1 % (c) 2021-2024 Lehrstuhl fuer Softwaretechnik und Programmiersprachen,
2 % Heinrich Heine Universitaet Duesseldorf
3 % This software is licenced under EPL 1.0 (http://www.eclipse.org/org/documents/epl-v10.html)
4 :- module(ast_optimizer_for_smt, [reset_optimizer_state/0,
5 precompute_values/3,
6 precompute_values_non_recursive/3,
7 assert_state_id_values/2,
8 assert_ground_id_values/2,
9 replace_ids_with_ground_values/4,
10 replace_ids_with_eq_ids_top_level/2]).
11
12 :- use_module(library(lists)).
13
14 :- use_module(smt_solvers_interface(set_rewriter)).
15 :- use_module(smt_solvers_interface(quantifier_instantiation)).
16 :- use_module(probsrc(preferences), [get_preference/2]).
17 :- use_module(probsrc(kernel_objects), [infer_value_type/2]).
18 :- use_module(probsrc(bmachine), [b_get_named_machine_set/2]).
19 :- use_module(probsrc(b_interpreter), [b_compute_expression_nowf/6]).
20 :- use_module(probsrc(bsyntaxtree), [remove_all_infos/2,
21 get_texpr_id/2,
22 get_texpr_expr/2,
23 get_texpr_type/2,
24 safe_create_texpr/4,
25 find_identifier_uses/3,
26 conjunction_to_list/2,
27 syntaxtransformation/5]).
28 :- use_module(probsrc(store), [normalise_value_for_var/4]).
29 :- use_module(probsrc(module_information), [module_info/2]).
30 :- use_module(probsrc(error_manager), [add_internal_error/2]).
31 :- use_module(probsrc(kernel_tools), [ground_value/1]).
32 %:- use_module(wdsrc(well_def_analyser), [prove_sequent/1]).
33
34 :- module_info(group, smt_solvers).
35 :- module_info(description, 'This module implements transformations to simplify SMT-LIB translations.').
36
37 :- dynamic id_ground_value/3, id_equality/3.
38
39 reset_optimizer_state :-
40 retractall(id_ground_value(_,_,_)),
41 retractall(id_equality(_,_,_)).
42
43 %% precompute_values(+Ast, -AstOpt).
44 % Compute some ground operations in Prolog to simplify SMT-Lib constraints.
45 % We split this from the actual cleanup since we use information on ground
46 % values in the cleanup, e.g., to optimize cardinality constraints.
47 % Computes some more values than b_compile/6.
48 precompute_values(Ast, Options, AstOpt) :-
49 precompute_values3(Ast, [allow_recursive_call|Options], [], AstOpt).
50
51 precompute_values_non_recursive(Options, Ast, AstOpt) :-
52 precompute_values_non_recursive(Options, [], Ast, AstOpt).
53
54 precompute_values_non_recursive(Options, ScopeIds, Ast, AstOpt) :-
55 precompute_values3(Ast, Options, ScopeIds, AstOpt).
56
57 precompute_values3(Ast, Options, ScopeIds, AstOpt) :-
58 Ast = b(Expr,Type,Info), !,
59 ( precompute_values_e(Expr, Type, Info, Options, ScopeIds, NExpr)
60 -> safe_create_texpr(NExpr, Type, Info, AstOpt)
61 ; add_internal_error('Call failed: ',precompute_values_e(Expr, Type, Info, Options, ScopeIds, _)),
62 AstOpt = Ast
63 ).
64 precompute_values3(L, _, _, R) :-
65 add_internal_error('Not a B AST:', precompute_values3(L, _, _, R) ),
66 R = L.
67
68 precompute_values_e(min_int, _, _, _, _, integer(MinInt)) :- !,
69 get_preference(minint, MinInt).
70 precompute_values_e(max_int, _, _, _, _, integer(MaxInt)) :- !,
71 get_preference(maxint, MaxInt).
