| 1 | | % Heinrich Heine Universitaet Duesseldorf |
| 2 | | % (c) 2025-2025 Lehrstuhl fuer Softwaretechnik und Programmiersprachen, |
| 3 | | % This software is licenced under EPL 1.0 (http://www.eclipse.org/org/documents/epl-v10.html) |
| 4 | | |
| 5 | | % Implementation of a Sequent Prover |
| 6 | | % where we can use the ProB animator to perform proof steps |
| 7 | | % proof rules taken/adapted from https://wiki.event-b.org/index.php/Inference_Rules |
| 8 | | % rewrite rules taken/adapted from https://wiki.event-b.org/index.php/All_Rewrite_Rules |
| 9 | | % the term representation is the one from ProB's well_definedness prover |
| 10 | | |
| 11 | | :- module(sequent_prover,[initialise_for_po_file/1]). |
| 12 | | |
| 13 | | :- use_module(probsrc(module_information),[module_info/2]). |
| 14 | | :- module_info(group,sequent_prover). |
| 15 | | :- module_info(description,'This module provides rewrite and inference rules for the sequent_prover'). |
| 16 | | |
| 17 | | :- use_module(library(lists)). |
| 18 | | :- use_module(library(samsort)). |
| 19 | | :- use_module(probsrc(tools),[ajoin/2,flatten/2]). |
| 20 | | |
| 21 | | % ------------------------ |
| 22 | | |
| 23 | | initialise_for_po_file(File) :- |
| 24 | | load_from_po_file(File,Hyps,Goal,PO,Info), |
| 25 | | sort(Hyps,SHyps), |
| 26 | | % for ProB XTL Mode: specifying the start states: |
| 27 | | assertz(xtl_interface:start(state(sequent(SHyps,Goal,success),Info),[description(PO)])), |
| 28 | | fail. |
| 29 | | initialise_for_po_file(_) :- |
| 30 | | % assert other xtl_interface predicates: |
| 31 | | assertz((xtl_interface:trans(A,B,C) :- sequent_prover:sequent_prover_trans(A,B,C))), |
| 32 | | assertz((xtl_interface:trans(A,B,C,D) :- sequent_prover:sequent_prover_trans(A,B,C,D))), |
| 33 | | assertz((xtl_interface:trans_prop(A,B) :- sequent_prover:trans_prop(A,B))), |
| 34 | | assertz((xtl_interface:prop(A,B) :- sequent_prover:prop(A,B))), |
| 35 | | assertz((xtl_interface:symb_trans(A,B,C) :- sequent_prover:symb_trans(A,B,C))), |
| 36 | | assertz((xtl_interface:symb_trans_enabled(A,B) :- sequent_prover:symb_trans_enabled(A,B))), |
| 37 | | assertz((xtl_interface:animation_function_result(A,B) :- sequent_prover:animation_function_result(A,B))), |
| 38 | | assertz((xtl_interface:animation_image_right_click_transition(A,B,C) :- sequent_prover:animation_image_right_click_transition(A,B,C))), |
| 39 | | assertz((xtl_interface:animation_image_right_click_transition(A,B,C,D) :- sequent_prover:animation_image_right_click_transition(A,B,C,D))), |
| 40 | | assertz(xtl_interface:nr_state_properties(30)). % TODO: a dynamic solution would be nice. |
| 41 | | |
| 42 | | % ------------------------ |
| 43 | | |
| 44 | | get_normalised_bexpr(Expr,NormExpr) :- |
| 45 | | translate:transform_raw(Expr,TExpr), |
| 46 | | well_def_hyps:normalize_predicate(TExpr,NormExpr). |
| 47 | | |
| 48 | | %:- use_module(disproversrc(disprover_test_runner)),[load_po_file/1,get_disprover_po/6]). |
| 49 | | load_from_po_file(File,Hyps,Goal,PO,[rawsets(RawSets),des_hyps(OtherHyps)]) :- |
| 50 | | disprover_test_runner:load_po_file(File), % TODO: we could use the disprover_po facts already loaded in xtl_interface |
| 51 | | disprover_test_runner:get_disprover_po(PO,Context,RawGoal,RawAllHyps,RawSelHyps,_RodinStatus), |
| 52 | | get_normalised_bexpr(RawGoal,Goal), |
| 53 | | list_subtract(RawAllHyps,RawSelHyps,RawNotSelHyps), |
| 54 | | maplist(get_normalised_bexpr,RawSelHyps,Hyps), |
| 55 | | maplist(get_normalised_bexpr,RawNotSelHyps,OtherHyps), |
| 56 | | bmachine_eventb:extract_ctx_sections(Context,_Name,_Extends,RawSets,_Constants,_AbstractConstants,_Axioms,_Theorems). |
| 57 | | |
| 58 | | get_wd_pos_of_expr(NormExpr,Hyps,Info,POs) :- |
| 59 | | get_scope(Hyps,Info,Scope), |
| 60 | | get_identifier_types(Scope,IdsTypes), |
| 61 | | new_aux_identifier(IdsTypes,Y), !, |
| 62 | | get_wd_pos2(equal('$'(Y),NormExpr),Scope,POs). |
| 63 | | |
| 64 | | get_wd_pos(NormExpr,Hyps,Info,POs) :- |
| 65 | | get_scope(Hyps,Info,Scope), |
| 66 | | get_wd_pos2(NormExpr,Scope,POs). |
| 67 | | |
| 68 | | get_wd_pos2(NormExpr,Scope,POs) :- |
| 69 | | well_def_hyps:convert_norm_expr_to_raw(NormExpr,ParsedRaw), |
| 70 | | bmachine:b_type_check_raw_expr(ParsedRaw,Scope,TypedPred,open(_)), |
| 71 | | well_def_hyps:empty_hyps(H), |
| 72 | | well_def_analyser:compute_all_wd_pos(TypedPred,H,[],TPOs), |
| 73 | | maplist(rewrite_type_set,TPOs,TPOsT), |
| 74 | | maplist(well_def_hyps:normalize_predicate,TPOsT,POs). |
| 75 | | |
| 76 | | get_scope(Hyps,Info,[identifier([])]) :- |
| 77 | | get_meta_info(des_hyps,Info,DHyps), |
| 78 | | append(Hyps,DHyps,[]), !. |
| 79 | | get_scope(Hyps,Info,[identifier(Res)]) :- |
| 80 | | get_meta_info(des_hyps,Info,DHyps), |
| 81 | | append(Hyps,DHyps,AllHyps), |
| 82 | | filter_hyps(AllHyps,HypsRel), |
| 83 | ? | list_to_op(HypsRel,HypsConj,conjunct), |
| 84 | | used_identifiers(HypsConj,Ids), |
| 85 | | get_set_types(Ids,Info,SetIds), |
| 86 | | get_typed_identifiers(HypsConj,[identifier(SetIds)],List), |
| 87 | | append(SetIds,List,AllIds), |
| 88 | | select_types(AllIds,Res). |
| 89 | | |
| 90 | | filter_hyps([],[]). |
| 91 | | filter_hyps([Expr|Hyps],Res) :- with_ids(Expr,_), !, filter_hyps(Hyps,Res). |
| 92 | | filter_hyps([Expr|Hyps],[Expr|Res]) :- filter_hyps(Hyps,Res). |
| 93 | | |
| 94 | | get_set_types([],_,[]). |
| 95 | | get_set_types(['$'(SetId)|T],Info,[b(identifier(SetId),set(global(SetId)),[])|R]) :- |
| 96 | | is_deferred_set('$'(SetId),Info),!, |
| 97 | | get_set_types(T,Info,R). |
| 98 | | get_set_types([_|T],Info,R) :- get_set_types(T,Info,R). |
| 99 | | |
| 100 | | rewrite_type_set(X,X) :- \+ compound(X). |
| 101 | | rewrite_type_set(b(typeset,set(global(SET)),I),b(identifier(SET),set(global(SET)),I)) :- !. |
| 102 | | rewrite_type_set(C,NewC) :- C=..[Op|Args], |
| 103 | | maplist(rewrite_type_set,Args,NewArgs), |
| 104 | | NewC =.. [Op|NewArgs]. |
| 105 | | |
| 106 | | in_scope(Id,[identifier(List)]) :- memberchk(b(identifier(Id),_,[]),List). |
| 107 | | |
| 108 | | get_typed_identifiers(NormExpr,List) :- get_typed_identifiers(NormExpr,[],List). |
| 109 | | |
| 110 | | get_typed_identifiers(NormExpr,Scope,List) :- |
| 111 | | well_def_hyps:convert_norm_expr_to_raw(NormExpr,ParsedRaw), |
| 112 | | Quantifier = forall, |
| 113 | | bmachine:b_type_open_predicate(Quantifier,ParsedRaw,Scope,TypedPred,[]), |
| 114 | | TypedPred = b(forall(List,_,_),_,_), !. |
| 115 | | get_typed_identifiers(NormExpr,_,List) :- |
| 116 | | used_identifiers(NormExpr,Ids), |
| 117 | | maplist(any_type,Ids,List). |
| 118 | | |
| 119 | | any_type('$'(X),b(identifier(X),any,[])). |
| 120 | | |
| 121 | | select_types(Types,Selected) :- sort(Types,Sorted), select_types_aux(Sorted,Selected). |
| 122 | | |
| 123 | | select_types_aux([],[]). |
| 124 | | select_types_aux([b(identifier(X),any,_)|R],Res) :- member(b(identifier(X),T,_),R), T \= any, !, select_types_aux(R,Res). |
| 125 | | select_types_aux([Id|R],[Id|Res]) :- select_types_aux(R,Res). |
| 126 | | |
| 127 | | get_typed_ast(NormExpr,TExpr) :- |
| 128 | | well_def_hyps:convert_norm_expr_to_raw(NormExpr,RawExpr), |
| 129 | | translate:transform_raw(RawExpr,TExpr). |
| 130 | | |
| 131 | | get_identifier_types([identifier(IdsTypes)],IdsTypes). |
| 132 | | |
| 133 | | prove_predicate(Hyps,Goal) :- |
| 134 | | get_typed_ast(Goal,TGoal), |
| 135 | | maplist(get_typed_ast,Hyps,THyps), |
| 136 | | atelierb_provers_interface:prove_predicate(THyps,TGoal,proved). |
| 137 | | |
| 138 | | get_meta_info(Key,Info,Content) :- El=..[Key,Content], memberchk(El,Info), !. |
| 139 | | get_meta_info(_,_,[]). |
| 140 | | |
| 141 | | add_meta_info(Key,Info,Value,Info1) :- add_meta_infos(Key,Info,[Value],Info1). |
| 142 | | |
| 143 | | add_meta_infos(Key,Info,Values,Info1) :- |
| 144 | | get_meta_info(Key,Info,Content), |
| 145 | | Content \= [], !, |
| 146 | | Old=..[Key,Content], |
| 147 | | append(Values,Content,NewContent), |
| 148 | | New=..[Key,NewContent], |
| 149 | | select(Old,Info,New,Info1). |
| 150 | | add_meta_infos(Key,Info,Values,[El|Info]) :- El=..[Key,Values]. |
| 151 | | |
| 152 | | remove_meta_info(Key,Info,Value,Info1) :- |
| 153 | | get_meta_info(Key,Info,Content), |
| 154 | | Old=..[Key,Content], |
| 155 | | select(Value,Content,Content0), |
| 156 | | New=..[Key,Content0], |
| 157 | | select(Old,Info,New,Info1). |
| 158 | | |
| 159 | | % ------------------------ |
| 160 | | |
| 161 | | % specifying properties that appear in the State Properties view: |
| 162 | | prop(success,goal). |
| 163 | | prop(sequent(_,X,_), '='('GOAL',XS)) :- translate_term(X,XS). |
| 164 | | prop(sequent(Hyps,_,_),'='(HypNr,XS)) :- nth1(Nr,Hyps,X), |
| 165 | | translate_term(X,XS), ajoin(['HYP',Nr],HypNr). |
| 166 | | prop(sequent(_,_,Cont),'='('CONTINUATION',P)) :- cont_length(Cont,P). |
| 167 | | |
| 168 | | prop(state(S,_),Val) :- prop(S,Val). |
| 169 | | |
| 170 | | translate_term(Term,Str) :- |
| 171 | | catch(well_def_hyps:translate_norm_expr_with_limit(Term,300,Str), % probably only works when ProB is run from source |
| 172 | | _Exc,Str=Term). |
| 173 | | |
| 174 | | cont_length(sequent(_,_,C),R) :- !, cont_length(C,R1), R is R1+1. |
| 175 | | cont_length(_,0). |
| 176 | | |
| 177 | | % ------------------------ |
| 178 | | |
| 179 | | :- discontiguous sequent_prover_trans/3, sequent_prover_trans/4, trans_wo_info/3, trans_with_args/3, trans_prop/2, |
| 180 | | symb_trans/4, symb_trans_enabled/2, axiom/3, simp_rule/3, simp_rule/6, simp_rule_with_info/4, |
| 181 | | simp_rule_with_hyps/4, simp_rule_with_hyps/5. |
| 182 | | |
| 183 | ? | sequent_prover_trans(Rule,state(Sequent,Info),state(NewSequent,Info)) :- trans_wo_info(Rule,Sequent,NewSequent). |
| 184 | | sequent_prover_trans(Rule,state(Sequent,Info),state(NewSequent,Info),Descr) :- trans_wo_info(Rule,Sequent,NewSequent,Descr). |
| 185 | | |
| 186 | | sequent_prover_trans(RuleArg,state(Sequent,Info),state(NewSequent,Info1),[description(Descr)]) :- |
| 187 | | (trans_with_args(RuleArg,Sequent,NewSequent), Info1 = Info |
| 188 | | ; trans_with_args(RuleArg,state(Sequent,Info),state(NewSequent,Info1))), |
| 189 | | RuleArg=..[Rule,Arg], create_descr(Rule,Arg,Descr). |
| 190 | | sequent_prover_trans(RuleArg,state(sequent(Hyps,Goal,Cont),Info),state(Cont,Info),[description(Descr)]) :- |
| 191 | | axiom2(RuleArg,Hyps,Goal), RuleArg=..[Rule,Arg], create_descr(Rule,Arg,Descr). |
| 192 | | |
| 193 | | % specifying the next state relation using proof rules: |
| 194 | | |
| 195 | | sequent_prover_trans(simplify_goal(Rule),state(sequent(Hyps,Goal,Cont),Info), |
| 196 | | state(sequent(Hyps,NewGoal,Cont),Info),[description(Descr)]) :- |
| 197 | | simp_rule(Goal,NewGoal,Rule,level0,Descr,Info) |
| 198 | | ; simp_rule_with_hyps(Goal,NewGoal,Rule,Hyps,Info), create_descr(Rule,Goal,Descr). |
| 199 | | sequent_prover_trans(simplify_hyp(Rule,Hyp),state(sequent(Hyps,Goal,Cont),Info), |
| 200 | | state(sequent(SHyps,Goal,Cont),Info),[description(Descr)]) :- |
| 201 | ? | select(Hyp,Hyps,NewHyp,NewHyps), |
| 202 | ? | (simp_rule(Hyp,NewHyp,Rule,level0,Descr,Info) |
| 203 | ? | ; simp_rule_with_hyps(Hyp,NewHyp,Rule,Hyps,Info), create_descr(Rule,Hyp,Descr)), |
| 204 | | without_duplicates(NewHyps,SHyps). |
| 205 | | sequent_prover_trans(mon_deselect(Nr),state(sequent(Hyps,Goal,Cont),Info),state(sequent(Hyps0,Goal,Cont),Info1),[description(Descr)]) :- |
| 206 | | nth1(Nr,Hyps,Hyp,Hyps0), |
| 207 | | add_meta_info(des_hyps,Info,Hyp,Info1), |
| 208 | | create_descr(mon_deselect,Hyp,Descr). |
| 209 | | |
| 210 | | sequent_prover_trans(deriv_le_card,state(sequent(Hyps,Goal,Cont),Info),state(sequent(Hyps,subset(S,T),Cont),Info)) :- % covers DERIV_GE_CARD too |
| 211 | | is_less_eq(Goal,card(S),card(T)), |
| 212 | | get_scope(Hyps,Info,[identifier(IdsTypes)]), |
| 213 | ? | same_type(S,T,IdsTypes). |
| 214 | | sequent_prover_trans(deriv_lt_card,state(sequent(Hyps,Goal,Cont),Info),state(sequent(Hyps,subset_strict(S,T),Cont),Info)) :- % / DERIV_GT_CARD |
| 215 | | is_less(Goal,card(S),card(T)), |
| 216 | | get_scope(Hyps,Info,[identifier(IdsTypes)]), |
| 217 | | same_type(S,T,IdsTypes). |
| 218 | | sequent_prover_trans(deriv_equal_card,state(sequent(Hyps,equal(card(S),card(T)),Cont),Info),state(sequent(Hyps,equal(S,T),Cont),Info)) :- |
| 219 | | get_scope(Hyps,Info,[identifier(IdsTypes)]), |
| 220 | ? | same_type(S,T,IdsTypes). |
| 221 | | sequent_prover_trans(sim_rel_image_r,state(sequent(Hyps,Goal,Cont),Info),state(NewSequent,Info)) :- |
| 222 | | rewrite_once(image(F,set_extension([E])),set_extension([function(F,E)]),Goal,NewGoal), |
| 223 | | get_wd_pos(NewGoal,Hyps,Info,POs), |
| 224 | | add_wd_pos(Hyps,POs,sequent(Hyps,NewGoal,Cont),NewSequent). |
| 225 | | sequent_prover_trans(sim_rel_image_l,state(sequent(Hyps,Goal,Cont),Info),state(NewSequent,Info)) :- |
| 226 | | select(Hyp,Hyps,Hyps0), |
| 227 | | rewrite_once(image(F,set_extension([E])),set_extension([function(F,E)]),Hyp,NewHyp), |
| 228 | | add_hyp(NewHyp,Hyps0,Hyps1), |
| 229 | | get_wd_pos(NewHyp,Hyps0,Info,POs), |
| 230 | | add_wd_pos(Hyps0,POs,sequent(Hyps1,Goal,Cont),NewSequent). |
| 231 | | sequent_prover_trans(sim_fcomp_l,state(sequent(Hyps,Goal,Cont),Info),state(NewSequent,Info)) :- |
| 232 | | select(Hyp,Hyps,Hyps0), |
| 233 | | Sub = function(Comp,X), |
| 234 | | is_subterm(Sub,Hyp), |
| 235 | | split_composition(Comp,F,G), |
| 236 | | NewSub = function(G,function(F,X)), |
| 237 | | rewrite_once(Sub,NewSub,Hyp,NewHyp), |
| 238 | | add_hyp(NewHyp,Hyps0,Hyps1), |
| 239 | | get_wd_pos(NewHyp,Hyps0,Info,POs), |
| 240 | | add_wd_pos(Hyps0,POs,sequent(Hyps1,Goal,Cont),NewSequent). |
| 241 | | sequent_prover_trans(sim_fcomp_r,state(sequent(Hyps,Goal,Cont),Info),state(NewSequent,Info)) :- |
| 242 | | Sub = function(Comp,X), |
| 243 | | is_subterm(Sub,Goal), |
| 244 | | split_composition(Comp,F,G), |
| 245 | | NewSub = function(G,function(F,X)), |
| 246 | | rewrite_once(Sub,NewSub,Goal,NewGoal), |
| 247 | | get_wd_pos(NewGoal,Hyps,Info,POs), |
| 248 | | add_wd_pos(Hyps,POs,sequent(Hyps,NewGoal,Cont),NewSequent). |
| 249 | | |
| 250 | | trans_wo_info(Rule,sequent(Hyps,Goal,Cont),Cont) :- axiom(Rule,Hyps,Goal). |
| 251 | | trans_wo_info(dbl_hyp,sequent(Hyps,Goal,Cont),sequent(SHyps,Goal,Cont)) :- |
| 252 | | % not really necessary if we remove duplicates in Hyps everywhere else |
| 253 | | without_duplicates(Hyps,SHyps), SHyps \= Hyps. |
| 254 | | trans_wo_info(or_r,sequent(Hyps,disjunct(GA,GB),Cont),sequent(Hyps1,GA,Cont)) :- |
| 255 | | negate(GB,NotGB), % we could also negate GA and use GB as goal |
| 256 | | add_hyp(NotGB,Hyps,Hyps1). |
| 257 | | trans_wo_info(imp_r,sequent(Hyps,implication(G1,G2),Cont), |
| 258 | | sequent(Hyps1,G2,Cont)) :- |
| 259 | | add_hyp(G1,Hyps,Hyps1). |
| 260 | | trans_wo_info(and_r,sequent(Hyps,conjunct(G1,G2),Cont), |
| 261 | | sequent(Hyps,G1,sequent(Hyps,G2,Cont))). |
| 262 | | trans_wo_info(neg_in,sequent(Hyps,Goal,Cont),sequent(Hyps1,Goal,Cont)) :- |
| 263 | | member(member(E,set_extension(L)),Hyps), |
| 264 | | member(InEq,Hyps), |
| 265 | | is_no_equality(InEq,E,B), |
| 266 | | member(C,L), |
| 267 | | equal_terms(B,C), |
| 268 | | select(C,L,R), |
| 269 | | select(member(E,set_extension(L)),Hyps,member(E,set_extension(R)),Hyps1). |
| 270 | | trans_wo_info(xst_l,sequent(Hyps,Goal,Cont),sequent(Hyps1,Goal,Cont)) :- |
| 271 | | Hyp = exists(_,P), |
| 272 | | select(Hyp,Hyps,P,Hyps1). |
| 273 | | trans_wo_info(all_r,sequent(Hyps,forall(_,P,Q),Cont),sequent(Hyps,implication(P,Q),Cont)). |
| 274 | | trans_wo_info(contradict_r,sequent(Hyps,Goal,Cont),sequent(Hyps0,falsity,Cont)) :- |
| 275 | | add_hyp(negation(Goal),Hyps,Hyps0). |
| 276 | | trans_wo_info(upper_bound_l,sequent(Hyps,Goal,Cont),sequent(Hyps,finite(Set),Cont)) :- |
| 277 | | Goal = exists([B],forall([X],member(X,Set),greater_equal(B,X))). % TODO: Set must not contain any bound variable |
| 278 | | trans_wo_info(fin_lt_0,sequent(Hyps,finite(S),Cont),sequent(Hyps,Goal1,sequent(Hyps,Goal2,Cont))):- |
| 279 | | new_identifier(S,X), |
| 280 | | new_identifier(member(S,X),N), |
| 281 | | Goal1 = exists([N],forall([X],member(X,S),less_equal(N,X))), |
| 282 | | Goal2 = subset(S,set_subtraction(integer_set,natural1_set)). |
| 283 | | trans_wo_info(fin_ge_0,sequent(Hyps,finite(S),Cont),sequent(Hyps,Goal1,sequent(Hyps,Goal2,Cont))):- |
| 284 | | new_identifier(S,X), |
| 285 | | new_identifier(member(S,X),N), |
| 286 | | Goal1 = exists([N],forall([X],member(X,S),less_equal(X,N))), |
| 287 | | Goal2 = subset(S,natural_set). |
| 288 | | trans_wo_info(fin_binter_r,sequent(Hyps,finite(I),Cont),sequent(Hyps,Disj,Cont)) :- |
| 289 | | I = intersection(_,_), |
| 290 | | finite_intersection(I,Disj). |
| 291 | | trans_wo_info(fin_kinter_r,sequent(Hyps,finite(general_intersection(S)),Cont), |
| 292 | | sequent(Hyps,conjunct(exists([X],member(X,S)),finite(X)),Cont)) :- new_identifier(S,X). |
| 293 | | trans_wo_info(fin_qinter_r,sequent(Hyps,finite(quantified_intersection([X],P,E)),Cont), |
| 294 | | sequent(Hyps,conjunct(exists([X],member(X,P)),finite(E)),Cont)). |
| 295 | | trans_wo_info(fin_kunion_r,sequent(Hyps,finite(general_union(S)),Cont), |
| 296 | | sequent(Hyps,conjunct(finite(S),forall([X],member(X,S),finite(X))),Cont)) :- new_identifier(S,X). |
| 297 | | trans_wo_info(fin_qunion_r,sequent(Hyps,finite(quantified_union([X],P,E)),Cont), |
| 298 | | sequent(Hyps,conjunct(finite(event_b_comprehension_set([X],E,P)),forall([X],P,finite(E))),Cont)). |
| 299 | | trans_wo_info(fin_setminus_r,sequent(Hyps,finite(set_subtraction(S,_)),Cont),sequent(Hyps,finite(S),Cont)). |
| 300 | | trans_wo_info(fin_rel_img_r,sequent(Hyps,finite(image(F,_)),Cont),sequent(Hyps,finite(F),Cont)). |
| 301 | | trans_wo_info(fin_rel_ran_r,sequent(Hyps,finite(range(F)),Cont),sequent(Hyps,finite(F),Cont)). |
| 302 | | trans_wo_info(fin_rel_dom_r,sequent(Hyps,finite(domain(F)),Cont),sequent(Hyps,finite(F),Cont)). |
| 303 | | trans_wo_info(fin_fun_dom,sequent(Hyps,finite(Fun),Cont),sequent(Hyps,truth,Cont1)) :- |
| 304 | | member_hyps(member(Fun,FunType),Hyps), |
| 305 | | is_fun(FunType,_,Dom,_), |
| 306 | | (member_hyps(finite(Dom),Hyps) |
| 307 | | -> Cont1 = Cont |
| 308 | | ; Cont1 = sequent(Hyps,finite(Dom),Cont)). |
| 309 | | trans_wo_info(fin_fun_ran,sequent(Hyps,finite(Fun),Cont),sequent(Hyps,truth,Cont1)) :- |
| 310 | | member_hyps(member(Fun,FunType),Hyps), |
| 311 | | is_inj(FunType,_,Ran), |
| 312 | | (member_hyps(finite(Ran),Hyps) |
| 313 | | -> Cont1 = Cont |
| 314 | | ; Cont1 = sequent(Hyps,finite(Ran),Cont)). |
| 315 | | trans_wo_info(sim_ov_rel,sequent(Hyps,member(overwrite(Fun,set_extension([couple(X,Y)])),relations(A,B)),Cont), |
| 316 | | sequent(Hyps,member(X,A),sequent(Hyps,member(Y,B),Cont))) :- |
| 317 | | member_hyps(member(Fun,FunType),Hyps), |
| 318 | | is_rel(FunType,_,A,B). |
| 319 | | trans_wo_info(sim_ov_trel,sequent(Hyps,member(overwrite(Fun,set_extension([couple(X,Y)])),total_relation(A,B)),Cont), |
| 320 | | sequent(Hyps,member(X,A),sequent(Hyps,member(Y,B),Cont))) :- |
| 321 | | member_hyps(member(Fun,FunType),Hyps), |
| 322 | | is_rel(FunType,total,A,B). |
| 323 | | trans_wo_info(sim_ov_pfun,sequent(Hyps,member(overwrite(Fun,set_extension([couple(X,Y)])),partial_function(A,B)),Cont), |
| 324 | | sequent(Hyps,member(X,A),sequent(Hyps,member(Y,B),Cont))) :- |
| 325 | | member_hyps(member(Fun,FunType),Hyps), |
| 326 | | is_fun(FunType,_,A,B). |
| 327 | | trans_wo_info(sim_ov_tfun,sequent(Hyps,member(overwrite(Fun,set_extension([couple(X,Y)])),total_function(A,B)),Cont), |
| 328 | | sequent(Hyps,member(X,A),sequent(Hyps,member(Y,B),Cont))) :- |
| 329 | | member_hyps(member(Fun,FunType),Hyps), |
| 330 | | is_fun(FunType,total,A,B). |
| 331 | | trans_wo_info(fun_image_goal,sequent(Hyps,Goal,Cont),sequent(Hyps1,Goal,Cont)) :- |
