise_conjunct2(conjunct(LHS,RHS),CInfo,NormRes,[]), | |
229 | construct_norm_conjunct2(NormRes,NC,Info), | |
230 | b_check_boolean_expression2(NC,Info,LocalState,State,WFD,Res,Ai,Ao). | |
231 | b_check_boolean_expression2(norm_conjunct(LHS,RHS),_,LocalState,State,wfwd(WF,WDE,WDV,_),Res,Ai,Ao) :- !, | |
232 | construct_norm_conjunct(RHS,NC), | |
233 | conjoin(LR,RR,Res,LHS,NC,WF), | |
234 | create_wfwd(WF,WDE,WDV,WFD), | |
235 | b_check_boolean_expression1(LHS,LocalState,State,WFD,LR,Ai,Aii), | |
236 | propagagate_wfwd(WDE,WDV,GuardFlag,LR,pred_false), % if WDE/=WDV then set GuardFlag to pred_false; indicating to RHS that it is not needed also | |
237 | b_check_boolean_expression0(pred_true,GuardFlag,NC,LocalState,State,WF,RR,Aii,Ao). | |
238 | b_check_boolean_expression2(implication(LHS,RHS),_,LocalState,State,wfwd(WF,WDE,WDV,_),Res,Ai,Ao) :- !, | |
239 | imply(LR,RR,Res), | |
240 | create_wfwd(WF,WDE,WDV,WFD), | |
241 | b_check_boolean_expression1(LHS,LocalState,State,WFD,LR,Ai,Aii), | |
242 | propagagate_wfwd(WDE,WDV,GuardFlag,LR,pred_false), | |
243 | b_check_boolean_expression0(pred_true,GuardFlag,RHS,LocalState,State,WF,RR,Aii,Ao). | |
244 | b_check_boolean_expression2(equivalence(LHS,RHS),_,LocalState,State,WFD,Res,Ai,Ao) :- !, equiv(LR,RR,Res), | |
245 | b_check_boolean_expression1(LHS,LocalState,State,WFD,LR,Ai,Aii), | |
246 | b_check_boolean_expression1(RHS,LocalState,State,WFD,RR,Aii,Ao). | |
247 | b_check_boolean_expression2(disjunct(LHS,RHS),CInfo,LocalState,State,WFD,Res,Ai,Ao) :- !, | |
248 | normalise_disjunct2(disjunct(LHS,RHS),CInfo,NormRes,[]), | |
249 | construct_norm_disjunct2(NormRes,NC,Info), | |
250 | b_check_boolean_expression2(NC,Info,LocalState,State,WFD,Res,Ai,Ao). | |
251 | b_check_boolean_expression2(norm_disjunct(LHS,RHS),_,LocalState,State,wfwd(WF,WDE,WDV,_),Res,Ai,Ao) :- !, | |
252 | construct_norm_disjunct(RHS,NC), | |
253 | disjoin(LR,RR,Res,LHS,NC,WF), | |
254 | create_wfwd(WF,WDE,WDV,WFD), | |
255 | b_check_boolean_expression1(LHS,LocalState,State,WFD,LR,Ai,Aii), | |
256 | propagagate_wfwd(WDE,WDV,GuardFlag,LR,pred_true), | |
257 | b_check_boolean_expression0(pred_false,GuardFlag,NC,LocalState,State,WF,RR,Aii,Ao). | |
258 | b_check_boolean_expression2(let_predicate(Ids,AssignmentExprs,Pred),_Info,LocalState,State,WFD,Res,Ai,Ao) :- !, | |
259 | wd_set_up_localstate_for_let(Ids,AssignmentExprs,LocalState,State,LetState,WFD), | |
260 | Ao=Ai, % anything cached inside the LET may depend on Ids and should not be reused outside of LET, see test 2397 | |
261 | empty_avl(InnerAi), % we can only reuse predicates inside if Ids are fresh, see test 2398 | |
262 | b_check_boolean_expression1(Pred,LetState,State,WFD,Res,InnerAi,_). | |
263 | b_check_boolean_expression2(lazy_let_pred(Id,AssignmentExpr,Pred),_I,LocalState,State,wfwd(WF,WDE,WDV,_),Res,Ai,Ao) :- !, | |
264 | set_up_localstate([Id],[(Trigger,IdValue)],LocalState,LetState), | |
265 | b_interpreter:lazy_compute_expression(Trigger,AssignmentExpr,LocalState,State,IdValue,WF,Ai), | |
266 | create_wfwd(WF,WDE,WDV,WFD), | |
267 | b_check_boolean_expression1(Pred,LetState,State,WFD,Res,Ai,Ao). % Lazy lets always unique, we can pass Ai | |
268 | b_check_boolean_expression2(lazy_lookup_pred(Id),Info,LocalState,_State,WFD,Res,Ai,Ao) :- !, Ai=Ao, | |
269 | store:lookup_value_for_existing_id(Id,LocalState,(Trigger,Value)), % should normally only occur in LocalState; value introduced by lazy_let | |
270 | wd_delay(((Trigger,Value) = (pred_true,Res)), | |
271 | Res,b(lazy_lookup_pred(Id),pred,Info),WFD). | |
272 | b_check_boolean_expression2(value(V),_Info,_LocalState,_State,_WFD,Res,Ai,Ao) :- !, % this can occur when lazy_lookup_pred gets compiled by b_compiler | |
273 | Res=V,Ai=Ao. | |
274 | b_check_boolean_expression2(not_equal(LHS,RHS),Info,LocalState,State,WFD,Res,Ai,Ao) :- !, | |
275 | (negate_equal_false(LHS,RHS,LHS1,RHS1) | |
276 | -> /* X/=FALSE equivalent to X=TRUE */ | |
277 | b_check_boolean_expression3_pos(equal(LHS1,RHS1),Info,LocalState,State,WFD,Res,Ai,Ao) | |
278 | ; b_check_boolean_expression3_neg(equal(LHS,RHS),Info,LocalState,State,WFD,Res,Ai,Ao) | |
279 | ). | |
280 | b_check_boolean_expression2(equal(LHS,RHS),Info,LocalState,State,WFD,Res,Ai,Ao) :- !, | |
281 | (negate_equal_false(LHS,RHS,LHS1,RHS1) | |
282 | -> RHS1=b(boolean_true,boolean,[]), /* X/=FALSE equivalent to X=TRUE */ | |
283 | b_check_boolean_expression3_neg(equal(LHS1,RHS1),Info,LocalState,State,WFD,Res,Ai,Ao) | |
284 | ; b_check_boolean_expression3_pos(equal(LHS,RHS),Info,LocalState,State,WFD,Res,Ai,Ao) | |
285 | ). | |
286 | b_check_boolean_expression2(not_member(LHS,RHS),Info,LocalState,State,WFD,Res,Ai,Ao) :- !, | |
287 | b_check_boolean_expression3_neg(member(LHS,RHS),Info,LocalState,State,WFD,Res,Ai,Ao). | |
288 | b_check_boolean_expression2(not_subset(LHS,RHS),Info,LocalState,State,WFD,Res,Ai,Ao) :- !, | |
289 | b_check_boolean_expression3_neg(subset(LHS,RHS),Info,LocalState,State,WFD,Res,Ai,Ao). | |
290 | b_check_boolean_expression2(not_subset_strict(LHS,RHS),Info,LocalState,State,WFD,Res,Ai,Ao) :- !, | |
291 | b_check_boolean_expression3_neg(subset_strict(LHS,RHS),Info,LocalState,State,WFD,Res,Ai,Ao). | |
292 | b_check_boolean_expression2(greater(LHS,RHS),Info,LocalState,State,WFD,Res,Ai,Ao) :- !, | |
293 | b_check_boolean_expression3_pos(less(RHS,LHS),Info,LocalState,State,WFD,Res,Ai,Ao). | |
294 | b_check_boolean_expression2(greater_equal(LHS,RHS),Info,LocalState,State,WFD,Res,Ai,Ao) :- !, | |
295 | b_check_boolean_expression3_neg(less(LHS,RHS),Info,LocalState,State,WFD,Res,Ai,Ao). | |
296 | b_check_boolean_expression2(less_equal(LHS,RHS),Info,LocalState,State,WFD,Res,Ai,Ao) :- !, | |
297 | b_check_boolean_expression3_neg(less(RHS,LHS),Info,LocalState,State,WFD,Res,Ai,Ao). | |
298 | b_check_boolean_expression2(Pred,Infos,LocalState,State,WFD,Res,Ai,Ao) :- | |
299 | b_check_boolean_expression3_pos(Pred,Infos,LocalState,State,WFD,Res,Ai,Ao). | |
300 | ||
301 | ||
302 | % check whether one of the two arguments is FALSE | |
303 | % translate X/=FALSE -> X=TRUE for normalisation purposes | |
304 | negate_equal_false(b(boolean_false,boolean,_),E,E,b(boolean_true,boolean,[])). | |
305 | negate_equal_false(E,b(boolean_false,boolean,_),E,b(boolean_true,boolean,[])). | |
306 | ||
307 | b_check_boolean_expression3_pos(Pred,Infos,LocalState,State,WFD,Res,Ai,Ao) :- | |
308 | %print(register_predicate(WFD)),nl,portray_avl(Ai),nl, | |
309 | register_predicate_wfd(WFD,Pred,Infos,Res,Reused,Ai,Ai2), | |
310 | (Reused=true | |
311 | -> Ao=Ai2 % , print(reused_pred(Res,WFD,Infos)),nl | |
312 | ; b_check_boolean_expression4(Pred,Infos,LocalState,State,WFD,Ok,Res), | |
313 | (Ok=ok_to_store -> Ao=Ai2 ; Ao=Ai) | |
314 | ). | |
315 | ||
316 | b_check_boolean_expression3_neg(Pred,Infos,LocalState,State,WFD,NegRes,Ai,Ao) :- | |
317 | %print(register_neg_predicate(WFD,Infos,Pred)),nl, | |
318 | register_predicate_wfd(WFD,Pred,Infos,Res,Reused,Ai,Ai2), negate(Res,NegRes), | |
319 | (Reused=true | |
320 | -> Ao=Ai2 | |
321 | ; b_check_boolean_expression4(Pred,Infos,LocalState,State,WFD,Ok,Res), | |
322 | (Ok=ok_to_store -> Ao=Ai2 ; Ao=Ai) | |
323 | ). | |
324 | ||
325 | % Register a new predicate in the AVL tree if either forced or non-WD condition inside | |
326 | register_predicate_wfd(_,_,_,_,false,Ai,Ao) :- Ai = no_avl,!, Ai=Ao. | |
327 | register_predicate_wfd(_,_Pred,_Infos,_,false,Ai,Ao) :- | |
328 | preferences:preference(use_common_subexpression_elimination,true), | |
329 | preferences:preference(use_common_subexpression_also_for_predicates,true), | |
330 | preferences:preference(disprover_mode,false), % there are still a few things detected here that CSE does not detect (=FALSE,=TRUE,...) | |
331 | !, % CSE already statically detects these ( all of the time !?) | |
332 | Ai=Ao. | |
333 | register_predicate_wfd(WFWD,Pred,Infos,PredTruthVar,Reused,Ai,Ao) :- | |
334 | get_wd(WFWD,A,B), | |
335 | (A==B -> register_predicate_aux(Pred,PredTruthVar,Reused,Ai,Ao) % it will be evaluated; we can share it | |
336 | ; nonmember(contains_wd_condition,Infos) -> register_predicate_aux(Pred,PredTruthVar,Reused,Ai,Ao) | |
337 | % Pred is not guaranteed to be evaluated: WD-condition + not in forced WFD context (beware of exists!) | |
338 | ; register_predicate_aux(Pred,PredTruthVar,true,Ai,Ao) -> Reused=true % the predicate is already stored | |
339 | % Note: as predicate is already stored; no problem with WD; relevant for test 1959 | |
340 | ; Ai=Ao, Reused=false % not guaranteed to be evaluated: WD-condition + not in forced WFD context | |
341 | % ,print('NOT REGISTERING: '), translate:print_bexpr(Pred),nl | |
342 | ). | |
343 | ||
344 | :- assert_must_succeed((E=empty, %avl:empty_avl(E), | |
345 | A=b(value(_VAR),integer,[]), | |
346 | b_interpreter_check:register_predicate(equal(A,A),[],pred_true,Reused,E,A1), | |
347 | Reused==false, A1==empty)). % ensure we do not store non-var expressions | |
348 | :- assert_must_succeed((E=empty, %avl:empty_avl(E), | |
349 | A=b(value(int(1)),integer,[]), | |
350 | b_interpreter_check:register_predicate(equal(A,A),[],pred_true,Reused,E,A1), | |
351 | Reused==false, A1 \= empty, B=b(value(_),integer,[]), | |
352 | b_interpreter_check:register_predicate(equal(B,B),[],pred_true,Reuse2,A1,A2), | |
353 | Reuse2==false, A2==A1)). % ensure we do not look up non-var expressions | |
354 | :- assert_must_succeed((E=empty, %avl:empty_avl(E), | |
355 | A=b(value(int(1)),integer,[]), | |
356 | b_interpreter_check:register_predicate(equal(A,A),[info1],pred_true,Reused,E,A1), | |
357 | Reused==false, | |
358 | b_interpreter_check:register_predicate(equal(A,A),[info2],pred_true,Reuse2,A1,A2), | |
359 | Reuse2==true, A2==A1)). % ensure registering works | |
360 | ||
361 | % Register a new predicate in the AVL tree (for outside callers like b_interpreter.pl) | |
362 | register_predicate(Pred,_Infos,NegPredTruthVar,Reused,Ai,Ao) :- negate_pred(Pred,NegPred),!, | |
363 | %print(negating),nl, | |
364 | negate(PredTruthVar,NegPredTruthVar), | |
365 | register_predicate_aux(NegPred,PredTruthVar,Reused,Ai,Ao). | |
366 | register_predicate(Pred,_Infos,PredTruthVar,Reused,Ai,Ao) :- | |
367 | register_predicate_aux(Pred,PredTruthVar,Reused,Ai,Ao). | |
368 | ||
369 | negate_typed_pred(b(A,pred,_),NegA) :- negate_pred(A,NegA). | |
370 | negate_pred(equal(A,B),equal(AA,TRUE)) :- negate_equal_false(A,B,AA,TRUE). | |
371 | negate_pred(not_equal(A,B),equal(A,B)). % TO DO: we should check negate_equal_false | |
372 | negate_pred(not_member(A,B),member(A,B)). | |
373 | negate_pred(not_subset(A,B),subset(A,B)). | |
374 | negate_pred(not_subset_strict(A,B),subset_strict(A,B)). | |
375 | negate_pred(greater_equal(A,B),less(A,B)). | |
376 | negate_pred(less_equal(A,B),less(B,A)). | |
377 | negate_pred(negation(b(A,pred,_)),A). | |
378 | ||
379 | % to do: detect convert_bool(Pred) = X and register Pred? | |
380 | register_predicate_aux(Pred,_PredTruthVar,Reused,Ai,Ao) :- do_not_store_pred(Pred), | |
381 | !, | |
382 | Ai=Ao, Reused=false. | |
383 | register_predicate_aux(Pred,PredTruthVar,Reused,Ai,Ao) :- check_pred_truth_var(PredTruthVar), | |
384 | norm_pred_check(Pred,NPred), % We could store this information in the info field computed by ast_cleanup ? | |
385 | (%too_simple(NPred) -> Reused=false, Ao=Ai ; %% even for simple equalities it actually pays off ! | |
386 | reuse_predicate(NPred,Var,Ai) | |
387 | -> % nl,print(reusing(NPred,Var)),nl, %% | |
388 | PredTruthVar=Var,Ao=Ai, Reused=true | |
389 | ; add_predicate(NPred,PredTruthVar,Ai,Ao), Reused=false | |
390 | %,nl,print(not_reusing(NPred)),nl | |
391 | ). | |
392 | ||
393 | check_pred_truth_var(X) :- var(X),!. | |
394 | check_pred_truth_var(pred_true) :- !. | |
395 | check_pred_truth_var(pred_false) :- !. | |
396 | check_pred_truth_var(X) :- add_internal_error('Illegal Predicate Truth Value: ',check_pred_truth_var(X)). | |
397 | ||
398 | :- use_module(kernel_tools,[ground_bexpr/1]). | |
399 | do_not_store_pred(external_pred_call(_P,_)) :- !. % expcept maybe LESS, CHOOSE,... we could check performs_io | |
400 | do_not_store_pred(B) :- | |
401 | (ground_bexpr(b(B,pred,[])) | |