72 /*precompute_values_e(function(Fun,Elm), Type, Info, _, AstOpt) :-
73 Ast = b(function(Fun,Elm),Type,Info),
74 Fun \= b(identifier(_),_,_), % uninterpreted functions can not be precomputed
75 prove_sequent(Ast),
76 !,
77 find_typed_identifier_uses(Ast, [], UsedIds),
78 set_up_typed_localstate(UsedIds, _, SmtTypedVals, [], Bindings, positive),
79 init_wait_flags(WFStore, [wf_fun]),
80 ( b_tighter_enumerate_all_values(SmtTypedVals, WFStore),
81 b_interpreter:b_compute_expression(Ast, Bindings, Bindings, Res, WFStore),
82 ground_wait_flags(WFStore)
83 -> AstOpt = b(value(Res),Type,Info)
84 ; AstOpt = Ast
85 ).*/
86 precompute_values_e(forall(TIDs,LHS,RHS), pred, Info, Options, ScopeIds, Res) :-
87 member(instantiate_quantifier_limit(L), Options),
88 L \== 0,
89 instantiate_quantifier_possible(forall(TIDs,LHS,RHS), pred, Info, Options, ScopeIds, NOptions, TRes),
90 ( TRes == truth
91 -> Res = truth % no instantiation found, universal quantification is true
92 ; precompute_values3(TRes, NOptions, [], b(Res,pred,_)) % TODO: check this, what about ScopeIDs?
93 ).
94 precompute_values_e(exists(TIDs,LHS), pred, Info, Options, ScopeIds, Res) :-
95 member(instantiate_quantifier_limit(L), Options),
96 L \== 0,
97 instantiate_quantifier_possible(exists(TIDs,LHS), pred, Info, Options, ScopeIds, NOptions, TRes),
98 ( TRes == falsity
99 -> Res = falsity % no instantiation found, existential quantification is false
100 ; precompute_values3(TRes, NOptions, [], b(Res,pred,_)) % TODO: check this, what about ScopeIDs?
101 ).
102 precompute_values_e(comprehension_set([Id,LambdaRes],Body), _, _, Options, ScopeIds, SetExtension) :-
103 % e.g., %(i : 1..3|0)
104 LambdaRes = b(identifier('_lambda_result_'),_,_),
105 Body = b(conjunct(Member,LambdaEq),pred,_),
106 remove_all_infos(Id, CId),
107 remove_all_infos(LambdaRes, CLambdaRes),
108 Member = b(member(CId,Domain),pred,_),
109 LambdaEq = b(equal(CLambdaRes,RangeVal),pred,_),
110 compute_ground_lambda(Id, Domain, RangeVal, ScopeIds, Options, ComputedSet),
111 !,
112 construct_set_extension(ComputedSet,SetExtension).
113 precompute_values_e(interval(A,B), _, _, Options, ScopeIds, SetExtension) :-
114 rewrite_set_to_list_of_asts(b(interval(A,B),set(integer),[]), ScopeIds, Options, List),
115 !,
116 construct_set_extension(List,SetExtension).
117 precompute_values_e(Pow, _, _, Options, ScopeIds, Precomputed) :-
118 SetAst = b(set_extension(List),set(Type),[]),
119 ( Pow = pow_subset(Arg),
120 PowAst = b(pow_subset(SetAst),set(set(Type)),[])
121 ; Pow = pow1_subset(Arg),
122 PowAst = b(pow1_subset(SetAst),set(set(Type)),[])
123 ),
124 rewrite_set_to_list_of_asts(Arg, ScopeIds, Options, List),
125 is_a_list_of_values(List),
126 length(List, Len),
127 ( Pow = pow_subset(Arg)
128 -> PowCard is 2**Len
129 ; PowCard is 2**Len - 1
130 ),
131 ( member(instantiate_sets_limit(SetLimit), Options)
132 -> PowCard =< SetLimit
133 ; true
134 ),
135 List = [b(_,Type,_)|_],
136 !,
137 b_compute_expression_nowf(PowAst, [], [], TPrecomputedVal,'SMT precomputation',0),
138 normalise_value_for_var(solver_result, force, TPrecomputedVal, PrecomputedVal),
139 Precomputed = value(PrecomputedVal).
140 precompute_values_e(reverse(Arg), _, _, Options, ScopeIds, SetExtension) :-
141 rewrite_set_to_list_of_asts(Arg, ScopeIds, Options, List),
142 is_a_list_of_values(List),
143 compute_inverse(List, InvList),
144 !,
145 construct_set_extension(InvList,SetExtension).
