1 % (c) 2009-2025 Lehrstuhl fuer Softwaretechnik und Programmiersprachen,
2 % Heinrich Heine Universitaet Duesseldorf
3 % This software is licenced under EPL 1.0 (http://www.eclipse.org/org/documents/epl-v10.html)
4
5
6 :- module(custom_explicit_sets,[is_set_value/2,
7 is_custom_explicit_set/1, is_custom_explicit_set/2, is_custom_explicit_set_nonvar/1,
8 %equal_explicit_sets/2,
9 equal_explicit_sets_wf/3,
10 not_equal_explicit_sets_wf/3,
11 equality_explicit_sets_wf/4, same_texpr_body/2, same_closure/2,
12 is_empty_explicit_set/1, is_empty_explicit_set_wf/2, is_empty_closure_wf/4,
13 is_non_empty_explicit_set/1, is_non_empty_explicit_set_wf/2,
14 is_non_empty_closure_wf/4,
15 test_empty_explicit_set_wf/3, test_empty_closure_wf/5,
16 is_definitely_maximal_set/1,
17 explicit_set_cardinality/2, explicit_set_cardinality_wf/3,
18 explicit_set_cardinality_for_wf/2,
19 card_for_specific_custom_set/3, % only succeeds if we can compute it efficiently
20 card_for_specific_closure/4,
21 efficient_card_for_set/3, % same, but also for lists
22 quick_custom_explicit_set_approximate_size/2,
23 avl_approximate_size/2, avl_approximate_size/3,
24 is_infinite_explicit_set/1, is_infinite_closure/3,
25 is_infinite_global_set/2, is_simple_infinite_set/1,
26 dont_expand_this_explicit_set/1, dont_expand_this_explicit_set/2,
27 dont_expand_symbolic_explicit_set/1,
28 definitely_expand_this_explicit_set/1,
29 is_infinite_or_very_large_explicit_set/1,
30 is_infinite_or_very_large_explicit_set/2,
31 is_cartesian_product_closure/3,
32 expand_custom_set/2, expand_custom_set_wf/4,
33 try_expand_custom_set/2, try_expand_custom_set_with_catch/3,
34 try_expand_custom_set_wf/4,
35 expand_custom_set_to_list/2, expand_custom_set_to_list/4,
36 expand_custom_set_to_list_wf/5,
37 try_expand_custom_set_to_list_wf/5,
38 expand_custom_set_to_list_no_dups_wf/5,
39 expand_custom_set_to_list_gg/4,
40 try_expand_custom_set_to_list/4,
41 expand_interval_closure_to_avl/3,
42 expand_custom_set_to_list_now/2,
43 expand_closure_to_avl_or_list/6,
44 expand_closure_to_list/7,
45 expand_only_custom_closure_global/4, %try_expand_only_custom_closure_global/2,
46 expand_and_convert_to_avl_set/4,
47 ord_list_to_avlset_direct/3, sorted_ground_normalised_list_to_avlset/3,
48 try_expand_and_convert_to_avl/2, convert_to_avl/2,
49 should_be_converted_to_avl_from_lists/1, should_be_converted_to_avl/1,
50 try_expand_and_convert_to_avl_with_check/3,
51 try_expand_and_convert_to_avl_with_check/4,
52 try_expand_and_convert_to_avl_unless_large_wf/3,
53 %try_expand_and_convert_to_avl_unless_large_wf/3,
54 try_expand_and_convert_to_avl_if_smaller_than/3,
55 is_small_specific_custom_set/2,
56 quick_propagation_element_information/4,
57 element_of_custom_set/2, element_of_custom_set_wf/3,
58 element_of_closure/5,
59 check_element_of_function_closure/6,
60 not_element_of_custom_set_wf/3,
61 membership_custom_set/3, membership_custom_set_wf/4, membership_avl_set_wf/4,
62 quick_test_avl_membership/3,
63 lazy_check_elements_of_closure/6,
64
65 is_efficient_custom_set/1,
66 remove_minimum_element_custom_set/3,
67
68 is_maximal_global_set/1, quick_is_definitely_maximal_set/1,
69 quick_definitely_maximal_set_avl/1,
70 is_one_element_custom_set/2, singleton_set/2, construct_singleton_avl_set/2,
71 is_one_element_avl/2,
72 construct_one_element_custom_set/2,
73 avl_is_interval/3,
74
75 %closure0_for_explicit_set/2,
76 closure1_for_explicit_set/2, closure1_for_explicit_set_from/3,
77 check_in_domain_of_avlset_wf/3, check_unique_in_domain_of_avlset/2,
78 domain_of_explicit_set_wf/3, range_of_explicit_set_wf/3,
79 is_avl_partial_function/1, is_not_avl_partial_function/2,
80 is_avl_total_function_over_domain/2,
81 quick_definitely_maximal_total_function_avl/1,
82 is_avl_relation/1,
83 is_avl_relation_over_domain/3,
84 is_avl_relation_over_range/3,
85 is_not_avl_relation_over_domain_range/4, is_not_avl_relation_over_range/3,
86 is_avl_sequence/1, safe_is_avl_sequence/1,
87 get_avl_sequence/2,
88 is_injective_avl_relation/2,
89 invert_explicit_set/2, union_of_explicit_set/3,
90 union_generalized_explicit_set/3,
91 difference_of_explicit_set_wf/4,
92 intersection_of_explicit_set_wf/4, intersection_with_interval_closure/3,
93 disjoint_intervals_with_inf/4,
94 image_for_id_closure/3, image_for_explicit_set/4,
95 rel_composition_for_explicit_set/3,
96 element_can_be_added_or_removed_to_avl/1,
97 add_element_to_explicit_set_wf/4, remove_element_from_explicit_set/3,
98 delete_element_from_explicit_set/3,
99 at_most_one_match_possible/3,
100 apply_to_avl_set/5, try_apply_to_avl_set_wf/4,
101 min_of_explicit_set_wf/3, max_of_explicit_set_wf/3,
102 sum_or_mul_of_explicit_set/3,
103 %sum_of_range_custom_explicit_set/2, mul_of_range_custom_explicit_set/2,
104 domain_restriction_explicit_set_wf/4,
105 range_restriction_explicit_set_wf/4,
106 domain_subtraction_explicit_set_wf/4,
107 range_subtraction_explicit_set_wf/4,
108 override_pair_explicit_set/4,
109 direct_product_explicit_set/3,
110 override_custom_explicit_set_wf/4,
111 symbolic_functionality_check_closure/2, symbolic_injectivity_check_closure/2,
112
113 subset_of_explicit_set/4, not_subset_of_explicit_set/4,
114 test_subset_of_explicit_set/5,
115
116 conc_custom_explicit_set/2,
117 prefix_of_custom_explicit_set/4, suffix_of_custom_explicit_set/4,
118 concat_custom_explicit_set/4, prepend_custom_explicit_set/3,
119 append_custom_explicit_set/4,
120 tail_sequence_custom_explicit_set/5,
121 last_sequence_explicit_set/2, %first_sequence_explicit_set/2,
122 front_sequence_custom_explicit_set/3,
123 reverse_custom_explicit_set/2,
124 size_of_custom_explicit_set/3,
125
126 get_first_avl_elements/4,
127 construct_avl_from_lists/2, construct_avl_from_lists_wf/3,
128 equal_avl_tree/2,
129 check_avl_in_interval/3, check_interval_in_custom_set/4,
130 check_avl_subset/2,
131 construct_closure/4, is_closure/4, % from closures
132 construct_member_closure/5, % from closures
133
134 construct_interval_closure/3,
135 is_interval_closure/3, % checks if we have a finite interval closure Low..Up (but bounds can be variables)
136 is_interval_closure/5,
137 is_interval_closure_or_integerset/3, is_interval_closure_or_integerset/4,
138 is_interval_with_integer_bounds/3, % checks that bounds are known
139
140 is_powerset_closure/3,
141
142 dom_range_for_specific_closure/5,
143 dom_for_specific_closure/4,
144 dom_for_lambda_closure/2,
145 portray_custom_explicit_set/1,
146 closure_occurs_check/4
147 ]).
148
149 :- meta_predicate call_card_for_relations(-,-,0).
150
151 :- use_module(error_manager).
152 :- use_module(self_check).
153 :- use_module(preferences,[get_preference/2]).
154 :- use_module(library(avl)).
155 :- use_module(kernel_waitflags).
156 :- use_module(kernel_tools).
157 :- use_module(delay).
158 :- use_module(tools).
159 :- use_module(avl_tools).
160 :- use_module(library(clpfd)).
161
162 :- use_module(module_information,[module_info/2]).
163 :- module_info(group,kernel).
164 :- module_info(description,'This module provides customised operations for the custom explicit set representations of ProB (closures, avl_sets and global_sets).').
165
166 :- use_module(tools_printing,[print_term_summary/1, print_error/1]).
167 :- use_module(preferences,[preference/2]).
168 :- use_module(kernel_objects,[equal_object/2, equal_object/3]).
169 :- use_module(kernel_freetypes,[enumerate_freetype_wf/4,freetype_cardinality/2,
170 is_infinite_freetype/1, is_empty_freetype/1,
171 is_non_empty_freetype/1, test_empty_freetype/2]).
172
173 :- use_module(clpfd_interface,[try_post_constraint/1, clpfd_reify_inlist/4]).
174 :- use_module(closures).
175 :- use_module(performance_messages).
176 :- use_module(b_compiler).
177
178 :- load_files(library(system), [when(compile_time), imports([environ/2])]).
179
180 /* These meta_predicate declarations do not seem to have the right effect;
181 the predicates below return code, they do not get passed code
182 :- meta_predicate card_for_specific_custom_set(*,*,0).
183 :- meta_predicate card_for_specific_closure(*,*,0).
184 :- meta_predicate is_a_relation(*,*,*,*,*,*,0).
185 :- meta_predicate subset_of_explicit_set(*,*,0,*).
186 :- meta_predicate not_subset_of_explicit_set(*,*,0,*).
187 */
188
189 construct_avl_from_lists(S,Res) :-
190 (convert_to_avl(S,CS) -> true ; print(convert_to_avl_failed(S,CS)),nl,CS=S),
191 Res = CS.
192
193 % version with WF to see call stack in case of virtual time-outs due to expansions
194 construct_avl_from_lists_wf(S,Res,WF) :-
195 (convert_to_avl_wf(S,CS,WF) -> true ; print(convert_to_avl_wf_failed(S,CS)),nl,CS=S),
196 Res = CS.
197
198 :- use_module(tools,[safe_sort/3]).
199 :- block normalised_list_to_avl_when_ground(-,?).
200 normalised_list_to_avl_when_ground(S,R) :- % call if you are not sure that S will be ground; e.g. after closure expansion
201 ground_value_check(S,GS),
202 blocking_normalised_list_to_avl(GS,S,R).
203 :- block blocking_normalised_list_to_avl(-,?,?).
204 blocking_normalised_list_to_avl(_,S,R) :- normalised_list_to_avl(S,R).
205
206 normalised_list_to_avl(S,R) :- safe_sort(normalised_list_to_avl,S,SS),
207 ord_list_to_avlset_direct(SS,AVL,normalised_list_to_avl),
208 equal_object(AVL,R). % due to co-routine, R can now be instantiated
209
210 %set_to_avl(List,R) :- empty_avl(A), add_to_avl(List,A,AR), R=avl_set(AR).
211 add_to_avl([],R,R).
212 add_to_avl([H|T],AVL,AVLOUT) :- avl_store(H,AVL,true,AVL1),
213 add_to_avl(T,AVL1,AVLOUT).
214
215
216 % get only the first x elements of an AVL tree
217 get_first_avl_elements(empty,_,R,all) :- !,R=[].
218 get_first_avl_elements(AVL,X,FirstXEls,CutOff) :-
219 avl_min(AVL,Min), get_first_els(X,Min,AVL,FirstXEls,CutOff).
220
221 get_first_els(X,_,_AVL,R,CutOff) :- X<1,!,R=[], CutOff=not_all.
222 get_first_els(X,Cur,AVL,[Cur|T],CutOff) :-
223 (avl_next(Cur,AVL,Nxt) -> X1 is X-1,get_first_els(X1,Nxt,AVL,T,CutOff)
224 ; T=[],CutOff=all).
225
226 %expand_and_try_convert_to_avl(C,R) :- is_closure(C,_,_,_), expand_custom_set(C,EC), expand_and_convert_to_avl
227 %expand_and_convert_to_avl(C,R) :- convert_to_avl(C,R).
228
229 /* convert all list data-values (with all-sub-values) into avl-form */
230 /* assumption: the value is ground when convert_to_avl is called */
231
232 :- load_files(library(system), [when(compile_time), imports([environ/2])]).
233 :- if(environ(prob_safe_mode,true)).
234 convert_to_avl(X,R) :- \+ ground_value(X), !, add_error(convert_to_avl,'Non-ground argument: ',convert_to_avl(X,R)), R=X.
235 :- endif.
236 convert_to_avl(X,R) :- var(X), !, add_error(convert_to_avl,'Variable argument: ',convert_to_avl(X,R)), R=X.
237 ?convert_to_avl(Term,R) :- no_conversion_necessary(Term),!,
238 R=Term.
239 convert_to_avl(closure(P,T,B),R) :- !,
240 R=closure(P,T,B).
241 convert_to_avl(avl_set(A),R) :- !,(A==empty -> add_warning(convert_to_avl,'Emtpy avl_set'), R=[]
242 ; R=avl_set(A)).
243 convert_to_avl((A,B),(CA,CB)) :- !,convert_to_avl(A,CA), convert_to_avl(B,CB).
244 convert_to_avl(freetype(X),R) :- !, R=freetype(X).
245 convert_to_avl(freeval(ID,Case,Value),R) :- !, R=freeval(ID,Case,CValue),convert_to_avl(Value,CValue).
246 convert_to_avl(rec(Fields),R) :- !, convert_fields(Fields,CFields), R=rec(CFields).
247 convert_to_avl(global_set(GS),R) :- !, R=global_set(GS).
248 ?convert_to_avl([H|T],R) :- !, convert_cons_to_avl_inside_set_wf(H,T,R,no_wf_available).
249 %convert_to_avl(abort(X),_R) :- print(deprecetated_convert_to_avl(abort(X))),nl,!, fail.
250 convert_to_avl(X,R) :- add_internal_error('Unknown term: ',convert_to_avl(X,R)), R=X.
251
252 % pass WF for call stack in case of expansions TODO: complete
253 convert_to_avl_wf((A,B),(CA,CB),WF) :- !,convert_to_avl_wf(A,CA,WF), convert_to_avl_wf(B,CB,WF).
254 convert_to_avl_wf([H|T],R,WF) :- !, convert_cons_to_avl_inside_set_wf(H,T,R,WF).
255 convert_to_avl_wf(X,R,_) :- convert_to_avl(X,R).
256
257 convert_fields(Var,R) :- var(Var),!,
258 add_internal_error('Var arg: ',convert_fields(Var,R)),fail.
259 convert_fields([],[]).
260 convert_fields([field(FieldName,Value)|T],[field(FieldName,CValue)|CT]) :-
261 convert_to_avl_inside_set(Value,CValue),
262 convert_fields(T,CT).
263
264 l_convert_to_avl_wf(Var,_,WF) :- var(Var),!,
265 add_warning_wf(l_convert_to_avl_wf,'Cannot expand variable to avl: ',Var,unknown,WF),
266 fail.
267 l_convert_to_avl_wf([],[],_).
268 l_convert_to_avl_wf(avl_set(A),R,WF) :-
269 expand_custom_set_wf(avl_set(A),ES,l_convert_to_avl,WF),
270 l_convert_to_avl_wf(ES,R,WF).
271 l_convert_to_avl_wf(closure(P,T,B),R,WF) :-
272 expand_custom_set_wf(closure(P,T,B),ES,l_convert_to_avl,WF),
273 l_convert_to_avl_wf(ES,R,WF).
274 l_convert_to_avl_wf([H|T],[CH-true|CT],WF) :-
275 ? convert_to_avl_inside_set_wf(H,CH,WF), l_convert_to_avl_wf(T,CT,WF).
276
277 :- assert_must_succeed((X=(fd(1,'Name'),fd(2,'Name')),
278 custom_explicit_sets:convert_to_avl_inside_set(X,R), R==X)).
279
280 convert_to_avl_inside_set(Var,R) :- var(Var),!,
281 add_internal_error('Var arg: ',convert_to_avl_inside_set(Var,R)),fail.
282 :- if(environ(prob_safe_mode,true)).
283 convert_to_avl_inside_set(fd(A,T),R) :- var(A),!,
284 add_error(convert_to_avl,'Non-ground FD-Term: ',convert_to_avl_inside_set(fd(A,T),R)), R=fd(A,T).
285 convert_to_avl_inside_set(int(X),R) :- var(X),!,
286 add_error(convert_to_avl,'Non-ground integer: ',convert_to_avl_inside_set(int(X),R)), R=int(X).
287 convert_to_avl_inside_set(string(X),R) :- var(X),!,
288 add_error(convert_to_avl,'Non-ground string: ',convert_to_avl_inside_set(string(X),R)), R=string(X).
289 convert_to_avl_inside_set(term(X),R) :- (var(X) ; X=floating(F), var(F)), !,
290 add_error(convert_to_avl,'Non-ground term: ',convert_to_avl_inside_set(term(X),R)), R=term(X).