402 | % TO DO: improve performance: marking bexpr with potential non-ground value(.) terms inside | |
403 | % maybe avoid registering predicates with very large values inside | |
404 | % avoid registering predicate if it is the only one in a closure | |
405 | -> fail | |
406 | ; true %print('-> Not storing: '),translate:print_bexpr(b(B,pred,[])),nl | |
407 | ). | |
408 | ||
409 | ||
410 | % Quantifier Expansion | |
411 | ||
412 | b_check_forall_wf(Parameters,LHS,RHS,Info,LocalState,State,WF,PredRes) :- | |
413 | create_wfwd_needed(WF,WFD), % we expect it to be in a context where the value will be needed | |
414 | b_check_forall_wfwd(Parameters,LHS,RHS,Info,LocalState,State,WFD,PredRes). | |
415 | b_check_forall_wfwd(_Parameters,LHS,RHS,_Info,_LocalState,_State,_WFD,PredRes) :- | |
416 | (is_falsity(LHS) ; is_truth(RHS)),!, % quantifier always true | |
417 | PredRes = pred_true. | |
418 | b_check_forall_wfwd(Parameters,LHS,RHS,Info,LocalState,State,WFD,PredRes) :- | |
419 | small_quantifier_cardinality(Parameters,LHS,LHS1,LHSRest), | |
420 | %print(expand(forall(Parameters))),nl, | |
421 | expand_quantifier(Parameters,LHS1,List,forall,Info), %print(List),nl, | |
422 | Body = b(implication(LHSRest,RHS),pred,Info),% translate:print_bexpr(Body),nl, | |
423 | get_wf(WFD,WF), | |
424 | check_expanded_forall_quantifier(List,Body, LocalState, State,WF,WFD,PredRes). | |
425 | % TO DO: if not small_quantifier_cardinality: b_check_boolean_expression4_delay | |
426 | ||
427 | ||
428 | b_check_exists_wf(Parameters,Body,Info,LocalState,State,WF,PredRes) :- | |
429 | create_wfwd_needed(WF,WFD), % we expect it to be in a context where the value will be needed | |
430 | b_check_exists_wfwd(Parameters,Body,Info,LocalState,State,WFD,_,PredRes). | |
431 | b_check_exists_wfwd(Parameters,Body,Info,LocalState,State,WFD,ok_to_store,PredRes) :- | |
432 | % could be generalised to take into consideration domain as restricted by Body | |
433 | small_quantifier_cardinality(Parameters,Body,LHS,RHS),!, | |
434 | % print(expanding_check_exists(_Card,Parameters)),nl, % portray_waitflags(WF), | |
435 | expand_quantifier(Parameters,LHS,List,exists,Info), | |
436 | % now compute a priority for the disjunction based on the number of case splits | |
437 | % relevant for tests 1358, 1746 | |
438 | length(List,Len), % Note: if Len=1: the body must be true; no disjoin will be set up | |
439 | get_pow2_binary_choice_priority(Len,Prio), | |
440 | % if Len=2 -> we actually have just two possibilities T,_ and F,T; but we want Prio to start at 4 ? | |
441 | % if Len=3 -> we have T,_,_ ; F,T,_ ; F,F,T less possibilites if disjoin enumerated from left-to-right; TO DO: should we lower the priority taking this into account ? | |
442 | % TO DO: maybe we could directly set up an n-ary disjoin predicate; | |
443 | % if one disjunct true; remove case-splits on other disjuncts | |
444 | get_wf(WFD,WF), | |
445 | check_expanded_exists_quantifier(List,Prio,RHS, LocalState, State,WF,WFD,PredRes). | |
446 | b_check_exists_wfwd(Parameters,Body,Infos,LocalState,State,wfwd(WF,WDE,WDV,ContextInfo),do_not_store,PredRes) :- | |
447 | % the above reification has not worked; we now "pretend" that reification worked | |
448 | % and introduce a delayed choice point | |
449 | % do_not_store means that the predicate result should not be re-used somewhere else, because | |
450 | % as the predicate evaluation is delayed it may later not be needed and not evaluated, cf test 2404 | |
451 | ContextInfo \= outer_wfwd_context, % at the outer-level interpreter expects reification succeeds only if | |
452 | % at least top-level operator was reified deterministically, | |
453 | % important for tests 1074, 1338, 1358, 1915 with this clause enabled | |
454 | % test 305 #x.(x + x = 1000) now works, but not 1739 (timeout) | |
455 | reify_inner_exists_non_deterministically, % hence we currently only use it in data validation mode | |
456 | % here we enumerate reification variables with a much lower priority (data driven enumeration) | |
457 | % (see get_binary_choice_wait_flag_exp_backoff) | |
458 | % this clause relevant for 0323/CCSL/TYPES_AUTORISES_RVF3_GEN__MRGA.mch | |
459 | Pred = exists(Parameters,Body), | |
460 | perfmessage(reify,reifiying_inner_exists_non_deterministically(Parameters),Infos), | |
461 | b_check_boolean_expression4_delay(WDE,WDV,Pred,Infos,LocalState,State,WF,PredRes). | |
462 | ||
463 | % true if we allow reification of exists which cannot be expanded | |
464 | % by delayed non-det enumeration (of pred_false, pred_true) if exists is not at top-level | |
465 | reify_inner_exists_non_deterministically :- preferences:preference(data_validation_mode,true). | |
466 | ||
467 | ||
468 | :- use_module(b_enumerate, [b_tighter_enumerate_values_in_ctxt/3]). | |
469 | expand_quantifier(Parameters,Pred,ListOfNewLocalStates,QuantKind,Span) :- | |
470 | % at the moment LS,State not really needed; only necessary if non-compiled Pred can be used | |
471 | % also: feeding in any non-bound variables in LocalState or State would cause problems in findall ! | |
472 | findall(ParLocalState, | |
473 | (b_interpreter:set_up_typed_localstate(Parameters,ParaValues,ParamTypedVals, | |
474 | [],ParLocalState,all_solutions), | |
475 | kernel_waitflags:init_wait_flags_with_call_stack(WF, | |
476 | [quantifier_call(QuantKind,Parameters,ParaValues,Span)]), | |
477 | b_test_boolean_expression(Pred,[],ParLocalState,WF), | |
478 | b_tighter_enumerate_values_in_ctxt(ParamTypedVals,Pred,WF), | |
479 | kernel_waitflags:ground_wait_flags(WF)), | |
480 | ListOfNewLocalStates). | |
481 | ||
482 | % a version which ensures that we have unique solutions of the bindings | |
483 | expand_quantifier_normalised(Parameters,Pred,ListOfNewLocalStates,QuantKind,Span) :- | |
484 | expand_quantifier(Parameters,Pred,List,QuantKind,Span), | |
485 | normalise_local_states(List,NList), | |
486 | sort(NList,ListOfNewLocalStates). % will remove duplicates | |
487 | ||
488 | normalise_local_states([],[]). | |
489 | normalise_local_states([State|T],[NS|NT]) :- | |
490 | convert_bindings_to_avl(State,NS), | |
491 | normalise_local_states(T,NT). | |
492 | ||
493 | :- use_module(custom_explicit_sets,[convert_to_avl/2]). | |
494 | convert_bindings_to_avl([],[]). | |
495 | convert_bindings_to_avl([bind(Var,Val)|T],[bind(Var,NVal)|NT]) :- | |
496 | (convert_to_avl(Val,NVal) -> true ; add_internal_error('Cannot normalise:',Val),fail), | |
497 | convert_bindings_to_avl(T,NT). | |
498 | ||
499 | check_expanded_forall_quantifier([], _Body, _LS, _State,_WF,_WFD,Res) :- | |
500 | Res=pred_true. | |
501 | check_expanded_forall_quantifier([LS1|TLS], Body, LS, State,WF,WFD,Res) :- | |
502 | conjoin(Res1,TRes,Res,Body,Body,WF), | |
503 | empty_avl(InnerAi), % TO DO: maybe use no_avl ? | |
504 | append(LS1,LS,InnerLS), | |
505 | % Note: we do not need to guard against wd-definition from other instances inside a quantified expression | |
506 | % either all conjuncts can be evaluated or none | |
507 | % print(expand_forall(WFD)), translate:print_bexpr(Body),nl, | |
508 | b_check_boolean_expression1(Body,InnerLS,State,WFD,Res1,InnerAi,_Aii), | |
509 | %instantiate_wfwd_result(WDE,WDV,Res1), | |
510 | check_expanded_forall_quantifier(TLS,Body,LS,State,WF,WFD,TRes). | |
511 | ||
512 | /* | |
513 | :- block instantiate_wfwd_result(?,-,-). | |
514 | % instantiate a boolean variable in case it is no longer needed and not set by something else | |
515 | instantiate_wfwd_result(WDE,WDV,Res) :- | |
516 | (nonvar(Res) -> true | |
517 | ; WDE==WDV -> true | |
518 | ; Res = pred_false). */ | |
519 | ||
520 | check_expanded_exists_quantifier([], _, _Body, _LS, _State,_WF,_WFD,Res) :- | |
521 | Res=pred_false. | |
522 | check_expanded_exists_quantifier([LS1|TLS], Priority, Body, LS, State,WF,WFD,Res) :- | |
523 | (TLS = [] -> Res=Res1 | |
524 | ; disjoin(Res1,TRes,Res,priority(Priority),priority(Priority),WF)), % was using Body instead of priority(Priority) | |
525 | empty_avl(InnerAi), % TO DO: maybe use no_avl ? | |
526 | append(LS1,LS,InnerLS), | |
527 | b_check_boolean_expression1(Body,InnerLS,State,WFD,Res1,InnerAi,_Aii), | |
528 | % Note: we do not need to guard against wd-definition from other instances inside a quantified expression | |
529 | check_expanded_exists_quantifier(TLS,Priority,Body,LS,State,WF,WFD,TRes). | |
530 | ||
531 | ||
532 | % try and convert a closure into a list of 0/1 variables for each potential element | |
533 | reify_closure_with_small_cardinality(P,T,Body, WF,ReifiedList) :- %print(try(P)),nl, | |
534 | create_typed_ids(P,T,Parameters), | |
535 | small_quantifier_cardinality(Parameters,Body,LHS,RHS,350,25000), % TO DO: how to choose these parameters ? | |
536 | % for card({x|x:1..n & x mod 3=0})=c & n=24000 -> 340 ms with reification; 320 ms without; n=74000 : 1020 ms without, 1160 with reification | |
537 | % but there is a big difference for card({x|x:1..n & x mod 3=0 & x<10}) with n=74000 : 0 ms without reification, 1580 with; n=500: 20 ms with reification; n=250: 10 ms with reification | |
538 | expand_quantifier_normalised(Parameters,LHS,List,comprehension_set,Body), | |
539 | % important to normalise and have unique solutions for cardinality reification, | |
540 | % see tests 639, 640 for card(POW(SS)-{{}}) with SS full set | |
541 | create_wfwd_needed(WF,WFD), % is this ok ?? | |
542 | reifiy_list(List,RHS,WFD,ReifiedList). | |
543 | ||
544 | ||
545 | ||
546 | reifiy_list([], _Body,_WFD,[]). | |
547 | reifiy_list([LS1|TLS], Body,WFD,[Res_01|TRes]) :- | |
548 | empty_avl(InnerAi), | |
549 | b_check_boolean_expression1(Body,LS1,[],WFD,Res1_pred,InnerAi,_Aii), | |
550 | prop_pred_01(Res1_pred,Res_01), | |
551 | %format(' reify ~w : ~w~n',[Res_01,LS1]), | |
552 | % Note: we do not need to guard against wd-definition from other instances inside a quantified expression | |
553 | reifiy_list(TLS,Body,WFD,TRes). | |
554 | ||
555 | ||
556 | ||
557 | :- use_module(library(lists),[select/3]). | |
558 | ||
559 | % check if Body produces a small cardinality for the paramters Par | |
560 | % if yes: the predicates constraining Par are put into LHS, the rest into RHS | |
561 | % also: LHS must ensure that ground values are produced for Par and that we can enumerate with a separate WF (in expand_quantifier) | |
562 | small_quantifier_cardinality(Par,Body,LHS,RHS) :- | |
563 | %preferences:preference(solver_strength,SS), NL is 10+SS, SMTL is 40+SS, | |
564 | NL=10,SMTL=40, | |
565 | small_quantifier_cardinality(Par,Body,LHS,RHS,NL,SMTL). % was 10,35; raising it to 10,41 makes tests 1441, 1442 fail due to expansion of exists; raising it to 16,50 makes test 1112 fail; TO DO: investigate | |
566 | small_quantifier_cardinality(Par,Body,LHS,RHS,NormalLimit,SMTLimit) :- | |
567 | conjunction_to_list(Body,BodyList), | |
568 | def_get_texpr_ids(Par,AllParas), | |
569 | small_quantifier_cardinality_aux(Par,AllParas,BodyList,_UpBoundOnSize,LLHS,LRHS,NormalLimit,SMTLimit), | |
570 | conjunct_predicates_with_pos_info(LLHS,LHS), | |
571 | conjunct_predicates_with_pos_info(LRHS,RHS). | |
572 | ||
573 | is_membership_or_eq(b(P,pred,Info),TLHS,RHS,Info) :- is_mem_aux(P,TLHS,RHS). | |
574 | is_mem_aux(member(TLHS,b(RHS,_,_)),TLHS,RHS). | |
575 | %is_mem_aux(subset(SONE,b(RHS,_,_)),TLHS,RHS) :- singleton_set_extension(SONE,TLHS). | |
576 | is_mem_aux(equal(TLHS,b(value(V),_,_)),TLHS,value([V])). % x = V is the same as x:{V} | |
577 | %TODO: use :- use_module(bsyntaxtree,[is_membership_or_equality/3]). % will create set_extension | |
578 | ||
579 | % do not rely on size for anything: it is just an upper bound on the size; the actual size could be smaller | |
580 | small_quantifier_cardinality_aux([],_,Body,Size,LHS,RHS,_,_) :- !, | |
581 | LHS=[],RHS=Body,Size=1. | |
582 | small_quantifier_cardinality_aux(Parameters,AllParas,[LHS|TBody],FullSize,FullLHS,FullRHS,NormalLimit,SMTLimit) :- | |
583 | is_membership_or_eq(LHS,SID,MemRHS,Info), | |
584 | constrains_ID(SID,AllParas,Parameters,RestParameters,SkelVal,SkelToUnify,BindList), % we could check RestParameters /= Parameters | |
