| 1 | % (c) 2009-2024 Lehrstuhl fuer Softwaretechnik und Programmiersprachen, | |
| 2 | % Heinrich Heine Universitaet Duesseldorf | |
| 3 | % This software is licenced under EPL 1.0 (http://www.eclipse.org/org/documents/epl-v10.html) | |
| 4 | ||
| 5 | ||
| 6 | :- module(b_compiler,[b_compile/6, b_optimize/6, b_compile_closure/2]). | |
| 7 | ||
| 8 | :- use_module(library(lists)). | |
| 9 | ||
| 10 | :- use_module(self_check). | |
| 11 | :- use_module(bsyntaxtree). | |
| 12 | :- use_module(error_manager). | |
| 13 | :- use_module(debug,[debug_format/3]). | |
| 14 | :- use_module(btypechecker,[fasttype/2]). | |
| 15 | :- use_module(bmachine,[b_get_machine_operation_for_animation/6]). | |
| 16 | :- use_module(b_interpreter). | |
| 17 | :- use_module(custom_explicit_sets). | |
| 18 | :- use_module(kernel_waitflags,[add_error_wf/5, add_internal_error_wf/5]). | |
| 19 | %:- use_module(bmachine,[b_operation_reads_output_variables/3]). | |
| 20 | :- use_module(probsrc(performance_messages),[performance_monitoring_on/0,perfmessage/3]). | |
| 21 | ||
| 22 | :- use_module(module_information,[module_info/2]). | |
| 23 | :- module_info(group,interpreter). | |
| 24 | :- module_info(description,'This module compiles set comprehensions into closures; making them independent of the state of the B machine.'). | |
| 25 | ||
| 26 | /* compile boolean expression into a closure where the local state and the global | |
| 27 | state has been incorporated, but any parameter is left in the closure */ | |
| 28 | ||
| 29 | :- public test_bexpr/3, test_bexpr2/3. | |
| 30 | test_bexpr(Expr,[bind(cc,int(1)),bind(nn,int(2))], [bind(db,[(int(1),int(2))])]) :- | |
| 31 | fasttype( +conjunct( +conjunct( +member( global('Name')<<identifier(nn), +identifier('Name')), | |
| 32 | +member( global('Code')<<identifier(cc), +identifier('Code'))), | |
| 33 | +not_member( global('Name')<<identifier(nn), | |
| 34 | +domain(set(couple(global('Name'),global('Code')))<<identifier(db)))), Expr). | |
| 35 | ||
| 36 | test_bexpr2(Expr,[],[]) :- | |
| 37 | fasttype( +implication( +equal( seq(any)<<identifier(ss), +empty_sequence), | |
| 38 | +equal( set(any)<<identifier(res), +empty_set)), Expr). | |
| 39 | ||
| 40 | ||
| 41 | ||
| 42 | b_compile_closure(closure(P,T,Body),Res) :- b_compiler:b_compile(Body,P,[],[],CBody),!, Res=closure(P,T,CBody). | |
| 43 | b_compile_closure(C,C). | |
| 44 | ||
| 45 | ||
| 46 | % difference with b_compile: the states LS, S will not be thrown away by the interpreter | |
| 47 | % thus: we do not have to compile all accesses, in particular lazy lookups ! | |
| 48 | %b_optimize(TExpr,Parameters,_LS,_S,NTExpr,_WF) :- TExpr=b(_,_,Infos), member(already_optimized,Infos), | |
| 49 | % !, NTExpr=TExpr. | |
| 50 | b_optimize(TExpr,Parameters,LS,S,NTExpr,WF) :- %print('OPTIMIZE: '),translate:print_bexpr(TExpr),nl, trace, | |
| 51 | append(LS,[bind('$optimize_do_not_force_lazy_lookups',pred_true)],NewLS), | |
| 52 | b_compile(TExpr,Parameters,NewLS,S,NTExpr,WF). | |
| 53 | %bsyntaxtree:add_texpr_info_if_new(NTExpr,already_optimized,ResTExpr). | |
| 54 | ||
| 55 | b_compile(TExpr,Parameters,NewLS,S,NTExpr) :- | |
| 56 | b_compile(TExpr,Parameters,NewLS,S,NTExpr,no_wf_available). % for unit tests | |
| 57 | ||
| 58 | :- assert_must_succeed(( b_compiler:test_bexpr(E,L,S), | |
| 59 | b_compiler:b_compile(E,[nn],L,S,_R) )). | |
| 60 | :- assert_must_succeed(( b_compiler:test_bexpr2(E,L,S), | |
| 61 | b_compiler:b_compile(E,[ss,res],L,S,_R) )). | |
| 62 | :- assert_must_succeed(( b_compiler:b_compile(b(greater(b(value(int(2)),integer,[]), | |
| 63 | b(value(int(1)),integer,[])),pred,[]),[],[],[],Res), | |
| 64 | check_eq(Res,b(truth,pred,_)) )). | |
| 65 | :- assert_must_succeed(( b_compiler:b_compile(b(greater(b(value(int(2)),integer,[]), | |
| 66 | b(value(int(3)),integer,[])),pred,[]),[],[],[],Res), | |
| 67 | check_eq(Res,b(falsity,pred,_)) )). | |
| 68 | :- assert_must_succeed(( E = b(greater(b(value(int(2)),integer,[]), | |
| 69 | b(value(int(_)),integer,[])),pred,[]), | |
| 70 | b_compiler:b_compile(E,[],[],[],Res), | |
| 71 | check_eq(Res,E) )). | |
| 72 | :- assert_must_succeed(( E = b(greater(b(value(int(2)),integer,[]), | |
| 73 | b(value(_),integer,[])),pred,[]), | |
| 74 | b_compiler:b_compile(E,[],[],[],Res), | |
| 75 | check_eq(Res,E) )). | |
| 76 | :- assert_must_succeed(( E = b(greater(b(value(int(2)),integer,[]), | |
| 77 | b(identifier(x),integer,[])),pred,[]), | |
| 78 | b_compiler:b_compile(E,[],[bind(x,int(1))],[],Res), | |
| 79 | check_eq(Res,b(truth,pred,_)) )). | |
| 80 | :- assert_must_succeed(( E = b(greater(b(value(int(2)),integer,[]), | |
| 81 | b(identifier(x),integer,[])),pred,[]), | |
| 82 | b_compiler:b_compile(E,[],[bind(x,int(3))],[],Res), | |
| 83 | check_eq(Res,b(falsity,pred,_)) )). | |
| 84 | ||
| 85 | %:- assert_pre(b_compiler:b_compile_boolean_expression(E,Parameters,LS,S,_), | |
| 86 | % (type_check(E,boolean_expression),type_check(Parameters,list(variable_id)), | |
| 87 | % type_check(LS,store),type_check(S,store))). | |
| 88 | %:- assert_post(b_compiler:b_compile_boolean_expression(_,_,_,_,E), type_check(E,boolean_expression)). | |
| 89 | ||
| 90 | /* probably not worthwhile: | |
| 91 | b_compile(TExpr,Parameters,LS,S,NTExpr) :- get_texpr_info(TExpr,Info), | |
| 92 | (memberchk(compiled(Parameters),Info) -> NTExpr = TExpr ,print(already_compiled(Parameters)),nl, translate:print_bexpr(TExpr),nl | |
| 93 | ; b_compile0(TExpr,Parameters,LS,S,b(E,T,I)), translate:print(compiling(Parameters)),nl, translate:print_bexpr(TExpr),nl, | |
| 94 | NTExpr = b(E,T,[compiled(Parameters)|I])). | |
| 95 | */ | |
| 96 | :- use_module(closures,[get_recursive_identifier_of_closure_body/2]). | |
| 97 | b_compile(TExpr,Parameters,LS,S,NTExpr,WF) :- | |
| 98 | check_is_id_list(Parameters,Parameters0), | |
| 99 | (get_recursive_identifier_of_closure_body(TExpr,TRID), | |
| 100 | def_get_texpr_id(TRID,RID), nonmember(bind(RID,_),LS) | |
| 101 | -> Parameters1=[RID|Parameters0] % add recursive ID virtually to parameters to avoid error messages | |
| 102 | ; Parameters1=Parameters0), | |
| 103 | % print('compile : '),translate:print_bexpr(TExpr),nl, statistics(runtime,[Start,_]),%% | |
| 104 | sort(Parameters1,Parameters2), | |
| 105 | if(b_compile1(TExpr,Parameters2,LS,S,NTExpr0,eval,FullyKnown,WF), | |
| 106 | (FullyKnown=true | |
| 107 | -> copy_pos_infos(TExpr,NTExpr0,NTExpr) | |
| 108 | % ensure position info is not deleted if full expression compiled away, see PROB-412 (test 1677) | |
| 109 | ; NTExpr=NTExpr0), | |
| 110 | (add_internal_error_wf(b_compiler,'Compilation failed: ',TExpr,TExpr,WF), | |
| 111 | %b_compile1(TExpr,Parameters1,LS,S,NTExpr0,eval,_FullyKnown,WF), | |
| 112 | NTExpr = TExpr) | |
| 113 | ). | |
| 114 | %, bsyntaxtree:check_ast(NTExpr). | |
| 115 | %, check_infos(TExpr,NTExpr). | |
| 116 | %, print('compiled: '), translate:print_bexpr(NTExpr), print(' '),statistics(runtime,[Stop,_]), T is Stop-Start, print(T), print(' ms '),nl, bsyntaxtree:check_ast(NTExpr). % , print(NTExpr),nl. check_ast | |
| 117 | ||
| 118 | /* | |
| 119 | check_infos(Old,New) :- bsyntaxtree:get_texpr_info(Old,IO), | |
| 120 | bsyntaxtree:get_texpr_info(New,IN), | |
| 121 | member(X,IO), \+ member(X,IN), | |
| 122 | bsyntaxtree:important_info(X), | |
| 123 | print(check_infos(Old,New)),nl, | |
| 124 | print('Not copied: '), print(X),fail. | |
| 125 | check_infos(_,_). */ | |
| 126 | ||
| 127 | :- use_module(bsyntaxtree,[always_well_defined/1]). | |
| 128 | :- use_module(translate,[translate_bexpression_with_limit/2]). | |
| 129 | %:- use_module(hit_profiler,[add_profile_hit/1]). | |
| 130 | ||
| 131 | % Eval=eval means the expression will be needed in a successful branch and we can pre-compute more aggressively | |
| 132 | % Eval=false means the expression may not be needed (e.g., in a disjunction) and only perform efficient precomputations | |
| 133 | b_compile1(TExpr,Parameters,LS,S,ResultTExpr,Eval,FullyKnown1,WF) :- | |
| 134 | TExpr = b(Expr,Type,Infos), | |
| 135 | NTExpr = b(NewUntypedExpr,Type,NewInfos), | |
| 136 | %remove_bt(TExpr,Expr,NewUntypedExpr,NTExpr), % remove top-level Type Information | |
| 137 | %hit_profiler:add_profile_hit(Expr), | |
| 138 | %functor(Expr,E1,N1), %print(start_compile(E1/N1,Eval,FullyKnown1)),nl, | |
| 139 | b_compile1_infos(Expr,Type,Infos,Parameters,LS,S,NewUntypedExpr,NewInfos,Eval,FullyKnown,WF), | |
| 140 | %functor(NewUntypedExpr,E2,N2), | |
| 141 | %format(' compiled ~w/~w -> ~w/~w : ',[E1,N1,E2,N2]),translate:print_bexpr_or_subst(NTExpr),nl, | |
| 142 | %format(' fully=~w, eval=~w~n',[FullyKnown,Eval]), | |
| 143 | (NTExpr = b(value(_),_,_) | |
| 144 | -> FullyKnown1=FullyKnown, ResultTExpr=NTExpr | |
| 145 | ; FullyKnown=true, evaluate_this(Eval,NewUntypedExpr,Type,NewInfos) | |
| 146 | -> % print('eval : '),translate:print_bexpr(NTExpr),nl, % | |
| 147 | (nonvar(NewUntypedExpr), | |
| 148 | % if( would be more prudent !?, also: we used to call b_compute_expression_nowf | |
| 149 | b_interpreter:b_compute_expression(NTExpr,LS,S,ResultValue,WF) | |
| 150 | -> %print(result(ResultValue)),nl, | |
| 151 | %remove_bt(TExpr,Expr,value(ResultValue),ResultTExpr) | |
| 152 | get_texpr_type(TExpr,TT),ResultTExpr = b(value(ResultValue),TT,[]), | |
| 153 | FullyKnown1 = FullyKnown | |
| 154 | %, print(compiled_value(ResultTExpr)),nl | |
| 155 | ; add_internal_error_wf(b_compiler,'Undefined value marked for evaluation:',NTExpr,Infos,WF), | |
| 156 | %trace, b_interpreter:b_compute_expression(NTExpr,LS,S,ResultValue,WF), | |
| 157 | ResultTExpr=NTExpr, FullyKnown1=false | |
| 158 | ) | |
| 159 | ; % ((FullyKnown=true, NTExpr\=b(value(_),_,_)) -> format('not eval: ~w (~w)~n',[NTExpr,Eval]) ; true), | |
