1 % (c) 2009-2024 Lehrstuhl fuer Softwaretechnik und Programmiersprachen,
2 % Heinrich Heine Universitaet Duesseldorf
3 % This software is licenced under EPL 1.0 (http://www.eclipse.org/org/documents/epl-v10.html)
4
5
6 :- module(b_compiler,[b_compile/6, b_optimize/6, b_compile_closure/2]).
7
8 :- use_module(library(lists)).
9
10 :- use_module(self_check).
11 :- use_module(bsyntaxtree).
12 :- use_module(error_manager).
13 :- use_module(debug,[debug_format/3]).
14 :- use_module(btypechecker,[fasttype/2]).
15 :- use_module(bmachine,[b_get_machine_operation_for_animation/6]).
16 :- use_module(b_interpreter).
17 :- use_module(custom_explicit_sets).
18 :- use_module(kernel_waitflags,[add_error_wf/5, add_internal_error_wf/5]).
19 %:- use_module(bmachine,[b_operation_reads_output_variables/3]).
20 :- use_module(probsrc(performance_messages),[performance_monitoring_on/0,perfmessage/3]).
21
22 :- use_module(module_information,[module_info/2]).
23 :- module_info(group,interpreter).
24 :- module_info(description,'This module compiles set comprehensions into closures; making them independent of the state of the B machine.').
25
26 /* compile boolean expression into a closure where the local state and the global
27 state has been incorporated, but any parameter is left in the closure */
28
29 :- public test_bexpr/3, test_bexpr2/3.
30 test_bexpr(Expr,[bind(cc,int(1)),bind(nn,int(2))], [bind(db,[(int(1),int(2))])]) :-
31 fasttype( +conjunct( +conjunct( +member( global('Name')<<identifier(nn), +identifier('Name')),
32 +member( global('Code')<<identifier(cc), +identifier('Code'))),
33 +not_member( global('Name')<<identifier(nn),
34 +domain(set(couple(global('Name'),global('Code')))<<identifier(db)))), Expr).
35
36 test_bexpr2(Expr,[],[]) :-
37 fasttype( +implication( +equal( seq(any)<<identifier(ss), +empty_sequence),
38 +equal( set(any)<<identifier(res), +empty_set)), Expr).
39
40
41
42 b_compile_closure(closure(P,T,Body),Res) :- b_compiler:b_compile(Body,P,[],[],CBody),!, Res=closure(P,T,CBody).
43 b_compile_closure(C,C).
44
45
46 % difference with b_compile: the states LS, S will not be thrown away by the interpreter
47 % thus: we do not have to compile all accesses, in particular lazy lookups !
48 %b_optimize(TExpr,Parameters,_LS,_S,NTExpr,_WF) :- TExpr=b(_,_,Infos), member(already_optimized,Infos),
49 % !, NTExpr=TExpr.
50 b_optimize(TExpr,Parameters,LS,S,NTExpr,WF) :- %print('OPTIMIZE: '),translate:print_bexpr(TExpr),nl, trace,
51 append(LS,[bind('$optimize_do_not_force_lazy_lookups',pred_true)],NewLS),
52 b_compile(TExpr,Parameters,NewLS,S,NTExpr,WF).
53 %bsyntaxtree:add_texpr_info_if_new(NTExpr,already_optimized,ResTExpr).
54
55 b_compile(TExpr,Parameters,NewLS,S,NTExpr) :-
56 b_compile(TExpr,Parameters,NewLS,S,NTExpr,no_wf_available). % for unit tests
57
58 :- assert_must_succeed(( b_compiler:test_bexpr(E,L,S),
59 b_compiler:b_compile(E,[nn],L,S,_R) )).
60 :- assert_must_succeed(( b_compiler:test_bexpr2(E,L,S),
61 b_compiler:b_compile(E,[ss,res],L,S,_R) )).
62 :- assert_must_succeed(( b_compiler:b_compile(b(greater(b(value(int(2)),integer,[]),
63 b(value(int(1)),integer,[])),pred,[]),[],[],[],Res),
64 check_eq(Res,b(truth,pred,_)) )).
65 :- assert_must_succeed(( b_compiler:b_compile(b(greater(b(value(int(2)),integer,[]),
66 b(value(int(3)),integer,[])),pred,[]),[],[],[],Res),
67 check_eq(Res,b(falsity,pred,_)) )).
68 :- assert_must_succeed(( E = b(greater(b(value(int(2)),integer,[]),
69 b(value(int(_)),integer,[])),pred,[]),
70 b_compiler:b_compile(E,[],[],[],Res),
71 check_eq(Res,E) )).
72 :- assert_must_succeed(( E = b(greater(b(value(int(2)),integer,[]),
73 b(value(_),integer,[])),pred,[]),
74 b_compiler:b_compile(E,[],[],[],Res),
75 check_eq(Res,E) )).
76 :- assert_must_succeed(( E = b(greater(b(value(int(2)),integer,[]),
77 b(identifier(x),integer,[])),pred,[]),
78 b_compiler:b_compile(E,[],[bind(x,int(1))],[],Res),
79 check_eq(Res,b(truth,pred,_)) )).
80 :- assert_must_succeed(( E = b(greater(b(value(int(2)),integer,[]),
81 b(identifier(x),integer,[])),pred,[]),
82 b_compiler:b_compile(E,[],[bind(x,int(3))],[],Res),
83 check_eq(Res,b(falsity,pred,_)) )).
84
85 %:- assert_pre(b_compiler:b_compile_boolean_expression(E,Parameters,LS,S,_),
86 % (type_check(E,boolean_expression),type_check(Parameters,list(variable_id)),
87 % type_check(LS,store),type_check(S,store))).
88 %:- assert_post(b_compiler:b_compile_boolean_expression(_,_,_,_,E), type_check(E,boolean_expression)).
89
90 /* probably not worthwhile:
91 b_compile(TExpr,Parameters,LS,S,NTExpr) :- get_texpr_info(TExpr,Info),
92 (memberchk(compiled(Parameters),Info) -> NTExpr = TExpr ,print(already_compiled(Parameters)),nl, translate:print_bexpr(TExpr),nl
93 ; b_compile0(TExpr,Parameters,LS,S,b(E,T,I)), translate:print(compiling(Parameters)),nl, translate:print_bexpr(TExpr),nl,
94 NTExpr = b(E,T,[compiled(Parameters)|I])).
95 */
96 :- use_module(closures,[get_recursive_identifier_of_closure_body/2]).
97 b_compile(TExpr,Parameters,LS,S,NTExpr,WF) :-
98 check_is_id_list(Parameters,Parameters0),
99 (get_recursive_identifier_of_closure_body(TExpr,TRID),
100 def_get_texpr_id(TRID,RID), nonmember(bind(RID,_),LS)
101 -> Parameters1=[RID|Parameters0] % add recursive ID virtually to parameters to avoid error messages
102 ; Parameters1=Parameters0),
103 % print('compile : '),translate:print_bexpr(TExpr),nl, statistics(runtime,[Start,_]),%%
104 sort(Parameters1,Parameters2),
105 if(b_compile1(TExpr,Parameters2,LS,S,NTExpr0,eval,FullyKnown,WF),
106 (FullyKnown=true
107 -> copy_pos_infos(TExpr,NTExpr0,NTExpr)
108 % ensure position info is not deleted if full expression compiled away, see PROB-412 (test 1677)
109 ; NTExpr=NTExpr0),
110 (add_internal_error_wf(b_compiler,'Compilation failed: ',TExpr,TExpr,WF),
111 %b_compile1(TExpr,Parameters1,LS,S,NTExpr0,eval,_FullyKnown,WF),
112 NTExpr = TExpr)
113 ).
114 %, bsyntaxtree:check_ast(NTExpr).
115 %, check_infos(TExpr,NTExpr).
116 %, print('compiled: '), translate:print_bexpr(NTExpr), print(' '),statistics(runtime,[Stop,_]), T is Stop-Start, print(T), print(' ms '),nl, bsyntaxtree:check_ast(NTExpr). % , print(NTExpr),nl. check_ast
117
118 /*
119 check_infos(Old,New) :- bsyntaxtree:get_texpr_info(Old,IO),
120 bsyntaxtree:get_texpr_info(New,IN),
121 member(X,IO), \+ member(X,IN),
122 bsyntaxtree:important_info(X),
123 print(check_infos(Old,New)),nl,
124 print('Not copied: '), print(X),fail.
125 check_infos(_,_). */
126
127 :- use_module(bsyntaxtree,[always_well_defined/1]).
128 :- use_module(translate,[translate_bexpression_with_limit/2]).
129 %:- use_module(hit_profiler,[add_profile_hit/1]).
130
131 % Eval=eval means the expression will be needed in a successful branch and we can pre-compute more aggressively
132 % Eval=false means the expression may not be needed (e.g., in a disjunction) and only perform efficient precomputations
133 b_compile1(TExpr,Parameters,LS,S,ResultTExpr,Eval,FullyKnown1,WF) :-
134 TExpr = b(Expr,Type,Infos),
135 NTExpr = b(NewUntypedExpr,Type,NewInfos),
136 %remove_bt(TExpr,Expr,NewUntypedExpr,NTExpr), % remove top-level Type Information
137 %hit_profiler:add_profile_hit(Expr),
138 %functor(Expr,E1,N1), %print(start_compile(E1/N1,Eval,FullyKnown1)),nl,
139 b_compile1_infos(Expr,Type,Infos,Parameters,LS,S,NewUntypedExpr,NewInfos,Eval,FullyKnown,WF),
140 %functor(NewUntypedExpr,E2,N2),
141 %format(' compiled ~w/~w -> ~w/~w : ',[E1,N1,E2,N2]),translate:print_bexpr_or_subst(NTExpr),nl,
142 %format(' fully=~w, eval=~w~n',[FullyKnown,Eval]),
143 (NTExpr = b(value(_),_,_)
144 -> FullyKnown1=FullyKnown, ResultTExpr=NTExpr
145 ; FullyKnown=true, evaluate_this(Eval,NewUntypedExpr,Type,NewInfos)
146 -> % print('eval : '),translate:print_bexpr(NTExpr),nl, %
147 (nonvar(NewUntypedExpr),
148 % if( would be more prudent !?, also: we used to call b_compute_expression_nowf
149 b_interpreter:b_compute_expression(NTExpr,LS,S,ResultValue,WF)
150 -> %print(result(ResultValue)),nl,
151 %remove_bt(TExpr,Expr,value(ResultValue),ResultTExpr)
152 get_texpr_type(TExpr,TT),ResultTExpr = b(value(ResultValue),TT,[]),
153 FullyKnown1 = FullyKnown
154 %, print(compiled_value(ResultTExpr)),nl
155 ; add_internal_error_wf(b_compiler,'Undefined value marked for evaluation:',NTExpr,Infos,WF),
156 %trace, b_interpreter:b_compute_expression(NTExpr,LS,S,ResultValue,WF),
157 ResultTExpr=NTExpr, FullyKnown1=false
158 )
159 ; % ((FullyKnown=true, NTExpr\=b(value(_),_,_)) -> format('not eval: ~w (~w)~n',[NTExpr,Eval]) ; true),
160 ResultTExpr=NTExpr, FullyKnown1=false
161 ).