585 | % TO DO: we could also allow parameter to be constrained twice x: 1..100 & x: {...} ? | |
586 | (is_small_set(MemRHS,Size,NormalLimit,SMTLimit,Info) % we have a small set of ground values: we can evaluate LHS to expand the quantifier/set_comprehension for the parameters occuring in LHS | |
587 | -> FullLHS = [LHS|RestLHS],FullRHS = RestRHS | |
588 | ; infer_ground_membership(MemRHS,SID,SkelVal,SkelToUnify,BindList,NormalLimit,SMTLimit, Size,InferredLHS) -> | |
589 | % we have inferred a superset InferredLHS of MemRHS which is small and known | |
590 | FullLHS = [InferredLHS|RestLHS], % we have added an inferred membership constraint | |
591 | FullRHS = [LHS|RestRHS]), % the original membership LHS still needs to be checked later, after expansion of the quantifier | |
592 | !, | |
593 | % we select LHS to be included in FullLHS and mark parameter ID as constrained | |
594 | small_quantifier_cardinality_aux(RestParameters,AllParas,TBody,RestSize,RestLHS,RestRHS,NormalLimit,SMTLimit), | |
595 | FullSize is Size*RestSize, | |
596 | is_small_size(FullSize,NormalLimit,SMTLimit, Parameters). | |
597 | small_quantifier_cardinality_aux(Parameters,AllParas,[H|Rest],FullSize,RestLHS,[H|RestRHS],NormalLimit,SMTLimit) :- !, | |
598 | % skip the conjunct H | |
599 | small_quantifier_cardinality_aux(Parameters,AllParas,Rest,FullSize,RestLHS,RestRHS,NormalLimit,SMTLimit). | |
600 | small_quantifier_cardinality_aux(Parameters,_AllParas,Body,ParCard,[],Body,NormalLimit,SMTLimit) :- | |
601 | % if the remaining parameter type cardinality is small: just use "truth" as body; will instantiate parameters | |
602 | b_interpreter:parameter_list_cardinality(Parameters,ParCard), | |
603 | is_small_size(ParCard,NormalLimit,SMTLimit, Parameters). | |
604 | ||
605 | % try and extract a ground superset (InferredLHS) of the RHS (ID:RHS) which constrains ID | |
606 | infer_ground_membership(value(List),SID,SkelVal,SkelToUnify,BindList,NormalLimit,SMTLimit, Size,InferredLHS) :- | |
607 | !, | |
608 | % the List is probably not ground; let's try and see if we can extract ground matches for the parameters at least; see test 1627 (s=1..20 & x: s-->BOOL & card({t|t|->TRUE:x}):18..19) | |
609 | extract_bind_list(BindList,LHSTerm,RHSValue), | |
610 | has_bounded_ground_matches(List,SkelVal,SkelToUnify,RHSValue,MatchedValues,1,NrMatches), % TO DO: provide SMTLimit as upper limit | |
611 | NrMatches = Size, | |
612 | is_small_size(Size,NormalLimit,SMTLimit, SID), | |
613 | get_texpr_type(LHSTerm,LHSTermType), | |
614 | InferredLHS = b(member(LHSTerm,b(value(MatchedValues),set(LHSTermType),[])),pred,[generated]). | |
615 | infer_ground_membership(Set,SID,SkelVal,SkelToUnify,BindList,NormalLimit,SMTLimit,Size,InferredLHS) :- | |
616 | superset(Set,SuperSet), | |
617 | % e.g., if ID: {1} /\ x -> InferredLHS = {1} and we will add ID : {1} to the LHS of the quantifier and keep ID : {1} /\ x as the RHS | |
618 | infer_ground_mem_aux(SuperSet,SID,SkelVal,SkelToUnify,BindList,NormalLimit,SMTLimit,Size,InferredLHS). | |
619 | ||
620 | ||
621 | superset(intersection(A,B),Set) :- (Set=A ; Set=B). % Set /\ X <: Set | |
622 | superset(set_subtraction(Set,_),Set). % Set \ X <: Set | |
623 | superset(domain_restriction(_,Set),Set). % X <| Set <: Set | |
624 | superset(domain_subtraction(_,Set),Set). % X <<| Set <: Set | |
625 | superset(range_subtraction(Set,_),Set). % Set |> X <: Set | |
626 | superset(range_restriction(Set,_),Set). % Set |>> X <: Set | |
627 | ||
628 | infer_ground_mem_aux(b(Set,T,I),SID,SkelVal,SkelToUnify,BindList,NormalLimit,SMTLimit, Size,InferredLHS) :- | |
629 | (is_small_set(Set,Size,NormalLimit,SMTLimit,I) | |
630 | -> InferredLHS = b(member(SID,b(Set,T,I)),pred,[generated]) | |
631 | ; infer_ground_membership(Set,SID,SkelVal,SkelToUnify,BindList,NormalLimit,SMTLimit, Size,InferredLHS)). | |
632 | ||
633 | :- use_module(bsyntaxtree, [create_couple/3]). | |
634 | % extract result of constrains_ID BindList into an Expression-Tuple for new membership constraint and a value that will be put into a value(List) | |
635 | extract_bind_list([TID/Val],TID,Val) :- !. | |
636 | extract_bind_list([TID/Val|BList],Couple,(Val,RestVal)) :- | |
637 | create_couple(TID,RestExpr,Couple), | |
638 | extract_bind_list(BList,RestExpr,RestVal). | |
639 | ||
640 | :- use_module(kernel_tools,[can_match/2]). | |
641 | % check if we can find a bounded / fixed number of ground matches for Skeleton Value in List | |
642 | has_bounded_ground_matches(Var,_,_,_, _,_,_) :- var(Var),!. | |
643 | has_bounded_ground_matches([],_SkelVal,_SkelToUnify,_,[],LenAcc,LenAcc). | |
644 | has_bounded_ground_matches([H|T],SkelVal,SkelToUnify,ValueToStore,Matches,LenAcc,LenRes) :- | |
645 | (can_match(H,SkelVal) -> copy_term((SkelToUnify,ValueToStore),(H,HValueToStore)), | |
646 | ground_value(HValueToStore), | |
647 | Matches = [HValueToStore|MT], | |
648 | A1 is LenAcc+1 ; Matches=MT,A1=LenAcc), | |
649 | has_bounded_ground_matches(T,SkelVal,SkelToUnify,ValueToStore,MT,A1,LenRes). | |
650 | ||
651 | % check if the Expr contains ID, i.e., matching Expr with an element of a set will also instantiate and determine TID | |
652 | % TO DO: also accept other patterns: records, sets?,.... | |
653 | ||
654 | % SkeletonToUnify: a skeleton that can be used to unify with any value and extracts value in BindList | |
655 | constrains_ID(b(E,_,_),AllParas,Parameters,RestParameters,SkeletonValue,SkeletonToUnify,BindList) :- | |
656 | constrains_ID_aux(E,AllParas,Parameters,RestParameters,SkeletonValue,SkeletonToUnify,BindList). | |
657 | constrains_ID_aux(couple(A,B),AllParas,Parameters,RestParameters,(V1,V2),(Skel1,Skel2),Bind) :- | |
658 | constrains_ID(A,AllParas,Parameters,Rest1,V1,Skel1,Bind1), | |
659 | constrains_ID(B,AllParas,Rest1,RestParameters,V2,Skel2,Bind2), | |
660 | append(Bind1,Bind2,Bind). % TO DO: use DCGs | |
661 | constrains_ID_aux(rec(F),AllParas,Parameters,RestParameters,record(SkelV),record(SkelU),Bind) :- | |
662 | constrains_ID_fields(F,AllParas,Parameters,RestParameters,SkelV,SkelU,Bind). | |
663 | constrains_ID_aux(identifier(ID),AllParas,Parameters,RestParameters,_SkelV,SkelU,Bind) :- | |
664 | % TO DO: allow same id to appear multiple times in expression + allow to re-use parameters in another conjunct | |
665 | ? | (select(TID,Parameters,RestParameters), get_texpr_id(TID,ID) |
666 | -> Bind = [TID/SkelU] | |
667 | ; member(ID,AllParas), % we have already used/bound ID; we will use first occurence for skeleton/bind; this one is simply ignored | |
668 | % TO DO: we could try and see whether using the second occurence gives a better result | |
669 | RestParameters=Parameters, Bind=[] | |
670 | ). | |
671 | constrains_ID_aux(value(V),_AllParas,P,P,V,_,[]) :- ground_value(V).% if not ground value we may not be able to compute all possible values for ID | |
672 | constrains_ID_aux(boolean_true,_AllParas,P,P,pred_true,pred_true,[]). % needed ?? everything is compiled anway ? | |
673 | constrains_ID_aux(boolean_false,_AllParas,P,P,pred_false,pred_false,[]). % needed ?? everything is compiled anway ? | |
674 | % Below: allow any other expression as long as it only uses AllParas | |
675 | % e.g. x+1 in : s: 1..20 --> (BOOL*(1..20)) & card({x|x|->(TRUE|->x):s})=10 & card({x|x|->(FALSE|->x+1):s})=10 | |
676 | constrains_ID_aux(add(A,B),AllParas,P,P,_,_,[]) :- % basically allow other Parameters or ground values | |
677 | constrains_ID(A,AllParas,[],[],_,_,_), constrains_ID(B,AllParas,[],[],_,_,_). | |
678 | constrains_ID_aux(minus(A,B),AllParas,P,P,_,_,[]) :- % TO DO: allow other binary/unary operators ? | |
679 | constrains_ID(A,AllParas,[],[],_,_,_), constrains_ID(B,AllParas,[],[],_,_,_). | |
680 | %constrains_ID_aux(Other,All,P,P,_,_,[]) :- print(other(Other)),nl,fail. | |
681 | ||
682 | constrains_ID_fields([],_AllParas,P,P,[],[],[]). | |
683 | constrains_ID_fields([field(Field,Val)|TF],AllParas,Parameters,RestParameters, | |
684 | [field(Field,SkelVal)|TSkelV],[field(Field,SkelUnify)|TSkelU],Bind) :- | |
685 | constrains_ID(Val,AllParas,Parameters,Rest1,SkelVal,SkelUnify,Bind1), | |
686 | constrains_ID_fields(TF,AllParas,Rest1,RestParameters,TSkelV,TSkelU,Bind2), | |
687 | append(Bind1,Bind2,Bind). % TO DO: use DCGs | |
688 | ||
689 | :- use_module(custom_explicit_sets,[efficient_card_for_set/3]). | |
690 | ||
691 | ||
692 | is_small_set(Val,Size,NormalLimit,SMTLimit,SrcLoc) :- | |
693 | get_small_set_size(Val,Size), | |
694 | is_small_size(Size,NormalLimit,SMTLimit,SrcLoc). | |
695 | ||
696 | :- use_module(kernel_card_arithmetic,[safe_mul/3]). | |
697 | :- use_module(kernel_tools,[ground_value/1]). | |
698 | get_small_set_size(value(S),Size) :- !, | |
699 | ground_value(S), % otherwise we could have S=[X] and expand_quantifier will erroneously create multiple solutions for parameter=X | |
700 | efficient_card_for_set(S,Size,C), | |
701 | call(C). | |
702 | get_small_set_size(interval(From,To),Size) :- !, | |
703 | custom_explicit_sets:is_interval_with_integer_bounds(interval(From,To),Low,Up), | |
704 | number(Low), number(Up), | |
705 | (Low > Up -> Size = 1 ; Size is 1+Up-Low). | |
706 | % we provide dom/ran here explicitly as this is often used {i|i:dom(f) ...} | |
707 | get_small_set_size(bool_set,Size) :- !, Size=2. | |
708 | get_small_set_size(domain(b(Val,_,_)),Size) :- !, | |
709 | get_small_domain_set_size(Val,Size). % this is only an upper bound on the size !! | |
710 | get_small_set_size(range(b(Val,_,_)),Size) :- !, | |
711 | get_small_set_size(Val,Size). % this is only an upper bound on the size !! | |
712 | get_small_set_size(cartesian_product(b(A,_,_),b(B,_,_)),Size) :- !, | |
713 | get_small_set_size(A,SizeA), number(SizeA), | |
714 | get_small_set_size(B,SizeB), number(SizeB), | |
715 | safe_mul(SizeA,SizeB,Size), number(Size). | |
716 | ||
717 | %get_small_set_size(set_extension(L),Size,_,_,_) :- !, length(L,Size), is_small_size(Size). what if elements itself notknown ?? probably the case as otherwise this would have been compiled into a value | |
718 | %get_small_set_size(sequence_extension(L),Size,_,_,_) :- !, length(L,Size), is_small_size(Size). ditto | |
719 | %get_small_set_size(interval... | |
720 | %get_small_set_size(domain(value([....]))... | |
721 | % for this to work efficiently one should call b_compiler:compile on the predicates before sending them | |
722 | % to b_interpreter_check; otherwise the sets will not yet be in value(_) form | |
723 | ||
724 | % TO DO: the same for range or find more principled solution | |
725 | %get_small_domain_set_size(value(S),Size) :- var(S), frozen(S,Frozen), print(var_value(S,Frozen)),nl,fail. | |
726 | get_small_domain_set_size(value(Val),Size) :- nonvar(Val), Val=[H|T],!, | |
727 | efficient_card_for_set([H|T],Size,C), | |
728 | ground_domain([H|T]), % rather than requiring ground of entire list; we only require ground for domain (see test 1272) | |
729 | call(C). | |
730 | get_small_domain_set_size(Val,Size) :- | |
731 | get_small_set_size(Val,Size). | |
732 | ground_domain(V) :- var(V),!,fail. | |
733 | ground_domain([]). | |
734 | ground_domain([H|T]) :- | |
735 | nonvar(H), H=(D,_), | |
736 | ground_value(D), ground_domain(T). | |
737 | ||
738 | :- use_module(performance_messages). | |
739 | is_small_size(Size,NormalLimit,SMTLimit,SrcLoc) :- number(Size), %Size \= inf, | |
740 | (Size < NormalLimit -> true | |
741 | ; preferences:preference(use_smt_mode,true) | |
742 | -> preference(solver_strength,SS), | |
743 | (Size < SMTLimit + SS | |
744 | -> true | |
745 | ; perfmessage(reify,'Not reifiying quantifier, try increasing SOLVER_STRENGTH: ','>'(Size,'+'(SMTLimit,SS)),SrcLoc), | |
746 | fail | |
747 | ) | |
748 | ; perfmessage(reify,'Not reifiying quantifier, try setting SMT preference: ','>'(Size,limit(NormalLimit)),SrcLoc), | |
749 | fail | |
750 | ). | |
751 | ||
752 | % ------------------------------------- | |
753 | % EXPRESSIONS | |
754 | ||
755 | :- use_module(store,[set_up_localstate/4]). | |
756 | ||
757 | wd_set_up_localstate_for_let(Ids,Exprs,LocalState,State,LetState,WFD) :- | |
758 | set_up_localstate(Ids,Vars,LocalState,LetState), | |