291 :- endif.
292 ?convert_to_avl_inside_set(Term,R) :- no_conversion_necessary(Term),!,R=Term.
293 convert_to_avl_inside_set(closure(P,T,B),R) :- !,
294 % inside a set, closures need to be expanded to check against other elements
295 expand_closure_to_avl_wf(P,T,B,R,no_wf_available).
296 %convert_to_avl_inside_set(closure_x(_P,_T,_B,E),R) :- !, convert_to_avl_inside_set(E,R).
297 convert_to_avl_inside_set(avl_set(A),R) :- !, normalise_avl_set(A,R). %AVL's inside other AVL's need to be normalised !
298 convert_to_avl_inside_set((A,B),(CA,CB)) :- !,convert_to_avl_inside_set(A,CA), convert_to_avl_inside_set(B,CB).
299 convert_to_avl_inside_set(freetype(X),R) :- !,
300 expand_custom_set(freetype(X),EC,check), convert_to_avl_inside_set(EC,R).
301 convert_to_avl_inside_set(freeval(ID,Case,Value),R) :- !,
302 R=freeval(ID,Case,CValue),convert_to_avl_inside_set(Value,CValue).
303 convert_to_avl_inside_set(rec(Fields),R) :- !, convert_fields(Fields,CFields), R=rec(CFields).
304 convert_to_avl_inside_set(global_set(GS),R) :- !,
305 % first check if GS infinite integer set: in this case do not expand; there can be no confusion with finite avl_sets
306 ? (is_infinite_global_set(GS,_) -> R = global_set(GS)
307 ; expand_only_custom_closure_global(global_set(GS),EC,check,no_wf_available), convert_to_avl_inside_set(EC,R)).
308 convert_to_avl_inside_set([H|T],R) :- !,convert_cons_to_avl_inside_set_wf(H,T,R,no_wf_available).
309 convert_to_avl_inside_set(X,R) :-
310 add_internal_error('Unknown or non-ground argument: ',convert_to_avl_inside_set(X,R)),
311 fail.
312
313 ?convert_to_avl_inside_set_wf(Term,R,_WF) :- no_conversion_necessary(Term),!,R=Term.
314 convert_to_avl_inside_set_wf(closure(P,T,B),R,WF) :- !,
315 ? expand_closure_to_avl_wf(P,T,B,R,WF). % inside a set, closures need to be expanded to check against other elements
316 convert_to_avl_inside_set_wf((A,B),(CA,CB),WF) :- !,
317 ? convert_to_avl_inside_set_wf(A,CA,WF), convert_to_avl_inside_set_wf(B,CB,WF).
318 convert_to_avl_inside_set_wf([H|T],R,WF) :- !,convert_cons_to_avl_inside_set_wf(H,T,R,WF).
319 convert_to_avl_inside_set_wf(V,CV,_WF) :- % use version without WF; TO DO: adapt fully
320 convert_to_avl_inside_set(V,CV).
321
322 % true when we have a simple value that does not need to be converted for use within an avl_set:
323 no_conversion_necessary([]).
324 no_conversion_necessary(pred_false). /* bool_false */
325 no_conversion_necessary(pred_true). /* bool_true */
326 no_conversion_necessary(fd(FD,_)) :- nonvar(FD).
327 no_conversion_necessary(int(I)) :- nonvar(I).
328 no_conversion_necessary(string(S)) :- nonvar(S).
329 ?no_conversion_necessary(term(T)) :- nonvar(T), no_conversion_nec_term(T).
330
331 no_conversion_nec_term(floating(T)) :- nonvar(T).
332 no_conversion_nec_term(T) :- atom(T).
333
334 normalise_avl_set(A,R) :- A=node(_,_,0,empty,empty), !,R=avl_set(A).
335 normalise_avl_set(A,R) :-
336 avl_to_list(A,L),
337 ord_list_to_avlset_direct(L,R,convert_to_avl_inside_set). %AVL's inside other AVL's need to be normalised !
338
339 convert_cons_to_avl_inside_set_wf(H,T,R,WF) :- T==[], !,
340 convert_to_avl_inside_set_wf(H,CH,WF),
341 R = avl_set(node(CH,true,0,empty,empty)).
342 ?convert_cons_to_avl_inside_set_wf(H,T,R,WF) :- l_convert_to_avl_wf([H|T],S,WF),
343 sort(S,SS),
344 ord_list_to_avlset_direct(SS,R,convert_to_avl_inside_set).
345
346 construct_singleton_avl_set(Val,avl_set(node(Val,true,0,empty,empty))).
347
348
349 is_set_value(X,Origin) :- var(X), !,print(is_set_value(Origin)),nl,fail.
350 is_set_value([],_) :- !.
351 is_set_value([_|_],_) :- !.
352 is_set_value(X,_) :- is_custom_explicit_set(X).
353
354 is_custom_explicit_set(X,Origin) :- var(X), !,print(var_is_custom_explicit_set(Origin)),nl,fail.
355 is_custom_explicit_set(X,_) :- is_custom_explicit_set(X).
356
357 is_custom_explicit_set(X) :- var(X), !,print(var_is_custom_explicit_set),nl,fail.
358 is_custom_explicit_set(global_set(_)).
359 is_custom_explicit_set(freetype(_)).
360 %is_custom_explicit_set(integer_global_set(_)).
361 is_custom_explicit_set(avl_set(_)).
362 is_custom_explicit_set(closure(_Parameters,_PT,_Cond)).
363
364 % use if you know the argument to be nonvar
365 is_custom_explicit_set_nonvar(global_set(_)).
366 is_custom_explicit_set_nonvar(freetype(_)).
367 is_custom_explicit_set_nonvar(avl_set(_)).
368 is_custom_explicit_set_nonvar(closure(_Parameters,_PT,_Cond)).
369
370 %:- assert_must_succeed(( custom_explicit_sets:portray_custom_explicit_set(avl_set(empty)) )). % now generates error
371 :- use_module(translate,[translate_bvalue/2]).
372 portray_custom_explicit_set(S) :- translate_bvalue(S,A), format(A,[]),nl.
373
374 /* a predicate to check equality of two custom explicit sets */
375
376 %equal_explicit_sets(A,B) :- equal_explicit_sets_wf(A,B,no_wf_available).
377
378 %equal_explicit_sets(X,Y) :- print_term_summary(equal_explicit_sets(X,Y)),fail.
379 :- block equal_explicit_sets_wf(-,?,?), equal_explicit_sets_wf(?,-,?).
380 ?equal_explicit_sets_wf(A,B,WF) :- equal_explicit_sets4(A,B,allow_expansion,WF).
381
382 equal_explicit_sets4(global_set(X),global_set(Y),_,_WF) :- !,X=Y.
383 equal_explicit_sets4(global_set(B),avl_set(A),E,WF) :- !,equal_explicit_sets4(avl_set(A),global_set(B),E,WF).
384 equal_explicit_sets4(freetype(X),freetype(Y),_,_WF) :- !,X=Y.
385 equal_explicit_sets4(avl_set(A),avl_set(B),_,_WF) :- !,
386 equal_avl_tree(A,B). % alternatively, we could normalise avl_trees and only store normalised versions
387 equal_explicit_sets4(avl_set(A),I2,_,_WF) :-
388 is_interval_closure_or_integerset(I2,L2,U2,Finite2),!, % also covers I2=global_set(...)
389 Finite2=finite, % only a finite interval can be equal to an AVL set
390 avl_equal_to_interval(A,L2,U2).
391 equal_explicit_sets4(avl_set(A),global_set(B),_,WF) :- \+ b_global_sets:b_integer_set(B), !, % integersets dealt with above
392 explicit_set_cardinality_wf(global_set(B),Card,WF),
393 is_finite_card(Card), % Card \= inf as avl_set must be finite
394 explicit_set_cardinality_wf(avl_set(A),Card,WF). /* the sets must be identical as global_set contains all values */
395 equal_explicit_sets4(avl_set(A),CPB,_,WF) :-
396 is_cartesian_product_closure(CPB,B1,B2),!,
397 decompose_avl_set_into_cartesian_product_wf(A,A1,A2,WF),
398 kernel_objects:equal_object_wf(A1,B1,equal_explicit_sets4,WF),
399 kernel_objects:equal_object_wf(A2,B2,equal_explicit_sets4,WF).
400 ?equal_explicit_sets4(closure(P,T,B),avl_set(A),E,WF) :- !, equal_explicit_sets4(avl_set(A),closure(P,T,B),E,WF).
401 equal_explicit_sets4(I1,I2,_,_WF) :- is_interval_closure_or_integerset(I1,L1,U1,Finite1),
402 is_interval_closure_or_integerset(I2,L2,U2,Finite2), !,
403 Finite1=Finite2, % either both finite or infinite
404 L1=L2, U1=U2.
405 equal_explicit_sets4(CPA,CPB,_,WF) :-
406 ? is_cartesian_product_closure(CPA,A1,A2),
407 is_cartesian_product_closure(CPB,B1,B2),!,
408 equal_cartesian_product_wf(A1,A2,B1,B2,WF).
409 % what if both subset or relations or functions ... closure: TO DO: add support
410 equal_explicit_sets4(S1,S2,_,WF) :-
411 is_not_member_value_closure_or_integerset(S1,TYPE,MS1),
412 is_not_member_value_closure_or_integerset(S2,TYPE,MS2),
413 !,
414 kernel_objects:equal_object_wf(MS1,MS2,equal_explicit_sets4,WF).
415 equal_explicit_sets4(closure(P1,T1,B1),closure(P2,T2,B2),_,_WF) :-
416 same_closure_body(P1,T1,B1,P2,T2,B2),!.
417 %equal_explicit_sets4(X,Y) :- X==Y,!.
418 equal_explicit_sets4(Set1,Set2,allow_expansion,WF) :-
419 %kernel_objects:test_finite_set_wf(Set1,F1,WF), kernel_objects:test_finite_set_wf(Set2,F2,WF), equal_expansions(F1,F2,Set1,Set2)
420 card_for_specific_custom_set(Set1,Card1,Code1), % TO DO: do not throw info away if Set2 cannot be determined
421 card_for_specific_custom_set(Set2,Card2,Code2),
422 !,
423 call(Code1), call(Code2),
424 % TO DO: if one of the two sets is infinite, then it would be enough to know that the other is not infinite for failure without expansion
425 equal_expansions(Card1,Card2,Set1,Set2,WF).
426 ?equal_explicit_sets4(Set1,Set2,allow_expansion,WF) :- equal_expansions(0,0,Set1,Set2,WF).
427
428
429 :- use_module(btypechecker, [unify_types_strict/2]).
430 % detect e.g. when one closure has seq(Type) and the other one set(integer,Type)
431 same_types([],[]).
432 same_types([H1|T1],[H2|T2]) :- unify_types_strict(H1,H2), same_types(T1,T2).
433
434 :- block equal_expansions(-,?,?,?,?).
435 equal_expansions(F1,F2,Set1,Set2,WF) :- (number(F1);number(F2)),!,
436 % NOTE: sometimes we get inf for finite but very large sets
437 F1=F2, % unify; can propagate info back to closure; e.g. prj2(BOOL,NAT) = prj2(BOOL,0..n)
438 ? equal_expansions2(F1,F2,Set1,Set2,WF).
439 equal_expansions(F1,F2,Set1,Set2,WF) :-
440 equal_expansions2(F1,F2,Set1,Set2,WF).
441
442 :- block equal_expansions2(-,?,?,?,?), equal_expansions2(?,-,?,?,?).
443 %equal_expansions(0,0,avl_set(A),closure(P,T,B)) :- check_subset ?? in both directions ?
444 %equal_expansions2(inf,inf,Set1,Set2,WF) :- WF \= no_wf_available, !, % symbolic treatment
445 equal_expansions2(F,F,Set1,Set2,WF) :-
446 % only expand if both sets have same cardinality
447 % print_term_summary(equal_expansions3(F,Set1,Set2)),nl,
448 ? equal_expansions3(F,Set1,Set2,WF).
449
450 % TO DO: check if this brings something:
451 %equal_expansions3(avl_set(A),closure(P,T,B),_WF) :- !,
452 % expand_closure_to_avl_or_list(P,T,B,E2,check), % in case E2 is avl_set; we can use equal_avl_tree
453 % ((nonvar(E2),E2=avl_set(B2))
454 % -> print(eql_avl),nl, print_term_summary(equal_avl_tree(A,B2)),nl, equal_avl_tree(A,B2)
455 % ; print(eql_non_avl),nl,equal_object(avl_set(A),E2,equal_expansions3)
456 % ).
457 %:- use_module(library(lists),[perm2/4]).
458 %equal_expansions3(F,Set1,Set2,_WF) :- number(F), F>100, % test with: {{},{TRUE},{FALSE},{TRUE,FALSE}} = /*@symbolic */ {x|x<:BOOL} or
459 % {x|x<:POW(BOOL*BOOL) & (x={} or card(x)>0)} = /*@symbolic */ {x|x<:POW(BOOL*BOOL)} 26 sec -> 14 sec
460 % case does not seem to appear very often
461 % perm2(Set1,Set2,avl_set(_),Set),
462 % is_definitely_maximal_set(Set),
463 %Set2 is maximal and has the same cardinality as F, hence Set1 must be identical to Set2
464 % !,
465 % debug_println(9,equal_to_maximal_closure(F)).
466 equal_expansions3(F,Set1,Set2,WF) :-
467 ? get_identity_as_equivalence(F,Set1,Set2,EQUIV),
468 !,% translate:print_bexpr(EQUIV),nl,
469 opt_push_wait_flag_call_stack_info(WF,b_operator_call(equal,[Set1,Set2],unknown),WF2),
470 copy_wf_start(WF2,equal_expansions,CWF),
471 b_test_boolean_expression(EQUIV,[],[],CWF),
472 copy_wf_finish(WF2,CWF).
473 % Alternative could be, if difference were to be fully treated symbolically:
474 % difference_of_explicit_set_wf(Set1,Set2,R12,WF), difference_of_explicit_set_wf(Set2,Set1,R21,WF),
475 % kernel_objects:empty_set_wf(R12,WF), kernel_objects:empty_set_wf(R21,WF).
476 equal_expansions3(_,Set1,Set2,WF) :-
477 expand_custom_set_wf(Set1,E1,equal_expansions1,WF),
478 expand_custom_set_wf(Set2,E2,equal_expansions2,WF),
479 E1=E2. /* ensure that ordering and normalization is same for all representations ! */
480
481
482 :- use_module(b_ast_cleanup, [clean_up/3]).
483 get_identity_as_equivalence(F,Set1,Set2,CleanedEQUIV) :-
484 (F=inf %; is_infinite_explicit_set(Set1) ; is_infinite_explicit_set(Set2)
485 ; Set1 \= avl_set(_),Set2 \= avl_set(_), % if one of the two sets is an AVL Set: better compute the other set explicitly instead of using this symbolic treatment
486 (dont_expand_this_explicit_set(Set1,100000) ;
487 dont_expand_this_explicit_set(Set2,100000)
488 )
489 % avl_test check for test 1081; TO DO: instead of test try to expand set and if this leads to enum warning use symbolic check
490 ),
491 ? get_identity_as_equivalence_aux(Set1,Set2,EQUIV),
492 clean_up(EQUIV,[],CleanedEQUIV).
493 % can be useful to replace x : {v|P(v)} --> x:P(x) (remove_member_comprehension) and reuse predicates, see 2483
494 get_identity_as_equivalence_aux(Set1,Set2,EQUIV) :-
495 ? kernel_objects:infer_value_type(Set1,SType),
496 is_set_type(SType,Type),
497 % Construct: !x.(x:Set1 <=> x:Set2) ??
498 get_pos_infos_for_explicit_set(Set1,I1),
499 get_pos_infos_for_explicit_set(Set2,I2),
500 I12 = I1, % we could merge position_info; but two sets could be very far apart
501 TID = b(identifier('_equality_sets_'),Type,[]),
502 EQUIV = b(forall([TID],b(truth,pred,[used_ids([])]),
503 b(equivalence(
504 b(member(TID,b(value(Set1),SType,I1)),pred,I1),
505 b(member(TID,b(value(Set2),SType,I2)),pred,I2)
506 ) ,pred,I12)
507 ),pred,[used_ids([]),I12]).
508
509 :- use_module(bsyntaxtree, [get_texpr_pos/2]).
510 get_pos_infos_for_explicit_set(closure(_,_,Body),[Pos]) :- get_texpr_pos(Body,Pos),!.
511 get_pos_infos_for_explicit_set(_,[]).
512
513 :- use_module(kernel_equality,[eq_atomic/4, equality_objects/3,
514 equality_objects_wf_no_enum/4, equality_objects_with_type_wf/5]).
515 /* maybe rewrite equal_explicit_sets and not_... to use this to avoid maintaining multiple versions */
516 equality_explicit_sets_wf(global_set(X),global_set(Y),R,_WF) :- !, eq_atomic(X,Y,set,R).
517 equality_explicit_sets_wf(global_set(B),avl_set(A),R,WF) :- !,equality_explicit_sets_wf(avl_set(A),global_set(B),R,WF).
518 equality_explicit_sets_wf(freetype(X),freetype(Y),R,_) :- !, eq_atomic(X,Y,set,R).