162
163
164 :- use_module(library(ordsets),[ord_member/2, ord_union/3]).
165 :- use_module(bsyntaxtree,[create_exists_or_let_predicate/3]).
166 :- use_module(tools_lists,[delete_first/3]).
167 add_parameters(SortedIds,NewIds,NewSortedIds) :-
168 sort(NewIds,SNew),
169 ord_union(SortedIds,SNew,NewSortedIds).
170
171 b_compile1_infos(exists(ExistsPara,Pred),_,OldInfos,Parameters,LS,S,NExpr,NewInfos,Eval,FullyKnown,WF) :- !,
172 FullyKnown=false, % predicates never automatically evaluated in b_compile1
173 get_texpr_ids(ExistsPara,AtomicIds),
174 add_parameters(Parameters,AtomicIds,NParameters),
175 b_compile1(Pred,NParameters,LS,S,NPred,Eval,_FullyKnown1,WF),
176 (is_falsity(NPred) -> NExpr = falsity, NewInfos = OldInfos
177 ; is_truth(NPred) -> NExpr = truth, NewInfos = OldInfos
178 %; Pred==NPred, write(unchanged(Parameters)),nl, member(used_ids(Old),OldInfos), print(used(Old)),nl,nl,fail
179 ; create_exists_or_let_predicate(ExistsPara,NPred,b(NExpr,pred,NI)),
180 %print('COMPILED EXISTS: '), translate:print_bexpr(b(NExpr,pred,NI)),nl,
181 (delete_first(OldInfos,used_ids(_),I1),
182 member(used_ids(NewUsedIds),NI) -> NewInfos = [used_ids(NewUsedIds)|I1]
183 ; %nl,print(missing_used_ids(OldInfos,NI)),nl, % can happen when we construt a let_predicate above
184 update_infos(NExpr,OldInfos,Parameters,NewInfos))
185 ).
186 b_compile1_infos(identifier(Id),Type,OldInfos,Parameters,LS,S,NExpr,NewInfos,_Eval,FullyKnown,WF) :- !,
187 ( ord_member(Id,Parameters) ->
188 NExpr = identifier(Id), FullyKnown=false, NewInfos = OldInfos
189 ; Id=op(_) ->
190 NExpr = identifier(Id), FullyKnown=false, NewInfos = OldInfos
191 ; b_interpreter:lookup_value_in_store_and_global_sets_wf(Id,Type,LS,S,Value,OldInfos,WF) ->
192 NExpr = value(Value), (known_value(Value) -> FullyKnown=true ; FullyKnown=false),
193 NewInfos = [was_identifier(Id)|OldInfos]
194 ; add_internal_error_wf(b_compiler,'Compilation of identifier failed: ',Id,OldInfos,WF),
195 NExpr = identifier(Id), FullyKnown=false, NewInfos = OldInfos
196 ).
197 b_compile1_infos(Expr,_,OldInfos,_Parameters,_LS,_S,NewUntypedExpr,NewInfos,_Eval,FullyKnown,_WF) :-
198 b_ast_cleanup:is_integer_set(Expr,_Set),!,
199 NewUntypedExpr=Expr, NewInfos=OldInfos,FullyKnown=true.
200 b_compile1_infos(operation_call_in_expr(Operation,OpCallParas),_Type,OldInfos,Parameters,LS,S,
201 Compiled,NewInfos,Eval,FullyKnown,WF) :- !,
202 def_get_texpr_id(Operation,op(OperationName)),
203 FullyKnown = false,
204 b_compile_l(OpCallParas,Parameters,LS,S,OpCallParaValues,Eval,_,WF),
205 (b_get_operation_normalized_read_write_info(OperationName,ReadVars,Modified) -> true
206 ; member(reads(ReadVars),OldInfos), member(modifies(Modified),OldInfos)
207 -> add_message(b_compiler,'Unregistered operation in expression: ',OperationName)
208 % should not happen; but proceed with the locally stored reads/writes info
209 ; add_error_wf(b_compiler,'Cannot obtain read/write info for operation:',OperationName,OldInfos,WF),
210 write(OldInfos),nl,nl,
211 ReadVars=[], Modified=[]
212 ),
213 %exclude(operation_identifier,Read,ReadVars), % Read used to contain operations used via operation_call_in_expr; TO DO: check if this is ok in other places of source code of ProB; see test 1957
214 (Modified=[] -> true
215 ; add_error_wf(b_compiler,'Calling operation that modifies state in expression:',OperationName,OldInfos,WF)),
216 % print(compile_call_op(OperationName,ReadVars,Modified,OpCallParaValues)),nl,
217 (ReadVars=[]
218 -> Compiled = operation_call_in_expr(Operation,OpCallParaValues),
219 NewInfos = OldInfos
220 ; maplist(create_value_for_read_variable(LS,S,WF),ReadVars,TRead,TValues),
221 safe_create_texpr(let_expression_global(TRead,TValues,
222 b(operation_call_in_expr(Operation,OpCallParaValues),any,OldInfos)),any,[generated_by_b_compiler],New),
223 New = b(Compiled,_,NewInfos)
224 %NewInfos = [generated_by_b_compiler],
225 %Compiled = let_expression_global(TRead,TValues,
226 % b(operation_call_in_expr(Operation,OpCallParaValues),any,OldInfos))
227 ).
228 b_compile1_infos(kodkod(Id,Identifiers),_,OldInfos,Parameters,LS,S,NExpr,NewInfos,_Eval,FullyKnown,WF) :- !,
229 FullyKnown=false, NewInfos=OldInfos,
230 exclude(is_parameter(Parameters),Identifiers,IdsToCompile),
231 (IdsToCompile=[]
232 -> NExpr = kodkod(Id,Identifiers)
233 ; maplist(precompile_id(LS,S,WF),IdsToCompile,Values),
234 % as we cannot inspect kodkod problem: wrap it into a let with the values stored:
235 NExpr = let_predicate(IdsToCompile,Values,b(kodkod(Id,Identifiers),pred,OldInfos))
236 ).
237 b_compile1_infos(Expr,_,OldInfos,Parameters,LS,S,NewUntypedExpr,NewInfos,Eval,FullyKnown,WF) :-
238 b_compile2(Expr,Parameters,LS,S,NewUntypedExpr,Eval,FullyKnown,WF),
239 update_infos(NewUntypedExpr,OldInfos,Parameters,NewInfos).
240
241
242 is_parameter(Parameters,b(identifier(Id),_,_)) :- ord_member(Id,Parameters).
243
244 precompile_id(LS,S,WF,b(identifier(Id),Type,Info),b(value(Value),Type,[])) :-
245 b_interpreter:lookup_value_in_store_and_global_sets_wf(Id,Type,LS,S,Value,Info,WF).
246 % was_identifier is aded in b_compile1_infos
247
248 :- use_module(bmachine,[b_get_operation_normalized_read_write_info/3]).
249
250 %operation_identifier(op(_)).
251 create_value_for_read_variable(LS,S,WF,Variable,TVariable,TValue) :-
252 b_interpreter:lookup_value_in_store_and_global_sets_wf(Variable,_Type,LS,S,Value,unknown,WF),!,
253 % TO DO: try and find type?
254 TVariable = b(identifier(Variable),any,[]),
255 TValue = b(value(Value),any,[]).
256 create_value_for_read_variable(_LS,_S,WF,Variable,TVariable,b(value(term(undefined)),any,[])) :-
257 TVariable = b(identifier(Variable),any,[]),
258 add_internal_error_wf(b_compiler,'Cannot find variable (read) while compiling operation:',Variable,unknown,WF),
259 fail.
260
261 :- use_module(library(ordsets)).
262 update_infos(forall(EParas,LHS,RHS),Infos,Parameters,NewInfos) :-
263 % forall also has used_ids field as it may call exists in negative context
264 conjunct_predicates([LHS,RHS],Cond),
265 update_infos_aux(EParas,Cond,Infos,Parameters,NewInfos),!.
266 update_infos(exists(EParas,Cond),Infos,Parameters,NewInfos) :- % we create_exists_or_let_predicate above, but other transformations may generate an exists below:
267 update_infos_aux(EParas,Cond,Infos,Parameters,NewInfos),!.
268 update_infos(BOP,Infos,_,NewInfos) :- bsyntaxtree:syntaxelement(BOP, [A,B],[], [], [], _),
269 wd_and_efficient(BOP), % should not generate WD errors itself
270 (select(contains_wd_condition,Infos,NewInfos) % there is a WD condition attached
271 -> fast_check_wd(A),
272 fast_check_wd(B)
273 ),
274 %print(removing_wd_condition(BOP)),nl,
275 !.
276 update_infos(_,I,_,I).
277
278 update_infos_aux(EParas,Cond,Infos,Parameters,NewInfos) :-
279 select_used_ids(UsedIds,Infos,I1,EParas,Cond),
280 UsedIds \= [],!,
281 % remove those used identifiers which will be compiled into the predicate
282 sort(Parameters,SParas),
283 ord_intersection(UsedIds,SParas,NewUsedIds),
284 %print(update(Parameters,UsedIds,I1,new(NewUsedIds))),nl,
285 NewInfos = [used_ids(NewUsedIds)|I1].
286
287 :- use_module(bsyntaxtree,[find_identifier_uses/3]).
288 select_used_ids(UsedIds,Infos,I1,_,_) :- select(used_ids(UsedIds),Infos,I1),!.
289 % check_used_ids_info(Parameters,Condition,UsedIds,b_compiler)
290 select_used_ids(UsedIds,Infos,Infos,_Parameters,Condition) :-
291 %add_error(bcompiler,'Expected information of used identifiers in exists operation information : ',Parameters:Infos), %% missing info can happen due to simplifcation rules below !
292 find_identifier_uses(Condition, [], UsedIds). % ,print(used(UsedIds,in_exist(Parameters))),nl.
293 % TO DO: avoid re-computing used-ids; we should refactor b_compile2 to return new Info field
294
295
296
297 evaluate_this(eval,X,Type,Info) :- !, worth_it_type(Type,X,Info).
298 evaluate_this(_,function(A,B),Type,Info) :- !,
299 A=b(value(VA),_,_), nonvar(VA), VA=avl_set(_),
300 B=b(value(_),_,_),
301 worth_it_type(Type,function(A,B),Info). % will check well-definedness
302 evaluate_this(_,X,_Type,_Info) :- wd_and_efficient(X).