| 160 | ResultTExpr=NTExpr, FullyKnown1=false | |
| 161 | ). | |
| 162 | ||
| 163 | ||
| 164 | :- use_module(library(ordsets),[ord_member/2, ord_union/3]). | |
| 165 | :- use_module(bsyntaxtree,[create_exists_or_let_predicate/3]). | |
| 166 | :- use_module(tools_lists,[delete_first/3]). | |
| 167 | add_parameters(SortedIds,NewIds,NewSortedIds) :- | |
| 168 | sort(NewIds,SNew), | |
| 169 | ord_union(SortedIds,SNew,NewSortedIds). | |
| 170 | ||
| 171 | b_compile1_infos(exists(ExistsPara,Pred),_,OldInfos,Parameters,LS,S,NExpr,NewInfos,Eval,FullyKnown,WF) :- !, | |
| 172 | FullyKnown=false, % predicates never automatically evaluated in b_compile1 | |
| 173 | get_texpr_ids(ExistsPara,AtomicIds), | |
| 174 | add_parameters(Parameters,AtomicIds,NParameters), | |
| 175 | b_compile1(Pred,NParameters,LS,S,NPred,Eval,_FullyKnown1,WF), | |
| 176 | (is_falsity(NPred) -> NExpr = falsity, NewInfos = OldInfos | |
| 177 | ; is_truth(NPred) -> NExpr = truth, NewInfos = OldInfos | |
| 178 | %; Pred==NPred, write(unchanged(Parameters)),nl, member(used_ids(Old),OldInfos), print(used(Old)),nl,nl,fail | |
| 179 | ; create_exists_or_let_predicate(ExistsPara,NPred,b(NExpr,pred,NI)), | |
| 180 | %print('COMPILED EXISTS: '), translate:print_bexpr(b(NExpr,pred,NI)),nl, | |
| 181 | (delete_first(OldInfos,used_ids(_),I1), | |
| 182 | member(used_ids(NewUsedIds),NI) -> NewInfos = [used_ids(NewUsedIds)|I1] | |
| 183 | ; %nl,print(missing_used_ids(OldInfos,NI)),nl, % can happen when we construt a let_predicate above | |
| 184 | update_infos(NExpr,OldInfos,Parameters,NewInfos)) | |
| 185 | ). | |
| 186 | b_compile1_infos(identifier(Id),Type,OldInfos,Parameters,LS,S,NExpr,NewInfos,_Eval,FullyKnown,WF) :- !, | |
| 187 | ( ord_member(Id,Parameters) -> | |
| 188 | NExpr = identifier(Id), FullyKnown=false, NewInfos = OldInfos | |
| 189 | ; Id=op(_) -> | |
| 190 | NExpr = identifier(Id), FullyKnown=false, NewInfos = OldInfos | |
| 191 | ; b_interpreter:lookup_value_in_store_and_global_sets_wf(Id,Type,LS,S,Value,OldInfos,WF) -> | |
| 192 | NExpr = value(Value), (known_value(Value) -> FullyKnown=true ; FullyKnown=false), | |
| 193 | NewInfos = [was_identifier(Id)|OldInfos] | |
| 194 | ; add_internal_error_wf(b_compiler,'Compilation of identifier failed: ',Id,OldInfos,WF), | |
| 195 | NExpr = identifier(Id), FullyKnown=false, NewInfos = OldInfos | |
| 196 | ). | |
| 197 | b_compile1_infos(Expr,_,OldInfos,_Parameters,_LS,_S,NewUntypedExpr,NewInfos,_Eval,FullyKnown,_WF) :- | |
| 198 | b_ast_cleanup:is_integer_set(Expr,_Set),!, | |
| 199 | NewUntypedExpr=Expr, NewInfos=OldInfos,FullyKnown=true. | |
| 200 | b_compile1_infos(operation_call_in_expr(Operation,OpCallParas),_Type,OldInfos,Parameters,LS,S, | |
| 201 | Compiled,NewInfos,Eval,FullyKnown,WF) :- !, | |
| 202 | def_get_texpr_id(Operation,op(OperationName)), | |
| 203 | FullyKnown = false, | |
| 204 | b_compile_l(OpCallParas,Parameters,LS,S,OpCallParaValues,Eval,_,WF), | |
| 205 | (b_get_operation_normalized_read_write_info(OperationName,ReadVars,Modified) -> true | |
| 206 | ; member(reads(ReadVars),OldInfos), member(modifies(Modified),OldInfos) | |
| 207 | -> add_message(b_compiler,'Unregistered operation in expression: ',OperationName) | |
| 208 | % should not happen; but proceed with the locally stored reads/writes info | |
| 209 | ; add_error_wf(b_compiler,'Cannot obtain read/write info for operation:',OperationName,OldInfos,WF), | |
| 210 | write(OldInfos),nl,nl, | |
| 211 | ReadVars=[], Modified=[] | |
| 212 | ), | |
| 213 | %exclude(operation_identifier,Read,ReadVars), % Read used to contain operations used via operation_call_in_expr; TO DO: check if this is ok in other places of source code of ProB; see test 1957 | |
| 214 | (Modified=[] -> true | |
| 215 | ; add_error_wf(b_compiler,'Calling operation that modifies state in expression:',OperationName,OldInfos,WF)), | |
| 216 | % print(compile_call_op(OperationName,ReadVars,Modified,OpCallParaValues)),nl, | |
| 217 | (ReadVars=[] | |
| 218 | -> Compiled = operation_call_in_expr(Operation,OpCallParaValues), | |
| 219 | NewInfos = OldInfos | |
| 220 | ; maplist(create_value_for_read_variable(LS,S,WF),ReadVars,TRead,TValues), | |
| 221 | safe_create_texpr(let_expression_global(TRead,TValues, | |
| 222 | b(operation_call_in_expr(Operation,OpCallParaValues),any,OldInfos)),any,[generated_by_b_compiler],New), | |
| 223 | New = b(Compiled,_,NewInfos) | |
| 224 | %NewInfos = [generated_by_b_compiler], | |
| 225 | %Compiled = let_expression_global(TRead,TValues, | |
| 226 | % b(operation_call_in_expr(Operation,OpCallParaValues),any,OldInfos)) | |
| 227 | ). | |
| 228 | b_compile1_infos(kodkod(Id,Identifiers),_,OldInfos,Parameters,LS,S,NExpr,NewInfos,_Eval,FullyKnown,WF) :- !, | |
| 229 | FullyKnown=false, NewInfos=OldInfos, | |
| 230 | exclude(is_parameter(Parameters),Identifiers,IdsToCompile), | |
| 231 | (IdsToCompile=[] | |
| 232 | -> NExpr = kodkod(Id,Identifiers) | |
| 233 | ; maplist(precompile_id(LS,S,WF),IdsToCompile,Values), | |
| 234 | % as we cannot inspect kodkod problem: wrap it into a let with the values stored: | |
| 235 | NExpr = let_predicate(IdsToCompile,Values,b(kodkod(Id,Identifiers),pred,OldInfos)) | |
| 236 | ). | |
| 237 | b_compile1_infos(Expr,_,OldInfos,Parameters,LS,S,NewUntypedExpr,NewInfos,Eval,FullyKnown,WF) :- | |
| 238 | b_compile2(Expr,Parameters,LS,S,NewUntypedExpr,Eval,FullyKnown,WF), | |
| 239 | update_infos(NewUntypedExpr,OldInfos,Parameters,NewInfos). | |
| 240 | ||
| 241 | ||
| 242 | is_parameter(Parameters,b(identifier(Id),_,_)) :- ord_member(Id,Parameters). | |
| 243 | ||
| 244 | precompile_id(LS,S,WF,b(identifier(Id),Type,Info),b(value(Value),Type,[])) :- | |
| 245 | b_interpreter:lookup_value_in_store_and_global_sets_wf(Id,Type,LS,S,Value,Info,WF). | |
| 246 | % was_identifier is aded in b_compile1_infos | |
| 247 | ||
| 248 | :- use_module(bmachine,[b_get_operation_normalized_read_write_info/3]). | |
| 249 | ||
| 250 | %operation_identifier(op(_)). | |
| 251 | create_value_for_read_variable(LS,S,WF,Variable,TVariable,TValue) :- | |
| 252 | b_interpreter:lookup_value_in_store_and_global_sets_wf(Variable,_Type,LS,S,Value,unknown,WF),!, | |
| 253 | % TO DO: try and find type? | |
| 254 | TVariable = b(identifier(Variable),any,[]), | |
| 255 | TValue = b(value(Value),any,[]). | |
| 256 | create_value_for_read_variable(_LS,_S,WF,Variable,TVariable,b(value(term(undefined)),any,[])) :- | |
| 257 | TVariable = b(identifier(Variable),any,[]), | |
| 258 | add_internal_error_wf(b_compiler,'Cannot find variable (read) while compiling operation:',Variable,unknown,WF), | |
| 259 | fail. | |
| 260 | ||
| 261 | :- use_module(library(ordsets)). | |
| 262 | update_infos(forall(EParas,LHS,RHS),Infos,Parameters,NewInfos) :- | |
| 263 | % forall also has used_ids field as it may call exists in negative context | |
| 264 | conjunct_predicates([LHS,RHS],Cond), | |
| 265 | update_infos_aux(EParas,Cond,Infos,Parameters,NewInfos),!. | |
| 266 | update_infos(exists(EParas,Cond),Infos,Parameters,NewInfos) :- % we create_exists_or_let_predicate above, but other transformations may generate an exists below: | |
| 267 | update_infos_aux(EParas,Cond,Infos,Parameters,NewInfos),!. | |
| 268 | update_infos(BOP,Infos,_,NewInfos) :- bsyntaxtree:syntaxelement(BOP, [A,B],[], [], [], _), | |
| 269 | wd_and_efficient(BOP), % should not generate WD errors itself | |
| 270 | (select(contains_wd_condition,Infos,NewInfos) % there is a WD condition attached | |
| 271 | -> fast_check_wd(A), | |
| 272 | fast_check_wd(B) | |
| 273 | ), | |
| 274 | %print(removing_wd_condition(BOP)),nl, | |
| 275 | !. | |
| 276 | update_infos(_,I,_,I). | |
| 277 | ||
| 278 | update_infos_aux(EParas,Cond,Infos,Parameters,NewInfos) :- | |
| 279 | select_used_ids(UsedIds,Infos,I1,EParas,Cond), | |
| 280 | UsedIds \= [],!, | |
| 281 | % remove those used identifiers which will be compiled into the predicate | |
| 282 | sort(Parameters,SParas), | |
| 283 | ord_intersection(UsedIds,SParas,NewUsedIds), | |
| 284 | %print(update(Parameters,UsedIds,I1,new(NewUsedIds))),nl, | |
| 285 | NewInfos = [used_ids(NewUsedIds)|I1]. | |
| 286 | ||
| 287 | :- use_module(bsyntaxtree,[find_identifier_uses/3]). | |
| 288 | select_used_ids(UsedIds,Infos,I1,_,_) :- select(used_ids(UsedIds),Infos,I1),!. | |
| 289 | % check_used_ids_info(Parameters,Condition,UsedIds,b_compiler) | |
| 290 | select_used_ids(UsedIds,Infos,Infos,_Parameters,Condition) :- | |
| 291 | %add_error(bcompiler,'Expected information of used identifiers in exists operation information : ',Parameters:Infos), %% missing info can happen due to simplifcation rules below ! | |
| 292 | find_identifier_uses(Condition, [], UsedIds). % ,print(used(UsedIds,in_exist(Parameters))),nl. | |
| 293 | % TO DO: avoid re-computing used-ids; we should refactor b_compile2 to return new Info field | |
| 294 | ||
| 295 | ||
| 296 | ||
| 297 | evaluate_this(eval,X,Type,Info) :- !, worth_it_type(Type,X,Info). | |
| 298 | evaluate_this(_,function(A,B),Type,Info) :- !, | |
| 299 | A=b(value(VA),_,_), nonvar(VA), VA=avl_set(_), | |
| 300 | B=b(value(_),_,_), | |
| 301 | worth_it_type(Type,function(A,B),Info). % will check well-definedness | |
| 302 | evaluate_this(_,X,_Type,_Info) :- wd_and_efficient(X). | |
| 303 | ||
| 304 | ||
| 305 | % things which are very quick to compute | |
| 306 | wd_and_efficient(sequence_extension(_)) :- !. | |
| 307 | wd_and_efficient(set_extension(_)) :- !. | |
| 308 | wd_and_efficient(integer_set(_)) :- !. % will be converted into value(global_set(_)) | |
| 309 | %% wd_and_efficient(value(_)) :- !. % is already computed | |
| 310 | % the following will reduce the size of the representation; usually a good thing; | |