759 | wd_compute_let_expressions(Exprs,Vars,LetState,State,WFD). | |
760 | wd_compute_let_expressions([],[],_,_,_). | |
761 | wd_compute_let_expressions([Expr|RestExprs],[Var|RestVars],LocalState,State,WFD) :- | |
762 | b_wd_compute_expression(Expr,LocalState,State,Value,WFD), | |
763 | kernel_objects:equal_object_optimized(Var,Value,compute_let_expressions), | |
764 | wd_compute_let_expressions(RestExprs,RestVars,LocalState,State,WFD). | |
765 | ||
766 | ||
767 | % compute a Prolog list of expressions: | |
768 | b_wd_compute_expressions([], _, _, [],_WFD). | |
769 | b_wd_compute_expressions([EXPRsHd|EXPRsTl],LocalState,State,[ValHd|ValTl],WFD) :- | |
770 | b_wd_compute_expression(EXPRsHd,LocalState,State,ValHd,WFD), | |
771 | b_wd_compute_expressions(EXPRsTl,LocalState,State,ValTl,WFD). | |
772 | ||
773 | % we have to avoid trying to compute certain expressions: evaluation can fail if not well-defined ! | |
774 | b_wd_compute_expression(Expr,LocalState,State,Value,wfwd(WF,WDE,WDV,_)) :- !, | |
775 | (nonvar(WDV) | |
776 | -> (WDE==WDV | |
777 | -> % print('REQUIRED: '), translate:print_bexpr(Expr),nl, | |
778 | if(b_compute_expression(Expr,LocalState,State,Value,WF), % TO DO: we could use fresh variable for Value | |
779 | true, | |
780 | (kernel_objects:unbound_value(Value), % we have a WD error, if nonvar it could be because we expect a wrong value | |
781 | add_wd_error_span('Well-definedness error evaluating expression: ',Expr,span_predicate(Expr,LocalState,State),WF) | |
782 | %Value = term(undefined), | |
783 | ) | |
784 | ) | |
785 | ; instantiate_to_any_value(Value,Expr,WF)) | |
786 | ; always_wd_no_fail_nor_error(Expr) | |
787 | -> % print('ALWAYS WD: '), translate:print_bexpr(Expr),nl, % | |
788 | b_compute_expression(Expr,LocalState,State,Value,WF) | |
789 | ; b_compiler:b_optimize(Expr,[],LocalState,State,CExpr,WF), | |
790 | % try compiling; this will inline values and may make the expression well_defined; relevant for test 2013 | |
791 | (always_wd_no_fail_nor_error(CExpr) | |
792 | % it is important that this computation cannot fail and cannot raise any errors | |
793 | % an example showing this is :wde f=[2,4] & xx:1..3 & (xx=1 or f(xx-1)=4) with -p TRY_FIND_ABORT TRUE | |
794 | % even though the whole expression is well-defined, the function call f(xx-1) does lead | |
795 | % to an error with xx=1 | |
796 | -> b_compute_expression(CExpr,LocalState,State,Value,WF) | |
797 | ; % print('DELAYING DUE TO WD: '), translate:print_bexpr(CExpr),nl, %% | |
798 | b_compute_expression_delay(WDE,WDV, CExpr,LocalState,State,Value,WF) | |
799 | ) | |
800 | ). | |
801 | b_wd_compute_expression(Expr,LocalState,State,Value,WFD) :- | |
802 | add_internal_error('Illegal WFD value: ', b_wd_compute_expression(Expr,LocalState,State,Value,WFD)),fail. | |
803 | ||
804 | ||
805 | always_wd_no_fail_nor_error(Expr) :- | |
806 | always_well_defined(Expr). | |
807 | % should not use always_well_defined_or_disprover_mode or WD discharged information! | |
808 | ||
809 | :- block b_compute_expression_delay(?,-, ?,?,?,?,?). | |
810 | b_compute_expression_delay(WDE,WDV,Expr,LocalState,State,Value,WF) :- | |
811 | (WDE==WDV | |
812 | -> % print('WD Evaluation: '), print(WDE),print(' =?= '), print(WDV), print(' '),translate:print_bexpr(Expr),nl, | |
813 | b_compute_expression(Expr,LocalState,State,Value,WF) | |
814 | ; %print(instantiate_to_any_value(Value,Expr)),nl, | |
815 | instantiate_to_any_value(Value,Expr,WF) % does not matter anyway; but there can be pending co-routines :-( | |
816 | ). | |
817 | ||
818 | % WARNING: the variable could be used in another context, where it is relevant ! | |
819 | ||
820 | ||
821 | wd_delay(WDCall,Res, Expr,wfwd(WF,WDExpected,WDV,_)) :- | |
822 | (WDExpected==WDV -> call(WDCall) % WDV truth value on left is ok: we can evaluate | |
823 | ; nonvar(WDV) -> instantiate_to_any_value(Res,Expr,WF) % truth value not ok; we do not need the value | |
824 | ; always_wd_no_fail_nor_error(Expr) -> call(WDCall) | |
825 | ; wd_delay_block(WDCall,Res,Expr,WDExpected,WDV,WF)). | |
826 | :- block wd_delay_block(?,?,?,?,-,?). | |
827 | wd_delay_block(WDCall,Res,Expr,WDExpected,WDV,WF) :- | |
828 | (WDExpected==WDV -> call(WDCall) | |
829 | ; instantiate_to_any_value(Res,Expr,WF)). | |
830 | ||
831 | ||
832 | :- use_module(typing_tools,[any_value_for_type/2]). | |
833 | :- use_module(kernel_tools,[ground_value_check/2]). | |
834 | %instantiate_to_any_value(V,E,_) :- print(instantiate_to_any_value(V)),nl,translate:print_bexpr(E),nl,nl,fail. | |
835 | instantiate_to_any_value(V,_,_) :- ground_value(V),!. | |
836 | instantiate_to_any_value(V,b(_B,TYPE,_I),WF) :- | |
837 | get_enumeration_finished_wait_flag(WF,EWF), | |
838 | ground_value_check(V,GV), | |
839 | blocking_any_value_for_type(EWF,GV,TYPE,V). | |
840 | ||
841 | :- block blocking_any_value_for_type(-,-,?,?). | |
842 | blocking_any_value_for_type(_,_,TYPE,V) :- any_value_for_type(TYPE,V). % , print(inst2(TYPE,V)),translate:print_bexpr(b(_B,TYPE,_I)),nl. | |
843 | ||
844 | ||
845 | :- block propagagate_wfwd(-,?,?,-,?), propagagate_wfwd(?,-,?,-,?). | |
846 | % propagate expected and actual value guarding left with actual predicate value obtained for left | |
847 | propagagate_wfwd(WDE,WDV,Res,F1,F2) :- | |
848 | (F1==F2 -> Res=F1 % then value of WDE does not matter at all; Res always the same | |
849 | ; propagagate_wfwd2(WDE,WDV,Res,F1,F2)). | |
850 | ||
851 | :- block propagagate_wfwd2(-,?,?,?,?), propagagate_wfwd2(?,-,?,?,?). | |
852 | propagagate_wfwd2(WDE,WDV,Res,F1,F2) :- (WDE==WDV -> Res=F1 ; Res=F2). | |
853 | ||
854 | :- use_module(external_functions,[external_fun_has_wd_condition/1]). | |
855 | :- use_module(preferences). | |
856 | b_check_boolean_expression4(exists(Parameters,Body),Info,LocalState,State,WFD,OkToStore,Res) :- !, | |
857 | if(b_check_exists_wfwd(Parameters,Body,Info,LocalState,State,WFD,OkToStore,Res),true, | |
858 | (perfmessagecall(reify,cannot_reify_exists(Parameters),translate:print_bexpr(Body),Body), | |
859 | fail)). | |
860 | b_check_boolean_expression4(Pred,Infos,LocalState,State,WFD,ok_to_store,Res) :- | |
861 | b_check_boolean_expression4_ok(Pred,Infos,LocalState,State,WFD,Res). | |
862 | ||
863 | b_check_boolean_expression4_ok(equal(LHS,RHS),_,LocalState,State,WFD,EqRes) :- !, | |
864 | b_wd_compute_expression(LHS,LocalState,State,LHValue,WFD), | |
865 | b_wd_compute_expression(RHS,LocalState,State,RHValue,WFD), | |
866 | get_texpr_type(LHS,Type), get_wf(WFD,WF), | |
867 | equality_objects_with_type_wf(Type,LHValue,RHValue,EqRes,WF). | |
868 | % we may need to improve not_member for closure to invert symbolic operators | |
869 | b_check_boolean_expression4_ok(member(LHS,RHS),Info,LocalState,State,WFD,Res) :- | |
870 | %member_check_should_be_reified(LHS,RHS), % no longer need this: symbolic operators will be kept as closures if large ?! | |
871 | !, | |
872 | get_texpr_expr(RHS,ERHS), | |
873 | b_check_member_expression(ERHS,RHS,LHS,Info,LocalState,State,WFD,Res). | |
874 | % TO DO: compile forall, exists + setup choice point if expansion fails + remove compile calls in b_interpreter | |
875 | b_check_boolean_expression4_ok(forall(Parameters,LHS,RHS),Info,LocalState,State,WFD,Res) :- !, | |
876 | if(b_check_forall_wfwd(Parameters,LHS,RHS,Info,LocalState,State,WFD,Res),true, | |
877 | (perfmessagecall(reify,cannot_reify_forall(Parameters),translate:print_bexpr(LHS),LHS), | |
878 | fail)). | |
879 | b_check_boolean_expression4_ok(subset(LHS,RHS),_,LocalState,State,WFD,Res) :- !, get_wf(WFD,WF), | |
880 | b_wd_compute_expression(LHS,LocalState,State,LHValue,WFD), | |
881 | b_wd_compute_expression(RHS,LocalState,State,RHValue,WFD), | |
882 | subset_test(LHValue,RHValue,Res,WF). | |
883 | b_check_boolean_expression4_ok(subset_strict(LHS,RHS),_,LocalState,State,WFD,Res) :- !, get_wf(WFD,WF), | |
884 | b_wd_compute_expression(LHS,LocalState,State,LHValue,WFD), | |
885 | b_wd_compute_expression(RHS,LocalState,State,RHValue,WFD), | |
886 | subset_strict_test(LHValue,RHValue,Res,WF). | |
887 | b_check_boolean_expression4_ok(external_pred_call(FunName,Args),Info,LocalState,State,WFD,Res) :- | |
888 | !, | |
889 | (external_fun_has_wd_condition(FunName) | |
890 | -> wd_delay_until_needed(WFD,b_check_external_pred_call(FunName,Args,Info,LocalState,State,WFD,Res)) | |
891 | ; b_check_external_pred_call(FunName,Args,Info,LocalState,State,WFD,Res)). | |
892 | b_check_boolean_expression4_ok(freetype_case(FT,IsCase,Expr),_Infos,LocalState,State,WFD,Res) :- !, | |
893 | b_wd_compute_expression(Expr,LocalState,State,freeval(FT,ActualCase,_A),WFD), | |
894 | eq_atomic(IsCase,ActualCase,freeval_case,Res). | |
895 | b_check_boolean_expression4_ok(finite(Expr),_Infos,LocalState,State,WFD,Res) :- !, get_wf(WFD,WF), | |
896 | b_wd_compute_expression(Expr,LocalState,State,ExprVal,WFD), | |
897 | kernel_objects:test_finite_set_wf(ExprVal,Res,WF). | |
898 | b_check_boolean_expression4_ok(partition(Expr,ListOfSets),_Infos,LocalState,State,WFD,Res) :- !, get_wf(WFD,WF), | |
899 | b_wd_compute_expression(Expr,LocalState,State,ExprVal,WFD), | |
900 | b_wd_compute_expressions(ListOfSets,LocalState,State,PartitionList,WFD), % arg is a Prolog list, not a set | |
901 | kernel_objects:test_partition_wf(ExprVal,PartitionList,Res,WF). | |
902 | b_check_boolean_expression4_ok(Pred,_,LocalState,State,WFD,Res) :- | |
903 | arithmetic_op(Pred,Op,LHS,RHS),!, | |
904 | b_wd_compute_expression(LHS,LocalState,State,int(LHValue),WFD), | |
905 | b_wd_compute_expression(RHS,LocalState,State,int(RHValue),WFD), | |
906 | check_arithmetic_operator(Op,LHValue,RHValue,Res). | |
907 | b_check_boolean_expression4_ok(Pred,_,LocalState,State,WFD,Res) :- | |
908 | real_arithmetic_op(Pred,Op,LHS,RHS),!, | |
909 | b_wd_compute_expression(LHS,LocalState,State,LHValue,WFD), | |
910 | b_wd_compute_expression(RHS,LocalState,State,RHValue,WFD), | |
911 | get_wf(WFD,WF), | |
912 | real_comp_wf(Op,LHValue,RHValue,Res,WF). | |
913 | % TO DO ???: use idea of b_artihmetic_expression to avoid intermediate CLPFD variables | |
914 | % TO DO: add other operators, ... | |
915 | /* use_smt_mode = full is never set; at some point we should enable the following clause by default | |
916 | b_check_boolean_expression4_ok(Pred,Infos,LocalState,State,wfwd(WF,WDE,WDV,ContextInfos),Res) :- | |
917 | % preferences:preference(use_smt_mode,full), %% comment out to enable check testing of complicated predicates inside; | |
918 | % caused slowdowns of cbtc/actions_cbtc.mch (test 1751); but no longer the case | |
919 | functor(Pred,F,N),format('~n Cannot reify ~w/~w~n~n',[F,N]),fail, | |
920 | %ContextInfo \= outer_wfwd_context, | |
921 | b_check_boolean_expression4_delay(WDE,WDV,Pred,Infos,LocalState,State,WF,Res). | |
922 | */ | |
923 | ||
924 | :- use_module(library(lists),[maplist/3]). | |
925 | % TO DO: add member(,pow_subset, fin_subset) --> subset_test | |
926 | % we could distribute RHS=union -> disjunction, LHS=intersection -> conjunction ,... ? | |
927 | %b_check_member_expression(EHRS,_RHS,_LHS,_,_LocalState,_State,_WFD,_Res) :- | |
928 | % print('member : '), print(EHRS),nl,fail. | |
929 | %b_check_member_expression(union(A,B),LHS,_,LocalState,State,WFD,Res) :- | |
930 | b_check_member_expression(pow_subset(RHS),_,LHS,_Info,LocalState,State,WFD,Res) :- !, | |
931 | b_check_boolean_expression4_ok(subset(LHS,RHS),[],LocalState,State,WFD,Res). | |
932 | %b_check_member_expression(NotContainingEmptySet,_TRHS,LHS,LocalState,State,WFD,Res) :- | |
933 | % non_empty_set_version_of(NotContainingEmptySet,RHS_With_EmptySet), | |
934 | % % translate x:seq1(RHS) -> x /= {} & x:seq(RHS), ... | |
935 | % % this improves propagation, in particular in light of WD issues | |
936 | % % TO DO: avoid computing LHS twice ! | |
937 | % !, | |
938 | % get_texpr_type(LHS,LType), | |
939 | % EMPTYVERSION = b(member(LHS,b(RHS_With_EmptySet,set(LType),[])),pred,[]), | |
940 | % NOTEMPTYPRED = b(not_equal(LHS,b(empty_set,LType,[])),pred,[]), | |
941 | % print('Translating : '), translate:print_bexpr(EMPTYVERSION), print(' & '), translate:print_bexpr(NOTEMPTYPRED),nl, | |