303
304
305 % things which are very quick to compute
306 wd_and_efficient(sequence_extension(_)) :- !.
307 wd_and_efficient(set_extension(_)) :- !.
308 wd_and_efficient(integer_set(_)) :- !. % will be converted into value(global_set(_))
309 %% wd_and_efficient(value(_)) :- !. % is already computed
310 % the following will reduce the size of the representation; usually a good thing;
311 % we assume only avl_sets apprear here; inner set comprehensions are never computed into symbolic form by b_compile (see known_value below):
312 %wd_and_efficient(identity(_)) :- !.
313 wd_and_efficient(range(_)) :- !.
314 wd_and_efficient(domain(_)) :- !.
315 wd_and_efficient(domain_restriction(_,_)) :- !.
316 wd_and_efficient(domain_subtraction(_,_)) :- !.
317 wd_and_efficient(range_restriction(_,_)) :- !.
318 wd_and_efficient(range_subtraction(_,_)) :- !.
319 wd_and_efficient(intersection(_,_)) :- !.
320 wd_and_efficient(set_subtraction(_,_)) :- !.
321 wd_and_efficient(image(_,_)) :- !.
322 wd_and_efficient(reverse(_)) :- !. % added for rgen_rgen_Worst_Case_Stopping_distance_NCT_trm13
323 % reverse has n.log(n) complexity, but is always wd and can be beneficial
324 wd_and_efficient(union(A,B)) :- finite_set(A), finite_set(B), !. % has complexity n
325 % usually the union of two avl_sets will be smaller than keeping them separate, what about intervals?
326 wd_and_efficient(interval(_,_)) :- !. % ditto
327 wd_and_efficient(card(S)) :- !, % added for rgen_rgen_Worst_Case_Stopping_distance_NCT_trm13
328 (finite_set(S) -> true % is wd for finite set; has currently linear complexity but reduces size of closure
329 ; is_interval(S) -> true). % card is simple to compute
330 wd_and_efficient(min(S)) :- !, % logarithmic for avl_set, see test 1338
331 finite_non_empty_set(S).
332 wd_and_efficient(max(S)) :- !, % logarithmic for avl_set
333 finite_non_empty_set(S).
334 wd_and_efficient(string_set) :- !.
335 % some other efficient operators:
336 % external_function_call CHOOSE (test 1338) ?
337 % first, last, ... need to ensure we have sequence
338 wd_and_efficient(X) :- worth_it_int(X),!.
339 wd_and_efficient(X) :- worth_it_other(X).
340
341 is_interval(b(value(V),set(_),_)) :- nonvar(V), V=closure(P,T,B),
342 is_fixed_interval(P,T,B,_,_).
343
344 finite_set(b(value(V),set(_),_)) :- nonvar(V), finite_set_aux(V).
345 finite_set_aux([]).
346 finite_set_aux(avl_set(_)).
347 finite_non_empty_set(b(value(V),set(_),_)) :- nonvar(V), V=avl_set(_).
348
349 fast_check_wd(b(E,_,Infos)) :-
350 (nonmember(contains_wd_condition,Infos) -> true
351 ; nonvar(E), E=value(_)).
352
353 check_wd(NTExpr) :- bsyntaxtree:always_well_defined(NTExpr). % ,print(wd(NTExpr)),nl.
354 %(bsyntaxtree:always_well_defined(NTExpr) -> true ; print(not_guaranteed_wd(NTExpr)),nl).
355
356 % (worth_it_type(Type,X,Info) -> true ; X=value(_) -> true ; print(not_evaluating(X)),nl,fail).
357 worth_it_type(integer,X,Info) :- worth_it_int_wd(X),!, check_wd(b(X,integer,Info)).
358 worth_it_type(T,function(A,B),Info) :- !,
359 (check_wd(b(function(A,B),T,Info)) -> true
360 ; fail). %print('not_precompiling_function '),translate:print_bexpr(A), print(' @ '), translate:print_bexpr(B),nl,fail).
361 worth_it_type(integer,X,_) :- worth_it_int(X),!.
362 worth_it_type(T,X,Info) :- worth_it_wd(X),!, check_wd(b(X,T,Info)).
363 worth_it_type(set(_),X,_) :- worth_it_set(X),!.
364 worth_it_type(seq(_),X,_) :- worth_it_set(X),!.
365 worth_it_type(_,X,_) :- worth_it_other(X).
366
367 % TO DO: we should use the predicate has_wd_condition from b_ast_cleanup
368
369 % integer operations that could generate WD-errors
370 worth_it_int_wd(div(_,_)).
371 worth_it_int_wd(max(_)).
372 worth_it_int_wd(min(_)).
373 worth_it_int_wd(mod(_,_)).
374 worth_it_int_wd(power_of(_,_)).
375 worth_it_int_wd(card(_)). % has WD condition !!
376 worth_it_int_wd(size(_)).
377
378 % other operations that could generate WD-errors
379 worth_it_wd(first(_)).
380 worth_it_wd(last(_)).
381 worth_it_wd(tail(_)).
382 worth_it_wd(front(_)).
383 worth_it_wd(restrict_front(_,_)).
384 worth_it_wd(restrict_tail(_,_)).
385 worth_it_wd(rel_iterate(_,_)). %% could be expensive
386 worth_it_wd(general_intersection(_)).
387 worth_it_wd(general_concat(_)).
388
389 % to do: check other operators that could be not well-defined !
390
391 worth_it_int(unary_minus(_)).
392 worth_it_int(add(_,_)).
393 worth_it_int(minus(_,_)).
394 worth_it_int(multiplication(_,_)).
395 worth_it_int(max_int).
396 worth_it_int(min_int).
397
398 %worth_it_set(empty_set). % treated below
399 %worth_it_set(empty_sequence). % treated below
400 %worth_it_set(closure(_)). % this is closure1; it is currently always kept symbolic and can be counterproductive to compile; e.g., card(closure1(%x.(x : 1 .. 200|x + 1)))
401 %% ?? need to be more careful here; can be expensive --> need to keep track which parts need definitely to be evaluated
402 worth_it_set(integer_set(_)). % will be converted into value(global_set(_))
403 worth_it_set(comprehension_set(A,B)) :- b_ast_cleanup:is_integer_set(comprehension_set(A,B),_).
404 worth_it_set(interval(_,_)).
405 worth_it_set(reflexive_closure(A)) :- \+ symbolic_value(A).
406 worth_it_set(reverse(_)). % function inverse
407 worth_it_set(domain(_)). worth_it_set(range(_)).
408 worth_it_set(union(_,_)). worth_it_set(intersection(_,_)). worth_it_set(set_subtraction(_,_)).
409 worth_it_set(image(_,B)) :- \+ symbolic_value(B).
410 worth_it_set(composition(_,_)).
411 worth_it_set(domain_restriction(_,_)). worth_it_set(domain_subtraction(_,_)).
412 worth_it_set(range_restriction(_,_)). worth_it_set(range_subtraction(_,_)).
413 worth_it_set(direct_product(A,B)) :- \+ symbolic_value(A), \+ symbolic_value(B).
414 worth_it_set(parallel_product(A,B)) :- \+ symbolic_value(A), \+ symbolic_value(B).
415 worth_it_set(iteration(_,_)).
416 worth_it_set(set_extension([H|_])) :- \+ symbolic_value(H). % otherwise we may get an enumeration warning
417 worth_it_set(sequence_extension([H|_])) :- \+ symbolic_value(H). % ditto, TODO: check tail unless expensive
418 worth_it_set(rev(_)). % reverse of sequence
419 worth_it_set(concat(_,_)).
420 worth_it_set(seq(_)). % will be kept symbolic anyway
421 worth_it_set(seq1(_)). % will be kept symbolic anyway; relevant for test 1731
422 % f=%x.(x:iseq(struct(a:seq1(NATURAL),b:BOOL))|x) & f([rec(a:[222],b:TRUE)])=[rec(a:[222],b:xx)] & xx=TRUE
423 % however: value can be put into a set-extension!
424 worth_it_set(iseq(_)). % will be kept symbolic anyway
425 worth_it_set(iseq1(_)). % will be kept symbolic anyway
426 worth_it_set(perm(_)). % will be kept symbolic anyway
427 worth_it_set(pow_subset(_)). % will be kept symbolic anyway
428 worth_it_set(pow1_subset(_)). % will be kept symbolic anyway
429 worth_it_set(fin_subset(_)). % will be kept symbolic anyway
430 worth_it_set(fin1_subset(_)). % will be kept symbolic anyway
431 worth_it_set(general_union(X)) :- \+ symbolic_value(X). % otherwise we can get enumeration warnings
432 worth_it_set(identity(_)).
433 worth_it_set(first_of_pair(_)). % can also produce set
434 worth_it_set(second_of_pair(_)). % can also produce set
435 worth_it_set(cartesian_product(_,_)). % will usually be kept symbolic
436 worth_it_set(string_set). % ensure we have values inside compiled closures, e.g., for custom_explicit_set card computations
437 worth_it_set(bool_set).
438
439 symbolic_value(b(value(Val),_,_)) :- nonvar(Val), symbolic_val_aux(Val).
440 symbolic_val_aux(closure(P,T,B)) :- \+ is_fixed_interval(P,T,B,_,_).
441 symbolic_val_aux(global_set(_)).
442
443 :- use_module(external_functions,[not_declarative/1,external_fun_has_wd_condition/1,
444 expects_unevaluated_args/1]).
445 worth_it_other(boolean_true).
446 worth_it_other(boolean_false).
447 worth_it_other(string(_)).
448 worth_it_other(first_of_pair(_)).
449 worth_it_other(second_of_pair(_)).
450 worth_it_other(couple(_,_)).
451 worth_it_other(record_field(_,_)).
452 worth_it_other(external_function_call(FunName,_)) :-
453 \+ not_declarative(FunName),
454 \+ external_fun_has_wd_condition(FunName). %print(compile(FunName)),nl.
455 % CHOOSE for finite_non_empty_set ?
456 worth_it_other(rec(_)).
457 worth_it_other(struct(_)).
458 %worth_it_other(value(_)). % does not have to be evaluted; already a value
459
460 /*
461 % To do: distinguish which parts definitely need to be evaluated
462 %dont_eval_subexpressions(member). % special membership code can be used
463 %dont_eval_subexpressions(not_member). % special membership code can be used
464 dont_eval_subexpressions(disjunct(_,_)). % it may not be necessary to eval RHS
465 dont_eval_subexpressions(implication(_,_)). % it may not be necessary to eval RHS
466 */
467
468 :- use_module(bsyntaxtree, [get_negated_operator_expr/2]).
469 :- use_module(kernel_objects,[equal_object/3]).
470 :- use_module(kernel_mappings,[binary_boolean_operator/3]).