| 311 | % we assume only avl_sets apprear here; inner set comprehensions are never computed into symbolic form by b_compile (see known_value below): | |
| 312 | %wd_and_efficient(identity(_)) :- !. | |
| 313 | wd_and_efficient(range(_)) :- !. | |
| 314 | wd_and_efficient(domain(_)) :- !. | |
| 315 | wd_and_efficient(domain_restriction(_,_)) :- !. | |
| 316 | wd_and_efficient(domain_subtraction(_,_)) :- !. | |
| 317 | wd_and_efficient(range_restriction(_,_)) :- !. | |
| 318 | wd_and_efficient(range_subtraction(_,_)) :- !. | |
| 319 | wd_and_efficient(intersection(_,_)) :- !. | |
| 320 | wd_and_efficient(set_subtraction(_,_)) :- !. | |
| 321 | wd_and_efficient(image(_,_)) :- !. | |
| 322 | wd_and_efficient(reverse(_)) :- !. % added for rgen_rgen_Worst_Case_Stopping_distance_NCT_trm13 | |
| 323 | % reverse has n.log(n) complexity, but is always wd and can be beneficial | |
| 324 | wd_and_efficient(union(A,B)) :- finite_set(A), finite_set(B), !. % has complexity n | |
| 325 | % usually the union of two avl_sets will be smaller than keeping them separate, what about intervals? | |
| 326 | wd_and_efficient(interval(_,_)) :- !. % ditto | |
| 327 | wd_and_efficient(card(S)) :- !, % added for rgen_rgen_Worst_Case_Stopping_distance_NCT_trm13 | |
| 328 | (finite_set(S) -> true % is wd for finite set; has currently linear complexity but reduces size of closure | |
| 329 | ; is_interval(S) -> true). % card is simple to compute | |
| 330 | wd_and_efficient(min(S)) :- !, % logarithmic for avl_set, see test 1338 | |
| 331 | finite_non_empty_set(S). | |
| 332 | wd_and_efficient(max(S)) :- !, % logarithmic for avl_set | |
| 333 | finite_non_empty_set(S). | |
| 334 | wd_and_efficient(string_set) :- !. | |
| 335 | % some other efficient operators: | |
| 336 | % external_function_call CHOOSE (test 1338) ? | |
| 337 | % first, last, ... need to ensure we have sequence | |
| 338 | wd_and_efficient(X) :- worth_it_int(X),!. | |
| 339 | wd_and_efficient(X) :- worth_it_other(X). | |
| 340 | ||
| 341 | is_interval(b(value(V),set(_),_)) :- nonvar(V), V=closure(P,T,B), | |
| 342 | is_fixed_interval(P,T,B,_,_). | |
| 343 | ||
| 344 | finite_set(b(value(V),set(_),_)) :- nonvar(V), finite_set_aux(V). | |
| 345 | finite_set_aux([]). | |
| 346 | finite_set_aux(avl_set(_)). | |
| 347 | finite_non_empty_set(b(value(V),set(_),_)) :- nonvar(V), V=avl_set(_). | |
| 348 | ||
| 349 | fast_check_wd(b(E,_,Infos)) :- | |
| 350 | (nonmember(contains_wd_condition,Infos) -> true | |
| 351 | ; nonvar(E), E=value(_)). | |
| 352 | ||
| 353 | check_wd(NTExpr) :- bsyntaxtree:always_well_defined(NTExpr). % ,print(wd(NTExpr)),nl. | |
| 354 | %(bsyntaxtree:always_well_defined(NTExpr) -> true ; print(not_guaranteed_wd(NTExpr)),nl). | |
| 355 | ||
| 356 | % (worth_it_type(Type,X,Info) -> true ; X=value(_) -> true ; print(not_evaluating(X)),nl,fail). | |
| 357 | worth_it_type(integer,X,Info) :- worth_it_int_wd(X),!, check_wd(b(X,integer,Info)). | |
| 358 | worth_it_type(T,function(A,B),Info) :- !, | |
| 359 | (check_wd(b(function(A,B),T,Info)) -> true | |
| 360 | ; fail). %print('not_precompiling_function '),translate:print_bexpr(A), print(' @ '), translate:print_bexpr(B),nl,fail). | |
| 361 | worth_it_type(integer,X,_) :- worth_it_int(X),!. | |
| 362 | worth_it_type(T,X,Info) :- worth_it_wd(X),!, check_wd(b(X,T,Info)). | |
| 363 | worth_it_type(set(_),X,_) :- worth_it_set(X),!. | |
| 364 | worth_it_type(seq(_),X,_) :- worth_it_set(X),!. | |
| 365 | worth_it_type(_,X,_) :- worth_it_other(X). | |
| 366 | ||
| 367 | % TO DO: we should use the predicate has_wd_condition from b_ast_cleanup | |
| 368 | ||
| 369 | % integer operations that could generate WD-errors | |
| 370 | worth_it_int_wd(div(_,_)). | |
| 371 | worth_it_int_wd(max(_)). | |
| 372 | worth_it_int_wd(min(_)). | |
| 373 | worth_it_int_wd(mod(_,_)). | |
| 374 | worth_it_int_wd(power_of(_,_)). | |
| 375 | worth_it_int_wd(card(_)). % has WD condition !! | |
| 376 | worth_it_int_wd(size(_)). | |
| 377 | ||
| 378 | % other operations that could generate WD-errors | |
| 379 | worth_it_wd(first(_)). | |
| 380 | worth_it_wd(last(_)). | |
| 381 | worth_it_wd(tail(_)). | |
| 382 | worth_it_wd(front(_)). | |
| 383 | worth_it_wd(restrict_front(_,_)). | |
| 384 | worth_it_wd(restrict_tail(_,_)). | |
| 385 | worth_it_wd(rel_iterate(_,_)). %% could be expensive | |
| 386 | worth_it_wd(general_intersection(_)). | |
| 387 | worth_it_wd(general_concat(_)). | |
| 388 | ||
| 389 | % to do: check other operators that could be not well-defined ! | |
| 390 | ||
| 391 | worth_it_int(unary_minus(_)). | |
| 392 | worth_it_int(add(_,_)). | |
| 393 | worth_it_int(minus(_,_)). | |
| 394 | worth_it_int(multiplication(_,_)). | |
| 395 | worth_it_int(max_int). | |
| 396 | worth_it_int(min_int). | |
| 397 | ||
| 398 | %worth_it_set(empty_set). % treated below | |
| 399 | %worth_it_set(empty_sequence). % treated below | |
| 400 | %worth_it_set(closure(_)). % this is closure1; it is currently always kept symbolic and can be counterproductive to compile; e.g., card(closure1(%x.(x : 1 .. 200|x + 1))) | |
| 401 | %% ?? need to be more careful here; can be expensive --> need to keep track which parts need definitely to be evaluated | |
| 402 | worth_it_set(integer_set(_)). % will be converted into value(global_set(_)) | |
| 403 | worth_it_set(comprehension_set(A,B)) :- b_ast_cleanup:is_integer_set(comprehension_set(A,B),_). | |
| 404 | worth_it_set(interval(_,_)). | |
| 405 | worth_it_set(reflexive_closure(A)) :- \+ symbolic_value(A). | |
| 406 | worth_it_set(reverse(_)). % function inverse | |
| 407 | worth_it_set(domain(_)). worth_it_set(range(_)). | |
| 408 | worth_it_set(union(_,_)). worth_it_set(intersection(_,_)). worth_it_set(set_subtraction(_,_)). | |
| 409 | worth_it_set(image(_,B)) :- \+ symbolic_value(B). | |
| 410 | worth_it_set(composition(_,_)). | |
| 411 | worth_it_set(domain_restriction(_,_)). worth_it_set(domain_subtraction(_,_)). | |
| 412 | worth_it_set(range_restriction(_,_)). worth_it_set(range_subtraction(_,_)). | |
| 413 | worth_it_set(direct_product(A,B)) :- \+ symbolic_value(A), \+ symbolic_value(B). | |
| 414 | worth_it_set(parallel_product(A,B)) :- \+ symbolic_value(A), \+ symbolic_value(B). | |
| 415 | worth_it_set(iteration(_,_)). | |
| 416 | worth_it_set(set_extension([H|_])) :- \+ symbolic_value(H). % otherwise we may get an enumeration warning | |
| 417 | worth_it_set(sequence_extension([H|_])) :- \+ symbolic_value(H). % ditto, TODO: check tail unless expensive | |
| 418 | worth_it_set(rev(_)). % reverse of sequence | |
| 419 | worth_it_set(concat(_,_)). | |
| 420 | worth_it_set(seq(_)). % will be kept symbolic anyway | |
| 421 | worth_it_set(seq1(_)). % will be kept symbolic anyway; relevant for test 1731 | |
| 422 | % f=%x.(x:iseq(struct(a:seq1(NATURAL),b:BOOL))|x) & f([rec(a:[222],b:TRUE)])=[rec(a:[222],b:xx)] & xx=TRUE | |
| 423 | % however: value can be put into a set-extension! | |
| 424 | worth_it_set(iseq(_)). % will be kept symbolic anyway | |
| 425 | worth_it_set(iseq1(_)). % will be kept symbolic anyway | |
| 426 | worth_it_set(perm(_)). % will be kept symbolic anyway | |
| 427 | worth_it_set(pow_subset(_)). % will be kept symbolic anyway | |
| 428 | worth_it_set(pow1_subset(_)). % will be kept symbolic anyway | |
| 429 | worth_it_set(fin_subset(_)). % will be kept symbolic anyway | |
| 430 | worth_it_set(fin1_subset(_)). % will be kept symbolic anyway | |
| 431 | worth_it_set(general_union(X)) :- \+ symbolic_value(X). % otherwise we can get enumeration warnings | |
| 432 | worth_it_set(identity(_)). | |
| 433 | worth_it_set(first_of_pair(_)). % can also produce set | |
| 434 | worth_it_set(second_of_pair(_)). % can also produce set | |
| 435 | worth_it_set(cartesian_product(_,_)). % will usually be kept symbolic | |
| 436 | worth_it_set(string_set). % ensure we have values inside compiled closures, e.g., for custom_explicit_set card computations | |
| 437 | worth_it_set(bool_set). | |
| 438 | ||
| 439 | symbolic_value(b(value(Val),_,_)) :- nonvar(Val), symbolic_val_aux(Val). | |
| 440 | symbolic_val_aux(closure(P,T,B)) :- \+ is_fixed_interval(P,T,B,_,_). | |
| 441 | symbolic_val_aux(global_set(_)). | |
| 442 | ||
| 443 | :- use_module(external_functions,[not_declarative/1,external_fun_has_wd_condition/1, | |
| 444 | expects_unevaluated_args/1]). | |
| 445 | worth_it_other(boolean_true). | |
| 446 | worth_it_other(boolean_false). | |
| 447 | worth_it_other(string(_)). | |
| 448 | worth_it_other(first_of_pair(_)). | |
| 449 | worth_it_other(second_of_pair(_)). | |
| 450 | worth_it_other(couple(_,_)). | |
| 451 | worth_it_other(record_field(_,_)). | |
| 452 | worth_it_other(external_function_call(FunName,_)) :- | |
| 453 | \+ not_declarative(FunName), | |
| 454 | \+ external_fun_has_wd_condition(FunName). %print(compile(FunName)),nl. | |
| 455 | % CHOOSE for finite_non_empty_set ? | |
| 456 | worth_it_other(rec(_)). | |
| 457 | worth_it_other(struct(_)). | |
| 458 | %worth_it_other(value(_)). % does not have to be evaluted; already a value | |
| 459 | ||
| 460 | /* | |
| 461 | % To do: distinguish which parts definitely need to be evaluated | |
| 462 | %dont_eval_subexpressions(member). % special membership code can be used | |
| 463 | %dont_eval_subexpressions(not_member). % special membership code can be used | |
| 464 | dont_eval_subexpressions(disjunct(_,_)). % it may not be necessary to eval RHS | |
| 465 | dont_eval_subexpressions(implication(_,_)). % it may not be necessary to eval RHS | |
| 466 | */ | |
| 467 | ||
| 468 | :- use_module(bsyntaxtree, [get_negated_operator_expr/2]). | |
| 469 | :- use_module(kernel_objects,[equal_object/3]). | |
| 470 | :- use_module(kernel_mappings,[binary_boolean_operator/3]). | |