146 precompute_values_e(cartesian_product(SetA,SetB), _, _, Options, ScopeIds, SetExtension) :-
147 rewrite_set_to_list_of_asts(SetA, ScopeIds, Options, ListA),
148 rewrite_set_to_list_of_asts(SetB, ScopeIds, Options, ListB),
149 get_texpr_type(SetA, set(InTypeA)),
150 get_texpr_type(SetB, set(InTypeB)),
151 compute_cartesian_product(InTypeA, InTypeB, ListA, ListB, CartList),
152 !,
153 construct_set_extension(CartList,SetExtension).
154 precompute_values_e(BOP, _Type, _Info, Options, ScopeIds, Res) :-
155 binary_connective(BOP,F,A,B),
156 !,
157 binary_connective(Res,F,NA,NB),
158 precompute_values_non_recursive(Options, ScopeIds, A, NA),
159 precompute_values_non_recursive(Options, ScopeIds, B, NB). % we ignore allow_recursive_call option; all optimisations are local
160 precompute_values_e(Expr, Type, Info, Options, ScopeIds, Res) :-
161 syntaxtransformation(Expr, Subs, Names, NSubs, NExpr),
162 ( Names \= []
163 -> maplist(get_texpr_id, Names, IdNames),
164 append(IdNames, ScopeIds, NScopeIds)
165 ; NScopeIds = ScopeIds),
166 !,
167 maplist(precompute_values_non_recursive(Options, NScopeIds), Subs, NSubs),
168 ( ( select(allow_recursive_call, Options, Options2),
169 \+ no_recursive_computation(NExpr)
170 )
171 -> precompute_values_e(NExpr, Type, Info, Options2, NScopeIds, Res) % Warning: this can cause a quadratic processing time !
172 ; Res = NExpr
173 ).
174 precompute_values_e(Expr, _, _, _, _, Res) :-
175 add_internal_error('Unknown AST node:', precompute_values_e(Expr, _, _, _, Res)),
176 Res = Expr.
177
178 no_recursive_computation(set_extension(_)).
179 no_recursive_computation(sequence_extension(_)).
180 no_recursive_computation(value(_)).
181
182 binary_connective(conjunct(A,B),conjunct,A,B).
183 binary_connective(disjunct(A,B),disjunct,A,B).
184 binary_connective(implication(A,B),implication,A,B).
185 binary_connective(equivalence(A,B),equivalence,A,B).
186
187 construct_set_extension([],Res) :- !, Res=empty_set.
188 construct_set_extension(List,set_extension(List)).
189
190 is_asserted_ground_value(IdName, _, GroundAst) :-
191 id_ground_value(_, IdName, TGroundAst),
192 !,
193 GroundAst = TGroundAst.
194 is_asserted_ground_value(IdName, EqVals, GroundAst) :-
195 % transitive equality
196 (id_equality(_, IdName, EqIdName); id_equality(_, EqIdName, IdName)),
197 \+ member(EqIdName, EqVals),
198 !,
199 is_asserted_ground_value(EqIdName, [EqIdName|EqVals], GroundAst).
200
201 % TO DO: improve, use a normalized order for equalities
202 replace_ids_with_eq_ids_top_level(Pred, NPred) :-
203 Pred = b(Expr,Type,Info),
204 replace_ids_with_eq_ids_top_level_e(Expr, NExpr),
205 NPred = b(NExpr,Type,Info).
206
207 % all solutions on bt
208 replace_ids_with_eq_ids_top_level_e(identifier(IdName), NExpr) :-
209 findall(A-B-C, id_equality(A,B,C), _),
210 (id_equality(0, IdName, EqIdName); id_equality(0, EqIdName, IdName)),
211 NExpr = identifier(EqIdName).
212 replace_ids_with_eq_ids_top_level_e(negation(TExpr), NExpr) :-
213 !,
214 replace_ids_with_eq_ids_top_level(TExpr, NTExpr),
215 NExpr = negation(NTExpr).
216 replace_ids_with_eq_ids_top_level_e(Expr, NExpr) :-
217 Expr \= identifier(_),
218 syntaxtransformation(Expr,Subs,_,NSubs,NExpr),
219 !,
220 l_replace_ids_with_eq_ids_top_level(Subs,NSubs).