| 332 | | wd_strict_term(Goal), |
| 333 | ? | is_subterm(Hyp,Goal), |
| 334 | | Hyp = function(F,E), |
| 335 | | member(member(F,RType),Hyps), |
| 336 | | is_rel(RType,_,_,Ran), |
| 337 | | \+ member(member(function(F,E),Ran),Hyps), |
| 338 | | add_hyp(member(function(F,E),Ran),Hyps,Hyps1). |
| 339 | | trans_wo_info(ov_setenum_l,sequent(Hyps,Goal,Cont),sequent(Hyps1,Goal,sequent(Hyps2,Goal,Cont))) :- |
| 340 | | select(Hyp,Hyps,Hyps0), |
| 341 | | wd_strict_term(Hyp), |
| 342 | | Fun = function(overwrite(F,set_extension([couple(E,V)])),G), |
| 343 | | rewrite_once(Fun,V,Hyp,Hyp1), |
| 344 | | add_hyps([equal(G,E),Hyp1],Hyps0,Hyps1), |
| 345 | | rewrite_once(Fun,function(domain_subtraction(set_extension([E]),F),G),Hyp,Hyp2), |
| 346 | | add_hyps([negation(equal(G,E)),Hyp2],Hyps0,Hyps2). |
| 347 | | trans_wo_info(ov_setenum_r,sequent(Hyps,Goal,Cont),sequent(Hyps1,Goal1,sequent(Hyps2,Goal2,Cont))) :- |
| 348 | | wd_strict_term(Goal), |
| 349 | | Fun = function(overwrite(F,set_extension([couple(E,V)])),G), |
| 350 | | rewrite_once(Fun,V,Goal,Goal1), |
| 351 | | add_hyp(equal(G,E),Hyps,Hyps1), |
| 352 | | rewrite_once(Fun,function(domain_subtraction(set_extension([E]),F),G),Goal,Goal2), |
| 353 | | add_hyp(negation(equal(G,E)),Hyps,Hyps2). |
| 354 | | trans_wo_info(ov_l,sequent(Hyps,Goal,Cont),sequent(Hyps1,Goal,sequent(Hyps2,Goal,Cont))) :- |
| 355 | | select(Hyp,Hyps,Hyps0), |
| 356 | | wd_strict_term(Hyp), |
| 357 | | Fun = function(overwrite(F,S),G), |
| 358 | | rewrite_once(Fun,function(S,G),Hyp,Hyp1), |
| 359 | | add_hyps([member(G,domain(S)),Hyp1],Hyps0,Hyps1), |
| 360 | | rewrite_once(Fun,function(domain_subtraction(domain(S),F),G),Hyp,Hyp2), |
| 361 | | add_hyps([negation(member(G,domain(S))),Hyp2],Hyps0,Hyps2). |
| 362 | | trans_wo_info(ov_r,sequent(Hyps,Goal,Cont),sequent(Hyps1,Goal1,sequent(Hyps2,Goal2,Cont))) :- |
| 363 | | wd_strict_term(Goal), |
| 364 | | Fun = function(overwrite(F,S),G), |
| 365 | | rewrite_once(Fun,function(S,G),Goal,Goal1), |
| 366 | | add_hyp(member(G,domain(S)),Hyps,Hyps1), |
| 367 | | rewrite_once(Fun,function(domain_subtraction(domain(S),F),G),Goal,Goal2), |
| 368 | | add_hyp(negation(member(G,domain(S))),Hyps,Hyps2). |
| 369 | | trans_wo_info(subset_inter,sequent(Hyps,Goal,Cont),sequent(Hyps,NewGoal,Cont)) :- |
| 370 | | member_hyps(subset(T,U),Hyps), |
| 371 | | free_identifiers(Goal,Ids), |
| 372 | ? | member(T,Ids), % T and U are not bound |
| 373 | | member(U,Ids), |
| 374 | ? | is_subterm(Inter,Goal), |
| 375 | | select_op(U,Inter,Inter0,intersection), |
| 376 | ? | rewrite_once(Inter,Inter0,Goal,NewGoal), |
| 377 | ? | member_of(intersection,T,Inter). |
| 378 | | trans_wo_info(in_inter,sequent(Hyps,Goal,Cont),sequent(Hyps,NewGoal,Cont)) :- |
| 379 | | member_hyps(member(E,T),Hyps), |
| 380 | | free_identifiers(Goal,Ids), |
| 381 | | member(E,Ids), |
| 382 | ? | member(T,Ids), |
| 383 | ? | is_subterm(Inter,Goal), |
| 384 | | select_op(T,Inter,Inter0,intersection), |
| 385 | ? | rewrite_once(Inter,Inter0,Goal,NewGoal), |
| 386 | | member_of(intersection,set_extension([E]),Inter). |
| 387 | | trans_wo_info(notin_inter,sequent(Hyps,Goal,Cont),sequent(Hyps,NewGoal,Cont)) :- |
| 388 | | member_hyps(negation(member(E,T)),Hyps), |
| 389 | | free_identifiers(Goal,Ids), |
| 390 | | member(E,Ids), |
| 391 | | member(T,Ids), |
| 392 | | Inter = intersection(_,_), |
| 393 | | is_subterm(Inter,Goal), |
| 394 | | rewrite_once(Inter,empty_set,Goal,NewGoal), |
| 395 | | member_of(intersection,set_extension([E]),Inter), |
| 396 | | member_of(intersection,T,Inter). |
| 397 | | trans_wo_info(card_interv,sequent(Hyps,Goal,Cont),sequent(Hyps1,Goal1,sequent(Hyps2,Goal2,Cont))) :- |
| 398 | | wd_strict_term(Goal), |
| 399 | | rewrite_once(card(interval(A,B)),add(minus(B,A),1),Goal,Goal1), |
| 400 | | rewrite_once(card(interval(A,B)),0,Goal,Goal2), |
| 401 | | add_hyp(less_equal(A,B),Hyps,Hyps1), |
| 402 | | add_hyp(less(B,A),Hyps,Hyps2). |
| 403 | | trans_wo_info(card_empty_interv,sequent(Hyps,Goal,Cont),sequent(Hyps1,Goal,sequent(Hyps2,Goal,Cont))) :- |
| 404 | | select(Hyp,Hyps,Hyps0), |
| 405 | | wd_strict_term(Hyp), |
| 406 | | rewrite_once(card(interval(A,B)),add(minus(B,A),1),Hyp,Hyp1), |
| 407 | | rewrite_once(card(interval(A,B)),0,Hyp,Hyp2), |
| 408 | | add_hyps([less_equal(A,B),Hyp1],Hyps0,Hyps1), |
| 409 | | add_hyps([less(B,A),Hyp2],Hyps0,Hyps2). |
| 410 | | trans_wo_info(simp_card_setminus_l,sequent(Hyps,Goal,Cont),sequent(Hyps,finite(S),sequent(Hyps1,Goal,Cont))) :- |
| 411 | | select(Hyp,Hyps,Hyps0), |
| 412 | | rewrite_once(card(set_subtraction(S,T)),minus(card(S),card(intersection(S,T))),Hyp,Hyp1), |
| 413 | | add_hyp(Hyp1,Hyps0,Hyps1). |
| 414 | | trans_wo_info(simp_card_setminus_r,sequent(Hyps,Goal,Cont),sequent(Hyps,finite(S),sequent(Hyps,NewGoal,Cont))) :- |
| 415 | | rewrite_once(card(set_subtraction(S,T)),minus(card(S),card(intersection(S,T))),Goal,NewGoal). |
| 416 | | trans_wo_info(simp_card_cprod_l,sequent(Hyps,Goal,Cont),sequent(Hyps,finite(S),sequent(Hyps,finite(T),sequent(NewHyps,Goal,Cont)))) :- |
| 417 | | select(Hyp,Hyps,NewHyp,NewHyps), |
| 418 | | rewrite_once(card(cartesian_product(S,T)),multiplication(card(S),card(T)),Hyp,NewHyp). |
| 419 | | trans_wo_info(simp_card_cprod_r,sequent(Hyps,Goal,Cont),sequent(Hyps,finite(S),sequent(Hyps,finite(T),sequent(Hyps,NewGoal,Cont)))) :- |
| 420 | | rewrite_once(card(cartesian_product(S,T)),multiplication(card(S),card(T)),Goal,NewGoal). |
| 421 | | trans_wo_info(skip_to_cont,sequent(Hyps,Goal,Cont),NewState) :- |
| 422 | | \+ cont_length(Cont,0), |
| 423 | | append_sequents(Cont,sequent(Hyps,Goal,success),NewState). |
| 424 | | |
| 425 | | trans_wo_info(eq(Dir,X,Y),sequent(Hyps,Goal,Cont),sequent(Hyps1,Goal1,Cont),[description(Descr)]) :- select(equal(X,Y),Hyps,Hyps0), |
| 426 | | (Dir=lr, |
| 427 | | maplist(rewrite(X,Y),Hyps0,Hyps1), |
| 428 | | rewrite(X,Y,Goal,Goal1) |
| 429 | | ; Dir=rl, |
| 430 | | maplist(rewrite(Y,X),Hyps0,Hyps1), |
| 431 | | rewrite(Y,X,Goal,Goal1)), |
| 432 | | create_descr(eq,Dir,equal(X,Y),Descr). |
| 433 | | trans_wo_info(eqv(Dir,X,Y),sequent(Hyps,Goal,Cont),sequent(Hyps1,Goal1,Cont),[description(Descr)]) :- select(equivalence(X,Y),Hyps,Hyps0), |
| 434 | | (Dir=lr, |
| 435 | | maplist(rewrite(X,Y),Hyps0,Hyps1), |
| 436 | | rewrite(X,Y,Goal,Goal1) |
| 437 | | ; Dir=rl, |
| 438 | | maplist(rewrite(Y,X),Hyps0,Hyps1), |
| 439 | | rewrite(Y,X,Goal,Goal1)), |
| 440 | | create_descr(eq,Dir,equal(X,Y),Descr). |
| 441 | | |
| 442 | | trans_with_args(and_l(Hyp),sequent(Hyps,Goal,Cont),sequent(Hyps1,Goal,Cont)) :- |
| 443 | | Hyp = conjunct(P,Q), |
| 444 | | select(Hyp,Hyps,Hyps0), |
| 445 | | add_hyps(P,Q,Hyps0,Hyps1). |
| 446 | | trans_with_args(imp_l1(Imp),sequent(Hyps,Goal,Cont),sequent(Hyps1,Goal,Cont)) :- |
| 447 | | Imp = implication(P,Q), |
| 448 | | select(Imp,Hyps,implication(NewP,Q),Hyps1), |
| 449 | | select_conjunct(PP,P,NewP), |
| 450 | | member(H,Hyps), |
| 451 | | equal_terms(H,PP). |
| 452 | | trans_with_args(reselect_hyp(Hyp),state(sequent(Hyps,Goal,Cont),Info),state(sequent(Hyps1,Goal,Cont),Info1)) :- |
| 453 | | remove_meta_info(des_hyps,Info,Hyp,Info1), |
| 454 | | add_hyp(Hyp,Hyps,Hyps1). |
| 455 | | trans_with_args(imp_and_l(Hyp),sequent(Hyps,Goal,Cont),sequent(Hyps1,Goal,Cont)) :- |
| 456 | | Hyp = implication(P,conjunct(Q,R)), |
| 457 | | select(Hyp,Hyps,Hyps0), |
| 458 | | add_hyps(implication(P,Q),implication(P,R),Hyps0,Hyps1). |
| 459 | | trans_with_args(imp_or_l(Hyp),sequent(Hyps,Goal,Cont),sequent(Hyps1,Goal,Cont)) :- |
| 460 | | Hyp = implication(disjunct(P,Q),R), |
| 461 | | select(Hyp,Hyps,Hyps0), |
| 462 | | add_hyps(implication(P,R),implication(Q,R),Hyps0,Hyps1). |
| 463 | | trans_with_args(contradict_l(P),sequent(Hyps,Goal,Cont),sequent(Hyps1,NotP,Cont)):- |
| 464 | | select(P,Hyps,Hyps0), |
| 465 | | negate(P,NotP), |
| 466 | | negate(Goal,NotGoal), |
| 467 | | add_hyp(NotGoal,Hyps0,Hyps1). |
| 468 | | trans_with_args(or_l(Hyp),sequent(Hyps,Goal,Cont),sequent(Hyps1,Goal,sequent(Hyps2,Goal,Cont))) :- |
| 469 | | Hyp = disjunct(P,Q), |
| 470 | | select(Hyp,Hyps,Hyps0), |
| 471 | | add_hyp(P,Hyps0,Hyps1), |
| 472 | | add_hyp(Q,Hyps0,Hyps2). |
| 473 | | trans_with_args(case(D),sequent(Hyps,Goal,Cont),NewState) :- |
| 474 | | member(D,Hyps), |
| 475 | | D = disjunct(_,_), |
| 476 | | select(D,Hyps,Hyps0), |
| 477 | | extract_disjuncts(D,Hyps0,Goal,Cont,NewState). |
| 478 | | trans_with_args(imp_case(Imp),sequent(Hyps,Goal,Cont),sequent(Hyps1,Goal,sequent(Hyps2,Goal,Cont))) :- |
| 479 | | Imp = implication(P,Q), |
| 480 | | select(Imp,Hyps,Hyps0), |
| 481 | | add_hyp(negation(P),Hyps0,Hyps1), |
| 482 | | add_hyp(Q,Hyps0,Hyps2). |
| 483 | | trans_with_args(mh(Imp),sequent(Hyps,Goal,Cont),sequent(Hyps0,P,sequent(Hyps1,Goal,Cont))) :- |
| 484 | | Imp = implication(P,Q), |
| 485 | | select(Imp,Hyps,Hyps0), |
| 486 | | add_hyp(Q,Hyps0,Hyps1). |
| 487 | | trans_with_args(hm(Imp),sequent(Hyps,Goal,Cont),sequent(Hyps0,negation(Q),sequent(Hyps1,Goal,Cont))) :- |
| 488 | | Imp = implication(P,Q), |
| 489 | | select(Imp,Hyps,Hyps0), |
| 490 | | add_hyp(negation(P),Hyps0,Hyps1). |
| 491 | | trans_with_args(def_expn_step(power_of(E,P)),sequent(Hyps,Goal,Cont),sequent(Hyps,not_equal(P,0),sequent(NewHyps,Goal,Cont))) :- |
| 492 | | select(Hyp,Hyps,Hyps0), |
| 493 | | rewrite_once(power_of(E,P),multiplication(E,power_of(E,minus(P,1))),Hyp,NewHyp), |
| 494 | | add_hyp(NewHyp,Hyps0,NewHyps). |
| 495 | | trans_with_args(def_expn_step(power_of(E,P)),sequent(Hyps,Goal,Cont),sequent(Hyps,not_equal(P,0),sequent(Hyps,NewGoal,Cont))) :- |
| 496 | | rewrite_once(power_of(E,P),multiplication(E,power_of(E,minus(P,1))),Goal,NewGoal). |
| 497 | | trans_with_args(induc_nat(X),state(sequent(Hyps,Goal,Cont),Info), |
| 498 | | state(sequent(Hyps,member(X,natural_set),sequent(Hyps1,Goal,sequent(Hyps2,GoalN1,Cont))),Info)) :- |
| 499 | | free_identifiers(Goal,Ids), |
| 500 | | member(X,Ids), |
| 501 | | of_integer_type(X,Hyps,Info), |
| 502 | | new_identifier(Goal,N), |
| 503 | | add_hyp(equal(X,0),Hyps,Hyps1), |
| 504 | | rewrite(X,N,Goal,GoalN), |
| 505 | | add_hyps([member(N,natural_set),GoalN],Hyps,Hyps2), |
| 506 | | rewrite(X,add(N,1),Goal,GoalN1). |
| 507 | | trans_with_args(induc_nat_compl(X),state(sequent(Hyps,Goal,Cont),Info), |
| 508 | | state(sequent(Hyps,member(X,natural_set),sequent(Hyps,Goal0,sequent(Hyps2,GoalN,Cont))),Info)) :- |
| 509 | | free_identifiers(Goal,Ids), |
| 510 | | member(X,Ids), |
| 511 | | of_integer_type(X,Hyps,Info), |
| 512 | | new_identifiers(Goal,2,[K,N]), |
| 513 | | rewrite(X,0,Goal,Goal0), |
| 514 | | rewrite(X,N,Goal,GoalN), |
| 515 | | rewrite(X,K,Goal,GoalK), |
| 516 | | add_hyps([member(N,natural_set),forall([K],conjunct(less_equal(0,K),less(K,N)),GoalK)],Hyps,Hyps2). |
| 517 | | |
| 518 | | create_descr(Rule,T,Descr) :- translate_term(T,TS), |
| 519 | | ajoin([Rule,' (',TS,')'],Descr). |
| 520 | | |
| 521 | | create_descr(Rule,S,T,Descr) :- translate_term(T,TS), |
| 522 | | ajoin([Rule,' (',S,',',TS,')'],Descr). |
| 523 | | |
| 524 | | /* |
| 525 | | sequent_prover_trans(auto_simplify,state(Sequent,Info),state(NewSequent,Info)) :- |
| 526 | | apply_simp_rules(Sequent,Info,NewSequent), |
| 527 | | Sequent \= NewSequent. |
| 528 | | */ |
| 529 | | |
| 530 | | apply_simp_rules(Sequent,Info,Res) :- |
| 531 | | (sequent_prover_trans(simplify_goal(Rule),state(Sequent,Info),state(NewSequent,Info),_) |
| 532 | | ; sequent_prover_trans(simplify_hyp(Rule,_),state(Sequent,Info),state(NewSequent,Info),_)), |
| 533 | | trivial_rule(Rule), !, |
| 534 | | apply_simp_rules(NewSequent,Info,Res). |
| 535 | | % apply_simp_rules(sequent(Hyps,Goal,Cont),_,Cont) :- axiom(Rule,Hyps,Goal), !. |
| 536 | | apply_simp_rules(Sequent,_,Sequent). |
| 537 | | |
| 538 | | trivial_rule(Rule) :- sub_atom(Rule,_,_,_,'MULTI'). |
| 539 | | trivial_rule(Rule) :- sub_atom(Rule,_,_,_,'SPECIAL'). |
| 540 | | trivial_rule(Rule) :- sub_atom(Rule,_,_,_,'TYPE'). |
| 541 | | trivial_rule('Evaluate tautology'). |
| 542 | | |
| 543 | | symb_trans(Rule,state(Sequent,Info),state(NewSequent,Info)) :- symb_trans(Rule,Sequent,NewSequent,Info). |
| 544 | | symb_trans_enabled(Rule,state(Sequent,_)) :- symb_trans_enabled(Rule,Sequent). |
| 545 | | |
| 546 | | symb_trans(add_hyp(Hyp),sequent(Hyps0,Goal,Cont),NewSequent,Info) :- % CUT |
| 547 | | parse_input(Hyp,TExpr), |
| 548 | | well_def_hyps:normalize_predicate(TExpr,NormExpr), |
| 549 | | get_wd_pos(NormExpr,Hyps0,Info,POs), |
| 550 | | add_hyps(POs,Hyps0,Hyps1), |
| 551 | | translate_finite_expr(NormExpr,NewExpr), |
| 552 | | add_hyps([NewExpr|POs],Hyps0,Hyps2), |
| 553 | | add_wd_pos(Hyps0,POs,sequent(Hyps1,NewExpr,sequent(Hyps2,Goal,Cont)),NewSequent). |
| 554 | | trans_prop(add_hyp,param_names(['Hyp'])). |
| 555 | | symb_trans_enabled(add_hyp,sequent(_,_,_)). |
| 556 | | |
| 557 | | symb_trans(distinct_case(Pred),sequent(Hyps0,Goal,Cont),NewSequent,Info) :- |
| 558 | | parse_input(Pred,TExpr), |
| 559 | | well_def_hyps:normalize_predicate(TExpr,NormExpr), |
| 560 | | get_wd_pos(NormExpr,Hyps0,Info,POs), |
| 561 | | translate_finite_expr(NormExpr,NewExpr), |
| 562 | | add_hyps([NewExpr|POs],Hyps0,Hyps1), |
| 563 | | add_hyps([negation(NewExpr)|POs],Hyps0,Hyps2), |
| 564 | | add_wd_pos(Hyps0,POs,sequent(Hyps1,Goal,sequent(Hyps2,Goal,Cont)),NewSequent). |
| 565 | | trans_prop(distinct_case,param_names(['Pred'])). |
| 566 | | symb_trans_enabled(distinct_case,sequent(_,_,_)). |
| 567 | | |
| 568 | | symb_trans(exists_inst(Inst),sequent(Hyps,exists([X|Ids],Pred),Cont),NewSequent,Info) :- |
| 569 | | parse_input(Inst,TExpr), |
| 570 | | well_def_hyps:normalize_expression(TExpr,NormExpr), |
| 571 | | rewrite(X,NormExpr,Pred,Goal1), |
| 572 | | (Ids = [] -> Goal = Goal1 ; Goal = exists(Ids,Goal1)), |
| 573 | | get_wd_pos_of_expr(NormExpr,Hyps,Info,POs), |
| 574 | | add_wd_pos(Hyps,POs,sequent(Hyps,Goal,Cont),NewSequent). |
| 575 | | trans_prop(exists_inst,param_names(['Inst'])). |
| 576 | | symb_trans_enabled(exists_inst,sequent(_,exists(_,_),_)). |
| 577 | | |
| 578 | | symb_trans(forall_inst(Inst),sequent(Hyps,Goal,Cont),NewSequent,Info) :- |
| 579 | | parse_input(Inst,TExpr), |
| 580 | | well_def_hyps:normalize_expression(TExpr,NormExpr), |
| 581 | | select(Hyp,Hyps,NewHyp,NewHyps), |
| 582 | | Hyp = forall([X|Ids],P,Q), |
| 583 | | rewrite(X,NormExpr,P,P1), |
| 584 | | rewrite(X,NormExpr,Q,Q1), |
| 585 | | (Ids = [] -> NewHyp = implication(P1,Q1) ; NewHyp = forall(Ids,P1,Q1)), |
| 586 | | get_wd_pos_of_expr(NormExpr,Hyps,Info,POs), |
| 587 | | add_wd_pos(Hyps,POs,sequent(NewHyps,Goal,Cont),NewSequent). |
| 588 | | trans_prop(forall_inst,param_names(['Inst'])). |
| 589 | | symb_trans_enabled(forall_inst,sequent(Hyps,_,_)) :- memberchk(forall(_,_,_),Hyps). |
| 590 | | |
| 591 | | symb_trans(forall_inst_mp(Inst),sequent(Hyps,Goal,Cont),NewSequent,Info) :- |
| 592 | | parse_input(Inst,TExpr), |
| 593 | | well_def_hyps:normalize_expression(TExpr,NormExpr), |
| 594 | | rewrite(X,NormExpr,P,P1), |
| 595 | | rewrite(X,NormExpr,Q,Q1), |
| 596 | | get_wd_pos_of_expr(NormExpr,Hyps,Info,POs), |
| 597 | | select(forall([X],P,Q),Hyps,Hyps0), |
| 598 | | add_hyps(POs,Hyps0,Hyps1), |
| 599 | | add_hyps([Q1|POs],Hyps0,Hyps2), |
| 600 | | add_wd_pos(Hyps,POs,sequent(Hyps1,P1,sequent(Hyps2,Goal,Cont)),NewSequent). |
| 601 | | trans_prop(forall_inst_mp,param_names(['Inst'])). |
| 602 | | symb_trans_enabled(forall_inst_mp,sequent(Hyps,_,_)) :- memberchk(forall([_],_,_),Hyps). |
| 603 | | |
| 604 | | symb_trans(forall_inst_mt(Inst),sequent(Hyps,Goal,Cont),NewSequent,Info) :- |
| 605 | | parse_input(Inst,TExpr), |
| 606 | | well_def_hyps:normalize_expression(TExpr,NormExpr), |
| 607 | | rewrite(X,NormExpr,negation(P),P1), |
| 608 | | rewrite(X,NormExpr,negation(Q),Q1), |
| 609 | | get_wd_pos_of_expr(NormExpr,Hyps,Info,POs), |
| 610 | | select(forall([X],P,Q),Hyps,Hyps0), |
| 611 | | add_hyps(POs,Hyps0,Hyps1), |
| 612 | | add_hyps([P1|POs],Hyps0,Hyps2), |
| 613 | | add_wd_pos(Hyps,POs,sequent(Hyps1,Q1,sequent(Hyps2,Goal,Cont)),NewSequent). |
| 614 | | trans_prop(forall_inst_mt,param_names(['Inst'])). |
| 615 | | symb_trans_enabled(forall_inst_mt,sequent(Hyps,_,_)) :- memberchk(forall([_],_,_),Hyps). |
| 616 | | |
| 617 | | symb_trans(Command,sequent(Hyps,Goal,Cont),Cont,_) :- prover_command(Command,ProverList), |
| 618 | | get_typed_ast(Goal,TGoal), |
| 619 | | maplist(get_typed_ast,Hyps,THyps), |
| 620 | | prove_sequent(ProverList,THyps,TGoal). |
| 621 | | prove_sequent(prob_wd_prover,THyps,TGoal) :- !, |
| 622 | | well_def_analyser:prove_sequent(proving,TGoal,THyps). |
| 623 | | prove_sequent(ProverList,THyps,TGoal) :- |
| 624 | | atelierb_provers_interface:prove_predicate_with_provers(ProverList,THyps,TGoal,proved). |
| 625 | | prover_command(ml_pp,[ml,pp]). |
| 626 | | prover_command(ml,[ml]). |
| 627 | | prover_command(pp,[pp]). |
| 628 | | prover_command(prob_wd_prover,prob_wd_prover). |
| 629 | | trans_prop(Cmd,param_names([])) :- prover_command(Cmd,_). |
| 630 | | symb_trans_enabled(Cmd,sequent(_,_,_)) :- prover_command(Cmd,_). |
| 631 | | |
| 632 | | symb_trans(prob_disprover,sequent(Hyps,Goal,Cont),NewState,Info) :- |
| 633 | | well_def_hyps:convert_norm_expr_to_raw(Goal,RawGoal), |
| 634 | | maplist(well_def_hyps:convert_norm_expr_to_raw,Hyps,RawHyps), |
| 635 | | AllHyps = RawHyps, SelectedHyps = RawHyps, Timeout = 1000, |
| 636 | | % TO DO: pass information about top-level types, new deferred sets, ... |
| 637 | | disprover:disprove(RawGoal,AllHyps,SelectedHyps,Timeout,OutResult), |
| 638 | | format(user_output,'ProB Disprover Result = ~w (Info=~w)n',[OutResult,Info]), |
| 639 | | dispatch_result(OutResult,Cont,NewState). |
| 640 | | trans_prop(prob_disprover,param_names([])). |
| 641 | | symb_trans_enabled(prob_disprover,sequent(_,_,_)). |
| 642 | | |
| 643 | | dispatch_result(contradiction_found,Cont,Cont). |
| 644 | | dispatch_result(contradiction_in_hypotheses,Cont,Cont). |
| 645 | | dispatch_result(solution_on_selected_hypotheses(S),_,counter_example(S)). |
| 646 | | dispatch_result(solution(S),_,counter_example(S)). |
| 647 | | % other results are no_solution_found(_) and time_out |
| 648 | | |
| 649 | | symb_trans(rewrite_hyp(HypNr,NewHyp),sequent(Hyps,Goal,Cont),sequent(NewHyps,Goal,Cont),Info) :- |
| 650 | | ground(HypNr), |
| 651 | | get_hyp(Hyps,HypNr,SelHyp), |
| 652 | | parse_input(NewHyp,TExpr), |
| 653 | | b_interpreter_check:norm_pred_check(TExpr,RewrittenHyp), |
| 654 | | select(SelHyp,Hyps,Hyps0), |
| 655 | | get_wd_pos(RewrittenHyp,Hyps,Info,[]), |
| 656 | | prove_predicate([SelHyp],RewrittenHyp), |
| 657 | | translate_finite_expr(RewrittenHyp,NewExpr), |
| 658 | | add_hyp(NewExpr,Hyps0,NewHyps). |
| 659 | | trans_prop(rewrite_hyp,param_names(['HypNr','NewHyp'])). |
| 660 | | symb_trans_enabled(rewrite_hyp,sequent(_,_,_)). |
| 661 | | |
| 662 | | symb_trans(derive_hyp(HypNrs,NewHyp),sequent(Hyps,Goal,Cont),sequent(NewHyps,Goal,Cont),Info) :- |
| 663 | | ground(HypNrs), |
| 664 | | split_atom(HypNrs,[','],Indices), |
| 665 | | maplist(get_hyp(Hyps),Indices,SelHyps), |
| 666 | | parse_input(NewHyp,TExpr), |
| 667 | | b_interpreter_check:norm_pred_check(TExpr,NormExpr), |
| 668 | | get_wd_pos(NormExpr,Hyps,Info,[]), |
| 669 | | prove_predicate(SelHyps,NormExpr), |
| 670 | | translate_finite_expr(NormExpr,NewExpr), |
| 671 | | add_hyp(NewExpr,Hyps,NewHyps). |
| 672 | | trans_prop(derive_hyp,param_names(['HypNrs','NewHyp'])). |
| 673 | | symb_trans_enabled(derive_hyp,sequent(_,_,_)). |
| 674 | | |
| 675 | | symb_trans(dis_binter_r(PFun),sequent(Hyps,Goal,Cont),sequent(Hyps,NormExpr,sequent(Hyps,NewGoal,Cont)),Info) :- |
| 676 | | parse_input(PFun,TExpr), |
| 677 | | well_def_hyps:normalize_predicate(TExpr,NormExpr), |