| 471 | :- use_module(kernel_tools,[filter_cannot_match/4, get_template_for_filter_cannot_match/2]). | |
| 472 | b_compile2(Exp,_Parameters,_LS,_S,NExpr,_Eval,FullyKnown,WF) :- var(Exp), !, | |
| 473 | add_internal_error_wf(b_compiler,'Variable Expression: ',Exp,unknown,WF), | |
| 474 | NExpr=Exp, FullyKnown=false. | |
| 475 | b_compile2(truth,_,_LS,_S,NExpr,_Eval,FullyKnown,_WF) :- !, NExpr=truth, FullyKnown=false. % predicates never fully known | |
| 476 | b_compile2(falsity,_,_LS,_S,NExpr,_Eval,FullyKnown,_WF) :- !, NExpr=falsity, FullyKnown=false. % predicates never fully known | |
| 477 | b_compile2(empty_set,_,_LS,_S,NExpr,_Eval,FullyKnown,_WF) :- !, NExpr=value([]), FullyKnown=true. | |
| 478 | b_compile2(empty_sequence,_,_LS,_S,NExpr,_Eval,FullyKnown,_WF) :- !, NExpr=value([]), FullyKnown=true. | |
| 479 | b_compile2(boolean_false,_,_LS,_S,NExpr,_Eval,FullyKnown,_WF) :- !, NExpr=value(pred_false), FullyKnown=true. | |
| 480 | b_compile2(boolean_true,_,_LS,_S,NExpr,_Eval,FullyKnown,_WF) :- !, NExpr=value(pred_true), FullyKnown=true. | |
| 481 | b_compile2(value(Val),_Parameters,_LS,_S,NExpr,_Eval,FullyKnown,_WF) :- !, | |
| 482 | NExpr=value(Val), | |
| 483 | (known_value(Val) -> % ground(Val) -> known_value ? | |
| 484 | FullyKnown=true ; FullyKnown=false). | |
| 485 | b_compile2(integer(Val),_Parameters,_LS,_S,NExpr,_Eval,FullyKnown,_WF) :- !, | |
| 486 | NExpr=value(int(Val)), (number(Val) -> FullyKnown=true ; FullyKnown=false). | |
| 487 | b_compile2(lazy_lookup_pred(Id),Parameters,LS,S,NExpr,_Eval,FullyKnown,WF) :- !, | |
| 488 | ( ord_member(Id,Parameters) -> %print(lazy_lookup_pred_id_as_parameter(Id,Parameters)),nl, | |
| 489 | NExpr = lazy_lookup_pred(Id), FullyKnown=false | |
| 490 | ; compute_lazy_lookup(Id,lazy_lookup_pred(Id),LS,S,NExpr,FullyKnown,WF) | |
| 491 | ). | |
| 492 | b_compile2(lazy_lookup_expr(Id),Parameters,LS,S,NExpr,_Eval,FullyKnown,WF) :- !, | |
| 493 | ( ord_member(Id,Parameters) -> %print(lazy_lookup_expr_id_as_parameter(Id,Parameters)),nl, | |
| 494 | NExpr = lazy_lookup_expr(Id), FullyKnown=false | |
| 495 | ; compute_lazy_lookup(Id,lazy_lookup_expr(Id),LS,S,NExpr,FullyKnown,WF) | |
| 496 | ). | |
| 497 | ||
| 498 | % treat a few common cases, more efficiently than syntaxtransformation | |
| 499 | b_compile2(equal(A,B),Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :- !, | |
| 500 | FullyKnown=false, % predicates never evaluated in b_compile1 | |
| 501 | b_compile1(A,Parameters,LS,S,NExprA,Eval,FullyKnownA,WF), | |
| 502 | b_compile1(B,Parameters,LS,S,NExprB,Eval,FullyKnownB,WF), | |
| 503 | ( FullyKnownA=true, FullyKnownB=true, | |
| 504 | NExprA = b(value(VA),_,_), NExprB = b(value(VB),_,_) | |
| 505 | -> (equal_object(VA,VB,b_compile2_1) -> NExpr = truth ; NExpr = falsity) | |
| 506 | ; generate_equality(NExprA,NExprB,NExpr) | |
| 507 | ). | |
| 508 | b_compile2(not_equal(A,B),Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :- !, | |
| 509 | FullyKnown=false, % predicates never evaluated in b_compile1 | |
| 510 | b_compile1(A,Parameters,LS,S,NExprA,Eval,FullyKnownA,WF), | |
| 511 | b_compile1(B,Parameters,LS,S,NExprB,Eval,FullyKnownB,WF), | |
| 512 | ( FullyKnownA=true, FullyKnownB=true, | |
| 513 | NExprA = b(value(VA),_,_), NExprB = b(value(VB),_,_) | |
| 514 | -> %print(computing_neq(VA,VB)),nl, | |
| 515 | (kernel_objects:equal_object(VA,VB,b_compile2_2) -> NExpr = falsity ; NExpr = truth) | |
| 516 | %, print(result(NExpr)),nl | |
| 517 | ; NExpr = not_equal(NExprA,NExprB) | |
| 518 | ). | |
| 519 | b_compile2(member(A,B),Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :- !, | |
| 520 | FullyKnown=false, % predicates never evaluated in b_compile1 | |
| 521 | b_compile1(B,Parameters,LS,S,NExprB,Eval,FullyKnownB,WF), | |
| 522 | (NExprB = b(value(X),BT,BI) | |
| 523 | -> (X==[], always_well_defined(A) -> NExpr = falsity | |
| 524 | ; b_compile1(A,Parameters,LS,S,NExprA,Eval,FullyKnownA,WF), | |
| 525 | % check if we can decide membership (e.g., 1:{1}) | |
| 526 | (quick_test_membership1(NExprA,X,PRes) | |
| 527 | -> convert_pred_res(PRes,NExpr) | |
| 528 | % TO DO: maybe optimize x: {y|P(y)} --> P(x) ; by commenting in code below | |
| 529 | % However, ensure test 273 succeeds and closure equality correctly detected (e.g., for BV16 = {bt|bt : BIT_VECTOR & bv_size(bt) = 16}) | |
| 530 | % ; (get_texpr_id(NExprA,IDA), | |
| 531 | % get_comprehension_set(NExprB,IDB,Pred), get_texpr_info(NExprB,Info), | |
| 532 | % print(rename(IDB,IDA,Info)),nl, | |
| 533 | % bsyntaxtree:rename_bt(Pred,[rename(IDB,IDA)],PredA)) -> get_texpr_expr(PredA,NExpr) | |
| 534 | ; custom_explicit_sets:singleton_set(X,El) % replace x:{El} -> x=El | |
| 535 | -> get_texpr_type(NExprA,TA), | |
| 536 | generate_equality_with_value(NExprA,FullyKnownA,El,FullyKnownB,TA,NExpr) | |
| 537 | ; get_template_for_filter_cannot_match(NExprA,VA) | |
| 538 | -> filter_cannot_match(X,VA,NewX,Filtered), | |
| 539 | % (Filtered=false -> true ; print(filtered(NewX,VA,X)),nl), | |
| 540 | (Filtered=false -> NExpr = member(NExprA,NExprB) | |
| 541 | ; (NewX==[], always_well_defined(A)) -> NExpr = falsity | |
| 542 | ; custom_explicit_sets:singleton_set(NewX,El) | |
| 543 | -> get_texpr_type(NExprA,TA), | |
| 544 | %nl,print(create_equal(NExprA,FullyKnownA,El,FullyKnownB,NExprB)),nl,nl, | |
| 545 | generate_equality_with_value(NExprA,FullyKnownA,El,FullyKnownB,TA,NExpr) | |
| 546 | ; NExpr = member(NExprA, b(value(NewX),BT,BI)) | |
| 547 | ) | |
| 548 | % end fo filtering | |
| 549 | ; NExpr = member(NExprA,NExprB) | |
| 550 | ) | |
| 551 | % , print('compile: '),print(NExpr),nl | |
| 552 | ) | |
| 553 | ; NExpr = member(NExprA,NExprB), | |
| 554 | b_compile1(A,Parameters,LS,S,NExprA,Eval,_,WF) | |
| 555 | ). | |
| 556 | % TO DO: also optimize things like: (ev1 |-> 0) |-> eg : #221:{((1|->0)|->3),((2|->0)|->0),...,((233|->0)|->218),((234|->0)|->228)} | |
| 557 | ||
| 558 | b_compile2(not_member(A,B),Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :- !, | |
| 559 | FullyKnown=false, % predicates never evaluated in b_compile1 | |
| 560 | b_compile1(B,Parameters,LS,S,NExprB,Eval,_,WF), | |
| 561 | (NExprB = b(value(X),_,_) | |
| 562 | -> (X==[], always_well_defined(A) -> NExpr = truth | |
| 563 | ; b_compile1(A,Parameters,LS,S,NExprA,Eval,_,WF), | |
| 564 | (quick_test_membership1(NExprA,X,PRes) | |
| 565 | -> convert_neg_pred_res(PRes,NExpr) | |
| 566 | ; NExpr = not_member(NExprA,NExprB)) | |
| 567 | ) | |
| 568 | ; NExpr = not_member(NExprA,NExprB), | |
| 569 | b_compile1(A,Parameters,LS,S,NExprA,Eval,_,WF) | |
| 570 | ). | |
| 571 | b_compile2(function(Fun,B),Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :- !, | |
| 572 | (is_lazy_extension_function_for_fun_app(Fun) | |
| 573 | -> Eval1=false % extension function applications treated lazily | |
| 574 | % TO DO: first evaluate B, if known then only evaluate relevant part of extension function | |
| 575 | ; Eval1=Eval), | |
| 576 | b_compile1(Fun,Parameters,LS,S,NExprA,Eval1,FullyKnown1,WF), | |
| 577 | combine_fully_known(FullyKnown1,FullyKnown2,FullyKnown12), | |
| 578 | b_compile1(B,Parameters,LS,S,NExprB,Eval,FullyKnown2,WF), | |
| 579 | %tools_printing:print_term_summary(compiled_function(FullyKnown1,FullyKnown2,NExprA,NExprB)),nl, | |
| 580 | (FullyKnown2=true, | |
| 581 | (NExprA=b(value(_),_,_) -> true % no WD issue can be removed by apply, value already computed | |
| 582 | ; preferences:preference(find_abort_values,false) % in a sequence extension we could remove non-WD elements | |
| 583 | ), | |
| 584 | % check if we have enough information to apply a partially specified function as a list | |
| 585 | % e.g. if the function is [(int(1),A),(int(2),B)] and the argument is int(2): we can apply the function without knowing A or B; can have a dramatic importance when expanding unversal quantifiers ! | |
| 586 | can_apply_partially_specified_function(NExprA,NExprB,ResultExpr,WF) | |
| 587 | -> NExpr = ResultExpr, | |
| 588 | (FullyKnown12=true -> FullyKnown=true | |
| 589 | ; ResultExpr=value(ResultValue),known_value(ResultValue) -> FullyKnown=true | |
| 590 | ; FullyKnown = false) | |
| 591 | ; %tools_printing:print_term_summary(cannot_apply_function(FullyKnown2,NExprA,NExprB)),nl, | |
| 592 | %translate:print_bexpr(NExprA),nl, translate:print_bexpr(NExprB),nl, | |
| 593 | NExpr = function(NExprA,NExprB), FullyKnown = FullyKnown12). | |
| 594 | ||
| 595 | b_compile2(conjunct(A,B),Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :- !, | |
| 596 | FullyKnown=false, % predicates never automatically evaluated in b_compile1 | |
| 597 | b_compile1(A,Parameters,LS,S,NExprA,Eval,_,WF), | |
| 598 | (is_falsity(NExprA) -> NExpr = falsity | |
| 599 | ; | |
| 600 | % TO DO: propagate static information from A to B, e.g. if A :: x=10 -> add x=10 to LS/Parameters | |
| 601 | % also: try and detect unsatisfiable predicates beforehand | |
| 602 | b_compile1(B,Parameters,LS,S,NExprB,Eval,_,WF), | |
| 603 | (is_falsity(NExprB) -> NExpr = falsity | |
| 604 | ; is_truth(NExprB) -> get_texpr_expr(NExprA,NExpr) | |
| 605 | ; is_truth(NExprA) -> get_texpr_expr(NExprB,NExpr) | |
| 606 | ; NExpr = conjunct(NExprA,NExprB)) | |
| 607 | ). | |
| 608 | b_compile2(disjunct(A,B),Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :- !, | |
| 609 | FullyKnown=false, % predicates never automatically evaluated in b_compile1 | |
| 610 | b_compile1(A,Parameters,LS,S,NExprA,Eval,_,WF), | |
| 611 | (is_truth(NExprA) -> NExpr = truth | |
| 612 | ; b_compile1(B,Parameters,LS,S,NExprB,false,_,WF), % does not have to be executed in a successful branch: set Eval to false to avoid computing expensive expressions which may not be needed | |
| 613 | (is_truth(NExprB) -> NExpr = truth | |