519 equality_explicit_sets_wf(avl_set(A),avl_set(B),R,_) :- !,
520 (equal_avl_tree(A,B) -> R=pred_true ; R=pred_false). % alternatively, we could normalise avl_trees and only store normalised versions
521 equality_explicit_sets_wf(avl_set(A),I2,R,WF) :- is_interval_closure_or_integerset(I2,L2,U2),!,
522 % also covers I2=global_set(...)
523 avl_equality_to_interval(A,L2,U2,R,WF).
524 equality_explicit_sets_wf(avl_set(A),global_set(B),R,WF) :- \+ b_global_sets:b_integer_set(B), !,
525 explicit_set_cardinality_wf(global_set(B),Card,WF),
526 (is_finite_card(Card), % Card \= inf, %as avl_set must be finite
527 explicit_set_cardinality_wf(avl_set(A),Card,WF)
528 -> R=pred_true /* the sets must be identical as global_set contains all values */
529 ; R=pred_false).
530 equality_explicit_sets_wf(avl_set(A),CPB,R,WF) :-
531 is_cartesian_product_closure(CPB,B1,B2),!,
532 if(decompose_avl_set_into_cartesian_product_wf(A,A1,A2,WF), % should not produce pending co-routines
533 equality_cartesian_product_wf(A1,A2,B1,B2,R,WF),
534 R=pred_false % no cartesian product can be equal to this avl_set
535 ).
536 equality_explicit_sets_wf(closure(P,T,B),avl_set(A),R,WF) :- !,
537 equality_explicit_sets_wf(avl_set(A),closure(P,T,B),R,WF).
538 equality_explicit_sets_wf(I1,I2,R,WF) :- is_interval_closure_or_integerset(I1,L1,U1,Finite1),
539 is_interval_closure_or_integerset(I2,L2,U2,Finite2), !,
540 (Finite1=Finite2 -> equality_objects_wf_no_enum((int(L1),int(U1)),(int(L2),int(U2)),R,WF)
541 ; R = pred_false).
542 equality_explicit_sets_wf(CPA,CPB,R,WF) :-
543 is_cartesian_product_closure(CPA,A1,A2), is_cartesian_product_closure(CPB,B1,B2),!,
544 equality_cartesian_product_wf(A1,A2,B1,B2,R,WF).
545 equality_explicit_sets_wf(S1,S2,R,WF) :-
546 is_not_member_value_closure_or_integerset(S1,TYPE,MS1),
547 is_not_member_value_closure_or_integerset(S2,TYPE,MS2),!,
548 equality_objects_with_type_wf(TYPE,MS1,MS2,R,WF).
549 equality_explicit_sets_wf(closure(P,T,B),closure(P,T,B2),R,_) :-
550 same_texpr_body(B,B2),!,R=pred_true.
551 equality_explicit_sets_wf(Set1,Set2,R,WF) :-
552 Set1 \= [_|_], Set2 \= [_|_], % below we check for avl_set; i.e., useful are only closure/3, global_set/1, ...
553 ? get_identity_as_equivalence(unknown,Set1,Set2,EQUIV),!,
554 opt_push_wait_flag_call_stack_info(WF,b_operator_call(equal,[Set1,Set2],unknown),WF2),
555 copy_wf_start(WF2,equal_expansions,CWF),
556 % EQUIV is a universal quantification, usually over an infinite domain
557 b_interpreter_check:b_force_check_boolean_expression(EQUIV,[],[],CWF,R), % we know EQUIV cannot be reified
558 copy_wf_finish(WF2,CWF).
559 % TO DO: add complement sets,
560
561 /* Cartesian Product Comparison */
562 :- use_module(kernel_equality,[empty_cartesian_product_wf/4]).
563 % A1*A2 = B1*B2 <=> (((A1={} or A2={}) & (B1={} or B2={})) or (A1=B1 & A2=B2))
564 equal_cartesian_product_wf(A1,A2,B1,B2,WF) :-
565 equality_cartesian_product_wf(A1,A2,B1,B2,pred_true,WF).
566 not_equal_cartesian_product_wf(A1,A2,B1,B2,WF) :-
567 equality_cartesian_product_wf(A1,A2,B1,B2,pred_false,WF).
568
569 equality_cartesian_product_wf(A1,A2,B1,B2,R,_WF) :-
570 nonvar(A1), A1=closure(P,T,BdyA1),
571 nonvar(B1), B1=closure(P,T,BdyB1),
572 nonvar(A2), A2=closure(P2,T2,BdyA2),
573 nonvar(B2), B2=closure(P2,T2,BdyB2),
574 % they have the same names; probably we are comparing identical values (e.g., in bvisual2)
575 same_texpr_body(BdyA1,BdyB1),
576 % note: we cannot simply call equality of A2 and B2 as cartesian products can be empty, see test 2072
577 same_texpr_body(BdyA2,BdyB2),
578 !,
579 R=pred_true.
580 equality_cartesian_product_wf(A1,A2,B1,B2,R,WF) :-
581 empty_cartesian_product_wf(A1,A2,EmptyA,WF),
582 equality_cart_product2(EmptyA,A1,A2,B1,B2,R,WF).
583 :- block equality_cart_product2(-, ?,?,?,?,?,?).
584 equality_cart_product2(pred_true,_,_,B1,B2,R,WF) :- empty_cartesian_product_wf(B1,B2,R,WF).
585 equality_cart_product2(pred_false,A1,A2,B1,B2,R,WF) :- equality_objects_wf_no_enum((A1,A2),(B1,B2),R,WF).
586
587 /* COMPARING AVL-SET with INTERVAL */
588
589 % check if an avl tree is equal to an interval range
590 avl_equal_to_interval(_A,L2,U2) :-
591 infinite_interval(L2,U2),!,fail. % otherwise infinite & avl_set is finite
592 % we can now assume L2, U2 are numbers (but could not yet be instantiated)
593 avl_equal_to_interval(A,L2,U2) :-
594 avl_min(A,int(L2)), avl_max(A,int(U2)),
595 Card is 1+U2-L2,
596 explicit_set_cardinality(avl_set(A),Card). % sets are equal: same size + same lower & upper bound
597
598 avl_not_equal_to_interval(A,L2,U2,WF) :- avl_equality_to_interval(A,L2,U2,pred_false,WF).
599
600 avl_equality_to_interval(_A,L2,U2,R,_WF) :-
601 infinite_interval(L2,U2),!,R=pred_false. % interval infinite & avl_set is finite
602 % we can now assume L2, U2 are numbers (but could not yet be instantiated)
603 avl_equality_to_interval(A,L2,U2,R,WF) :-
604 avl_min(A,int(AL)), avl_max(A,int(AU)),
605 Card is 1+AU-AL,
606 explicit_set_cardinality_wf(avl_set(A),ACard,WF),
607 equality_objects_wf_no_enum((int(ACard),(int(AL),int(AU))),
608 (int(Card),(int(L2),int(U2))),R,WF).
609 % sets are equal if same size + same lower & upper bound
610
611 /* COMPARING TWO CLOSURES */
612
613 % a variation of equal_explicit_sets which tries not expand and just compares two closures
614
615 same_closure(I1,I2) :-
616 is_interval_closure_or_integerset(I1,L1,U1,Finite1),
617 is_interval_closure_or_integerset(I2,L2,U2,Finite2), !,
618 Finite1=Finite2,
619 L1=L2, U1=U2.
620 same_closure(CPA,CPB) :-
621 is_cartesian_product_closure(CPA,A1,A2),
622 is_cartesian_product_closure(CPB,B1,B2),!,
623 equal_cartesian_product_wf(A1,A2,B1,B2,no_wf_available). % could be expensive
624 same_closure(S1,S2) :-
625 is_not_member_value_closure_or_integerset(S1,TYPE,MS1),
626 is_not_member_value_closure_or_integerset(S2,TYPE,MS2),
627 !,
628 kernel_objects:equal_object(MS1,MS2,same_closure). % could be expensive
629 same_closure(closure(P1,T1,B1),closure(P2,T2,B2)) :- same_closure_body_with_parameter_renaming(P1,T1,B1,P2,T2,B2).
630
631 same_closure_body(P,T1, B1, P,T2,B2) :-
632 same_types(T1,T2),
633 same_texpr_body(B1,B2).
634
635 % a version of same_closure_body which allows renaming of the parameters
636 same_closure_body_with_parameter_renaming(P1,T1, B1, P2,T2,B2) :-
637 same_types(T1,T2),
638 create_renaming(P1,P2,Renaming),
639 % TO DO: pass Renaming in AVL tree and rename on the fly
640 rename_bt(B2,Renaming,RenamedB2),
641 same_texpr_body(B1,RenamedB2).
642
643 create_renaming([],[],[]).
644 create_renaming([ID|T1],[ID|T2],TR) :- !, create_renaming(T1,T2,TR).
645 create_renaming([ID1|T1],[ID2|T2],[rename(ID2,ID1)|TR]) :-
646 create_renaming(T1,T2,TR).
647
648
649 % check if two wrapped expressions are equal (modulo associated Info, e.g. source loc info)
650 % and checking inserted values for equality (sometimes storing a closure will convert small inner closures into AVL sets)
651 same_texpr_body(E1,E2) :- empty_avl(E),same_texpr_body(E1,E,E2).
652 same_texpr_body(b(E1,Type1,_),AVL,b(E2,Type2,_)) :-
653 unify_types_strict(Type1,Type2), % check in principle redundant
654 same_texpr2(E1,AVL,E2).
655
656 :- use_module(value_persistance,[cache_is_activated/0]).
657 :- use_module(bsyntaxtree,[safe_syntaxelement_det/5, is_set_type/2,get_texpr_ids/2,
658 get_texpr_expr/2, get_negated_operator_expr/2]).
659 same_texpr2(value(V1),AVL,RHS) :- !,same_texpr_value2(RHS,AVL,V1).
660 same_texpr2(LHS,AVL,value(V2)) :- !,same_texpr_value2(LHS,AVL,V2).
661 same_texpr2(lazy_let_expr(ID,LHS,RHS),AVL,lazy_let_expr(ID2,LHS2,RHS2)) :- !,
662 same_texpr_body(LHS,AVL,LHS2),
663 avl_store(ID,AVL,ID2,NewAVL),
664 same_texpr_body(RHS,NewAVL,RHS2).
665 same_texpr2(lazy_let_pred(ID,LHS,RHS),AVL,lazy_let_pred(ID2,LHS2,RHS2)) :- !,
666 same_texpr_body(LHS,AVL,LHS2),
667 avl_store(ID,AVL,ID2,NewAVL),
668 same_texpr_body(RHS,NewAVL,RHS2).
669 same_texpr2(lazy_lookup(ID1), AVL,lazy_lookup(ID2)) :- !, avl_fetch(ID1,AVL,ID2).
670 same_texpr2(E1,AVL,E2) :- % Should we only enable this for same_closure_body_with_parameter_renaming?
671 quantifier_construct(E1,Functor,TParas1,Body1),
672 quantifier_construct(E2,Functor,TParas2,Body2),
673 !,
674 same_quantified_expression(TParas1,Body1,AVL,TParas2,Body2).
675 same_texpr2(assertion_expression(Pred,MsgStr,EXPR),AVL,assertion_expression(Pred2,MsgStr2,EXPR2)) :- !,
676 (MsgStr==MsgStr2 -> true
677 ; cache_is_activated,
678 debug_println(19,ignoring_difference_in_assertion_msg(MsgStr,MsgStr2))),
679 % difference can happen when constant was computed in other context,
680 % e.g, when cache_is_activated with different position info (with and wo file info, see Debug_6min_zone_du_PAS)
681 % Value-wise MsgStr cannot make a difference; only makes a difference in error message when expr not WD
682 same_texpr_body(Pred,AVL,Pred2),
683 same_texpr_body(EXPR,AVL,EXPR2).
684 same_texpr2(E1,AVL,E2) :-
685 functor(E1,F,Arity),
686 functor(E2,F,Arity),!,
687 safe_syntaxelement_det(E1,Subs1,_Names1,_List1,Constant1),
688 safe_syntaxelement_det(E2,Subs2,_Names2,_List2,Constant2),
689 Constant2==Constant1,
690 same_sub_expressions(Subs1,AVL,Subs2).
691 same_texpr2(E1,AVL,E2) :- same_texpr_with_rewrite(E1,AVL,E2),!.
692 same_texpr2(E1,AVL,E2) :- same_texpr_with_rewrite(E2,AVL,E1).
693 %same_texpr2(E1,_,E2) :-
694 % functor(E1,F1,Arity1),
695 % functor(E2,F2,Arity2), print(not_eq(F1,Arity1,F2,Arity2)),nl, print(E1),nl, print(E2),nl,nl,fail.
696 % some differences: assertion_expression/3 and function/2, ...
697
698 % some rewrite rules from ast_cleanup; but we cannot replicate all rules here
699 same_texpr_with_rewrite(negation(TE1),AVL,E2) :-
700 get_negated_operator_expr(b(E2,pred,[]),NegE2),!,
701 get_texpr_expr(TE1,E1),
702 same_texpr2(E1,AVL,NegE2).
703 same_texpr_with_rewrite(member(X1,b(value(Set1),_,_)),AVL,equal(X2,b(El2,_,_))) :-
704 singleton_set(Set1,El1), !,
705 % X : {El} <===> X = El ; required for JSON trace replay of test 1491
706 same_texpr_body(X1,X2),
707 same_texpr_value2(El2,AVL,El1).
708 same_texpr_with_rewrite(not_member(X1,b(value(Set1),_,_)),AVL,not_equal(X2,b(El2,_,_))) :-
709 singleton_set(Set1,El1), !,
710 % X /: {El} <===> X /= El ; required for JSON trace replay of test 1491
711 same_texpr_body(X1,X2),
712 same_texpr_value2(El2,AVL,El1).
713
714 % constructs with local quantified parameters:
715 quantifier_construct(comprehension_set(TParas,Body),comprehension_set,TParas,Body).
716 quantifier_construct(exists(TParas,Body),exists,TParas,Body).
717 quantifier_construct(forall(TParas,LHS,RHS),forall,TParas,Body) :-
718 Body = b(implication(LHS,RHS),pred,[]).
719 % TODO?: SIGMA, PI, UNION, INTER
720
721 :- use_module(bsyntaxtree,[split_names_and_types/3]).
722 same_quantified_expression(TParas1,Body1,AVL,TParas2,Body2) :-
723 split_names_and_types(TParas1,P1,T1),
724 split_names_and_types(TParas2,P2,T2),
725 same_types(T1,T2),
726 create_renaming(P1,P2,Renaming),
727 rename_bt(Body2,Renaming,RenamedB2), % TODO: store renaming in AVL and lookup on the fly
728 same_texpr_body(Body1,AVL,RenamedB2).
729
730 same_texpr_value2(E2,_,V2) :- var(V2),!,V2==E2.
731 same_texpr_value2(interval(Min,Max),_,avl_set(A)) :- !, % occurs in JSON trace replay for test 268
732 avl_equal_to_interval(A,Min,Max). % TODO: also compare the other way around above; only apply if Card not too large?
733 same_texpr_value2(value(V2),_,V1) :- !,
734 same_value_inside_closure(V1,V2).
735 %(same_value_inside_closure(V1,V2) -> true ; print(not_eq_vals(V1,V2)),nl,fail).
736 same_texpr_value2(comprehension_set(Paras,B2),AVL,closure(P,_,B1)) :- !,
737 get_texpr_ids(Paras,P),!,
738 same_texpr_body(B1,AVL,B2).
739 same_texpr_value2(cartesian_product(TB1,TB2),AVL,V1) :-
740 decompose_value_into_cartesian_product(V1,A1,A2), !,
741 %print(cart(A1,A2)),nl,
742 get_texpr_expr(TB1,B1),
743 same_texpr_value2(B1,AVL,A1),
744 get_texpr_expr(TB2,B2),
745 same_texpr_value2(B2,AVL,A2).
746 same_texpr_value2(StaticExpr,_,int(Nr)) :- number(Nr),
747 b_ast_cleanup:pre_compute_static_int_expression(StaticExpr,Nr),!.
748 % TO DO: maybe also check if both sides can be evaluated
749 % TO DO: move pre_compute_static_int_expression to another module
750 same_texpr_value2(E2,AVL,V1) :- rewrite_value(V1,E2,NewE1),!,
751 same_texpr2(NewE1,AVL,E2).
752 %same_texpr_value2(E1,_,E2) :-
753 % functor(E1,F1,Arity1),
754 % functor(E2,F2,Arity2), print(not_eq_val(F1,Arity1,F2,Arity2)),nl, fail,print(E1),nl, print(E2),nl,nl,fail.
755
756 decompose_value_into_cartesian_product(avl_set(A),A1,A2) :- !,
757 decompose_avl_set_into_cartesian_product_wf(A,A1,A2,no_wf_available).
758 decompose_value_into_cartesian_product(Closure,A1,A2) :- is_cartesian_product_closure(Closure,A1,A2).
759
760
761 % rewrite values back to AST nodes
762 rewrite_value(value(V),OtherVal,New) :- nonvar(V),
763 rewrite_value_aux(V,OtherVal,New).
764 %rewrite_value(function(Lambda,Argument),assertion_expression(_,_,_),assertion_expression(Cond,Msg,Expr)) :- b_ast_cleanup:rewrite_function_application(Lambda,Argument,[],assertion_expression(Cond,Msg,Expr)).
