1 | | % (c) 2020-2025 Lehrstuhl fuer Softwaretechnik und Programmiersprachen, |
2 | | % Heinrich Heine Universitaet Duesseldorf |
3 | | % This software is licenced under EPL 1.0 (http://www.eclipse.org/org/documents/epl-v10.html |
4 | | |
5 | | :- module(well_def_hyps, [empty_hyps/1, |
6 | | portray_hyps/1, |
7 | | get_hyp_vars/2, |
8 | | get_hyp_var_type/3, |
9 | | push_hyp/4, push_hyps/4, |
10 | | push_hyps_wo_renaming/4, |
11 | | %push_normalized_hyp/3, |
12 | | add_new_hyp_variables/3, |
13 | | add_new_hyp_any_vars/3, |
14 | | copy_hyp_variables/3, |
15 | | is_hyp_var/2, |
16 | | get_clash_renaming_subst/2, |
17 | | get_renamed_expression/3, |
18 | | get_normalized_and_renamed_predicate/4, |
19 | | translate_norm_expr_with_limit/3, |
20 | | negate_hyp/2, |
21 | | negate_op/2, |
22 | | is_finite_type_for_wd/2 |
23 | | ]). |
24 | | |
25 | | :- use_module(probsrc(module_information),[module_info/2]). |
26 | | :- module_info(group,well_def_prover). |
27 | | :- module_info(description,'This module provides hypotheses stack management.'). |
28 | | |
29 | | |
30 | | |
31 | | :- use_module(wdsrc(well_def_tools), [not_occurs/2]). |
32 | | :- use_module(probsrc(error_manager)). |
33 | | :- use_module(probsrc(debug)). |
34 | | :- use_module(library(avl)). |
35 | | :- use_module(library(ordsets)). |
36 | | :- use_module(probsrc(avl_tools),[avl_fetch_bin/4]). |
37 | | |
38 | | % ------------------------------ |
39 | | |
40 | | % Hypotheses stack management: |
41 | | |
42 | | |
43 | | % create an empty hyp stack |
44 | | empty_hyps(hyp_rec(E,HI2)) :- empty_avl(E), |
45 | | avl_store(hyp_typed_vars,E,[],HI1), % typed variables of the hypotheses (implicitly universally quantified) |
46 | | avl_store(hyp_clash_vars,HI1,clash_rec(0,E),HI2). % variables which are currently in clash |
47 | | |
48 | | :- use_module(probsrc(bsyntaxtree), [conjunct_predicates/2]). |
49 | | % display the hypotheses stack: |
50 | | portray_hyps(hyp_rec(AVL,HInfos)) :- fetch_hyp_vars(HInfos,Vars), |
51 | | get_clashed_vars(HInfos,CVars), |
52 | | (debug_mode(on) -> portray_hyp_vars(hyp_rec(AVL,HInfos)),nl ; true), |
53 | | %b_global_sets:portray_global_sets, |
54 | | !, |
55 | | format('Hypotheses over ~w (clashes: ~w):~n',[Vars,CVars]), |
56 | | %avl_domain(AVL,D), lists:maplist(well_def_hyps:println_nhyp,D), |
57 | | avl_range(AVL,Hyp), |
58 | | conjunct_predicates(Hyp,HypC), |
59 | | translate:nested_print_bexpr(HypC),nl,nl. |
60 | | portray_hyps(H) :- !, format('** ILLEGAL Hypotheses: ~w~n',[H]). |
61 | | |
62 | | print_tvar(b(identifier(ID),Type,_)) :- format(' ~w : ~w~n',[ID,Type]). |
63 | | :- use_module(library(lists),[maplist/2]). |
64 | | portray_hyp_vars(hyp_rec(_,HInfos)) :- fetch_hyp_typed_vars(HInfos,TVars),!, |
65 | | length(TVars,Len), |
66 | | format('Typed vars in hyps (~w):~n',[Len]), |
67 | | maplist(print_tvar,TVars). |
68 | | portray_hyp_vars(H) :- !, format('** ILLEGAL Hypotheses: ~w~n',[H]). |
69 | | |
70 | | |
71 | | %println_nhyp(NH) :- format(' --> ~w~n',[NH]). |
72 | | |
73 | | |
74 | | % --------------------- |
75 | | |
76 | | % for debugging: |
77 | | :- public hyp_portray_hook/1. |
78 | | hyp_portray_hook(X) :- nonvar(X), X= hyp_rec(AVL,HInfos), |
79 | | avl_size(AVL,Size), |
80 | | avl_size(HInfos,ISize), |
81 | | format('hyp_rec(#~w,#~w)',[Size,ISize]). |
82 | | |
83 | | :- public install_hyp_portray_hook/0. |
84 | | install_hyp_portray_hook :- % mainly for the Prolog debugger |
85 | | assertz(( user:portray(X) :- well_def_hyps:hyp_portray_hook(X) )). |
86 | | |
87 | | %:- install_hyp_portray_hook. |
88 | | |
89 | | |
90 | | % ------------------------ |
91 | | |
92 | | % get the variable ids currently in scope |
93 | | get_hyp_vars(hyp_rec(_,HInfos),Res) :- get_hyp_vars(HInfos,Vars),!,Res=Vars. |
94 | | get_hyp_vars(H,R) :- add_internal_error('Illegal hyps: ',get_hyp_vars(H,R)), R=[]. |
95 | | |
96 | | :- use_module(probsrc(bsyntaxtree), [def_get_texpr_ids/2]). |
97 | | fetch_hyp_vars(HInfos,Vars) :- avl_fetch(hyp_typed_vars,HInfos,TVars), |
98 | | def_get_texpr_ids(TVars,Vars). |
99 | | fetch_hyp_typed_vars(HInfos,Vars) :- |
100 | | avl_fetch(hyp_typed_vars,HInfos,Vars). |
101 | | get_clashed_vars(HInfos,Vars) :- avl_fetch(hyp_clash_vars,HInfos,clash_rec(_,AVL)), |
102 | | avl_domain(AVL,Vars). |
103 | | get_clash_renaming(HInfos,Renamings) :- avl_fetch(hyp_clash_vars,HInfos,clash_rec(_,AVL)), |
104 | | findall(rename(ID,FreshID), avl_member(ID,AVL,FreshID), Renamings). |
105 | | |
106 | | % check if a variable id is currently in the scope of the hypotheses |
107 | | % if not, it is a global identifier (e.g., enumerated or deferred set) |
108 | | is_hyp_var(Var,hyp_rec(_,HInfos)) :- atomic(Var), nonvar(HInfos),!, |
109 | | fetch_hyp_vars(HInfos,Vars), |
110 | | ord_member(Var,Vars). |
111 | | is_hyp_var(V,H) :- add_internal_error('Illegal call: ',is_hyp_var(V,H)),fail. |
112 | | |
113 | | :- use_module(probsrc(tools_lists),[ord_member_nonvar_chk/2]). |
114 | | get_hyp_var_type(Var,hyp_rec(_,HInfos),Type) :- atomic(Var),!, |
115 | | fetch_hyp_typed_vars(HInfos,TVars), |
116 | | TVar = b(identifier(Var),Type,_), |
117 | | ord_member_nonvar_chk(TVar,TVars). |