| 678 | | NormExpr = member(reverse(F),partial_function(A,B)), |
| 679 | | type_expression(A,Info), |
| 680 | | type_expression(B,Info), |
| 681 | | Sub = image(F,Inter), |
| 682 | | Inter = intersection(_,_), |
| 683 | | is_subterm(Sub,Goal), |
| 684 | | image_intersection(F,Inter,NewSub), |
| 685 | | rewrite_once(Sub,NewSub,Goal,NewGoal). |
| 686 | | trans_prop(dis_binter_r,param_names(['PFun'])). |
| 687 | | symb_trans_enabled(dis_binter_r,sequent(_,Goal,_)) :- is_subterm(image(_,Inter),Goal), Inter = intersection(_,_). |
| 688 | | |
| 689 | | symb_trans(dis_binter_l(PFun),sequent(Hyps,Goal,Cont),sequent(Hyps0,NormExpr,sequent(Hyps1,Goal,Cont)),Info) :- |
| 690 | | parse_input(PFun,TExpr), |
| 691 | | well_def_hyps:normalize_predicate(TExpr,NormExpr), |
| 692 | | NormExpr = member(reverse(F),partial_function(A,B)), |
| 693 | | type_expression(A,Info), |
| 694 | | type_expression(B,Info), |
| 695 | | select(Hyp,Hyps,Hyps0), |
| 696 | | Sub = image(F,Inter), |
| 697 | | Inter = intersection(_,_), |
| 698 | | is_subterm(Sub,Hyp), |
| 699 | | Inter = intersection(_,_), |
| 700 | | image_intersection(F,Inter,NewSub), |
| 701 | | rewrite(Sub,NewSub,Hyp,NewHyp), |
| 702 | | add_hyp(NewHyp,Hyps0,Hyps1). |
| 703 | | trans_prop(dis_binter_l,param_names(['PFun'])). |
| 704 | | symb_trans_enabled(dis_binter_l,sequent(Hyps,_,_)) :- member(Hyp,Hyps), is_subterm(image(_,Inter),Hyp), Inter = intersection(_,_). |
| 705 | | |
| 706 | | symb_trans(dis_setminus_r(PFun),sequent(Hyps,Goal,Cont),sequent(Hyps,NormExpr,sequent(Hyps,NewGoal,Cont)),Info) :- |
| 707 | | parse_input(PFun,TExpr), |
| 708 | | well_def_hyps:normalize_predicate(TExpr,NormExpr), |
| 709 | | NormExpr = member(reverse(F),partial_function(A,B)), |
| 710 | | type_expression(A,Info), |
| 711 | | type_expression(B,Info), |
| 712 | | rewrite(image(F,set_subtraction(S,T)),set_subtraction(image(F,S),image(F,T)),Goal,NewGoal). |
| 713 | | trans_prop(dis_setminus_r,param_names(['PFun'])). |
| 714 | | symb_trans_enabled(dis_setminus_r,sequent(_,Goal,_)) :- is_subterm(image(_,set_subtraction(_,_)),Goal). |
| 715 | | |
| 716 | | symb_trans(dis_setminus_l(PFun),sequent(Hyps,Goal,Cont),sequent(Hyps0,NormExpr,sequent(Hyps1,Goal,Cont)),Info) :- |
| 717 | | parse_input(PFun,TExpr), |
| 718 | | well_def_hyps:normalize_predicate(TExpr,NormExpr), !, |
| 719 | | NormExpr = member(reverse(F),partial_function(A,B)), |
| 720 | | type_expression(A,Info), |
| 721 | | type_expression(B,Info), |
| 722 | | select(Hyp,Hyps,Hyps0), |
| 723 | | is_subterm(image(_,set_subtraction(_,_)),Hyp), |
| 724 | | rewrite(image(F,set_subtraction(S,T)),set_subtraction(image(F,S),image(F,T)),Hyp,NewHyp), |
| 725 | | add_hyp(NewHyp,Hyps0,Hyps1). |
| 726 | | trans_prop(dis_setminus_l,param_names(['PFun'])). |
| 727 | | symb_trans_enabled(dis_setminus_l,sequent(Hyps,_,_)) :- member(Hyp,Hyps), is_subterm(image(_,set_subtraction(_,_)),Hyp). |
| 728 | | |
| 729 | | symb_trans(fin_subseteq_r(Set),sequent(Hyps,finite(S),Cont),NewSequent,Info) :- |
| 730 | | parse_input(Set,TExpr), |
| 731 | | well_def_hyps:normalize_expression(TExpr,NormExpr), |
| 732 | | get_scope(Hyps,Info,[identifier(IdsTypes)]), % NormExpr has to be a set |
| 733 | | same_type(S,NormExpr,IdsTypes), |
| 734 | | get_wd_pos_of_expr(NormExpr,Hyps,Info,POs), |
| 735 | | add_wd_pos(Hyps,POs,sequent(Hyps,subset(S,NormExpr),sequent(Hyps,finite(NormExpr),Cont)),NewSequent). |
| 736 | | trans_prop(fin_subseteq_r,param_names(['Set'])). |
| 737 | | symb_trans_enabled(fin_subseteq_r,sequent(_,finite(_),_)). |
| 738 | | |
| 739 | | symb_trans(fin_fun1_r(PFun),sequent(Hyps,finite(F),Cont),NewSequent,Info) :- |
| 740 | | parse_input(PFun,TExpr), |
| 741 | | well_def_hyps:normalize_expression(TExpr,NormExpr), |
| 742 | | NormExpr = partial_function(S,T), |
| 743 | | get_wd_pos_of_expr(NormExpr,Hyps,Info,POs), |
| 744 | | add_wd_pos(Hyps,POs,sequent(Hyps,member(F,partial_function(S,T)),sequent(Hyps,finite(S),Cont)),NewSequent). |
| 745 | | trans_prop(fin_fun1_r,param_names(['PFun'])). |
| 746 | | symb_trans_enabled(fin_fun1_r,sequent(_,finite(_),_)). |
| 747 | | |
| 748 | | symb_trans(fin_fun2_r(PFun),sequent(Hyps,finite(F),Cont),NewSequent,Info) :- |
| 749 | | parse_input(PFun,TExpr), |
| 750 | | well_def_hyps:normalize_expression(TExpr,NormExpr), |
| 751 | | NormExpr = partial_function(S,T), |
| 752 | | get_wd_pos_of_expr(NormExpr,Hyps,Info,POs), |
| 753 | | add_wd_pos(Hyps,POs,sequent(Hyps,member(reverse(F),partial_function(S,T)),sequent(Hyps,finite(S),Cont)),NewSequent). |
| 754 | | trans_prop(fin_fun2_r,param_names(['PFun'])). |
| 755 | | symb_trans_enabled(fin_fun2_r,sequent(_,finite(_),_)). |
| 756 | | |
| 757 | | symb_trans(fin_fun_img_r(PFun),sequent(Hyps,finite(image(F,Set)),Cont),NewSequent,Info) :- |
| 758 | | parse_input(PFun,TExpr), |
| 759 | | well_def_hyps:normalize_expression(TExpr,NormExpr), |
| 760 | | NormExpr = partial_function(S,T), |
| 761 | | get_wd_pos_of_expr(NormExpr,Hyps,Info,POs), |
| 762 | | add_wd_pos(Hyps,POs,sequent(Hyps,member(F,partial_function(S,T)),sequent(Hyps,finite(Set),Cont)),NewSequent). |
| 763 | | trans_prop(fin_fun_img_r,param_names(['PFun'])). |
| 764 | | symb_trans_enabled(fin_fun_img_r,sequent(_,finite(image(_,_)),_)). |
| 765 | | |
| 766 | | symb_trans(fin_fun_ran_r(PFun),sequent(Hyps,finite(range(F)),Cont),NewSequent,Info) :- |
| 767 | | parse_input(PFun,TExpr), |
| 768 | | well_def_hyps:normalize_expression(TExpr,NormExpr), |
| 769 | | NormExpr = partial_function(S,T), |
| 770 | | get_wd_pos_of_expr(NormExpr,Hyps,Info,POs), |
| 771 | | add_wd_pos(Hyps,POs,sequent(Hyps,member(F,partial_function(S,T)),sequent(Hyps,finite(S),Cont)),NewSequent). |
| 772 | | trans_prop(fin_fun_ran_r,param_names(['PFun'])). |
| 773 | | symb_trans_enabled(fin_fun_ran_r,sequent(_,finite(range(_)),_)). |
| 774 | | |
| 775 | | symb_trans(fin_fun_dom_r(PFun),sequent(Hyps,finite(domain(F)),Cont),NewSequent,Info) :- |
| 776 | | parse_input(PFun,TExpr), |
| 777 | | well_def_hyps:normalize_expression(TExpr,NormExpr), |
| 778 | | NormExpr = partial_function(S,T), |
| 779 | | get_wd_pos_of_expr(NormExpr,Hyps,Info,POs), |
| 780 | | add_wd_pos(Hyps,POs,sequent(Hyps,member(reverse(F),partial_function(S,T)),sequent(Hyps,finite(S),Cont)),NewSequent). |
| 781 | | trans_prop(fin_fun_dom_r,param_names(['PFun'])). |
| 782 | | symb_trans_enabled(fin_fun_dom_r,sequent(_,finite(domain(_)),_)). |
| 783 | | |
| 784 | | symb_trans(fin_rel_r(Rel),sequent(Hyps,finite(R),Cont),NewSequent,Info) :- |
| 785 | | parse_input(Rel,TExpr), |
| 786 | | well_def_hyps:normalize_expression(TExpr,NormExpr), !, |
| 787 | | NormExpr = relations(S,T), |
| 788 | | get_wd_pos_of_expr(NormExpr,Hyps,Info,POs), |
| 789 | | add_wd_pos(Hyps,POs,sequent(Hyps,member(R,relations(S,T)),sequent(Hyps,finite(S),sequent(Hyps,finite(T),Cont))),NewSequent). |
| 790 | | trans_prop(fin_rel_r,param_names(['Rel'])). |
| 791 | | symb_trans_enabled(fin_rel_r,sequent(_,finite(_),_)). |
| 792 | | |
| 793 | | parse_input(Param,Res) :- |
| 794 | | ground(Param), |
| 795 | | (number(Param) -> number_codes(Param,CParam) ; atom_codes(Param,CParam)), |
| 796 | | bmachine:b_parse_only(formula,CParam,Parsed,_,_Error), |
| 797 | | translate:transform_raw(Parsed,TExpr), |
| 798 | | adapt_for_eventb(TExpr,Res). |
| 799 | | |
| 800 | | adapt_for_eventb(Term,Term) :- atomic(Term). |
| 801 | | adapt_for_eventb(Term,Result) :- |
| 802 | | Term=..[F|Args], |
| 803 | | replace_functor(F,NewFunctor), |
| 804 | | maplist(adapt_for_eventb,Args,NewArgs), |
| 805 | | Result=..[NewFunctor|NewArgs]. |
| 806 | | |
| 807 | | replace_functor(concat,power_of). |
| 808 | | replace_functor(power_of,cartesian_product). |
| 809 | | replace_functor(minus_or_set_subtract,minus). |
| 810 | | replace_functor(mult_or_cart,multiplication). |
| 811 | | replace_functor(F,F). |
| 812 | | |
| 813 | | translate_finite_expr(X,Y) :- rewrite(member(S,fin_subset(S)),finite(S),X,Y). |
| 814 | | |
| 815 | | get_hyp(Hyps,Index,Hyp) :- |
| 816 | | atom_codes(Index,C), |
| 817 | | number_codes(Nr,C), |
| 818 | | nth1(Nr,Hyps,Hyp). |
| 819 | | |
| 820 | | add_hyp(Hyp,Hyps0,NewHyps) :- append(Hyps0,[Hyp],Hyps1), without_duplicates(Hyps1,NewHyps). |
| 821 | | add_hyps(Hyp1,Hyp2,Hyps0,NewHyps) :- append(Hyps0,[Hyp1,Hyp2],Hyps1), without_duplicates(Hyps1,NewHyps). |
| 822 | | add_hyps(NewHyps,Hyps,SHyps) :- append(Hyps,NewHyps,All), without_duplicates(All,SHyps). |
| 823 | | |
| 824 | | % select and remove a conjunct: |
| 825 | | select_conjunct(X,conjunct(A,B),Rest) :- !, |
| 826 | | (select_conjunct(X,A,RA), conjoin(RA,B,Rest) |
| 827 | | ; |
| 828 | | select_conjunct(X,B,RB), conjoin(A,RB,Rest)). |
| 829 | | select_conjunct(X,X,truth). |
| 830 | | |
| 831 | | conjoin(truth,X,R) :- !, R=X. |
| 832 | | conjoin(X,truth,R) :- !, R=X. |
| 833 | | conjoin(X,Y,conjunct(X,Y)). |
| 834 | | |
| 835 | | % select and remove (first occurrence of) X: |
| 836 | | select_op(X,C,Rest,Op) :- C=..[Op,A,B], |
| 837 | ? | (select_op(X,A,RA,Op), conjoin(RA,B,Rest,Op) |
| 838 | | ; |
| 839 | ? | select_op(X,B,RB,Op), conjoin(A,RB,Rest,Op)), !. |
| 840 | | select_op(X,X,E,Op) :- neutral_element(Op,E). |
| 841 | | select_op(X,Y,E,Op) :- neutral_element(Op,E), equal_terms(X,Y). |
| 842 | | |
| 843 | | % replace (first occurrence of) X by Z: |
| 844 | | select_op(X,C,Z,New,Op) :- C=..[Op,A,B], |
| 845 | | (select_op(X,A,Z,RA,Op), conjoin(RA,B,New,Op) ; |
| 846 | | select_op(X,B,Z,RB,Op), conjoin(A,RB,New,Op)), !. |
| 847 | | select_op(X,X,Z,Z,_) :- !. |
| 848 | | select_op(X,Y,Z,Z,_) :- equal_terms(X,Y). |
| 849 | | |
| 850 | | conjoin(E,X,R,Op) :- neutral_element(Op,E), !, R=X. |
| 851 | | conjoin(X,E,R,Op) :- neutral_element(Op,E), !, R=X. |
| 852 | | conjoin(X,Y,C,Op) :- C=..[Op,X,Y]. |
| 853 | | |
| 854 | | neutral_element(conjunct,true) :- !. |
| 855 | | neutral_element(disjunct,false) :- !. |
| 856 | | neutral_element(add,0) :- !. |
| 857 | | neutral_element(multiplication,1) :- !. |
| 858 | | neutral_element(_,placeholder). |
| 859 | | |
| 860 | | negate(truth,Res) :- !, Res=falsity. |
| 861 | | negate(falsity,Res) :- !, Res=truth. |
| 862 | | negate(equal(X,Y),R) :- !, R=not_equal(X,Y). |
| 863 | | negate(not_equal(X,Y),R) :- !, R=equal(X,Y). |
| 864 | | negate(greater(X,Y),R) :- !, R=less_equal(X,Y). |
| 865 | | negate(less(X,Y),R) :- !, R=greater_equal(X,Y). |
| 866 | | negate(greater_equal(X,Y),R) :- !, R=less(X,Y). |
| 867 | | negate(less_equal(X,Y),R) :- !, R=greater(X,Y). |
| 868 | | negate(disjunct(X,Y),R) :- !, R=conjunct(NX,NY), negate(X,NX), negate(Y,NY). |
| 869 | | negate(conjunct(X,Y),R) :- !, R=disjunct(NX,NY), negate(X,NX), negate(Y,NY). |
| 870 | | negate(implication(X,Y),R) :- !, R=conjunct(X,NY), negate(Y,NY). |
| 871 | | negate(negation(X),R) :- !, R=X. |
| 872 | | negate(P,negation(P)). |
| 873 | | |
| 874 | | is_fun(partial_function(DOM,RAN),partial,DOM,RAN). |
| 875 | | is_fun(partial_injection(DOM,RAN),partial,DOM,RAN). |
| 876 | | is_fun(partial_surjection(DOM,RAN),partial,DOM,RAN). |
| 877 | | is_fun(partial_bijection(DOM,RAN),partial,DOM,RAN). |
| 878 | | is_fun(total_function(DOM,RAN),total,DOM,RAN). |
| 879 | | is_fun(total_injection(DOM,RAN),total,DOM,RAN). |
| 880 | | is_fun(total_surjection(DOM,RAN),total,DOM,RAN). |
| 881 | | is_fun(total_bijection(DOM,RAN),total,DOM,RAN). |
| 882 | | |
| 883 | | is_rel(F,Type,DOM,RAN) :- is_fun(F,Type,DOM,RAN). |
| 884 | | is_rel(relations(DOM,RAN),partial,DOM,RAN). |
| 885 | | is_rel(total_relation(DOM,RAN),total,DOM,RAN). |
| 886 | | is_rel(surjection_relation(DOM,RAN),partial,DOM,RAN). |
| 887 | | is_rel(total_surjection_relation(DOM,RAN),total,DOM,RAN). |
| 888 | | |
| 889 | | is_surj(total_bijection(DOM,RAN),DOM,RAN). |
| 890 | | is_surj(total_surjection(DOM,RAN),DOM,RAN). |
| 891 | | is_surj(partial_surjection(DOM,RAN),DOM,RAN). |
| 892 | | is_surj(surjection_relation(DOM,RAN),DOM,RAN). |
| 893 | | is_surj(total_surjection_relation(DOM,RAN),DOM,RAN). |
| 894 | | |
| 895 | | is_inj(partial_injection(DOM,RAN),DOM,RAN). |
| 896 | | is_inj(partial_bijection(DOM,RAN),DOM,RAN). |
| 897 | | is_inj(total_injection(DOM,RAN),DOM,RAN). |
| 898 | | is_inj(total_bijection(DOM,RAN),DOM,RAN). |
| 899 | | |
| 900 | | % rewrite X to E |
| 901 | | rewrite(X,Y,E,NewE) :- equal_terms(X,E),!, NewE=Y. |
| 902 | | rewrite(_X,_Y,E,NewE) :- atomic(E),!, NewE=E. |
| 903 | | rewrite(_X,_Y,'$'(E),NewE) :- atomic(E),!, NewE='$'(E). |
| 904 | | rewrite(X,_,E,NewE) :- with_ids(E,Ids), member(X,Ids),!, NewE=E. |
| 905 | | rewrite(X,Y,C,NewC) :- C=..[Op|Args], |
| 906 | | maplist(rewrite(X,Y), Args,NewArgs), |
| 907 | | NewC =.. [Op|NewArgs]. |
| 908 | | |
| 909 | | with_ids(exists(Ids,_),Ids). |
| 910 | | with_ids(event_b_comprehension_set(Ids,_),Ids). |
| 911 | | with_ids(forall(Ids,_,_),Ids). |
| 912 | | with_ids(quantified_union(Ids,_,_),Ids). |
| 913 | | with_ids(quantified_intersection(Ids,_,_),Ids). |
| 914 | | |
| 915 | | % axioms: proof rules without antecedent, discharging goal directly |
| 916 | | axiom(hyp,Hyps,Goal) :- member_hyps(Goal,Hyps). |
| 917 | | axiom(hyp_or,Hyps,Goal) :- member_of(disjunct,P,Goal), member_hyps(P,Hyps). |
| 918 | | axiom(false_hyp,Hyps,_Goal) :- member_hyps(falsity,Hyps). |
| 919 | | axiom(true_goal,_,truth). |
| 920 | | axiom(Rule,_Hyps,Goal) :- axiom_wo_hyps(Goal,Rule). |
| 921 | | axiom(cntr,Hyps,_) :- |
| 922 | | member(P,Hyps), |
| 923 | | (NotP = negation(P) ; negate(P,NotP)), |
| 924 | | select(P,Hyps,Hyps0), |
| 925 | | member_hyps(NotP,Hyps0). |
| 926 | | axiom(fin_rel,Hyps,finite(Fun)) :- |
| 927 | | member_hyps(member(Fun,FunType),Hyps), |
| 928 | | is_rel(FunType,_,Dom,Ran), |
| 929 | | member_hyps(finite(Dom),Hyps), |
| 930 | | member_hyps(finite(Ran),Hyps). |
| 931 | | axiom(fin_l_lower_bound,Hyps,exists([N],forall([X],member(X,S),LessEq))) :- |
| 932 | | member_hyps(finite(S),Hyps), |
| 933 | | is_less_eq(LessEq,N,X). |
| 934 | | axiom(fin_l_upper_bound,Hyps,exists([N],forall([X],member(X,S),LessEq))) :- |
| 935 | | member_hyps(finite(S),Hyps), |
| 936 | | is_less_eq(LessEq,X,N). |
| 937 | | axiom(derive_goal,Hyps,Goal) :- derive_goal(Hyps,Goal), \+ axiom(hyp,Hyps,Goal). |
| 938 | | |
| 939 | | % from chapter 2, "Modeling in Event-B" |
| 940 | | axiom(p2,Hyps,member(Add,Nat)) :- |
| 941 | | is_natural_set(Nat), |
| 942 | | member(member(N,Nat),Hyps), |
| 943 | | equal_terms(Add,add(N,1)). |
| 944 | | axiom(p2_,Hyps,member(Sub,Nat)) :- |
| 945 | | is_natural_set(Nat), |
| 946 | | member(L,Hyps), |
| 947 | | is_less(L,0,N), |
| 948 | | equal_terms(Sub,minus(N,1)). |
| 949 | | axiom(inc,Hyps,Goal) :- |
| 950 | | member(L,Hyps), |
| 951 | | is_less(L,N,M), |
| 952 | | equal_terms(Goal,less_equal(add(N,1),M)). |
| 953 | | axiom(dec,Hyps,Goal) :- |
| 954 | | member(L,Hyps), |
| 955 | | is_less_eq(L,N,M), |
| 956 | | equal_terms(Goal,less(minus(N,1),M)). |
| 957 | | |
| 958 | | axiom2(fun_goal(member(F,FType)),Hyps,member(F,PFType)) :- |
| 959 | | is_fun(PFType,partial,_,_), |
| 960 | | member_hyps(member(F,FType),Hyps), |
| 961 | | is_fun(FType,_,_,_). |
| 962 | | |
| 963 | | axiom_wo_hyps(true,true_goal). |
| 964 | | axiom_wo_hyps(eq(E,E),eql). |
| 965 | | |
| 966 | | member_hyps(Goal,Hyps) :- |
| 967 | ? | (member(Goal,Hyps) -> true |
| 968 | | ; equiv(Goal,G2), member(G2,Hyps) -> true), !. |
| 969 | | member_hyps(Goal,Hyps) :- |
| 970 | | ground(Goal), |
| 971 | ? | member(G2,Hyps), |
| 972 | | comparable(Goal,G2), |
| 973 | | list_representation(Goal,L1), |
| 974 | | list_representation(G2,L2), |
| 975 | | equal_length(L1,L2), |
| 976 | | stronger_list(L2,L1). |
| 977 | | |
| 978 | | % replace by normalisation |
| 979 | | equiv(equal(A,B),equal(B,A)). |
| 980 | | equiv(not_equal(A,B),not_equal(B,A)). |
| 981 | | equiv(greater(A,B),less(B,A)). |
| 982 | | equiv(less(A,B),greater(B,A)). |
| 983 | | equiv(greater_equal(A,B),less_equal(B,A)). |
| 984 | | equiv(less_equal(A,B),greater_equal(B,A)). |
| 985 | | |
| 986 | | derive_goal(Hyps,Goal) :- |
| 987 | | is_less(Goal,A,B), |
| 988 | | lower_bound(Hyps,Bound1,B), |
| 989 | | upper_bound(Hyps,A,Bound2), |
| 990 | | Bound1 > Bound2, !. |
| 991 | | derive_goal(Hyps,Goal) :- |
| 992 | | is_less_eq(Goal,A,B), |
| 993 | | lower_bound(Hyps,Bound1,B), |
| 994 | | upper_bound(Hyps,A,Bound2), |
| 995 | | Bound1 >= Bound2, !. |
| 996 | | derive_goal(Hyps,not_equal(A,B)) :- derive_goal(Hyps,greater(A,B)). |
| 997 | | derive_goal(Hyps,not_equal(A,B)) :- derive_goal(Hyps,less(A,B)). |
| 998 | | derive_goal(Hyps,Goal) :- is_transitive(Hyps,Goal). |
| 999 | | |
| 1000 | | is_transitive(Hyps,Goal) :- |
| 1001 | | Goal=..[F,L,R], |
| 1002 | | comparison(F), |
| 1003 | | F \= not_equal, |
| 1004 | | is_transitive_aux(Hyps,F,L,R,[]). |
| 1005 | | |
| 1006 | | is_transitive_aux(Hyps,F,L,R,_) :- |
| 1007 | | Ex=..[F,L,R], |
| 1008 | | (member(Ex,Hyps) ; equiv(Ex,G2), member(G2,Hyps)). |
| 1009 | | is_transitive_aux(Hyps,F,L,R,Visited) :- |
| 1010 | | Ex=..[F,L,M], |
| 1011 | | (member(Ex,Hyps) ; equiv(Ex,G2), member(G2,Hyps)), |
| 1012 | | \+ member(M,Visited), |
| 1013 | | is_transitive_aux(Hyps,F,M,R,[L|Visited]). |
| 1014 | | |
| 1015 | | lower_bound(Hyps,B,X) :- member(L,Hyps), is_less_eq(L,B,X), number(B). |
| 1016 | | lower_bound(Hyps,B1,X) :- member(L,Hyps), is_less(L,B,X), number(B), B1 is B+1. |
| 1017 | | lower_bound(Hyps,B,X) :- member(Eq,Hyps), is_equality(Eq,B,X), number(B). |
| 1018 | | |
| 1019 | | upper_bound(Hyps,X,B) :- member(L,Hyps),is_less_eq(L,X,B), number(B). |
| 1020 | | upper_bound(Hyps,X,B1) :- member(L,Hyps), is_less(L,X,B), number(B), B1 is B-1. |
| 1021 | | upper_bound(Hyps,X,B) :- member(Eq,Hyps), is_equality(Eq,X,B), number(B). |
| 1022 | | |
| 1023 | | simp_rule(X,NewX,Rule,Op,Descr,Info) :- |
| 1024 | ? | (simp_rule(X,NewX,Rule) |
| 1025 | ? | ; simp_rule(X,NewX,Rule,Op) |
| 1026 | ? | ; simp_rule(X,NewX,Rule,Op,Info) |
| 1027 | ? | ; simp_rule_with_info(X,NewX,Rule,Info)), |
| 1028 | | create_descr(Rule,X,Descr). |
| 1029 | | simp_rule(X,NewX,Rule,_,Descr,_) :- simp_rule_with_descr(X,NewX,Rule,Descr). |
| 1030 | | simp_rule(Expr,Res,Expr,_,Descr,_) :- compute(Expr,Res), create_descr('Compute',Expr,Descr). |
| 1031 | | |
| 1032 | ? | simp_rule_with_hyps(X,NewX,Rule,Hyps,_) :- simp_rule_with_hyps(X,NewX,Rule,Hyps). |
| 1033 | | |
| 1034 | | % rules that do not require hyps: |
| 1035 | | simp_rule(not_equal(L,L),falsity,'SIMP_MULTI_NOTEQUAL'). |
| 1036 | | simp_rule(less_equal(I,J),Res,'SIMP_LIT_LE') :- number(I), number(J), (I =< J -> Res=truth ; Res=falsity). % where I and J are literals |
| 1037 | | simp_rule(less(I,J),Res,'SIMP_LIT_LT') :- number(I), number(J), (I < J -> Res=truth ; Res=falsity). |
| 1038 | | simp_rule(greater_equal(I,J),Res,'SIMP_LIT_GE') :- number(I), number(J), (I >= J -> Res=truth ; Res=falsity). |
| 1039 | | simp_rule(greater(I,J),Res,'SIMP_LIT_GT') :- number(I), number(J), (I > J -> Res=truth ; Res=falsity). |
| 1040 | | simp_rule(equal(I,J),Res,'SIMP_LIT_EQUAL') :- number(I), number(J), (I = J -> Res=truth ; Res=falsity). |
| 1041 | | simp_rule(not_equal(L,R),negation(equal(L,R)),'SIMP_NOTEQUAL'). |
| 1042 | | simp_rule(domain(event_b_comprehension_set(Ids,couple(E,_),P)),event_b_comprehension_set(Ids,E,P),'SIMP_DOM_LAMBDA'). |
| 1043 | | simp_rule(range(event_b_comprehension_set(Ids,couple(_,F),P)),event_b_comprehension_set(Ids,F,P),'SIMP_RAN_LAMBDA'). |
| 1044 | | simp_rule(negation(equal(Set,empty_set)),exists([X],member(X,Set)),'DEF_SPECIAL_NOT_EQUAL') :- new_identifier(Set,X). |
| 1045 | | simp_rule(Expr,Res,'SIMP_SETENUM_EQUAL_EMPTY') :-is_empty(Expr,set_extension(L)), length(L,LL), |
| 1046 | | (LL > 0 -> Res = falsity ; Res = truth). |
| 1047 | | simp_rule(Expr,greater(I,J),'SIMP_UPTO_EQUAL_EMPTY') :- is_empty(Expr,interval(I,J)). |