765 rewrite_value_aux(closure(P,T,B),_,Set) :-
766 is_member_closure(P,T,B,_,Set). % TO DO: ensure that ast_cleanup does not generate useless member closures ?
767 rewrite_value_aux(global_set(GS),_,AST) :-
768 rewrite_glob_set(GS,AST).
769 rewrite_value_aux(avl_set(A),interval(_,_),interval(TLow,TUp)) :-
770 avl_equal_to_interval(A,Low,Up),
771 TLow = b(integer(Low),integer,[]), TUp = b(integer(Up),integer,[]).
772 rewrite_value_aux(int(A),integer(_),integer(A)) :- number(A).
773 rewrite_value_aux(pred_true,_,boolean_true).
774 rewrite_value_aux(pred_false,_,boolean_false).
775 rewrite_value_aux(string(A),integer(_),string(A)) :- % value(string(A)) rewritten to AST node string(A)
776 atom(A).
777
778
779 rewrite_glob_set('REAL',real_set).
780 rewrite_glob_set('FLOAT',float_set).
781 rewrite_glob_set('STRING',string_set).
782 rewrite_glob_set(I,integer_set(I)) :-
783 kernel_objects:integer_global_set(I).
784
785 allow_expansion(avl_set(_),closure(P,T,B)) :-
786 is_small_specific_custom_set(closure(P,T,B),100).
787 allow_expansion(closure(P,T,B),avl_set(_)) :-
788 is_small_specific_custom_set(closure(P,T,B),100).
789
790 same_sub_expressions([],_,[]).
791 same_sub_expressions([H1|T1],AVL,[H2|T2]) :-
792 same_texpr_body(H1,AVL,H2),
793 same_sub_expressions(T1,AVL,T2).
794
795 same_value_inside_closure(V1,V2) :- var(V1),!, V1==V2.
796 same_value_inside_closure(_,V2) :- var(V2),!,fail.
797 same_value_inside_closure(rec(Fields1),rec(Fields2)) :- !,
798 % sets of records come in this form: struct(b(value(rec(FIELDS)),record(_),_))
799 same_fields_inside_closure(Fields1,Fields2).
800 same_value_inside_closure(V1,V2) :-
801 % we could attempt this only if the outer closure was large/infinite ??
802 is_custom_explicit_set(V1), is_custom_explicit_set(V2),
803 !,
804 (allow_expansion(V1,V2) -> EXP=allow_expansion ; EXP = no_expansion),
805 equal_explicit_sets4(V1,V2,EXP,no_wf_available). % usually only sets compiled differently inside closures
806 same_value_inside_closure([H1|T1],avl_set(A2)) :- !, % relevant for JSON trace replay for test 1263
807 try_convert_to_avl([H1|T1],V1), V1=avl_set(A1),
808 equal_avl_tree(A1,A2).
809 same_value_inside_closure(avl_set(A2),[H1|T1]) :- !,
810 try_convert_to_avl([H1|T1],V1), V1=avl_set(A1),
811 equal_avl_tree(A1,A2).
812 same_value_inside_closure(V1,V2) :- V1==V2.
813
814 same_fields_inside_closure(V1,V2) :- var(V1),!, V1==V2.
815 same_fields_inside_closure(_,V2) :- var(V2),!,fail.
816 same_fields_inside_closure([],[]).
817 same_fields_inside_closure([field(Name,V1)|T1],[field(Name,V2)|T2]) :-
818 same_value_inside_closure(V1,V2),
819 same_fields_inside_closure(T1,T2).
820
821 /*
822 same_texpr_body_debug(H1,H2) :-
823 (same_texpr_body(H1,H2) -> true
824 ; print('FAIL: '),nl,
825 translate:print_bexpr(H1),nl, translate:print_bexpr(H2),nl, print(H1),nl, print(H2),nl, fail). */
826
827 %test(Y2,Z2) :- empty_avl(X), avl_store(1,X,2,Y), avl_store(2,X,3,Z),
828 % avl_store(2,Y,3,Y2), avl_store(1,Z,2,Z2), equal_avl_tree(Y2,Z2).
829
830 %equal_avl_tree(A,B) :- avl_min(A,Min), avl_min(B,Min), cmp(Min,A,B).
831 %cmp(El,A,B) :-
832 % (avl_next(El,A,Nxt) -> (avl_next(El,B,Nxt), cmp(Nxt,A,B))
833 % ; \+ avl_next(El,B,Nxt) ).
834
835 % The following is faster than using avl_next
836 equal_avl_tree(A,B) :-
837 % statistics(walltime,[WT1,_]),if(equal_avl_tree2(A,B),true,(statistics(walltime,[_,W]),print(wall(W)),nl)).
838 %equal_avl_tree2(A,B) :-
839 avl_min(A,Min),
840 !,
841 avl_min(B,Min),
842 avl_max(A,Max), avl_max(B,Max),
843 % maybe also check avl_height +/- factor of 1.4405 (page 460, Knuth 3) ? but it seems this would trigger only extremely rarely
844 %avl_height(A,H1), avl_height(A,H2), log(check(Min,Max,H1,H2)),
845 avl_domain(A,L), avl_domain(B,L).
846 equal_avl_tree(empty,_) :- !, format(user_error,'*** Warning: empty AVL tree in equal_avl_tree~n',[]).
847 equal_avl_tree(A,B) :- add_internal_error('Illegal AVL tree: ',equal_avl_tree(A,B)),fail.
848
849 /* a predicate to check equality of two custom explicit sets */
850
851 % TO DO: deal with second set being a variable with kernel_cardinality_attr attribute
852 :- block not_equal_explicit_sets_wf(-,?,?), not_equal_explicit_sets_wf(?,-,?).
853 not_equal_explicit_sets_wf(global_set(X),global_set(Y),_) :- !,dif(X,Y).
854 not_equal_explicit_sets_wf(global_set(B),avl_set(A),WF) :- !,
855 \+ equal_explicit_sets4(avl_set(A),global_set(B),allow_expansion,WF).
856 not_equal_explicit_sets_wf(freetype(X),freetype(Y),_) :- !,dif(X,Y).
857 not_equal_explicit_sets_wf(avl_set(A),avl_set(B),_) :- !,
858 \+ equal_avl_tree(A,B).
859 %not_equal_explicit_sets_wf(X,Y,_) :- X==Y,!,fail.
860 not_equal_explicit_sets_wf(avl_set(A),I2,WF) :- is_interval_closure_or_integerset(I2,L2,U2),!, % also covers I2=global_set(...)
861 avl_not_equal_to_interval(A,L2,U2,WF).
862 not_equal_explicit_sets_wf(avl_set(A),global_set(B),WF) :- !,
863 \+ equal_explicit_sets4(avl_set(A),global_set(B),allow_expansion,WF).
864 not_equal_explicit_sets_wf(avl_set(A),CPB,WF) :-
865 is_cartesian_product_closure(CPB,B1,B2),!,
866 if(decompose_avl_set_into_cartesian_product_wf(A,A1,A2,WF), % should not produce pending co-routines, but better safe
867 kernel_objects:not_equal_object_wf((A1,A2),(B1,B2),WF),
868 true % no cartesian product can be equal to this avl_set
869 ).
870 not_equal_explicit_sets_wf(closure(P,T,B),avl_set(A),WF) :- !,
871 not_equal_explicit_sets_wf(avl_set(A),closure(P,T,B),WF).
872 not_equal_explicit_sets_wf(I1,I2,_) :- is_interval_closure_or_integerset(I1,L1,U1,Finite1),
873 is_interval_closure_or_integerset(I2,L2,U2,Finite2), !,
874 dif((Finite1,L1,U1),(Finite2,L2,U2)). % maybe we should call not_equal_objects on integers (not on inf values)?
875 not_equal_explicit_sets_wf(CPA,CPB,WF) :-
876 ? is_cartesian_product_closure(CPA,A1,A2), is_cartesian_product_closure(CPB,B1,B2),!,
877 not_equal_cartesian_product_wf(A1,A2,B1,B2,WF).
878 not_equal_explicit_sets_wf(S1,S2,WF) :-
879 is_not_member_value_closure_or_integerset(S1,TYPE,MS1),
880 is_not_member_value_closure_or_integerset(S2,TYPE,MS2),!,
881 kernel_objects:not_equal_object_wf(MS1,MS2,WF).
882 not_equal_explicit_sets_wf(closure(P,T,B),closure(P,T,B2),_) :-
883 same_texpr_body(B,B2),!,fail.
884 % TO DO: maybe support interval & avl_set comparison
885 not_equal_explicit_sets_wf(Set1,Set2,WF) :-
886 card_for_specific_custom_set(Set1,Card1,Code1), card_for_specific_custom_set(Set2,Card2,Code2),
887 call(Code1), call(Code2),!,
888 ? not_equal_expansions(Card1,Card2,Set1,Set2,WF).
889 ?not_equal_explicit_sets_wf(Set1,Set2,WF) :- not_equal_expansions(0,0,Set1,Set2,WF).
890
891
892 :- block not_equal_expansions(-,?,?,?,?), not_equal_expansions(?,-,?,?,?).
893 not_equal_expansions(F1,F2,_,_,_) :- F1 \= F2,!. % sets guaranteed to be different
894 not_equal_expansions(F,F,Set1,Set2,WF) :-
895 ? get_identity_as_equivalence(F,Set1,Set2,EQUIV),
896 !, %write(not),nl,translate:print_bexpr(EQUIV),nl,
897 opt_push_wait_flag_call_stack_info(WF,b_operator_call(equal,[Set1,Set2],unknown),WF2),
898 copy_wf_start(WF2,equal_expansions,CWF),
899 b_not_test_boolean_expression(EQUIV,[],[],CWF),
900 ? copy_wf_finish(WF2,CWF).
901 not_equal_expansions(F,F,Set1,Set2,WF) :-
902 % only expand if both sets have same cardinality
903 expand_custom_set_wf(Set1,E1,not_equal_expansions1,WF),
904 expand_custom_set_wf(Set2,E2,not_equal_expansions2,WF),
905 dif(E1,E2). /* TO DO: ensure that ordering and normalization is same for all representations ! */
906
907
908
909
910 :- use_module(b_global_sets,[b_empty_global_set/1, b_non_empty_global_set/1, b_global_set_cardinality/2]).
911 is_empty_explicit_set_wf(closure(P,T,B),WF) :- !,
912 is_empty_closure_wf(P,T,B,WF).
913 is_empty_explicit_set_wf(S,_WF) :- is_empty_explicit_set(S).
914
915 % with WF we can delay computing Card; see test 1272 / card({x|x:1..10 & x*x<i}) = 0 & i>1
916 % TO DO: ideally we could just write this: is_empty_closure_wf(P,T,B,WF) :- closure_cardinality(P,T,B,0,WF). ; but empty_set / not_exists optimisation not triggered in closure_cardinality (yet); would avoid duplicate code
917 is_empty_closure_wf(P,T,B,WF) :-
918 is_lambda_value_domain_closure(P,T,B, DomainValue,_Expr),!,
919 kernel_objects:empty_set_wf(DomainValue,WF).
920 is_empty_closure_wf(P,T,B,WF) :- is_cartesian_product_closure_aux(P,T,B,A1,A2),!,
921 very_approximate_cardinality(A1,C1,WF),
922 very_approximate_cardinality(A2,C2,WF),
923 blocking_safe_mul(C1,C2,0).
924 is_empty_closure_wf(P,T,B,_WF) :-
925 card_for_specific_closure2(P,T,B,CC,Code),
926 !,
927 call(Code),CC=0.
928 is_empty_closure_wf(P,T,Body,WF) :-
929 WF \== no_wf_available, % only do this if we have a WF store; see comments for closure_cardinality ; code relevant for test 1272; card({x|x:1..10 & x*x<i}) = 0 & i>1
930 \+ ground_bexpr(Body), % otherwise better to use not_test_exists below (e.g., Bosch v6 Codespeed benchmark)
931 b_interpreter_check:reify_closure_with_small_cardinality(P,T,Body, WF, ReifiedList),
932 !,
933 domain(ReifiedList,0,1),
934 sum(ReifiedList,'#=',0).
935 is_empty_closure_wf(P,T,B,WF) :-
936 ? get_recursive_identifier_of_closure_body(B,TRID),!,
937 def_get_texpr_id(TRID,RID),
938 gen_typed_ids(P,T,TypedParas),
939 % now add Recursive ID's value to local state:
940 b_interpreter:b_not_test_exists(TypedParas,B,[used_ids([RID])],[bind(RID,closure(P,T,B))],[],no_compile,WF).
941 is_empty_closure_wf(P,T,B,WF) :- !, % try and check that not(#(P).(B)); i.e., there is no solution for the Body B; solves tests 1542, detecting that {x|x>100 & x mod 102 = 2} = {} is false
942 gen_typed_ids(P,T,TypedParas),
943 b_interpreter:b_not_test_exists(TypedParas,B,[used_ids([])],[],[],no_compile,WF). % used_ids are empty, as all variables already compiled into values
944
945 % very_approximate_cardinality: only required to return 0 for empty set, and number or inf for non-empty set, tested in 1893
946 :- block very_approximate_cardinality(-,?,?).
947 very_approximate_cardinality(avl_set(A),C,_) :- !, (A=empty -> print(empty_avl),nl,C=0 ; C=1).
948 very_approximate_cardinality([],C,_) :- !, C=0.
949 very_approximate_cardinality([_|_],C,_) :- !, C=1.
950 very_approximate_cardinality(Set,C,WF) :- kernel_objects:cardinality_as_int_wf(Set,int(C),WF).
951 % TO DO: maybe call is_empty_closure or similar for closures
952
953 gen_typed_ids([],[],R) :- !, R=[].
954 gen_typed_ids([ID|IT],[Type|TT],[b(identifier(ID),Type,[])|TTT]) :- !,
955 % TO DO: add Info field from outer set comprehension
956 gen_typed_ids(IT,TT,TTT).
957 gen_typed_ids(I,T,TI) :- add_internal_error('Call failed: ',gen_typed_ids(I,T,TI)),fail.
958
959 % version with WF can also deal with closures via exists !
960 is_empty_explicit_set(global_set(GS)) :- !, b_empty_global_set(GS).
961 is_empty_explicit_set(freetype(ID)) :- !, is_empty_freetype(ID).
962 is_empty_explicit_set(avl_set(A)) :- !,
963 (var(A) -> add_warning(is_empty_explicit_set,'Variable avl_set')
964 ; empty_avl(A), add_warning(is_empty_explicit_set,'Empty avl_set')
965 ).
966 is_empty_explicit_set(C) :- card_for_specific_closure(C,CC,Code),!,call(Code),CC=0.
967 is_empty_explicit_set(ES) :- expand_custom_set(ES,[],is_empty_explicit_set).
968
969
970 is_non_empty_explicit_set(CS) :- is_non_empty_explicit_set_wf(CS,no_wf_available).
971
972 is_non_empty_explicit_set_wf(global_set(GS),_WF) :- !, b_non_empty_global_set(GS).
973 is_non_empty_explicit_set_wf(freetype(ID),_WF) :- !, is_non_empty_freetype(ID).
974 is_non_empty_explicit_set_wf(avl_set(A),_WF) :- !,
975 (empty_avl(A) -> print('### Warning: empty avl_set (2)'),nl,fail
976 ; true).
977 ?is_non_empty_explicit_set_wf(closure(P,T,B),WF) :- !, is_non_empty_closure_wf(P,T,B,WF).
978 %is_non_empty_explicit_set_wf(ES,_WF) :- expand_custom_set(ES,[_|_],is_non_empty_explicit_set).
979
980
981 % TO DO: this code is a bit redundant with is_empty_closure_wf
982 is_non_empty_closure_wf(P,T,B,WF) :-
983 is_lambda_value_domain_closure(P,T,B, DomainValue,_Expr),!,
984 ? kernel_objects:not_empty_set_wf(DomainValue,WF).
985 is_non_empty_closure_wf(P,T,B,WF) :- is_cartesian_product_closure_aux(P,T,B,A1,A2),!,
986 very_approximate_cardinality(A1,C1,WF),
987 very_approximate_cardinality(A2,C2,WF),
988 blocking_safe_mul(C1,C2,CC),gt0(CC).
989 is_non_empty_closure_wf(P,T,B,_WF) :-
990 card_for_specific_closure2(P,T,B,CC,Code),!,call(Code),gt0(CC).
991 % TO DO: reify_closure_with_small_cardinality
992 is_non_empty_closure_wf(P,T,B,WF) :- WF \== no_wf_available,
993 ? get_recursive_identifier_of_closure_body(B,TRID),!,
994 def_get_texpr_id(TRID,RID),
995 gen_typed_ids(P,T,TypedParas),
996 % now add Recursive ID's value to local state:
997 b_interpreter:b_test_exists(TypedParas,B,[used_ids([RID])],[bind(RID,closure(P,T,B))],[],WF).
998 is_non_empty_closure_wf(P,T,B,WF) :- WF \== no_wf_available,
999 % otherwise enumeration of test_exists will behave strangely; leading to enumeration warnings,... [TO DO: ensure we always have a WF or fix this below ?]