118 | | get_hyp_var_type(V,H,T) :- add_internal_error('Illegal call: ',is_hyp_var_type(V,H,T)),fail. |
119 | | |
120 | | :- use_module(probsrc(bsyntaxtree), [conjunction_to_list/2]). |
121 | | % push a new Hypothesis H on the hyp stack |
122 | | push_hyp(Hyps,H,Options,NewHyps) :- |
123 | | check_valid_hyp_rec(Hyps,push_hyp), |
124 | | conjunction_to_list(H,Hs), |
125 | | push_hyps(Hyps,Hs,Options,NewHyps). |
126 | | |
127 | | check_valid_hyp_rec(Hyps,PP) :- var(Hyps),!, |
128 | | add_internal_error('Illegal variable hyp_rec: ',check_hyp_rec(Hyps,PP)),fail. |
129 | | check_valid_hyp_rec(Hyps,PP) :- Hyps \= hyp_rec(_,_),!, |
130 | | add_internal_error('Illegal hyp_rec: ',check_valid_hyp_rec(Hyps,PP)),fail. |
131 | | check_valid_hyp_rec(_,_). |
132 | | |
133 | | % push a list of hypotheses |
134 | | push_hyps(hyp_rec(NHyps,HInfos),Hs,Options,hyp_rec(NewNHyps,HInfos)) :- !, |
135 | | get_clash_renaming(HInfos,ClashRenaming), |
136 | | push_hyp_aux(Hs,ClashRenaming,Options,NHyps,NewNHyps). |
137 | | push_hyps(A,B,C,D) :- add_internal_error('Illegal call: ', push_hyps(A,B,C,D)),fail. |
138 | | |
139 | | % useful if renaming done outside, e.g., for treating x:=x-1 in WD analyser |
140 | | push_hyps_wo_renaming(hyp_rec(NHyps,HInfos),Hs,Options,hyp_rec(NewNHyps,HInfos)) :- !, ClashRenaming=[], |
141 | | push_hyp_aux(Hs,ClashRenaming,Options,NHyps,NewNHyps). |
142 | | push_hyps_wo_renaming(A,B,C,D) :- add_internal_error('Illegal call: ', push_hyps(A,B,C,D)),fail. |
143 | | |
144 | | push_hyp_aux(Hyps,_,_,_,_) :- var(Hyps),!, add_internal_error('Unbound hyps: ',push_hyps(Hyps)),fail. |
145 | | push_hyp_aux([],_,_,NH,NH). |
146 | | push_hyp_aux([H|T],ClashRenaming,Options,NHyps,NewNHyps) :- |
147 | | ((var(NHyps) ; NHyps=hyp_rec(_,_)) -> add_internal_error('Illegal AVL: ',NHyps),fail ; true), |
148 | | push_individual_hyp(H,ClashRenaming,Options,NHyps,NHyps3), |
149 | | push_hyp_aux(T,ClashRenaming,Options,NHyps3,NewNHyps). |
150 | | |
151 | | % sometimes we still have conjuncts in the list of hypotheses (e.g., coming from Rodin) |
152 | | push_individual_hyp(b(conjunct(H1,H2),_,_),ClashRenaming,Options,NHyps,NHyps3) :- !, |
153 | | push_individual_hyp(H1,ClashRenaming,Options,NHyps,NHyps2), |
154 | | push_individual_hyp(H2,ClashRenaming,Options,NHyps2,NHyps3). |
155 | | push_individual_hyp(H,ClashRenaming,Options,NHyps,NHyps3) :- |
156 | | normalize_and_rename_predicate(ClashRenaming,H,RenH,NH), |
157 | | % print('PUSH: '),nl, debug:print_quoted_with_max_depth(NH,6), print(' '), error_manager:print_message_span(H),nl, |
158 | | push_normalized_hyp_aux(NH,RenH,Options,NHyps,NHyps3). |
159 | | |
160 | | % utility: used to push already normalized and renamed hyp from within prover for normalized sub-goals |
161 | | %push_normalized_hyp(NH,hyp_rec(NHyps,I),hyp_rec(NHyps3,I)) :- norm_aux(NH,NormPred), |
162 | | % push_normalized_hyp_aux(NormPred,unknown,[],NHyps,NHyps3). |
163 | | |
164 | | push_normalized_hyp_aux(NH0,RenH,Options,NHyps,NHyps2) :- |
165 | | simplify_hyp(NH0,NHyps,NH), |
166 | | ((useful_hyp(NH) ; safe_ord_member(create_full_po,Options) |
167 | | ; potentially_useful_for_hyp_rule(NH), safe_ord_member(push_more_hyps,Options) |
168 | | ; useful_implication(NH,Options), |
169 | | true %safe_ord_member(push_more_hyps,Options) % seems useful for Event-B benchmark models, enable by default? |
170 | | ) |
171 | | -> avl_store_with_commutes_if_new(NH,NHyps,RenH,NHyps2,Options) |
172 | | ; push_commutative_hyps(NH,RenH,Options,NHyps,NHyps2) |
173 | | % hypothesis not directly used by prover, but there could be alternatives e.g., for disjunct |
174 | | %,functor(NH,FF,NN), print(not_pushing(FF,NN)),nl |
175 | | ). |
176 | | |
177 | | |
178 | | |
179 | | % push equivalent or implied hypotheses on the stack: |
180 | | push_commutative_hyps(NH,RenH,Options,NHyps1,NHyps2) :- |
181 | ? | commute_bin_op(NH,_,Options), % somehow faster than using findall directly |
182 | | !, |
183 | | findall(NH3,commute_bin_op(NH,NH3,Options),NH3s), |
184 | | l_avl_store_nhyps(NH3s,NHyps1,RenH,NHyps2,Options). |
185 | | push_commutative_hyps(_,_,_,NHyps,NHyps). |
186 | | |
187 | | safe_ord_member(El,List) :- var(List),!, add_internal_error('Illegal call: ',safe_ord_member(El,List)),fail. |
188 | | safe_ord_member(El,List) :- ord_member(El,List). |
189 | | |
190 | | l_avl_store_nhyps([],NHyps,_,NHyps,_Options). |
191 | | l_avl_store_nhyps([NH1|TNH],NHyps1,RenH,NHyps3,Options) :- |
192 | | simplify_hyp(NH1,NHyps1,NH1s), |
193 | | avl_store_if_new(NH1s,NHyps1,RenH,NHyps2,Options), |
194 | | l_avl_store_nhyps(TNH,NHyps2,RenH,NHyps3,Options). |
195 | | |
196 | | % store a hypothesis if new (without storing commutative versions of it) |
197 | | avl_store_if_new(NH,H,_,H2,_) :- avl_fetch(NH,H),!, H2=H. |
198 | | avl_store_if_new(NH,H1,RH,H3,Options) :- %write(prop_new(NH)),nl, avl_domain(H1,H1D), write(H1D),nl,nl, |
199 | | propagate_resolution_with_hyp(NH,H1,H2,Options), |
200 | | avl_store(NH,H2,RH,H3). |
201 | | |
202 | | % propagate new hyp by applying (simple) resolution: Hyp & not(Hyp) -> add false as hypothesis |