471 :- use_module(kernel_tools,[filter_cannot_match/4, get_template_for_filter_cannot_match/2]).
472 b_compile2(Exp,_Parameters,_LS,_S,NExpr,_Eval,FullyKnown,WF) :- var(Exp), !,
473 add_internal_error_wf(b_compiler,'Variable Expression: ',Exp,unknown,WF),
474 NExpr=Exp, FullyKnown=false.
475 b_compile2(truth,_,_LS,_S,NExpr,_Eval,FullyKnown,_WF) :- !, NExpr=truth, FullyKnown=false. % predicates never fully known
476 b_compile2(falsity,_,_LS,_S,NExpr,_Eval,FullyKnown,_WF) :- !, NExpr=falsity, FullyKnown=false. % predicates never fully known
477 b_compile2(empty_set,_,_LS,_S,NExpr,_Eval,FullyKnown,_WF) :- !, NExpr=value([]), FullyKnown=true.
478 b_compile2(empty_sequence,_,_LS,_S,NExpr,_Eval,FullyKnown,_WF) :- !, NExpr=value([]), FullyKnown=true.
479 b_compile2(boolean_false,_,_LS,_S,NExpr,_Eval,FullyKnown,_WF) :- !, NExpr=value(pred_false), FullyKnown=true.
480 b_compile2(boolean_true,_,_LS,_S,NExpr,_Eval,FullyKnown,_WF) :- !, NExpr=value(pred_true), FullyKnown=true.
481 b_compile2(value(Val),_Parameters,_LS,_S,NExpr,_Eval,FullyKnown,_WF) :- !,
482 NExpr=value(Val),
483 (known_value(Val) -> % ground(Val) -> known_value ?
484 FullyKnown=true ; FullyKnown=false).
485 b_compile2(integer(Val),_Parameters,_LS,_S,NExpr,_Eval,FullyKnown,_WF) :- !,
486 NExpr=value(int(Val)), (number(Val) -> FullyKnown=true ; FullyKnown=false).
487 b_compile2(lazy_lookup_pred(Id),Parameters,LS,S,NExpr,_Eval,FullyKnown,WF) :- !,
488 ( ord_member(Id,Parameters) -> %print(lazy_lookup_pred_id_as_parameter(Id,Parameters)),nl,
489 NExpr = lazy_lookup_pred(Id), FullyKnown=false
490 ; compute_lazy_lookup(Id,lazy_lookup_pred(Id),LS,S,NExpr,FullyKnown,WF)
491 ).
492 b_compile2(lazy_lookup_expr(Id),Parameters,LS,S,NExpr,_Eval,FullyKnown,WF) :- !,
493 ( ord_member(Id,Parameters) -> %print(lazy_lookup_expr_id_as_parameter(Id,Parameters)),nl,
494 NExpr = lazy_lookup_expr(Id), FullyKnown=false
495 ; compute_lazy_lookup(Id,lazy_lookup_expr(Id),LS,S,NExpr,FullyKnown,WF)
496 ).
497
498 % treat a few common cases, more efficiently than syntaxtransformation
499 b_compile2(equal(A,B),Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :- !,
500 FullyKnown=false, % predicates never evaluated in b_compile1
501 b_compile1(A,Parameters,LS,S,NExprA,Eval,FullyKnownA,WF),
502 b_compile1(B,Parameters,LS,S,NExprB,Eval,FullyKnownB,WF),
503 ( FullyKnownA=true, FullyKnownB=true,
504 NExprA = b(value(VA),_,_), NExprB = b(value(VB),_,_)
505 -> (equal_object(VA,VB,b_compile2_1) -> NExpr = truth ; NExpr = falsity)
506 ; generate_equality(NExprA,NExprB,NExpr)
507 ).
508 b_compile2(not_equal(A,B),Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :- !,
509 FullyKnown=false, % predicates never evaluated in b_compile1
510 b_compile1(A,Parameters,LS,S,NExprA,Eval,FullyKnownA,WF),
511 b_compile1(B,Parameters,LS,S,NExprB,Eval,FullyKnownB,WF),
512 ( FullyKnownA=true, FullyKnownB=true,
513 NExprA = b(value(VA),_,_), NExprB = b(value(VB),_,_)
514 -> %print(computing_neq(VA,VB)),nl,
515 (kernel_objects:equal_object(VA,VB,b_compile2_2) -> NExpr = falsity ; NExpr = truth)
516 %, print(result(NExpr)),nl
517 ; NExpr = not_equal(NExprA,NExprB)
518 ).
519 b_compile2(member(A,B),Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :- !,
520 FullyKnown=false, % predicates never evaluated in b_compile1
521 b_compile1(B,Parameters,LS,S,NExprB,Eval,FullyKnownB,WF),
522 (NExprB = b(value(X),BT,BI)
523 -> (X==[], always_well_defined(A) -> NExpr = falsity
524 ; b_compile1(A,Parameters,LS,S,NExprA,Eval,FullyKnownA,WF),
525 % check if we can decide membership (e.g., 1:{1})
526 (quick_test_membership1(NExprA,X,PRes)
527 -> convert_pred_res(PRes,NExpr)
528 % TO DO: maybe optimize x: {y|P(y)} --> P(x) ; by commenting in code below
529 % However, ensure test 273 succeeds and closure equality correctly detected (e.g., for BV16 = {bt|bt : BIT_VECTOR & bv_size(bt) = 16})
530 % ; (get_texpr_id(NExprA,IDA),
531 % get_comprehension_set(NExprB,IDB,Pred), get_texpr_info(NExprB,Info),
532 % print(rename(IDB,IDA,Info)),nl,
533 % bsyntaxtree:rename_bt(Pred,[rename(IDB,IDA)],PredA)) -> get_texpr_expr(PredA,NExpr)
534 ; custom_explicit_sets:singleton_set(X,El) % replace x:{El} -> x=El
535 -> get_texpr_type(NExprA,TA),
536 generate_equality_with_value(NExprA,FullyKnownA,El,FullyKnownB,TA,NExpr)
537 ; get_template_for_filter_cannot_match(NExprA,VA)
538 -> filter_cannot_match(X,VA,NewX,Filtered),
539 % (Filtered=false -> true ; print(filtered(NewX,VA,X)),nl),
540 (Filtered=false -> NExpr = member(NExprA,NExprB)
541 ; (NewX==[], always_well_defined(A)) -> NExpr = falsity
542 ; custom_explicit_sets:singleton_set(NewX,El)
543 -> get_texpr_type(NExprA,TA),
544 %nl,print(create_equal(NExprA,FullyKnownA,El,FullyKnownB,NExprB)),nl,nl,
545 generate_equality_with_value(NExprA,FullyKnownA,El,FullyKnownB,TA,NExpr)
546 ; NExpr = member(NExprA, b(value(NewX),BT,BI))
547 )
548 % end fo filtering
549 ; NExpr = member(NExprA,NExprB)
550 )
551 % , print('compile: '),print(NExpr),nl
552 )
553 ; NExpr = member(NExprA,NExprB),
554 b_compile1(A,Parameters,LS,S,NExprA,Eval,_,WF)
555 ).
556 % TO DO: also optimize things like: (ev1 |-> 0) |-> eg : #221:{((1|->0)|->3),((2|->0)|->0),...,((233|->0)|->218),((234|->0)|->228)}
557
558 b_compile2(not_member(A,B),Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :- !,
559 FullyKnown=false, % predicates never evaluated in b_compile1
560 b_compile1(B,Parameters,LS,S,NExprB,Eval,_,WF),
561 (NExprB = b(value(X),_,_)
562 -> (X==[], always_well_defined(A) -> NExpr = truth
563 ; b_compile1(A,Parameters,LS,S,NExprA,Eval,_,WF),
564 (quick_test_membership1(NExprA,X,PRes)
565 -> convert_neg_pred_res(PRes,NExpr)
566 ; NExpr = not_member(NExprA,NExprB))
567 )
568 ; NExpr = not_member(NExprA,NExprB),
569 b_compile1(A,Parameters,LS,S,NExprA,Eval,_,WF)
570 ).
571 b_compile2(function(Fun,B),Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :- !,
572 (is_lazy_extension_function_for_fun_app(Fun)
573 -> Eval1=false % extension function applications treated lazily
574 % TO DO: first evaluate B, if known then only evaluate relevant part of extension function
575 ; Eval1=Eval),
576 b_compile1(Fun,Parameters,LS,S,NExprA,Eval1,FullyKnown1,WF),
577 combine_fully_known(FullyKnown1,FullyKnown2,FullyKnown12),
578 b_compile1(B,Parameters,LS,S,NExprB,Eval,FullyKnown2,WF),
579 %tools_printing:print_term_summary(compiled_function(FullyKnown1,FullyKnown2,NExprA,NExprB)),nl,
580 (FullyKnown2=true,
581 (NExprA=b(value(_),_,_) -> true % no WD issue can be removed by apply, value already computed
582 ; preferences:preference(find_abort_values,false) % in a sequence extension we could remove non-WD elements
583 ),
584 % check if we have enough information to apply a partially specified function as a list
585 % e.g. if the function is [(int(1),A),(int(2),B)] and the argument is int(2): we can apply the function without knowing A or B; can have a dramatic importance when expanding unversal quantifiers !
586 can_apply_partially_specified_function(NExprA,NExprB,ResultExpr,WF)
587 -> NExpr = ResultExpr,
588 (FullyKnown12=true -> FullyKnown=true
589 ; ResultExpr=value(ResultValue),known_value(ResultValue) -> FullyKnown=true
590 ; FullyKnown = false)
591 ; %tools_printing:print_term_summary(cannot_apply_function(FullyKnown2,NExprA,NExprB)),nl,
592 %translate:print_bexpr(NExprA),nl, translate:print_bexpr(NExprB),nl,
593 NExpr = function(NExprA,NExprB), FullyKnown = FullyKnown12).
594
595 b_compile2(conjunct(A,B),Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :- !,
596 FullyKnown=false, % predicates never automatically evaluated in b_compile1
597 b_compile1(A,Parameters,LS,S,NExprA,Eval,_,WF),
598 (is_falsity(NExprA) -> NExpr = falsity
599 ;
600 % TO DO: propagate static information from A to B, e.g. if A :: x=10 -> add x=10 to LS/Parameters
601 % also: try and detect unsatisfiable predicates beforehand
602 b_compile1(B,Parameters,LS,S,NExprB,Eval,_,WF),
603 (is_falsity(NExprB) -> NExpr = falsity
604 ; is_truth(NExprB) -> get_texpr_expr(NExprA,NExpr)
605 ; is_truth(NExprA) -> get_texpr_expr(NExprB,NExpr)
606 ; NExpr = conjunct(NExprA,NExprB))
607 ).