1000 % try and check that not(#(P).(B)); i.e., there is no solution for the Body B; solves tests 1542; test 1146 also triggers this code
1001 (debug_mode(off) -> true ; print(non_empty_closure_test(P)),nl, translate:print_bexpr(B),nl),
1002 gen_typed_ids(P,T,TypedParas),
1003 !,
1004 ? b_interpreter:b_test_exists(TypedParas,B,[used_ids([])],[],[],WF). % used_ids are empty, as all variables already compiled into values
1005 % some rules for set_subtraction, ... closures ?? if left part infinite and right part finite it must be infinite
1006 is_non_empty_closure_wf(P,T,B,WF) :-
1007 expand_custom_set_wf(closure(P,T,B),[_|_],is_non_empty_closure_wf,WF).
1008
1009
1010 % TO DO: expand cart / reify and use for pf_test
1011 test_empty_closure_wf(P,T,B,Res,WF) :-
1012 is_lambda_value_domain_closure(P,T,B, DomainValue,_Expr),!,
1013 kernel_equality:empty_set_test_wf(DomainValue,Res,WF).
1014 %test_empty_closure_wf(P,T,B,WF) :- is_cartesian_product_closure_aux(P,T,B,A1,A2),!,
1015 test_empty_closure_wf(P,T,B,Res,_WF) :-
1016 card_for_specific_closure2(P,T,B,CC,Code),!,call(Code),leq0(CC,Res).
1017 test_empty_closure_wf(P,T,B,Res,WF) :-
1018 \+ is_memoization_closure(P,T,B,_MemoID),
1019 preferences:preference(use_closure_expansion_memoization,false),
1020 !,
1021 bexpr_variables(B,ClosureWaitVars),
1022 % this does not perform a few optimisations of expand_normal closure:
1023 % memoization, stored_memo_expansion, is_closure1_value_closure, is_lambda_closure
1024 % print(test_empty_closure_wf),nl, translate:print_bexpr(B),nl,
1025 when((ground(ClosureWaitVars) ; nonvar(Res)),
1026 test_empty_closure_wf2(P,T,B,Res,WF)).
1027 test_empty_closure_wf(P,T,B,Res,WF) :- % print(expand_test(P)),nl,
1028 % was expand_custom_set_wf(closure(P,T,B),ExpES,test_empty_closure_wf,WF), in turn calls expand_closure_to_list
1029 expand_normal_closure(P,T,B,ExpES,_CDone,check(test_empty_closure_wf),WF),
1030 kernel_equality:empty_set_test_wf(ExpES,Res,WF).
1031 % /*@symbolic */ {x|x:1..100000000 & x mod 22=1} = x & (x={} <=> B=TRUE)
1032
1033 test_empty_closure_wf2(P,T,B,Res,WF) :-
1034 Res == pred_true,!,
1035 is_empty_closure_wf(P,T,B,WF).
1036 test_empty_closure_wf2(P,T,B,Res,WF) :- Res == pred_false,!,
1037 is_non_empty_closure_wf(P,T,B,WF).
1038 test_empty_closure_wf2(P,T,B,Res,WF) :-
1039 (is_empty_closure_now(P,T,B,WF) % we need to force expansion here to be able to use local cut ->
1040 % expand_normal_closure would now also expand the closure;
1041 -> Res=pred_true
1042 ; Res=pred_false).
1043
1044 % check if closure now; ground everything except WFE
1045 is_empty_closure_now(P,T,B,OuterWF) :-
1046 create_inner_wait_flags(OuterWF,is_empty_closure_now,WF),
1047 debug_opt_push_wait_flag_call_stack_info(WF,
1048 external_call('Check if empty set',[closure(P,T,B)],unknown),WF2),
1049 is_empty_closure_wf(P,T,B,WF2),
1050 ground_inner_wait_flags(WF2). % does not ground WFE in case WD errors are pending
1051
1052 :- block leq0(-,?).
1053 leq0(inf,Res) :- !, Res=pred_false.
1054 leq0(inf_overflow,Res) :- !, Res=pred_false.
1055 leq0(CC,Res) :- (CC>0 -> Res=pred_false ; Res=pred_true).
1056
1057 test_empty_explicit_set_wf(V,Res,_) :- var(V),!,
1058 add_internal_error('Illegal call: ',test_empty_explicit_set(V,Res,_)),fail.
1059 test_empty_explicit_set_wf(global_set(GS),Res,_WF) :- !,
1060 (b_empty_global_set(GS) -> Res=pred_true ; Res=pred_false).
1061 test_empty_explicit_set_wf(freetype(ID),Res,_WF) :- !, test_empty_freetype(ID,Res).
1062 test_empty_explicit_set_wf(avl_set(A),Res,_WF) :- !,
1063 (var(A) -> add_warning(test_empty_explicit_set_wf,'Variable avl_set'), Res=pred_true
1064 ; empty_avl(A), add_warning(test_empty_explicit_set_wf,'Empty avl_set'), Res = pred_true
1065 ; Res=pred_false).
1066 test_empty_explicit_set_wf(closure(P,T,B),Res,WF) :- !,
1067 test_empty_closure_wf(P,T,B,Res,WF).
1068 test_empty_explicit_set_wf(ES,Res,WF) :-
1069 expand_custom_set(ES,ExpES,test_empty_explicit_set),
1070 kernel_equality:empty_set_test_wf(ExpES,Res,WF).
1071
1072 :- block gt0(-).
1073 gt0(CC) :- (CC=inf -> true ; CC=inf_overflow -> true ; CC>0).
1074
1075 % a version to compute cardinality for
1076 explicit_set_cardinality_for_wf(closure(P,T,B),Card) :-
1077 (is_symbolic_closure_or_symbolic_mode(P,T,B) ; \+ ground_bexpr(B)),
1078 !,
1079 Card = inf. % assume card is infinite for WF computation; it may be finite!
1080 %explicit_set_cardinality_for_wf(avl_set(AVL),Size) :- !, quick_avl_approximate_size(AVL,Size).
1081 explicit_set_cardinality_for_wf(CS,Card) :- card_for_specific_custom_set(CS,Card,Code),!,
1082 on_enumeration_warning(call(Code),Card=inf). % see test 1519 for relevance
1083 explicit_set_cardinality_for_wf(_,inf). % assume card is infinite for WF computation; it may be finite!
1084 % TO DO: maybe never expand closures here !? -> closure_cardinality can expand closure !!!!!!
1085 %explicit_set_cardinality_for_wf(CS,Card) :-
1086 % on_enumeration_warning(
1087 % explicit_set_cardinality(CS,Card),
1088 % (debug_println(assuming_inf_card_for_wf), % see test 1519 for relevance
1089 % Card = inf)). % assume card is infinite for WF computation; it may be finite!
1090
1091 explicit_set_cardinality(CS,Card) :-
1092 % init_wait_flags(WF,[explicit_set_cardinality]), % there are a few checks for no_wf_available below
1093 explicit_set_cardinality_wf(CS,Card,no_wf_available).
1094 % ground_wait_flags(WF).
1095
1096 explicit_set_cardinality_wf(global_set(GS),Card,_) :- !,b_global_set_cardinality(GS,Card).
1097 explicit_set_cardinality_wf(freetype(GS),Card,_WF) :- !, freetype_cardinality(GS,Card).
1098 explicit_set_cardinality_wf(avl_set(S),Card,_WF) :- !,avl_size(S,Card).
1099 ?explicit_set_cardinality_wf(closure(P,T,B),Card,WF) :- closure_cardinality(P,T,B,Card,WF).
1100
1101 closure_cardinality(P,T,B,Card,WF) :-
1102 is_lambda_value_domain_closure(P,T,B, DomainValue,_Expr),!,
1103 kernel_objects:cardinality_as_int_wf(DomainValue,int(Card),WF). % always compute it; card_for_specific_closure will only compute it if it can be done efficiently
1104 closure_cardinality(P,T,B,Card,WF) :- is_cartesian_product_closure_aux(P,T,B,A1,A2),!,
1105 kernel_objects:cardinality_as_int_wf(A1,int(C1),WF),
1106 kernel_objects:cardinality_as_int_wf(A2,int(C2),WF),
1107 blocking_safe_mul(C1,C2,Card).
1108 % TO DO: card_for_specific_closure2 calls is_lambda_value_domain_closure and is_cartesian_product_closure_aux again !
1109 closure_cardinality(P,T,B,Card,_WF) :-
1110 card_for_specific_closure2(P,T,B,CC,Code),
1111 !,
1112 call(Code),Card=CC.
1113 closure_cardinality(P,T,Body,Card,WF) :-
1114 (WF == no_wf_available -> CBody=Body
1115 ? ; b_compiler:b_compile(Body,P,[],[],CBody)
1116 ),
1117 % reify will work better if we used b_compiler:compile so that more sets can be detected as small
1118 closure_cardinality2(P,T,CBody,Card,WF).
1119 closure_cardinality2(P,T,Body,Card,WF) :-
1120 WF \== no_wf_available, % only do this if we have a WF store
1121 ? if(b_interpreter_check:reify_closure_with_small_cardinality(P,T,Body, WF, ReifiedList),
1122 true,
1123 (perfmessagecall(reify,reification_of_closure_for_card_failed(P),translate:print_bexpr(Body),Body),fail)),
1124 !,
1125 domain(ReifiedList,0,1),
1126 sum(ReifiedList,'#=',Card),
1127 % in this case we know card to be finite ! TO DO: ensure that check_finite propagates Card variable
1128 debug_println(9,reified_cardinality_sum(ReifiedList,Card)). % fd_dom(Card,Dom),print(dom(Card,Dom)),nl.
1129 % should we add a special check if Card=0 ? usually Card not instantiated at this point !
1130 %closure_cardinality(P,T,B,Card,WF) :- Card==0, %is_symbolic_closure(P,T,B),
1131 % !, is_empty_closure_wf(P,T,B,WF).
1132 closure_cardinality2(P,T,B,Card,WF) :-
1133 % TO DO: bexpr_variables(ClosureBody,ClosureWaitVars) and wait until those are bound; if Card = 0 -> empty_set; we can try to reifiy again
1134 expand_custom_set_wf(closure(P,T,B),Expansion,closure_cardinality,WF),
1135 my_length(Expansion,0,Card).
1136
1137 :- block my_length(-,?,?).
1138 my_length([],A,A).
1139 my_length([_|T],A,R) :- A1 is A+1, my_length(T,A1,R).
1140
1141 % compute domain and range for specific relations;
1142 % not the closure is total over the domain and surjective over the range
1143 % WARNING: this should never enumerate on its own, it is often called with
1144 % a cut straight after it; if some enumeration happens then only first solution
1145 % will be pursued (e.g., cond_assign_eq_obj)
1146 dom_range_for_specific_closure([],[],[],function(bijection),_WF).
1147 dom_range_for_specific_closure(closure(P,T,Pred),Domain,Range,Functionality,WF) :-
1148 dom_range_for_specific_closure2(P,T,Pred, Domain,Range,dom_and_range,Functionality,WF).
1149
1150 dom_range_for_specific_closure2(Par,Typ,Body, Domain,Range,Required,Functionality,WF) :-
1151 is_member_closure(Par,Typ,Body,TYPE,SET),
1152 dom_range_for_member_closure(SET,TYPE,Domain,Range,Required,Functionality,WF),!.
1153 dom_range_for_specific_closure2(Par,Typ,Body, DOMAIN,RANGE,_,Functionality,WF) :-
1154 is_cartesian_product_closure_aux(Par,Typ,Body,SET1,SET2),!,
1155 (singleton_set(SET2,_) % checks nonvar
1156 -> Functionality = function(total) % function if card(SET2)=1
1157 ; Functionality=relation),
1158 kernel_equality:empty_set_test_wf(SET1,EqRes1,WF),
1159 cond_assign_eq_obj_wf(EqRes1,RANGE,[],SET2,WF), % if SET1=[] then Range=[]
1160 kernel_equality:empty_set_test_wf(SET2,EqRes2,WF),
1161 cond_assign_eq_obj_wf(EqRes2,DOMAIN,[],SET1,WF). %if SET2=[] then Domain=[]
1162 dom_range_for_specific_closure2(Par,Typ,Body, DomainRange,DomainRange,_,function(bijection),_WF) :-
1163 is_id_closure_over(Par,Typ,Body,DomainRange,_).
1164
1165
1166 dom_range_for_member_closure(identity(b(value(SET1),ST1,_)),_SEQT,SET1,SET1,_,function(bijection),_) :-
1167 is_set_type(ST1,_). /* _SEQT=id(T1) */
1168 dom_range_for_member_closure(closure(V),_SEQT,Domain,Range,Required,Functionality,WF) :- % closure1 transitive closure
1169 % rx : A <-> B <=> closure1(rx) : A <-> B means we can simply remove closure1(.) wrapper
1170 V = b(value(VAL),_,_), nonvar(VAL),
1171 %write(peel_clos1_dom_range(Required)),nl, tools_printing:print_term_summary(closure(V)),nl,
1172 (VAL = closure(P,T,B)
1173 -> dom_range_for_specific_closure2(P,T,B,Domain,Range,Required,Functionality,WF)
1174 ; Functionality = relation, % we do not know if this is going to be a function
1175 (Required=domain_only -> true ; range_of_explicit_set_wf(VAL,Range,WF)),
1176 (Required=range_only -> true ; domain_of_explicit_set_wf(VAL,Domain,WF))
1177 ).
1178
1179 % not sure if we need this: memoized functions are infinite usually and range can never be computed anyway
1180 %dom_range_for_member_closure(Expr,_,Domain,Range,Func) :-
1181 % expand_memoize_stored_function_reference(Expr,ExpandedValue),
1182 % dom_range_for_specific_closure(ExpandedValue,Domain,Range,Func,no_wf_available).
1183
1184 :- block cond_assign_eq_obj_wf(-,?,?,?,?).
1185 %cond_assign_eq_obj_wf(PTF,R,A,B,_) :- var(PTF), add_error(cond_assign_eq_obj,'block declaration bug warning: ',cond_assign_eq_obj(PTF,R,A,B)),fail. % comment in to detect if affected by block declaration bug
1186 cond_assign_eq_obj_wf(pred_true,Res,A,_,WF) :- equal_object_wf(Res,A,cond_assign_eq_obj_wf_1,WF).
1187 cond_assign_eq_obj_wf(pred_false,Res,_,B,WF) :- equal_object_wf(Res,B,cond_assign_eq_obj_wf_2,WF).
1188
1189 is_cartesian_product_closure(closure(Par,Typ,Body),SET1,SET2) :-
1190 ? is_cartesian_product_closure_aux(Par,Typ,Body,SET1,SET2).
1191 is_cartesian_product_closure_aux(Par,Types,b(truth,pred,Info),SET1,SET2) :- Par=[_,_|_],!,
1192 append(LPar,[RParID],Par), append(LTypes,[RType],Types),
1193 construct_closure_if_necessary(LPar,LTypes,b(truth,pred,Info),SET1),
1194 construct_closure_if_necessary([RParID],[RType],b(truth,pred,Info),SET2).
1195 is_cartesian_product_closure_aux(Par,Types,Body,SET1,SET2) :- Par=[_,_|_],!,
1196 append(LPar,[RParID],Par), append(LTypes,[RType],Types),!,
1197 split_conjunct(Body,[RParID], RConjL, LPar, LConjL),
1198 bsyntaxtree:conjunct_predicates(RConjL,RConj), bsyntaxtree:conjunct_predicates(LConjL,LConj),
1199 construct_closure_if_necessary(LPar,LTypes,LConj,SET1),
1200 construct_closure_if_necessary([RParID],[RType],RConj,SET2).
1201 is_cartesian_product_closure_aux(Par,Typ,Body,SET1,SET2) :-
1202 SET = cartesian_product(b(value(SET1),ST1,_), b(value(SET2),ST2,_)),
1203 is_member_closure(Par,Typ,Body,couple(T1m,T2m),SET),
1204 is_set_type(ST1,T1),unify_types_strict(T1,T1m),
1205 is_set_type(ST2,T2),unify_types_strict(T2,T2m),!.
1206 %is_cartesian_product_closure_aux([ID1,ID2],[T1,T2],FBody,SET1,SET2) :- % is this not redundant wrt split ??
1207 % % a closure of the form {ID1,ID2|ID1 : SET1 & ID2 : SET2} ;
1208 % % can get generated when computing domain symbolically of lambda abstraction
1209 % FBody = b(Body,pred,_),
1210 % is_cartesian_product_body(Body,ID1,ID2,T1,T2,SET1,SET2). % ,print(cart_res(SET1,SET2)),nl.
1211
1212 % try and split conjunct into two disjoint parts (for detecting cartesian products)
1213 % on the specified variables
1214 % fails if it cannot be done
1215 split_conjunct(b(PRED,pred,Info),Vars1,C1,Vars2,C2) :-
1216 split_conjunct_aux(PRED,Info,Vars1,C1,Vars2,C2).
1217 split_conjunct_aux(truth,_Info,_Vars1,C1,_Vars2,C2) :- !,C1=[],C2=[].
1218 split_conjunct_aux(conjunct(A,B),_Info,Vars1,C1,Vars2,C2) :- !, % TO DO: use DCG
1219 split_conjunct(B,Vars1,CB1,Vars2,CB2), !, % Note: conjunct_predicates will create inner conjunct in A and atomic Expression in B
1220 split_conjunct(A,Vars1,CA1,Vars2,CA2),!,
1221 append(CA1,CB1,C1), append(CA2,CB2,C2).
1222 split_conjunct_aux(E,Info,Vars1,C1,_Vars2,C2) :- unique_id_comparison(E,ID),!,
1223 (member(ID,Vars1) -> C1=[b(E,pred,Info)], C2=[] ; C1=[], C2=[b(E,pred,Info)]).