| 614 | ; is_falsity(NExprA) -> get_texpr_expr(NExprB,NExpr) | |
| 615 | ; is_falsity(NExprB) -> get_texpr_expr(NExprA,NExpr) | |
| 616 | ; NExpr = disjunct(NExprA,NExprB)) | |
| 617 | ). | |
| 618 | b_compile2(implication(A,B),Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :- !, | |
| 619 | FullyKnown=false, % predicates never automatically evaluated in b_compile1 | |
| 620 | b_compile1(A,Parameters,LS,S,NExprA,Eval,_,WF), | |
| 621 | (is_falsity(NExprA) -> NExpr = truth | |
| 622 | ; is_truth(NExprA) -> b_compile1(B,Parameters,LS,S,NExprB,Eval,_,WF), get_texpr_expr(NExprB,NExpr) | |
| 623 | ; NExpr = implication(NExprA,NExprB), | |
| 624 | b_compile1(B,Parameters,LS,S,NExprB,false,_,WF) % B does not have to be executed in a successful branch: set Eval to false to avoid computing expensive expressions which may not be needed | |
| 625 | % TO DO: add preference to force pre-computation everywhere and pass Eval instead of false to b_compile1; ditto for disjunction | |
| 626 | ). | |
| 627 | b_compile2(negation(A),Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :- !, | |
| 628 | FullyKnown=false, % predicates never automatically evaluated in b_compile1 | |
| 629 | b_compile1(A,Parameters,LS,S,NExprA,Eval,_,WF), | |
| 630 | ( get_negated_operator_expr(NExprA,NegatedA) -> NExpr = NegatedA | |
| 631 | ; NExpr = negation(NExprA) | |
| 632 | ). | |
| 633 | b_compile2(if_then_else(A,B,C),Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :- !, | |
| 634 | b_compile1(A,Parameters,LS,S,NExprA,Eval,_,WF), | |
| 635 | (is_falsity(NExprA) -> b_compile1(C,Parameters,LS,S,NExprC,Eval,FullyKnown,WF), get_texpr_expr(NExprC,NExpr) | |
| 636 | ; is_truth(NExprA) -> b_compile1(B,Parameters,LS,S,NExprB,Eval,FullyKnown,WF), get_texpr_expr(NExprB,NExpr) | |
| 637 | ; NExpr = if_then_else(NExprA,NExprB,NExprC), FullyKnown=false, | |
| 638 | b_compile1(B,Parameters,LS,S,NExprB,false,_,WF), % set Eval to false as we do not know if B will be needed | |
| 639 | b_compile1(C,Parameters,LS,S,NExprC,false,_,WF) % ditto for C | |
| 640 | ). | |
| 641 | /* b_compile2(comprehension_set(CParas,Body),Parameters,LS,S,NExpr,_Eval,FullyKnown,WF) :- | |
| 642 | sort(Parameters,SParas), | |
| 643 | b_ast_cleanup:not_occurs_in_predicate(SParas,Body), %can only be applied if Body does not reference Parameters | |
| 644 | !, | |
| 645 | b_generate_inner_closure_if_necessary(Parameters,CParas,Body,LS,S,Result), % will itself call b_compile | |
| 646 | NExpr = value(Result), | |
| 647 | (ground(Result) -> FullyKnown=true ; FullyKnown=false). */ | |
| 648 | b_compile2(forall(ForallPara,A,B),Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :- !, | |
| 649 | FullyKnown=false, % predicates never automatically evaluated in b_compile1 | |
| 650 | get_texpr_ids(ForallPara,AtomicIds), | |
| 651 | add_parameters(Parameters,AtomicIds,NParameters), | |
| 652 | b_compile1(A,NParameters,LS,S,NA,Eval,_FullyKnownA,WF), | |
| 653 | (is_falsity(NA) -> NExpr = truth | |
| 654 | ; b_compile1(B,NParameters,LS,S,NB,Eval,_FullyKnownB,WF), | |
| 655 | (is_truth(NB) -> NExpr = truth | |
| 656 | ; NExpr = forall(ForallPara,NA,NB) | |
| 657 | % TO DO ??: if we have an equality -> replace Body by value and remove quantifier | |
| 658 | %,print('COMPIlED: '),translate:print_bexpr(b(NExpr,pred,[])),nl | |
| 659 | ) | |
| 660 | ). | |
| 661 | % some special cases to avoid calling syntaxtransformation | |
| 662 | b_compile2(record_field(A,FieldName),Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :- !, | |
| 663 | b_compile1(A,Parameters,LS,S,NExprA,Eval,FullyKnownA,WF), | |
| 664 | % First: we can try compute even if value not fully known !, we just need record field list | |
| 665 | (get_record_field(NExprA,FieldName,NExpr,FullyKnown) -> true | |
| 666 | ; NExpr = record_field(NExprA,FieldName), FullyKnown=FullyKnownA). | |
| 667 | b_compile2(couple(A,B),Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :- !, | |
| 668 | %NExpr = couple(NExprA,NExprB), | |
| 669 | b_compile1(A,Parameters,LS,S,NExprA,Eval,FullyKnown1,WF), | |
| 670 | combine_fully_known(FullyKnown1,FullyKnown2,FullyKnown), | |
| 671 | b_compile1(B,Parameters,LS,S,NExprB,Eval,FullyKnown2,WF), | |
| 672 | (FullyKnown \== true, % evaluation will already combine the result | |
| 673 | NExprA=b(value(VA),_,_),NExprB=b(value(VB),_,_) | |
| 674 | -> NExpr = value((VA,VB)) | |
| 675 | ; NExpr = couple(NExprA,NExprB)). | |
| 676 | b_compile2(image(A,B),Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :- !, | |
| 677 | b_compile1(A,Parameters,LS,S,NExprA,Eval,FullyKnown1,WF), | |
| 678 | combine_fully_known(FullyKnown1,FullyKnown2,FullyKnown), | |
| 679 | b_compile1(B,Parameters,LS,S,NExprB,Eval,FullyKnown2,WF), | |
| 680 | (FullyKnown \= true, NExprA=b(value(VA),BT,BI), | |
| 681 | NExprB=b(value(VB),_,_), nonvar(VB), | |
| 682 | custom_explicit_sets:singleton_set(VB,VBX) | |
| 683 | -> filter_cannot_match(VA,(VBX,_),NewVA,_Filtered), %nl,print(filtered_image(VBX,VA,NewVA)),nl, | |
| 684 | NExpr = image(b(value(NewVA),BT,BI),NExprB) | |
| 685 | % TO DO: add case where VB==[] or VA==[] are the empty set | |
| 686 | ; NExpr = image(NExprA,NExprB) | |
| 687 | ). %, print('compile image: '),translate:print_bexpr(NExpr),nl. | |
| 688 | % TO DO: do something like can_apply_partially_specified_function; or filter_can_match | |
| 689 | b_compile2(composition(A,B),Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :- !, | |
| 690 | b_compile1(A,Parameters,LS,S,NExprA,Eval,FullyKnown1,WF), | |
| 691 | combine_fully_known(FullyKnown1,FullyKnown2,FullyKnown), | |
| 692 | NExpr = composition(NExprA,NExprB), | |
| 693 | b_compile1(B,Parameters,LS,S,NExprB,Eval,FullyKnown2,WF), | |
| 694 | (FullyKnown=false, Eval=eval, performance_monitoring_on, | |
| 695 | ( FullyKnown1=true, NExprB=b(value(_),_,Info), large_known_value(NExprA,2) | |
| 696 | -> true %translate:nested_print_bexpr(NExprB),nl | |
| 697 | ; FullyKnown2=true, NExprA=b(value(_),_,Info), large_known_value(NExprB,2) | |
| 698 | -> true %translate:nested_print_bexpr(NExprA),nl | |
| 699 | ) | |
| 700 | -> perfmessage(b_compiler,'Cannot compile relational composition (try lift it out of quantification)',Info) | |
| 701 | ; true). | |
| 702 | b_compile2(assertion_expression(A,Msg,B),Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :- !, | |
| 703 | b_compile1(A,Parameters,LS,S,NExprA,Eval,_,WF), | |
| 704 | (is_truth(NExprA) -> % the ASSERT EXPR is redundant | |
| 705 | %print(removed_assert),nl, translate:print_bexpr(B),nl, | |
| 706 | b_compile1(B,Parameters,LS,S,NExprB,Eval,FullyKnown,WF), | |
| 707 | get_texpr_expr(NExprB,NExpr) | |
| 708 | ; b_compile1(B,Parameters,LS,S,NExprB,Eval,_,WF), | |
| 709 | FullyKnown=false, % we cannot get rid of WD condition | |
| 710 | NExpr = assertion_expression(NExprA,Msg,NExprB) | |
| 711 | ). | |
| 712 | b_compile2(domain(A),Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :- !, | |
| 713 | b_compile1(A,Parameters,LS,S,NExprA,Eval,FullyKnown1,WF), | |
| 714 | (FullyKnown1=false,get_texpr_expr(NExprA,NA),evaluate_domain(NA,Domain) % try and compute domain even if not fully known | |
| 715 | -> FullyKnown = true, NExpr = value(Domain) | |
| 716 | ; FullyKnown = FullyKnown1, NExpr = domain(NExprA)). | |
| 717 | b_compile2(range(A),Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :- !, | |
| 718 | b_compile1(A,Parameters,LS,S,NExprA,Eval,FullyKnown1,WF), | |
| 719 | (FullyKnown1=false,evaluate_range(NExprA,Range) % try and compute range even if not fully known | |
| 720 | -> FullyKnown = true, NExpr = value(Range) | |
| 721 | ; FullyKnown = FullyKnown1, NExpr = range(NExprA)). | |
| 722 | b_compile2(assign(LHS_List,RHS_List),Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :- !, | |
| 723 | NExpr = assign(New_LHS_List,NewRHS_List), FullyKnown = false, | |
| 724 | maplist(b_compile_lhs(Parameters,LS,S,Eval,WF),LHS_List,New_LHS_List), | |
| 725 | b_compile_l(RHS_List,Parameters,LS,S,NewRHS_List,Eval,_FullyKnown2,WF). | |
| 726 | b_compile2(assign_single_id(ID,B),Parameters,LS,S,assign_single_id(ID,NExprB),Eval,FullyKnown,WF) :- !, | |
| 727 | FullyKnown = false, | |
| 728 | b_compile1(B,Parameters,LS,S,NExprB,Eval,_,WF). | |
| 729 | b_compile2(operation_call(Operation,OpCallResults,OpCallParas),Parameters,LS,S,InlinedOpCall,Eval,FullyKnown,WF) :- | |
| 730 | % TO DO: evaluate if we should also use the let_expression_global approach used for operation_call_in_expr | |
| 731 | !, | |
| 732 | def_get_texpr_id(Operation,op(OperationName)), | |
| 733 | FullyKnown = false, | |
| 734 | b_compile_l(OpCallParas,Parameters,LS,S,OpCallParaValues,Eval,_,WF), | |
| 735 | TopLevel=false, | |
| 736 | b_get_machine_operation_for_animation(OperationName,OpResults,OpFormalParameters,Body,_OType,TopLevel), | |
| 737 | bsyntaxtree:replace_ids_by_exprs(Body,OpResults,OpCallResults,Body2), | |
| 738 | get_texpr_ids(OpFormalParameters,OpIds), | |
| 739 | add_parameters(Parameters,OpIds,InnerParas), | |
| 740 | b_compile1(Body2,InnerParas,[],S,NBody,Eval,FullyKnown,WF), % do not pass local state: this may override constants,... from the called machine | |
| 741 | % Note: global state S should be valid for all machines in currently loaded specification | |
| 742 | get_texpr_ids(OpCallResults,OpRIds), | |
| 743 | add_parameters(Parameters,OpRIds,LocalKnownParas), | |
| 744 | simplify_assignment(OpFormalParameters,OpCallParaValues,LHSFormalParas,RHSCallVals), %% | |
| 745 | split_formal_parameters(LHSFormalParas,RHSCallVals,LocalKnownParas, | |
| 746 | FreshOpParas,FreshCallVals, | |
| 747 | ClashOpParas, ClashCallVals), % only set up VAR for fresh Paras | |
| 748 | % print(split(LHSFormalParas,LocalKnownParas,fresh(FreshOpParas),clash(ClashOpParas))),nl, | |