608 b_compile2(disjunct(A,B),Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :- !,
609 FullyKnown=false, % predicates never automatically evaluated in b_compile1
610 b_compile1(A,Parameters,LS,S,NExprA,Eval,_,WF),
611 (is_truth(NExprA) -> NExpr = truth
612 ; b_compile1(B,Parameters,LS,S,NExprB,false,_,WF), % does not have to be executed in a successful branch: set Eval to false to avoid computing expensive expressions which may not be needed
613 (is_truth(NExprB) -> NExpr = truth
614 ; is_falsity(NExprA) -> get_texpr_expr(NExprB,NExpr)
615 ; is_falsity(NExprB) -> get_texpr_expr(NExprA,NExpr)
616 ; NExpr = disjunct(NExprA,NExprB))
617 ).
618 b_compile2(implication(A,B),Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :- !,
619 FullyKnown=false, % predicates never automatically evaluated in b_compile1
620 b_compile1(A,Parameters,LS,S,NExprA,Eval,_,WF),
621 (is_falsity(NExprA) -> NExpr = truth
622 ; is_truth(NExprA) -> b_compile1(B,Parameters,LS,S,NExprB,Eval,_,WF), get_texpr_expr(NExprB,NExpr)
623 ; NExpr = implication(NExprA,NExprB),
624 b_compile1(B,Parameters,LS,S,NExprB,false,_,WF) % B does not have to be executed in a successful branch: set Eval to false to avoid computing expensive expressions which may not be needed
625 % TO DO: add preference to force pre-computation everywhere and pass Eval instead of false to b_compile1; ditto for disjunction
626 ).
627 b_compile2(negation(A),Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :- !,
628 FullyKnown=false, % predicates never automatically evaluated in b_compile1
629 b_compile1(A,Parameters,LS,S,NExprA,Eval,_,WF),
630 ( get_negated_operator_expr(NExprA,NegatedA) -> NExpr = NegatedA
631 ; NExpr = negation(NExprA)
632 ).
633 b_compile2(if_then_else(A,B,C),Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :- !,
634 b_compile1(A,Parameters,LS,S,NExprA,Eval,_,WF),
635 (is_falsity(NExprA) -> b_compile1(C,Parameters,LS,S,NExprC,Eval,FullyKnown,WF), get_texpr_expr(NExprC,NExpr)
636 ; is_truth(NExprA) -> b_compile1(B,Parameters,LS,S,NExprB,Eval,FullyKnown,WF), get_texpr_expr(NExprB,NExpr)
637 ; NExpr = if_then_else(NExprA,NExprB,NExprC), FullyKnown=false,
638 b_compile1(B,Parameters,LS,S,NExprB,false,_,WF), % set Eval to false as we do not know if B will be needed
639 b_compile1(C,Parameters,LS,S,NExprC,false,_,WF) % ditto for C
640 ).
641 /* b_compile2(comprehension_set(CParas,Body),Parameters,LS,S,NExpr,_Eval,FullyKnown,WF) :-
642 sort(Parameters,SParas),
643 b_ast_cleanup:not_occurs_in_predicate(SParas,Body), %can only be applied if Body does not reference Parameters
644 !,
645 b_generate_inner_closure_if_necessary(Parameters,CParas,Body,LS,S,Result), % will itself call b_compile
646 NExpr = value(Result),
647 (ground(Result) -> FullyKnown=true ; FullyKnown=false). */
648 b_compile2(forall(ForallPara,A,B),Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :- !,
649 FullyKnown=false, % predicates never automatically evaluated in b_compile1
650 get_texpr_ids(ForallPara,AtomicIds),
651 add_parameters(Parameters,AtomicIds,NParameters),
652 b_compile1(A,NParameters,LS,S,NA,Eval,_FullyKnownA,WF),
653 (is_falsity(NA) -> NExpr = truth
654 ; b_compile1(B,NParameters,LS,S,NB,Eval,_FullyKnownB,WF),
655 (is_truth(NB) -> NExpr = truth
656 ; NExpr = forall(ForallPara,NA,NB)
657 % TO DO ??: if we have an equality -> replace Body by value and remove quantifier
658 %,print('COMPIlED: '),translate:print_bexpr(b(NExpr,pred,[])),nl
659 )
660 ).
661 % some special cases to avoid calling syntaxtransformation
662 b_compile2(record_field(A,FieldName),Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :- !,
663 b_compile1(A,Parameters,LS,S,NExprA,Eval,FullyKnownA,WF),
664 % First: we can try compute even if value not fully known !, we just need record field list
665 (get_record_field(NExprA,FieldName,NExpr,FullyKnown) -> true
666 ; NExpr = record_field(NExprA,FieldName), FullyKnown=FullyKnownA).
667 b_compile2(couple(A,B),Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :- !,
668 %NExpr = couple(NExprA,NExprB),
669 b_compile1(A,Parameters,LS,S,NExprA,Eval,FullyKnown1,WF),
670 combine_fully_known(FullyKnown1,FullyKnown2,FullyKnown),
671 b_compile1(B,Parameters,LS,S,NExprB,Eval,FullyKnown2,WF),
672 (FullyKnown \== true, % evaluation will already combine the result
673 NExprA=b(value(VA),_,_),NExprB=b(value(VB),_,_)
674 -> NExpr = value((VA,VB))
675 ; NExpr = couple(NExprA,NExprB)).
676 b_compile2(image(A,B),Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :- !,
677 b_compile1(A,Parameters,LS,S,NExprA,Eval,FullyKnown1,WF),
678 combine_fully_known(FullyKnown1,FullyKnown2,FullyKnown),
679 b_compile1(B,Parameters,LS,S,NExprB,Eval,FullyKnown2,WF),
680 (FullyKnown \= true, NExprA=b(value(VA),BT,BI),
681 NExprB=b(value(VB),_,_), nonvar(VB),
682 custom_explicit_sets:singleton_set(VB,VBX)
683 -> filter_cannot_match(VA,(VBX,_),NewVA,_Filtered), %nl,print(filtered_image(VBX,VA,NewVA)),nl,
684 NExpr = image(b(value(NewVA),BT,BI),NExprB)
685 % TO DO: add case where VB==[] or VA==[] are the empty set
686 ; NExpr = image(NExprA,NExprB)
687 ). %, print('compile image: '),translate:print_bexpr(NExpr),nl.
688 % TO DO: do something like can_apply_partially_specified_function; or filter_can_match
689 b_compile2(composition(A,B),Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :- !,
690 b_compile1(A,Parameters,LS,S,NExprA,Eval,FullyKnown1,WF),
691 combine_fully_known(FullyKnown1,FullyKnown2,FullyKnown),
692 NExpr = composition(NExprA,NExprB),
693 b_compile1(B,Parameters,LS,S,NExprB,Eval,FullyKnown2,WF),
694 (FullyKnown=false, Eval=eval, performance_monitoring_on,
695 ( FullyKnown1=true, NExprB=b(value(_),_,Info), large_known_value(NExprA,2)
696 -> true %translate:nested_print_bexpr(NExprB),nl
697 ; FullyKnown2=true, NExprA=b(value(_),_,Info), large_known_value(NExprB,2)
698 -> true %translate:nested_print_bexpr(NExprA),nl
699 )
700 -> perfmessage(b_compiler,'Cannot compile relational composition (try lift it out of quantification)',Info)
701 ; true).
702 b_compile2(assertion_expression(A,Msg,B),Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :- !,
703 b_compile1(A,Parameters,LS,S,NExprA,Eval,_,WF),
704 (is_truth(NExprA) -> % the ASSERT EXPR is redundant
705 %print(removed_assert),nl, translate:print_bexpr(B),nl,
706 b_compile1(B,Parameters,LS,S,NExprB,Eval,FullyKnown,WF),
707 get_texpr_expr(NExprB,NExpr)
708 ; b_compile1(B,Parameters,LS,S,NExprB,Eval,_,WF),
709 FullyKnown=false, % we cannot get rid of WD condition
710 NExpr = assertion_expression(NExprA,Msg,NExprB)
711 ).
712 b_compile2(domain(A),Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :- !,
713 b_compile1(A,Parameters,LS,S,NExprA,Eval,FullyKnown1,WF),
714 (FullyKnown1=false,get_texpr_expr(NExprA,NA),evaluate_domain(NA,Domain) % try and compute domain even if not fully known
715 -> FullyKnown = true, NExpr = value(Domain)
716 ; FullyKnown = FullyKnown1, NExpr = domain(NExprA)).
717 b_compile2(range(A),Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :- !,
718 b_compile1(A,Parameters,LS,S,NExprA,Eval,FullyKnown1,WF),
719 (FullyKnown1=false,evaluate_range(NExprA,Range) % try and compute range even if not fully known
720 -> FullyKnown = true, NExpr = value(Range)
721 ; FullyKnown = FullyKnown1, NExpr = range(NExprA)).
722 b_compile2(assign(LHS_List,RHS_List),Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :- !,
723 NExpr = assign(New_LHS_List,NewRHS_List), FullyKnown = false,
724 maplist(b_compile_lhs(Parameters,LS,S,Eval,WF),LHS_List,New_LHS_List),
725 b_compile_l(RHS_List,Parameters,LS,S,NewRHS_List,Eval,_FullyKnown2,WF).
726 b_compile2(assign_single_id(ID,B),Parameters,LS,S,assign_single_id(ID,NExprB),Eval,FullyKnown,WF) :- !,
727 FullyKnown = false,
728 b_compile1(B,Parameters,LS,S,NExprB,Eval,_,WF).
729 b_compile2(operation_call(Operation,OpCallResults,OpCallParas),Parameters,LS,S,InlinedOpCall,Eval,FullyKnown,WF) :-
730 % TO DO: evaluate if we should also use the let_expression_global approach used for operation_call_in_expr
731 !,
732 def_get_texpr_id(Operation,op(OperationName)),
733 FullyKnown = false,
734 b_compile_l(OpCallParas,Parameters,LS,S,OpCallParaValues,Eval,_,WF),
735 TopLevel=false,
736 b_get_machine_operation_for_animation(OperationName,OpResults,OpFormalParameters,Body,_OType,TopLevel),
737 bsyntaxtree:replace_ids_by_exprs(Body,OpResults,OpCallResults,Body2),
738 get_texpr_ids(OpFormalParameters,OpIds),
739 add_parameters(Parameters,OpIds,InnerParas),
740 b_compile1(Body2,InnerParas,[],S,NBody,Eval,FullyKnown,WF), % do not pass local state: this may override constants,... from the called machine
741 % Note: global state S should be valid for all machines in currently loaded specification
742 get_texpr_ids(OpCallResults,OpRIds),
743 add_parameters(Parameters,OpRIds,LocalKnownParas),
744 simplify_assignment(OpFormalParameters,OpCallParaValues,LHSFormalParas,RHSCallVals), %%
745 split_formal_parameters(LHSFormalParas,RHSCallVals,LocalKnownParas,
746 FreshOpParas,FreshCallVals,
747 ClashOpParas, ClashCallVals), % only set up VAR for fresh Paras
748 % print(split(LHSFormalParas,LocalKnownParas,fresh(FreshOpParas),clash(ClashOpParas))),nl,
749 (FreshOpParas=[] -> get_texpr_expr(NBody,Let1)
750 ; create_equality_for_let(FreshOpParas,FreshCallVals,Equality1),
751 Let1 = let(FreshOpParas,Equality1,NBody)),
752 (ClashOpParas = []
753 -> InlinedOpCall = Let1
754 ; %nl,print(clash(ClashOpParas)),nl,
755 maplist(create_fresh_id,ClashOpParas,FreshCopy),
756 create_equality_for_let(ClashOpParas,FreshCopy,Equality2), % copy Values from Fresh Ids
757 create_equality_for_let(FreshCopy,ClashCallVals,Equality3), % assign Parameter Vals to Fresh Ids
758 get_texpr_pos(Body,BodyPos), BodyPosInfo = [nodeid(BodyPos)],
759 Let2 = let(ClashOpParas,Equality2,b(Let1,subst,[BodyPosInfo])),
760 InlinedOpCall = let(FreshCopy,Equality3,b(Let2,subst,[BodyPosInfo]))
761 ).