203 | | % also propagates implications Hyp => Q -> add Q as hypothesis |
204 | | propagate_resolution_with_hyp(NormHyp,Hyps,H2,_) :- negate_norm_op(NormHyp,NegNormHyp), |
205 | | avl_fetch(NegNormHyp,Hyps),!, |
206 | | debug_println(9,contradiction_found_in_hypotheses(NormHyp)), |
207 | | avl_store(falsity,Hyps,b(falsity,pred,[neg_hyp]),H2). % false_hyp rule can later trigger |
208 | | propagate_resolution_with_hyp(NH,Hyps,H2,Options) :- |
209 | | %write(fetch_impl),nl, avl_domain(Hyps,D), write(hyps(D)),nl, |
210 | | findall(NRHS,avl_fetch_bin(NH,implication,Hyps,NRHS),TriggeredImplications), |
211 | | propagate_implications(TriggeredImplications,NH,Hyps,H2,Options). |
212 | | |
213 | | negate_norm_op(NormHyp,NegNormHyp) :- negate_op(NormHyp,NegNH), |
214 | | norm_aux(NegNH,NegNormHyp). |
215 | | |
216 | | propagate_implications([],_,Hyps,Hyps,_). |
217 | | propagate_implications([NRHS|TR],NLHS,NHyps1,NHyps4,Options) :- |
218 | | (avl_delete(implication(NLHS,NRHS),NHyps1,TE,NHyps2) |
219 | | -> % write('propagate : '),translate:print_bexpr(TE),nl, |
220 | | (TE=b(implication(_,RHS),_,_) -> true |
221 | | ; TE=b(disjunct(_,RHS),_,_) -> true |
222 | | ; unknown_source_term(RHS), |
223 | | true %add_warning(wd_prover,'Unexpected un-normalised hyp: ',TE) |
224 | | ), |
225 | | simplify_hyp(NRHS,NHyps2,NRHS2), |
226 | | avl_store_with_commutes_if_new(NRHS2,NHyps2,RHS,NHyps3,Options) |
227 | | ; % implication has already been triggered by processing a previous NRHS in the list |
228 | | NHyps3=NHyps1 |
229 | | ), |
230 | | propagate_implications(TR,NLHS,NHyps3,NHyps4,Options). |
231 | | |
232 | | unknown_source_term(b(unknown,pred,[trigger_implication])). |
233 | | |
234 | | avl_store_with_commutes_if_new(NH,H,_,H2,_) :- avl_fetch(NH,H),!, H2=H. |
235 | | avl_store_with_commutes_if_new(conjunct(NH1,NH2),H0,TE,H2,Options) :- !, |
236 | | (TE=b(conjunct(TE1,TE2),_,_) -> true ; unknown_source_term(TE1), unknown_source_term(TE2)), |
237 | | simplify_hyp(NH1,H0,SNH1), |
238 | | avl_store_with_commutes_if_new(SNH1,H0,TE1,H1,Options), |
239 | | simplify_hyp(NH2,H1,SNH2), |
240 | | avl_store_with_commutes_if_new(SNH2,H1,TE2,H2,Options). |
241 | | avl_store_with_commutes_if_new(NH,H0,RH,H3,Options) :- %write(prop_new(NH)),nl, avl_domain(H,H1D), write(H1D),nl,nl, |
242 | | avl_store(NH,H0,RH,H1), |
243 | | propagate_resolution_with_hyp(NH,H1,H2,Options), |
244 | | push_commutative_hyps(NH,RH,Options,H2,H3). |
245 | | |
246 | | :- use_module(probsrc(bsyntaxtree), [rename_bt/3]). |
247 | | normalize_and_rename_predicate(_,H,_,_) :- var(H),!, |
248 | | add_internal_error('Unbound predicate: ',normalize_and_rename_predicate(H)),fail. |
249 | | normalize_and_rename_predicate([],H,RenH,NH) :- !, RenH=H, |
250 | | normalize_predicate(H,NH). |
251 | | normalize_and_rename_predicate(ClashRenaming,H,RenH,NH) :- !, |
252 | | %format('Rename Hyp: ~w ',[ClashRenaming]),translate:print_bexpr(H),nl, |
253 | | rename_bt(H,ClashRenaming,RenH), |
254 | | %print(' > renamed Hyp: '),translate:print_bexpr(RenH),nl, |
255 | | normalize_predicate(RenH,NH). |
256 | | |
257 | | % :- use_module(probsrc(bsyntaxtree),[expand_all_lets/2]). |
258 | | % TO DO: expand lets; but can be very expensive; e.g., B/Tickets/Schneider3_Trees/NewSolver_v2.mch -wd-check |
259 | | normalize_predicate(Pred,NormPred) :- |
260 | | b_interpreter_check:norm_pred_check(Pred,NP), |
261 | | norm_aux(NP,NormPred). |
262 | | |
263 | | |
264 | | % put identifiers first, so that we can more efficiently do lookups; |
265 | | % hence we try and replace less/greater by less_equal/greater_equal when possible |
266 | | norm_aux(equal(A,B),equal(NA,NB)) :- !, norm_equal(A,B,NA,NB). |
267 | | norm_aux(greater(Val,Nr),greater_equal(Val,N1)) :- integer(Nr),!, N1 is Nr+1. |
268 | | norm_aux(greater(Nr,Val),greater_equal(N1,Val)) :- integer(Nr),!, N1 is Nr-1. |
269 | | norm_aux(greater(A,B),less(B,A)) :- !. % we only look up less (when both args are known) |
270 | | norm_aux(less(Val,Nr),less_equal(Val,N1)) :- integer(Nr),!, N1 is Nr-1. |
271 | | norm_aux(less(Nr,Val),less_equal(N1,Val)) :- integer(Nr),!, N1 is Nr+1. |
272 | | norm_aux(not_equal(Val,EMPTY),not_equal(Val,empty_set)) :- is_empty_set_alternative(EMPTY),!. |
273 | | norm_aux(not_equal(EMPTY,Val),not_equal(Val,empty_set)) :- is_empty_set_alternative(EMPTY),!. |
274 | | norm_aux(negation(Pred),NormPred) :- negate_op(Pred,NP),!, norm_aux(NP,NormPred). |
275 | | norm_aux(implication(Pred1,Pred2),NormPred) :- !, |
276 | | norm_implication(Pred1,Pred2,NormPred). |
277 | | norm_aux(disjunct(Pred1,Pred2),disjunct(NormPred1,NormPred2)) :- !, |
278 | | norm_aux(Pred1,NormPred1),norm_aux(Pred2,NormPred2). |
279 | | norm_aux(equivalence(Pred1,Pred2),equivalence(NormPred1,NormPred2)) :- !, |
280 | | norm_aux(Pred1,NormPred1),norm_aux(Pred2,NormPred2). |
281 | | %norm_aux(Term,NormPred) :- print(Term),nl,functor(Term,union,2),flatten(Term,union,List,[]), print(union(List)),nl, |
282 | | % sort(List,SL),print(sorted(SL)),nl,fail. |
283 | | norm_aux(V,V). |
284 | | % TO DO: subset_strict -> subset and not_equal |
285 | | % TO DO: normalize value(X) terms -> value(int(Nr)) -> Nr, ... |