1224
1225 unique_id_comparison(less(b(L,_,_),b(R,_,_)), ID) :- unique_id_comparison_aux(L,R,ID).
1226 unique_id_comparison(less_equal(b(L,_,_),b(R,_,_)), ID) :- unique_id_comparison_aux(L,R,ID).
1227 unique_id_comparison(greater(b(L,_,_),b(R,_,_)), ID) :- unique_id_comparison_aux(L,R,ID).
1228 unique_id_comparison(greater_equal(b(L,_,_),b(R,_,_)), ID) :- unique_id_comparison_aux(L,R,ID).
1229 unique_id_comparison(member(b(identifier(ID),_,_),b(V,_,_)), ID) :- explicit_value(V).
1230 unique_id_comparison(subset(b(identifier(ID),_,_),b(V,_,_)), ID) :- explicit_value(V).
1231 unique_id_comparison(equal(b(L,_,_),b(R,_,_)), ID) :- unique_id_comparison_aux(L,R,ID). % means we also detect something like %x.(x : INTEGER|0) as cartesian product
1232 % what about not_equal
1233
1234 unique_id_comparison_aux(identifier(ID),V,ID) :- !,explicit_value(V).
1235 unique_id_comparison_aux(V,identifier(ID),ID) :- explicit_value(V).
1236
1237 explicit_value(value(_)) :- !.
1238 explicit_value(integer(_)) :- !.
1239 explicit_value(unary_minus(TV)) :- !, explicit_tvalue(TV).
1240 explicit_value(interval(TV1,TV2)) :- !,
1241 explicit_tvalue(TV1), explicit_tvalue(TV2).
1242 explicit_value(seq(B)) :- !, explicit_tvalue(B). % usually encoded as values by b_compile
1243 explicit_value(seq1(B)) :- !, explicit_tvalue(B).
1244 explicit_value(iseq(B)) :- !, explicit_tvalue(B).
1245 explicit_value(iseq1(B)) :- !, explicit_tvalue(B).
1246 explicit_value(struct(B)) :- !, explicit_tvalue(B).
1247 explicit_value(rec(Fields)) :- !,
1248 explicit_tfields(Fields). % triggered in test 2274, 2358, 1983, 2388, 2275, 2484
1249 explicit_value(fin_subset(A)) :- !, explicit_tvalue(A).
1250 explicit_value(fin1_subset(A)) :- !, explicit_tvalue(A).
1251 explicit_value(pow_subset(A)) :- !, explicit_tvalue(A).
1252 explicit_value(pow1_subset(A)) :- !, explicit_tvalue(A).
1253 explicit_value(cartesian_product(A,B)) :- !, explicit_tvalue(A),explicit_tvalue(B).
1254 explicit_value(total_bijection(A,B)) :- !, explicit_tvalue(A),explicit_tvalue(B). % see test 1897 for cases below
1255 explicit_value(total_injection(A,B)) :- !, explicit_tvalue(A),explicit_tvalue(B).
1256 explicit_value(total_function(A,B)) :- !, explicit_tvalue(A),explicit_tvalue(B).
1257 explicit_value(total_surjection(A,B)) :- !, explicit_tvalue(A),explicit_tvalue(B).
1258 explicit_value(partial_function(A,B)) :- !, explicit_tvalue(A),explicit_tvalue(B).
1259 explicit_value(partial_injection(A,B)) :- !, explicit_tvalue(A),explicit_tvalue(B).
1260 explicit_value(partial_surjection(A,B)) :- !, explicit_tvalue(A),explicit_tvalue(B).
1261 explicit_value(relations(A,B)) :- !, explicit_tvalue(A),explicit_tvalue(B).
1262 explicit_value(total_relation(A,B)) :- !, explicit_tvalue(A),explicit_tvalue(B).
1263 explicit_value(surjection_relation(A,B)) :- !, explicit_tvalue(A),explicit_tvalue(B).
1264 explicit_value(total_surjection_relation(A,B)) :- !, explicit_tvalue(A),explicit_tvalue(B).
1265 explicit_value(real_set) :- !.
1266 explicit_value(string_set) :- !.
1267
1268 explicit_tvalue(b(B,_,_)) :- !, explicit_value(B).
1269
1270 explicit_tfields(V) :- var(V),!,fail.
1271 explicit_tfields([]).
1272 explicit_tfields([field(N,V)|T]) :- ground(N),explicit_tvalue(V),explicit_tfields(T).
1273
1274 % conjunct_predicates([CA1,CB1],C1),
1275 % conjunct_predicates([CA2,CB2],C2).
1276
1277 /* *********
1278 is_cartesian_product_body(conjunct(A,B),ID1,ID2,_T1,_T2,SET1,SET2) :- !,
1279 member_pred_value(A,CID1,CSET1),
1280 member_pred_value(B,CID2,CSET2),
1281 (ID1=CID1,ID2=CID2,SET1=CSET1,SET2=CSET2 ; ID1=CID2,ID2=CID1,SET1=CSET2,SET2=CSET1).
1282 is_cartesian_product_body(A,ID1,ID2,T1,T2,SET1,SET2) :-
1283 member_pred_value2(A,AID,ASET),
1284 ( AID=ID1 -> SET1=ASET, construct_closure_if_necessary([ID2],[T2],b(truth,pred,[]),SET2)
1285 ; AID=ID2 -> SET2=ASET, construct_closure_if_necessary([ID1],[T1],b(truth,pred,[]),SET1)).
1286
1287 member_pred_value(b(B,pred,_), ID,VAL) :- print(member_pred_value2(B,ID,VAL)),nl,
1288 member_pred_value2(B,ID,VAL).
1289 member_pred_value2(member(b(identifier(ID),_CT1,_),b(value(VAL),_SCT1,_)), ID,VAL). %_SCT1 = set(CT1)
1290 */
1291
1292 % check if we have POW(SET1) or SET1<->SET2 (equiv. to POW(SET1*SET2))
1293 is_full_powerset_or_relations_or_struct_closure(closure(Par,Typ,Body),SUBSETS) :-
1294 %TYPE = set(T),
1295 is_member_closure(Par,Typ,Body,TYPE,SET),
1296 is_full_powset_aux(SET,TYPE,SUBSETS).
1297
1298 :- use_module(library(lists),[maplist/3, maplist/4]).
1299 is_full_powset_aux(pow_subset(b(value(SET1),set(T1),_)),set(T1),[SET1]).
1300 is_full_powset_aux(relations(S1,S2),set(couple(T1,T2)),[SET1,SET2]) :-
1301 S1 = b(value(SET1),set(T1),_), S2 = b(value(SET2),set(T2),_).
1302 is_full_powset_aux(struct(b(value(rec(FIELDS)),record(_),_)),record(_),FieldValueSets) :-
1303 maplist(get_field_val,FIELDS,FieldValueSets).
1304
1305 get_field_val(field(_,Val),Val).
1306
1307 %[field(duration,global_set('INTEGER')),field(rhythm,global_set('INTEGER')),field(slot,avl_set(...))]
1308
1309 is_powerset_closure(closure(Par,Typ,Body),PType,Subset) :-
1310 ? is_set_type(TYPE,T),
1311 is_member_closure(Par,Typ,Body,TYPE,SET),
1312 nonvar(SET),
1313 is_powset_aux(SET,PType,b(VS,set(T),_)) ,
1314 nonvar(VS), VS = value(Subset). %,print(powerset(Subset)),nl.
1315 is_powset_aux(pow_subset(A),pow,A).
1316 is_powset_aux(pow1_subset(A),pow1,A).
1317 is_powset_aux(fin_subset(A),fin,A).
1318 is_powset_aux(fin1_subset(A),fin1,A).
1319
1320 % group together closures which can be treated like cartesian products in the sense that:
1321 % Closure is empty if either Set1 or Set2 (could also be empty in other conditions though)
1322 % Closure is subset of other Closure if same Constructor and both sets are subsets
1323 /* is_cartesian_product_like_closure(Closure,Constructor,Set1,Set2) :-
1324 is_cartesian_product_closure(Closure,S11,S12),!,
1325 Constructor = cartesian_product,Set1=S11,Set2=S12.
1326 is_cartesian_product_like_closure(closure(Par,Typ,Body),Constructor,Set1,Set2) :-
1327 is_member_closure(Par,Typ,Body,TYPE,SET),
1328 is_cart_like_relation(SET,Constructor,b(value(Set1),set(_T1),_), b(value(Set1),set(_T2),_)).
1329 is_cart_like_relation(relations(A,B),relations,A,B).
1330 is_cart_like_relation(partial_function(A,B),partial_function,A,B).
1331 is_cart_like_relation(partial_injection(A,B),partial_injection,A,B). */
1332
1333 % (closure([_zzzz_unary],[set(couple(integer,string))],b(member(b(identifier(_zzzz_unary),set(couple(integer,string)),[]),b(relations(b(value(global_set(INTEGER)),set(integer),[]),b(value(global_set(STRING)),set(string),[])),set(set(couple(integer,string))),[])),pred,[])))
1334 % 1 1 Fail: custom_explicit_sets:is_powset_aux(relations(b(value(global_set('INTEGER')),set(integer),[]),b(value(global_set('STRING')),set(string),[])),couple(integer,string),_19584) ?
1335
1336 % card_for_specific_custom_set(+Set,-Cardinality,-CodeToComputeCardinality)
1337 % succeeds if card can be computed efficiently
1338 card_for_specific_custom_set(CS,C,Cd) :- var(CS),!,
1339 add_internal_error('Internal error: var ',card_for_specific_custom_set(CS,C,Cd)),fail.
1340 card_for_specific_custom_set(global_set(GS),Card,true) :- !, b_global_set_cardinality(GS,Card).
1341 card_for_specific_custom_set(freetype(Id),Card,true) :- !, freetype_cardinality(Id,Card).
1342 card_for_specific_custom_set(avl_set(S),Card,true) :- !,avl_size(S,Card).
1343 card_for_specific_custom_set(closure(P,T,B),Card,CodeToComputeCard) :-
1344 card_for_specific_closure3(_,P,T,B,Card,CodeToComputeCard).
1345
1346 card_for_specific_closure(closure(P,T,Pred),Card,CodeToComputeCard) :-
1347 card_for_specific_closure3(_ClosureKind,P,T,Pred,Card,CodeToComputeCard).
1348 card_for_specific_closure(closure(P,T,Pred),ClosureKind,Card,CodeToComputeCard) :-
1349 card_for_specific_closure3(ClosureKind,P,T,Pred,Card,CodeToComputeCard).
1350
1351 :- use_module(btypechecker,[couplise_list/2]).
1352 :- use_module(bsyntaxtree,[is_truth/1]).
1353 card_for_specific_closure2(Par,Typ,Body, Card,Code) :-
1354 card_for_specific_closure3(_ClosureKind,Par,Typ,Body, Card,Code).
1355
1356 % first argument for debugging purposes or filtering
1357 card_for_specific_closure3(special_closure,Par,Typ,Body, Card,Code) :-
1358 is_special_infinite_closure(Par,Typ,Body),!,Card=inf, Code=true.
1359 card_for_specific_closure3(truth_closure,_,Types,Body,Card,Code) :- is_truth(Body),!,
1360 % TO DO: also treat multiple parameters
1361 couplise_list(Types,Type),
1362 Code=kernel_objects:max_cardinality(Type,Card).
1363 card_for_specific_closure3(interval_closure,Par,Typ,Body, Card,Code) :-
1364 ? is_geq_leq_interval_closure(Par,Typ,Body,Low,Up), !,
1365 card_of_interval_inf(Low,Up,Card),
1366 Code=true. % should we return card_of_interval_inf as code ?
1367 % TO DO: deal with non-infinite not_member_closures, prj1, prj2, id, ...
1368 card_for_specific_closure3(lambda_closure,Par,Typ,Body, Card,Code) :-
1369 is_lambda_value_domain_closure(Par,Typ,Body, DomainValue,_Expr),!, nonvar(DomainValue),
1370 efficient_card_for_set(DomainValue,Card,Code).
1371 card_for_specific_closure3(cartesian_product,Par,Typ,Body, Card,Code) :-
1372 is_cartesian_product_closure_aux(Par,Typ,Body,A1,A2),!, nonvar(A1), nonvar(A2),
1373 efficient_card_for_set(A1,Card1,Code1),
1374 efficient_card_for_set(A2,Card2,Code2),
1375 Code = (Code1,Code2, custom_explicit_sets:blocking_safe_mul(Card1,Card2,Card)).
1376 card_for_specific_closure3(member_closure,Par,Typ,Body, Card,Code) :-
1377 is_member_closure(Par,Typ,Body,TYPE,SET),
1378 nonvar(SET),!,
1379 card_for_member_closure(SET,TYPE,Card,Code).
1380 % Note: _ExprInfo could have: contains_wd_condition,
1381 % but if lambda is well-defined we compute the correct card ; if not then card is not well-defined anyway
1382 % maybe we should check contains_wd_condition produce a warning msg ?
1383
1384 % inner values can sometimes be a list, e.g., [pred_true,pred_false] for BOOL
1385 efficient_card_for_set(VAR,_,_) :- var(VAR),!,fail.
1386 efficient_card_for_set([],Card,Code) :- !, Card=0,Code=true.
1387 efficient_card_for_set([_|T],Card,Code) :- known_length(T,1,C), !, Card = C, Code=true.
1388 efficient_card_for_set(CS,Card,Code) :- card_for_specific_custom_set(CS,Card,Code).
1389 known_length(X,_,_) :- var(X),!,fail.
1390 known_length([],A,A).
1391 known_length([_|T],A,R) :- A1 is A+1, known_length(T,A1,R).
1392 known_length(avl_set(S),Acc,Res) :- avl_size(S,Card),
1393 Res is Acc+Card.
1394 % TO DO: also support closures
1395
1396 card_for_member_closure(parallel_product(b(value(A1),ST1,_),b(value(A2),ST1,_)),_T,Card,CodeToComputeCard) :- !,
1397 nonvar(A1), nonvar(A2),
1398 efficient_card_for_set(A1,Card1,Code1),
1399 CodeToComputeCard = (Code1,Code2, custom_explicit_sets:blocking_safe_mul(Card1,Card2,Card)),
1400 % cardinality computed like for cartesian_product.
1401 efficient_card_for_set(A2,Card2,Code2).
1402 card_for_member_closure(seq(b(Value,ST1,_)),_SEQT,Card,CodeToComputeCard) :- !, /* _SEQT=seq(T1) */
1403 is_set_type(ST1,_T1),
1404 get_cart_product_of_values(Value,ListOfSets), % accept a value or cartesian product of values
1405 CodeToComputeCard = custom_explicit_sets:seq_card_of_cart_product(ListOfSets,1,Card). % Card is 1 or inf
1406 card_for_member_closure(seq1(b(Value,ST1,_)),_SEQT,Card,CodeToComputeCard) :- !, /* _SEQT=seq1(T1) */
1407 is_set_type(ST1,_T1),
1408 get_cart_product_of_values(Value,ListOfSets), % accept a value or cartesian product of values
1409 CodeToComputeCard = custom_explicit_sets:seq_card_of_cart_product(ListOfSets,0,Card). % Card is 0 or inf
1410 card_for_member_closure(perm(b(value(SET1),ST1,_)),_SEQT,Card,CodeToComputeCard) :- !, /* _SEQT=perm(T1) */
1411 is_set_type(ST1,_T1),
1412 CodeToComputeCard = (kernel_objects:cardinality_as_int(SET1,int(SCard)),
1413 custom_explicit_sets:blocking_factorial(SCard,Card)).
1414 card_for_member_closure(iseq(b(value(SET1),ST1,_)),_SEQT,Card,CodeToComputeCard) :- !, /* _SEQT=iseq(T1) */
1415 is_set_type(ST1,_T1),
1416 CodeToComputeCard = (kernel_objects:cardinality_as_int(SET1,int(SCard)),
1417 kernel_card_arithmetic:blocking_nr_iseq(SCard,Card)).
1418 card_for_member_closure(iseq1(b(value(SET1),ST1,_)),_SEQT,Card,CodeToComputeCard) :- !, /* _SEQT=iseq1(T1) */
1419 is_set_type(ST1,_T1),
1420 CodeToComputeCard = (kernel_objects:cardinality_as_int(SET1,int(SCard)),
1421 kernel_card_arithmetic:blocking_nr_iseq1(SCard,Card)).
1422 card_for_member_closure(identity(b(value(SET1),ST1,_)),_SEQT,Card,CodeToComputeCard) :- !, /* _SEQT=id(T1) */
1423 is_set_type(ST1,_T1),
1424 CodeToComputeCard =
1425 kernel_objects:cardinality_as_int(SET1,int(Card)).
1426 card_for_member_closure(struct(b(RecVal,record(_FieldSetTypes),_)), record(_FieldTypes), % set of records
1427 Card,CodeToComputeCard) :-
1428 !,
1429 (RecVal=value(RECF), nonvar(RECF), RECF=rec(FIELDS) % value has been computed:
1430 -> CodeToComputeCard = custom_explicit_sets:get_field_cardinality(FIELDS,Card)
1431 ; RecVal = rec(TypedFields), % we still have a typed AST
1432 maplist(get_field_val_type,TypedFields,Exprs,Types),
1433 l_card_for_member_closure(Exprs,Types,Card, CodeToComputeCard)
1434 ).