| 1048 | | simp_rule(Eq,falsity,'SIMP_UPTO_EQUAL_INTEGER') :- is_equality(Eq,interval(_,_),Z), is_integer_set(Z). |
| 1049 | | simp_rule(Eq,falsity,'SIMP_UPTO_EQUAL_NATURAL') :- is_equality(Eq,interval(_,_),Nat), is_natural_set(Nat). |
| 1050 | | simp_rule(Eq,falsity,'SIMP_UPTO_EQUAL_NATURAL1') :- is_equality(Eq,interval(_,_),Nat), is_natural1_set(Nat). |
| 1051 | | simp_rule(Expr,falsity,'SIMP_SPECIAL_EQUAL_REL') :- is_empty(Expr,relations(_,_)). |
| 1052 | | simp_rule(Expr,conjunct(negation(equal(A,empty_set)),equal(B,empty_set)),'SIMP_SPECIAL_EQUAL_RELDOM') :- |
| 1053 | | is_empty(Expr,R), |
| 1054 | | (R = total_relation(A,B) ; |
| 1055 | | R = total_function(A,B)). |
| 1056 | | simp_rule(Expr,conjunct(equal(A,empty_set),negation(equal(B,empty_set))),'SIMP_SREL_EQUAL_EMPTY') :- |
| 1057 | | is_empty(Expr,surjection_relation(A,B)). |
| 1058 | | simp_rule(Expr,equivalence(equal(A,empty_set),negation(equal(B,empty_set))),'SIMP_STREL_EQUAL_EMPTY') :- |
| 1059 | | is_empty(Expr,total_surjection_relation(A,B)). |
| 1060 | | simp_rule(Expr,equal(R,empty_set),'SIMP_DOM_EQUAL_EMPTY') :- is_empty(Expr,domain(R)). |
| 1061 | | simp_rule(Expr,equal(R,empty_set),'SIMP_RAN_EQUAL_EMPTY') :- is_empty(Expr,range(R)). |
| 1062 | | simp_rule(Expr,equal(intersection(range(P),domain(Q)),empty_set),'SIMP_FCOMP_EQUAL_EMPTY') :- is_empty(Expr,composition(P,Q)). |
| 1063 | | simp_rule(Expr,equal(intersection(range(Q),domain(P)),empty_set),'SIMP_BCOMP_EQUAL_EMPTY') :- is_empty(Expr,ring(P,Q)). |
| 1064 | | simp_rule(Expr,equal(intersection(domain(R),S),empty_set),'SIMP_DOMRES_EQUAL_EMPTY') :- is_empty(Expr,domain_restriction(S,R)). |
| 1065 | | simp_rule(Expr,subset(domain(R),S),'SIMP_DOMSUB_EQUAL_EMPTY') :- is_empty(Expr,domain_subtraction(S,R)). |
| 1066 | | simp_rule(Expr,equal(intersection(range(R),S),empty_set),'SIMP_RANRES_EQUAL_EMPTY') :- is_empty(Expr,range_restriction(R,S)). |
| 1067 | | simp_rule(Expr,subset(range(R),S),'SIMP_RANSUB_EQUAL_EMPTY') :- is_empty(Expr,range_subtraction(R,S)). |
| 1068 | | simp_rule(Expr,equal(R,empty_set),'SIMP_CONVERSE_EQUAL_EMPTY') :- is_empty(Expr,reverse(R)). |
| 1069 | | simp_rule(Expr,equal(domain_restriction(S,R),empty_set),'SIMP_RELIMAGE_EQUAL_EMPTY') :- is_empty(Expr,image(R,S)). |
| 1070 | | simp_rule(Expr,Res,'SIMP_OVERL_EQUAL_EMPTY') :- is_empty(Expr,Over), Over = overwrite(_,_), and_empty(Over,Res,overwrite). |
| 1071 | | simp_rule(Expr,equal(intersection(domain(P),domain(Q)),empty_set),'SIMP_DPROD_EQUAL_EMPTY') :- is_empty(Expr,direct_product(P,Q)). |
| 1072 | | simp_rule(Expr,disjunct(equal(P,empty_set),equal(Q,empty_set)),'SIMP_PPROD_EQUAL_EMPTY') :- is_empty(Expr,parallel_product(P,Q)). |
| 1073 | | simp_rule(Expr,falsity,'SIMP_ID_EQUAL_EMPTY') :- is_empty(Expr,event_b_identity). |
| 1074 | | simp_rule(Expr,falsity,'SIMP_PRJ1_EQUAL_EMPTY') :- is_empty(Expr,event_b_first_projection_v2). |
| 1075 | | simp_rule(Expr,falsity,'SIMP_PRJ2_EQUAL_EMPTY') :- is_empty(Expr,event_b_second_projection_v2). |
| 1076 | | simp_rule(Eq,P,'SIMP_LIT_EQUAL_KBOOL_TRUE') :- is_equality(Eq,convert_bool(P),boolean_true). |
| 1077 | | simp_rule(Eq,negation(P),'SIMP_LIT_EQUAL_KBOOL_FALSE') :- is_equality(Eq,convert_bool(P),boolean_false). |
| 1078 | | simp_rule(convert_bool(Eq),P,'SIMP_KBOOL_LIT_EQUAL_TRUE') :- is_equality(Eq,P,boolean_true). |
| 1079 | | simp_rule(implication(truth,P),P,'SIMP_SPECIAL_IMP_BTRUE_L'). |
| 1080 | | simp_rule(implication(P,falsity),negation(P),'SIMP_SPECIAL_IMP_BFALSE_R'). |
| 1081 | | simp_rule(not_member(L,R),negation(member(L,R)),'SIMP_NOTIN'). |
| 1082 | | simp_rule(not_subset_strict(L,R),negation(subset_strict(L,R)),'SIMP_NOTSUBSET'). |
| 1083 | | simp_rule(not_subset(L,R),negation(subset(L,R)),'SIMP_NOTSUBSETEQ'). |
| 1084 | | simp_rule(I,equal(E,boolean_true),'SIMP_SPECIAL_NOT_EQUAL_FALSE') :- is_no_equality(I,E,boolean_false). |
| 1085 | ? | simp_rule(I,equal(E,boolean_false),'SIMP_SPECIAL_NOT_EQUAL_TRUE') :- is_no_equality(I,E,boolean_true). |
| 1086 | | simp_rule(forall(X,P1,P2),Res,'SIMP_FORALL_AND') :- P2 = conjunct(_,_), distribute_forall(X,P1,P2,Res). |
| 1087 | | simp_rule(exists(X,D),Res,'SIMP_EXISTS_OR') :- D = disjunct(_,_), distribute_exists(X,D,Res). |
| 1088 | | simp_rule(exists(X,implication(P,Q)),implication(forall(X,truth,P),exists(X,Q)),'SIMP_EXISTS_IMP'). |
| 1089 | ? | simp_rule(forall(L,P1,P2),forall(Used,P1,P2),'SIMP_FORALL') :- remove_unused_identifier(L,P1,Used). |
| 1090 | | simp_rule(exists(L,P),exists(Used,P),'SIMP_EXISTS') :- remove_unused_identifier(L,P,Used). |
| 1091 | | simp_rule(negation(forall(X,P1,P2)),exists(X,negation(implication(P1,P2))),'DERIV_NOT_FORALL'). |
| 1092 | | simp_rule(negation(exists(X,P)),forall(X,truth,negation(P)),'DERIV_NOT_EXISTS'). |
| 1093 | | simp_rule(event_b_comprehension_set(Ids,E,P),event_b_comprehension_set(Used,E,P),'SIMP_COMPSET') :- % own rule |
| 1094 | | remove_unused_identifier(Ids,P,Used). |
| 1095 | | simp_rule(equal(boolean_true,boolean_false),falsity,'SIMP_SPECIAL_EQUAL_TRUE'). |
| 1096 | | simp_rule(equal(couple(E,F),couple(G,H)),conjunct(equal(E,G),equal(F,H)),'SIMP_EQUAL_MAPSTO'). |
| 1097 | | simp_rule(equal(SetE,SetF),equal(E,F),'SIMP_EQUAL_SING') :- singleton_set(SetE,E),singleton_set(SetF,F). |
| 1098 | | simp_rule(set_subtraction(S,S),empty_set,'SIMP_MULTI_SETMINUS'). |
| 1099 | | simp_rule(set_subtraction(S,empty_set),S,'SIMP_SPECIAL_SETMINUS_R'). |
| 1100 | | simp_rule(set_subtraction(empty_set,_),empty_set,'SIMP_SPECIAL_SETMINUS_L'). |
| 1101 | | simp_rule(member(E,set_subtraction(_,set_extension(L))),falsity,'DERIV_MULTI_IN_SETMINUS') :- member(F,L), equal_terms(E,F). |
| 1102 | | simp_rule(member(E,U),truth,'DERIV_MULTI_IN_BUNION') :- U = union(_,_), |
| 1103 | | member_of(union,set_extension(L),U), |
| 1104 | | member(F,L), |
| 1105 | | equal_terms(E,F). |
| 1106 | | simp_rule(convert_bool(truth),boolean_true,'SIMP_SPECIAL_KBOOL_BTRUE'). |
| 1107 | | simp_rule(convert_bool(falsity),boolean_false,'SIMP_SPECIAL_KBOOL_BFALSE'). |
| 1108 | | simp_rule(subset(Union,T),Res,'DISTRI_SUBSETEQ_BUNION_SING') :- |
| 1109 | ? | member_of(union,SetF,Union), |
| 1110 | | singleton_set(SetF,_), |
| 1111 | | union_subset_member(T,Union,Res). |
| 1112 | | simp_rule(finite(S),exists([N,F],member(F,total_bijection(interval(1,N),S))),'DEF_FINITE') :- |
| 1113 | | new_identifier(S,N), |
| 1114 | | new_function(S,F). |
| 1115 | | simp_rule(finite(U),Conj,'SIMP_FINITE_BUNION') :- U = union(_,_), finite_union(U,Conj). |
| 1116 | | simp_rule(finite(pow_subset(S)),finite(S),'SIMP_FINITE_POW'). |
| 1117 | | simp_rule(finite(cartesian_product(S,T)),disjunct(disjunct(equal(S,empty_set),equal(T,empty_set)),conjunct(finite(S),finite(T))),'DERIV_FINITE_CPROD'). |
| 1118 | | simp_rule(finite(reverse(R)),finite(R),'SIMP_FINITE_CONVERSE'). |
| 1119 | | simp_rule(finite(domain_restriction(E,event_b_identity)),finite(E),'SIMP_FINITE_ID_DOMRES'). |
| 1120 | | simp_rule(finite(domain_restriction(E,event_b_first_projection_v2)),finite(E),'SIMP_FINITE_PRJ1_DOMRES'). |
| 1121 | | simp_rule(finite(domain_restriction(E,event_b_second_projection_v2)),finite(E),'SIMP_FINITE_PRJ2_DOMRES'). |
| 1122 | | simp_rule(finite(Nat),falsity,'SIMP_FINITE_NATURAL') :- is_natural_set(Nat). |
| 1123 | | simp_rule(finite(Nat),falsity,'SIMP_FINITE_NATURAL1') :- is_natural1_set(Nat). |
| 1124 | | simp_rule(finite(Z),falsity,'SIMP_FINITE_INTEGER') :- is_integer_set(Z). |
| 1125 | | simp_rule(Eq,P,'SIMP_SPECIAL_EQV_BTRUE') :- is_equivalence(Eq,P,truth). |
| 1126 | | simp_rule(Eq,negation(P),'SIMP_SPECIAL_EQV_BFALSE') :- is_equivalence(Eq,P,falsity). |
| 1127 | | simp_rule(subset_strict(A,B),conjunct(subset(A,B),negation(equal(A,B))),'DEF_SUBSET'). |
| 1128 | | simp_rule(subset_strict(_,empty_set),falsity,'SIMP_SPECIAL_SUBSET_R'). |
| 1129 | | simp_rule(subset_strict(empty_set,S),negation(equal(S,empty_set)),'SIMP_SPECIAL_SUBSET_L'). |
| 1130 | | simp_rule(subset_strict(S,T),falsity,'SIMP_MULTI_SUBSET') :- equal_terms(S,T). |
| 1131 | | simp_rule(C,Res,'DISTRI_PROD_PLUS') :- distri(C,Res,multiplication,add). |
| 1132 | | simp_rule(C,Res,'DISTRI_PROD_MINUS') :- distri(C,Res,multiplication,minus). |
| 1133 | ? | simp_rule(C,Res,'DISTRI_AND_OR') :- distri(C,Res,conjunct,disjunct). |
| 1134 | | simp_rule(C,Res,'DISTRI_OR_AND') :- distri(C,Res,disjunct,conjunct). |
| 1135 | | simp_rule(implication(P,Q),implication(negation(Q),negation(P)),'DERIV_IMP'). |
| 1136 | | simp_rule(implication(P,implication(Q,R)),implication(conjunct(P,Q),R),'DERIV_IMP_IMP'). |
| 1137 | | simp_rule(implication(P,C),Res,'DISTRI_IMP_AND') :- C = conjunct(_,_), and_imp(C,P,Res,conjunct). |
| 1138 | | simp_rule(implication(D,R),Res,'DISTRI_IMP_OR') :- D = disjunct(_,_), and_imp(D,R,Res,disjunct). |
| 1139 | | simp_rule(equivalence(P,Q),conjunct(implication(P,Q),implication(Q,P)),'DEF_EQV'). |
| 1140 | | simp_rule(C,P,'SIMP_SPECIAL_AND_BTRUE') :- C = conjunct(P,truth) ; C = conjunct(truth,P). |
| 1141 | | simp_rule(D,P,'SIMP_SPECIAL_OR_BFALSE') :- D = disjunct(P,falsity) ; D = disjunct(falsity,P). |
| 1142 | | simp_rule(implication(NotP,P),P,'SIMP_MULTI_IMP_NOT_L') :- is_negation(P,NotP). |
| 1143 | | simp_rule(implication(P,NotP),NotP,'SIMP_MULTI_IMP_NOT_R') :- is_negation(P,NotP). |
| 1144 | | simp_rule(Eq,falsity,'SIMP_MULTI_EQV_NOT') :- is_equivalence(Eq,P,NotP), is_negation(P,NotP). |
| 1145 | | simp_rule(implication(C,Q),truth,'SIMP_MULTI_IMP_AND') :- member_of(conjunct,Q,C). |
| 1146 | | simp_rule(negation(truth),falsity,'SIMP_SPECIAL_NOT_BTRUE'). |
| 1147 | | simp_rule(Expr,equal(set_subtraction(I0,C),empty_set),'SIMP_BINTER_SETMINUS_EQUAL_EMPTY') :- |
| 1148 | | is_empty(Expr,I), |
| 1149 | | member_of(intersection,set_subtraction(B,C),I), |
| 1150 | | select_op(minus(B,C),I,B,I0,intersection). |
| 1151 | | simp_rule(Expr,Res,'SIMP_BUNION_EQUAL_EMPTY') :- is_empty(Expr,Union), Union = union(_,_), and_empty(Union,Res,union). |
| 1152 | ? | simp_rule(Expr,subset(A,B),'SIMP_SETMINUS_EQUAL_EMPTY') :- is_empty(Expr,set_subtraction(A,B)). |
| 1153 | | simp_rule(Expr,forall([X],P,equal(E,empty_set)),'SIMP_QUNION_EQUAL_EMPTY') :- is_empty(Expr,quantified_union([X],P,E)). |
| 1154 | | simp_rule(Expr,falsity,'SIMP_NATURAL_EQUAL_EMPTY') :- is_empty(Expr,Nat), is_natural_set(Nat). |
| 1155 | | simp_rule(Expr,falsity,'SIMP_NATURAL1_EQUAL_EMPTY') :- is_empty(Expr,Nat), is_natural1_set(Nat). |
| 1156 | | simp_rule(Expr,disjunct(equal(S,empty_set),equal(T,empty_set)),'SIMP_CPROD_EQUAL_EMPTY') :- is_empty(Expr,cartesian_product(S,T)). |
| 1157 | | simp_rule(member(X,SetA),equal(X,A),'SIMP_IN_SING') :- |
| 1158 | | singleton_set(SetA,A). |
| 1159 | | simp_rule(subset(SetA,S),member(A,S),'SIMP_SUBSETEQ_SING') :- singleton_set(SetA,A). |
| 1160 | | simp_rule(subset(Union,S),Conj,'DERIV_SUBSETEQ_BUNION') :- Union = union(_,_), union_subset(S,Union,Conj). |
| 1161 | | simp_rule(subset(S,Inter),Conj,'DERIV_SUBSETEQ_BINTER') :- Inter = intersection(_,_), subset_inter(S,Inter,Conj). |
| 1162 | | simp_rule(member(_,empty_set),falsity,'SIMP_SPECIAL_IN') . |
| 1163 | | simp_rule(member(B,S),truth,'SIMP_MULTI_IN') :- S = set_extension(L), length(L,LL), LL > 1, member(B,L). |
| 1164 | | simp_rule(set_extension(L),set_extension(Res),'SIMP_MULTI_SETENUM') :- remove_duplicates(L,Res). |
| 1165 | | simp_rule(subset(S,U),truth,'SIMP_SUBSETEQ_BUNION') :- member_of(union,S,U). |
| 1166 | | simp_rule(subset(I,S),truth,'SIMP_SUBSETEQ_BINTER') :- member_of(intersection,S,I). |
| 1167 | | simp_rule(implication(C,negation(Q)),negation(C),'SIMP_MULTI_IMP_AND_NOT_R') :- member_of(conjunct,Q,C). |
| 1168 | | simp_rule(implication(C,Q),negation(C),'SIMP_MULTI_IMP_AND_NOT_L') :- member_of(conjunct,negation(Q),C). |
| 1169 | | simp_rule(U,S,'SIMP_SPECIAL_BUNION') :- U = union(S,empty_set) ; U = union(empty_set,S). |
| 1170 | | simp_rule(Eq,subset(NewU,T),'SIMP_MULTI_EQUAL_BUNION') :- |
| 1171 | | is_equality(Eq,U,T), |
| 1172 | | member_of(union,T,U), |
| 1173 | | remove_from_op(T,U,NewU,union). |
| 1174 | | simp_rule(Eq,subset(T,NewI),'SIMP_MULTI_EQUAL_BINTER') :- |
| 1175 | | is_equality(Eq,I,T), |
| 1176 | | member_of(intersection,T,I), |
| 1177 | | remove_from_op(T,I,NewI,intersection). |
| 1178 | | simp_rule(R,set_extension([empty_set]),'SIMP_SPECIAL_EQUAL_RELDOMRAN') :- R=..[Op,empty_set,empty_set], |
| 1179 | | member(Op,[total_surjection,total_bijection,total_surjection_relation]). |
| 1180 | | simp_rule(domain(cartesian_product(E,F)),E,'SIMP_MULTI_DOM_CPROD') :- equal_terms(E,F). |
| 1181 | | simp_rule(range(cartesian_product(E,F)),E,'SIMP_MULTI_RAN_CPROD') :- equal_terms(E,F). |
| 1182 | | simp_rule(image(cartesian_product(SetE,S),SetF),S,'SIMP_MULTI_RELIMAGE_CPROD_SING') :- |
| 1183 | | singleton_set(SetE,E), |
| 1184 | | singleton_set(SetF,F), |
| 1185 | | equal_terms(E,F). |
| 1186 | | simp_rule(image(set_extension([couple(E,G)]),SetF),set_extension([G]),'SIMP_MULTI_RELIMAGE_SING_MAPSTO') :- |
| 1187 | | singleton_set(SetF,F), |
| 1188 | | equal_terms(E,F). |
| 1189 | | simp_rule(domain(domain_restriction(A,F)),intersection(domain(F),A),'SIMP_MULTI_DOM_DOMRES'). |
| 1190 | | simp_rule(domain(domain_subtraction(A,F)),set_subtraction(domain(F),A),'SIMP_MULTI_DOM_DOMSUB'). |
| 1191 | | simp_rule(range(range_restriction(F,A)),intersection(range(F),A),'SIMP_MULTI_RAN_RANRES'). |
| 1192 | | simp_rule(range(range_subtraction(F,A)),set_subtraction(range(F),A),'SIMP_MULTI_RAN_RANSUB'). |
| 1193 | | simp_rule(M,exists([Y],member(couple(R,Y),F)),'DEF_IN_DOM') :- |
| 1194 | | M = member(R,domain(F)), |
| 1195 | | new_identifier(M,Y). |
| 1196 | | simp_rule(M,exists([X],member(couple(X,R),F)),'DEF_IN_RAN') :- |
| 1197 | | M = member(R,range(F)), |
| 1198 | | new_identifier(M,X). |
| 1199 | | simp_rule(member(couple(E,F),reverse(R)),member(couple(F,E),R),'DEF_IN_CONVERSE'). |
| 1200 | | simp_rule(member(couple(E,F),domain_restriction(S,R)),conjunct(member(E,S),member(couple(E,F),R)),'DEF_IN_DOMRES'). |
| 1201 | | simp_rule(member(couple(E,F),range_restriction(R,T)),conjunct(member(couple(E,F),R),member(F,T)),'DEF_IN_RANRES'). |
| 1202 | | simp_rule(member(couple(E,F),domain_subtraction(S,R)),conjunct(not_member(E,S),member(couple(E,F),R)),'DEF_IN_DOMSUB'). |
| 1203 | | simp_rule(member(couple(E,F),range_subtraction(R,T)),conjunct(member(couple(E,F),R),not_member(F,T)),'DEF_IN_RANSUB'). |
| 1204 | | simp_rule(member(F,image(R,W)),exists([X],conjunct(member(X,W),member(couple(X,F),R))),'DEF_IN_RELIMAGE') :- |
| 1205 | | new_identifier(image(R,W),X). |
| 1206 | | simp_rule(M,exists(Ids,Res),'DEF_IN_FCOMP') :- |
| 1207 | | M = member(couple(E,F),Comp), |
| 1208 | | Comp = composition(_,_), |
| 1209 | | op_to_list(Comp,List,composition), |
| 1210 | | length(List,Length), |
| 1211 | | L1 is Length - 1, |
| 1212 | ? | new_identifiers(M,L1,Ids), |
| 1213 | ? | member_couples(E,F,List,Ids,ConjList), |
| 1214 | | list_to_op(ConjList,Res,conjunct). |
| 1215 | | simp_rule(image(Comp,S),image(Q,image(P,S)),'DERIV_RELIMAGE_FCOMP') :- split_composition(Comp,P,Q). |
| 1216 | | |
| 1217 | | simp_rule(composition(SetEF,SetGH),set_extension([couple(E,H)]),'DERIV_FCOMP_SING') :- |
| 1218 | | singleton_set(SetEF,couple(E,F)), |
| 1219 | | singleton_set(SetGH,couple(G,H)), |
| 1220 | | equal_terms(F,G). |
| 1221 | | simp_rule(overwrite(P,Q),union(domain_subtraction(domain(Q),P),Q),'DEF_OVERL'). |
| 1222 | | simp_rule(member(couple(E,F),event_b_identity),equal(E,F),'DEF_IN_ID'). |
| 1223 | | simp_rule(member(couple(E,couple(F,G)),direct_product(P,Q)),conjunct(member(couple(E,F),P),member(couple(E,G),Q)),'DEF_IN_DPROD'). |
| 1224 | | simp_rule(member(couple(couple(E,G),couple(F,H)),parallel_product(P,Q)),conjunct(member(couple(E,F),P),member(couple(G,H),Q)),'DEF_IN_PPROD'). |
| 1225 | | simp_rule(member(R,relations(S,T)),subset(R,cartesian_product(S,T)),'DEF_IN_REL'). |
| 1226 | | simp_rule(member(R,total_relation(S,T)),conjunct(member(R,relations(S,T)),equal(domain(R),S)),'DEF_IN_RELDOM'). |
| 1227 | | simp_rule(member(R,surjection_relation(S,T)),conjunct(member(R,relations(S,T)),equal(range(R),T)),'DEF_IN_RELRAN'). |
| 1228 | | simp_rule(member(R,total_surjection_relation(S,T)),conjunct(conjunct(member(R,relations(S,T)),equal(domain(R),S)),equal(range(R),T)),'DEF_IN_RELDOMRAN'). |
| 1229 | | simp_rule(M,conjunct(Conj1,Conj2),'DEF_IN_FCT') :- |
| 1230 | | M = member(F,partial_function(S,T)), |
| 1231 | | Conj1 = member(F,relations(S,T)), |
| 1232 | | new_identifiers(M,3,Ids), |
| 1233 | | Ids = [X,Y,Z], |
| 1234 | | Conj2 = forall(Ids,conjunct(member(couple(X,Y),F),member(couple(X,Z),F)),equal(Y,Z)). |
| 1235 | | simp_rule(member(X,total_function(Dom,Ran)),conjunct(Conj1,Conj2),'DEF_IN_TFCT') :- |
| 1236 | | Conj1 = member(X,partial_function(Dom,Ran)), |
| 1237 | | Conj2 = equal(domain(X),Dom). |
| 1238 | | simp_rule(member(F,partial_injection(S,T)),conjunct(member(F,partial_function(S,T)),member(reverse(F),partial_function(T,S))),'DEF_IN_INJ'). |
| 1239 | | simp_rule(member(F,total_injection(S,T)),conjunct(member(F,partial_injection(S,T)),equal(domain(F),S)),'DEF_IN_TINJ'). |
| 1240 | | simp_rule(member(F,partial_surjection(S,T)),conjunct(member(F,partial_function(S,T)),equal(range(F),T)),'DEF_IN_SURJ'). |
| 1241 | | simp_rule(member(F,total_surjection(S,T)),conjunct(member(F,partial_surjection(S,T)),equal(domain(F),S)),'DEF_IN_TSURJ'). |
| 1242 | | simp_rule(member(F,total_bijection(S,T)),conjunct(member(F,total_injection(S,T)),equal(range(F),T)),'DEF_IN_BIJ'). |
| 1243 | | simp_rule(C,Res,'DISTRI_BCOMP_BUNION') :- distri_r(C,Res,ring,union). |
| 1244 | | simp_rule(C,Res,'DISTRI_FCOMP_BUNION') :- distri(C,Res,composition,union). |
| 1245 | ? | simp_rule(C,Res,'DISTRI_DPROD_BUNION') :- distri_r(C,Res,direct_product,union). |
| 1246 | | simp_rule(C,Res,'DISTRI_DPROD_BINTER') :- distri_r(C,Res,direct_product,intersection). |
| 1247 | | simp_rule(C,Res,'DISTRI_DPROD_SETMINUS') :- distri_r(C,Res,direct_product,set_subtraction). |
| 1248 | | simp_rule(C,Res,'DISTRI_DPROD_OVERL') :- distri_r(C,Res,direct_product,overwrite). |
| 1249 | | simp_rule(C,Res,'DISTRI_PPROD_BUNION') :- distri_r(C,Res,parallel_product,union). |
| 1250 | | simp_rule(C,Res,'DISTRI_PPROD_BINTER') :- distri_r(C,Res,parallel_product,intersection). |
| 1251 | | simp_rule(C,Res,'DISTRI_PPROD_SETMINUS') :- distri_r(C,Res,parallel_product,set_subtraction). |
| 1252 | | simp_rule(C,Res,'DISTRI_PPROD_OVERL') :- distri_r(C,Res,parallel_product,overwrite). |
| 1253 | ? | simp_rule(C,Res,'DISTRI_OVERL_BUNION_L') :- distri_l(C,Res,overwrite,union). |
| 1254 | | simp_rule(C,Res,'DISTRI_OVERL_BINTER_L') :- distri_l(C,Res,overwrite,intersection). |
| 1255 | | simp_rule(C,Res,'DISTRI_DOMRES_BUNION') :- distri(C,Res,domain_restriction,union). |
| 1256 | | simp_rule(C,Res,'DISTRI_DOMRES_BINTER') :- distri(C,Res,domain_restriction,intersection). |
| 1257 | | simp_rule(C,Res,'DISTRI_DOMRES_DPROD') :- distri_r(C,Res,domain_restriction,direct_product). |
| 1258 | | simp_rule(C,Res,'DISTRI_DOMRES_OVERL') :- distri_r(C,Res,domain_restriction,overwrite). |
| 1259 | | simp_rule(C,Res,'DISTRI_DOMRES_SETMINUS') :- distri(C,Res,domain_restriction,set_subtraction). |
| 1260 | | simp_rule(C,Res,'DISTRI_DOMSUB_BUNION_R') :- distri_r(C,Res,domain_subtraction,union). |
| 1261 | ? | simp_rule(C,Res,'DISTRI_DOMSUB_BUNION_L') :- distri_l(C,Res,domain_subtraction,union,intersection). |
| 1262 | | simp_rule(C,Res,'DISTRI_DOMSUB_BINTER_R') :- distri_r(C,Res,domain_subtraction,intersection). |
| 1263 | | simp_rule(C,Res,'DISTRI_DOMSUB_BINTER_L') :- distri_l(C,Res,domain_subtraction,intersection,union). |
| 1264 | | simp_rule(C,Res,'DISTRI_DOMSUB_DPROD') :- distri_r(C,Res,domain_subtraction,direct_product). |
| 1265 | | simp_rule(C,Res,'DISTRI_DOMSUB_OVERL') :- distri_r(C,Res,domain_subtraction,overwrite). |
| 1266 | | simp_rule(C,Res,'DISTRI_RANRES_BUNION') :- distri(C,Res,range_restriction,union). |