286 | | % TO DO: maybe process a few rules here x<: dom(f) or x = dom(f) - other |
287 | | |
288 | | norm_equal(A,B,RA,RB) :- peel_eq(A,B,SA,SB), |
289 | | (SB='$'(_), SA \= '$'(_) -> RA=SB,RB=SA ; RA=SA, RB=SB). |
290 | | |
291 | | peel_eq(reverse(A),reverse(B),SA,SB) :- !, peel_eq(A,B,SA,SB). |
292 | | % TODO: add other injective/reversible operators; also cf. simplify_hyp |
293 | | peel_eq(A,B,A,B). |
294 | | |
295 | | norm_implication(conjunct(A,B),Pred2,Implication) :- !, |
296 | | % A & B => C ---> A => (B => C) (so that we can use avl_fetch on LHS of implication) |
297 | | norm_implication(B,Pred2,Implication2), |
298 | | norm_implication(A,Implication2,Implication). |
299 | | norm_implication(Pred1,Pred2,implication(NormPred1,NormPred2)) :- |
300 | | norm_aux(Pred1,NormPred1),norm_aux(Pred2,NormPred2). |
301 | | |
302 | | |
303 | | % TO DO: flatten and sort union and possibly other operators: |
304 | | %flatten(Term,BOP) --> {functor(Term,BOP,2), arg(1,Term,B1), arg(2,Term,B2)},!, |
305 | | % flatten(B1,BOP), flatten(B2,BOP). |
306 | | %flatten(Term,_) --> [Term]. |
307 | | |
308 | | is_empty_set_alternative(empty_sequence). |
309 | | is_empty_set_alternative(value(V)) :- V==[]. % should now be handled in norm_expr / norm_value |
310 | | |
311 | | negate_op(truth,falsity). |
312 | | negate_op(falsity,truth). |
313 | | negate_op(equal(A,B),not_equal(A,B)). |
314 | | negate_op(not_equal(A,B),equal(A,B)). |
315 | | negate_op(less(A,B),less_equal(B,A)). |
316 | | negate_op(greater(A,B),less_equal(A,B)). |
317 | | negate_op(less_equal(A,B),less(B,A)). |
318 | | negate_op(greater_equal(A,B),less(A,B)). |
319 | | negate_op(less_real(A,B),less_equal_real(B,A)). |
320 | | negate_op(less_equal_real(A,B),less_real(B,A)). |
321 | | negate_op(negation(P),P). |
322 | | negate_op(not_member(A,B),member(A,B)). |
323 | | negate_op(member(A,B),not_member(A,B)). % should we do this? |
324 | | negate_op(not_subset(A,B),subset(A,B)). |
325 | | negate_op(subset(A,B),not_subset(A,B)). |
326 | | negate_op(not_subset_strict(A,B),subset_strict(A,B)). |
327 | | negate_op(subset_strict(A,B),not_subset_strict(A,B)). |
328 | | % should we negate_op(conjunct ...), we also treat negation in prove_po/prove_negated_po |
329 | | |
330 | | % for commutative binary operators: also store commutative version to enable lookup on either argument |
331 | | commute_bin_op(OpTerm,CommutativeOrDerivedVersion,_Options) :- |
332 | ? | commute_bin_op(OpTerm,CommutativeOrDerivedVersion). |
333 | | commute_bin_op(OpTerm,CommutativeOrDerivedVersion,Options) :- |
334 | | safe_ord_member(push_more_hyps,Options), |
335 | ? | commute_bin_op_aggressive(OpTerm,CommutativeOrDerivedVersion,Options). |
336 | | |
337 | ? | commute_bin_op(equal(A,B),Pred) :- compute_bin_op_equal(A,B,Pred). |
338 | | % not_equal: no need to reverse: we always know both values when doing a lookup |
339 | | commute_bin_op(greater_equal(A,B),less_equal(B,A)) :- can_be_used_for_lookups(B). |
340 | | commute_bin_op(greater(A,B),Pred) :- compute_bin_op_less(B,A,Pred). |
341 | ? | commute_bin_op(less_equal(A,B),Pred) :- compute_bin_op_less_equal(A,B,Pred). |
342 | ? | commute_bin_op(less(A,B),Pred) :- compute_bin_op_less(A,B,Pred). |
343 | | commute_bin_op(less_real(A,B),not_equal(A,B)). % TO DO: extend |
344 | ? | commute_bin_op(subset_strict(A,B),Pred) :- gen_subset(A,B,Pred). |
345 | | commute_bin_op(subset_strict(A,B),not_equal(A,B)). |
346 | | commute_bin_op(subset(A,B),superset(B,A)) :- % new operator, for efficient lookups ! |
347 | | can_be_used_for_lookups(B). |
348 | | commute_bin_op(subset(A,cartesian_product(Dom,Ran)),member(A,relations(Dom,Ran))) :- |
349 | | can_be_used_for_lookups(A). |
350 | | commute_bin_op(subset_strict(A,cartesian_product(Dom,Ran)),member(A,relations(Dom,Ran))) :- |
351 | | can_be_used_for_lookups(A). |
352 | | commute_bin_op(not_subset(A,B),not_equal(A,B)). % also implies not_subset_strict |
353 | | commute_bin_op(member(_,Set),not_equal(Set,empty_set)). |
354 | | commute_bin_op(member(couple(A,B),C),NewHyp) :- |
355 | | ( NewHyp = member(A,domain(C)) % A|->B : C ==> A : dom(C) |
356 | | ; NewHyp = member(B,range(C)) ). % A|->B : C ==> B : ran(C) |
357 | | commute_bin_op(member(X,interval(Low,Up)),NewHyp) :- |
358 | | (NewHyp = less_equal(Low,Up) % x : Low..Up => Low <= Up |
359 | | ; NewHyp = less_equal(Low,X) % Low <= X if X: Low..UP |
360 | | ; can_be_used_for_lookups(X), NewHyp = greater_equal(X,Low) |
361 | | ; NewHyp = less_equal(X,Up) % X <= UP if X: Low..UP |
362 | | ; can_be_used_for_lookups(Up), NewHyp = greater_equal(Up,X) |
363 | | ). |
364 | | commute_bin_op(member(X,Rel),NewHyp) :- is_total_relation(Rel,Domain), |
365 | | % we cannot efficiently lookup this info from Domain |
366 | | can_be_used_for_lookups(Domain), |
367 | | NewHyp = equal(Domain,domain(X)). |
368 | | commute_bin_op(member(X,Rel),NewHyp) :- is_surjective_relation(Rel,Range), |
369 | | % we cannot efficiently lookup this info from Range |
370 | | can_be_used_for_lookups(Range), |
371 | | NewHyp = equal(Range,range(X)). |
372 | | commute_bin_op(member(card(X),_),NewHyp) :- can_be_used_for_lookups(X), |