| 749 | (FreshOpParas=[] -> get_texpr_expr(NBody,Let1) | |
| 750 | ; create_equality_for_let(FreshOpParas,FreshCallVals,Equality1), | |
| 751 | Let1 = let(FreshOpParas,Equality1,NBody)), | |
| 752 | (ClashOpParas = [] | |
| 753 | -> InlinedOpCall = Let1 | |
| 754 | ; %nl,print(clash(ClashOpParas)),nl, | |
| 755 | maplist(create_fresh_id,ClashOpParas,FreshCopy), | |
| 756 | create_equality_for_let(ClashOpParas,FreshCopy,Equality2), % copy Values from Fresh Ids | |
| 757 | create_equality_for_let(FreshCopy,ClashCallVals,Equality3), % assign Parameter Vals to Fresh Ids | |
| 758 | get_texpr_pos(Body,BodyPos), BodyPosInfo = [nodeid(BodyPos)], | |
| 759 | Let2 = let(ClashOpParas,Equality2,b(Let1,subst,[BodyPosInfo])), | |
| 760 | InlinedOpCall = let(FreshCopy,Equality3,b(Let2,subst,[BodyPosInfo])) | |
| 761 | ). | |
| 762 | %, print('Compiled operation call: '), translate:print_subst(b(InlinedOpCall,subst,BodyPosInfo)),nl,nl. | |
| 763 | % Maybe this version is faster when no OpCallResults: | |
| 764 | %b_compile2(operation_call(Operation,OpCallResults,OpCallParas),Parameters,LS,S,InlinedOpCall,Eval,FullyKnown,WF) :- | |
| 765 | % OpCallResults=[], | |
| 766 | % !, | |
| 767 | % def_get_texpr_id(Operation,op(OperationName)), | |
| 768 | % FullyKnown = false, | |
| 769 | %% b_compile_l(Results,Parameters,LS,S,NResults,Eval,_,WF), | |
| 770 | % b_compile_l(OpCallParas,Parameters,LS,S,OpCallParaValues,Eval,_,WF), | |
| 771 | % TopLevel=false, | |
| 772 | % b_get_machine_operation_for_animation(OperationName,OpResults,OpParameters,Body,_OType,TopLevel), | |
| 773 | % % Note: input parameters cannot be assigned to: so replace ids is ok | |
| 774 | % % However, we cannot replace output parameters: these can be assigned to and we can have aliasing | |
| 775 | % % Note: no aliasing is allowed in OpCallResults (cf Atelier-B handbook x,x <-- op not allowed) | |
| 776 | % bsyntaxtree:replace_ids_by_exprs(Body,OpParameters,OpCallParaValues,Body2), | |
| 777 | % get_texpr_ids(OpResults,OpIds), | |
| 778 | % append(OpIds,Parameters,InnerParas), | |
| 779 | % b_compile1(Body2,InnerParas,LS,S,NBody,Eval,FullyKnown,WF), | |
| 780 | % FinalBody = NBody. | |
| 781 | b_compile2(Expr,Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :- | |
| 782 | functor(Expr,BOP,2), | |
| 783 | binary_boolean_operator(BOP,_,_),!, % from kernel_mappings, slightly more efficient than syntaxtransformation | |
| 784 | arg(1,Expr,A), | |
| 785 | FullyKnown=false, % predicates never evaluated in b_compile1 | |
| 786 | b_compile1(A,Parameters,LS,S,NExprA,Eval,FullyKnownA,WF), | |
| 787 | arg(2,Expr,B), | |
| 788 | b_compile1(B,Parameters,LS,S,NExprB,Eval,FullyKnownB,WF), | |
| 789 | (eval_binary_bool(FullyKnownA,NExprA,FullyKnownB,NExprB,BOP,Result) | |
| 790 | -> NExpr = Result | |
| 791 | ; functor(NExpr,BOP,2), arg(1,NExpr,NExprA), arg(2,NExpr,NExprB) | |
| 792 | ). | |
| 793 | b_compile2(external_function_call(ExtFun,Args),_Parameters,LS,_S,NExpr,_Eval,FullyKnown,_WF) :- | |
| 794 | expects_unevaluated_args(ExtFun), | |
| 795 | memberchk(bind('$optimize_do_not_force_lazy_lookups',_),LS), % this is an optimize call | |
| 796 | !, | |
| 797 | debug_format(9,'Not compiling external function call to ~w~n',[ExtFun]), | |
| 798 | NExpr=external_function_call(ExtFun,Args), | |
| 799 | FullyKnown=false. | |
| 800 | b_compile2(Expr,Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :- | |
| 801 | functor(Expr,BOP,2), | |
| 802 | kernel_mappings:binary_function(BOP,_,_),!, % slightly more efficient than syntaxtransformation | |
| 803 | arg(1,Expr,A), | |
| 804 | b_compile1(A,Parameters,LS,S,NExprA,Eval,FullyKnownA,WF), | |
| 805 | combine_fully_known(FullyKnownA,FullyKnownB,FullyKnown), | |
| 806 | arg(2,Expr,B), | |
| 807 | b_compile1(B,Parameters,LS,S,NExprB,Eval,FullyKnownB,WF), | |
| 808 | functor(NExpr,BOP,2), arg(1,NExpr,NExprA), arg(2,NExpr,NExprB). | |
| 809 | b_compile2(Expr,Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :- | |
| 810 | functor(Expr,UOP,1), | |
| 811 | kernel_mappings:unary_function(UOP,_,_),!, % slightly more efficient than syntaxtransformation | |
| 812 | arg(1,Expr,A), | |
| 813 | b_compile1(A,Parameters,LS,S,NExprA,Eval,FullyKnown,WF), | |
| 814 | functor(NExpr,UOP,1), arg(1,NExpr,NExprA). | |
| 815 | b_compile2(Expr,Parameters,LS,S,NExpr,Eval,FullyKnown,WF) :- % GENERAL CASE | |
| 816 | %hit_profiler:add_profile_hit(Expr), | |
| 817 | syntaxtransformation(Expr,Subs,Names,NSubs,NExpr), | |
| 818 | get_texpr_ids(Names,Ids), | |
| 819 | add_parameters(Parameters,Ids,NParameters), | |
| 820 | b_compile_l(Subs,NParameters,LS,S,NSubs,Eval,FullyKnown,WF). | |
| 821 | ||
| 822 | b_compile_l([],_,_,_,[],_Eval,true,_WF). | |
| 823 | b_compile_l([Expr|ExprRest],P,LS,S,[NExpr|NExprRest],Eval,FullyKnown,WF) :- | |
| 824 | b_compile1(Expr,P,LS,S,NExpr,Eval,FullyKnown1,WF), | |
| 825 | combine_fully_known(FullyKnown1,FullyKnown2,FullyKnown), | |
| 826 | b_compile_l(ExprRest,P,LS,S,NExprRest,Eval,FullyKnown2,WF). | |
| 827 | ||
| 828 | % detecth when a parameter clashes with existing known ids | |
| 829 | id_clash(LocalKnownParas,TID) :- def_get_texpr_id(TID,ID), member(ID,LocalKnownParas). | |
| 830 | ||
| 831 | /* comment in if we want to compile inner comprehension sets: | |
| 832 | :- use_module(bsyntaxtree,[split_names_and_types/3]). | |
| 833 | :- use_module(closures,[construct_closure_if_necessary/4]). | |
| 834 | b_generate_inner_closure_if_necessary(OuterParameters,ClosureParas,Condition,LocalState,State,Result) :- | |
| 835 | split_names_and_types(ClosureParas,Names,Types), | |
| 836 | add_parameters(OuterParameters,Names,FullNames), | |
| 837 | b_compile(Condition,FullNames,LocalState,State,ClosurePred), | |
| 838 | print('INNER COMPILE: '), translate:print_bexpr(ClosurePred),nl, | |
| 839 | construct_closure_if_necessary(Names,Types,ClosurePred,Result). | |
| 840 | */ | |
| 841 | ||
| 842 | ||
| 843 | % the LHS contains l-values which should not be looked up in the environment | |
| 844 | % however, we need to deal with things like f(i) := RHS and compile i | |
| 845 | b_compile_lhs(Parameters,LS,S,Eval,WF,TExpr,NewTExpr) :- | |
| 846 | TExpr = b(Expr,Type,Info), NewTExpr = b(NewExpr,Type,Info), | |
| 847 | b_compile_lhs_aux(Expr,Parameters,LS,S,NewExpr,Eval,WF). | |
| 848 | ||
| 849 | b_compile_lhs_aux(function(A,B),Parameters,LS,S,function(NewA,NewB),Eval,WF) :- !, | |
| 850 | b_compile_lhs(Parameters,LS,S,Eval,WF,A,NewA), % we can have nexted function calls f(e)(g) := | |
| 851 | b_compile1(B,Parameters,LS,S,NewB,Eval,_,WF). | |
| 852 | b_compile_lhs_aux(E,_,_,_,E,_,_WF). % other LHS should be identifier -> just copy | |
| 853 | ||
| 854 | get_record_field(b(value(Val),_,_),FieldName,value(Field),FullyKnown) :- !, | |
| 855 | nonvar(Val), Val=rec(Fields), | |
| 856 | safe_get_field(Fields,FieldName,Field), | |
| 857 | known_value(Field,FullyKnown). | |
| 858 | get_record_field(b(function(FUN,ARG),_Type,_Info),FieldName,function(ReducedFUN,ARG),false) :- | |
| 859 | % {1|->rec(a:1,b:2),...}(x)'b --> {1|->2,...}(x) | |
| 860 | %nl,print(get_field(FUN,ARG,FieldName)),nl, | |
| 861 | % TO DO: also allow nested functions calls {1|->rec(a:1,b:2),...}(x)(y)'b or other reduction operators | |
| 862 | get_field_in_range(FUN,FieldName,ReducedFUN). | |
| 863 | safe_get_field(V,FN,_) :- (var(V) ; var(FN)),!,fail. | |
| 864 | safe_get_field([field(N,V)|T],FieldName,Result) :- nonvar(N), | |
| 865 | (N=FieldName -> Result=V ; safe_get_field(T,FieldName,Result)). | |
| 866 | ||
| 867 | :- use_module(probsrc(custom_explicit_sets),[expand_custom_set_to_list/4, convert_to_avl/2]). | |
| 868 | :- use_module(probsrc(avl_tools),[avl_height_less_than/2]). | |
| 869 | get_field_in_range(b(value(OldVal),set(couple(Dom,OldRange)),Info),FieldName, | |
| 870 | b(value(NewVal),set(couple(Dom,NewRange)),Info)) :- | |
| 871 | nonvar(OldVal), OldVal=avl_set(AVL), | |
| 872 | avl_height_less_than(AVL,10), | |
| 873 | OldRange = record(Fields), | |
| 874 | member(field(FieldName,NewRange),Fields),!, | |
| 875 | expand_custom_set_to_list(avl_set(AVL),List,_,get_field_in_range), | |
| 876 | maplist(safe_get_range_field(FieldName),List,NewList), | |
| 877 | convert_to_avl(NewList,NewVal). | |
| 878 | ||
| 879 | % compute the field access for the range elements: | |
| 880 | safe_get_range_field(FieldName,(Dom,rec(Fields)),(Dom,Field)) :- safe_get_field(Fields,FieldName,Field). | |
| 881 | ||
| 882 | ||
| 883 | eval_binary_bool(true,b(value(ValA),_,_),true,b(value(ValB),_,_),BOP,Result) :- | |
| 884 | ground(ValA), | |
| 885 | ground(ValB), | |
| 886 | eval_binary_aux(BOP,ValA,ValB,Result). | |
| 887 | ||
| 888 | eval_binary_aux(less,int(A),int(B),Result) :- | |
| 889 | (A < B -> Result = truth ; Result = falsity). | |
| 890 | eval_binary_aux(greater,int(A),int(B),Result) :- | |
| 891 | (A > B -> Result = truth ; Result = falsity). | |
| 892 | eval_binary_aux(less_equal,int(A),int(B),Result) :- | |
| 893 | (A =< B -> Result = truth ; Result = falsity). | |
| 894 | eval_binary_aux(greater_equal,int(A),int(B),Result) :- | |
| 895 | (A >= B -> Result = truth ; Result = falsity). | |
| 896 | eval_binary_aux(subset,avl_set(A1),avl_set(A2),Result) :- | |
| 897 | (custom_explicit_sets:check_avl_subset(A1,A2) -> Result = truth ; Result = falsity). | |
| 898 | eval_binary_aux(subset,[],_,Result) :- Result=truth. | |
| 899 | %eval_binary_aux(less_real,real(A),real(B),Result) :- % TO DO | |
| 900 | % (A < B -> Result = truth ; Result = falsity). | |
| 901 | % TO DO: other operators are not_subset, strict_subset, ... intervals for subset,... | |
| 902 | ||
| 903 | ||
| 904 | ||
| 905 | :- use_module(store,[lookup_value_for_existing_id_wf/5]). | |