| 1267 | | simp_rule(C,Res,'DISTRI_RANRES_BINTER') :- distri(C,Res,range_restriction,intersection). |
| 1268 | | simp_rule(C,Res,'DISTRI_RANRES_SETMINUS') :- distri(C,Res,range_restriction,set_subtraction). |
| 1269 | ? | simp_rule(C,Res,'DISTRI_RANSUB_BUNION_R') :- distri_r(C,Res,range_subtraction,union,intersection). |
| 1270 | ? | simp_rule(C,Res,'DISTRI_RANSUB_BUNION_L') :- distri_l(C,Res,range_subtraction,union). |
| 1271 | ? | simp_rule(C,Res,'DISTRI_RANSUB_BINTER_R') :- distri_r(C,Res,range_subtraction,intersection,union). |
| 1272 | | simp_rule(C,Res,'DISTRI_RANSUB_BINTER_L') :- distri_l(C,Res,range_subtraction,intersection). |
| 1273 | | simp_rule(C,Res,'DISTRI_CONVERSE_BUNION') :- C = reverse(U), U = union(_,_), distri_reverse(U,Res,union). |
| 1274 | | simp_rule(C,Res,'DISTRI_CONVERSE_BINTER') :- C = reverse(I), I = intersection(_,_), distri_reverse(I,Res,intersection). |
| 1275 | | simp_rule(C,Res,'DISTRI_CONVERSE_SETMINUS') :- C = reverse(S), S = set_subtraction(_,_), distri_reverse(S,Res,set_subtraction). |
| 1276 | | simp_rule(C,Res,'DISTRI_CONVERSE_BCOMP') :- C = reverse(R), R = ring(_,_), distri_reverse_reverse(R,Res,ring). |
| 1277 | | simp_rule(C,Res,'DISTRI_CONVERSE_FCOMP') :- C = reverse(R), R = composition(_,_), distri_reverse_reverse(R,Res,composition). |
| 1278 | | simp_rule(reverse(parallel_product(S,R)),parallel_product(reverse(S),reverse(R)),'DISTRI_CONVERSE_PPROD'). |
| 1279 | | simp_rule(reverse(domain_restriction(S,R)),range_restriction(reverse(R),S),'DISTRI_CONVERSE_DOMRES'). |
| 1280 | | simp_rule(reverse(domain_subtraction(S,R)),range_subtraction(reverse(R),S),'DISTRI_CONVERSE_DOMSUB'). |
| 1281 | | simp_rule(reverse(range_restriction(R,S)),domain_restriction(S,reverse(R)),'DISTRI_CONVERSE_RANRES'). |
| 1282 | | simp_rule(reverse(range_subtraction(R,S)),domain_subtraction(S,reverse(R)),'DISTRI_CONVERSE_RANSUB'). |
| 1283 | | simp_rule(domain(U),Res,'DISTRI_DOM_BUNION') :- U = union(_,_), distri_union(U,Res,domain). |
| 1284 | | simp_rule(range(U),Res,'DISTRI_RAN_BUNION') :- U = union(_,_), distri_union(U,Res,range). |
| 1285 | | simp_rule(image(R,U),Res,'DISTRI_RELIMAGE_BUNION_R') :- U = union(_,_), image_union(R,U,Res). |
| 1286 | | simp_rule(image(U,S),Res,'DISTRI_RELIMAGE_BUNION_L') :- U = union(_,_), union_image(U,S,Res). |
| 1287 | | simp_rule(member(LB,interval(LB,UB)),truth,'lower_bound_in_interval') :- number(LB), number(UB), LB =< UB. % own rule: lower bound in interval |
| 1288 | | simp_rule(member(Nr,interval(LB,UB)),truth,'SIMP_IN_UPTO') :- number(LB), number(UB), number(Nr), LB =< Nr, Nr =< UB. % own rule |
| 1289 | | simp_rule(member(Nr,interval(LB,UB)),falsity,'SIMP_IN_UPTO') :- number(LB), number(UB), number(Nr), (Nr =< LB ; UB =< Nr). % own rule |
| 1290 | | simp_rule(member(E,U),Res,'DEF_IN_BUNION') :- U = union(_,_), member_union(E,U,Res). |
| 1291 | | simp_rule(member(E,I),Res,'DEF_IN_BINTER') :- I = intersection(_,_), member_intersection(E,I,Res). |
| 1292 | | simp_rule(member(couple(E,F),cartesian_product(S,T)),conjunct(member(E,S),member(F,T)),'DEF_IN_MAPSTO'). |
| 1293 | | simp_rule(member(E,pow_subset(S)),subset(E,S),'DEF_IN_POW'). |
| 1294 | | simp_rule(member(E,pow1_subset(S)),conjunct(member(E,pow_subset(S)),not_equal(S,empty_set)),'DEF_IN_POW1'). |
| 1295 | | simp_rule(S,forall([X],member(X,A),member(X,B)),'DEF_SUBSETEQ') :- S = subset(A,B), new_identifier(S,X). |
| 1296 | | simp_rule(member(E,set_subtraction(S,T)),conjunct(member(E,S),negation(member(E,T))),'DEF_IN_SETMINUS'). |
| 1297 | | simp_rule(member(E,set_extension(L)),D,'DEF_IN_SETENUM') :- L = [A,B|T], |
| 1298 | | or_equal(T,E,disjunct(equal(E,A),equal(E,B)),D). |
| 1299 | | simp_rule(M,exists([X],conjunct(member(X,S),member(E,X))),'DEF_IN_KUNION') :- |
| 1300 | | M = member(E,general_union(S)), |
| 1301 | | new_identifier(M,X). |
| 1302 | | simp_rule(member(E,general_intersection(S)),forall([X],member(X,S),member(E,X)),'DEF_IN_KINTER') :- new_identifier(S,X). |
| 1303 | | simp_rule(member(E,quantified_union(Ids,P,T)),exists(NewIds,conjunct(P1,member(E,T1))),'DEF_IN_QUNION') :- |
| 1304 | | length(Ids,L), |
| 1305 | | new_identifiers(E,L,NewIds), |
| 1306 | | rewrite_pairwise(Ids,NewIds,conjunct(P,T),conjunct(P1,T1)). |
| 1307 | | simp_rule(member(E,quantified_intersection(Ids,P,T)),forall(NewIds,P1,member(E,T1)),'DEF_IN_QINTER') :- |
| 1308 | | length(Ids,L), |
| 1309 | | new_identifiers(E,L,NewIds), |
| 1310 | | rewrite_pairwise(Ids,NewIds,conjunct(P,T),conjunct(P1,T1)). |
| 1311 | | simp_rule(member(E,interval(L,R)),conjunct(less_equal(L,E),less_equal(E,R)),'DEF_IN_UPTO'). |
| 1312 | | simp_rule(C,Res,'DISTRI_BUNION_BINTER') :- distri(C,Res,union,intersection). |
| 1313 | | simp_rule(C,Res,'DISTRI_BINTER_BUNION') :- distri(C,Res,intersection,union). |
| 1314 | ? | simp_rule(C,Res,'DISTRI_BINTER_SETMINUS') :- distri(C,Res,intersection,set_subtraction). |
| 1315 | | simp_rule(C,Res,'DISTRI_SETMINUS_BUNION') :- distri_setminus(C,Res). |
| 1316 | | simp_rule(C,Res,'DISTRI_CPROD_BINTER') :- distri(C,Res,cartesian_product,intersection). |
| 1317 | | simp_rule(C,Res,'DISTRI_CPROD_BUNION') :- distri(C,Res,cartesian_product,union). |
| 1318 | | simp_rule(C,Res,'DISTRI_CPROD_SETMINUS') :- distri(C,Res,cartesian_product,set_subtraction). |
| 1319 | | simp_rule(subset(set_subtraction(A,B),S),subset(A,union(B,S)),'DERIV_SUBSETEQ_SETMINUS_L'). |
| 1320 | | simp_rule(subset(S,set_subtraction(A,B)),conjunct(subset(S,A),equal(intersection(S,B),empty_set)),'DERIV_SUBSETEQ_SETMINUS_R'). |
| 1321 | | simp_rule(partition(S,L),Res,'DEF_PARTITION') :- |
| 1322 | | length(L,LL), LL > 1, |
| 1323 | | list_to_op(L,U,union), |
| 1324 | | Eq = equal(S,U), |
| 1325 | | findall(equal(intersection(X,Y),empty_set),(all_pairs(L,Pairs), member([X,Y],Pairs)), Disjoint), |
| 1326 | | list_to_op([Eq|Disjoint],Res,conjunct). |
| 1327 | | simp_rule(partition(S,[]),equal(S,empty_set),'SIMP_EMPTY_PARTITION'). |
| 1328 | | simp_rule(partition(S,[T]),equal(S,T),'SIMP_SINGLE_PARTITION'). |
| 1329 | | simp_rule(domain(set_extension(L)),set_extension(Res),'SIMP_DOM_SETENUM') :- |
| 1330 | | map_dom(L,Dom), |
| 1331 | | without_duplicates(Dom,[],Res). |
| 1332 | | simp_rule(range(set_extension(L)),set_extension(Res),'SIMP_RAN_SETENUM') :- |
| 1333 | | map_ran(L,Ran), |
| 1334 | | without_duplicates(Ran,[],Res). |
| 1335 | | simp_rule(general_union(pow_subset(S)),S,'SIMP_KUNION_POW'). |
| 1336 | | simp_rule(general_union(pow1_subset(S)),S,'SIMP_KUNION_POW1'). |
| 1337 | | simp_rule(general_union(set_extension([empty_set])),empty_set,'SIMP_SPECIAL_KUNION'). |
| 1338 | | simp_rule(quantified_union([_],falsity,_),empty_set,'SIMP_SPECIAL_QUNION'). |
| 1339 | | simp_rule(general_intersection(set_extension([empty_set])),empty_set,'SIMP_SPECIAL_KINTER'). |
| 1340 | | simp_rule(general_intersection(pow_subset(S)),S,'SIMP_KINTER_POW'). |
| 1341 | | simp_rule(pow_subset(empty_set),set_extension([empty_set]),'SIMP_SPECIAL_POW'). |
| 1342 | | simp_rule(pow1_subset(empty_set),empty_set,'SIMP_SPECIAL_POW1'). |
| 1343 | | simp_rule(event_b_comprehension_set(Ids,X,member(X,S)),S,'SIMP_COMPSET_IN') :- |
| 1344 | | used_identifiers(X,Ids), |
| 1345 | | free_identifiers(S,Free), |
| 1346 | | list_intersection(Ids,Free,[]). |
| 1347 | | simp_rule(event_b_comprehension_set(Ids,X,subset(X,S)),pow_subset(S),'SIMP_COMPSET_SUBSETEQ') :- |
| 1348 | | used_identifiers(X,Ids), |
| 1349 | | free_identifiers(S,Free), |
| 1350 | | list_intersection(Ids,Free,[]). |
| 1351 | | simp_rule(event_b_comprehension_set(_,_,falsity),empty_set,'SIMP_SPECIAL_COMPSET_BFALSE'). |
| 1352 | | simp_rule(Expr,forall(Ids,truth,negation(P)),'SIMP_SPECIAL_EQUAL_COMPSET') :- |
| 1353 | | is_empty(Expr,event_b_comprehension_set(Ids,_,P)). |
| 1354 | | simp_rule(event_b_comprehension_set(Ids,F,Conj),event_b_comprehension_set(Ids0,F1,Conj0),'SIMP_COMPSET_EQUAL') :- |
| 1355 | | op_to_list(Conj,ConjList,conjunct), |
| 1356 | ? | select(Eq,ConjList,ConjList0), |
| 1357 | ? | is_equality(Eq,X,E), |
| 1358 | ? | list_to_op(ConjList0,Conj0,conjunct), |
| 1359 | | free_identifiers(conjunct(E,Conj0),Free), |
| 1360 | | op_to_list(X,CIds,couple), |
| 1361 | | list_intersection(CIds,Free,[]), |
| 1362 | | list_subset(CIds,Ids), |
| 1363 | | list_subtract(Ids,CIds,Ids0), |
| 1364 | | Ids0 \= [], |
| 1365 | | rewrite(X,E,F,F1). |
| 1366 | | simp_rule(member(E,event_b_comprehension_set(BIds,X,P)),Q,'SIMP_IN_COMPSET_ONEPOINT') :- |
| 1367 | | op_to_list(X,IdsX,couple), |
| 1368 | | IdsX = BIds, |
| 1369 | | op_to_list(E,IdsE,couple), |
| 1370 | | length(IdsX,LengthX), |
| 1371 | | length(IdsE,LengthE), |
| 1372 | | LengthE =:= LengthX, |
| 1373 | | rewrite_pairwise(IdsX,IdsE,P,Q). |
| 1374 | | simp_rule(member(F,event_b_comprehension_set(Ids,E,P)),exists(Ids,conjunct(P,equal(E,F))),'SIMP_IN_COMPSET') :- |
| 1375 | | free_identifiers(F,FreeInF), |
| 1376 | | list_intersection(Ids,FreeInF,[]). |
| 1377 | | simp_rule(function(event_b_comprehension_set([X],couple(X,E),_),Y),F,'SIMP_FUNIMAGE_LAMBDA') :- rewrite(X,Y,E,F). |
| 1378 | | simp_rule(Hyp,New,Rule) :- |
| 1379 | | CompSet = event_b_comprehension_set(Ids,couple(E,F),P), |
| 1380 | | NewComp = event_b_comprehension_set(Ids,E,P), |
| 1381 | | (Hyp = finite(CompSet), New = finite(NewComp), Rule = 'SIMP_FINITE_LAMBDA' ; |
| 1382 | | Hyp = card(CompSet), New = card(NewComp), Rule = 'SIMP_CARD_LAMBDA' ), |
| 1383 | | used_identifiers(E,IdsE), |
| 1384 | | list_subset(Ids,IdsE), |
| 1385 | | used_identifiers(F,IdsF), |
| 1386 | ? | list_intersection(IdsF,Ids,BoundF), |
| 1387 | | list_subset(BoundF,IdsE). |
| 1388 | | simp_rule(R,S,'SIMP_SPECIAL_OVERL') :- R = overwrite(S,empty_set) ; R = overwrite(empty_set,S). |
| 1389 | | simp_rule(domain(reverse(R)),range(R),'SIMP_DOM_CONVERSE'). |
| 1390 | | simp_rule(range(reverse(R)),domain(R),'SIMP_RAN_CONVERSE'). |
| 1391 | | simp_rule(domain_restriction(empty_set,_),empty_set,'SIMP_SPECIAL_DOMRES_L'). |
| 1392 | | simp_rule(domain_restriction(_,empty_set),empty_set,'SIMP_SPECIAL_DOMRES_R'). |
| 1393 | | simp_rule(domain_restriction(domain(R),R),R,'SIMP_MULTI_DOMRES_DOM'). |
| 1394 | | simp_rule(domain_restriction(range(R),reverse(R)),reverse(R),'SIMP_MULTI_DOMRES_RAN'). |
| 1395 | | simp_rule(domain_restriction(S,domain_restriction(T,event_b_identity)),domain_restriction(intersection(S,T),event_b_identity),'SIMP_DOMRES_DOMRES_ID'). |
| 1396 | | simp_rule(domain_restriction(S,domain_subtraction(T,event_b_identity)),domain_restriction(set_subtraction(S,T),event_b_identity),'SIMP_DOMRES_DOMSUB_ID'). |
| 1397 | | simp_rule(range_restriction(_,empty_set),empty_set,'SIMP_SPECIAL_RANRES_R'). |
| 1398 | | simp_rule(range_restriction(empty_set,_),empty_set,'SIMP_SPECIAL_RANRES_L'). |
| 1399 | | simp_rule(range_restriction(domain_restriction(S,event_b_identity),T),domain_restriction(intersection(S,T),event_b_identity),'SIMP_RANRES_DOMRES_ID'). |
| 1400 | | simp_rule(range_restriction(domain_subtraction(S,event_b_identity),T),domain_restriction(set_subtraction(T,S),event_b_identity),'SIMP_RANRES_DOMSUB_ID'). |
| 1401 | | simp_rule(range_restriction(R,range(R)),R,'SIMP_MULTI_RANRES_RAN'). |
| 1402 | | simp_rule(range_restriction(reverse(R),domain(R)),reverse(R),'SIMP_MULTI_RANRES_DOM'). |
| 1403 | | simp_rule(range_restriction(event_b_identity,S),domain_restriction(S,event_b_identity),'SIMP_RANRES_ID'). |
| 1404 | | simp_rule(range_subtraction(event_b_identity,S),domain_subtraction(S,event_b_identity),'SIMP_RANSUB_ID'). |
| 1405 | | simp_rule(domain_subtraction(empty_set,R),R,'SIMP_SPECIAL_DOMSUB_L'). |
| 1406 | | simp_rule(domain_subtraction(_,empty_set),empty_set,'SIMP_SPECIAL_DOMSUB_R'). |
| 1407 | | simp_rule(domain_subtraction(domain(R),R),empty_set,'SIMP_MULTI_DOMSUB_DOM'). |
| 1408 | | simp_rule(domain_subtraction(range(R),reverse(R)),empty_set,'SIMP_MULTI_DOMSUB_RAN'). |
| 1409 | | simp_rule(domain_subtraction(S,domain_restriction(T,event_b_identity)),domain_restriction(set_subtraction(T,S),event_b_identity),'SIMP_DOMSUB_DOMRES_ID'). |
| 1410 | | simp_rule(domain_subtraction(S,domain_subtraction(T,event_b_identity)),domain_subtraction(union(S,T),event_b_identity),'SIMP_DOMSUB_DOMSUB_ID'). |
| 1411 | | simp_rule(range_subtraction(R,empty_set),R,'SIMP_SPECIAL_RANSUB_R'). |
| 1412 | | simp_rule(range_subtraction(empty_set,_),empty_set,'SIMP_SPECIAL_RANSUB_L'). |
| 1413 | | simp_rule(range_subtraction(reverse(R),domain(R)),empty_set,'SIMP_MULTI_RANSUB_DOM'). |
| 1414 | | simp_rule(range_subtraction(R,range(R)),empty_set,'SIMP_MULTI_RANSUB_RAN'). |
| 1415 | | simp_rule(range_subtraction(domain_restriction(S,event_b_identity),T),domain_restriction(set_subtraction(S,T),event_b_identity),'SIMP_RANSUB_DOMRES_ID'). |
| 1416 | | simp_rule(range_subtraction(domain_subtraction(S,event_b_identity),T),domain_subtraction(union(S,T),event_b_identity),'SIMP_RANSUB_DOMSUB_ID'). |
| 1417 | | simp_rule(C,R,'SIMP_TYPE_FCOMP_ID') :- C = composition(R,event_b_identity) ; C = composition(event_b_identity,R). |
| 1418 | | simp_rule(C,R,'SIMP_TYPE_BCOMP_ID') :- C = ring(R,event_b_identity) ; C = ring(event_b_identity,R). |
| 1419 | | simp_rule(direct_product(_,empty_set),empty_set,'SIMP_SPECIAL_DPROD_R'). |
| 1420 | | simp_rule(direct_product(empty_set,_),empty_set,'SIMP_SPECIAL_DPROD_L'). |
| 1421 | | simp_rule(direct_product(cartesian_product(S,T),cartesian_product(U,V)), |
| 1422 | | cartesian_product(intersection(S,U),cartesian_product(T,V)),'SIMP_DPROD_CPROD'). |
| 1423 | | simp_rule(PP,empty_set,'SIMP_SPECIAL_PPROD') :- PP = parallel_product(_,empty_set) ; PP = parallel_product(empty_set,_). |
| 1424 | | simp_rule(parallel_product(cartesian_product(S,T),cartesian_product(U,V)), |
| 1425 | | cartesian_product(cartesian_product(S,U),cartesian_product(T,V)),'SIMP_PPROD_CPROD'). |
| 1426 | | simp_rule(image(_,empty_set),empty_set,'SIMP_SPECIAL_RELIMAGE_R'). |
| 1427 | | simp_rule(image(empty_set,_),empty_set,'SIMP_SPECIAL_RELIMAGE_L'). |
| 1428 | | simp_rule(image(R,domain(R)),range(R),'SIMP_MULTI_RELIMAGE_DOM'). |
| 1429 | | simp_rule(image(event_b_identity,T),T,'SIMP_RELIMAGE_ID'). |
| 1430 | | simp_rule(image(domain_restriction(S,event_b_identity),T),intersection(S,T),'SIMP_RELIMAGE_DOMRES_ID'). |
| 1431 | | simp_rule(image(domain_subtraction(S,event_b_identity),T),set_subtraction(T,S),'SIMP_RELIMAGE_DOMSUB_ID'). |
| 1432 | | simp_rule(image(reverse(range_subtraction(_,S)),S),empty_set,'SIMP_MULTI_RELIMAGE_CONVERSE_RANSUB'). |
| 1433 | | simp_rule(image(reverse(range_restriction(R,S)),S),image(reverse(R),S),'SIMP_MULTI_RELIMAGE_CONVERSE_RANRES'). |
| 1434 | | simp_rule(image(reverse(domain_subtraction(S,R)),T), |
| 1435 | | set_subtraction(image(reverse(R),T),S),'SIMP_RELIMAGE_CONVERSE_DOMSUB'). |
| 1436 | | simp_rule(image(range_subtraction(R,S),T),set_subtraction(image(R,T),S),'DERIV_RELIMAGE_RANSUB'). |
| 1437 | | simp_rule(image(range_restriction(R,S),T),intersection(image(R,T),S),'DERIV_RELIMAGE_RANRES'). |
| 1438 | | simp_rule(image(domain_subtraction(S,_),S),empty_set,'SIMP_MULTI_RELIMAGE_DOMSUB'). |
| 1439 | | simp_rule(image(domain_subtraction(S,R),T),image(R,set_subtraction(T,S)),'DERIV_RELIMAGE_DOMSUB'). |
| 1440 | | simp_rule(image(domain_restriction(S,R),T),image(R,intersection(S,T)),'DERIV_RELIMAGE_DOMRES'). |
| 1441 | | simp_rule(reverse(empty_set),empty_set,'SIMP_SPECIAL_CONVERSE'). |
| 1442 | | simp_rule(reverse(event_b_identity),event_b_identity,'SIMP_SPECIAL_ID'). |
| 1443 | | simp_rule(member(couple(E,F),set_subtraction(_,event_b_identity)),falsity,'SIMP_SPECIAL_IN_SETMINUS_ID') :- equal_terms(E,F). |
| 1444 | | simp_rule(member(couple(E,F),domain_restriction(S,event_b_identity)),member(E,S),'SIMP_SPECIAL_IN_DOMRES_ID') :- |
| 1445 | | equal_terms(E,F). |
| 1446 | | simp_rule(member(couple(E,F),set_subtraction(R,domain_restriction(S,event_b_identity))), |
| 1447 | | member(couple(E,F),domain_subtraction(S,R)),'SIMP_SPECIAL_IN_DOMRES_ID') :- equal_terms(E,F). |
| 1448 | | simp_rule(reverse(cartesian_product(S,T)),cartesian_product(T,S),'SIMP_CONVERSE_CPROD'). |
| 1449 | | simp_rule(reverse(set_extension(L)),set_extension(NewL),'SIMP_CONVERSE_SETENUM') :- convert_map_to(L,NewL). |
| 1450 | | simp_rule(reverse(event_b_comprehension_set(Ids,couple(X,Y),P)), |
| 1451 | | event_b_comprehension_set(Ids,couple(Y,X),P),'SIMP_CONVERSE_COMPSET'). |
| 1452 | | simp_rule(composition(domain_restriction(S,event_b_identity),R),domain_restriction(S,R),'SIMP_FCOMP_ID_L'). |
| 1453 | | simp_rule(composition(R,domain_restriction(S,event_b_identity)),range_restriction(R,S),'SIMP_FCOMP_ID_R'). |
| 1454 | | simp_rule(R,set_extension([empty_set]),'SIMP_SPECIAL_REL_R') :- R=..[Op,_,empty_set], |
| 1455 | ? | member(Op,[relations,surjection_relation,partial_function,partial_injection,partial_surjection]). |
| 1456 | | simp_rule(R,set_extension([empty_set]),'SIMP_SPECIAL_REL_L') :- R=..[Op,empty_set,_], |
| 1457 | | member(Op,[relations,total_relation,partial_function,total_function,partial_injection,total_injection]). |
| 1458 | | simp_rule(function(event_b_first_projection_v2,couple(E,_)),E,'SIMP_FUNIMAGE_PRJ1'). |
| 1459 | | simp_rule(function(event_b_second_projection_v2,couple(_,F)),F,'SIMP_FUNIMAGE_PRJ2'). |
| 1460 | | simp_rule(member(couple(E,function(F,E)),F),truth,'SIMP_IN_FUNIMAGE'). |
| 1461 | | simp_rule(member(couple(function(reverse(F),E),E),F),truth,'SIMP_IN_FUNIMAGE_CONVERSE_L'). |
| 1462 | | simp_rule(member(couple(function(F,E),E),reverse(F)),truth,'SIMP_IN_FUNIMAGE_CONVERSE_R'). |
| 1463 | | simp_rule(function(set_extension(L),_),E,'SIMP_MULTI_FUNIMAGE_SETENUM_LL') :- all_map_to(L,E). |
| 1464 | ? | simp_rule(function(set_extension(L),X),Y,'SIMP_MULTI_FUNIMAGE_SETENUM_LR') :- member(couple(Z,Y),L), equal_terms(X,Z). |
| 1465 | | simp_rule(function(Over,X),Y,'SIMP_MULTI_FUNIMAGE_OVERL_SETENUM') :- |
| 1466 | | Over = overwrite(_,_), |
| 1467 | | last_overwrite(Over,set_extension(L)), |
| 1468 | | member(couple(Z,Y),L), |
| 1469 | | equal_terms(X,Z). |
| 1470 | | simp_rule(function(U,X),Y,'SIMP_MULTI_FUNIMAGE_BUNION_SETENUM') :- |
| 1471 | ? | member_of(union,set_extension(L),U), |
| 1472 | ? | member(couple(Z,Y),L), |
| 1473 | | equal_terms(X,Z). |
| 1474 | | simp_rule(function(cartesian_product(_,set_extension([F])),_),F,'SIMP_FUNIMAGE_CPROD'). |
| 1475 | | simp_rule(function(F,function(reverse(F),E)),E,'SIMP_FUNIMAGE_FUNIMAGE_CONVERSE'). |
| 1476 | | simp_rule(function(reverse(F),function(F,E)),E,'SIMP_FUNIMAGE_CONVERSE_FUNIMAGE'). |
| 1477 | | simp_rule(function(set_extension(L),function(set_extension(L2),E)),E,'SIMP_FUNIMAGE_FUNIMAGE_CONVERSE_SETENUM') :- |
| 1478 | | convert_map_to(L,LConverted), |
| 1479 | | equal_terms(LConverted,L2). |
| 1480 | ? | simp_rule(Eq,member(couple(X,Y),F),'DEF_EQUAL_FUNIMAGE') :- is_equality(Eq,function(F,X),Y). |
| 1481 | | simp_rule(domain_restriction(SetE,event_b_identity),set_extension([couple(E,E)]),'DERIV_ID_SING') :- singleton_set(SetE,E). |
| 1482 | | simp_rule(domain(empty_set),empty_set,'SIMP_SPECIAL_DOM'). |
| 1483 | | simp_rule(range(empty_set),empty_set,'SIMP_SPECIAL_RAN'). |
| 1484 | | simp_rule(reverse(reverse(R)),R,'SIMP_CONVERSE_CONVERSE'). |
| 1485 | | simp_rule(function(event_b_identity,X),X,'SIMP_FUNIMAGE_ID'). |
| 1486 | | simp_rule(member(E,Nat),less_equal(0,E),'DEF_IN_NATURAL') :- is_natural_set(Nat). |
| 1487 | | simp_rule(member(E,Nat),less_equal(1,E),'DEF_IN_NATURAL1') :- is_natural1_set(Nat). |
| 1488 | | simp_rule(div(E,1),E,'SIMP_SPECIAL_DIV_1'). |
| 1489 | | simp_rule(div(0,_),0,'SIMP_SPECIAL_DIV_0'). |
| 1490 | | simp_rule(power_of(E,1),E,'SIMP_SPECIAL_EXPN_1_R'). |
| 1491 | | simp_rule(power_of(1,_),1,'SIMP_SPECIAL_EXPN_1_L'). |
| 1492 | | simp_rule(power_of(_,0),1,'SIMP_SPECIAL_EXPN_0'). |