221 replace_ids_with_eq_ids_top_level_e(Expr, Expr) :-
222 Expr \= identifier(_).
223
224 l_replace_ids_with_eq_ids_top_level([],[]).
225 l_replace_ids_with_eq_ids_top_level([H|T],[NH|NT]) :-
226 replace_ids_with_eq_ids_top_level(H,NH),
227 l_replace_ids_with_eq_ids_top_level(T,NT).
228
229 %% replace_ids_with_ground_values(+Ast, +ScopeId, +ExcludeScopeIds, -AstOpt).
230 % Replace S in card(S) if S is a ground finite set, e.g., a ground interval.
231 % Do not optimise scoped ids if they have the same name as a top-level variable,
232 % e.g., as introduced by an existential quantifier.
233 % +ScopeId is used when entering scopes or dependend logical operators such as implication or disjunction to assert scoped id equalities.
234 % This predicate uses the dynamic facts id_ground_value/3 and is_asserted_ground_value/3.
235 replace_ids_with_ground_values(Ast, ScopeId, ExcludeScopeIds, AstOpt) :-
236 Ast = b(Expr,Type,Info),
237 \+ member(do_not_optimize_away, Info),
238 !,
239 replace_ids_with_ground_values_e(Expr, ScopeId, ExcludeScopeIds, NExpr),
240 AstOpt = b(NExpr,Type,Info).
241 replace_ids_with_ground_values(A, _, _, A).
242
243 replace_ids_with_ground_values_e(identifier(IdName), _, ExcludeScopeIds, NExpr) :-
244 is_asserted_ground_value(IdName, [], GroundAst),
245 !,
246 ( \+ member(b(identifier(IdName),_,_), ExcludeScopeIds)
247 -> get_texpr_expr(GroundAst, NExpr)
248 ; NExpr = identifier(IdName)
249 ).
250 replace_ids_with_ground_values_e(Eq, _, _, NEq) :-
251 % do not remove ground equality since this will be the last occurrence of the variable
252 ( Eq = equal(Id,GroundValOrId)
253 ; Eq = equal(GroundValOrId,Id)
254 ),
255 ( Id = b(identifier(_),_,_),
256 get_texpr_expr(GroundValOrId, GroundExpr),
257 is_ground_b_value(GroundExpr)
258 ; id_equality(_, Id, GroundValOrId)
259 ; id_equality(_, GroundValOrId, Id)
260 ),
261 !,
262 NEq = Eq.
263 replace_ids_with_ground_values_e(equal(Id1,Id2), _, ExcludeScopeIds, NEq) :-
264 Id1 = b(identifier(IdName1),Type,_),
265 Id2 = b(identifier(IdName2),Type,_),
266 ( id_ground_value(_, IdName1, GroundAst1),
267 \+ member(b(identifier(IdName1),Type,_), ExcludeScopeIds)
268 -> NArg1 = GroundAst1
269 ; NArg1 = Id1
270 ),
271 ( id_ground_value(_, IdName2, GroundAst2),
272 \+ member(b(identifier(IdName2),Type,_), ExcludeScopeIds)
273 -> NArg2 = GroundAst2
274 ; NArg2 = Id2
275 ),
276 !,
277 NEq = equal(NArg1,NArg2).
278 replace_ids_with_ground_values_e(set_extension([Id]), _, ExcludeScopeIds, NUnary) :-
279 Id = b(identifier(IdName),_,_),
280 \+ member(b(identifier(IdName),_,_), ExcludeScopeIds),
281 !,
282 ( id_ground_value(_, IdName, GroundVal)
283 -> NUnary = set_extension([GroundVal])
284 ; NUnary = set_extension([Id])
285 ).