762 %, print('Compiled operation call: '), translate:print_subst(b(InlinedOpCall,subst,BodyPosInfo)),nl,nl.
763 % Maybe this version is faster when no OpCallResults:
764 %b_compile2(operation_call(Operation,OpCallResults,OpCallParas),Parameters,LS,S,InlinedOpCall,Eval,FullyKnown,WF) :-
765 % OpCallResults=[],
766 % !,
767 % def_get_texpr_id(Operation,op(OperationName)),
768 % FullyKnown = false,
769 %% b_compile_l(Results,Parameters,LS,S,NResults,Eval,_,WF),
770 % b_compile_l(OpCallParas,Parameters,LS,S,OpCallParaValues,Eval,_,WF),
771 % TopLevel=false,
772 % b_get_machine_operation_for_animation(OperationName,OpResults,OpParameters,Body,_OType,TopLevel),
773 % % Note: input parameters cannot be assigned to: so replace ids is ok
774 % % However, we cannot replace output parameters: these can be assigned to and we can have aliasing
775 % % Note: no aliasing is allowed in OpCallResults (cf Atelier-B handbook x,x <-- op not allowed)
776 % bsyntaxtree:replace_ids_by_exprs(Body,OpParameters,OpCallParaValues,Body2),
777 % get_texpr_ids(OpResults,OpIds),
778 % append(OpIds,Parameters,InnerParas),
779 % b_compile1(Body2,InnerParas,LS,S,NBody,Eval,FullyKnown,WF),
780 % FinalBody = NBody.
781 b_compile2(Expr,Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :-
782 functor(Expr,BOP,2),
783 binary_boolean_operator(BOP,_,_),!, % from kernel_mappings, slightly more efficient than syntaxtransformation
784 arg(1,Expr,A),
785 FullyKnown=false, % predicates never evaluated in b_compile1
786 b_compile1(A,Parameters,LS,S,NExprA,Eval,FullyKnownA,WF),
787 arg(2,Expr,B),
788 b_compile1(B,Parameters,LS,S,NExprB,Eval,FullyKnownB,WF),
789 (eval_binary_bool(FullyKnownA,NExprA,FullyKnownB,NExprB,BOP,Result)
790 -> NExpr = Result
791 ; functor(NExpr,BOP,2), arg(1,NExpr,NExprA), arg(2,NExpr,NExprB)
792 ).
793 b_compile2(external_function_call(ExtFun,Args),_Parameters,LS,_S,NExpr,_Eval,FullyKnown,_WF) :-
794 expects_unevaluated_args(ExtFun),
795 memberchk(bind('$optimize_do_not_force_lazy_lookups',_),LS), % this is an optimize call
796 !,
797 debug_format(9,'Not compiling external function call to ~w~n',[ExtFun]),
798 NExpr=external_function_call(ExtFun,Args),
799 FullyKnown=false.
800 b_compile2(Expr,Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :-
801 functor(Expr,BOP,2),
802 kernel_mappings:binary_function(BOP,_,_),!, % slightly more efficient than syntaxtransformation
803 arg(1,Expr,A),
804 b_compile1(A,Parameters,LS,S,NExprA,Eval,FullyKnownA,WF),
805 combine_fully_known(FullyKnownA,FullyKnownB,FullyKnown),
806 arg(2,Expr,B),
807 b_compile1(B,Parameters,LS,S,NExprB,Eval,FullyKnownB,WF),
808 functor(NExpr,BOP,2), arg(1,NExpr,NExprA), arg(2,NExpr,NExprB).
809 b_compile2(Expr,Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :-
810 functor(Expr,UOP,1),
811 kernel_mappings:unary_function(UOP,_,_),!, % slightly more efficient than syntaxtransformation
812 arg(1,Expr,A),
813 b_compile1(A,Parameters,LS,S,NExprA,Eval,FullyKnown,WF),
814 functor(NExpr,UOP,1), arg(1,NExpr,NExprA).
815 b_compile2(Expr,Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :- % GENERAL CASE
816 %hit_profiler:add_profile_hit(Expr),
817 syntaxtransformation(Expr,Subs,Names,NSubs,NExpr),
818 get_texpr_ids(Names,Ids),
819 add_parameters(Parameters,Ids,NParameters),
820 b_compile_l(Subs,NParameters,LS,S,NSubs,Eval,FullyKnown,WF).
821
822 b_compile_l([],_,_,_,[],_Eval,true,_WF).
823 b_compile_l([Expr|ExprRest],P,LS,S,[NExpr|NExprRest],Eval,FullyKnown,WF) :-
824 b_compile1(Expr,P,LS,S,NExpr,Eval,FullyKnown1,WF),
825 combine_fully_known(FullyKnown1,FullyKnown2,FullyKnown),
826 b_compile_l(ExprRest,P,LS,S,NExprRest,Eval,FullyKnown2,WF).
827
828 % detecth when a parameter clashes with existing known ids
829 id_clash(LocalKnownParas,TID) :- def_get_texpr_id(TID,ID), member(ID,LocalKnownParas).
830
831 /* comment in if we want to compile inner comprehension sets:
832 :- use_module(bsyntaxtree,[split_names_and_types/3]).
833 :- use_module(closures,[construct_closure_if_necessary/4]).
834 b_generate_inner_closure_if_necessary(OuterParameters,ClosureParas,Condition,LocalState,State,Result) :-
835 split_names_and_types(ClosureParas,Names,Types),
836 add_parameters(OuterParameters,Names,FullNames),
837 b_compile(Condition,FullNames,LocalState,State,ClosurePred),
838 print('INNER COMPILE: '), translate:print_bexpr(ClosurePred),nl,
839 construct_closure_if_necessary(Names,Types,ClosurePred,Result).
840 */
841
842
843 % the LHS contains l-values which should not be looked up in the environment
844 % however, we need to deal with things like f(i) := RHS and compile i
845 b_compile_lhs(Parameters,LS,S,Eval,WF,TExpr,NewTExpr) :-
846 TExpr = b(Expr,Type,Info), NewTExpr = b(NewExpr,Type,Info),
847 b_compile_lhs_aux(Expr,Parameters,LS,S,NewExpr,Eval,WF).
848
849 b_compile_lhs_aux(function(A,B),Parameters,LS,S,function(NewA,NewB),Eval,WF) :- !,
850 b_compile_lhs(Parameters,LS,S,Eval,WF,A,NewA), % we can have nexted function calls f(e)(g) :=
851 b_compile1(B,Parameters,LS,S,NewB,Eval,_,WF).
852 b_compile_lhs_aux(E,_,_,_,E,_,_WF). % other LHS should be identifier -> just copy
853
854 get_record_field(b(value(Val),_,_),FieldName,value(Field),FullyKnown) :- !,
855 nonvar(Val), Val=rec(Fields),
856 safe_get_field(Fields,FieldName,Field),
857 known_value(Field,FullyKnown).
858 get_record_field(b(function(FUN,ARG),_Type,_Info),FieldName,function(ReducedFUN,ARG),false) :-
859 % {1|->rec(a:1,b:2),...}(x)'b --> {1|->2,...}(x)
860 %nl,print(get_field(FUN,ARG,FieldName)),nl,
861 % TO DO: also allow nested functions calls {1|->rec(a:1,b:2),...}(x)(y)'b or other reduction operators
862 get_field_in_range(FUN,FieldName,ReducedFUN).
863 safe_get_field(V,FN,_) :- (var(V) ; var(FN)),!,fail.
864 safe_get_field([field(N,V)|T],FieldName,Result) :- nonvar(N),
865 (N=FieldName -> Result=V ; safe_get_field(T,FieldName,Result)).
866
867 :- use_module(probsrc(custom_explicit_sets),[expand_custom_set_to_list/4, convert_to_avl/2]).
868 :- use_module(probsrc(avl_tools),[avl_height_less_than/2]).
869 get_field_in_range(b(value(OldVal),set(couple(Dom,OldRange)),Info),FieldName,
870 b(value(NewVal),set(couple(Dom,NewRange)),Info)) :-
871 nonvar(OldVal), OldVal=avl_set(AVL),
872 avl_height_less_than(AVL,10),
873 OldRange = record(Fields),
874 member(field(FieldName,NewRange),Fields),!,
875 expand_custom_set_to_list(avl_set(AVL),List,_,get_field_in_range),
876 maplist(safe_get_range_field(FieldName),List,NewList),
877 convert_to_avl(NewList,NewVal).
878
879 % compute the field access for the range elements:
880 safe_get_range_field(FieldName,(Dom,rec(Fields)),(Dom,Field)) :- safe_get_field(Fields,FieldName,Field).
881
882
883 eval_binary_bool(true,b(value(ValA),_,_),true,b(value(ValB),_,_),BOP,Result) :-
884 ground(ValA),
885 ground(ValB),
886 eval_binary_aux(BOP,ValA,ValB,Result).
887
888 eval_binary_aux(less,int(A),int(B),Result) :-
889 (A < B -> Result = truth ; Result = falsity).
890 eval_binary_aux(greater,int(A),int(B),Result) :-
891 (A > B -> Result = truth ; Result = falsity).
892 eval_binary_aux(less_equal,int(A),int(B),Result) :-
893 (A =< B -> Result = truth ; Result = falsity).
894 eval_binary_aux(greater_equal,int(A),int(B),Result) :-
895 (A >= B -> Result = truth ; Result = falsity).
896 eval_binary_aux(subset,avl_set(A1),avl_set(A2),Result) :-
897 (custom_explicit_sets:check_avl_subset(A1,A2) -> Result = truth ; Result = falsity).