942 | % empty_avl(Ai), Infos=[], % Infos not important for conjunction | |
943 | % b_check_boolean_expression2(conjunct(EMPTYVERSION,NOTEMPTYPRED),Infos,LocalState,State,WFD,Res,Ai,_). | |
944 | b_check_member_expression(interval(Low,Up),_,LHS,_Info,LocalState,State,WFD,Res) :- !, get_wf(WFD,WF), | |
945 | % to do: should we also match interval value closure | |
946 | b_wd_compute_expression(LHS,LocalState,State,LHValue,WFD), | |
947 | b_wd_compute_expression(Low,LocalState,State,LowValue,WFD), | |
948 | b_wd_compute_expression(Up,LocalState,State,UpValue,WFD), | |
949 | kernel_objects:test_in_nat_range_wf(LHValue,LowValue,UpValue,Res,WF). | |
950 | b_check_member_expression(set_extension(SetExt),_RHS,LHS,_Info,LocalState,State,WFD,Res) :- !, get_wf(WFD,WF), | |
951 | % rewrite x:{a,b,c} into x=a or x=b or x=c (is the opposite of rewrite_disjunct_to_member) | |
952 | % The rewrite_disjunct_to_member is good when we know a membership to be true; the disjunct is better for reification | |
953 | % Note: the problem is in particular when the result of the membership is not needed and an uninstantiated | |
954 | % variable is used in the set extension, example y:dom(f) => (x:{f(y),0} or f(y)=0) | |
955 | % print(mem_check_set_extension),print(' '),translate:print_bexpr(b(member(LHS,_RHS),pred,[])),nl, | |
956 | b_wd_compute_expressions(SetExt,LocalState,State,SetExtValues,WFD), | |
957 | b_wd_compute_expression(LHS,LocalState,State,LHValue,WFD), | |
958 | get_texpr_type(LHS,Type), | |
959 | NewLHS = b(value(LHValue),Type,[]), | |
960 | (ground_value(SetExtValues) | |
961 | -> % better to use normal treatment, we can compute the entire set and translate it into an AVL tree | |
962 | maplist(construct_value(Type),SetExtValues,Vals), | |
963 | b_wd_compute_expression(b(set_extension(Vals),set(Type),[]),LocalState,State,RHValue,WFD), | |
964 | membership_test_wf(RHValue,LHValue,Res,WF), | |
965 | force_membership_test(Res,LHValue,RHValue,WF) | |
966 | ; maplist(construct_equality(NewLHS,Type),SetExtValues,Disjuncts), | |
967 | construct_norm_disjunct2(Disjuncts,NC,InfoNC), | |
968 | empty_avl(Ai), | |
969 | b_check_boolean_expression2(NC,InfoNC,LocalState,State,WFD,Res,Ai,_) | |
970 | ). | |
971 | b_check_member_expression(closure(Relation),_RHS,LHS,Info,LocalState,State,WFD,Res) :- !, get_wf(WFD,WF), | |
972 | b_wd_compute_expression(LHS,LocalState,State,LHValue,WFD), | |
973 | b_wd_compute_expression(Relation,LocalState,State,RelValue,WFD), | |
974 | opt_push_wait_flag_call_stack_info(WF,b_operator_call(member, | |
975 | [LHValue,b_operator(closure,[RelValue])],Info),WF2), % this is closure1 | |
976 | bsets_clp:in_closure1_membership_test_wf(LHValue,RelValue,Res,WF2). | |
977 | b_check_member_expression(partial_function(Dom,Range),_RHS,LHS,Info,LocalState,State,WFD,Res) :- !, get_wf(WFD,WF), | |
978 | b_wd_compute_expression(LHS,LocalState,State,LHValue,WFD), | |
979 | b_wd_compute_expression(Dom,LocalState,State,DomValue,WFD), | |
980 | b_wd_compute_expression(Range,LocalState,State,RangeValue,WFD), | |
981 | opt_push_wait_flag_call_stack_info(WF,b_operator_call(member, | |
982 | [LHValue,b_operator(partial_function,[DomValue,RangeValue])],Info),WF2), | |
983 | bsets_clp:partial_function_test_wf(LHValue,DomValue,RangeValue,Res,WF2). | |
984 | b_check_member_expression(total_function(Dom,Range),_RHS,LHS,Info,LocalState,State,WFD,Res) :- !, get_wf(WFD,WF), | |
985 | b_wd_compute_expression(LHS,LocalState,State,LHValue,WFD), | |
986 | b_wd_compute_expression(Dom,LocalState,State,DomValue,WFD), | |
987 | b_wd_compute_expression(Range,LocalState,State,RangeValue,WFD), | |
988 | opt_push_wait_flag_call_stack_info(WF,b_operator_call(member, | |
989 | [LHValue,b_operator(total_function,[DomValue,RangeValue])],Info),WF2), | |
990 | bsets_clp:total_function_test_wf(LHValue,DomValue,RangeValue,Res,WF2). | |
991 | b_check_member_expression(partial_surjection(Dom,Range),_RHS,LHS,Info,LocalState,State,WFD,Res) :- !, get_wf(WFD,WF), | |
992 | b_wd_compute_expression(LHS,LocalState,State,LHValue,WFD), | |
993 | b_wd_compute_expression(Dom,LocalState,State,DomValue,WFD), | |
994 | b_wd_compute_expression(Range,LocalState,State,RangeValue,WFD), | |
995 | opt_push_wait_flag_call_stack_info(WF,b_operator_call(member, | |
996 | [LHValue,b_operator(partial_surjection,[DomValue,RangeValue])],Info),WF2), | |
997 | bsets_clp:partial_surjection_test_wf(LHValue,DomValue,RangeValue,Res,WF2). | |
998 | b_check_member_expression(seq1(SeqType),_RHS,LHS,Info,LocalState,State,WFD,Res) :- !, get_wf(WFD,WF), | |
999 | b_wd_compute_expression(LHS,LocalState,State,LHValue,WFD), | |
1000 | b_wd_compute_expression(SeqType,LocalState,State,SeqTValue,WFD), | |
1001 | opt_push_wait_flag_call_stack_info(WF,b_operator_call(member, | |
1002 | [LHValue,b_operator(seq1,[SeqTValue])],Info),WF2), | |
1003 | bsets_clp:test_finite_non_empty_sequence(LHValue,SeqTValue,Res,WF2). | |
1004 | % TODO: more sequence checks | |
1005 | b_check_member_expression(_Arg,RHS,LHS,_Info,LocalState,State,WFD,Res) :- get_wf(WFD,WF), | |
1006 | b_wd_compute_expression(LHS,LocalState,State,LHValue,WFD), | |
1007 | b_wd_compute_expression(RHS,LocalState,State,RHValue,WFD), | |
1008 | membership_test_wf(RHValue,LHValue,Res,WF), | |
1009 | %(var(Res) -> add_message(reify,member,LHS,_Info) ; true), | |
1010 | force_membership_test(Res,LHValue,RHValue,WF). | |
1011 | ||
1012 | % ------------------------- | |
1013 | ||
1014 | % wfwd/4 add information about WD context to a WF store: wfwd(WF_store, ExpectedVal, Val,Infos) | |
1015 | % when Val becomes nonvar: if Val==ExpectedVal we need the value of E, otherwise it should be discarded | |
1016 | ||
1017 | % get WF store from WFD record | |
1018 | get_wf(wfwd(WF,_,_,_),Res) :- !, Res=WF. | |
1019 | get_wf(WFD,WF) :- add_internal_error('Illegal WFD store: ',get_wf(WFD,WF)), | |
1020 | WF = no_wf_available. | |
1021 | ||
1022 | % get expected PredicateResult and actual value; if both identical the associated expression is needed | |
1023 | get_wd(wfwd(_,WDExpected,WDVal,_),WDE,WDV) :- !, (WDExpected,WDVal)=(WDE,WDV). | |
1024 | get_wd(WFWD,WDE,WDV) :- add_internal_error('Illegal WFWD info:',get_wd(WFWD,WDE,WDV)), WDE=pred_true,WDV=pred_true. | |
1025 | ||
1026 | % create a WFWF construct for an expression that is needed and where reification should only succeed | |
1027 | % if the top-level construct at least can be fully reified (without non-determinism) | |
1028 | create_wfwd_needed(WF,wfwd(WF,pred_true,pred_true,outer_wfwd_context)). | |
1029 | ||
1030 | create_wfwd(WF,WDExpected,WDVal,wfwd(WF,WDExpected,WDVal,inner_wfwd_context)). | |
1031 | ||
1032 | :- public portray_wfwd/1. | |
1033 | portray_wfwd(wfwd(_,WDExpected,WDVal,Ctxt)) :- | |
1034 | format('Sub-formula required if ~w is expected ~w (ctxt: ~w)~n',[WDVal,WDExpected,Ctxt]). | |
1035 | ||
1036 | % ---------------------- | |
1037 | ||
1038 | construct_value(Type,Val,b(value(Val),Type,[])). | |
1039 | ||
1040 | :- use_module(bsyntaxtree, [safe_create_texpr/3]). | |
1041 | construct_equality(NewLHS,Type,ElementV,Equality) :- | |
1042 | Element = b(value(ElementV),Type,[]), | |
1043 | safe_create_texpr(equal(NewLHS,Element),pred,Equality). %, translate:print_bexpr(Equality),nl. | |
1044 | ||
1045 | %non_empty_set_version_of(seq1(RHS),seq(RHS)). | |
1046 | %non_empty_set_version_of(iseq1(RHS),iseq(RHS)). | |
1047 | %non_empty_set_version_of(fin1_subset(RHS),fin_subset(RHS)). | |
1048 | %non_empty_set_version_of(pow1_subset(RHS),pow_subset(RHS)). | |
1049 | ||
1050 | ||
1051 | :- block b_check_boolean_expression4_delay(?,-,?,?,?,?,?,?). | |
1052 | % currently only used for existential quantified predicates in data_validation_mode | |
1053 | b_check_boolean_expression4_delay(WDE,WDV,_Pred,_Infos,_,_,_WF,Res) :- WDE \= WDV, | |
1054 | % no need to check reify_inner_exists_non_deterministically, as we have marked _Pred as do_not_store | |
1055 | % ignoring (not evaluating) predicate | |
1056 | !, | |
1057 | Res=pred_false. % does not matter here (but Res could have been in another context, see above and test 2404) | |
1058 | b_check_boolean_expression4_delay(_WDE,_WDV,Pred,Infos,LocalState,State,WF,Res) :- | |
1059 | % we currently have not yet implemented a way to check the Pred; wait until Result is known | |
1060 | (preferences:preference(use_smt_mode,false) | |
1061 | -> get_last_wait_flag(b_check_test_boolean_expression,WF,WF2) | |
1062 | ; get_binary_choice_wait_flag(b_check_test_boolean_expression,WF,WF2) | |
1063 | ), | |
1064 | (debug:debug_mode(on) -> print(' Check Testing: '),translate:print_bexpr(Pred),nl ; true), | |
1065 | b_check_test_boolean_expression(Res,WF2,b(Pred,pred,Infos),LocalState,State,WF). | |
1066 | ||
1067 | :- block b_check_test_boolean_expression(-,-,?,?,?,?). | |
1068 | %b_check_test_boolean_expression(P,LWF,Pred,LocalState,State,WF) :- write(check_test4(P,LWF)),nl,fail. | |
1069 | b_check_test_boolean_expression(pred_true,_,Pred,LocalState,State,WF) :- | |
1070 | b_test_boolean_expression(Pred,LocalState,State,WF). | |
1071 | b_check_test_boolean_expression(pred_false,_,Pred,LocalState,State,WF) :- | |
1072 | b_interpreter:b_not_test_boolean_expression(Pred,LocalState,State,WF). | |
1073 | ||
1074 | ||
1075 | /* | |
1076 | :- use_module(kernel_mappings). | |
1077 | member_check_should_be_reified(_,b(RHS,_,_)) :- functor(RHS,BOP,Arity), print(check(BOP,Arity)),nl,!. | |
1078 | member_check_should_be_reified(_,_) :- \+ preferences:preference(use_smt_mode,false),!. | |
1079 | member_check_should_be_reified(_LHS,b(RHS,_,_)) :- functor(RHS,BOP,Arity), | |
1080 | % check if we have optimized treatments available, for which we do not yet have reified versions | |
1081 | (Arity=1 -> \+ kernel_mappings:unary_in_boolean_type(BOP,_) | |
1082 | ; Arity=2 -> \+ kernel_mappings:binary_in_boolean_type(BOP,_) | |
1083 | ; Arity=0 -> \+ kernel_mappings:cst_in_boolean_type(BOP,_) | |
1084 | ; true). | |
1085 | */ | |
1086 | ||
1087 | ||
1088 | :- block force_membership_test(-,?,?,?). | |
1089 | % currently required for ensuring that following fails: | |
1090 | % kernel_objects:union(closure(['_zzzz_unit_tests'],[integer],b(member(b(identifier('_zzzz_unit_tests'),integer,[generated]),b(value([int(3),int(4)]),set(integer),[])),pred,[])),closure(['_zzzz_unit_tests'],[integer],b(member(b(identifier('_zzzz_unit_tests'),integer,[generated]),b(value([int(2),int(1)]),set(integer),[])),pred,[])),[int(1),int(3),int(2)]) | |
1091 | % Reason: membership_test does not on its own enumerate | |
1092 | force_membership_test(pred_true,X,Set,WF) :- | |
1093 | Set \= [], | |
1094 | (ground_value(X) -> true | |
1095 | ; nonvar(Set),no_use_forcing(Set) -> true % no use in forcing membership, will call same element_of_avl_set_wf | |
1096 | ; kernel_objects:check_element_of_wf(X,Set,WF) | |
1097 | ). | |
1098 | force_membership_test(pred_false,_X,_Set,_WF). | |
1099 | ||
1100 | % forcing is sometimes useful because we can transmit a WF, currently some of the reification predicates | |
1101 | % do not have a WF-Store and can thus do limited enumeration ! in particular true for CLPFD = FALSE mode | |
1102 | no_use_forcing(avl_set(_)) :- preferences:preference(use_clpfd_solver,true). | |
1103 | no_use_forcing(global_set(_)). | |
1104 | %no_use_forcing(closure(_,_,B)) :- preferences:preference(use_clpfd_solver,true). | |
1105 | ||
1106 | ||
1107 | ||
1108 | :- use_module(external_functions,[call_external_predicate/8, do_not_evaluate_args/1]). | |
1109 | b_check_external_pred_call(FunName,Args,Info,LocalState,State,WFD,Res) :- | |
1110 | get_wf(WFD,WF), | |
1111 | (do_not_evaluate_args(FunName) -> EvaluatedArgs=[] | |
1112 | ; b_wd_compute_expressions(Args, LocalState,State, EvaluatedArgs, WFD)), | |
1113 | push_wait_flag_call_stack_info(WF,external_call(FunName,EvaluatedArgs,Info),WF2), | |
1114 | call_external_predicate(FunName,Args,EvaluatedArgs,LocalState,State,Res,Info,WF2). | |
1115 | ||
1116 | wd_delay_until_needed(WFWD,Call) :- | |
1117 | get_wd(WFWD,WDExpected,WDV), | |
1118 | wd_delay_until_needed_block(WDExpected,WDV,Call). | |