286 replace_ids_with_ground_values_e(Expr, ScopeId, ExcludeScopeIds, NExpr) :-
287 functor(Expr, Functor, 2),
288 ( Functor = implication
289 ; Functor = disjunct
290 ),
291 arg(1, Expr, Arg1),
292 arg(2, Expr, Arg2),
293 !,
294 NScopeId is ScopeId + 1,
295 assert_ground_id_values(NScopeId, Arg1),
296 replace_ids_with_ground_values(Arg1, NScopeId, ExcludeScopeIds, NArg1),
297 retract_ground_id_values_for_scope(NScopeId),
298 assert_ground_id_values(NScopeId, Arg2),
299 replace_ids_with_ground_values(Arg2, NScopeId, ExcludeScopeIds, NArg2),
300 retract_ground_id_values_for_scope(NScopeId),
301 functor(NExpr, Functor, 2),
302 arg(1, NExpr, NArg1),
303 arg(2, NExpr, NArg2).
304 replace_ids_with_ground_values_e(Expr, ScopeId, ExcludeScopeIds, NExpr) :-
305 functor(Expr, Functor, 2),
306 ( Functor = conjunct
307 ; Functor = equivalence
308 ),
309 arg(1, Expr, Arg1),
310 arg(2, Expr, Arg2),
311 !,
312 % ground ids already asserted for top-level conjunction
313 replace_ids_with_ground_values(Arg1, ScopeId, ExcludeScopeIds, NArg1),
314 replace_ids_with_ground_values(Arg2, ScopeId, ExcludeScopeIds, NArg2),
315 functor(NExpr, Functor, 2),
316 arg(1, NExpr, NArg1),
317 arg(2, NExpr, NArg2).
318 replace_ids_with_ground_values_e(negation(Pred), ScopeId, ExcludeScopeIds, NNeg) :-
319 !,
320 NScopeId is ScopeId + 1,
321 assert_ground_id_values(NScopeId, Pred),
322 replace_ids_with_ground_values(Pred, NScopeId, ExcludeScopeIds, NPred),
323 retract_ground_id_values_for_scope(NScopeId),
324 NNeg = negation(NPred).
325 replace_ids_with_ground_values_e(forall(Ids,Lhs,Rhs), ScopeId, ExcludeScopeIds, NForall) :-
326 !,
327 append(ExcludeScopeIds, Ids, NExcludeScopeIds),
328 replace_ids_with_ground_values(Lhs, ScopeId, NExcludeScopeIds, NLhs),
329 NScopeId is ScopeId + 1,
330 assert_ground_id_values(NScopeId, Rhs),
331 replace_ids_with_ground_values(Rhs, NScopeId, NExcludeScopeIds, NRhs),
332 retract_ground_id_values_for_scope(NScopeId),
333 NForall = forall(Ids,NLhs,NRhs).
334 replace_ids_with_ground_values_e(Expr, ScopeId, ExcludeScopeIds, NExpr) :-
335 functor(Expr, Functor, 2),
336 ( Functor = exists
337 ; Functor = comprehension_set
338 ; Functor = lambda
339 ; Functor = general_sum
340 ; Functor = general_product
341 ; Functor = quantified_union
342 ; Functor = quantified_intersection
343 ; Functor = event_b_comprehension_set
344 ),
345 !,
346 arg(1, Expr, Ids),
347 arg(2, Expr, Pred),
348 NScopeId is ScopeId + 1,
349 assert_ground_id_values(NScopeId, Pred),
350 append(ExcludeScopeIds, Ids, NExcludeScopeIds),
351 replace_ids_with_ground_values(Pred, NScopeId, NExcludeScopeIds, NPred),
352 retract_ground_id_values_for_scope(NScopeId),
353 functor(NExpr, Functor, 2),
354 arg(1, NExpr, Ids),
355 arg(2, NExpr, NPred).
356 replace_ids_with_ground_values_e(Expr, ScopeId, ExcludeScopeIds,NExpr) :-
357 syntaxtransformation(Expr,Subs,Names,NSubs,NExpr),
358 !,
359 append(Names, ExcludeScopeIds, NExcludeScopeIds),
360 l_replace_ids_with_ground_values(Subs,ScopeId,NExcludeScopeIds,NSubs).