898 eval_binary_aux(subset,[],_,Result) :- Result=truth.
899 %eval_binary_aux(less_real,real(A),real(B),Result) :- % TO DO
900 % (A < B -> Result = truth ; Result = falsity).
901 % TO DO: other operators are not_subset, strict_subset, ... intervals for subset,...
902
903
904
905 :- use_module(store,[lookup_value_for_existing_id_wf/5]).
906 compute_lazy_lookup(Id,Expr,LS,S,NExpr,FullyKnown,WF) :-
907 lookup_value_for_existing_id_wf(Id,LS,S,(Evaluated,Value),WF),
908 % the lazy expression has already been registered, but maybe not yet evaluated
909 !,
910 known_value(Value,FullyKnown), % compute if value fully known
911 (Evaluated==pred_true -> NExpr = value(Value)
912 ; FullyKnown==true -> NExpr = value(Value)
913 ; memberchk(bind('$optimize_do_not_force_lazy_lookups',_),LS)
914 -> NExpr = Expr % we do not force lookup: there could be WD issues !
915 % TO DO: examine Infos for wd_condition; we could also return NExpr = lazy_value(Id,Evaluated,Value)
916 ; if(Evaluated = pred_true,
917 % will force evaluation ! Note: this means shared expression inside a compiled expression must be well-defined
918 NExpr = value(Value),
919 (add_internal_error_wf(b_compiler,'Compilation failed: ', Id, unknown,WF),
920 fail))
921 ).
922 compute_lazy_lookup(Id,_E,_LS,_S,_LazyValue,_,WF) :-
923 add_internal_error_wf(b_compiler,'Compilation failed, illegal lazy_lookup_value: ',Id,unknown,WF),
924 fail.
925
926 combine_fully_known(true,A,A).
927 combine_fully_known(false,_,false).
928
929 :- use_module(tools_lists,[length_greater/2]).
930 % is an extension function with at least two elements, but not too long
931 % (for long set extensions it is much better to compile them to avl once; see private_examples/ClearSy/2019_Sep/rule_dummy)
932 % extension functions are treated lazily in b_interpreter for function application under the condition:
933 % memberchk(contains_wd_condition,FInfo) ; preferences:preference(use_clpfd_solver,false) ; ground_value(ArgValue)
934 is_lazy_extension_function_for_fun_app(b(A,_,FInfo)) :-
935 preferences:preference(data_validation_mode,false),
936 (memberchk(contains_wd_condition,FInfo) -> Lim=98 ; Lim = 23),
937 is_extension_function_aux(A,Lim).
938 is_extension_function_aux(set_extension([_A,_|T]),Lim) :- \+ length_greater(T,Lim).
939 is_extension_function_aux(sequence_extension([_,_|T]),Lim) :- \+ length_greater(T,Lim).
940
941 :- use_module(bsyntaxtree,[is_set_type/2]).
942 % check if we can apply an argument to a partially specified function (as a list and now also as AVL)
943 %can_apply_partially_specified_function(Fun,X,_,_) :- print(fun(Fun)),nl,print(val(X)),nl,fail.
944 can_apply_partially_specified_function(b(Expr,TYPE,_), b(value(X),TA,_),ResultExpr,WF) :-
945 can_apply_aux(Expr,TYPE,X,TA,ResultExpr,WF).
946
947 can_apply_aux(value(VAL),TYPE,X,TA,value(ResultValue),WF) :-
948 is_set_type(TYPE,couple(TA,_TB)),
949 lookup_result(VAL,X,ResultValue,WF).
950 can_apply_aux(sequence_extension(List),_,X,integer,ResultExpr,_WF) :-
951 % important, e.g., for solving test 1551: {b|[a,b,c](2)=333} =res & a : res & b:res
952 nonvar(X), X=int(Index), number(Index),
953 % this will prevent computing rest of sequence extension: can hide WD issues !
954 % print(apply_seq_extension(Index,List)),nl,
955 nth1(Index,List,b(ResultExpr,_,_)).
956
957 :- use_module(kernel_equality,[equality_objects_wf/4, equality_can_be_decided_by_unification/1]).
958 %lookup_result(VAR,ArgValue,Result,WF) :- var(VAR),!,kernel_mappings:kernel_call_apply_to(VAR,ArgValue,Result,unknown,unknown,WF).
959 % the clause above is unsound; as apply_to CAN RAISE WD ERRORS !! what if we have IF 1:dom(f) THEN f(1) ELSE f(0) END; we do not want to compute f(1) ! it can also instantiate unbound variables !
960 % the idea was to avoid that we wait on the full function, before compiled closure can be evaluated; test 1552
961 % important for e.g. a = {(1, {([]|->2)} ), (2, const(1, [a(1)]))}
962 % or: a = {1 |-> {[] |-> 2}, 2 |-> (dom({pi,ff,p|((pi : seq(INTEGER) & ff : INTEGER) & p : seq(INTEGER)) & (p |-> ff : [a(1)](1) & pi = 1 -> p)}) \/ {[] |-> 1})}
963 % test 1552 is currently skipped
964 % TO DO: think whether there are other deterministic computations that can be done in b_compile: prj1,prj2, record-field access ? this would ensure that closures,... can be computed earlier
965 lookup_result(VAR,_,_,_WF) :- var(VAR),!,fail.
966 lookup_result(avl_set(A),X,Result,_WF) :-
967 (custom_explicit_sets:try_apply_to_avl_set(X,Result,A)
968 -> true % precompiled function application
969 ; debug_format(19,'Function application in b_compiler for avl_set is not well-defined for: ~w~n',[X]),
970 % We could transform the function application into a construct that raises a WD error
971 fail).
972 lookup_result(closure(_P,_T,_B),_X,_Result,_WF) :- !,
973 fail. % TODO: should we replace parameters by values in body? if domain is full type?
974 lookup_result(List,X,Result,WF) :- List = [_|_],equality_can_be_decided_by_unification(X),!,
975 % this is relevant for long lists,
976 % see public_examples/B/ExternalFunctions/Satsolver/QueensBoardVersionTF_Satsolver.mch
977 fast_lookup_result(List,X,Result,WF).
978 lookup_result(List,X,Result,WF) :-
979 regular_lookup_result_in_list(List,X,Result,WF).
980
981 regular_lookup_result_in_list([],X,_Result,_WF) :-
982 debug_format(19,'Function application in b_compiler for list is not well-defined for: ~w~n',[X]), % ditto
983 fail.
984 regular_lookup_result_in_list([(HFrom,HTo)|T],X,Result,WF) :-
985 equality_objects_wf(HFrom,X,PredRes,WF),
986 %kernel_equality:equality_objects1(HFrom,X,PredRes,WF), % this could be called if X is guaranteed nonvar
987 nonvar(PredRes), % only proceed if we have enough information to determine the result of the comparison
988 (PredRes = pred_true -> Result = HTo % we have found the value; we assume there is no other value later
989 % TO DO: if find_abort_values=true: look later in the list if for all other HFrom PredRes=pred_false
990 ; regular_lookup_result_in_list(T,X,Result,WF)).
991
992 % a faster version which does not use equality_objects_wf
993 fast_lookup_result([(HFrom,HTo)|T],X,Result,WF) :-
994 equality_can_be_decided_by_unification(HFrom), !,
995 (HFrom=X -> Result = HTo
996 ; fast_lookup_result(T,X,Result,WF)
997 ).
998 fast_lookup_result(List,X,Result,WF) :-
999 regular_lookup_result_in_list(List,X,Result,WF).
1000
1001
1002 % get_comprehension_set(b(SET,_,_),ID,PRED) :- get_comprehension_set_aux(SET,ID,PRED).
1003 % get_comprehension_set_aux(comprehension_set([TID],PRED),ID,PRED) :-
1004 % get_texpr_id(TID,ID).
1005 % get_comprehension_set_aux(value(V),ID,PRED) :- nonvar(V), V = closure([ID],_,PRED).
1006
1007
1008
1009
1010 quick_test_membership1(b(value(VA),_,_),VB,Result) :-
1011 quick_test_membership_aux(VB,VA,Result).
1012 quick_test_membership_aux(VAR,_,_) :- var(VAR),!,fail.
1013 quick_test_membership_aux([],_,pred_false).
1014 quick_test_membership_aux(avl_set(AVL),X,Result) :-
1015 custom_explicit_sets:quick_test_avl_membership(AVL,X,Result). % we could also check that in case X is not ground but partially instantiated, whether there is a possible match in AVL (if not Result = pred_false)
1016 quick_test_membership_aux(global_set(GS),X,Result) :- nonvar(X), X=int(IX), nonvar(IX),
1017 custom_explicit_sets:membership_global_set(GS,X,R,_WF),
1018 nonvar(R), Result=R.
1019 quick_test_membership_aux(closure(P,T,B),X,Result) :- nonvar(X), X=int(IX), nonvar(IX),
1020 is_fixed_interval(P,T,B,LOW,UP),
1021 kernel_equality:in_nat_range_test(X,int(LOW),int(UP),R),
1022 nonvar(R), Result=R.
1023 quick_test_membership_aux(closure(P,T,B),X,Result) :- X==[], % check {} : POW(_) / FIN(_) and {} : POW1(_) / FIN1(_)
1024 custom_explicit_sets:is_powerset_closure(closure(P,T,B),Kind,_),
1025 (contains_empty_set(Kind) -> Result = pred_true ; Result=pred_false).
1026
1027 is_fixed_interval(P,T,B,LOW,UP) :-
1028 custom_explicit_sets:is_interval_closure(P,T,B,LOW,UP), integer(LOW),integer(UP).
1029
1030 contains_empty_set(pow).
1031 contains_empty_set(fin).
1032
1033 convert_pred_res(pred_false,falsity).
1034 convert_pred_res(pred_true,truth).
1035 convert_neg_pred_res(pred_true,falsity).
1036 convert_neg_pred_res(pred_false,truth).
1037
1038 generate_equality(b(A,_,_),b(B,_,_),Res) :-
1039 ( generate_equality_aux(A,B,Res) ;
1040 generate_equality_aux(B,A,Res) ),
1041 !.
1042 generate_equality(A,B,equal(A,B)).
1043
1044 generate_equality_aux(convert_bool(AA),value(PT),Res) :-
1045 PT==pred_true,
1046 get_texpr_expr(AA,TA),
1047 !,
1048 Res = TA.
1049 generate_equality_aux(convert_bool(AA),value(PF),Res) :-
1050 PF==pred_false,!,
1051 Res = negation(AA).
1052
1053 % generate an equal(_,_) node where the second one is a Value
1054 generate_equality_with_value(b(value(ValA),_,_),true,ValB,true,_TA,NExpr) :-
1055 % both are FullyKnown
1056 simple_value(ValA), % we should avoid closures
1057 !,
1058 kernel_equality:equality_objects(ValA,ValB,PRes),
1059 convert_pred_res(PRes,NExpr).