| 906 | compute_lazy_lookup(Id,Expr,LS,S,NExpr,FullyKnown,WF) :- | |
| 907 | lookup_value_for_existing_id_wf(Id,LS,S,(Evaluated,Value),WF), | |
| 908 | % the lazy expression has already been registered, but maybe not yet evaluated | |
| 909 | !, | |
| 910 | known_value(Value,FullyKnown), % compute if value fully known | |
| 911 | (Evaluated==pred_true -> NExpr = value(Value) | |
| 912 | ; FullyKnown==true -> NExpr = value(Value) | |
| 913 | ; memberchk(bind('$optimize_do_not_force_lazy_lookups',_),LS) | |
| 914 | -> NExpr = Expr % we do not force lookup: there could be WD issues ! | |
| 915 | % TO DO: examine Infos for wd_condition; we could also return NExpr = lazy_value(Id,Evaluated,Value) | |
| 916 | ; if(Evaluated = pred_true, | |
| 917 | % will force evaluation ! Note: this means shared expression inside a compiled expression must be well-defined | |
| 918 | NExpr = value(Value), | |
| 919 | (add_internal_error_wf(b_compiler,'Compilation failed: ', Id, unknown,WF), | |
| 920 | fail)) | |
| 921 | ). | |
| 922 | compute_lazy_lookup(Id,_E,_LS,_S,_LazyValue,_,WF) :- | |
| 923 | add_internal_error_wf(b_compiler,'Compilation failed, illegal lazy_lookup_value: ',Id,unknown,WF), | |
| 924 | fail. | |
| 925 | ||
| 926 | combine_fully_known(true,A,A). | |
| 927 | combine_fully_known(false,_,false). | |
| 928 | ||
| 929 | :- use_module(tools_lists,[length_greater/2]). | |
| 930 | % is an extension function with at least two elements, but not too long | |
| 931 | % (for long set extensions it is much better to compile them to avl once; see private_examples/ClearSy/2019_Sep/rule_dummy) | |
| 932 | % extension functions are treated lazily in b_interpreter for function application under the condition: | |
| 933 | % memberchk(contains_wd_condition,FInfo) ; preferences:preference(use_clpfd_solver,false) ; ground_value(ArgValue) | |
| 934 | is_lazy_extension_function_for_fun_app(b(A,_,FInfo)) :- | |
| 935 | preferences:preference(data_validation_mode,false), | |
| 936 | (memberchk(contains_wd_condition,FInfo) -> Lim=98 ; Lim = 23), | |
| 937 | is_extension_function_aux(A,Lim). | |
| 938 | is_extension_function_aux(set_extension([_A,_|T]),Lim) :- \+ length_greater(T,Lim). | |
| 939 | is_extension_function_aux(sequence_extension([_,_|T]),Lim) :- \+ length_greater(T,Lim). | |
| 940 | ||
| 941 | :- use_module(bsyntaxtree,[is_set_type/2]). | |
| 942 | % check if we can apply an argument to a partially specified function (as a list and now also as AVL) | |
| 943 | %can_apply_partially_specified_function(Fun,X,_,_) :- print(fun(Fun)),nl,print(val(X)),nl,fail. | |
| 944 | can_apply_partially_specified_function(b(Expr,TYPE,_), b(value(X),TA,_),ResultExpr,WF) :- | |
| 945 | can_apply_aux(Expr,TYPE,X,TA,ResultExpr,WF). | |
| 946 | ||
| 947 | can_apply_aux(value(VAL),TYPE,X,TA,value(ResultValue),WF) :- | |
| 948 | is_set_type(TYPE,couple(TA,_TB)), | |
| 949 | lookup_result(VAL,X,ResultValue,WF). | |
| 950 | can_apply_aux(sequence_extension(List),_,X,integer,ResultExpr,_WF) :- | |
| 951 | % important, e.g., for solving test 1551: {b|[a,b,c](2)=333} =res & a : res & b:res | |
| 952 | nonvar(X), X=int(Index), number(Index), | |
| 953 | % this will prevent computing rest of sequence extension: can hide WD issues ! | |
| 954 | % print(apply_seq_extension(Index,List)),nl, | |
| 955 | nth1(Index,List,b(ResultExpr,_,_)). | |
| 956 | ||
| 957 | :- use_module(kernel_equality,[equality_objects_wf/4, equality_can_be_decided_by_unification/1]). | |
| 958 | %lookup_result(VAR,ArgValue,Result,WF) :- var(VAR),!,kernel_mappings:kernel_call_apply_to(VAR,ArgValue,Result,unknown,unknown,WF). | |
| 959 | % the clause above is unsound; as apply_to CAN RAISE WD ERRORS !! what if we have IF 1:dom(f) THEN f(1) ELSE f(0) END; we do not want to compute f(1) ! it can also instantiate unbound variables ! | |
| 960 | % the idea was to avoid that we wait on the full function, before compiled closure can be evaluated; test 1552 | |
| 961 | % important for e.g. a = {(1, {([]|->2)} ), (2, const(1, [a(1)]))} | |
| 962 | % or: a = {1 |-> {[] |-> 2}, 2 |-> (dom({pi,ff,p|((pi : seq(INTEGER) & ff : INTEGER) & p : seq(INTEGER)) & (p |-> ff : [a(1)](1) & pi = 1 -> p)}) \/ {[] |-> 1})} | |
| 963 | % test 1552 is currently skipped | |
| 964 | % TO DO: think whether there are other deterministic computations that can be done in b_compile: prj1,prj2, record-field access ? this would ensure that closures,... can be computed earlier | |
| 965 | lookup_result(VAR,_,_,_WF) :- var(VAR),!,fail. | |
| 966 | lookup_result(avl_set(A),X,Result,_WF) :- | |
| 967 | (custom_explicit_sets:try_apply_to_avl_set(X,Result,A) | |
| 968 | -> true % precompiled function application | |
| 969 | ; debug_format(19,'Function application in b_compiler for avl_set is not well-defined for: ~w~n',[X]), | |
| 970 | % We could transform the function application into a construct that raises a WD error | |
| 971 | fail). | |
| 972 | lookup_result(closure(_P,_T,_B),_X,_Result,_WF) :- !, | |
| 973 | fail. % TODO: should we replace parameters by values in body? if domain is full type? | |
| 974 | lookup_result(List,X,Result,WF) :- List = [_|_],equality_can_be_decided_by_unification(X),!, | |
| 975 | % this is relevant for long lists, | |
| 976 | % see public_examples/B/ExternalFunctions/Satsolver/QueensBoardVersionTF_Satsolver.mch | |
| 977 | fast_lookup_result(List,X,Result,WF). | |
| 978 | lookup_result(List,X,Result,WF) :- | |
| 979 | regular_lookup_result_in_list(List,X,Result,WF). | |
| 980 | ||
| 981 | regular_lookup_result_in_list([],X,_Result,_WF) :- | |
| 982 | debug_format(19,'Function application in b_compiler for list is not well-defined for: ~w~n',[X]), % ditto | |
| 983 | fail. | |
| 984 | regular_lookup_result_in_list([(HFrom,HTo)|T],X,Result,WF) :- | |
| 985 | equality_objects_wf(HFrom,X,PredRes,WF), | |
| 986 | %kernel_equality:equality_objects1(HFrom,X,PredRes,WF), % this could be called if X is guaranteed nonvar | |
| 987 | nonvar(PredRes), % only proceed if we have enough information to determine the result of the comparison | |
| 988 | (PredRes = pred_true -> Result = HTo % we have found the value; we assume there is no other value later | |
| 989 | % TO DO: if find_abort_values=true: look later in the list if for all other HFrom PredRes=pred_false | |
| 990 | ; regular_lookup_result_in_list(T,X,Result,WF)). | |
| 991 | ||
| 992 | % a faster version which does not use equality_objects_wf | |
| 993 | fast_lookup_result([(HFrom,HTo)|T],X,Result,WF) :- | |
| 994 | equality_can_be_decided_by_unification(HFrom), !, | |
| 995 | (HFrom=X -> Result = HTo | |
| 996 | ; fast_lookup_result(T,X,Result,WF) | |
| 997 | ). | |
| 998 | fast_lookup_result(List,X,Result,WF) :- | |
| 999 | regular_lookup_result_in_list(List,X,Result,WF). | |
| 1000 | ||
| 1001 | ||
| 1002 | % get_comprehension_set(b(SET,_,_),ID,PRED) :- get_comprehension_set_aux(SET,ID,PRED). | |
| 1003 | % get_comprehension_set_aux(comprehension_set([TID],PRED),ID,PRED) :- | |
| 1004 | % get_texpr_id(TID,ID). | |
| 1005 | % get_comprehension_set_aux(value(V),ID,PRED) :- nonvar(V), V = closure([ID],_,PRED). | |
| 1006 | ||
| 1007 | ||
| 1008 | ||
| 1009 | ||
| 1010 | quick_test_membership1(b(value(VA),_,_),VB,Result) :- | |
| 1011 | quick_test_membership_aux(VB,VA,Result). | |
| 1012 | quick_test_membership_aux(VAR,_,_) :- var(VAR),!,fail. | |
| 1013 | quick_test_membership_aux([],_,pred_false). | |
| 1014 | quick_test_membership_aux(avl_set(AVL),X,Result) :- | |
| 1015 | custom_explicit_sets:quick_test_avl_membership(AVL,X,Result). % we could also check that in case X is not ground but partially instantiated, whether there is a possible match in AVL (if not Result = pred_false) | |
| 1016 | quick_test_membership_aux(global_set(GS),X,Result) :- nonvar(X), X=int(IX), nonvar(IX), | |
| 1017 | custom_explicit_sets:membership_global_set(GS,X,R,_WF), | |
| 1018 | nonvar(R), Result=R. | |
| 1019 | quick_test_membership_aux(closure(P,T,B),X,Result) :- nonvar(X), X=int(IX), nonvar(IX), | |
| 1020 | is_fixed_interval(P,T,B,LOW,UP), | |
| 1021 | kernel_equality:in_nat_range_test(X,int(LOW),int(UP),R), | |
| 1022 | nonvar(R), Result=R. | |
| 1023 | quick_test_membership_aux(closure(P,T,B),X,Result) :- X==[], % check {} : POW(_) / FIN(_) and {} : POW1(_) / FIN1(_) | |
| 1024 | custom_explicit_sets:is_powerset_closure(closure(P,T,B),Kind,_), | |
| 1025 | (contains_empty_set(Kind) -> Result = pred_true ; Result=pred_false). | |
| 1026 | ||
| 1027 | is_fixed_interval(P,T,B,LOW,UP) :- | |
| 1028 | custom_explicit_sets:is_interval_closure(P,T,B,LOW,UP), integer(LOW),integer(UP). | |
| 1029 | ||
| 1030 | contains_empty_set(pow). | |
| 1031 | contains_empty_set(fin). | |
| 1032 | ||
| 1033 | convert_pred_res(pred_false,falsity). | |
| 1034 | convert_pred_res(pred_true,truth). | |
| 1035 | convert_neg_pred_res(pred_true,falsity). | |
| 1036 | convert_neg_pred_res(pred_false,truth). | |
| 1037 | ||
| 1038 | generate_equality(b(A,_,_),b(B,_,_),Res) :- | |
| 1039 | ( generate_equality_aux(A,B,Res) ; | |
| 1040 | generate_equality_aux(B,A,Res) ), | |
| 1041 | !. | |
| 1042 | generate_equality(A,B,equal(A,B)). | |
| 1043 | ||
| 1044 | generate_equality_aux(convert_bool(AA),value(PT),Res) :- | |
| 1045 | PT==pred_true, | |
| 1046 | get_texpr_expr(AA,TA), | |
| 1047 | !, | |
| 1048 | Res = TA. | |
| 1049 | generate_equality_aux(convert_bool(AA),value(PF),Res) :- | |
| 1050 | PF==pred_false,!, | |
| 1051 | Res = negation(AA). | |
| 1052 | ||
| 1053 | % generate an equal(_,_) node where the second one is a Value | |
| 1054 | generate_equality_with_value(b(value(ValA),_,_),true,ValB,true,_TA,NExpr) :- | |
| 1055 | % both are FullyKnown | |
| 1056 | simple_value(ValA), % we should avoid closures | |