361 replace_ids_with_ground_values_e(Expr, _, _, Expr).
362
363
364 l_replace_ids_with_ground_values([],_,_,[]).
365 l_replace_ids_with_ground_values([H|T],ScopeId,Excl,[NH|NT]) :-
366 replace_ids_with_ground_values(H,ScopeId,Excl,NH),
367 l_replace_ids_with_ground_values(T,ScopeId,Excl,NT).
368
369
370 %% assert_state_id_values(+ProBState).
371 % Assert global state id values to be replaced syntactically afterwards.
372 assert_state_id_values(_, NoState) :-
373 NoState == no_state, !.
374 assert_state_id_values(_, []).
375 assert_state_id_values(TypedIds, [bind(IdName,Value)|T]) :-
376 ( member(b(identifier(IdName),TType,_), TypedIds)
377 -> Type = TType
378 ; infer_value_type(Value, Type)
379 ),
380 asserta(id_ground_value(0,IdName,b(value(Value),Type,[]))),
381 assert_state_id_values(TypedIds, T).
382
383 %% assert_ground_id_values(+ScopeId, +Ast).
384 % Assert ground id values originating from identifier equalities such as x=[1,2].
385 % We are then able to precompute some constraints which improves performance.
386 % See, for instance, :z3 x = [2,3] & y = x~ & d = y[{3,4}], where Z3 answers unknown without rewriting.
387 % Note: Only obvious ground equalities on the top-level of a conjunction are considered.
388 % +ScopeId is an integer, 0 at the top-level and +1 for each quantified scope.
389 assert_ground_id_values(ScopeId, Ast) :-
390 conjunction_to_list(Ast, List),
391 maplist(assert_ground_id_value(ScopeId), List).
392
393 assert_ground_id_value(ScopeId, b(Eq,pred,_)) :-
394 ( Eq = equal(Id,GroundAst)
395 ; Eq = equal(GroundAst,Id)
396 ),
397 Id = b(identifier(IdName),_,_),
398 get_texpr_expr(GroundAst, GroundVal),
399 is_ground_b_value(GroundVal),
400 !,
401 asserta(id_ground_value(ScopeId,IdName,GroundAst)).
402 assert_ground_id_value(ScopeId, b(equal(Id1,Id2),pred,_)) :-
403 Id1 = b(identifier(IdName1),_,_),
404 Id2 = b(identifier(IdName2),_,_),
405 !,
406 asserta(id_equality(ScopeId,IdName1,IdName2)).
407 assert_ground_id_value(_, _).
408
409 retract_ground_id_values_for_scope(ScopeId) :-
410 retractall(id_ground_value(ScopeId,_,_)),
411 retractall(id_equality(ScopeId,_,_)).
412
413 is_ground_b_value(boolean_false).
414 is_ground_b_value(boolean_true).
415 is_ground_b_value(bool_set).
416 is_ground_b_value(empty_sequence).
417 is_ground_b_value(empty_set).
418 is_ground_b_value(integer(_)).
419 is_ground_b_value(int(_)).
420 is_ground_b_value(integer_set(_)).
421 is_ground_b_value(max_int).
422 is_ground_b_value(min_int).
423 is_ground_b_value(float_set).
424 is_ground_b_value(real(_)).
425 is_ground_b_value(real_set).
426 is_ground_b_value(string(_)).
427 is_ground_b_value(string_set).
428 is_ground_b_value(value(_)).
429 is_ground_b_value(interval(_,_)).
430 is_ground_b_value(set_extension(_)).
431 is_ground_b_value(identifier(EnumId)) :-
432 b_get_named_machine_set(_, EnumIds),
433 member(EnumId, EnumIds), !.