373 | | NewHyp=finite(X). |
374 | ? | commute_bin_op(disjunct(LHS,RHS),NewHyp) :- get_member_pred(LHS,X,A), get_member_pred(RHS,X,B), |
375 | | NewHyp = member(X,union(A,B)). |
376 | | commute_bin_op(disjunct(LHS,RHS),NewHyp) :- get_subset_pred(LHS,X,A), get_subset_pred(RHS,X,B), |
377 | | NewHyp = subset(X,union(A,B)). |
378 | | commute_bin_op(partition(A,List),equal(A,UNION)) :- gen_union(List,UNION). |
379 | | % TO DO: is there a use in the all_disjoint feature? |
380 | | commute_bin_op(forall(['$'(X)],LHSPred,RHSPred), Pred) :- |
381 | | get_member_lhs(LHSPred,'$'(X),Set), |
382 | ? | get_member_rhs(RHSPred,'$'(X),SET2), |
383 | | useful_forall_superset(SET2), |
384 | | % !x.(x:SET => x:dom(F)) => SET <: dom(F) |
385 | | % !x.(x:SET => x:SET2) => SET <: SET2 |
386 | | not_occurs(Set,X), |
387 | | not_occurs(SET2,X), %print(subset1(Set,SET2)),nl, |
388 | ? | gen_subset(Set,SET2,Pred). |
389 | | commute_bin_op(forall(['$'(X),'$'(Y)],LHSPred,RHSPred), Pred) :- % TO DO: generalise |
390 | | get_member_lhs(LHSPred,couple('$'(X),'$'(Y)),Set), %TO DO: generalise -> domain/range |
391 | | get_member_rhs(RHSPred,'$'(X),SET2), |
392 | | useful_forall_superset(SET2), |
393 | | % !x,y.(x|->y:SET => x:dom(F)) => dom(SET) <: dom(F) |
394 | | % !x,y.(x|->y:SET => x:SET2) => dom(SET) <: SET2 |
395 | | not_occurs(Set,X), |
396 | | not_occurs(Set,Y), |
397 | | not_occurs(SET2,X), %print(subset2(Set,SET2)),nl, |
398 | ? | gen_subset(domain(Set),SET2,Pred). |
399 | | commute_bin_op(equal(A,reverse(B)),equal(B,reverse(A))). |
400 | | commute_bin_op(not_equal(A,B),equal(A,NB)) :- negate_boolean_like_value(B,NB). |
401 | | commute_bin_op(not_equal(intersection(Set1,Set2),empty_set), Pred) :- |
402 | | % Set /\ {a} /= {} => a : Set |
403 | | (Set1=set_extension([A]),B=Set2 -> true ; Set2=set_extension([A]),B=Set1), |
404 | | Pred = member(A,B). |
405 | | %commute_bin_op(X,_) :- print(binop(X)),nl,fail. |
406 | | |
407 | | % transform disjuncts/equivalences/... into implications that we propagate: |
408 | | commute_bin_op_aggressive(disjunct(LHS,RHS),implication(NegLHS,RHS),Options) :- |
409 | | negate_norm_op(LHS,NegLHS), useful_hyp_or_imp(RHS,Options). |
410 | | commute_bin_op_aggressive(disjunct(RHS,LHS),implication(NegLHS,RHS),Options) :- |
411 | | negate_norm_op(LHS,NegLHS), useful_hyp_or_imp(RHS,Options). |
412 | | commute_bin_op_aggressive(implication(LHS,RHS),implication(NegRHS,NegLHS),_) :- % contra-positive implication |
413 | | negate_norm_op(LHS,NegLHS), |
414 | | negate_norm_op(RHS,NegRHS). |
415 | | commute_bin_op_aggressive(equivalence(LHS,RHS),implication(LHS,RHS),Options) :- |
416 | | useful_hyp_or_imp(RHS,Options). |
417 | | commute_bin_op_aggressive(equivalence(RHS,LHS),implication(LHS,RHS),Options) :- |
418 | | useful_hyp_or_imp(RHS,Options). |
419 | | |
420 | | % extract a membership predicate |
421 | | get_member_pred(member(X,A),X,A). |
422 | | get_member_pred(equal(X,A),X,set_extension([A])). |
423 | | get_member_pred(equal(A,X),X,set_extension([A])). |
424 | ? | get_member_pred(disjunct(LHS,RHS),X,union(A,B)) :- get_member_pred(LHS,X,A), get_member_pred(RHS,X,B). |
425 | | % TO DO: same for subset? |
426 | | get_subset_pred(subset(X,A),X,A). |
427 | | get_subset_pred(subset_strict(X,A),X,A). |
428 | | %get_subset_pred(member(X,power_set(A)),X,A). |
429 | | get_subset_pred(disjunct(LHS,RHS),X,union(A,B)) :- get_subset_pred(LHS,X,A), get_subset_pred(RHS,X,B). |
430 | | |
431 | | % for which supersets is it useful to derive informations from forall quantifier: |
432 | | useful_forall_superset(domain(_)). |
433 | | useful_forall_superset(range(_)). |
434 | | useful_forall_superset(finite(_)). |
435 | | useful_forall_superset(seq(_)). |
436 | | useful_forall_superset(seq1(_)). |
437 | | useful_forall_superset(iseq(_)). |
438 | | useful_forall_superset(iseq1(_)). |
439 | | useful_forall_superset(perm(_)). |
440 | | useful_forall_superset(partial_function(_,_)). |
441 | | useful_forall_superset(total_function(_,_)). |
442 | | useful_forall_superset(total_injection(_,_)). |
443 | | useful_forall_superset(total_surjection(_,_)). |
444 | | useful_forall_superset('$'(_)). |
445 | | useful_forall_superset(pow1_subset(_)). % not empty |
446 | | useful_forall_superset(fin1_subset(_)). % not empty and finite |
447 | | useful_forall_superset(fin_subset(_)). % finite info |
448 | | % TO DO: more |
449 | | |
450 | | is_total_relation(total_function(A,_),A). |
451 | | is_total_relation(total_injection(A,_),A). |
452 | | is_total_relation(total_surjection(A,_),A). |
453 | | is_total_relation(total_bijection(A,_),A). |
454 | | is_total_relation(total_surjection_relation(A,_),A). |
455 | | |
456 | | |
457 | | is_surjective_relation(partial_surjection(_,B),B). |
458 | | is_surjective_relation(surjection_relation(_,B),B). |
459 | | is_surjective_relation(total_surjection(_,B),B). |
460 | | is_surjective_relation(total_bijection(_,B),B). |
461 | | is_surjective_relation(total_surjection_relation(_,B),B). |
462 | | is_surjective_relation(perm(B),B). |
463 | | |
464 | | negate_boolean_like_value(boolean_true,boolean_false). |
465 | | negate_boolean_like_value(boolean_false,boolean_true). |