1435 % now dealt with separately above: card_for_member_closure(cartesian_product(b(value(SET1),set(T1),_), b(value(SET2),set(T2),_)),
1436 % couple(T1,T2), Card,CodeToComputeCard) :- !,
1437 % CodeToComputeCard =
1438 % (kernel_objects:cardinality_as_int(SET1,int(SCard1)),
1439 % kernel_objects:cardinality_as_int(SET2,int(SCard2)),
1440 % custom_explicit_sets:blocking_safe_mul(SCard1,SCard2,Card) ).
1441 card_for_member_closure(POW,TYPE, Card,CodeToComputeCard) :-
1442 (POW = pow_subset(b(value(SET),TYPE,_)) ;
1443 POW = fin_subset(b(value(SET),TYPE,_))),!,
1444 CodeToComputeCard =
1445 (kernel_objects:cardinality_as_int(SET,int(SCard)),
1446 custom_explicit_sets:blocking_safe_pow2(SCard,Card)
1447 ).
1448 card_for_member_closure(POW,TYPE, Card,CodeToComputeCard) :-
1449 (POW = pow1_subset(b(value(SET),TYPE,_)) ;
1450 POW = fin1_subset(b(value(SET),TYPE,_))),!,
1451 CodeToComputeCard =
1452 (kernel_objects:cardinality_as_int(SET,int(SCard)),
1453 custom_explicit_sets:blocking_safe_pow2(SCard,C1),
1454 custom_explicit_sets:safe_dec(C1,Card)
1455 ).
1456 card_for_member_closure(RELEXPR,SType, Card,CodeToComputeCard) :-
1457 is_set_type(SType,couple(T1,T2)),
1458 is_a_relation(RELEXPR, b(value(DOM),set(T1),_),
1459 b(value(RAN),set(T2),_), DCard,RCard,Card,RELCODE),!,
1460 CodeToComputeCard =
1461 (
1462 kernel_objects:cardinality_as_int(DOM,int(DCard)),
1463 kernel_objects:cardinality_as_int(RAN,int(RCard)),
1464 custom_explicit_sets:call_card_for_relations(DCard,RCard,RELCODE)
1465 ).
1466 card_for_member_closure(BODY, integer, Card,CodeToComputeCard) :-
1467 is_interval_with_integer_bounds(BODY,Low,Up),!,
1468 CodeToComputeCard = custom_explicit_sets:card_of_interval_inf(Low,Up,Card).
1469 card_for_member_closure(value(Value), _Type, Card,CodeToComputeCard) :-
1470 % we have a closure of the type {x|x:S}; equivalent to S
1471 (nonvar(Value),
1472 Value=closure(P,T,B)
1473 -> % cardinality_as_int may expand it ! is bad if e.g. we called this code to check if a closure is infinite
1474 card_for_specific_closure2(P,T,B,Card,CodeToComputeCard) % will not expand, but fail if cannot be computed
1475 % TO DO: provide an argument: precise_or_efficient
1476 ; CodeToComputeCard = kernel_objects:cardinality_as_int(Value,int(Card))
1477 ).
1478 %card_for_member_closure(BODY, Type, Card,CodeToComputeCard) :- print(try_card(BODY,Type)),nl,fail.
1479 % TO DO: add maybe other common closures ? simple value closure
1480 % also: what if subexpressions are not of value() type ?
1481
1482 :- public call_card_for_relations/3.
1483 :- block call_card_for_relations(-,?,?), call_card_for_relations(?,-,?).
1484 call_card_for_relations(_,_,RELCODE) :- call(RELCODE).
1485
1486 get_field_val_type(field(_F1,b(Expr1,Type1,_)),Expr1,Type1).
1487
1488 l_card_for_member_closure([Expr1],[Type1],Card,CodeToComputeCard) :- !,
1489 card_for_member_closure(Expr1,Type1,Card, CodeToComputeCard).
1490 l_card_for_member_closure([Expr1|ET],[Type1|TT],Card,CodeToComputeCard) :-
1491 CodeToComputeCard = (Code1,Code2, custom_explicit_sets:blocking_safe_mul(Card1,Card2,Card)),
1492 card_for_member_closure(Expr1,Type1,Card1, Code1),
1493 l_card_for_member_closure(ET,TT,Card2,Code2).
1494
1495 :- public safe_dec/2. % used in card_for_member_closure
1496 :- block safe_dec(-,?).
1497 safe_dec(inf,R) :- !, R=inf.
1498 safe_dec(inf_overflow,R) :- !, R=inf_overflow.
1499 safe_dec(X,R) :- R is X-1.
1500
1501 :- use_module(kernel_equality,[empty_set_test/2]).
1502 :- public seq_card/3. % used in card_for_member_closure
1503 :- block seq_card(-,?,?).
1504 seq_card([],EmptyVal,R) :- !,R=EmptyVal.
1505 seq_card([_|_],_,R) :- !,R=inf.
1506 seq_card(X,EmptyVal,Res) :- empty_set_test(X,EqRes),
1507 set_card_or_inf(EqRes,EmptyVal,Res).
1508
1509 :- block set_card_or_inf(-,?,?).
1510 set_card_or_inf(pred_true,Nr,Nr).
1511 set_card_or_inf(pred_false,_,inf).
1512 % card(seq({n|n>10 & (n mod 20=3 & n mod 20 = 4) }))
1513
1514 % for list [S1,S2,...,Sn] of sets we compute
1515 % cardinality of seq(1)( S1 ** S2 ... ** Sn) to be either 0/1 (if one set is empty) or inf (if all sets are non-empty)
1516 :- public seq_card_of_cart_product/3. % used in card_for_member_closure
1517 seq_card_of_cart_product([Set],EmptyCard,Res) :- !,
1518 seq_card(Set,EmptyCard,Res).
1519 seq_card_of_cart_product([Set1|T],EmptyCard,Res) :-
1520 seq_card(Set1,EmptyCard,Res1),
1521 (Res1==EmptyCard -> Res=Res1
1522 ; combine_card(Res1,Res2,Res),
1523 seq_card_of_cart_product([Set1|T],EmptyCard,Res2)
1524 ).
1525
1526 % combine cardinalities of either 0/1 and inf
1527 :- block combine_card(-,-,?).
1528 combine_card(X,Y,R) :- X==inf,!,R=Y.
1529 combine_card(X,Y,R) :- Y==inf,!,R=X.
1530 combine_card(X,_,R) :- integer(X),!,R=X.
1531 combine_card(_,R,R).
1532
1533 get_cart_product_of_values(Value,ListOfSetValues) :- get_cart_product_of_values(Value,ListOfSetValues,[]). %write(get_cart(ListOfSetValues)),nl,nl.
1534 % check if something is a value or a cartesian product of values
1535 % the result will be used for emptyness check and should NOT be used to compute the cardinality
1536 get_cart_product_of_values(value(SET)) --> !, [SET].
1537 get_cart_product_of_values(cartesian_product(A,B)) --> !,
1538 tcart_product_of_values(A), tcart_product_of_values(B).
1539 get_cart_product_of_values(pow_subset(_)) --> !, [ [] ]. % create some non-empty set; POW({}) is not empty
1540 get_cart_product_of_values(fin_subset(_)) --> !, [ [] ]. % ditto
1541 get_cart_product_of_values(seq(_)) --> !, [ [] ]. % ditto
1542 get_cart_product_of_values(iseq(_)) --> !,[ [] ]. % ditto
1543 get_cart_product_of_values(pow1_subset(A)) --> !, tcart_product_of_values(A). % POW1(S)={} <=> S={}
1544 get_cart_product_of_values(fin1_subset(A)) --> !, tcart_product_of_values(A). % FIN1(S)={} <=> S={}
1545 get_cart_product_of_values(seq1(A)) --> !, tcart_product_of_values(A). % seq1(S)={} <=> S={}
1546 get_cart_product_of_values(iseq1(A)) --> !, tcart_product_of_values(A). % iseq1(S)={} <=> S={}
1547 %get_cart_product_of_values(X) --> {functor(X,F,N), write(uncov_get_cart(F,N)),nl,fail}.
1548 % TODO: records,relations,...
1549
1550 tcart_product_of_values(b(E,_,_)) --> get_cart_product_of_values(E).
1551
1552
1553
1554 :- public get_field_cardinality/2. % used in card_for_member_closure
1555 get_field_cardinality([],1).
1556 get_field_cardinality([field(_Name,Value)|T],ResCard) :-
1557 kernel_objects:cardinality_as_int(Value,int(SCard1)),
1558 get_field_cardinality(T,RestCard), blocking_safe_mul(SCard1,RestCard,ResCard).
1559
1560 :- use_module(kernel_card_arithmetic).
1561
1562 :- block blocking_safe_mul(-,-,?).
1563 blocking_safe_mul(A,B,R) :-
1564 ( A==0 -> R=0
1565 ; B==0 -> R=0
1566 ; A==1 -> R=B
1567 ; B==1 -> R=A
1568 ; blocking_safe_mul2(A,B,R) ).
1569
1570 :- block blocking_safe_mul2(-,?,?), blocking_safe_mul2(?,-,?).
1571 blocking_safe_mul2(A,B,Res) :-
1572 (safe_mul(A,B,AB) -> Res=AB
1573 ; add_warning(blocking_safe_mul2,'Call failed: ',blocking_safe_mul2(A,B,Res)),
1574 % could happen for something like prj2(BOOL,NAT) = prj2(BOOL,0..n)
1575 fail).
1576
1577 :- public blocking_safe_pow2/2. % used in card_for_member_closure above
1578 :- block blocking_safe_pow2(-,?).
1579 blocking_safe_pow2(A,Res) :-
1580 (safe_pow2(A,A2) -> Res=A2
1581 ; add_warning(blocking_safe_pow2,'Call failed: ',safe_pow2(A,Res)),fail).
1582
1583
1584
1585
1586 :- assert_must_succeed((custom_explicit_sets:card_for_specific_closure2(['_zzzz_binary'],[integer],
1587 b(member(b(identifier('_zzzz_binary'),integer,[generated]),
1588 b(interval(b(value(int(1)),integer,[]),b(value(int(10)),integer,[])),set(integer),[])),pred,[]),R,C),
1589 call(C),
1590 R=10)).
1591
1592 %! is_interval_closure_or_integerset(+I,-L,-U)
1593 is_interval_closure_or_integerset(Var,_,_) :- var(Var),!,fail.
1594 is_interval_closure_or_integerset(global_set(X),Low,Up) :- !, get_integer_set_interval(X,Low,Up).
1595 is_interval_closure_or_integerset(Set,El,El) :- singleton_set(Set,ELX),
1596 nonvar(ELX), ELX=int(El),!. % new, useful??
1597 is_interval_closure_or_integerset(closure(P,T,B),Low,Up) :-
1598 ? (is_geq_leq_interval_closure(P,T,B,Low,Up) -> true ; is_interval_closure(P,T,B,Low,Up)).
1599
1600 % with an additional argument to know if the set is finite or infinite:
1601 is_interval_closure_or_integerset(Set,Low,Up,Finite) :-
1602 is_interval_closure_or_integerset(Set,Low,Up),
1603 % if we obtain Low, Up as variables then these must be finite numbers; they cannot stand for inf
1604 (infinite_interval(Low,Up) -> Finite=infinite ; Finite=finite).
1605
1606
1607 get_integer_set_interval('NAT',0,MAXINT) :- (preferences:preference(maxint,MAXINT)->true).
1608 get_integer_set_interval('NAT1',1,MAXINT) :- (preferences:preference(maxint,MAXINT)->true).
1609 get_integer_set_interval('INT',MININT,MAXINT) :-
1610 ((preferences:preference(maxint,MAXINT),preferences:preference(minint,MININT))->true).
1611 get_integer_set_interval('NATURAL',0,inf).
1612 get_integer_set_interval('NATURAL1',1,inf).
1613 get_integer_set_interval('INTEGER',minus_inf,inf).
1614 % TO DO: add minus_inf to kernel_objects !
1615
1616 :- block geq_inf(-,?), geq_inf(?,-).
1617 geq_inf(inf,_) :- !.
1618 geq_inf(minus_inf,B) :- !, B=minus_inf.
1619 geq_inf(_,minus_inf) :- !.
1620 geq_inf(A,inf) :- !, A=inf.
1621 geq_inf(inf_overflow,_) :- !.
1622 geq_inf(A,inf_overflow) :- !, A=inf_overflow.
1623 geq_inf(A,B) :- A >= B.
1624
1625 :- block minimum_with_inf(-,-,?).
1626 % in the first three cases we can determine outcome without knowing both args
1627 minimum_with_inf(A,B,R) :- (A==minus_inf ; B==minus_inf),!,R=minus_inf.
1628 minimum_with_inf(A,B,R) :- A==inf,!,R=B.
1629 minimum_with_inf(A,B,R) :- B==inf,!,R=A.
1630 minimum_with_inf(A,B,R) :- minimum_with_inf1(A,B,R), geq_inf(A,R), geq_inf(B,R).
1631 :- block minimum_with_inf1(-,?,?), minimum_with_inf1(?,-,?).
1632 minimum_with_inf1(minus_inf,_,R) :- !, R=minus_inf.
1633 minimum_with_inf1(_,minus_inf,R) :- !, R=minus_inf.
1634 minimum_with_inf1(inf,B,R) :- !, R=B.
1635 minimum_with_inf1(A,inf,R) :- !, R=A.
1636 minimum_with_inf1(inf_overflow,B,R) :- !, R=B.
1637 minimum_with_inf1(A,inf_overflow,R) :- !, R=A.
1638 minimum_with_inf1(A,B,R) :- (A<B -> R=A ; R=B).
1639
1640 :- block maximum_with_inf(-,-,?).
1641 % in the first three cases we can determine outcome without knowing both args
1642 maximum_with_inf(A,B,R) :- (A==inf ; B==inf),!,R=inf.
1643 maximum_with_inf(A,B,R) :- A==minus_inf,!,R=B.
1644 maximum_with_inf(A,B,R) :- B==minus_inf,!,R=A.
1645 maximum_with_inf(A,B,R) :- maximum_with_inf1(A,B,R), geq_inf(R,A), geq_inf(R,B).
1646 :- block maximum_with_inf1(-,?,?), maximum_with_inf1(?,-,?).
1647 maximum_with_inf1(inf,_,R) :- !, R=inf.
1648 maximum_with_inf1(_,inf,R) :- !, R=inf.
1649 maximum_with_inf1(minus_inf,B,R) :- !, R=B.
1650 maximum_with_inf1(A,minus_inf,R) :- !, R=A.
1651 maximum_with_inf1(inf_overflow,_,R) :- !, R=inf_overflow.
1652 maximum_with_inf1(_,inf_overflow,R) :- !, R=inf_overflow.
1653 maximum_with_inf1(A,B,R) :- (A>B -> R=A ; R=B).
1654
1655 /* utilities for detecting interval closures */
1656 construct_interval_closure(Low,Up,Res) :- (Low==inf;Up==minus_inf),!,Res=[].
1657 construct_interval_closure(Low,Up,Res) :- number(Low),number(Up), Low>Up,!,Res=[].
1658 construct_interval_closure(Low,Up,Res) :- Up==inf,!,
1659 ( Low==0 -> Res = global_set('NATURAL')
1660 ; Low==1 -> Res = global_set('NATURAL1')
1661 ; Low==minus_inf -> Res = global_set('INTEGER')
1662 ; Low==inf -> Res = []
1663 ; construct_greater_equal_closure(Low,Res)
1664 ).
1665 construct_interval_closure(Low,Up,Res) :- Low==minus_inf,!,
1666 construct_less_equal_closure(Up,Res).
1667 construct_interval_closure(Low,Up,Res) :- Low==Up,!,
1668 (number(Low) -> construct_one_element_custom_set(int(Low),Res)
1669 ; Res = [int(Low)]).
1670 construct_interval_closure(Low,Up,Res) :-
1671 construct_interval_set(Low,Up,Set),
1672 construct_member_closure('_zzzz_unary',integer,[],Set,Res).
1673
1674 transform_global_sets_into_closure(closure(P,T,B),closure(P,T,B)).
1675 transform_global_sets_into_closure(global_set(X),Res) :-
1676 transform_global_set_into_closure_aux(X,Res).
1677 transform_global_set_into_closure_aux('NATURAL',Res) :-
1678 construct_greater_equal_closure(0,Res).
1679 transform_global_set_into_closure_aux('NATURAL1',Res) :-
1680 construct_greater_equal_closure(1,Res).
1681 % TO DO: add INTEGER
1682
1683
1684
1685 is_geq_leq_interval_closure([Par],[integer],b(Body,pred,Span),Low,Up) :-
1686 (var(Par)
1687 -> add_internal_error('Non-ground closure: ',closure([Par],[integer],b(Body,pred,Span))),fail
1688 ? ; get_geq_leq_bounds(Body,Par,Low,Up)).
1689
1690 infinite_interval(Low,Up) :- (Low==minus_inf -> true ; Up==inf).
1691
1692 :- assert_must_succeed((card_of_interval_inf(1,10,10))).
1693 :- assert_must_succeed((card_of_interval_inf(1,inf,R),R==inf)).
1694 :- assert_must_succeed((card_of_interval_inf(minus_inf,0,R),R==inf)).