1119 | :- block wd_delay_until_needed_block(-,?,?), wd_delay_until_needed_block(?,-,?). | |
1120 | wd_delay_until_needed_block(WDExpected,WDV,Call) :- WDExpected==WDV,!, | |
1121 | call(Call). | |
1122 | wd_delay_until_needed_block(_,_,_). % first call not needed | |
1123 | ||
1124 | ||
1125 | :- use_module(library(avl)). | |
1126 | reuse_predicate(_,_,no_avl) :- !,fail. | |
1127 | reuse_predicate(Pred,Var,AVL) :- | |
1128 | avl_fetch(Pred,AVL,Var),!. %pred_var(Var)). | |
1129 | reuse_predicate(Pred,Var,AVL) :- %print(check(Pred)),nl, portray_avl(AVL),nl, | |
1130 | preferences:preference(use_smt_mode,true), % it does not seem very expensive; we could always enable it | |
1131 | implied_by(Pred,Val,OtherPred,OVal), | |
1132 | avl_fetch(OtherPred,AVL,OVar), OVar==OVal,!, | |
1133 | %print(reused_due_to_implication(Pred)),nl,nl, | |
1134 | Var=Val. | |
1135 | ||
1136 | add_predicate(_Pred,_Var,no_avl,NewAVL) :- !, NewAVL=no_avl. | |
1137 | add_predicate(Pred,Var,AVL,NewAVL) :- | |
1138 | % we could compute terms:term_hash(Pred,H) and add pred(H,Pred) to AVL to avoid comparing terms during avl_fetch | |
1139 | (avl_store(Pred,AVL,Var,NewAVL) -> true ; NewAVL=no_avl). %pred_var(Var),NewAVL). | |
1140 | ||
1141 | % detect whether predicate implied by some registered predicate | |
1142 | % detects inconsistency in x:INTEGER & x>y & y>x | |
1143 | % very lightweight propagation also achieved by CHR for less | |
1144 | implied_by(less(A,B),pred_false,less(B,A),pred_true). % A>B => not( A<B ) <=> A>=B | |
1145 | implied_by(subset_strict(A,B),pred_false,subset_strict(B,A),pred_true). % B <<: A => not( A<<:B ) | |
1146 | implied_by(subset_strict(A,B),pred_false,subset(B,A),pred_true). % B <: A => not( A<<:B ) | |
1147 | implied_by(subset(A,B),pred_false,subset_strict(B,A),pred_true). % B <<: A => not( A<:B ) | |
1148 | % TO DO: add more rules; e.g., less(x,10) implied by less(x,9) | |
1149 | ||
1150 | :- use_module(translate,[print_bexpr/1]). | |
1151 | % normalises a typed predicate by removing position information and ordering commutative operators in a canonical way | |
1152 | norm_pred_check(B,Res) :- | |
1153 | ( norm_pred(B,Res) | |
1154 | -> true | |
1155 | ; bget_functor(B,F,N), | |
1156 | print(norm_pred_failed(F/N)), nl, | |
1157 | print_bexpr(B), nl, | |
1158 | Res=B | |
1159 | ). | |
1160 | ||
1161 | bget_functor(b(B,_,_),F,N) :- functor(B,F,N). | |
1162 | bget_functor(B,F,N) :- functor(B,F,N). | |
1163 | ||
1164 | %% :-(+List, -UntypedConj). | |
1165 | conjunct_untyped([], Res) :- !, Res=truth. | |
1166 | conjunct_untyped([P|Rest],Result) :- conjunct2(Rest,P,Result). | |
1167 | conjunct2([],P,P). | |
1168 | conjunct2([Q|Rest],P,Result) :- conjunct2(Rest,conjunct(P,Q),Result). | |
1169 | ||
1170 | %% disjunct_untyped(+List, -UntypedDisj). | |
1171 | disjunct_untyped([], Res) :- !, Res=falsity. | |
1172 | disjunct_untyped([P|Rest],Result) :- disjunct2(Rest,P,Result). | |
1173 | disjunct2([],P,P). | |
1174 | disjunct2([Q|Rest],P,Result) :- disjunct2(Rest,disjunct(P,Q),Result). | |
1175 | ||
1176 | :- assert_must_succeed((I=b(identifier(i),integer,[]),P1=b(greater_equal(I,I),pred,[]),norm_pred(P1,N1), | |
1177 | P2=b(greater_equal(I,I),pred,[info]),norm_pred(P2,N2), N2==N1)). % info ignored | |
1178 | :- assert_must_succeed((I1=b(identifier(i1),integer,[]),I2=b(identifier(i2),integer,[]), | |
1179 | P1=b(equal(I1,I2),pred,[]),norm_pred(P1,N1), | |
1180 | P2=b(equal(I2,I1),pred,[info]),norm_pred(P2,N2), N2==N1)). % equal re-ordered | |
1181 | :- assert_must_succeed((I1=b(identifier(i1),integer,[]),I2=b(identifier(i2),integer,[]), | |
1182 | P1=b(greater_equal(I1,I2),pred,[]),norm_pred(P1,N1), | |
1183 | P2=b(less_equal(I2,I1),pred,[info]),norm_pred(P2,N2), N2==N1)). % <= and >= re-ordered | |
1184 | :- assert_must_succeed((I1=b(identifier(i1),integer,[]),I2=b(identifier(i2),integer,[]), | |
1185 | P1=b(greater(I1,I2),pred,[]),norm_pred(P1,N1), | |
1186 | P2=b(less(I2,I1),pred,[info]),norm_pred(P2,N2), N2==N1)). % < and > re-ordered | |
1187 | :- assert_must_succeed((I1=b(identifier(i1),integer,[]),I2=b(identifier(i2),integer,[]), | |
1188 | P1=b(greater(I1,I2),pred,[]),norm_pred(P1,N1), | |
1189 | P2=b(less_equal(I2,I1),pred,[]),norm_pred(P2,N2), N2 \= N1)). % > and <= not made equal | |
1190 | :- assert_must_succeed((I=b(identifier(i),integer,[]),P1=b(greater_equal(I,I),pred,[was(test1)]), | |
1191 | P2=b(not_equal(I,I),pred,[was(test2)]), | |
1192 | conjunct_predicates_with_pos_info([P1,P2],C1),norm_pred(C1,N1), | |
1193 | conjunct_predicates_with_pos_info([P2,P1],C2),norm_pred(C2,N2), N2==N1)). % conjunct re-ordered | |
1194 | :- assert_must_succeed((I=b(identifier(i),integer,[]),P1=b(greater_equal(I,I),pred,[was(test1)]), | |
1195 | P2=b(not_equal(I,I),pred,[was(test2)]), P3=b(equal(I,I),pred,[was(test3)]), | |
1196 | conjunct_predicates_with_pos_info([P1,P2,P3],C1),norm_pred(C1,N1), | |
1197 | conjunct_predicates_with_pos_info([P2,P3,P1],C2),norm_pred(C2,N2), N2==N1)). | |
1198 | ||
1199 | %% norm_pred(+AstOrExpr, -Norm). | |
1200 | norm_pred(X,Res) :- var(X),!,Res=X. | |
1201 | norm_pred(b(B,_,_),Res) :- !, norm_pred(B,Res). | |
1202 | norm_pred(falsity,Res) :- !, Res=falsity. | |
1203 | norm_pred(truth,Res) :- !, Res=truth. | |
1204 | norm_pred(conjunct(A,B),Res) :- | |
1205 | !, | |
1206 | flatten_conjunctions([A,B],CList), | |
1207 | % sort nested conjunctions and disjunctions instead of only single ones | |
1208 | % e.g., difference for '#i.(i : NATURAL & (i > `max`(self) & num′ = num <+ {self |-> i}))' if removing nested parentheses | |
1209 | l_norm_pred(CList, NormedList), | |
1210 | sort(NormedList,SortedList), % better to sort after normalisation | |
1211 | conjunct_untyped(SortedList, Res). | |
1212 | norm_pred(disjunct(A,B),Res) :- | |
1213 | !, | |
1214 | disjunction_to_list(b(disjunct(A,B),pred,[]), CList), % it would be more efficient not to re-construct the b/3 term | |
1215 | l_norm_pred(CList, NormedList), | |
1216 | sort(NormedList,SortedList), | |
1217 | disjunct_untyped(SortedList, Res). | |
1218 | norm_pred(equal(A,B),Res) :- !,norm_expr(A,AA),norm_expr(B,BB), | |
1219 | (BB @< AA -> Res = equal(AA,BB) ; Res= equal(BB,AA)). | |
1220 | norm_pred(equivalence(A,B),Res) :- !, norm_pred(A,AA), norm_pred(B,BB), | |
1221 | (BB @< AA -> Res = equivalence(AA,BB) ; Res= equivalence(BB,AA)). | |
1222 | norm_pred(exists(A,B),Res) :- !, Res=exists(AA,BB),l_norm_expr(A,AA), norm_pred(B,BB). | |
1223 | norm_pred(finite(A),finite(AA)) :- !,norm_expr(A,AA). | |
1224 | norm_pred(forall(A,B,C),Res) :- !, Res=forall(AA,BB,CC),l_norm_expr(A,AA), norm_pred(B,BB), norm_pred(C,CC). | |
1225 | norm_pred(greater(A,B),Less) :- !,norm_expr(A,AA),norm_expr(B,BB), norm_less(BB,AA,Less). | |
1226 | norm_pred(greater_equal(A,B),Leq) :- !,norm_expr(A,AA),norm_expr(B,BB), norm_less_equal(BB,AA,Leq). | |
1227 | norm_pred(implication(A,B),Res) :- !, % we could rewrite this to disjunct(not(A),B); but check ok for WD prover | |
1228 | Res=implication(AA,BB),norm_pred(A,AA), norm_pred(B,BB). | |
1229 | norm_pred(less(A,B),Less) :- !,norm_expr(A,AA),norm_expr(B,BB), norm_less(AA,BB,Less). | |
1230 | norm_pred(less_real(A,B),less_real(AA,BB)) :- !,norm_expr(A,AA),norm_expr(B,BB). | |
1231 | norm_pred(less_equal(A,B),Leq) :- !,norm_expr(A,AA),norm_expr(B,BB), norm_less_equal(AA,BB,Leq). | |
1232 | norm_pred(less_equal_real(A,B),less_equal_real(AA,BB)) :- !,norm_expr(A,AA),norm_expr(B,BB). | |
1233 | norm_pred(let_predicate(A,B,C),Res) :- !, | |
1234 | Res=let_predicate(AA,BB,CC), | |
1235 | l_norm_expr(A,AA), l_norm_expr(B,BB),norm_pred(C,CC). | |
1236 | norm_pred(lazy_let_pred(A,B,C),Res) :- !, | |
1237 | Res = lazy_let_pred(AA,BB,CC), | |
1238 | norm_expr(A,AA), | |
1239 | norm_pred_or_expr(B,BB),norm_pred(C,CC). | |
1240 | norm_pred(lazy_lookup_pred(A),Res) :- !, Res = lazy_lookup_pred(A). | |
1241 | norm_pred(member(A,B),member(AA,BB)) :- !,norm_expr(A,AA),norm_expr(B,BB). | |
1242 | norm_pred(negation(A),Res) :- !, | |
1243 | (negate_typed_pred(A,NegA) -> norm_pred(NegA,Res) | |
1244 | ; Res=negation(AA), norm_pred(A,AA)). | |
1245 | norm_pred(not_equal(A,B),Res) :- !,norm_expr(A,AA),norm_expr(B,BB), | |
1246 | (BB @< AA -> Res = not_equal(AA,BB) ; Res= not_equal(BB,AA)). | |
1247 | norm_pred(not_member(A,B),not_member(AA,BB)) :- !,norm_expr(A,AA),norm_expr(B,BB). | |
1248 | norm_pred(not_subset(A,B),not_subset(AA,BB)) :- !,norm_expr(A,AA),norm_expr(B,BB). | |
1249 | norm_pred(not_subset_strict(A,B),not_subset_strict(AA,BB)) :- !,norm_expr(A,AA),norm_expr(B,BB). | |
1250 | norm_pred(partition(A,L),partition(AA,LL)) :- !,norm_expr(A,AA),l_norm_expr(L,LL). | |
1251 | norm_pred(subset(A,B),subset(AA,BB)) :- !,norm_expr(A,AA),norm_expr(B,BB). | |
1252 | norm_pred(subset_strict(A,B),subset_strict(AA,BB)) :- !,norm_expr(A,AA),norm_expr(B,BB). | |
1253 | norm_pred(freetype_case(Type,Case,A),freetype_case(Type,Case,AA)) :- !,norm_expr(A,AA). | |
1254 | norm_pred(X,X). % :- print(norm_pred(X)),nl. | |
1255 | ||
1256 | ||
1257 | l_norm_pred([],[]). | |
1258 | l_norm_pred([H|T],[NH|NT]) :- norm_pred(H,NH), l_norm_pred(T,NT). | |
1259 | ||
1260 | norm_pred_or_expr(b(B,pred,_),Res) :- norm_pred(B,Res). | |
1261 | norm_pred_or_expr(B,Res) :- norm_expr(B,Res). | |
1262 | ||
1263 | norm_less(unary_minus(A),MB,Res) :- apply_unary_minus(MB,B), !,norm_less(B,A,Res). % -A < -B => A > B | |
1264 | % we could also move unary_minus to B if not present | |
1265 | norm_less(MA,unary_minus(B),Res) :- apply_unary_minus(MA,A), !,norm_less(B,A,Res). | |
1266 | norm_less(A,B,less(A,B)). | |
1267 | ||
1268 | apply_unary_minus(unary_minus(A),A). | |
1269 | apply_unary_minus(Nr,MNr) :- number(Nr), MNr is -Nr. | |
1270 | ||
1271 | norm_less_equal(unary_minus(A),MB,Res) :- apply_unary_minus(MB,B), !,norm_less_equal(B,A,Res). % -A <= -B => A >= B | |
1272 | norm_less_equal(MA,unary_minus(B),Res) :- apply_unary_minus(MA,A), !,norm_less_equal(B,A,Res). | |
1273 | norm_less_equal(A,B,less_equal(A,B)). | |
1274 | ||
1275 | % --------------------- | |
1276 | ||
1277 | % generic normalisation predicate | |
1278 | norm_check(BExpr,Res) :- BExpr = b(_,pred,_),!, norm_pred_check(BExpr,Res). | |
1279 | norm_check(BExpr,Res) :- norm_expr_check(BExpr,Res). | |
1280 | ||
1281 | % normalise expressions and check for failure | |
1282 | norm_expr_check(X,Res) :- var(X),!,Res=X. | |
1283 | norm_expr_check(b(B,_,_),Res) :- !, norm_expr_check2(B,Res). | |
1284 | norm_expr_check(X,X). | |
1285 | ||
1286 | norm_expr_check2(B,Res) :- | |
1287 | (norm_expr2(B,Res) -> true | |
1288 | ; functor(B,F,N),print(norm_expr2_failed(F/N)),nl, | |
1289 | Res=B). | |
1290 | ||
1291 | norm_expr(X,Res) :- var(X),!,Res=X. | |
1292 | norm_expr(b(B,_,_),Res) :- !, norm_expr2(B,Res). | |
1293 | %norm_expr_check2(B,Res). %% comment in to obtain details about failed normalisation for expressions | |
1294 | norm_expr(X,X). % :- add_internal_error('Expr not wrapped:',norm_expr(X,X)). | |
1295 | ||
1296 | norm_expr2(assertion_expression(Cond,E,Expr),assertion_expression(AA,E,BB)) :- norm_pred(Cond,AA),norm_expr(Expr,BB). | |
1297 | norm_expr2(add(A,B),Res) :- norm_expr(A,AA), norm_expr(B,BB), (BB @< AA -> Res = add(AA,BB) ; Res= add(BB,AA)). | |
1298 | norm_expr2(add_real(A,B),add_real(AA,BB)) :- norm_expr(A,AA), norm_expr(B,BB). | |
1299 | norm_expr2(bag_items(A),bag_items(AA)) :- norm_expr(A,AA). | |
1300 | norm_expr2(boolean_false,boolean_false). | |
1301 | norm_expr2(boolean_true,boolean_true). | |
1302 | norm_expr2(bool_set,bool_set). | |
1303 | norm_expr2(card(A),card(AA)) :- norm_expr(A,AA). | |
1304 | norm_expr2(cartesian_product(A,B),cartesian_product(AA,BB)) :- norm_expr(A,AA), norm_expr(B,BB). | |
1305 | norm_expr2(closure(A),closure(AA)) :- norm_expr(A,AA). % this is closure1 | |
1306 | norm_expr2(compaction(A),compaction(AA)) :- norm_expr(A,AA). | |
1307 | norm_expr2(composition(A,B),composition(AA,BB)) :- norm_expr(A,AA), norm_expr(B,BB). | |
1308 | norm_expr2(comprehension_set(A,B),comprehension_set(AA,BB)) :- l_norm_expr(A,AA), norm_pred(B,BB). | |
1309 | norm_expr2(concat(A,B),concat(AA,BB)) :- norm_expr(A,AA), norm_expr(B,BB). | |