466 | | % TO DO: also treat enumerated sets with exactly two values |
467 | | |
468 | | % must match completely |
469 | | get_member_lhs(member(X,Set),X,Set). |
470 | | get_member_lhs(truth,_,typeset). |
471 | | |
472 | | % must be an conjunct in rhs |
473 | | get_member_rhs(member(X,Set),X,Set). |
474 | ? | get_member_rhs(conjunct(A,B),X,Set) :- get_member_rhs(A,X,Set) ; get_member_rhs(B,X,Set). |
475 | | get_member_rhs(not_equal(empty_set,X),X,pow1_subset(typeset)). |
476 | | get_member_rhs(not_equal(X,empty_set),X,pow1_subset(typeset)). |
477 | | get_member_rhs(finite(X),X,fin_subset(typeset)). |
478 | | |
479 | | |
480 | | compute_bin_op_less_equal(A,B,greater_equal(B,A)) :- can_be_used_for_lookups(B). |
481 | | compute_bin_op_less_equal(card(X),_,finite(X)) :- can_be_used_for_lookups(X). |
482 | | |
483 | | compute_bin_op_less(A,B,less_equal(A,B)). |
484 | | compute_bin_op_less(A,B,greater_equal(B,A)) :- can_be_used_for_lookups(B). % we do not lookup greater |
485 | | compute_bin_op_less(A,B,not_equal(A,B)). % for not_equal we only need to store one direction |
486 | | compute_bin_op_less(card(X),_,finite(X)) :- can_be_used_for_lookups(X). % actually card(X)>1 also implies finite(X) |
487 | | |
488 | | compute_bin_op_equal(A,B,equal(B,A)) :- |
489 | | can_be_used_for_lookups(B). |
490 | | compute_bin_op_equal(A,B,falsity) :- % sometimes we have FALSE=TRUE as an alternative to falsity |
491 | | is_explicit_value(A,VA), |
492 | | is_explicit_value(B,VB), |
493 | | VA \= VB. |
494 | | compute_bin_op_equal(Set,A,Pred) :- |
495 | | % e.g., A = B \ C => A <: B, useful for examples/B/Alstom/etcs/actions_scn_f6_372_bis.mch |
496 | ? | derive_superset(Set,B), B \= A, |
497 | | gen_superset(B,A,Pred). % only generate superset rule; for subset there are rules to treat set_subtraction |
498 | | compute_bin_op_equal(A,Set,Pred) :- % interchange args |
499 | ? | derive_superset(Set,B), B \= A, |
500 | | gen_superset(B,A,Pred). |
501 | | compute_bin_op_equal(A,Set,subset(B,A)) :- % A = B \/ C => B <: A ; useful to allow lookups of B |
502 | ? | derive_subset(Set,B), |
503 | | can_be_used_for_lookups(B), B \= A. |
504 | | compute_bin_op_equal(A,Add,Res) :- is_add_with_nr(Add,B,Nr), |
505 | | % A = B+Nr => B < A |
506 | ? | (Nr>0 -> compute_bin_op_less(B,A,Res) |
507 | ? | ; Nr<0 -> compute_bin_op_less(A,B,Res) |
508 | | ; Res = equal(A,B)). |
509 | | compute_bin_op_equal(A,B,finite(X)) :- |
510 | | (A=card(X);B=card(X)), can_be_used_for_lookups(X). % actually: if any sub-expression uses card(.) we could add it? |
511 | | |
512 | | % cf is_explicit_value/3 in well_def_prover |
513 | | % explicit value that can be compared using Prolog unification: |
514 | | is_explicit_value(boolean_true,pred_true). |
515 | | is_explicit_value(boolean_false,pred_false). |
516 | | is_explicit_value(string(A),A). |
517 | | is_explicit_value(Nr,Nr) :- number(Nr). |
518 | | |
519 | | is_add_with_nr(add(A,B),X,Nr) :- (number(B) -> (X,Nr)=(A,B) ; number(A) -> (X,Nr)=(B,A)). |
520 | | is_add_with_nr(minus(A,B),A,Nr) :- number(B), Nr is -B. |
521 | | |
522 | | derive_superset(set_subtraction(B,_),B). % B \ C <: B |
523 | | derive_superset(intersection(B,_),B). % B /\ C <: B |
524 | | derive_superset(intersection(_,C),C). % B /\ C <: C |
525 | | |
526 | | derive_subset(union(B,_),B). % B <: B \/ C |
527 | | derive_subset(union(_,C),C). % C <: B /\ C |
528 | | |
529 | | gen_subset(A,B,subset(A,B)) :- can_be_used_for_lookups(A). |
530 | | gen_subset(A,B,superset(B,A)) :- can_be_used_for_lookups(B). |
531 | | |
532 | | gen_superset(A,B,superset(A,B)) :- can_be_used_for_lookups(A). |
533 | | |
534 | | gen_union([],emptyset). |
535 | | gen_union([X],R) :- !, R=X. |
536 | | gen_union([X|T],union(X,UT)) :- gen_union(T,UT). |
537 | | |
538 | | % true if we are likely to need looking up these kinds of terms |
539 | | can_be_used_for_lookups('$'(_)). |
540 | | %can_be_used_for_lookups(Nr) :- number(Nr). |
541 | | can_be_used_for_lookups(domain(_)). % lookup domain of a function |
542 | | can_be_used_for_lookups(range(_)). |
543 | | can_be_used_for_lookups(card(_)). |
544 | | can_be_used_for_lookups(size(_)). % TO DO: normalize size to card, we assume hyps are WD; so no difference |
545 | | can_be_used_for_lookups(interval(_,_)). |
546 | | % ADD: records,... |
547 | | |
548 | | useful_hyp(finite(_)). |
549 | | %useful_hyp(partition(_,_)). % now rewritten |
550 | | useful_hyp(member(_,_)). |
551 | | useful_hyp(subset(_,_)). |
552 | | useful_hyp(equal(_,_)). |
553 | | useful_hyp(greater_equal(_,_)). |
554 | | useful_hyp(less_equal(_,_)). |
555 | | useful_hyp(less_equal_real(_,_)). |
556 | | %useful_hyp(less(_,_)). % less is now no longer looked up; we look up not_equal |
557 | | useful_hyp(not_equal(_,_)). |
558 | | useful_hyp(not_member(_,_)). % used in check_not_member_of_set |
559 | | %useful_hyp(equal(A,B)) :- check if A is ID which occurs in B; e.g, x = x*1 not useful |
560 | | |
561 | | useful_implication(implication(_,RHS),Options) :- |
562 | | useful_hyp_or_imp(RHS,Options). |
563 | | useful_hyp_or_imp(RHS,Options) :- |
564 | | (useful_hyp(RHS) -> true |