| 1493 | | simp_rule(A,S,'SIMP_SPECIAL_PLUS') :- A = add(S,0) ; A = add(0,S). |
| 1494 | | simp_rule(Prod,Res,Rule) :- |
| 1495 | | Prod = multiplication(_,_), |
| 1496 | | op_to_list(Prod,L,multiplication), |
| 1497 | | change_sign(L,NL,Nr), |
| 1498 | | list_to_op(NL,New,multiplication), |
| 1499 | | (Nr mod 2 =:= 0 -> Rule = 'SIMP_SPECIAL_PROD_MINUS_EVEN', Res = New |
| 1500 | | ; Rule = 'SIMP_SPECIAL_PROD_MINUS_ODD', Res = unary_minus(New)). |
| 1501 | | simp_rule(unary_minus(I),J,'SIMP_LIT_MINUS') :- number(I), J is I * (-1). |
| 1502 | | simp_rule(minus(E,0),E,'SIMP_SPECIAL_MINUS_R'). |
| 1503 | | simp_rule(minus(0,E),unary_minus(E),'SIMP_SPECIAL_MINUS_L'). |
| 1504 | ? | simp_rule(unary_minus(F),E,'SIMP_MINUS_MINUS') :- is_minus(F,E). |
| 1505 | | simp_rule(minus(E,F),add(E,F2),'SIMP_MINUS_UNMINUS') :- is_minus(F,F2). |
| 1506 | | simp_rule(minus(E,F),0,'SIMP_MULTI_MINUS') :- equal_terms(E,F). |
| 1507 | | simp_rule(minus(S,C),S0,'SIMP_MULTI_MINUS_PLUS_L') :- select_op(C,S,S0,add). |
| 1508 | | simp_rule(minus(C,S),unary_minus(S0),'SIMP_MULTI_MINUS_PLUS_R') :- select_op(C,S,S0,add). |
| 1509 | | simp_rule(minus(S1,S2),minus(S01,S02),'SIMP_MULTI_MINUS_PLUS_PLUS') :- |
| 1510 | | member_of(add,El,S1), |
| 1511 | | select_op(El,S1,S01,add), |
| 1512 | | select_op(El,S2,S02,add), |
| 1513 | | S01 = add(_,_), |
| 1514 | | S02 = add(_,_). |
| 1515 | | simp_rule(S,S1,'SIMP_MULTI_PLUS_MINUS') :- |
| 1516 | | member_of(add,minus(C,D),S), |
| 1517 | | select_op(D,S,S0,add), |
| 1518 | | select_op(minus(C,D),S0,C,S1,add). |
| 1519 | | simp_rule(Ex,Res,'SIMP_MULTI_ARITHREL_PLUS_PLUS') :- |
| 1520 | | Ex=..[Rel,L,R], |
| 1521 | | comparison(Rel), |
| 1522 | | R = add(_,_), |
| 1523 | | member_of(add,El,L), |
| 1524 | | select_op(El,L,L0,add), |
| 1525 | | select_op(El,R,R0,add), |
| 1526 | | Res=..[Rel,L0,R0]. |
| 1527 | | simp_rule(Ex,Res,'SIMP_MULTI_ARITHREL_PLUS_R') :- |
| 1528 | | Ex=..[Rel,C,R], |
| 1529 | | comparison(Rel), |
| 1530 | | R = add(_,_), |
| 1531 | | select_op(C,R,R0,add), |
| 1532 | | Res=..[Rel,0,R0]. |
| 1533 | | simp_rule(Ex,Res,'SIMP_MULTI_ARITHREL_PLUS_L') :- |
| 1534 | | Ex=..[Rel,L,C], |
| 1535 | | comparison(Rel), |
| 1536 | | L = add(_,_), |
| 1537 | | select_op(C,L,L0,add), |
| 1538 | | Res=..[Rel,L0,0]. |
| 1539 | | simp_rule(Ex,Res,'SIMP_MULTI_ARITHREL_MINUS_MINUS_R') :- |
| 1540 | | Ex=..[Rel,L,R], |
| 1541 | | comparison(Rel), |
| 1542 | | L = minus(A,C1), |
| 1543 | | R = minus(B,C2), |
| 1544 | | equal_terms(C1,C2), |
| 1545 | | Res=..[Rel,A,B]. |
| 1546 | | simp_rule(Ex,Res,'SIMP_MULTI_ARITHREL_MINUS_MINUS_L') :- |
| 1547 | | Ex=..[Rel,L,R], |
| 1548 | | comparison(Rel), |
| 1549 | | L = minus(C1,A), |
| 1550 | | R = minus(C2,B), |
| 1551 | | equal_terms(C1,C2), |
| 1552 | | Res=..[Rel,B,A]. |
| 1553 | | simp_rule(P,E,'SIMP_SPECIAL_PROD_1') :- P = multiplication(E,1) ; P = multiplication(1,E). |
| 1554 | | simp_rule(min(set_extension(L)),min(set_extension(Res)),'SIMP_LIT_MIN') :- |
| 1555 | | min_list(L,I), |
| 1556 | ? | remove_greater(L,I,Res). |
| 1557 | | simp_rule(max(set_extension(L)),max(set_extension(Res)),'SIMP_LIT_MAX') :- |
| 1558 | | max_list(L,I), |
| 1559 | | remove_smaller(L,I,Res). |
| 1560 | | simp_rule(card(empty_set),0,'SIMP_SPECIAL_CARD'). |
| 1561 | | simp_rule(card(set_extension([_])),1,'SIMP_CARD_SING'). |
| 1562 | | simp_rule(Eq,equal(S,empty_set),'SIMP_SPECIAL_EQUAL_CARD') :- is_equality(Eq,card(S),0). |
| 1563 | | simp_rule(card(pow_subset(S)),power_of(2,card(S)),'SIMP_CARD_POW'). |
| 1564 | | simp_rule(card(union(S,T)),minus(add(card(S),card(T)),card(intersection(S,T))),'SIMP_CARD_BUNION'). |
| 1565 | | simp_rule(card(reverse(R)),card(R),'SIMP_CARD_CONVERSE'). |
| 1566 | | simp_rule(card(domain_restriction(S,event_b_identity)),S,'SIMP_CARD_ID_DOMRES'). |
| 1567 | | simp_rule(card(domain_restriction(E,event_b_first_projection_v2)),E,'SIMP_CARD_PRJ1_DOMRES'). |
| 1568 | | simp_rule(card(domain_restriction(E,event_b_second_projection_v2)),E,'SIMP_CARD_PRJ2_DOMRES'). |
| 1569 | | simp_rule(P,falsity,'SIMP_MULTI_LT') :- is_less(P,E,F), equal_terms(E,F). % covers SIMP_MULTI_GT too |
| 1570 | ? | simp_rule(div(NE,NF),div(E,F),'SIMP_DIV_MINUS') :- is_minus(NE,E), is_minus(NF,F). |
| 1571 | | simp_rule(div(E,F),1,'SIMP_MULTI_DIV') :- equal_terms(E,F). |
| 1572 | | simp_rule(modulo(0,_),0,'SIMP_SPECIAL_MOD_0'). |
| 1573 | | simp_rule(modulo(_,1),0,'SIMP_SPECIAL_MOD_1'). |
| 1574 | | simp_rule(modulo(E,F),1,'SIMP_MULTI_MOD') :- equal_terms(E,F). |
| 1575 | | simp_rule(min(SetE),E,'SIMP_MIN_SING') :- singleton_set(SetE,E). |
| 1576 | | simp_rule(max(SetE),E,'SIMP_MAX_SING') :- singleton_set(SetE,E). |
| 1577 | | simp_rule(div(P1,E2),P0,'SIMP_MULTI_DIV_PROD') :- |
| 1578 | ? | member_of(multiplication,E1,P1), |
| 1579 | | equal_terms(E1,E2), |
| 1580 | | select_op(E1,P1,P0,multiplication). |
| 1581 | | simp_rule(card(set_extension(L)),LL,'SIMP_TYPE_CARD') :- length(L,LL). |
| 1582 | | simp_rule(card(interval(I,J)),Res,'SIMP_LIT_CARD_UPTO') :- number(I), number(J), I =< J, Res is J - I + 1. |
| 1583 | | simp_rule(card(interval(I,J)),0,'SIMP_LIT_CARD_UPTO') :- number(I), number(J), I > J. % from "Proposal for an extensible rule-based prover for Event-B", pg. 7 |
| 1584 | | simp_rule(P,negation(equal(S,empty_set)),'SIMP_LIT_LE_CARD_1') :- is_less_eq(P,1,card(S)). |
| 1585 | | simp_rule(P,negation(equal(S,empty_set)),'SIMP_LIT_LT_CARD_0') :- is_less(P,0,card(S)). |
| 1586 | | simp_rule(Eq,exists([X],equal(S,set_extension([X]))),'SIMP_LIT_EQUAL_CARD_1') :- |
| 1587 | | is_equality(Eq,card(S),1), |
| 1588 | | new_identifier(S,X). |
| 1589 | | simp_rule(member(card(S),Nat),negation(equal(S,empty_set)),'SIMP_CARD_NATURAL1') :- is_natural1_set(Nat). |
| 1590 | | simp_rule(Eq,exists([F],member(F,total_bijection(interval(1,K),S))),'DEF_EQUAL_CARD') :- |
| 1591 | | is_equality(Eq,card(S),K), |
| 1592 | | new_function(conjunct(S,K),F). |
| 1593 | | simp_rule(equal(card(S),card(T)),exists([F],member(F,total_bijection(S,T))),'SIMP_EQUAL_CARD') :- |
| 1594 | | new_function(conjunct(S,T),F). |
| 1595 | | simp_rule(member(0,Nat),falsity,'SIMP_SPECIAL_IN_NATURAL1') :- is_natural1_set(Nat). |
| 1596 | | simp_rule(interval(I,J),empty_set,'SIMP_LIT_UPTO') :- number(I), number(J), I > J. |
| 1597 | | simp_rule(member(NI,Nat),falsity,'SIMP_LIT_IN_MINUS_NATURAL') :- |
| 1598 | | is_natural_set(Nat), |
| 1599 | | (NI = unary_minus(I), number(I), I > 0 |
| 1600 | | ; number(NI), NI < 0). |
| 1601 | | simp_rule(member(NI,Nat),falsity,'SIMP_LIT_IN_MINUS_NATURAL1') :- |
| 1602 | | is_natural1_set(Nat), |
| 1603 | | (NI = unary_minus(I), number(I), I >= 0 |
| 1604 | | ; number(NI), NI < 0). |
| 1605 | | simp_rule(min(Nat),0,'SIMP_MIN_NATURAL') :- is_natural_set(Nat). |
| 1606 | | simp_rule(min(Nat),1,'SIMP_MIN_NATURAL1') :- is_natural1_set(Nat). |
| 1607 | | simp_rule(max(interval(_,F)),F,'SIMP_MAX_UPTO'). |
| 1608 | | simp_rule(min(interval(E,_)),E,'SIMP_MIN_UPTO'). |
| 1609 | | simp_rule(Eq,conjunct(member(E,S),forall([X],member(X,S),less_equal(E,X))),'DEF_EQUAL_MIN') :- |
| 1610 | | is_equality(Eq,E,min(S)), |
| 1611 | | new_identifier(member(E,S),X). |
| 1612 | | simp_rule(Eq,conjunct(member(E,S),forall([X],member(X,S),greater_equal(E,X))),'DEF_EQUAL_MAX') :- |
| 1613 | | is_equality(Eq,E,max(S)), |
| 1614 | | new_identifier(member(E,S),X). |
| 1615 | | simp_rule(min(U),min(New),'SIMP_MIN_BUNION_SING') :- U = union(_,_), select_op(set_extension([min(T)]),U,T,New,union). |
| 1616 | | simp_rule(max(U),max(New),'SIMP_MAX_BUNION_SING') :- U = union(_,_), select_op(set_extension([max(T)]),U,T,New,union). |
| 1617 | | simp_rule(Expr,falsity,'SIMP_POW_EQUAL_EMPTY') :- is_empty(Expr,pow_subset(_)). |
| 1618 | | simp_rule(Expr,equal(S,empty_set),'SIMP_POW1_EQUAL_EMPTY') :- is_empty(Expr,pow1_subset(S)). |
| 1619 | | simp_rule(Expr,subset(S,set_extension([empty_set])),'SIMP_KUNION_EQUAL_EMPTY') :- is_empty(Expr,general_union(S)). |
| 1620 | | |
| 1621 | | simp_rule(D,implication(negation(P),D0),'DEF_OR',OuterOp) :- OuterOp \= disjunct, D = disjunct(_,_), select_op(P,D,D0,disjunct). |
| 1622 | | simp_rule(C,falsity,'SIMP_SPECIAL_AND_BFALSE',OuterOp) :- OuterOp \= conjunct, member_of(conjunct,falsity,C). |
| 1623 | ? | simp_rule(D,truth,'SIMP_SPECIAL_OR_BTRUE',OuterOp) :- OuterOp \= disjunct, member_of(disjunct,truth,D). |
| 1624 | ? | simp_rule(C,Res,'SIMP_MULTI_AND',OuterOp) :- OuterOp \= conjunct, remove_duplicates(C,Res,conjunct). |
| 1625 | ? | simp_rule(D,Res,'SIMP_MULTI_OR',OuterOp) :- OuterOp \= disjunct, remove_duplicates(D,Res,disjunct). |
| 1626 | | simp_rule(C,falsity,'SIMP_MULTI_AND_NOT',OuterOp) :- |
| 1627 | | OuterOp \= conjunct, |
| 1628 | ? | member_of(conjunct,Q,C), |
| 1629 | ? | member_of(conjunct,NotQ,C), |
| 1630 | | is_negation(Q,NotQ). |
| 1631 | | simp_rule(D,truth,'SIMP_MULTI_OR_NOT',OuterOp) :- |
| 1632 | | OuterOp \= disjunct, |
| 1633 | ? | member_of(disjunct,Q,D), |
| 1634 | ? | member_of(disjunct,NotQ,D), |
| 1635 | | is_negation(Q,NotQ). |
| 1636 | ? | simp_rule(I,empty_set,'SIMP_SPECIAL_BINTER',OuterOp) :- OuterOp \= intersection, member_of(intersection,empty_set,I). |
| 1637 | | simp_rule(I,Res,'SIMP_MULTI_BINTER',OuterOp) :- OuterOp \= intersection, remove_duplicates(I,Res,intersection). |
| 1638 | | simp_rule(U,Res,'SIMP_MULTI_BUNION',OuterOp) :- OuterOp \= union, remove_duplicates(U,Res,union). |
| 1639 | | simp_rule(C,empty_set,'SIMP_SPECIAL_CPROD',OuterOp) :- OuterOp \= cartesian_product, member_of(cartesian_product,empty_set,C). |
| 1640 | | simp_rule(C,empty_set,'SIMP_SPECIAL_FCOMP',OuterOp) :- OuterOp \= composition, member_of(composition,empty_set,C). |
| 1641 | | simp_rule(Comp,empty_set,'SIMP_SPECIAL_BCOMP',OuterOp) :- OuterOp \= ring, member_of(ring,empty_set,Comp). |
| 1642 | ? | simp_rule(C,Res,'DEF_BCOMP',OuterOp) :- OuterOp \= ring, C = ring(_,_), bwd_to_fwd_comp(C,Comp), reorder(Comp,Res,composition). |
| 1643 | ? | simp_rule(P,0,'SIMP_SPECIAL_PROD_0',OuterOp) :- OuterOp \= multiplication, member_of(multiplication,0,P). |
| 1644 | | simp_rule(Comp,Res,'SIMP_BCOMP_ID',OuterOp) :- OuterOp \= ring, |
| 1645 | | op_to_list(Comp,List,ring), |
| 1646 | ? | rewrite_comp_id(List,List2), |
| 1647 | | list_to_op(List2,Res,ring), |
| 1648 | | Comp \= Res. |
| 1649 | | simp_rule(Comp,Res,'SIMP_FCOMP_ID',OuterOp) :- OuterOp \= composition, |
| 1650 | | op_to_list(Comp,List,composition), |
| 1651 | ? | rewrite_comp_id(List,List2), |
| 1652 | ? | list_to_op(List2,Res,composition), |
| 1653 | | Comp \= Res. |
| 1654 | ? | simp_rule(Comp,Res,'DERIV_FCOMP_DOMRES',OuterOp) :- OuterOp \= composition, deriv_fcomp_dom(Comp,domain_restriction,Res). |
| 1655 | ? | simp_rule(Comp,Res,'DERIV_FCOMP_DOMSUB',OuterOp) :- OuterOp \= composition, deriv_fcomp_dom(Comp,domain_subtraction,Res). |
| 1656 | ? | simp_rule(Comp,Res,'DERIV_FCOMP_RANRES',OuterOp) :- OuterOp \= composition, deriv_fcomp_ran(Comp,range_restriction,Res). |
| 1657 | | simp_rule(Comp,Res,'DERIV_FCOMP_RANSUB',OuterOp) :- OuterOp \= composition, deriv_fcomp_ran(Comp,range_subtraction,Res). |
| 1658 | | |
| 1659 | | simp_rule_with_info(Eq,conjunct(equal(S,empty_set),equal(R,Ty)),'SIMP_DOMSUB_EQUAL_TYPE',Info) :- |
| 1660 | | is_equality(Eq,domain_subtraction(S,R),Ty), |
| 1661 | | type_expression(Ty,Info). |
| 1662 | | simp_rule_with_info(Eq,conjunct(equal(S,empty_set),equal(R,Ty)),'SIMP_RANSUB_EQUAL_TYPE',Info) :- |
| 1663 | | is_equality(Eq,range_subtraction(R,S),Ty), |
| 1664 | | type_expression(Ty,Info). |
| 1665 | | simp_rule_with_info(Eq,equal(R,reverse(Ty)),'SIMP_CONVERSE_EQUAL_TYPE',Info) :- |
| 1666 | | is_equality(Eq,reverse(R),Ty), |
| 1667 | | type_expression(Ty,Info). |
| 1668 | ? | simp_rule_with_info(subset(_,Ty),truth,'SIMP_TYPE_SUBSETEQ',Info) :- type_expression(Ty,Info). |
| 1669 | ? | simp_rule_with_info(set_subtraction(_,Ty),empty_set,'SIMP_TYPE_SETMINUS',Info) :- type_expression(Ty,Info). |
| 1670 | ? | simp_rule_with_info(set_subtraction(Ty,set_subtraction(Ty,S)),S,'SIMP_TYPE_SETMINUS_SETMINUS',Info) :- type_expression(Ty,Info). |
| 1671 | | simp_rule_with_info(member(_,Ty),truth,'SIMP_TYPE_IN',Info) :- type_expression(Ty,Info). |
| 1672 | | simp_rule_with_info(subset_strict(S,Ty),not_equal(S,Ty),'SIMP_TYPE_SUBSET_L',Info) :- type_expression(Ty,Info). |
| 1673 | | simp_rule_with_info(Eq,conjunct(equal(A,Ty),equal(B,empty_set)),'SIMP_SETMINUS_EQUAL_TYPE',Info) :- |
| 1674 | | is_equality(Eq,set_subtraction(A,B),Ty), |
| 1675 | | type_expression(Ty,Info). |
| 1676 | | simp_rule_with_info(Eq,Res,'SIMP_BINTER_EQUAL_TYPE',Info) :- |
| 1677 | | is_equality(Eq,I,Ty), |
| 1678 | | I = intersection(_,_), |
| 1679 | | type_expression(Ty,Info), |
| 1680 | | and_equal_type(I,Ty,Res). |
| 1681 | | simp_rule_with_info(Eq,equal(S,set_extension([Ty])),'SIMP_KINTER_EQUAL_TYPE',Info) :- |
| 1682 | | is_equality(Eq,general_intersection(S),Ty), |
| 1683 | | type_expression(Ty,Info). |
| 1684 | | simp_rule_with_info(Expr,falsity,'SIMP_TYPE_EQUAL_EMPTY',Info) :- is_empty(Expr,Ty), type_expression(Ty,Info). |
| 1685 | | simp_rule_with_info(Eq,forall([X],P,equal(E,Ty)),'SIMP_QINTER_EQUAL_TYPE',Info) :- |
| 1686 | | is_equality(Eq,quantified_intersection([X],P,E),Ty), |
| 1687 | | type_expression(Ty,Info). |
| 1688 | ? | simp_rule_with_info(I,S,'SIMP_TYPE_BINTER',Info) :- (I = intersection(S,Ty) ; I = intersection(Ty,S)), type_expression(Ty,Info). |
| 1689 | | simp_rule_with_info(Eq,falsity,'SIMP_TYPE_EQUAL_RELDOMRAN',Info) :- |
| 1690 | | is_equality(Eq,R,Ty), |
| 1691 | | type_expression(Ty,Info), |
| 1692 | | is_rel(R,_,_,_), |
| 1693 | | R=..[Op,_,_], |
| 1694 | | \+ member(Op,[relations,partial_function,partial_injection]). |
| 1695 | | simp_rule_with_info(member(Prj,RT),truth,Rule,Info) :- |
| 1696 | | (Prj = event_b_first_projection_v2, Rule = 'DERIV_PRJ1_SURJ' |
| 1697 | | ; Prj = event_b_second_projection_v2, Rule = 'DERIV_PRJ2_SURJ'), |
| 1698 | | is_rel(RT,_,Ty1,Ty2), |
| 1699 | | \+ is_inj(RT,Ty1,Ty2), |
| 1700 | | type_expression(Ty1,Info), |
| 1701 | | type_expression(Ty2,Info). |
| 1702 | | simp_rule_with_info(member(event_b_identity,RT),truth,'DERIV_ID_BIJ',Info) :- is_rel(RT,_,Ty,Ty), type_expression(Ty,Info). |
| 1703 | | simp_rule_with_info(domain_restriction(Ty,R),R,'SIMP_TYPE_DOMRES',Info) :- type_expression(Ty,Info). |
| 1704 | | simp_rule_with_info(range_restriction(R,Ty),R,'SIMP_TYPE_RANRES',Info) :- type_expression(Ty,Info). |
| 1705 | | simp_rule_with_info(domain_subtraction(Ty,R),R,'SIMP_TYPE_DOMSUB',Info) :- type_expression(Ty,Info). |
| 1706 | | simp_rule_with_info(range_subtraction(R,Ty),R,'SIMP_TYPE_RANSUB',Info) :- type_expression(Ty,Info). |
| 1707 | | simp_rule_with_info(image(R,Ty),range(R),'SIMP_TYPE_RELIMAGE',Info) :- type_expression(Ty,Info). |
| 1708 | | simp_rule_with_info(composition(R,Ty),cartesian_product(domain(R),Tb),'SIMP_TYPE_FCOMP_R',Info) :- |
| 1709 | ? | type_expression(Ty,Info), |
| 1710 | | Ty = cartesian_product(_,Tb). |
| 1711 | | simp_rule_with_info(composition(Ty,R),cartesian_product(Ta,range(R)),'SIMP_TYPE_FCOMP_L',Info) :- |
| 1712 | | type_expression(Ty,Info), |
| 1713 | | Ty = cartesian_product(Ta,_). |
| 1714 | | simp_rule_with_info(ring(Ty,R),cartesian_product(domain(R),Tb),'SIMP_TYPE_BCOMP_L',Info) :- |
| 1715 | | type_expression(Ty,Info), |
| 1716 | | Ty = cartesian_product(_,Tb). |
| 1717 | | simp_rule_with_info(ring(R,Ty),cartesian_product(Ta,range(R)),'SIMP_TYPE_BCOMP_R',Info) :- |
| 1718 | | type_expression(Ty,Info), |
| 1719 | | Ty = cartesian_product(Ta,_). |
| 1720 | ? | simp_rule_with_info(domain(Ty),Ta,'SIMP_TYPE_DOM',Info) :- type_expression(Ty,Info), Ty = cartesian_product(Ta,_). |
| 1721 | ? | simp_rule_with_info(range(Ty),Tb,'SIMP_TYPE_RAN',Info) :- type_expression(Ty,Info), Ty = cartesian_product(_,Tb). |
| 1722 | | simp_rule_with_info(Eq,conjunct(equal(S,Ta),equal(T,Tb)),'SIMP_CPROD_EQUAL_TYPE',Info) :- |
| 1723 | | is_equality(Eq,cartesian_product(S,T),Ty), |
| 1724 | | type_expression(Ty,Info), |
| 1725 | | Ty = cartesian_product(Ta,Tb). |
| 1726 | | simp_rule_with_info(Eq,conjunct(equal(S,Ta),equal(T,Tb)),'SIMP_TYPE_EQUAL_REL',Info) :- |
| 1727 | | is_equality(Eq,relations(S,T),Ty), |
| 1728 | | type_expression(Ty,Info), |
| 1729 | | Ty = cartesian_product(Ta,Tb). |
| 1730 | | simp_rule_with_info(Eq,conjunct(equal(S,Ta),equal(R,Ty)),'SIMP_DOMRES_EQUAL_TYPE',Info) :- |
| 1731 | | is_equality(Eq,domain_restriction(S,R),Ty), |
| 1732 | | type_expression(Ty,Info), |
| 1733 | | Ty = cartesian_product(Ta,_). |
| 1734 | | simp_rule_with_info(Eq,conjunct(equal(S,Tb),equal(R,Ty)),'SIMP_RANRES_EQUAL_TYPE',Info) :- |
| 1735 | | is_equality(Eq,range_restriction(R,S),Ty), |
| 1736 | | type_expression(Ty,Info), |
| 1737 | | Ty = cartesian_product(_,Tb). |
| 1738 | | simp_rule_with_info(Eq,conjunct(equal(P,cartesian_product(Ta,Tb)),equal(Q,cartesian_product(Ta,Tc))),'SIMP_DPROD_EQUAL_TYPE',Info) :- |
| 1739 | | is_equality(Eq,direct_product(P,Q),Ty), |
| 1740 | | type_expression(Ty,Info), |
| 1741 | | Ty = cartesian_product(Ta,cartesian_product(Tb,Tc)). |
| 1742 | | simp_rule_with_info(Eq,conjunct(equal(P,cartesian_product(Ta,Tc)),equal(Q,cartesian_product(Tb,Td))),'SIMP_PPROD_EQUAL_TYPE',Info) :- |
| 1743 | | is_equality(Eq,parallel_product(P,Q),Ty), |
| 1744 | | type_expression(Ty,Info), |
| 1745 | | Ty = cartesian_product(cartesian_product(Ta,Tb),cartesian_product(Tc,Td)). |
| 1746 | | simp_rule_with_info(C,Res,'DERIV_TYPE_SETMINUS_BINTER',Info) :- |
| 1747 | | C= set_subtraction(Ty,_), |
| 1748 | | type_expression(Ty,Info), |
| 1749 | | distri_r(C,Res,set_subtraction,intersection,union). |
| 1750 | | simp_rule_with_info(C,Res,'DERIV_TYPE_SETMINUS_BUNION',Info) :- |
| 1751 | | C= set_subtraction(Ty,_), |
| 1752 | | type_expression(Ty,Info), |
| 1753 | | distri_r(C,Res,set_subtraction,union,intersection). |
| 1754 | | simp_rule_with_info(set_subtraction(Ty,set_subtraction(S,T)),union(set_subtraction(Ty,S),T),'DERIV_TYPE_SETMINUS_SETMINUS',Info) :- |
| 1755 | | type_expression(Ty,Info). |
| 1756 | | |
| 1757 | ? | simp_rule(U,Ty,'SIMP_TYPE_BUNION',OuterOp,Info) :- OuterOp \= union, member_of(union,Ty,U), type_expression(Ty,Info). |
| 1758 | | simp_rule(Over,Res,'SIMP_TYPE_OVERL_CPROD',OuterOp,Info) :- |
| 1759 | | OuterOp \= overwrite, |
| 1760 | | Over = overwrite(_,_), |
| 1761 | | op_to_list(Over,List,overwrite), |
| 1762 | | overwrite_type(List,[],ResList,Info), |
| 1763 | | List \= ResList, |
| 1764 | ? | list_to_op(ResList,Res,overwrite). |
| 1765 | | |
| 1766 | | simp_rule_with_descr(couple(function(event_b_first_projection_v2,E),function(event_b_second_projection_v2,F)),E,Rule,Rule) :- |
| 1767 | | Rule = 'SIMP_MAPSTO_PRJ1_PRJ2', |
| 1768 | | equal_terms(E,F). |
| 1769 | | simp_rule_with_descr(domain(successor),Z,Rule,Rule) :- Rule = 'SIMP_DOM_SUCC', is_integer_set(Z). |
| 1770 | | simp_rule_with_descr(range(successor),Z,Rule,Rule) :- Rule = 'SIMP_RAN_SUCC', is_integer_set(Z). |
| 1771 | | simp_rule_with_descr(predecessor,reverse(successor),Rule,Rule) :- Rule = 'DEF_PRED'. |
| 1772 | | simp_rule_with_descr(Expr,negation(member(A,SetB)),'SIMP_BINTER_SING_EQUAL_EMPTY'(A),Descr) :- |
| 1773 | | is_empty(Expr,Inter), |
| 1774 | | is_inter(Inter,SetA,SetB), |
| 1775 | | singleton_set(SetA,A), |
| 1776 | | create_descr('SIMP_BINTER_SING_EQUAL_EMPTY',A,Descr). |
| 1777 | | |
| 1778 | | simp_rule_with_hyps(domain(R),E,'DERIV_DOM_TOTALREL',Hyps) :- member_hyps(member(R,FT),Hyps), is_rel(FT,total,E,_). |
| 1779 | | simp_rule_with_hyps(range(R),F,'DERIV_RAN_SURJREL',Hyps) :- member_hyps(member(R,FT),Hyps), is_surj(FT,_,F). |
| 1780 | | simp_rule_with_hyps(function(domain_restriction(_,F),G),function(F,G),'SIMP_FUNIMAGE_DOMRES',Hyps) :- |
| 1781 | | member_hyps(member(F,FT),Hyps), is_fun(FT,_,_,_). |
| 1782 | | simp_rule_with_hyps(function(domain_subtraction(_,F),G),function(F,G),'SIMP_FUNIMAGE_DOMSUB',Hyps) :- |