1310 | norm_expr2(convert_bool(A),convert_bool(AA)) :- norm_pred_check(A,AA). | |
1311 | norm_expr2(convert_real(A),convert_real(AA)) :- norm_expr(A,AA). | |
1312 | norm_expr2(convert_int_floor(A),convert_int_floor(AA)) :- norm_expr(A,AA). | |
1313 | norm_expr2(convert_int_ceiling(A),convert_int_ceiling(AA)) :- norm_expr(A,AA). | |
1314 | norm_expr2(couple(A,B),couple(AA,BB)) :- norm_expr(A,AA), norm_expr(B,BB). | |
1315 | norm_expr2(direct_product(A,B),direct_product(AA,BB)) :- norm_expr(A,AA), norm_expr(B,BB). | |
1316 | norm_expr2(div(A,B),div(AA,BB)) :- norm_expr(A,AA), norm_expr(B,BB). | |
1317 | norm_expr2(div_real(A,B),div_real(AA,BB)) :- norm_expr(A,AA), norm_expr(B,BB). | |
1318 | norm_expr2(floored_div(A,B),floored_div(AA,BB)) :- norm_expr(A,AA), norm_expr(B,BB). | |
1319 | norm_expr2(domain_restriction(A,B),domain_restriction(AA,BB)) :- norm_expr(A,AA), norm_expr(B,BB). | |
1320 | norm_expr2(domain_subtraction(A,B),domain_subtraction(AA,BB)) :- norm_expr(A,AA), norm_expr(B,BB). | |
1321 | norm_expr2(domain(A),domain(AA)) :- norm_expr(A,AA). | |
1322 | norm_expr2(empty_sequence,empty_sequence). | |
1323 | norm_expr2(empty_set,empty_set). | |
1324 | norm_expr2(event_b_identity,event_b_identity). | |
1325 | norm_expr2(external_function_call(A,B),external_function_call(A,BB)) :- l_norm_expr(B,BB). | |
1326 | norm_expr2(fin_subset(A),fin_subset(AA)) :- norm_expr(A,AA). | |
1327 | norm_expr2(fin1_subset(A),fin1_subset(AA)) :- norm_expr(A,AA). | |
1328 | norm_expr2(first(A),first(AA)) :- norm_expr(A,AA). | |
1329 | norm_expr2(first_of_pair(A),first_of_pair(AA)) :- norm_expr(A,AA). | |
1330 | norm_expr2(first_projection(A,B),first_projection(AA,BB)) :- norm_expr(A,AA), norm_expr(B,BB). | |
1331 | norm_expr2(float_set,float_set). | |
1332 | norm_expr2(front(A),front(AA)) :- norm_expr(A,AA). | |
1333 | norm_expr2(function(A,B),function(AA,BB)) :- norm_expr(A,AA), norm_expr(B,BB). | |
1334 | norm_expr2(general_concat(A),general_concat(AA)) :- norm_expr(A,AA). | |
1335 | norm_expr2(general_intersection(A),general_intersection(AA)) :- norm_expr(A,AA). | |
1336 | norm_expr2(general_product(A,B,C),Res) :- !, | |
1337 | Res=general_product(AA,BB,CC),l_norm_expr(A,AA), norm_pred(B,BB), norm_expr(C,CC). | |
1338 | norm_expr2(general_sum(A,B,C),Res) :- !, | |
1339 | Res=general_sum(AA,BB,CC),l_norm_expr(A,AA), norm_pred(B,BB), norm_expr(C,CC). | |
1340 | norm_expr2(general_union(A),general_union(AA)) :- norm_expr(A,AA). | |
1341 | norm_expr2(identifier(A),'$'(A)). % need wrapper to avoid confusion with other terms ! | |
1342 | norm_expr2(identity(A),identity(AA)) :- norm_expr(A,AA). | |
1343 | norm_expr2(if_then_else(P,A,B),if_then_else(PP,AA,BB)) :- norm_pred(P,PP),norm_expr(A,AA), norm_expr(B,BB). | |
1344 | norm_expr2(image(A,B),image(AA,BB)) :- norm_expr(A,AA), norm_expr(B,BB). | |
1345 | norm_expr2(insert_front(A,B),insert_front(AA,BB)) :- norm_expr(A,AA), norm_expr(B,BB). | |
1346 | norm_expr2(insert_tail(A,B),insert_tail(AA,BB)) :- norm_expr(A,AA), norm_expr(B,BB). | |
1347 | norm_expr2(integer_set(A),A). | |
1348 | norm_expr2(integer(A),A). % integer represented as number | |
1349 | norm_expr2(intersection(A,B),Res) :- norm_expr(A,AA), norm_expr(B,BB), | |
1350 | (BB @< AA -> Res = intersection(AA,BB) ; Res= intersection(BB,AA)). | |
1351 | norm_expr2(interval(A,B),interval(AA,BB)) :- norm_expr(A,AA), norm_expr(B,BB). | |
1352 | norm_expr2(iseq(A),iseq(AA)) :- norm_expr(A,AA). | |
1353 | norm_expr2(iseq1(A),iseq1(AA)) :- norm_expr(A,AA). | |
1354 | norm_expr2(iteration(A,B),iteration(AA,BB)) :- norm_expr(A,AA), norm_expr(B,BB). | |
1355 | norm_expr2(last(A),last(AA)) :- norm_expr(A,AA). | |
1356 | norm_expr2(lazy_let_expr(A,B,C),lazy_let_expr(AA,BB,CC)) :- | |
1357 | norm_expr(A,AA),norm_pred_or_expr(B,BB),norm_expr(C,CC). | |
1358 | norm_expr2(lazy_lookup_expr(A),lazy_lookup_expr(A)) :- !. | |
1359 | norm_expr2(let_expression(A,B,C),let_expression(AA,BB,CC)) :- l_norm_expr(A,AA), l_norm_expr(B,BB),norm_expr(C,CC). | |
1360 | norm_expr2(let_expression_global(A,B,C),let_expression_global(AA,BB,CC)) :- l_norm_expr(A,AA), l_norm_expr(B,BB),norm_pred(C,CC). | |
1361 | norm_expr2(max(A),max(AA)) :- norm_expr(A,AA). | |
1362 | norm_expr2(max_real(A),max_real(AA)) :- norm_expr(A,AA). | |
1363 | norm_expr2(max_int,max_int). | |
1364 | norm_expr2(min(A),min(AA)) :- norm_expr(A,AA). | |
1365 | norm_expr2(min_real(A),min_real(AA)) :- norm_expr(A,AA). | |
1366 | norm_expr2(min_int,min_int). | |
1367 | norm_expr2(minus(A,B),minus(AA,BB)) :- norm_expr(A,AA), norm_expr(B,BB). | |
1368 | norm_expr2(minus_real(A,B),minus_real(AA,BB)) :- norm_expr(A,AA), norm_expr(B,BB). | |
1369 | norm_expr2(modulo(A,B),modulo(AA,BB)) :- norm_expr(A,AA), norm_expr(B,BB). | |
1370 | norm_expr2(mu(A),mu(AA)) :- norm_expr(A,AA). | |
1371 | norm_expr2(multiplication(A,B),Res) :- | |
1372 | norm_expr(A,AA), norm_expr(B,BB), (BB @< AA -> Res = multiplication(AA,BB) ; Res= multiplication(BB,AA)). | |
1373 | norm_expr2(multiplication_real(A,B),multiplication_real(AA,BB)) :- norm_expr(A,AA), norm_expr(B,BB). | |
1374 | norm_expr2(operation_call_in_expr(A,B),operation_call_in_expr(AA,BB)) :- norm_expr(A,AA), norm_expr(B,BB). | |
1375 | norm_expr2(overwrite(A,B),overwrite(AA,BB)) :- norm_expr(A,AA), norm_expr(B,BB). | |
1376 | norm_expr2(parallel_product(A,B),parallel_product(AA,BB)) :- norm_expr(A,AA), norm_expr(B,BB). | |
1377 | norm_expr2(partial_bijection(A,B),partial_bijection(AA,BB)) :- norm_expr(A,AA), norm_expr(B,BB). | |
1378 | norm_expr2(partial_function(A,B),partial_function(AA,BB)) :- norm_expr(A,AA), norm_expr(B,BB). | |
1379 | norm_expr2(partial_injection(A,B),partial_injection(AA,BB)) :- norm_expr(A,AA), norm_expr(B,BB). | |
1380 | norm_expr2(partial_surjection(A,B),partial_surjection(AA,BB)) :- norm_expr(A,AA), norm_expr(B,BB). | |
1381 | norm_expr2(perm(A),perm(AA)) :- norm_expr(A,AA). | |
1382 | norm_expr2(power_of(A,B),power_of(AA,BB)) :- norm_expr(A,AA), norm_expr(B,BB). | |
1383 | norm_expr2(power_of_real(A,B),power_of_real(AA,BB)) :- norm_expr(A,AA), norm_expr(B,BB). | |
1384 | norm_expr2(pow_subset(A),pow_subset(AA)) :- norm_expr(A,AA). | |
1385 | norm_expr2(pow1_subset(A),pow1_subset(AA)) :- norm_expr(A,AA). | |
1386 | norm_expr2(predecessor,predecessor). | |
1387 | norm_expr2(range_restriction(A,B),range_restriction(AA,BB)) :- norm_expr(A,AA), norm_expr(B,BB). | |
1388 | norm_expr2(range_subtraction(A,B),range_subtraction(AA,BB)) :- norm_expr(A,AA), norm_expr(B,BB). | |
1389 | norm_expr2(range(A),range(AA)) :- norm_expr(A,AA). | |
1390 | norm_expr2(real(Atom),real(Atom)). % we could use the atom? or convert it to a real number using construct_real | |
1391 | norm_expr2(real_set,real_set). | |
1392 | norm_expr2(rec(A),rec(AA)) :- norm_fields(A,AA). | |
1393 | norm_expr2(record_field(A,Field),record_field(AA,Field)) :- norm_expr(A,AA). | |
1394 | norm_expr2(relations(A,B),relations(AA,BB)) :- norm_expr(A,AA), norm_expr(B,BB). | |
1395 | norm_expr2(restrict_front(A,B),restrict_front(AA,BB)) :- norm_expr(A,AA), norm_expr(B,BB). | |
1396 | norm_expr2(restrict_tail(A,B),restrict_tail(AA,BB)) :- norm_expr(A,AA), norm_expr(B,BB). | |
1397 | norm_expr2(reflexive_closure(A),reflexive_closure(AA)) :- norm_expr(A,AA). % this is rewritten in ast_cleanup | |
1398 | norm_expr2(rev(A),rev(AA)) :- norm_expr(A,AA). | |
1399 | norm_expr2(reverse(A),reverse(AA)) :- norm_expr(A,AA). | |
1400 | norm_expr2(second_of_pair(A),second_of_pair(AA)) :- norm_expr(A,AA). | |
1401 | norm_expr2(second_projection(A,B),second_projection(AA,BB)) :- norm_expr(A,AA), norm_expr(B,BB). | |
1402 | norm_expr2(seq(A),seq(AA)) :- norm_expr(A,AA). | |
1403 | norm_expr2(seq1(A),seq1(AA)) :- norm_expr(A,AA). | |
1404 | norm_expr2(sequence_extension(L),sequence_extension(NL)) :- l_norm_expr(L,NL). | |
1405 | norm_expr2(set_extension(L),set_extension(NL)) :- l_norm_expr(L,NL). | |
1406 | norm_expr2(set_subtraction(A,B),set_subtraction(AA,BB)) :- norm_expr(A,AA), norm_expr(B,BB). % set difference | |
1407 | norm_expr2(size(A),size(AA)) :- norm_expr(A,AA). | |
1408 | norm_expr2(string(A),string(A)). % need wrapper to avoid confusion with other terms ! | |
1409 | norm_expr2(string_set,string_set). | |
1410 | norm_expr2(struct(A),struct(AA)) :- norm_expr(A,AA). | |
1411 | norm_expr2(successor,successor). | |
1412 | norm_expr2(surjection_relation(A,B),surjection_relation(AA,BB)) :- norm_expr(A,AA), norm_expr(B,BB). | |
1413 | norm_expr2(tail(A),tail(AA)) :- norm_expr(A,AA). | |
1414 | norm_expr2(total_bijection(A,B),total_bijection(AA,BB)) :- norm_expr(A,AA), norm_expr(B,BB). | |
1415 | norm_expr2(total_function(A,B),total_function(AA,BB)) :- norm_expr(A,AA), norm_expr(B,BB). | |
1416 | norm_expr2(total_injection(A,B),total_injection(AA,BB)) :- norm_expr(A,AA), norm_expr(B,BB). | |
1417 | norm_expr2(total_relation(A,B),total_relation(AA,BB)) :- norm_expr(A,AA), norm_expr(B,BB). | |
1418 | norm_expr2(total_surjection(A,B),total_surjection(AA,BB)) :- norm_expr(A,AA), norm_expr(B,BB). | |
1419 | norm_expr2(total_surjection_relation(A,B),total_surjection_relation(AA,BB)) :- norm_expr(A,AA), norm_expr(B,BB). | |
1420 | norm_expr2(typeset,typeset). | |
1421 | ||
1422 | norm_expr2(unary_minus(A),unary_minus(AA)) :- norm_expr(A,AA). | |
1423 | norm_expr2(unary_minus_real(A),unary_minus_real(AA)) :- norm_expr(A,AA). | |
1424 | norm_expr2(union(A,B),Res) :- norm_expr(A,AA), norm_expr(B,BB), (BB @< AA -> Res = union(AA,BB) ; Res= union(BB,AA)). | |
1425 | norm_expr2(value(A),NA) :- norm_value(A,NA). | |
1426 | ||
1427 | norm_expr2(freetype_set(T),freetype_set(T)). | |
1428 | norm_expr2(freetype_constructor(FT,Case,A), freetype_constructor(FT,Case,AA)) :- norm_expr(A,AA). | |
1429 | norm_expr2(freetype_destructor(FT,Case,A),freetype_destructor(FT,Case,AA)) :- norm_expr(A,AA). | |
1430 | norm_expr2(recursive_let(A,B),recursive_let(AA,BB)) :- norm_expr(A,AA),norm_expr(B,BB). | |
1431 | ||
1432 | ||
1433 | norm_fields([],[]). | |
1434 | norm_fields([field(Name,H)|T],[field(Name,NH)|NT]) :- norm_expr(H,NH), norm_fields(T,NT). | |
1435 | ||
1436 | l_norm_expr([],[]). | |
1437 | l_norm_expr([H|T],[NH|NT]) :- norm_expr(H,NH), l_norm_expr(T,NT). | |
1438 | ||
1439 | norm_value(V,R) :- var(V),!,R=value(V). | |
1440 | norm_value(int(Nr),R) :- number(Nr),!,R=Nr. | |
1441 | norm_value([],R) :- !, R=empty_set. | |
1442 | norm_value(pred_false,R) :- !, R=boolean_false. | |
1443 | norm_value(pred_true,R) :- !, R=boolean_true. | |
1444 | norm_value(closure(P,T,B),R) :- norm_pred_check(B,NB), | |
1445 | !, % normalising relevant for test 1544 with position info added by construct_member_closure | |
1446 | R=value(closure(P,T,NB)). | |
1447 | norm_value((A,B),R) :- !, R=(NA,NB), norm_value(A,NA), norm_value(B,NB). | |
1448 | norm_value(V,value(V)). % we could normalise AVL, or pairs | |
1449 | ||
1450 | arithmetic_op(less(LHS,RHS),'<',LHS,RHS). | |
1451 | arithmetic_op(less_equal(LHS,RHS),'<=',LHS,RHS). | |
1452 | arithmetic_op(greater(LHS,RHS),'<',RHS,LHS). | |
1453 | arithmetic_op(greater_equal(LHS,RHS),'<=',RHS,LHS). | |
1454 | ||
1455 | :- use_module(probsrc(kernel_reals),[real_comp_wf/5]). | |
1456 | % these two predicates can be checked by real_comp_wf: | |
1457 | real_arithmetic_op(less_real(LHS,RHS),'<',LHS,RHS). | |
1458 | real_arithmetic_op(less_equal_real(LHS,RHS),'=<',LHS,RHS). | |
1459 | ||
1460 | :- use_module(clpfd_interface). | |
1461 | :- use_module(library(clpfd), [(#<=>)/2]). | |
1462 | check_arithmetic_operator('<',X,Y,Res) :- check_less(X,Y,Res), | |
1463 | (nonvar(Res) -> true | |
1464 | ; clpfd_interface:try_post_constraint((X#<Y) #<=> R01), prop_pred_01(Res,R01)). | |
1465 | check_arithmetic_operator('<=',X,Y,Res) :- check_less_than_equal(X,Y,Res), | |
1466 | (nonvar(Res) -> true | |
1467 | ; clpfd_interface:try_post_constraint((X#=<Y) #<=> R01), prop_pred_01(Res,R01)). | |
1468 | ||
1469 | ||
1470 | :- block prop_pred_01(-,-). | |
1471 | prop_pred_01(A,B) :- B==1,!,A=pred_true. % cut ok: either pred_true or 1 set | |
1472 | prop_pred_01(pred_true,1). | |
1473 | prop_pred_01(pred_false,0). | |
1474 | ||