565 | | ; useful_implication_body(RHS,Options)). % useful upon pushing hyps in propagate_resolution_with_hyp |
566 | | |
567 | | % implication or similar which could be useful (i.e., triggered so that it produces a really useful hypothesis) |
568 | | useful_implication_body(implication(_,RHS),Options) :- |
569 | | useful_hyp_or_imp(RHS,Options). |
570 | | useful_implication_body(equivalence(_,_),Options) :- safe_ord_member(push_more_hyps,Options). |
571 | | useful_implication_body(disjunct(_,_),Options) :- safe_ord_member(push_more_hyps,Options). |
572 | | useful_implication_body(conjunct(LHS,RHS),Options) :- |
573 | | (useful_hyp_or_imp(LHS,Options) -> true ; useful_hyp_or_imp(RHS,Options)). |
574 | | |
575 | | % check if we can simplify the hypothesis |
576 | | simplify_hyp(implication(LHS,RHS),Hyps,Res) :- % true => RHS --> RHS |
577 | | %write(check_imp_lhs_hyp(LHS)),nl, avl_domain(Hyps,D), write(dom(D)),nl, |
578 | | avl_fetch(LHS,Hyps),!, % LHS is in the hyps |
579 | | %write(simplify_imp(LHS,RHS)),nl, |
580 | | simplify_hyp(RHS,Hyps,Res). |
581 | | % TODO: disjunction, ... |
582 | | simplify_hyp(Hyp,_,Hyp). |
583 | | |
584 | | |
585 | | % a few more binary operations that are potentially useful for :prove, particularly if negation in goal |
586 | | potentially_useful_for_hyp_rule(less(_,_)). |
587 | | potentially_useful_for_hyp_rule(less_real(_,_)). |
588 | | potentially_useful_for_hyp_rule(not_subset(_,_)). |
589 | | potentially_useful_for_hyp_rule(not_subset_strict(_,_)). |
590 | | potentially_useful_for_hyp_rule(subset_strict(_,_)). |
591 | | potentially_useful_for_hyp_rule(partition(_,_)). |
592 | | |
593 | | get_clash_renaming_subst(hyp_rec(_,HInfos),ClashRenaming) :- !, |
594 | | get_clash_renaming(HInfos,ClashRenaming). |
595 | | get_clash_renaming_subst(H,R) :- add_internal_error('Illegal hyps:',get_clash_renaming_subst(H,R)),fail. |
596 | | |
597 | | % rename an expression or predicate given the current variable clashes |
598 | | get_renamed_expression(Expr,Hyps,RenExpr) :- |
599 | | get_clash_renaming_subst(Hyps,ClashRenaming), |
600 | | rename_bt(Expr,ClashRenaming,RenExpr). |
601 | | |
602 | | get_normalized_and_renamed_predicate(Pred,Hyps,RenPred,NormPred) :- |
603 | | get_clash_renaming_subst(Hyps,ClashRenaming), |
604 | | normalize_and_rename_predicate(ClashRenaming,Pred,RenPred,NormPred). |
605 | | |
606 | | :- use_module(library(lists),[maplist/3]). |
607 | | % add new quantified $ untyped variables to the hyp stack |
608 | | create_any_type($(ID),b(identifier(ID),any,[])). |
609 | | add_new_hyp_any_vars(H,DollarIDs,H2) :- |
610 | | maplist(create_any_type,DollarIDs,TVars),!, |
611 | | add_new_hyp_variables(H,TVars,H2). |
612 | | add_new_hyp_any_vars(H,I,H2) :- add_internal_error('Illegal Ids:',add_new_hyp_any_vars(H,I,H)), |
613 | | H2=H. |
614 | | |
615 | | % add new quantified typed variables to the hyp stack |
616 | | add_new_hyp_variables(H,[],R) :- !, R=H. |
617 | | add_new_hyp_variables(hyp_rec(NH,HInfos1),NewAddedTVars,hyp_rec(NH,HInfos3)) :- |
618 | | fetch_hyp_typed_vars(HInfos1,TVars), |
619 | | list_to_ord_set(NewAddedTVars,SortedNewTVars), |
620 | | add_new_hyp_vars(SortedNewTVars,TVars,NewTVars2,ClashTVars), |
621 | | (ClashTVars=[] -> HInfos2=HInfos1, NewTVars3=NewTVars2 |
622 | | ; (debug_mode(off) -> true |
623 | | ; add_message(well_def_analyser,'Variable clash, will rename future predicates: ', ClashTVars,ClashTVars) |
624 | | ), |
625 | | avl_fetch(hyp_clash_vars,HInfos1,clash_rec(GenSymCount,OldClashAVL)), |
626 | | ren_clash_variables(ClashTVars,RenClashTVars,GenSymCount,NewGSC,OldClashAVL,NewClashAVL), |
627 | | avl_store(hyp_clash_vars,HInfos1,clash_rec(NewGSC,NewClashAVL),HInfos2), |
628 | | list_to_ord_set(RenClashTVars,SRenClashTVars), |
629 | | ord_union(SRenClashTVars,NewTVars2,NewTVars3) |
630 | | ), |
631 | | avl_store(hyp_typed_vars,HInfos2,NewTVars3,HInfos3). |
632 | | |
633 | | % add_new_typed_vars(AddedTVars,OldTVars,NewTVars,ClashVars) |
634 | | add_new_hyp_vars([],TVars,NewTVars,[]) :- !, NewTVars=TVars. |
635 | | add_new_hyp_vars(AddedTVars,[],NewTVars,[]) :- !,NewTVars=AddedTVars. |
636 | | add_new_hyp_vars([b(identifier(ID1),Type1,I1)|T1],[b(identifier(ID2),Type2,I2)|T2],NewTVars,Clash) :- !, |
637 | | (ID1 @> ID2 |
638 | | -> NewTVars = [b(identifier(ID2),Type2,I2)|NewT], |
639 | | add_new_hyp_vars([b(identifier(ID1),Type1,I1)|T1],T2,NewT,Clash) |
640 | | ; ID1 @< ID2 |
641 | | -> NewTVars = [b(identifier(ID1),Type1,I1)|NewT], |
642 | | add_new_hyp_vars(T1,[b(identifier(ID2),Type2,I2)|T2],NewT,Clash) |
643 | | ; NewTVars = [b(identifier(ID2),Type2,I2)|NewT], |
644 | | Clash = [b(identifier(ID1),Type1,I1)|NewClash], |
645 | | add_new_hyp_vars(T1,T2,NewT,NewClash) |
646 | | ). |
647 | | add_new_hyp_vars(T1,T2,_,_) :- add_internal_error('Illegal call: ',add_new_hyp_vars(T1,T2,_,_)),fail. |
648 | | |
649 | | % add clash ids and their renaming to the clash AVL |
650 | | ren_clash_variables([],[],C,C,Avl,Avl). |
651 | | ren_clash_variables([b(identifier(ID1),Type1,I1)|T1], |
652 | | [b(identifier(RenamedID),Type1,[was(ID1)|I1])|T2], Cin,Cout,AvlIn,AvlOut) :- |