1060 generate_equality_with_value(NExprA,_,Value,_,TA,equal(NExprA,b(value(Value),TA,[]))).
1061
1062 % similar to custom_explicit_sets:simple_value
1063 % values where we can decide equality easily
1064 simple_value(fd(_,_)).
1065 simple_value(pred_true /* bool_true */).
1066 simple_value(pred_false /* bool_false */).
1067 simple_value(int(_)).
1068 simple_value((A,B)) :- simple_value(A), simple_value(B).
1069 simple_value(rec(Fields)) :- maplist(simple_field,Fields).
1070 simple_value(string(_)).
1071
1072 simple_field(field(_,Val)) :- simple_value(Val).
1073
1074 known_value(X,FullyKnown) :- (known_value(X) -> FullyKnown=true ; FullyKnown=false).
1075 known_value(X) :- nonvar(X), known_value2(X).
1076 known_value2(global_set(GS)) :- nonvar(GS).
1077 known_value2(freetype(GS)) :- nonvar(GS).
1078 known_value2(closure(P,T,B)) :- known_closure(P,T,B).
1079 %Note: for other closures: they still may have to be computed; some of the computations in wd_and_efficient could be expensive for closures
1080 known_value2(avl_set(_)). % already fully normalised
1081 known_value2((X,Y)) :- known_value(X),known_value(Y).
1082 known_value2(fd(A,B)) :- number(A),atomic(B).
1083 known_value2(int(N)) :- number(N).
1084 known_value2([]).
1085 known_value2(pred_true).
1086 known_value2(pred_false).
1087 known_value2(string(S)) :- atomic(S).
1088 known_value2([H|T]) :- known_value(H), known_value(T).
1089 %known_value2(record(Fields)) :- known_fields(Fields).
1090 known_value2(rec(Fields)) :- known_fields(Fields).
1091
1092 :- use_module(avl_tools,[avl_height_less_than/2]).
1093 % large known avl_set value; for issueing perfmessage warnings
1094 large_known_value(b(value(V),_,_),Lim) :- nonvar(V), large_known_aux(V,Lim).
1095 large_known_aux(avl_set(A),Lim) :-
1096 \+ avl_height_less_than(A,Lim).
1097
1098 % something we could do:
1099 %optimize_known_value([H|T],Res) :- (convert_to_avl([H|T],CS) -> Res=CS ; print(failed_to_convert_known_list),nl,fail).
1100 % try_convert_to_avl
1101
1102 known_closure(P,T,B) :- custom_explicit_sets:is_interval_closure(P,T,B,Low,Up), !,
1103 number(Low), number(Up),
1104 Up < Low+1000.
1105 known_closure(P,T,B) :-
1106 is_cartesian_product_closure(closure(P,T,B),A1,A2),
1107 !,% we could call is_cartesian_product_closure_aux(P,T,B,A1,A2)
1108 known_value(A1), known_value(A2).
1109
1110 known_fields(X) :- var(X),!,fail.
1111 known_fields([]).
1112 known_fields([field(N,V)|T]) :- ground(N),known_value(V),known_fields(T).
1113
1114 %b_evaluate1(TExpr,Parameters,LS,S,ResultTExpr,FullyKnown) :-
1115
1116 check_is_id_list([],[]).
1117 check_is_id_list([H|T],Res) :-
1118 (H=b(identifier(_),_,_)
1119 -> add_internal_error('Typed id list as argument: ',check_is_id_list([H|T],Res)), % use get_texpr_ids or maplist(def_get_texpr_id,P,PIDs)
1120 maplist(def_get_texpr_id,[H|T],Res)
1121 ; Res=[H|T]).
1122
1123 :- use_module(kernel_frozen_info,[kfi_domain/2]).
1124
1125 :- use_module(custom_explicit_sets,[construct_interval_closure/3]).
1126 % try and evaluate domain of a list (avl_set already dealt with separately)
1127 %evaluate_domain(X,_) :- print(dom(X)),nl,fail.
1128 evaluate_domain(sequence_extension(L),Domain) :- length(L,Len),
1129 % this will prevent computing range of sequence extension: can hide WD issues ! TO DO: check wd info and/or preference
1130 construct_interval_closure(1,Len,Domain).
1131 % TO DO: set_extension when possible ?
1132 evaluate_domain(value(L),Domain) :-
1133 get_domain(L,Domain).
1134
1135 get_domain(V,Dom) :- var(V),!,kfi_domain(V,Dom). % try infer domain from attached co-routines
1136 get_domain([],[]).
1137 get_domain([V|VT],Result) :- nonvar(V), V=(D,_),
1138 known_value(D),get_list_domain(VT,DT),
1139 %length(DT,Len),print(got_list_domain(D,Len)),nl,
1140 (custom_explicit_sets:try_convert_to_avl([D|DT],Res) -> Result=Res
1141 ; write(could_not_convert_domain_to_avl(D)),nl, Result=[D|DT]). %sort([D|DT],Result)?
1142 % we could also do this:
1143 %get_domain(closure(Par,Typ,Body),Result) :-
1144 % is_lambda_value_domain_closure(Par,Typ,Body, DomainValue,Expr), check_wd(Expr),
1145 % Result=DomainValue.
1146 get_list_domain(V,_) :- var(V),!,fail.
1147 get_list_domain([],[]).
1148 get_list_domain([V|VT],[D|DT]) :- nonvar(V), V=(D,_),
1149 known_value(D),get_list_domain(VT,DT).
1150
1151
1152 :- use_module(kernel_frozen_info,[kfi_range/2]).
1153
1154 % try and evaluate range of a list (avl_set already dealt with separately)
1155 evaluate_range(b(value(L),_T,_),Range) :-
1156 get_range(L,Range).
1157 get_range(V,Dom) :- var(V),!,kfi_range(V,Dom). % try infer range from attached co-routines
1158 get_range([],[]).
1159 get_range([V|VT],Result) :- nonvar(V), V=(_,D),
1160 known_value(D),
1161 get_list_range(VT,DT),
1162 sort([D|DT],Result).
1163
1164 get_list_range(V,_) :- var(V),!,fail.
1165 get_list_range([],[]).
1166 get_list_range([V|VT],[D|DT]) :-
1167 nonvar(V), V=(_,D),
1168 known_value(D),
1169 get_list_range(VT,DT).
1170
1171 create_equality_for_let(LHS,RHS,Conj) :-
1172 maplist(create_eq,LHS,RHS,CL),
1173 conjunct_predicates(CL,Conj).
1174 create_eq(Id,Expr,TPred) :- safe_create_texpr(equal(Id,Expr),pred,TPred).
1175
1176 % split formal operation call parameters into those which clash and those that do not:
1177 split_formal_parameters([],[],_,[],[],[],[]).
1178 split_formal_parameters([Formal1|FormalT],[Val1|VT],LocalKnownParas,Fresh,FV,Clash,CV) :-
1179 (id_clash(LocalKnownParas,Formal1)
1180 -> Fresh = FreshT, FV=FVT, Clash = [Formal1|ClashT], CV = [Val1|CVT]
1181 ; Fresh = [Formal1|FreshT], FV = [Val1|FVT], Clash = ClashT, CV = CVT
1182 ), split_formal_parameters(FormalT,VT,LocalKnownParas,FreshT,FVT,ClashT,CVT).
1183
1184 :- use_module(gensym,[gensym/2]).
1185 create_fresh_id(b(identifier(_),T,I),b(identifier(FRESHID),T,I)) :-
1186 gensym('__COMPILED_ID__',FRESHID).
1187
1188 :- use_module(bsyntaxtree, [get_texpr_pos/2,same_id/3]).
1189 % compute which assignments are really necessary, remove skip assignments x := x
1190 simplify_assignment([],[],[],[]).
1191 simplify_assignment([ID1|T1],[ID2|T2],Res1,Res2) :-
1192 (same_id(ID1,ID2,_) -> Res1=TR1, Res2=TR2 ; Res1=[ID1|TR1], Res2=[ID2|TR2]),
1193 simplify_assignment(T1,T2,TR1,TR2).
1194
1195
1196 /*
1197 % check if an AST term is a total lambda without WD condition:
1198 % NExprA=value(closure([x,...,'_lambda_result_'],b(equal())), NExprB=couple(,,,,) -> replace x by parameters
1199 % possibly better to do this via contains_wd_condition or similar Info field?!
1200
1201
1202 is_total_lambda(b(value(V),_,_),OtherIDs,LambdaExpr) :- nonvar(V),
1203 V=closure(Args,_Types,Body),
1204 is_total_lambda_closure(Args,Body, OtherIDs, LambdaExpr).
1205
1206 :- use_module(probsrc(bsyntaxtree),[conjunction_to_list/2,occurs_in_expr/2]).
1207 is_total_lambda_closure(Args,b(equal(TLambda,LambdaExpr),pred,_),OtherIDs,LambdaExpr) :-
1208 get_texpr_id(TLambda,LambdaID),
1209 append(OtherIDs,[LambdaID],Args),
1210 \+ occurs_in_expr(LambdaID,LambdaExpr).
1211
1212 % try and get arguments from expression
1213 get_actual_arguments([_],Expr,Args) :- !,
1214 % print('arg1: '),tools_printing:print_term_summary(Expr),nl,
1215 check_simple(Expr),
1216 Args= [Expr].
1217 get_actual_arguments([_|T],b(Couple,_,_),[Arg1|TArgs]) :-
1218 get_couple(Couple,Arg1,Arg2), print('arg: '),tools_printing:print_term_summary(Arg1),nl,
1219 check_simple(Arg1),
1220 get_actual_arguments(T,Arg2,TArgs).
1221
1222 check_simple(b(V,_,_)) :- simple2(V).
1223 simple2(value(_)).
1224 simple2(identifier(_)).
1225 simple2(integer(_)).
1226
1227 get_couple(couple(A,B),A,B).
1228 %get_couple(value(V),A,B) :- nonvar(V), V=(V1,V2), ... % TODO
1229
1230
1231 Code for bcompile2(function(...))
1232
1233
1234 % ; is_total_lambda(NExprA,Ids,Expr) ,
1235 % get_actual_arguments(Ids,NExprB,Args) %, print(ok),nl, translate:l_print_bexpr_or_subst(Args),nl
1236 % ->
1237 % bsyntaxtree:replace_ids_by_exprs(Expr,Ids,Args,Result),
1238 % % only ok if we do not replicate expressions !! we could repeatedly re-apply rule / compilation on result
1239 % print(' replaced: '),translate:print_bexpr(Result),nl,
1240 % Result = b(NExpr,_,_), FullyKnown = FullyKnown12
1241
1242 */