434
435 %% compute_ground_lambda(+LambdaId, +Domain, +Range, +ScopeIds, +Options, -ComputedSet)
436 compute_ground_lambda(LambdaId, Domain, Range, ScopeIds, Options, ComputedSet) :-
437 rewrite_set_to_list_of_asts(Domain, ScopeIds, Options, LoAsts),
438 ( member(instantiate_sets_limit(SetLimit), Options)
439 -> length(LoAsts, Len),
440 Len =< SetLimit
441 ; true
442 ),
443 get_texpr_type(Range, RT),
444 find_identifier_uses(Range, [], UsedIds),
445 LambdaId = b(identifier(LambdaIdName),_,_),
446 LoAsts = [b(_,DT,_)|_],
447 ( UsedIds = []
448 -> % for instance, %i.(i : 1 .. 10|0)
449 findall(b(couple(A,Range),couple(DT,RT),[]),
450 member(A, LoAsts),
451 ComputedSet)
452 ; % for instance, %i.(i : 1 .. 10|i + i)
453 UsedIds = [LambdaIdName],
454 findall(b(couple(A,ComputedRange),couple(DT,RT),[]),
455 ( member(A, LoAsts),
456 b_compute_expression_nowf(A, [], [], DomValue,'SMT precomputation',0),
457 b_compute_expression_nowf(Range, [bind(LambdaIdName,DomValue)], [], Res,'SMT precomputation',0),
458 ComputedRange = b(value(Res),RT,[])
459 ),
460 ComputedSet)
461 ).
462
463 %% compute_inverse(+List, -InvList)
464 compute_inverse([], []).
465 compute_inverse(List, InvList) :-
466 List = [Couple|_],
467 get_texpr_type(Couple, CoupleType),
468 CoupleType = couple(A,B),
469 compute_inverse(couple(B,A), List, [], InvList).
470
471 compute_inverse(_, [], Acc, Acc).
472 compute_inverse(InvCoupleType, [Couple|T], Acc, InvList) :-
473 get_elements_of_couple(Couple, A, B),
474 compute_inverse(InvCoupleType, T, [b(couple(B,A),InvCoupleType,[])|Acc], InvList).
475
476 get_elements_of_couple(b(couple(A,B),_,_), A, B).
477 get_elements_of_couple(b(value((A,B)),couple(TA,TB),[]), AstA, AstB) :-
478 AstA = b(value(A),TA,[]),
479 AstB = b(value(B),TB,[]).
480
481 %% compute_cartesian_product(+InTypeA, +InTypeB, +ListA, +ListB, -CartList).
482 compute_cartesian_product(InTypeA, InTypeB, ListA, ListB, CartList) :-
483 compute_cartesian_product(InTypeA, InTypeB, ListA, ListB, [], CartList).
484
485 compute_cartesian_product(_, _, [], _, Acc, Acc).
486 compute_cartesian_product(InTypeA, InTypeB, [H|T], SetB, Acc, CartList) :-
487 compute_single_cartesian_product(InTypeA, InTypeB, H, SetB, Acc, NAcc),
488 compute_cartesian_product(InTypeA, InTypeB, T, SetB, NAcc, CartList).
489
490 compute_single_cartesian_product(_, _, _, [], Acc, Acc).
491 compute_single_cartesian_product(InTypeA, InTypeB, H, [H2|T], Acc, NAcc) :-
492 Couple = b(couple(H,H2),couple(InTypeA, InTypeB),[]),
493 NAcc1 = [Couple|Acc],
494 compute_single_cartesian_product(InTypeA, InTypeB, H, T, NAcc1, NAcc).
495
496 % check if we have a list of values, without identifiers
497 is_a_list_of_values([]).
498 is_a_list_of_values([H|T]) :- is_a_value(H),is_a_list_of_values(T).
499
500 is_a_value(b(V,_,_)) :- is_a_value_aux(V).
501 is_a_value_aux(value(V)) :- ground_value(V).
502 is_a_value_aux(integer(_)).
503 is_a_value_aux(boolean_false).
504 is_a_value_aux(boolean_true).
505 is_a_value_aux(string(_)).
506 is_a_value_aux(real(_)).
507 is_a_value_aux(empty_set).
508 is_a_value_aux(empty_sequence).
509 is_a_value_aux(bool_set).
510 is_a_value_aux(max_int).
511 is_a_value_aux(min_int).
512 is_a_value_aux(couple(A,B)) :- is_a_value(A), is_a_value(B).
513 % TODO: extend (records), and possibly move somewhere else