653 | | number_codes(Cin,NC), atom_codes(Ain,NC), |
654 | | atom_concat('$wd_rename_',Ain,RenamedID), % print(rename(ID,RenamedID)),nl, |
655 | | C1 is Cin+1, |
656 | | avl_store(ID1,AvlIn,RenamedID,Avl2), |
657 | | ren_clash_variables(T1,T2,C1,Cout,Avl2,AvlOut). |
658 | | |
659 | | % make a fresh copy of existing variables (the variables are not typed but atomic ids) |
660 | | copy_hyp_variables(hyp_rec(NH,HInfos1),ExistingVars,Hyp2) :- |
661 | | fetch_hyp_typed_vars(HInfos1,TVars), |
662 | | list_to_ord_set(ExistingVars,SortedIds), |
663 | | get_existing_tids(SortedIds,TVars,ResTVars), |
664 | | add_new_hyp_variables(hyp_rec(NH,HInfos1),ResTVars,Hyp2). |
665 | | |
666 | | get_existing_tids([],_,[]). |
667 | | get_existing_tids([ID|TI],TIDs,Res) :- get_aux(TIDs,ID,TI,Res). |
668 | | :- use_module(probsrc(bsyntaxtree), [get_texpr_id/2]). |
669 | | get_aux([],ID,_,Res) :- add_internal_error('Cannot find existing hyp variable:',ID), Res=[]. |
670 | | get_aux([TID|TT],ID,TI,Res) :- |
671 | | (get_texpr_id(TID,ID) -> Res=[TID|ResT], get_existing_tids(TI,TT,ResT) |
672 | | ; get_aux(TT,ID,TI,Res) |
673 | | ). |
674 | | |
675 | | |
676 | | % similar to create_negation in bsyntaxtree but more rules adapted for hypotheses and WD prover |
677 | | |
678 | | :- use_module(probsrc(bsyntaxtree),[extract_info/2]). |
679 | | negate_hyp(b(P,pred,I),Res) :- create_negation_aux(P,I,R),!,Res=R. |
680 | | negate_hyp(Pred,b(negation(Pred),pred,Infos)) :- |
681 | | extract_info(Pred,Infos). |
682 | | |
683 | | create_negation_aux(truth,I,R) :- !, R=b(falsity,pred,I). |
684 | | create_negation_aux(falsity,I,R) :- !, R=b(truth,pred,I). |
685 | | create_negation_aux(disjunct(A,B),I,R) :- !, |
686 | | negate_hyp(A,NA), negate_hyp(B,NB), R = b(conjunct(NA,NB),pred,I). |
687 | | create_negation_aux(implication(A,B),I,R) :- !, % not(A=>B) <===> A & not(B) |
688 | | negate_hyp(B,NB), R = b(conjunct(A,NB),pred,I). |
689 | | create_negation_aux(negation(Pred),_,R) :- !, R=Pred. |
690 | | create_negation_aux(BOP,I,R) :- negate_op_aux(BOP,NBOP), R=b(NBOP,pred,I). |
691 | | % no rule for conjunct(A,B) |
692 | | |
693 | | % TODO: should we use negate_op ?? |
694 | | negate_op_aux(equal(A,B),not_equal(A,B)). |
695 | | negate_op_aux(not_equal(A,B),equal(A,B)). |
696 | | negate_op_aux(less(A,B),greater_equal(A,B)). |
697 | | negate_op_aux(less_equal(A,B),greater(A,B)). |
698 | | negate_op_aux(greater(A,B),less_equal(A,B)). |
699 | | negate_op_aux(greater_equal(A,B),less(A,B)). |
700 | | |
701 | | % -------------------- |
702 | | |
703 | | :- use_module(probsrc(preferences), [get_preference/2]). |
704 | | :- use_module(probsrc(typing_tools),[is_finite_type_in_context/2]). |
705 | | is_finite_type_for_wd(Type,_) :- |
706 | | get_preference(wd_analysis_for_animation,true),!, |
707 | | is_finite_type_in_context(animation,Type). |
708 | | is_finite_type_for_wd(Type,_Hyps) :- |
709 | | is_finite_type_in_context(proving,Type). |
710 | | |
711 | | |
712 | | % ------------------- |
713 | | |
714 | | % convert a normalized expression to a raw expression (e.g., for pretty printing translate:print_raw_bexpr |
715 | | % or translate:transform_raw) |
716 | | |
717 | | convert_norm_expr_to_raw('$'(ID),Res) :- !, Res=identifier(unknown,ID). |
718 | | convert_norm_expr_to_raw(Int,Res) :- integer(Int),!,Res=integer(unknown,Int). |
719 | | convert_norm_expr_to_raw(Nr,Res) :- float(Nr),!,Res=real(unknown,Nr). |
720 | | convert_norm_expr_to_raw(set_extension(List),Res) :- !, |
721 | | Res = set_extension(unknown,RList), |
722 | | l_convert_norm(List,RList). |
723 | | convert_norm_expr_to_raw(sequence_extension(List),Res) :- !, |
724 | | Res = sequence_extension(unknown,RList), |
725 | | l_convert_norm(List,RList). |
726 | | convert_norm_expr_to_raw(forall(List,LHS,RHS),Res) :- !, |
727 | | Res = forall(unknown,RList,RLHS,RRHS), |
728 | | l_convert_norm(List,RList), |
729 | | convert_norm_expr_to_raw(LHS,RLHS), |
730 | | convert_norm_expr_to_raw(RHS,RRHS). |
731 | | convert_norm_expr_to_raw(exists(List,Pred),Res) :- !, |
732 | | Res = exists(unknown,RList,RPred), |
733 | | l_convert_norm(List,RList), |
734 | | convert_norm_expr_to_raw(Pred,RPred). |
735 | | convert_norm_expr_to_raw(function(Functor,List),Res) :- !, |
736 | | Res = function(unknown,RFunctor,RList), |
737 | | l_convert_norm(List,RList), |
738 | | convert_norm_expr_to_raw(Functor,RFunctor). |
739 | | % TODO: more special cases where generic code below does not work: |
740 | | convert_norm_expr_to_raw(Term,Res) :- Term =.. [Functor|Args], |
741 | | l_convert_norm(Args,RawArgs), |
742 | | Res =.. [Functor,unknown|RawArgs]. |
743 | | |
744 | | l_convert_norm([],[]). |
745 | | l_convert_norm([H|T],[RH|RT]) :- convert_norm_expr_to_raw(H,RH), l_convert_norm(T,RT). |
746 | | |
747 | | :- use_module(probsrc(translate),[translate_raw_bexpr_with_limit/3]). |
748 | | translate_norm_expr_with_limit(NormExpr,Limit,Str) :- |
749 | | (convert_norm_expr_to_raw(NormExpr,RawExpr) |
750 | | -> translate_raw_bexpr_with_limit(RawExpr,Limit,Str) |
751 | | ; add_error(translate_norm_expr,'Cannot translate norm expression:',NormExpr), |
752 | | Str = '???' |
753 | | ). |