1475 | :- block check_less(-,?,-), check_less(?,-,-). | |
1476 | check_less(X,Y,Res) :- nonvar(Res),!, /* truth value known: enforce it */ | |
1477 | (Res=pred_true -> less_than_direct(X,Y) ; less_than_equal_direct(Y,X)). | |
1478 | check_less(X,Y,Res) :- | |
1479 | X < Y,!,/* we could call safe_less_than(X,Y), */ | |
1480 | Res=pred_true. | |
1481 | check_less(_,_,pred_false). | |
1482 | :- block check_less_than_equal(-,?,-), check_less_than_equal(?,-,-). | |
1483 | check_less_than_equal(X,Y,Res) :- nonvar(Res),!, /* truth value known: enforce it */ | |
1484 | (Res=pred_true -> less_than_equal_direct(X,Y) ; less_than_direct(Y,X)). | |
1485 | check_less_than_equal(X,Y,Res) :- X =< Y,!,Res=pred_true. | |
1486 | check_less_than_equal(_,_,pred_false). | |
1487 | ||
1488 | ||
1489 | ||
1490 | :- use_module(bool_pred). | |
1491 | ||
1492 | :- use_module(kernel_objects,[exhaustive_kernel_check_wf/2, | |
1493 | exhaustive_kernel_check/1, exhaustive_kernel_check/2, exhaustive_kernel_fail_check/1]). | |
1494 | ||
1495 | :- assert_must_succeed(exhaustive_kernel_check_wf(b_interpreter_check:conjoin(pred_false,pred_false,pred_false,b(truth,pred,[]),b(truth,pred,[]),WF),WF)). | |
1496 | :- assert_must_succeed(exhaustive_kernel_check_wf(b_interpreter_check:conjoin(pred_false,pred_true,pred_false,b(truth,pred,[]),b(truth,pred,[]),WF),WF)). | |
1497 | :- assert_must_succeed(exhaustive_kernel_check_wf(b_interpreter_check:conjoin(pred_true,pred_false,pred_false,b(truth,pred,[]),b(truth,pred,[]),WF),WF)). | |
1498 | :- assert_must_succeed(exhaustive_kernel_check_wf(b_interpreter_check:conjoin(pred_true,pred_true,pred_true,b(truth,pred,[]),b(truth,pred,[]),WF),WF)). | |
1499 | :- assert_must_fail(b_interpreter_check:conjoin(pred_true,pred_false,pred_true,b(truth,pred,[]),b(truth,pred,[]),_WF)). | |
1500 | :- assert_must_fail(b_interpreter_check:conjoin(pred_true,pred_true,pred_false,b(truth,pred,[]),b(truth,pred,[]),_WF)). | |
1501 | ||
1502 | ||
1503 | % same as and_equality/3 but for pred_false/pred_true rather than eq_obj/pred_false | |
1504 | :- block conjoin(-,-,-,?,?,?). | |
1505 | conjoin(X,Y,Res,LHS,RHS,WF) :- % print(conjoin(X,Y,Res)),nl, translate:print_bexpr(LHS),nl,% | |
1506 | ( Res==pred_true -> X=pred_true,Y=pred_true % on SWI these propagations happen one after the other, see test 2202 | |
1507 | ; X==pred_true -> Res=Y | |
1508 | ; X==pred_false -> Res=pred_false | |
1509 | ; Y==pred_true -> Res=X | |
1510 | ; Y==pred_false -> Res=pred_false | |
1511 | ? | ; Res==pred_false -> conjoin_false0(X,Y,LHS,RHS,WF) |
1512 | ; add_error_fail(conjoin,'Illegal values: ', conjoin(X,Y,Res,LHS,RHS,WF)) | |
1513 | ). | |
1514 | conjoin_false0(X,Y,_LHS,_RHS,_WF) :- X==Y,!, | |
1515 | %print(conjoin_false_eqeq(X,Y)),nl, translate:print_bexpr(_LHS),nl, | |
1516 | X=pred_false. | |
1517 | conjoin_false0(X,Y,_LHS,_RHS,_WF) :- % X & not(X) -> always false | |
1518 | bool_negate_check(X,Y),! | |
1519 | . %,print(conjoin_false_neqeq(X,Y)),nl,translate:print_bexpr(_LHS),nl. | |
1520 | conjoin_false0(X,Y,LHS,RHS,WF) :- | |
1521 | %%Prio=1, %% | |
1522 | %%(preferences:preference(use_smt_mode,full) -> FullPrio=1.5 ; | |
1523 | get_priority_of_boolean_expression(LHS,Prio), | |
1524 | (preferences:preference(use_clpfd_solver,true) -> | |
1525 | % relevant for tests 349, 362: | |
1526 | count_number_of_conjuncts(RHS,NrC), | |
1527 | FullPrio is Prio+(NrC-1)/10, | |
1528 | get_wait_flag(FullPrio,conjoin,WF,LWF) %% | |
1529 | ; % in non-clpfd mode: much less propagation going on, avoid explosion of choice points | |
1530 | % tests 349, 362 fail with the following for CLPFD: TO DO investigate and use this also in CLPFD mode | |
1531 | get_binary_choice_wait_flag_exp_backoff(Prio,not_conjunct,WF,LWF) | |
1532 | ), | |
1533 | ? | conjoin_false(X,Y,LHS,RHS,LWF). |
1534 | % missing rule: if X==Y -> X=pred_true | |
1535 | :- block conjoin_false(-,-,?,?,-). | |
1536 | conjoin_false(X,Y,LHS,_RHS,_LWF) :- | |
1537 | ( X==pred_true -> pred_false=Y | |
1538 | ; X==pred_false -> true | |
1539 | ; Y==pred_true -> pred_false=X | |
1540 | ; Y==pred_false -> true | |
1541 | ; useless_to_force(LHS) -> | |
1542 | ( % print(forcing_conjoin_rhs_false(X,Y,_LWF)), translate:print_bexpr(_RHS), print(' == FALSE '),nl, | |
1543 | Y=pred_false | |
1544 | ; | |
1545 | (Y,X)=(pred_true,pred_false) | |
1546 | ) | |
1547 | ; ( % print(forcing_conjoin_lhs_false(X,Y,_LWF)), translate:print_bexpr(LHS), print(' == FALSE '),nl, | |
1548 | X=pred_false | |
1549 | ; % print(forcing_conjoin_rhs_false(X,Y,_LWF)), translate:print_bexpr(LHS), print(' == TRUE ; '), nl, | |
1550 | (X,Y)=(pred_true,pred_false) | |
1551 | ) | |
1552 | ). | |
1553 | ||
1554 | % determine when forcing a predicate to true/false does not really help; better choose something else | |
1555 | useless_to_force(b(B,T,I)) :- useless_to_force3(B,T,I). | |
1556 | useless_to_force3(finite(_),_,_). % forcing finite to be false usually not a good idea; we cannot propagate this | |
1557 | % what are other predicates useless to force: some foralls/exists ? some external_pred_call | |
1558 | % in principle a conjunction of useless predicates is also useless: but could be more expensive to check | |
1559 | ||
1560 | :- assert_must_succeed(exhaustive_kernel_check(b_interpreter_check:disjoin(pred_false,pred_false,pred_false,_,_,_WF))). | |
1561 | :- assert_must_succeed(exhaustive_kernel_check([commutative],b_interpreter_check:disjoin(pred_false,pred_true,pred_true,_,_,_WF))). | |
1562 | :- assert_must_succeed(exhaustive_kernel_check(b_interpreter_check:disjoin(pred_true,pred_true,pred_true,_,_,_WF))). | |
1563 | :- assert_must_succeed(exhaustive_kernel_fail_check(b_interpreter_check:disjoin(pred_true,pred_true,pred_false,_,_,_WF))). | |
1564 | :- assert_must_succeed(exhaustive_kernel_fail_check(b_interpreter_check:disjoin(pred_true,pred_false,pred_false,_,_,_WF))). | |
1565 | :- assert_must_succeed(exhaustive_kernel_fail_check(b_interpreter_check:disjoin(pred_false,pred_true,pred_false,_,_,_WF))). | |
1566 | :- assert_must_succeed(exhaustive_kernel_fail_check(b_interpreter_check:disjoin(pred_false,pred_false,pred_true,_,_,_WF))). | |
1567 | ||
1568 | :- block disjoin(-,-,-,?,?,?). | |
1569 | disjoin(X,Y,Res,LHS,RHS,WF) :- | |
1570 | %print(disjoin(X,Y,Res,WF)),nl, %% translate:print_bexpr(LHS),print(' or '),translate:print_bexpr(RHS),nl,%% | |
1571 | ( Res==pred_false -> X=pred_false,Y=pred_false | |
1572 | ; X==pred_true -> Res=pred_true | |
1573 | ; X==pred_false -> Res=Y | |
1574 | ; Y==pred_true -> Res=pred_true | |
1575 | ; Y==pred_false -> Res=X | |
1576 | ? | ; Res==pred_true -> disjoin_true0(X,Y,LHS,RHS,WF) |
1577 | ; add_error_fail(disjoin,'Illegal values: ',disjoin(X,Y,Res,LHS,RHS,WF)) | |
1578 | ). | |
1579 | disjoin_true0(X,Y,_LHS,_RHS,_WF) :- X==Y,!, | |
1580 | X=pred_true. | |
1581 | %disjoin_true0(X,Y,LHS,_,WF) :- !, disjoin_true(X,Y,_). | |
1582 | disjoin_true0(X,Y,_LHS,_RHS,_WF) :- % X or not(X) -> always true | |
1583 | bool_negate_check(X,Y),!. | |
1584 | ||
1585 | disjoin_true0(X,Y,LHS,_RHS,WF) :- | |
1586 | %%(preferences:preference(use_smt_mode,full) -> FullPrio=2.5 ; | |
1587 | % poses problem for test 1096: | |
1588 | % count_number_of_disjuncts(RHS,NrC), | |
1589 | %FullPrio is Prio+(NrC-1)/10, | |
1590 | %get_wait_flag(FullPrio,disjoin,WF,LWF), %% | |
1591 | get_priority_of_boolean_expression(LHS,StartPrio), | |
1592 | get_binary_choice_wait_flag_exp_backoff(StartPrio,disjunct,WF,LWF), | |
1593 | % TO DO: extract FD information from LHS and RHS and assert, e.g. x:1..2 or x:4..5 | |
1594 | ? | disjoin_true(X,Y,LHS,LWF). |
1595 | % missing rule: if X==Y -> X=pred_true ; if X==~Y -> no need to setup choice point | |
1596 | :- block disjoin_true(-,-,?,-). | |
1597 | disjoin_true(X,Y,LHS,_LWF) :- | |
1598 | ( X==pred_true -> true | |
1599 | ; X==pred_false -> pred_true=Y | |
1600 | ; Y==pred_true -> true | |
1601 | ; Y==pred_false -> pred_true=X | |
1602 | ; useless_to_force(LHS) -> | |
1603 | ( %% print(forcing_disjoin_true(X,Y,_LWF)),nl, %% | |
1604 | Y=pred_true | |
1605 | ; | |
1606 | %%print(forcing_disjoin_false(X,Y,_LWF)),nl, | |
1607 | (Y,X) = (pred_false,pred_true) % these two unifications will happen atomically ! | |
1608 | ) | |
1609 | ; ( %% print(forcing_disjoin_true(X,Y,_LWF)),nl, %% | |
1610 | X=pred_true | |
1611 | ; | |
1612 | %%print(forcing_disjoin_false(X,Y,_LWF)),nl, | |
1613 | (X,Y) = (pred_false,pred_true) % these two unifications will happen atomically ! | |
1614 | ) | |
1615 | %add_error_fail(disjoin_true,'Illegal values: ',disjoin_true(X,Y)) | |
1616 | ). | |
1617 | ||
1618 | :- assert_must_succeed(exhaustive_kernel_check(b_interpreter_check:imply(pred_false,pred_false,pred_true))). | |
1619 | :- assert_must_succeed(exhaustive_kernel_check(b_interpreter_check:imply(pred_false,pred_true,pred_true))). | |
1620 | :- assert_must_succeed(exhaustive_kernel_check(b_interpreter_check:imply(pred_true,pred_false,pred_false))). | |
1621 | :- assert_must_succeed(exhaustive_kernel_check(b_interpreter_check:imply(pred_true,pred_true,pred_true))). | |
1622 | :- assert_must_succeed(exhaustive_kernel_fail_check(b_interpreter_check:imply(pred_false,pred_false,pred_false))). | |
1623 | :- assert_must_succeed(exhaustive_kernel_fail_check(b_interpreter_check:imply(pred_false,pred_true,pred_false))). | |
1624 | :- assert_must_succeed(exhaustive_kernel_fail_check(b_interpreter_check:imply(pred_true,pred_false,pred_true))). | |
1625 | :- assert_must_succeed(exhaustive_kernel_fail_check(b_interpreter_check:imply(pred_true,pred_true,pred_false))). | |
1626 | ||
1627 | imply(X,Y,Res) :- | |
1628 | (var(X),var(Y),var(Res) -> bool_equality(X,Y,EqXY) ; true /* impl4 will not block anyway */), | |
1629 | impl4(X,Y,EqXY,Res). | |
1630 | :- block impl4(-,-,-,-). | |
1631 | impl4(X,Y,EqXY,Res) :- | |
1632 | ( Res==pred_false -> X=pred_true,Y=pred_false | |
1633 | ; Res==pred_true -> imply_true3(X,Y,EqXY) | |
1634 | ; X==pred_false -> Res=pred_true | |
1635 | ; X==pred_true -> Res=Y | |
1636 | ; Y==pred_true -> Res=pred_true | |
1637 | ; Y==pred_false -> negate(X,Res) | |
1638 | ; EqXY==pred_true -> Res=pred_true % X => X is always true | |
1639 | ; EqXY==pred_false -> Y=Res % not(Y) => Y is true iff Y is true | |
1640 | ; add_error_fail(impl,'Illegal values: ',imply(X,Y,EqXY,Res)) | |
1641 | ). | |
1642 | ||
1643 | % assert X=pred_true => Y=pred_true | |
1644 | imply_true(X,Y) :- | |
1645 | (var(X),var(Y) -> bool_equality(X,Y,EqXY) ; true /* imply_true will not block anyway */), | |
1646 | imply_true3(X,Y,EqXY). | |
1647 | :- block imply_true3(-,-,-). | |
1648 | imply_true3(X,Y,EqXY) :- | |
1649 | ( X==pred_false -> true | |
1650 | ; X==pred_true -> Y=pred_true | |
1651 | ; Y==pred_true -> true | |
1652 | ; Y==pred_false -> X=pred_false | |
1653 | ; EqXY==pred_true -> true | |
1654 | ; EqXY==pred_false -> X=pred_false % X => not(X) ===> X=pred_false | |
1655 | ; add_error_fail(imply_true,'Illegal values: ',imply_true3(X,Y,EqXY)) | |
1656 | ). | |
1657 | ||
1658 | ||
1659 | :- assert_must_succeed(exhaustive_kernel_check(b_interpreter_check:equiv(pred_false,pred_false,pred_true))). | |
1660 | :- assert_must_succeed(exhaustive_kernel_check(b_interpreter_check:equiv(pred_false,pred_true,pred_false))). | |
1661 | :- assert_must_succeed(exhaustive_kernel_check(b_interpreter_check:equiv(pred_true,pred_false,pred_false))). | |
1662 | :- assert_must_succeed(exhaustive_kernel_check(b_interpreter_check:equiv(pred_true,pred_true,pred_true))). | |
1663 | :- assert_must_succeed(exhaustive_kernel_fail_check(b_interpreter_check:equiv(pred_false,pred_false,pred_false))). | |
1664 | :- assert_must_succeed(exhaustive_kernel_fail_check(b_interpreter_check:equiv(pred_false,pred_true,pred_true))). | |
1665 | :- assert_must_succeed(exhaustive_kernel_fail_check(b_interpreter_check:equiv(pred_true,pred_false,pred_true))). | |
1666 | :- assert_must_succeed(exhaustive_kernel_fail_check(b_interpreter_check:equiv(pred_true,pred_true,pred_false))). | |
1667 | ||
1668 | % b_interpreter_check:equiv(X,Y,Res),X=Y, Res==pred_true | |
1669 | equiv(X,Y,Res) :- | |
1670 | bool_equality(X,Y,Res). | |
1671 | ||
1672 |