| 1783 | | member_hyps(member(F,FT),Hyps), is_fun(FT,_,_,_). |
| 1784 | | simp_rule_with_hyps(function(range_restriction(F,_),G),function(F,G),'SIMP_FUNIMAGE_RANRES',Hyps) :- |
| 1785 | | member_hyps(member(F,FT),Hyps), is_fun(FT,_,_,_). |
| 1786 | | simp_rule_with_hyps(function(range_subtraction(F,_),G),function(F,G),'SIMP_FUNIMAGE_RANSUB',Hyps) :- |
| 1787 | | member_hyps(member(F,FT),Hyps), is_fun(FT,_,_,_). |
| 1788 | | simp_rule_with_hyps(function(set_subtraction(F,_),G),function(F,G),'SIMP_FUNIMAGE_SETMINUS',Hyps) :- |
| 1789 | | member_hyps(member(F,FT),Hyps), is_fun(FT,_,_,_). |
| 1790 | | simp_rule_with_hyps(card(set_subtraction(S,T)),minus(card(S),card(T)),'SIMP_CARD_SETMINUS',Hyps) :- |
| 1791 | | member_hyps(subset(T,S),Hyps), |
| 1792 | | (member_hyps(finite(T),Hyps) |
| 1793 | | ; member_hyps(finite(S),Hyps)). |
| 1794 | | simp_rule_with_hyps(card(set_subtraction(S,set_extension(L))),minus(card(S),card(set_extension(L))),Rule,Hyps) :- |
| 1795 | | Rule = 'SIMP_CARD_SETMINUS_SETENUM', |
| 1796 | ? | all_in_set(L,S,Hyps). |
| 1797 | | simp_rule_with_hyps(L,less(A,B),'DERIV_LESS',Hyps) :- is_less_eq(L,A,B), is_no_equality(Ex,A,B), member(Ex,Hyps). |
| 1798 | | |
| 1799 | | simp_rule_with_hyps(Ex,disjunct(greater('$'(E),F),less('$'(E),F)),'DERIV_NOT_EQUAL',Hyps,Info) :- |
| 1800 | ? | is_no_equality(Ex,'$'(E),F), |
| 1801 | ? | (number(F) ; of_integer_type(E,Hyps,Info)). |
| 1802 | | simp_rule_with_hyps(equal(S,T),conjunct(subset(S,T),subset(T,S)),'DERIV_EQUAL',Hyps,Info) :- |
| 1803 | ? | get_scope(Hyps,Info,Scope), |
| 1804 | ? | check_type(S,T,Scope,set(_)). |
| 1805 | | simp_rule_with_hyps(subset(S,T),subset(set_subtraction(Ty,T),set_subtraction(Ty,S)),'DERIV_SUBSETEQ',Hyps,Info) :- |
| 1806 | | get_scope(Hyps,Info,Scope), |
| 1807 | ? | check_type(S,T,Scope,Type), |
| 1808 | | get_type_expression(Type,pow_subset(Ty)). |
| 1809 | | simp_rule_with_hyps(event_b_comprehension_set(Ids,E,truth),Ty,'SIMP_SPECIAL_COMPSET_BTRUE',Hyps,Info) :- |
| 1810 | | get_scope(Hyps,Info,Scope), |
| 1811 | | pairwise_distict(E,Ids), |
| 1812 | | check_type(E,Scope,Type), |
| 1813 | | get_type_expression(Type,Ty). |
| 1814 | | |
| 1815 | | % allow simplifications deeper inside the term: |
| 1816 | | simp_rule(C,NewC,Rule,_,Descr,Info) :- C=..[F,P], simp_rule(P,Q,Rule,F,Descr,Info), NewC=..[F,Q]. |
| 1817 | ? | simp_rule(C,NewC,Rule,_,Descr,Info) :- C=..[F,P,R], simp_rule(P,Q,Rule,F,Descr,Info), NewC=..[F,Q,R]. |
| 1818 | ? | simp_rule(C,NewC,Rule,_,Descr,Info) :- C=..[F,R,P], simp_rule(P,Q,Rule,F,Descr,Info), NewC=..[F,R,Q]. |
| 1819 | | simp_rule_with_hyps(C,NewC,Rule,Hyps,Info) :- C=..[F,P], simp_rule_with_hyps(P,Q,Rule,Hyps,Info), NewC=..[F,Q]. |
| 1820 | | simp_rule_with_hyps(C,NewC,Rule,Hyps,Info) :- C=..[F,P,R], simp_rule_with_hyps(P,Q,Rule,Hyps,Info), NewC=..[F,Q,R]. |
| 1821 | ? | simp_rule_with_hyps(C,NewC,Rule,Hyps,Info) :- C=..[F,R,P], simp_rule_with_hyps(P,Q,Rule,Hyps,Info), NewC=..[F,R,Q]. |
| 1822 | | simp_rule(negation(P),Q,'Propagate negation') :- negate(P,Q), Q \= negation(_). % De-Morgan and similar rules to propagate negation |
| 1823 | | |
| 1824 | ? | simp_rule(P,truth,'Evaluate tautology') :- is_true(P). |
| 1825 | | |
| 1826 | | is_true(equal(X,Y)) :- equal_terms(X,Y). |
| 1827 | | is_true(less_equal(X,Y)) :- equal_terms(X,Y). |
| 1828 | | is_true(greater_equal(X,Y)) :- equal_terms(X,Y). |
| 1829 | | is_true(negation(falsity)). |
| 1830 | | is_true(subset(empty_set,_)). |
| 1831 | | is_true(subset(S,T)) :- equal_terms(S,T). |
| 1832 | | is_true(implication(_P,truth)). |
| 1833 | | is_true(implication(falsity,_P)). |
| 1834 | | is_true(implication(P,Q)) :- equal_terms(P,Q). |
| 1835 | | is_true(equivalence(P,Q)) :- equal_terms(P,Q). |
| 1836 | | is_true(member(card(_S),Nat)) :- is_natural_set(Nat). |
| 1837 | | is_true(P) :- is_less_eq(P,0,card(_S)). |
| 1838 | | is_true(member(min(S),T)) :- equal_terms(S,T). |
| 1839 | | is_true(member(max(S),T)) :- equal_terms(S,T). |
| 1840 | | is_true(member(couple(E,F), event_b_identity)) :- equal_terms(E,F). |
| 1841 | | is_true(finite(bool_set)). |
| 1842 | | is_true(finite(set_extension(_))). |
| 1843 | | is_true(finite(interval(_,_))). |
| 1844 | | is_true(finite(empty_set)). |
| 1845 | | is_true(member(I,Nat)) :- is_natural_set(Nat), number(I), I >= 0. |
| 1846 | | is_true(member(I,Nat)) :- is_natural1_set(Nat), number(I), I >= 1. |
| 1847 | | |
| 1848 | | compute(Expr,Res) :- evaluate(Expr,Res), Expr \= Res. |
| 1849 | | |
| 1850 | | evaluate(I,I) :- number(I). |
| 1851 | | evaluate(add(I,J),Res) :- evaluate(I,NewI), evaluate(J,NewJ), Res is NewI + NewJ. |
| 1852 | | evaluate(minus(I,J),Res) :- evaluate(I,NewI), evaluate(J,NewJ), Res is NewI - NewJ. |
| 1853 | | evaluate(multiplication(I,J),Res) :- evaluate(I,NewI), evaluate(J,NewJ), Res is NewI * NewJ. |
| 1854 | | evaluate(div(I,J),Res) :- evaluate(I,NewI), evaluate(J,NewJ), J =\= 0, Res is NewI // NewJ. |
| 1855 | | evaluate(modulo(I,J),Res) :- evaluate(I,NewI), evaluate(J,NewJ), J =\= 0, Res is NewI mod NewJ. |
| 1856 | | evaluate(power_of(I,J),Res) :- evaluate(I,NewI), evaluate(J,NewJ), Res is NewI ^ NewJ. |
| 1857 | | |
| 1858 | | %simp_rule(X,X,'EQ'(F,N,X)) :- functor(X,F,N). |
| 1859 | | |
| 1860 | | add_wd_pos(Hyps,POs,Sequent,NewSequent) :- |
| 1861 | | reverse(POs,List), |
| 1862 | | add_pos(Hyps,Sequent,NewSequent,List). |
| 1863 | | |
| 1864 | | add_pos(_,Sequent,Sequent,[]) :- !. |
| 1865 | | add_pos(Hyps,InnerSequent,NewSequent,[PO|R]) :- add_pos(Hyps,sequent(Hyps,PO,InnerSequent),NewSequent,R). |
| 1866 | | |
| 1867 | | % add a sequent per disjunct |
| 1868 | | extract_disjuncts(Q,Hyps0,Goal,Cont,sequent(Hyps,Goal,Cont)) :- Q \= disjunct(_,_), add_hyp(Q,Hyps0,Hyps). |
| 1869 | | extract_disjuncts(disjunct(L,R),Hyps0,Goal,Cont,LRSequent) :- |
| 1870 | | extract_disjuncts(L,Hyps0,Goal,success,LSequent), |
| 1871 | | extract_disjuncts(R,Hyps0,Goal,Cont,RSequent), |
| 1872 | | append_sequents(LSequent,RSequent,LRSequent). |
| 1873 | | |
| 1874 | | % add sequents as last continuation |
| 1875 | | append_sequents(sequent(Hyps,Goal,Cont),InnerCont,sequent(Hyps,Goal,InnerCont)) :- |
| 1876 | | cont_length(Cont,0). |
| 1877 | | append_sequents(sequent(Hyps,Goal,Cont),InnerCont,sequent(Hyps,Goal,Sequent)) :- |
| 1878 | | append_sequents(Cont,InnerCont,Sequent). |
| 1879 | | |
| 1880 | | animation_function_result(state(counter_example(_),_),[((1,1),'Counter example found.')]). |
| 1881 | | animation_function_result(state(success,_),[((1,1),'Proof succeeded.')]). |
| 1882 | | animation_function_result(state(Sequent,_),Matrix) :- |
| 1883 | | Sequent = sequent(_,_,Cont), |
| 1884 | | cont_length(Cont,LCont), |
| 1885 | | findall(((RowNr,ColNr),Cell), (cell_content(RowNr,ColNr,Sequent,Cell,LCont)), Matrix). |
| 1886 | | |
| 1887 | | cell_content(Row,1,sequent(Hyps,_,_),Cell,_) :- nth1(Row,Hyps,RowHyp), translate_term(RowHyp,Cell). |
| 1888 | | cell_content(Row,1,sequent(Hyps,_,_),'---------------------',_) :- length(Hyps,LHyps), Row is LHyps + 1. |
| 1889 | | cell_content(Row,1,sequent(Hyps,Goal,_),Cell,_) :- length(Hyps,LHyps), Row is LHyps + 2, translate_term(Goal,Cell). |
| 1890 | | |
| 1891 | | cell_content(Row,Col,Sequent,Cell,LCont) :- |
| 1892 | | extract_continuations(Sequent,LCont,Cont,Col), |
| 1893 | | cell_content(Row,1,Cont,Cell,LCont). |
| 1894 | | |
| 1895 | | extract_continuations(sequent(_,_,Cont),LCont,Cont,ColNr) :- |
| 1896 | | cont_length(Cont,ActualLCont), |
| 1897 | | ColNr is LCont - ActualLCont + 2. |
| 1898 | | extract_continuations(sequent(_,_,Cont),LCont,FoundCont,ColNr) :- |
| 1899 | | extract_continuations(Cont,LCont,FoundCont,ColNr). |
| 1900 | | |
| 1901 | | find_transitions(Sequent,Info,Trans) :- |
| 1902 | | findall(T,(sequent_prover_trans(T,state(Sequent,Info),_) ; sequent_prover_trans(T,state(Sequent,Info),_,_)),TransL), |
| 1903 | | remove_dups(TransL,Trans). |
| 1904 | | |
| 1905 | | animation_image_right_click_transition(Row,1,Trans,state(sequent(Hyps,Goal,Cont),Info)) :- nth1(Row,Hyps,Hyp), |
| 1906 | | select(Hyp,Hyps,Hyps0), |
| 1907 | | find_transitions(sequent(Hyps,Goal,Cont),Info,AllTransitions), |
| 1908 | | find_transitions(sequent(Hyps0,Goal,Cont),Info,Transitions0), |
| 1909 | | member(Trans,AllTransitions), |
| 1910 | | Trans \= mon_deselect(_), |
| 1911 | | \+ member(Trans,Transitions0). |
| 1912 | | animation_image_right_click_transition(Row,1,Trans,state(sequent(Hyps,Goal,Cont),Info)) :- |
| 1913 | | length(Hyps,LHyps), |
| 1914 | | Row is LHyps + 2, |
| 1915 | | find_transitions(sequent([],Goal,Cont),Info,Transitions), |
| 1916 | | member(Trans,Transitions), |
| 1917 | | Trans \= reselect_hyp(_). |
| 1918 | | animation_image_right_click_transition(Row,1,mon_deselect(Row)). |
| 1919 | | |
| 1920 | | % ------------------------ |
| 1921 | | |
| 1922 | | is_natural_set(natural_set). |
| 1923 | | is_natural_set('NATURAL'). |
| 1924 | | |
| 1925 | | is_natural1_set(natural1_set). |
| 1926 | | is_natural1_set('NATURAL1'). |
| 1927 | | |
| 1928 | | is_integer_set(integer_set). |
| 1929 | | is_integer_set('INTEGER'). |
| 1930 | | |
| 1931 | | is_less_eq(less_equal(P,Q),P,Q). |
| 1932 | | is_less_eq(greater_equal(Q,P),P,Q). |
| 1933 | | |
| 1934 | | is_less(less(P,Q),P,Q). |
| 1935 | | is_less(greater(Q,P),P,Q). |
| 1936 | | |
| 1937 | | is_equality(equal(A,B),A,B). |
| 1938 | | is_equality(equal(B,A),A,B). |
| 1939 | | |
| 1940 | | is_no_equality(negation(equal(A,B)),A,B). |
| 1941 | | is_no_equality(negation(equal(B,A)),A,B). |
| 1942 | | is_no_equality(not_equal(A,B),A,B). |
| 1943 | | is_no_equality(not_equal(B,A),A,B). |
| 1944 | | |
| 1945 | | is_equivalence(equivalence(A,B),A,B). |
| 1946 | | is_equivalence(equivalence(B,A),A,B). |
| 1947 | | |
| 1948 | | is_inter(intersection(A,B),A,B). % TODO: extend to nested inter |
| 1949 | | is_inter(intersection(B,A),A,B). |
| 1950 | | |
| 1951 | | is_minus(NE,E) :- number(NE), NE < 0, E is abs(NE) ; NE = unary_minus(E). |
| 1952 | | |
| 1953 | ? | is_empty(Expr,Term) :- is_equality(Expr,Term,empty_set). |
| 1954 | | is_empty(Expr,Term) :- Expr = subset(Term,empty_set). |
| 1955 | | |
| 1956 | | is_negation(Q,negation(P)) :- equal_terms(P,Q). |
| 1957 | | |
| 1958 | | of_integer_type('$'(E),Hyps,Info) :- |
| 1959 | | atomic(E), |
| 1960 | | of_integer_type(E,Hyps,Info). |
| 1961 | | |
| 1962 | | of_integer_type(E,Hyps,Info) :- |
| 1963 | ? | get_scope(Hyps,Info,[identifier(STypes)]), |
| 1964 | ? | member(b(identifier(E),integer,_),STypes). |
| 1965 | | |
| 1966 | | singleton_set(set_extension([X]),X). |
| 1967 | | |
| 1968 | | rewrite_comp_id([X],[X]). |
| 1969 | | rewrite_comp_id([domain_restriction(S,event_b_identity),domain_restriction(T,event_b_identity)|R],Res) :- !, |
| 1970 | ? | rewrite_comp_id([domain_restriction(intersection(S,T),event_b_identity)|R],Res). |
| 1971 | | rewrite_comp_id([domain_restriction(S,event_b_identity),domain_subtraction(T,event_b_identity)|R],Res) :- !, |
| 1972 | ? | rewrite_comp_id([domain_restriction(set_subtraction(S,T),event_b_identity)|R],Res). |
| 1973 | | rewrite_comp_id([domain_subtraction(S,event_b_identity),domain_subtraction(T,event_b_identity)|R],Res) :- !, |
| 1974 | ? | rewrite_comp_id([domain_subtraction(union(S,T),event_b_identity)|R],Res). |
| 1975 | ? | rewrite_comp_id([E,F|R], [E|Res]) :- rewrite_comp_id([F|R],Res). |
| 1976 | | |
| 1977 | | bwd_to_fwd_comp(ring(R,S),Res) :- |
| 1978 | ? | bwd_to_fwd_comp(R,R2), |
| 1979 | | bwd_to_fwd_comp(S,S2), |
| 1980 | | Res = composition(S2,R2). |
| 1981 | | bwd_to_fwd_comp(X,X) :- X \= ring(_,_). |
| 1982 | | |
| 1983 | | % change order of operation if Op is associative |
| 1984 | | reorder(C,Res,Op) :- |
| 1985 | | C=..[Op,A,B], |
| 1986 | | B=..[Op,L,Rest],!, |
| 1987 | | R=..[Op,A,L], |
| 1988 | | append_to_op(Rest,R,Res,Op). |
| 1989 | | reorder(C,C,Op) :- C=..[Op,_,_]. |
| 1990 | | |
| 1991 | | append_to_op(C,R,Res,Op) :- |
| 1992 | | C=..[Op,A,B], |
| 1993 | | Inner=..[Op,R,A],!, |
| 1994 | | append_to_op(B,Inner,Res,Op). |
| 1995 | | append_to_op(B,R,C,Op) :- C=..[Op,R,B]. |
| 1996 | | |
| 1997 | ? | member_of(Op,X,Term) :- Term=..[Op,A,B], !, (el_of_op(A,X,Op) ; el_of_op(B,X,Op)). |
| 1998 | | el_of_op(Term,X,Op) :- Term=..[Op,A,B], !, (el_of_op(A,X,Op) ; el_of_op(B,X,Op)). |
| 1999 | | el_of_op(P,P,_). |
| 2000 | | |
| 2001 | | remove_from_op(El,Term,NewTerm,Op) :- |
| 2002 | | op_to_list(Term,List,Op), |
| 2003 | | remove_from_list(El,List,List0), |
| 2004 | | list_to_op(List0,NewTerm,Op). |
| 2005 | | |
| 2006 | | remove_from_list(_,[],[]). |
| 2007 | | remove_from_list(E,[E|T],T2) :- remove_from_list(E,T,T2). |
| 2008 | | remove_from_list(E,[X|T],[X|T2]) :- X \= E, remove_from_list(E,T,T2). |
| 2009 | | |
| 2010 | | op_to_list(Term,NList,Op) :- op_to_list(Term,[],NList,Op). |
| 2011 | | op_to_list(Term,OList,NList,Op) :- |
| 2012 | | Term=..[Op,A,B],!, |
| 2013 | | op_to_list(B,OList,L1,Op), |
| 2014 | | op_to_list(A,L1,NList,Op). |
| 2015 | | op_to_list(Term,L,[Term|L],_). |
| 2016 | | |
| 2017 | | list_to_op([A],A,_). |
| 2018 | | list_to_op([A,B|L],Res,Op) :- C=..[Op,A,B], list_to_op(L,C,Res,Op). |
| 2019 | | |
| 2020 | | list_to_op([],C,C,_). |
| 2021 | | list_to_op([X|T],C,Res,Op) :- NC=..[Op,C,X], list_to_op(T,NC,Res,Op). |
| 2022 | | |
| 2023 | | or_equal([],_,D,D). |
| 2024 | | or_equal([A|L],E,D,Res) :- or_equal(L,E,disjunct(D,equal(E,A)),Res). |
| 2025 | | |
| 2026 | | and_empty(C,Conj,Op) :- C=..[Op,A,B], and_empty(A,ConjA,Op), and_empty(B,ConjB,Op), !, Conj = conjunct(ConjA,ConjB). |
| 2027 | | and_empty(A,equal(A,empty_set),_). |
| 2028 | | |
| 2029 | | and_imp(C,R,Conj,Op) :- C=..[Op,A,B], and_imp(A,R,ConjA,Op), and_imp(B,R,ConjB,Op), !, Conj = conjunct(ConjA,ConjB). |
| 2030 | | and_imp(A,R,implication(R,A),conjunct). |
| 2031 | | and_imp(A,R,implication(A,R),disjunct). |
| 2032 | | |
| 2033 | | union_subset(S,union(A,B),Conj) :- union_subset(S,A,ConjA), union_subset(S,B,ConjB), !, Conj = conjunct(ConjA,ConjB). |
| 2034 | | union_subset(S,A,subset(A,S)). |
| 2035 | | |
| 2036 | | union_subset_member(T,union(A,B),Conj) :- |
| 2037 | | union_subset_member(T,A,ConjA), |
| 2038 | | union_subset_member(T,B,ConjB),!, |
| 2039 | | Conj = conjunct(ConjA,ConjB). |
| 2040 | | union_subset_member(T,SetF,member(F,T)) :- singleton_set(SetF,F), !. |
| 2041 | | union_subset_member(T,A,subset(A,T)). |
| 2042 | | |
| 2043 | | member_union(E,union(A,B),Disj) :- member_union(E,A,DisjA), member_union(E,B,DisjB), !, Disj = disjunct(DisjA,DisjB). |
| 2044 | | member_union(E,A,member(E,A)). |
| 2045 | | |
| 2046 | | subset_inter(S,intersection(A,B),Conj) :- subset_inter(S,A,ConjA), subset_inter(S,B,ConjB), Conj = conjunct(ConjA,ConjB), !. |
| 2047 | | subset_inter(S,A,subset(S,A)). |
| 2048 | | |
| 2049 | | member_intersection(E,intersection(A,B),Conj) :- |
| 2050 | | member_intersection(E,A,ConjA), |
| 2051 | | member_intersection(E,B,ConjB),!, |
| 2052 | | Conj = conjunct(ConjA,ConjB). |
| 2053 | | member_intersection(E,A,member(E,A)). |
| 2054 | | |
| 2055 | | distribute_exists(X,disjunct(A,B),Disj) :- distribute_exists(X,A,DisjA), distribute_exists(X,B,DisjB), !, Disj = disjunct(DisjA,DisjB). |
| 2056 | | distribute_exists(X,P,exists(X,P)). |
| 2057 | | |
| 2058 | | distribute_forall(X,P,conjunct(A,B),Conj) :- |
| 2059 | | distribute_forall(X,P,A,ConjA), |
| 2060 | | distribute_forall(X,P,B,ConjB),!, |
| 2061 | | Conj = conjunct(ConjA,ConjB). |
| 2062 | | distribute_forall(X,P,A,forall(X,P,A)). |
| 2063 | | |
| 2064 | | member_couples(E,F,[Q],_,[member(couple(E,F),Q)]). |
| 2065 | ? | member_couples(E,F,[P|Q],[X|T],[member(couple(E,X),P)|R]) :- member_couples(X,F,Q,T,R). |
| 2066 | | |
| 2067 | | distri_reverse(C,U,Op) :- C=..[Op,A,B], distri_reverse(A,UA,Op), distri_reverse(B,UB,Op), !, U=..[Op,UA,UB]. |
| 2068 | | distri_reverse(A,reverse(A),_). |
| 2069 | | |
| 2070 | | distri_reverse_reverse(C,U,Op) :- C=..[Op,A,B], distri_reverse_reverse(A,UA,Op), distri_reverse_reverse(B,UB,Op), !, U=..[Op,UB,UA]. |
| 2071 | | distri_reverse_reverse(A,reverse(A),_). |
| 2072 | | |
| 2073 | | distri_union(union(A,B),Union,Op) :- distri_union(A,L,Op), distri_union(B,R,Op), !, Union = union(L,R). |
| 2074 | | distri_union(A,C,Op) :- C=..[Op,A]. |
| 2075 | | |
| 2076 | | image_union(F,union(A,B),Union) :- image_union(F,A,L), image_union(F,B,R), !, Union = union(L,R). |
| 2077 | | image_union(F,A,image(F,A)). |
| 2078 | | |
| 2079 | | union_image(union(A,B),S,Union) :- union_image(A,S,L), union_image(B,S,R), !, Union = union(L,R). |
| 2080 | | union_image(A,S,image(A,S)). |
| 2081 | | |
| 2082 | | finite_union(union(A,B),Conj) :- finite_union(A,ConjA), finite_union(B,ConjB), !, Conj = conjunct(ConjA,ConjB). |
| 2083 | | finite_union(S,finite(S)). |
| 2084 | | |
| 2085 | | finite_intersection(intersection(A,B),Disj) :- finite_intersection(A,DisjA), finite_intersection(B,DisjB), !, Disj = disjunct(DisjA,DisjB). |
| 2086 | | finite_intersection(S,finite(S)). |
| 2087 | | |
| 2088 | | last_overwrite(overwrite(_,B),Res) :- !, last_overwrite(B,Res). |
| 2089 | | last_overwrite(B,B). |
| 2090 | | |
| 2091 | | and_equal_type(intersection(A,B),Ty,Conj) :- and_equal_type(A,Ty,L), and_equal_type(B,Ty,R), !, Conj = conjunct(L,R). |
| 2092 | | and_equal_type(A,Ty,equal(A,Ty)). |
| 2093 | | |
| 2094 | | distri(C,Res,Op1,Op2) :- |
| 2095 | | C=..[Op1,A,B], |
| 2096 | | (X = A ; X = B), |
| 2097 | | functor(X,Op2,2), |
| 2098 | ? | distribute_op(C,X,Op1,Op2,Res). |
| 2099 | | |
| 2100 | | distri_r(C,Res,Op1,Op2) :- |
| 2101 | | C=..[Op1,_,X], |
| 2102 | | functor(X,Op2,2), |
| 2103 | ? | distribute_op(C,X,Op1,Op2,Res). |
| 2104 | | |
| 2105 | | distri_l(C,Res,Op1,Op2) :- |
| 2106 | | C=..[Op1,X,_], |
| 2107 | | functor(X,Op2,2), |
| 2108 | ? | distribute_op(C,X,Op1,Op2,Res). |
| 2109 | | |
| 2110 | | distribute_op(C,X,Op1,Op2,Res) :- |
| 2111 | | op_to_list(X,L,Op2), |
| 2112 | ? | distribute(C,X,L,CN,Op1), |
| 2113 | | list_to_op(CN,Res,Op2). |
| 2114 | | |
| 2115 | | distribute(_,_,[],[],_). |
| 2116 | ? | distribute(C,X,[D|T],[N|R],Op) :- select_op(X,C,D,N,Op), distribute(C,X,T,R,Op). |
| 2117 | | |
| 2118 | | distri_r(C,Res,Op1,Op2,Op3) :- |
| 2119 | | C=..[Op1,_,X], |
| 2120 | ? | distri_and_change(C,X,Op1,Op2,Op3,Res). |
| 2121 | | |
| 2122 | | distri_l(C,Res,Op1,Op2,Op3) :- |
| 2123 | | C=..[Op1,X,_], |
| 2124 | ? | distri_and_change(C,X,Op1,Op2,Op3,Res). |
| 2125 | | |
| 2126 | | % Op2 changes to Op3 |
| 2127 | | distri_and_change(C,X,Op1,Op2,Op3,Res) :- |
| 2128 | | functor(X,Op2,2), |
| 2129 | | op_to_list(X,L,Op2), |
| 2130 | ? | distribute(C,X,L,CN,Op1), |
| 2131 | | list_to_op(CN,Res,Op3). |
| 2132 | | |
| 2133 | | distri_setminus(C,Res) :- |
| 2134 | | C = set_subtraction(_,X), |
| 2135 | | X = union(_,_), |
| 2136 | | select_op(X,C,NewC,set_subtraction), |
| 2137 | | op_to_list(NewC,CL,set_subtraction), |
| 2138 | | op_to_list(X,L,union), |
| 2139 | | append(CL,L,L2), |
| 2140 | | list_to_op(L2,Res,set_subtraction). |
| 2141 | | |
| 2142 | | all_pairs(L,Pairs) :- findall([X,Y], (combination(L,[X,Y])), Pairs). |
| 2143 | | |
| 2144 | | combination(_,[]). |
| 2145 | | combination([X|T],[X|C]) :- combination(T,C). |
| 2146 | | combination([_|T],[X|C]) :- combination(T,[X|C]). |
| 2147 | | |
| 2148 | | all_in_set([E],S,Hyps) :- member_hyps(member(E,S),Hyps). |
| 2149 | ? | all_in_set([E|R],S,Hyps) :- member_hyps(member(E,S),Hyps), all_in_set(R,S,Hyps). |
| 2150 | | |
| 2151 | | map_dom([couple(X,_)],[X]) :- !. |
| 2152 | | map_dom([couple(X,_)|T],[X|R]) :- map_dom(T,R). |
| 2153 | | |
| 2154 | | map_ran([couple(_,A)],[A]) :- !. |
| 2155 | | map_ran([couple(_,B)|T],[B|R]) :- map_ran(T,R). |
| 2156 | | |
| 2157 | | all_map_to([couple(_,F)],E) :- equal_terms(E,F), !. |