| 1057 | !, | |
| 1058 | kernel_equality:equality_objects(ValA,ValB,PRes), | |
| 1059 | convert_pred_res(PRes,NExpr). | |
| 1060 | generate_equality_with_value(NExprA,_,Value,_,TA,equal(NExprA,b(value(Value),TA,[]))). | |
| 1061 | ||
| 1062 | % similar to custom_explicit_sets:simple_value | |
| 1063 | % values where we can decide equality easily | |
| 1064 | simple_value(fd(_,_)). | |
| 1065 | simple_value(pred_true /* bool_true */). | |
| 1066 | simple_value(pred_false /* bool_false */). | |
| 1067 | simple_value(int(_)). | |
| 1068 | simple_value((A,B)) :- simple_value(A), simple_value(B). | |
| 1069 | simple_value(rec(Fields)) :- maplist(simple_field,Fields). | |
| 1070 | simple_value(string(_)). | |
| 1071 | ||
| 1072 | simple_field(field(_,Val)) :- simple_value(Val). | |
| 1073 | ||
| 1074 | known_value(X,FullyKnown) :- (known_value(X) -> FullyKnown=true ; FullyKnown=false). | |
| 1075 | known_value(X) :- nonvar(X), known_value2(X). | |
| 1076 | known_value2(global_set(GS)) :- nonvar(GS). | |
| 1077 | known_value2(freetype(GS)) :- nonvar(GS). | |
| 1078 | known_value2(closure(P,T,B)) :- known_closure(P,T,B). | |
| 1079 | %Note: for other closures: they still may have to be computed; some of the computations in wd_and_efficient could be expensive for closures | |
| 1080 | known_value2(avl_set(_)). % already fully normalised | |
| 1081 | known_value2((X,Y)) :- known_value(X),known_value(Y). | |
| 1082 | known_value2(fd(A,B)) :- number(A),atomic(B). | |
| 1083 | known_value2(int(N)) :- number(N). | |
| 1084 | known_value2([]). | |
| 1085 | known_value2(pred_true). | |
| 1086 | known_value2(pred_false). | |
| 1087 | known_value2(string(S)) :- atomic(S). | |
| 1088 | known_value2([H|T]) :- known_value(H), known_value(T). | |
| 1089 | %known_value2(record(Fields)) :- known_fields(Fields). | |
| 1090 | known_value2(rec(Fields)) :- known_fields(Fields). | |
| 1091 | ||
| 1092 | :- use_module(avl_tools,[avl_height_less_than/2]). | |
| 1093 | % large known avl_set value; for issueing perfmessage warnings | |
| 1094 | large_known_value(b(value(V),_,_),Lim) :- nonvar(V), large_known_aux(V,Lim). | |
| 1095 | large_known_aux(avl_set(A),Lim) :- | |
| 1096 | \+ avl_height_less_than(A,Lim). | |
| 1097 | ||
| 1098 | % something we could do: | |
| 1099 | %optimize_known_value([H|T],Res) :- (convert_to_avl([H|T],CS) -> Res=CS ; print(failed_to_convert_known_list),nl,fail). | |
| 1100 | % try_convert_to_avl | |
| 1101 | ||
| 1102 | known_closure(P,T,B) :- custom_explicit_sets:is_interval_closure(P,T,B,Low,Up), !, | |
| 1103 | number(Low), number(Up), | |
| 1104 | Up < Low+1000. | |
| 1105 | known_closure(P,T,B) :- | |
| 1106 | is_cartesian_product_closure(closure(P,T,B),A1,A2), | |
| 1107 | !,% we could call is_cartesian_product_closure_aux(P,T,B,A1,A2) | |
| 1108 | known_value(A1), known_value(A2). | |
| 1109 | ||
| 1110 | known_fields(X) :- var(X),!,fail. | |
| 1111 | known_fields([]). | |
| 1112 | known_fields([field(N,V)|T]) :- ground(N),known_value(V),known_fields(T). | |
| 1113 | ||
| 1114 | %b_evaluate1(TExpr,Parameters,LS,S,ResultTExpr,FullyKnown) :- | |
| 1115 | ||
| 1116 | check_is_id_list([],[]). | |
| 1117 | check_is_id_list([H|T],Res) :- | |
| 1118 | (H=b(identifier(_),_,_) | |
| 1119 | -> add_internal_error('Typed id list as argument: ',check_is_id_list([H|T],Res)), % use get_texpr_ids or maplist(def_get_texpr_id,P,PIDs) | |
| 1120 | maplist(def_get_texpr_id,[H|T],Res) | |
| 1121 | ; Res=[H|T]). | |
| 1122 | ||
| 1123 | :- use_module(kernel_frozen_info,[kfi_domain/2]). | |
| 1124 | ||
| 1125 | :- use_module(custom_explicit_sets,[construct_interval_closure/3]). | |
| 1126 | % try and evaluate domain of a list (avl_set already dealt with separately) | |
| 1127 | %evaluate_domain(X,_) :- print(dom(X)),nl,fail. | |
| 1128 | evaluate_domain(sequence_extension(L),Domain) :- length(L,Len), | |
| 1129 | % this will prevent computing range of sequence extension: can hide WD issues ! TO DO: check wd info and/or preference | |
| 1130 | construct_interval_closure(1,Len,Domain). | |
| 1131 | % TO DO: set_extension when possible ? | |
| 1132 | evaluate_domain(value(L),Domain) :- | |
| 1133 | get_domain(L,Domain). | |
| 1134 | ||
| 1135 | get_domain(V,Dom) :- var(V),!,kfi_domain(V,Dom). % try infer domain from attached co-routines | |
| 1136 | get_domain([],[]). | |
| 1137 | get_domain([V|VT],Result) :- nonvar(V), V=(D,_), | |
| 1138 | known_value(D),get_list_domain(VT,DT), | |
| 1139 | %length(DT,Len),print(got_list_domain(D,Len)),nl, | |
| 1140 | (custom_explicit_sets:try_convert_to_avl([D|DT],Res) -> Result=Res | |
| 1141 | ; write(could_not_convert_domain_to_avl(D)),nl, Result=[D|DT]). %sort([D|DT],Result)? | |
| 1142 | % we could also do this: | |
| 1143 | %get_domain(closure(Par,Typ,Body),Result) :- | |
| 1144 | % is_lambda_value_domain_closure(Par,Typ,Body, DomainValue,Expr), check_wd(Expr), | |
| 1145 | % Result=DomainValue. | |
| 1146 | get_list_domain(V,_) :- var(V),!,fail. | |
| 1147 | get_list_domain([],[]). | |
| 1148 | get_list_domain([V|VT],[D|DT]) :- nonvar(V), V=(D,_), | |
| 1149 | known_value(D),get_list_domain(VT,DT). | |
| 1150 | ||
| 1151 | ||
| 1152 | :- use_module(kernel_frozen_info,[kfi_range/2]). | |
| 1153 | ||
| 1154 | % try and evaluate range of a list (avl_set already dealt with separately) | |
| 1155 | evaluate_range(b(value(L),_T,_),Range) :- | |
| 1156 | get_range(L,Range). | |
| 1157 | get_range(V,Dom) :- var(V),!,kfi_range(V,Dom). % try infer range from attached co-routines | |
| 1158 | get_range([],[]). | |
| 1159 | get_range([V|VT],Result) :- nonvar(V), V=(_,D), | |
| 1160 | known_value(D), | |
| 1161 | get_list_range(VT,DT), | |
| 1162 | sort([D|DT],Result). | |
| 1163 | ||
| 1164 | get_list_range(V,_) :- var(V),!,fail. | |
| 1165 | get_list_range([],[]). | |
| 1166 | get_list_range([V|VT],[D|DT]) :- | |
| 1167 | nonvar(V), V=(_,D), | |
| 1168 | known_value(D), | |
| 1169 | get_list_range(VT,DT). | |
| 1170 | ||
| 1171 | create_equality_for_let(LHS,RHS,Conj) :- | |
| 1172 | maplist(create_eq,LHS,RHS,CL), | |
| 1173 | conjunct_predicates(CL,Conj). | |
| 1174 | create_eq(Id,Expr,TPred) :- safe_create_texpr(equal(Id,Expr),pred,TPred). | |
| 1175 | ||
| 1176 | % split formal operation call parameters into those which clash and those that do not: | |
| 1177 | split_formal_parameters([],[],_,[],[],[],[]). | |
| 1178 | split_formal_parameters([Formal1|FormalT],[Val1|VT],LocalKnownParas,Fresh,FV,Clash,CV) :- | |
| 1179 | (id_clash(LocalKnownParas,Formal1) | |
| 1180 | -> Fresh = FreshT, FV=FVT, Clash = [Formal1|ClashT], CV = [Val1|CVT] | |
| 1181 | ; Fresh = [Formal1|FreshT], FV = [Val1|FVT], Clash = ClashT, CV = CVT | |
| 1182 | ), split_formal_parameters(FormalT,VT,LocalKnownParas,FreshT,FVT,ClashT,CVT). | |
| 1183 | ||
| 1184 | :- use_module(gensym,[gensym/2]). | |
| 1185 | create_fresh_id(b(identifier(_),T,I),b(identifier(FRESHID),T,I)) :- | |
| 1186 | gensym('__COMPILED_ID__',FRESHID). | |
| 1187 | ||
| 1188 | :- use_module(bsyntaxtree, [get_texpr_pos/2,same_id/3]). | |
| 1189 | % compute which assignments are really necessary, remove skip assignments x := x | |
| 1190 | simplify_assignment([],[],[],[]). | |
| 1191 | simplify_assignment([ID1|T1],[ID2|T2],Res1,Res2) :- | |
| 1192 | (same_id(ID1,ID2,_) -> Res1=TR1, Res2=TR2 ; Res1=[ID1|TR1], Res2=[ID2|TR2]), | |
| 1193 | simplify_assignment(T1,T2,TR1,TR2). | |
| 1194 | ||
| 1195 | ||
| 1196 | /* | |
| 1197 | % check if an AST term is a total lambda without WD condition: | |
| 1198 | % NExprA=value(closure([x,...,'_lambda_result_'],b(equal())), NExprB=couple(,,,,) -> replace x by parameters | |
| 1199 | % possibly better to do this via contains_wd_condition or similar Info field?! | |
| 1200 | ||
| 1201 | ||
| 1202 | is_total_lambda(b(value(V),_,_),OtherIDs,LambdaExpr) :- nonvar(V), | |
| 1203 | V=closure(Args,_Types,Body), | |
| 1204 | is_total_lambda_closure(Args,Body, OtherIDs, LambdaExpr). | |
| 1205 | ||
| 1206 | :- use_module(probsrc(bsyntaxtree),[conjunction_to_list/2,occurs_in_expr/2]). | |
| 1207 | is_total_lambda_closure(Args,b(equal(TLambda,LambdaExpr),pred,_),OtherIDs,LambdaExpr) :- | |
| 1208 | get_texpr_id(TLambda,LambdaID), | |
| 1209 | append(OtherIDs,[LambdaID],Args), | |
| 1210 | \+ occurs_in_expr(LambdaID,LambdaExpr). | |
| 1211 | ||
| 1212 | % try and get arguments from expression | |
| 1213 | get_actual_arguments([_],Expr,Args) :- !, | |
| 1214 | % print('arg1: '),tools_printing:print_term_summary(Expr),nl, | |
| 1215 | check_simple(Expr), | |
| 1216 | Args= [Expr]. | |
| 1217 | get_actual_arguments([_|T],b(Couple,_,_),[Arg1|TArgs]) :- | |
| 1218 | get_couple(Couple,Arg1,Arg2), print('arg: '),tools_printing:print_term_summary(Arg1),nl, | |
| 1219 | check_simple(Arg1), | |
| 1220 | get_actual_arguments(T,Arg2,TArgs). | |
| 1221 | ||
| 1222 | check_simple(b(V,_,_)) :- simple2(V). | |
| 1223 | simple2(value(_)). | |
| 1224 | simple2(identifier(_)). | |
| 1225 | simple2(integer(_)). | |
| 1226 | ||
| 1227 | get_couple(couple(A,B),A,B). | |
| 1228 | %get_couple(value(V),A,B) :- nonvar(V), V=(V1,V2), ... % TODO | |
| 1229 | ||
| 1230 | ||
| 1231 | Code for bcompile2(function(...)) | |
| 1232 | ||
| 1233 | ||
| 1234 | % ; is_total_lambda(NExprA,Ids,Expr) , | |
| 1235 | % get_actual_arguments(Ids,NExprB,Args) %, print(ok),nl, translate:l_print_bexpr_or_subst(Args),nl | |
| 1236 | % -> | |
| 1237 | % bsyntaxtree:replace_ids_by_exprs(Expr,Ids,Args,Result), | |
| 1238 | % % only ok if we do not replicate expressions !! we could repeatedly re-apply rule / compilation on result | |
| 1239 | % print(' replaced: '),translate:print_bexpr(Result),nl, | |
| 1240 | % Result = b(NExpr,_,_), FullyKnown = FullyKnown12 | |
| 1241 | ||
| 1242 | */ |