| 2158 | | all_map_to([couple(_,F)|T],E) :- equal_terms(E,F), all_map_to(T,E). |
| 2159 | | |
| 2160 | | convert_map_to([couple(X,Y)],[couple(Y,X)]) :- !. |
| 2161 | | convert_map_to([couple(X,Y)|T],[couple(Y,X)|R]) :- convert_map_to(T,R). |
| 2162 | | |
| 2163 | | list_intersection([],_,[]). |
| 2164 | ? | list_intersection([Z|T],Ids,[Z|R]) :- member(Z,Ids), list_intersection(T,Ids,R). |
| 2165 | ? | list_intersection([Z|T],Ids,R) :- \+ member(Z,Ids), list_intersection(T,Ids,R). |
| 2166 | | |
| 2167 | | list_subtract([],_,[]). |
| 2168 | | list_subtract([E|T],L,R) :- memberchk(E,L), !, list_subtract(T,L,R). |
| 2169 | | list_subtract([E|T],L,[E|R]) :- list_subtract(T,L,R). |
| 2170 | | |
| 2171 | | list_subset([],_). |
| 2172 | | list_subset([E|T],L) :- memberchk(E,L), list_subset(T,L). |
| 2173 | | |
| 2174 | | new_identifier(Expr,I) :- |
| 2175 | | used_identifiers(Expr,L), |
| 2176 | ? | possible_identifier(X), |
| 2177 | | I = '$'(X), |
| 2178 | ? | \+ member(I,L),!. |
| 2179 | | |
| 2180 | | used_identifiers(Term,[]) :- atomic(Term), !. |
| 2181 | | used_identifiers(Term,[Term]) :- Term = '$'(E), atomic(E), !. |
| 2182 | | used_identifiers(C,Res) :- |
| 2183 | | C =.. [_|Args], |
| 2184 | | maplist(used_identifiers,Args,L), |
| 2185 | | append(L,Res). |
| 2186 | | |
| 2187 | | free_identifiers(exists(Ids,P),Res) :- !, free_identifiers(P,Free), list_subtract(Free,Ids,Res). |
| 2188 | | free_identifiers(Term,Res) :- |
| 2189 | | (Term = forall(Ids,P,E) |
| 2190 | | ; Term = event_b_comprehension_set(Ids,E,P) |
| 2191 | | ; Term = quantified_intersection(Ids,P,E) |
| 2192 | | ; Term = quantified_union(Ids,P,E)), !, |
| 2193 | | free_identifiers(implication(P,E),FreeImp), list_subtract(FreeImp,Ids,Res). |
| 2194 | | free_identifiers(Term,[]) :- atomic(Term), !. |
| 2195 | | free_identifiers(Term,[Term]) :- Term = '$'(E), atomic(E), !. |
| 2196 | | free_identifiers(C,Res) :- |
| 2197 | | C =.. [_|Args], |
| 2198 | | maplist(free_identifiers,Args,L), |
| 2199 | | append(L,Res). |
| 2200 | | |
| 2201 | | identifier(x). |
| 2202 | | identifier(y). |
| 2203 | | identifier(z). |
| 2204 | | |
| 2205 | ? | possible_identifier(Z) :- identifier(Z). |
| 2206 | | possible_identifier(Z) :- identifier(X), identifier(Y), atom_concat(X,Y,Z). |
| 2207 | | |
| 2208 | | new_identifiers(Expr,1,[Id]) :- !, new_identifier(Expr,Id). |
| 2209 | ? | new_identifiers(Expr,Nr,Ids) :- used_identifiers(Expr,L), possible_identifier(X), I = '$'(X), \+ member(I,L), !, range_ids(X,Nr,Ids). |
| 2210 | | |
| 2211 | ? | range_ids(X,Nr,L) :- range(X,1,Nr,L). |
| 2212 | | range(X,I,I,['$'(XI)]) :- atom_int_concat(X,I,XI). |
| 2213 | ? | range(X,I,K,['$'(XI)|L]) :- I < K, I1 is I + 1, atom_int_concat(X,I,XI), range(X,I1,K,L). |
| 2214 | | |
| 2215 | | atom_int_concat(X,I,XI) :- |
| 2216 | | atom_codes(X,CX), |
| 2217 | | number_codes(I,CI), |
| 2218 | | append(CX,CI,COut), |
| 2219 | | atom_codes(XI,COut). |
| 2220 | | |
| 2221 | | new_function(Expr,F) :- used_identifiers(Expr,L), possible_function(X), F = '$'(X), \+ member(F,L), !. |
| 2222 | | |
| 2223 | | func_id(f). |
| 2224 | | func_id(g). |
| 2225 | | func_id(h). |
| 2226 | | |
| 2227 | | possible_function(Z) :- func_id(Z). |
| 2228 | | possible_function(Z) :- func_id(X), func_id(Y), atom_concat(X,Y,Z). |
| 2229 | | |
| 2230 | | remove_duplicates(L,Res) :- without_duplicates(L,[],Res), L \= Res. |
| 2231 | | remove_duplicates(C,Res,Op) :- |
| 2232 | | op_to_list(C,List,Op), |
| 2233 | | remove_duplicates(List,ResL), |
| 2234 | ? | list_to_op(ResL,Res,Op). |
| 2235 | | |
| 2236 | | without_duplicates(L,Res) :- without_duplicates(L,[],Res). |
| 2237 | | |
| 2238 | | without_duplicates([],List,List). |
| 2239 | | without_duplicates([E|R],Filtered,Res) :- |
| 2240 | ? | member(F,Filtered), |
| 2241 | | equal_terms(E,F),!, |
| 2242 | | without_duplicates(R,Filtered,Res). |
| 2243 | | without_duplicates([E|R],Filtered, Res) :- |
| 2244 | | \+ member(E,Filtered), |
| 2245 | | append(Filtered,[E],New), |
| 2246 | | without_duplicates(R,New,Res). |
| 2247 | | |
| 2248 | | min_list([H|T], Min) :- number(H) -> min_list(T,H,Min) ; min_list(T,Min). |
| 2249 | | |
| 2250 | | min_list([],Min,Min). |
| 2251 | | min_list([H|T],Min0,Min) :- |
| 2252 | | number(H),!, |
| 2253 | | Min1 is min(H,Min0), |
| 2254 | | min_list(T,Min1,Min). |
| 2255 | | min_list([_|T],Min0,Min) :- |
| 2256 | | min_list(T,Min0,Min). |
| 2257 | | |
| 2258 | ? | remove_greater(L,I,Res) :- only_min(L,I,[],Res), L \= Res. |
| 2259 | | |
| 2260 | | only_min([],_,List,List). |
| 2261 | | only_min([E|R],I,Filtered, Res) :- |
| 2262 | | \+ number(E),!, |
| 2263 | | append(Filtered,[E],New), |
| 2264 | ? | only_min(R,I,New,Res). |
| 2265 | | only_min([E|R],I,Filtered,Res) :- |
| 2266 | | E > I, |
| 2267 | ? | only_min(R,I,Filtered,Res). |
| 2268 | | only_min([E|R],I,Filtered,Res) :- |
| 2269 | | E =:= I, |
| 2270 | | member(E,Filtered), |
| 2271 | | only_min(R,I,Filtered,Res). |
| 2272 | | only_min([E|R],I,Filtered,Res) :- |
| 2273 | | E =:= I, |
| 2274 | | \+ member(E,Filtered), |
| 2275 | | append(Filtered,[E],New), |
| 2276 | ? | only_min(R,I,New,Res). |
| 2277 | | |
| 2278 | | max_list([H|T],Max) :- number(H) -> max_list(T,H,Max) ; max_list(T,Max). |
| 2279 | | |
| 2280 | | max_list([],Max,Max). |
| 2281 | | max_list([H|T],Max0,Max) :- |
| 2282 | | number(H),!, |
| 2283 | | Max1 is max(H,Max0), |
| 2284 | | max_list(T,Max1,Max). |
| 2285 | | max_list([_|T],Max0,Max) :- |
| 2286 | | max_list(T,Max0,Max). |
| 2287 | | |
| 2288 | | remove_smaller(L,I,Res) :- only_max(L,I,[],Res), L \= Res. |
| 2289 | | |
| 2290 | | only_max([],_,List,List). |
| 2291 | | only_max([E|R],I,Filtered, Res) :- |
| 2292 | | \+ number(E),!, |
| 2293 | | append(Filtered,[E],New), |
| 2294 | | only_max(R,I,New,Res). |
| 2295 | | only_max([E|R],I,Filtered,Res) :- |
| 2296 | | E < I, |
| 2297 | | only_max(R,I,Filtered,Res). |
| 2298 | | only_max([E|R],I,Filtered,Res) :- |
| 2299 | | E =:= I, |
| 2300 | | member(E,Filtered), |
| 2301 | | only_max(R,I,Filtered,Res). |
| 2302 | | only_max([E|R],I,Filtered,Res) :- |
| 2303 | | E =:= I, |
| 2304 | | \+ member(E,Filtered), |
| 2305 | | append(Filtered,[E],New), |
| 2306 | | only_max(R,I,New,Res). |
| 2307 | | |
| 2308 | ? | overwrite_type([Ty|R],_,ListOut,Info) :- type_expression(Ty,Info), !, overwrite_type(R,[Ty],ListOut,Info). |
| 2309 | | overwrite_type([S|R],Prev,ListOut,Info) :- append(Prev,[S],ListIn), overwrite_type(R,ListIn,ListOut,Info). |
| 2310 | | overwrite_type([],L,L,_). |
| 2311 | | |
| 2312 | | change_sign(L,NL,Nr) :- remove_minus(L,NL,Nr), Nr > 0. |
| 2313 | | |
| 2314 | ? | remove_minus([NE|R],[E|T],NrN) :- is_minus(NE,E), remove_minus(R,T,Nr), NrN is Nr + 1, !. |
| 2315 | | remove_minus([E|R],[E|T],Nr) :- remove_minus(R,T,Nr). |
| 2316 | | remove_minus([],[],0). |
| 2317 | | |
| 2318 | | remove_unused_identifier(L,P,Used) :- |
| 2319 | ? | member(Z,L), |
| 2320 | | used_identifiers(P,Ids), |
| 2321 | | member(Z,Ids), |
| 2322 | ? | list_intersection(L,Ids,Used), |
| 2323 | | Used \= L. |
| 2324 | | |
| 2325 | ? | rewrite_once(X,Y,E,NewE) :- is_subterm(X,E), rewrite_once2(X,Y,E,NewE), E \= NewE. |
| 2326 | | |
| 2327 | | rewrite_once2(X,Y,E,NewE) :- equal_terms(X,E),!, NewE=Y. |
| 2328 | | rewrite_once2(_X,_Y,E,NewE) :- atomic(E),!, NewE=E. |
| 2329 | | rewrite_once2(_X,_Y,'$'(E),NewE) :- atomic(E),!, NewE='$'(E). |
| 2330 | | rewrite_once2(X,Y,C,NewC) :- C=..[Op|Args], |
| 2331 | ? | select(Arg,Args,NewArg,NewArgs), |
| 2332 | | rewrite_once2(X,Y,Arg,NewArg), |
| 2333 | | NewC =.. [Op|NewArgs]. |
| 2334 | | |
| 2335 | | wd_strict_term(T) :- atomic(T), !. |
| 2336 | | wd_strict_term('$'(E)) :- atomic(E), !. |
| 2337 | | wd_strict_term(T) :- |
| 2338 | | \+ with_ids(T,_), % quantified_union, quantified_intersection, event_b_comprehension_set, forall, exists -> not WD strict |
| 2339 | | T=..[F|Args], |
| 2340 | | \+ not_wd_strict(F), |
| 2341 | | wd_strict_args(Args). |
| 2342 | | |
| 2343 | | wd_strict_args([]). |
| 2344 | | wd_strict_args([T|Args]) :- wd_strict_term(T), wd_strict_args(Args). |
| 2345 | | |
| 2346 | | not_wd_strict(implication). |
| 2347 | | not_wd_strict(conjunct). |
| 2348 | | not_wd_strict(disjunct). |
| 2349 | | |
| 2350 | | is_subterm(Term,Term). |
| 2351 | | is_subterm(Subterm,Term) :- |
| 2352 | | Term=..[_|Args], |
| 2353 | ? | member(Arg,Args), |
| 2354 | ? | is_subterm(Subterm,Arg). |
| 2355 | | |
| 2356 | | split_composition(Comp,LComp,RComp) :- |
| 2357 | | op_to_list(Comp,List,composition), |
| 2358 | | append(L,R,List), |
| 2359 | ? | list_to_op(L,LComp,composition), |
| 2360 | ? | list_to_op(R,RComp,composition). |
| 2361 | | |
| 2362 | | deriv_fcomp_dom(Comp,Functor,Res) :- |
| 2363 | | Comp = composition(_,_), |
| 2364 | | op_to_list(Comp,List,composition), |
| 2365 | | append(L,[At|R],List), |
| 2366 | | At=..[Functor,P,Q], |
| 2367 | | list_to_op([Q|R],RComp,composition), |
| 2368 | | New=..[Functor,P,RComp], |
| 2369 | | append(L,[New],ResList), |
| 2370 | ? | list_to_op(ResList,Res,composition), |
| 2371 | | Comp \= Res. |
| 2372 | | |
| 2373 | | deriv_fcomp_ran(Comp,Functor,Res) :- |
| 2374 | | Comp = composition(_,_), |
| 2375 | | op_to_list(Comp,List,composition), |
| 2376 | | append(L,[At|R],List), |
| 2377 | | At=..[Functor,P,Q], |
| 2378 | | append(L,[P],NewL), |
| 2379 | ? | list_to_op(NewL,LComp,composition), |
| 2380 | | New=..[Functor,LComp,Q], |
| 2381 | ? | list_to_op([New|R],Res,composition), |
| 2382 | | Comp \= Res. |
| 2383 | | |
| 2384 | | rewrite_pairwise([],[],E,E). |
| 2385 | | rewrite_pairwise([X|TX],[Y|TY],E,Res) :- |
| 2386 | | rewrite(X,Y,E,NewE), |
| 2387 | | rewrite_pairwise(TX,TY,NewE,Res). |
| 2388 | | |
| 2389 | | pairwise_distict(E,Ids) :- pairwise_distict(E,Ids,_). |
| 2390 | | |
| 2391 | | pairwise_distict(couple(E,F),Ids,Ids1) :- pairwise_distict(E,Ids,Ids0), pairwise_distict(F,Ids0,Ids1). |
| 2392 | | pairwise_distict(E,Ids,Ids0) :- E = '$'(X), atomic(X), select(E,Ids,Ids0). |
| 2393 | | |
| 2394 | | same_type('$'(S),'$'(T),List) :- |
| 2395 | ? | member(b(identifier(S),Type,_),List), |
| 2396 | | member(b(identifier(T),Type,_),List), |
| 2397 | | Type \= any. |
| 2398 | | |
| 2399 | ? | check_type('$'(S),_,[identifier(IdsTypes)],Type) :- !, member(b(identifier(S),Type,_),IdsTypes). |
| 2400 | | check_type(_,'$'(T),[identifier(IdsTypes)],Type) :- !, member(b(identifier(T),Type,_),IdsTypes). |
| 2401 | | check_type(S,_,Scope,Type) :- check_type(S,Scope,Type). |
| 2402 | | |
| 2403 | | check_type(S,Scope,Type) :- |
| 2404 | | get_identifier_types(Scope,IdsTypes), |
| 2405 | | new_aux_identifier(IdsTypes,X), |
| 2406 | | get_typed_identifiers(equal('$'(X),S),Scope,L), |
| 2407 | | member(b(identifier(X),Type,_),L). |
| 2408 | | |
| 2409 | | new_aux_identifier(IdsTypes,X) :- |
| 2410 | ? | possible_identifier(X), |
| 2411 | | \+ member(b(identifier(X),_,_),IdsTypes),!. |
| 2412 | | |
| 2413 | | image_intersection(F,intersection(A,B),Inter) :- image_intersection(F,A,L), image_intersection(F,B,R), !, Inter = intersection(L,R). |
| 2414 | | image_intersection(F,A,image(F,A)). |
| 2415 | | |
| 2416 | | type_expression(bool_set,_). |
| 2417 | | type_expression(Z,_) :- is_integer_set(Z). |
| 2418 | | type_expression(S,Info) :- is_deferred_set(S,Info). |
| 2419 | ? | type_expression(pow_subset(Ty),Info) :- type_expression(Ty,Info). |
| 2420 | ? | type_expression(cartesian_product(Ty1,Ty2),Info) :- type_expression(Ty1,Info), type_expression(Ty2,Info). |
| 2421 | | |
| 2422 | | get_type_expression(integer,'INTEGER'). |
| 2423 | | get_type_expression(boolean,bool_set). |
| 2424 | | get_type_expression(set(S),pow_subset(T)) :- get_type_expression(S,T). |
| 2425 | | get_type_expression(couple(A,B),cartesian_product(S,T)) :- get_type_expression(A,S), get_type_expression(B,T). |
| 2426 | | |
| 2427 | | is_deferred_set('$'(Set),Info) :- |
| 2428 | | get_meta_info(rawsets,Info,RawSets), |
| 2429 | | member(deferred_set(_,Set),RawSets). |
| 2430 | | |
| 2431 | | equal_terms(X,X) :- !. |
| 2432 | | equal_terms(X,Y) :- |
| 2433 | | ground(X), |
| 2434 | | ground(Y), |
| 2435 | | list_representation(X,LX), |
| 2436 | | list_representation(Y,LY), |
| 2437 | | equal_op(LX,LY), |
| 2438 | | equal_length(LX,LY), |
| 2439 | | equal_lists(LX,LY). |
| 2440 | | |
| 2441 | | equal_lists(L1,L2) :- sort_list(L1,SL1), sort_list(L2,SL2), SL1 = SL2. |
| 2442 | | |
| 2443 | | stronger_list(L1,L2) :- sort_list(L1,SL1), sort_list(L2,SL2), list_implies(SL1,SL2). |
| 2444 | | |
| 2445 | | list_implies([],[]). |
| 2446 | | list_implies([H1|T1], [H2|T2]) :- |
| 2447 | | implies(H1,H2), |
| 2448 | | list_implies(T1,T2). |
| 2449 | | |
| 2450 | | % a hypothesis "a > b" is a sufficient condition to discharge the goal "a >= b" with HYP |
| 2451 | | implies(X,X). |
| 2452 | | implies(c(L,equal),c(L,greater_equal)). |
| 2453 | | implies(c(L,equal),c(RL,greater_equal)) :- reverse(L,RL). |
| 2454 | | implies(c(L,greater),c(L,greater_equal)). |
| 2455 | | implies(c(L,greater),c(L,not_equal)). |
| 2456 | | |
| 2457 | | comparable(G1,G2) :- G1=..[T1,_,_], G2=..[T2,_,_], comparison(T1), comparison(T2). |
| 2458 | | comparable(G1,G2) :- G1=..[F,P], G2=..[F,Q], !, comparable(P,Q). |
| 2459 | | comparable(G1,G2) :- functor(G1,F,_), functor(G2,F,_). |
| 2460 | | |
| 2461 | | comparison(equal). |
| 2462 | | comparison(greater). |
| 2463 | | comparison(greater_equal). |
| 2464 | | comparison(less). |
| 2465 | | comparison(less_equal). |
| 2466 | | comparison(not_equal). |
| 2467 | | |
| 2468 | | list_representation(A,B,OList,L3) :- |
| 2469 | | list_representation(A,OList,L1), |
| 2470 | | list_representation(B,[],L2), |
| 2471 | | append(L1,L2,L3). |
| 2472 | | |
| 2473 | | list_representation(C,L) :- list_representation(C,[],L). |
| 2474 | | list_representation('$'(X),L,Res) :- !, Res=[X|L]. |
| 2475 | | list_representation(less_equal(A,B),OList,Res) :- !, list_representation(B,A,OList,NList), Res=[c(NList,greater_equal)]. |
| 2476 | | list_representation(greater_equal(A,B),OList,Res) :- !, list_representation(A,B,OList,NList), Res=[c(NList,greater_equal)]. |
| 2477 | | list_representation(less(A,B),OList,Res) :- !, list_representation(B,A,OList,NList), Res=[c(NList,greater)]. |
| 2478 | | list_representation(greater(A,B),OList,Res) :- !, list_representation(A,B,OList,NList), Res=[c(NList,greater)]. |
| 2479 | | |
| 2480 | | list_representation(minus(A,B),OList,NList) :- !, |
| 2481 | | collect_subtrahend(minus(A,B),Subtraction), |
| 2482 | | Subtraction = [Minuend, Subtrahend], |
| 2483 | | exclude(zero, Subtrahend, NSubtrahend), |
| 2484 | | (NSubtrahend == [] -> NList = [Minuend] ; |
| 2485 | | append(OList,[c([Minuend, NSubtrahend],minus)],NList)). |
| 2486 | | list_representation(div(A,B),OList,NList) :- !, |
| 2487 | | collect_divisor(div(A,B),Division), |
| 2488 | | Division = [Divident, Divisor], |
| 2489 | | exclude(one, Divisor, NDivisor), |
| 2490 | | (NDivisor == [] -> NList = [Divident] ; |
| 2491 | | append(OList,[c([Divident, NDivisor],div)],NList)). |
| 2492 | | |
| 2493 | | list_representation(C,OList,Res) :- |
| 2494 | | C=..[F,A,B], |
| 2495 | ? | member(F,[conjunct,disjunct,intersection,union]), !, |
| 2496 | | collect_components(A,B,OList,NList,F), |
| 2497 | | Res=[c(NList,F)]. |
| 2498 | | list_representation(add(A,B),OList,Res) :- !, |
| 2499 | | collect_components(A,B,OList,NList,add), |
| 2500 | | exclude(zero, NList, NList2), |
| 2501 | | (NList2 == [] -> Res = [0] ; |
| 2502 | | NList2 \= [_]-> Res = [c(NList2,add)] ; |
| 2503 | | Res = NList2). |
| 2504 | | list_representation(multiplication(A,B),OList,Res) :- !, |
| 2505 | | collect_components(A,B,OList,NList,multiplication), |
| 2506 | | exclude(one, NList, NList2), |
| 2507 | | (member(0, NList2) -> Res = [0] ; |
| 2508 | | NList2 == [] -> Res = [1] ; |
| 2509 | | NList2 \= [_]-> Res = [c(NList2,multiplication)] ; |
| 2510 | | Res = NList2). |
| 2511 | | list_representation(set_extension(A),OList,Res) :- !, list_representation_of_list(A,OList,NList), sort(NList,S), Res=[c(S,set_extension)]. |
| 2512 | | list_representation([A|T],OList,Res) :- !, list_representation_of_list([A|T],OList,NList), Res=[c(NList,list)]. |
| 2513 | | list_representation(C,OList,Res) :- C=..[F,A], !, list_representation(A,OList,NList), Res=[c(NList,F)]. |
| 2514 | | list_representation(C,OList,Res) :- |
| 2515 | | C=..[F,A,B],!, |
| 2516 | | list_representation(A,B,OList,NList), Res=[c(NList,F)]. |
| 2517 | | list_representation(X,L,[X|L]) :- atomic(X). |
| 2518 | | |
| 2519 | | list_representation_of_list([],OList,OList). |
| 2520 | | list_representation_of_list([A|T],OList,NList) :- list_representation(A,OList,L1), list_representation_of_list(T,[],L2),append(L1,L2,NList). |
| 2521 | | |
| 2522 | | one(X) :- X is 1. |
| 2523 | | zero(X) :- X is 0. |
| 2524 | | |
| 2525 | | collect_components(A,B,OList,NList,T) :- |
| 2526 | | collect_component(A,OList,L1,T), |
| 2527 | | collect_component(B,L1,NList,T). |
| 2528 | | |
| 2529 | | collect_component('$'(X),OList,NList,_) :- !, |
| 2530 | | append(OList,[X],NList). |
| 2531 | | collect_component(X,OList,NList,_) :- |
| 2532 | | atomic(X),!, |
| 2533 | | append(OList,[X],NList). |
| 2534 | | collect_component(C,OList,NList,T) :- |
| 2535 | | C=..[T,A,B],!, |
| 2536 | | collect_components(A,B,OList,NList,T). |
| 2537 | | collect_component(X,OList,NList,_) :- |
| 2538 | | list_representation(X,[],L1), |
| 2539 | | append(OList,L1,NList). |
| 2540 | | |
| 2541 | | collect_subtrahend(minus(A, B), [LA, Sub]) :- |
| 2542 | | A \= minus(_,_), !, |
| 2543 | | list_representation(A,[LA]), |
| 2544 | | (B = 0 -> Sub = [] ; |
| 2545 | | list_representation(B,[LB]), Sub = [LB]). |
| 2546 | | collect_subtrahend(minus(A, B), [Minuend, NSubtrahends]) :- |
| 2547 | | collect_subtrahend(A, [Minuend, Subtrahends]), |
| 2548 | | list_representation(B,LB), |
| 2549 | | append(Subtrahends, LB, NSubtrahends). |
| 2550 | | |
| 2551 | | collect_divisor(div(A, B), [LA, Div]) :- |
| 2552 | | A \= div(_,_), !, |
| 2553 | | list_representation(A,[LA]), |
| 2554 | | (B = 1 -> Div = [] ; |
| 2555 | | list_representation(B,[LB]), Div = [LB]). |
| 2556 | | collect_divisor(div(A, B), [Divident, NDivisors]) :- |
| 2557 | | collect_divisor(A, [Divident, Divisors]), |
| 2558 | | list_representation(B,LB), |
| 2559 | | append(Divisors, LB, NDivisors). |
| 2560 | | |
| 2561 | | sort_list(L,R) :- sort_components(L,S), samsort(S,R). |
| 2562 | | sort_components([],[]). |
| 2563 | | sort_components([c(L,T)|Rest], Res) :- |
| 2564 | ? | member(T,[disjunct,conjunct,union,intersection,add,multiplication,equal,not_equal,negation,unary_minus,equivalence,set_extension,list]), !, |
| 2565 | | sort_list(L,SL), |
| 2566 | | sort_components(Rest,R), |
| 2567 | | Res=[c(SL,T)|R]. |
| 2568 | | sort_components([c(L,T)|Rest], Res) :- !, % non-commutative |
| 2569 | | sort_components(L,L2), |
| 2570 | | sort_components(Rest,R), |
| 2571 | | Res=[c(L2,T)|R]. |
| 2572 | | % sort list of subtrahends or divisors |
| 2573 | | sort_components([E|Rest], [E|R]) :- atomic(E), !, sort_components(Rest,R). |
| 2574 | | sort_components([E|Rest], [F|R]) :- sort_list(E,F), sort_components(Rest,R). |
| 2575 | | |
| 2576 | | equal_op(L1,L2) :- L1 = [c(_,T1)], L2 = [c(_,T2)], !, T1 = T2. |
| 2577 | | equal_op([E1],[E2]) :- E1 \= [c(_,_)], E2 \= [c(_,_)]. |
| 2578 | | |
| 2579 | | equal_length(L1,L2) :- L1 = [c(A1,_)], L2 = [c(A2,_)], !, same_length(A1, A2). |
| 2580 | | equal_length([_],[_]). |
| 2581 | | |
| 2582 | | :- load_files(library(system), [when(compile_time), imports([environ/2])]). |
| 2583 | | :- if(environ(prob_release,true)). |
| 2584 | | % Don't include tests in release mode. |
| 2585 | | :- else. |
| 2586 | | :- use_module(test_sequent_prover). |
| 2587 | | :- endif. |