1695 :- assert_must_succeed((card_of_interval_inf(2,2,R), R==1)).
1696 :- assert_must_succeed((card_of_interval_inf(12,2,R), R==0)).
1697 :- assert_must_succeed((card_of_interval_inf(2,B,10), B==11)).
1698 :- assert_must_succeed((card_of_interval_inf(A,12,10), A==3)).
1699 :- assert_must_succeed((card_of_interval_inf(A,12,0), A=222)).
1700 :- assert_must_succeed((card_of_interval_inf(12,B,0), B=11)).
1701 :- assert_must_fail((card_of_interval_inf(A,12,0), A=12)).
1702 % compute cardinality of interval; allow bounds to be inf and minus_inf (but if so, they must be bound straightaway)
1703 card_of_interval_inf(A,B,Card) :-
1704 ? at_least_two_vars(A,B,Card), % initially this will usually be true, if only one variable we can compute result
1705 preferences:preference(use_clpfd_solver,true),
1706 !,
1707 clpfd_interface:post_constraint(Card #= max(0,1+B-A),custom_explicit_sets:block_card_of_interval_inf(A,B,Card)).
1708 card_of_interval_inf(A,B,Card) :- block_card_of_interval_inf(A,B,Card).
1709
1710 ?at_least_two_vars(A,B,C) :- var(A),!,(var(B) -> not_infinite_bound(C) ; number(B),var(C)).
1711 at_least_two_vars(A,B,C) :- number(A), var(B),var(C).
1712 not_infinite_bound(A) :- (var(A) ; number(A)). % inf can only appear immediately, not for variables
1713
1714 :- block block_card_of_interval_inf(-,?,-),block_card_of_interval_inf(?,-,-).
1715 block_card_of_interval_inf(A,_,Card) :- A==minus_inf,!, Card=inf.
1716 block_card_of_interval_inf(_,B,Card) :- B==inf,!, Card=inf.
1717 block_card_of_interval_inf(From,To,Card) :- number(From),number(To),!,
1718 (From>To -> Card=0 ; Card is (To-From)+1).
1719 block_card_of_interval_inf(A,B,C) :- number(C),!, number_card_of_interval_inf_aux(C,A,B).
1720 block_card_of_interval_inf(A,B,C) :- C==inf,!,
1721 % probably this should systematically fail; if A and B are not inf/minus_inf now they will never be
1722 print(infinite_interval_requested(A,B,C)),nl,
1723 when((nonvar(A),nonvar(B)), block_card_of_interval_inf(A,B,C)).
1724 block_card_of_interval_inf(A,B,C) :- add_internal_error('Illegal call: ',card_of_interval_inf(A,B,C)).
1725 :- use_module(inf_arith,[block_inf_greater/2]).
1726 number_card_of_interval_inf_aux(0,A,B) :- !, % empty interval
1727 % if A and B are variables then they will not become inf later ??
1728 % inf can only be set directly for sets such as {x|x>4} or NATURAL1
1729 (((var(A);number(A)),(var(B);number(B)))
1730 % hence we can use ordinary comparison (with CLPFD) here
1731 -> kernel_objects:less_than_direct(B,A)
1732 % TO DO: we could do this even if both A and B are variables !! ex : {n,m|n..m = {} & m..100={} & 103..n={}}
1733 ; block_inf_greater(A,B)).
1734 %number_card_of_interval_inf_aux(Card,From,B) :- number(From),!, B is (From+Card)-1.
1735 %number_card_of_interval_inf_aux(Card,A,To) :- number(To),!, A is 1+To-Card.
1736 number_card_of_interval_inf_aux(Card,A,B) :-
1737 Card>0, C1 is Card-1,
1738 kernel_objects:int_minus(int(B),int(A),int(C1)).
1739
1740
1741 get_geq_leq_bounds(conjunct(b(LEFT,pred,_),b(RIGHT,pred,_)), Par,Low,Up) :-
1742 ? get_geq_leq_bounds(LEFT,Par,From1,To1),
1743 ? get_geq_leq_bounds(RIGHT,Par,From2,To2),
1744 intersect_intervals_with_inf(From1,To1,From2,To2,Low,Up).
1745 get_geq_leq_bounds(member(b(identifier(Par),integer,_),
1746 b(Value,set(integer),_)),Par,Low,Up) :-
1747 get_value_bounds(Value,Low,Up).
1748 ?get_geq_leq_bounds(greater_equal(b(A,_,_),b(B,_,_)),Par,Low,Up) :- get_bounds2(greater_equal,A,B,Par,Low,Up).
1749 ?get_geq_leq_bounds( less_equal(b(A,_,_),b(B,_,_)),Par,Low,Up) :- get_bounds2(less_equal,A,B,Par,Low,Up).
1750 ?get_geq_leq_bounds( greater(b(A,_,_),b(B,_,_)),Par,Low,Up) :- get_bounds2(greater,A,B,Par,Low,Up).
1751 ?get_geq_leq_bounds( less(b(A,_,_),b(B,_,_)),Par,Low,Up) :- get_bounds2(less,A,B,Par,Low,Up).
1752
1753 get_value_bounds(value(GS),Low,Up) :- is_interval_closure_or_integerset(GS,Low,Up). % recursive call
1754 % nonvar(GS), GS=global_set(ISET), get_integer_set_interval(ISET,Low,Up).
1755 get_value_bounds(interval(b(TLow,_,_),b(TUp,_,_)),Low,Up) :-
1756 integer_value(TLow,Low),
1757 integer_value(TUp,Up).
1758
1759 get_bounds2(greater_equal,identifier(Par),V,Par,X,inf) :- integer_value(V,X).
1760 get_bounds2(greater_equal,V,identifier(Par),Par,minus_inf,X) :- integer_value(V,X).
1761 get_bounds2(less_equal,identifier(Par),V,Par,minus_inf,X) :- integer_value(V,X).
1762 get_bounds2(less_equal,V,identifier(Par),Par,X,inf) :- integer_value(V,X).
1763 get_bounds2(greater,identifier(Par),V,Par,X1,inf) :- integer_value(V,X), kernel_objects:int_plus(int(X),int(1),int(X1)). %, X1 is X+1.
1764 get_bounds2(greater,V,identifier(Par),Par,minus_inf,X1) :- integer_value(V,X), kernel_objects:int_minus(int(X),int(1),int(X1)). %X1 is X-1.
1765 get_bounds2(less,V,identifier(Par),Par,X1,inf) :- integer_value(V,X), kernel_objects:int_plus(int(X),int(1),int(X1)). %X1 is X+1.
1766 get_bounds2(less,identifier(Par),V,Par,minus_inf,X1) :- integer_value(V,X),
1767 kernel_objects:int_minus(int(X),int(1),int(X1)). %X1 is X-1.
1768 % to do: add negation thereof ??
1769
1770 integer_value(V,_) :- var(V),!, print(var_integer_value(V)),nl,fail.
1771 integer_value(integer(X),R) :- !, R=X.
1772 integer_value(unary_minus(b(X,_,_)),R) :- !, integer_value(X,RM),
1773 number(RM), % if RM is not a number we could setup CLPFD constraint ?!
1774 R is -(RM).
1775 integer_value(minus(b(X,_,_),b(Y,_,_)),R) :- !, % some AST compilation rules generate X-1, X+1 ...
1776 integer_value(X,RMX),
1777 integer_value(Y,RMY),
1778 kernel_objects:int_minus(int(RMX),int(RMY),int(R)).
1779 integer_value(plus(b(X,_,_),b(Y,_,_)),R) :- !, % some AST compilation rules generate X-1, X+1 ...
1780 integer_value(X,RMX),
1781 integer_value(Y,RMY),
1782 kernel_objects:int_plus(int(RMX),int(RMY),int(R)).
1783 integer_value(value(V),R) :- !, V=int(R).
1784
1785 is_interval_closure(closure(Par,[integer],Pred),Low,Up) :-
1786 is_interval_closure_aux(Par,Pred,Low,Up).
1787 is_interval_closure(Par,[integer],Pred,Low,Up) :-
1788 is_interval_closure_aux(Par,Pred,Low,Up).
1789 is_interval_closure_aux(Par,Pred,Low,Up) :-
1790 is_member_closure(Par,[integer],Pred,integer,Set),
1791 is_interval_with_integer_bounds(Set,Low,Up).
1792 %is_interval_closure(closure_x(Par,[integer],Pred,_),Low,Up) :-
1793 % is_interval_closure(closure(Par,[integer],Pred),Low,Up).
1794
1795 is_interval_closure_body(Body,ID,Low,Up) :-
1796 is_member_closure([ID],[integer],Body,integer,Set),!,
1797 is_interval_with_integer_bounds(Set,Low,Up).
1798 is_interval_closure_body(Body,ID,Low,Up) :-
1799 ? is_geq_leq_interval_closure([ID],[integer],Body,Low,Up),
1800 number(Low), number(Up).
1801
1802 :- use_module(bsyntaxtree,[get_texpr_info/2,get_texpr_id/2]).
1803 % do a single check if we have interval, member or not-member closure, avoiding redundant checking
1804 % TO DO: move this and related predicates to closures module ?
1805 is_special_closure(_Ids,_Types,Pred,Result) :-
1806 get_texpr_info(Pred,Info),memberchk(prob_annotation(recursive(RId)),Info),!,
1807 Result = recursive_special_closure(RId).
1808 is_special_closure(Ids,Types,Pred,Result) :-
1809 ? is_memoization_closure(Ids,Types,Pred,MemoID),!,
1810 Result = memoization_closure(MemoID).
1811 is_special_closure([ID],[TYPE],b(PRED,_,_), Result) :-
1812 ( closures:is_member_closure_aux(PRED, ID,TYPE,SET) ->
1813 ( (TYPE=integer, is_interval_with_integer_bounds(SET,Low,Up)) ->
1814 Result = interval(Low,Up)
1815 ; Result = member_closure(ID,TYPE,SET))
1816 ; closures:is_not_member_closure_aux(PRED,ID,TYPE,SET) ->
1817 Result = not_member_closure(ID,TYPE,SET)
1818 ? ; (TYPE=integer,get_geq_leq_bounds(PRED,ID,Low,Up),number(Low), number(Up)) ->
1819 Result = interval(Low,Up)
1820 ).
1821
1822
1823 construct_interval_set(Low,Up,Res) :-
1824 Res = interval(b(value(int(Low)),integer,[]),
1825 b(value(int(Up)), integer,[])).
1826 is_interval_with_integer_bounds(X,L,U) :- var(X),!,
1827 add_internal_error('var arg: ',is_interval_with_integer_bounds(X,L,U)),fail.
1828 is_interval_with_integer_bounds(interval(b(TLOW,integer,_),b(TUP, integer,_)),Low,Up) :-
1829 integer_value(TLOW,Low), integer_value(TUP,Up).
1830
1831
1832 is_a_relation(relations(Domain,Range),Domain,Range,DCard,RCard,Card,Code) :- %% '<->'
1833 Code = (kernel_card_arithmetic:safe_mul(DCard,RCard,Exp), kernel_card_arithmetic:safe_pow2(Exp,Card)).
1834 is_a_relation(partial_function(Domain,Range),Domain,Range,DCard,RCard,Card,Code) :- %% '+->'
1835 Code = (kernel_card_arithmetic:safe_add_card(RCard,1,R1),kernel_card_arithmetic:safe_pown(R1,DCard,Card)).
1836 is_a_relation(total_function(Domain,Range),Domain,Range,DCard,RCard,Card,Code) :- %% '-->'
1837 Code = (kernel_card_arithmetic:safe_pown(RCard,DCard,Card)).
1838 is_a_relation(partial_bijection(Domain,Range),Domain,Range,DCard,RCard,Card,Code) :- %% '>+>>'
1839 Code = (kernel_card_arithmetic:partial_bijection_card(DCard,RCard,Card)).
1840 is_a_relation(total_bijection(Domain,Range),Domain,Range,DCard,RCard,Card,Code) :- %% '>->>'
1841 Code = (kernel_card_arithmetic:total_bijection_card(DCard,RCard,Card)).
1842 is_a_relation(total_injection(Domain,Range),Domain,Range,DCard,RCard,Card,Code) :- %% '>->'
1843 Code = (kernel_card_arithmetic:blocking_factorial_k(RCard,DCard,Card)).
1844 is_a_relation(partial_injection(Domain,Range),Domain,Range,DCard,RCard,Card,Code) :- %% '>+>'
1845 Code = (kernel_card_arithmetic:partial_injection_card(DCard,RCard,Card)).
1846 is_a_relation(total_surjection(Domain,Range),Domain,Range,DCard,RCard,Card,Code) :- %% '-->>'
1847 Code = (kernel_card_arithmetic:total_surjection_card(DCard,RCard,Card)).
1848 is_a_relation(partial_surjection(Domain,Range),Domain,Range,DCard,RCard,Card,Code) :- %% '+->>'
1849 Code = (kernel_card_arithmetic:partial_surjection_card(DCard,RCard,Card)).
1850 is_a_relation(total_relation(Domain,Range),Domain,Range,DCard,RCard,Card,Code) :- %% '<<->'
1851 Code = (kernel_card_arithmetic:total_relation_card(DCard,RCard,Card)).
1852 is_a_relation(surjection_relation(Domain,Range),Domain,Range,DCard,RCard,Card,Code) :- %% '<->>'
1853 % just swap args: card(A<->>B) = card(B<<->A)
1854 Code = (kernel_card_arithmetic:total_relation_card(RCard,DCard,Card)).
1855 % TO DO: total_surjection_relation <<->>
1856
1857
1858
1859 :- use_module(b_global_sets,[infinite_global_set/1]).
1860
1861 :- block is_infinite_global_set(-,?).
1862 is_infinite_global_set('NATURAL',integer).
1863 is_infinite_global_set('NATURAL1',integer).
1864 is_infinite_global_set('INTEGER',integer).
1865 is_infinite_global_set('FLOAT',real).
1866 is_infinite_global_set('REAL',real).
1867 is_infinite_global_set('STRING',string).
1868 is_infinite_global_set(G,global(G)) :- infinite_global_set(G).
1869
1870 %is_finite_integer_global_set('NAT').
1871 %is_finite_integer_global_set('NAT1').
1872 %is_finite_integer_global_set('INT').
1873
1874 % detects (certain) infinite explict sets
1875 is_infinite_explicit_set(X) :- var(X),!, add_internal_error(is_infinite_explicit_set,var(X)),fail.
1876 ?is_infinite_explicit_set(global_set(X)) :- is_infinite_global_set(X,_).
1877 is_infinite_explicit_set(freetype(X)) :- is_infinite_freetype(X).
1878 is_infinite_explicit_set(closure(Par,T,Body)) :- is_infinite_closure(Par,T,Body).
1879
1880 % detect some closure that we should definitely expand; even in SYMBOLIC mode or for ABSTRACT_CONSTANTS
1881 definitely_expand_this_explicit_set(Var) :- var(Var),!,fail.
1882 definitely_expand_this_explicit_set(closure(P,T,B)) :-
1883 (B = b(Body,_,_), definitely_expand(Body,P) -> true
1884 ; is_interval_closure(P,T,B,Low,Up), do_expand_interval(Low,Up)).
1885 % some lambda functions have small domain, but are very complicated to compute (test 1078, 1376)
1886 % hence the following is not sufficient:
1887 % ;is_small_specific_custom_set(closure(P,T,B),100), print(exp(T)),nl,translate:print_bexpr(B),nl,fail).
1888
1889 :- use_module(bsyntaxtree,[occurs_in_expr/2]).
1890 definitely_expand(Body,_) :- avl_mem_construct(Body,_).
1891 definitely_expand(exists(ExistsTIDs,Body),P) :- P = [ID],
1892 % detect AVL projection expressions like {res|#y.(y:AVL & res=Expr(y))} % test 1101
1893 Body = b(conjunct(b(Mem,pred,_),Eq),pred,_),
1894 Eq = b(equal(EqA,EqB),pred,_),
1895 avl_mem_construct(Mem,LHS),
1896 tlhs_uses_exists(LHS,ExistsTIDs,[]),
1897 ( get_texpr_id(EqA,ID) -> \+ occurs_in_expr(ID,EqB)
1898 ; get_texpr_id(EqB,ID) -> \+ occurs_in_expr(ID,EqA) ). % we assign to set compr. ID
1899 % example where ID occurs in other expression: {v|#w.(w : (1 .. 10) & v = (v + w) - 2)}; test 2516
1900
1901 tlhs_uses_exists(b(E,_,_)) --> lhs_uses_exists(E).
1902 ?lhs_uses_exists(identifier(EID),In,Out) :-!, select(TEID,In,Out),
1903 get_texpr_id(TEID,EID),!. % TODO: we could allow using an identifier twice
1904 lhs_uses_exists(value(V)) --> {nonvar(V), simple_value(V), ground_value(V)}.
1905 lhs_uses_exists(couple(A,B)) --> tlhs_uses_exists(A), tlhs_uses_exists(B).
1906 lhs_uses_exists(boolean_true) --> [].
1907 lhs_uses_exists(boolean_false) --> [].
1908 lhs_uses_exists(empty_set) --> [].
1909 lhs_uses_exists(empty_sequence) --> [].
1910 lhs_uses_exists(integer(_)) --> [].
1911 lhs_uses_exists(real(_)) --> [].
1912 lhs_uses_exists(string(_)) --> [].
1913
1914 avl_mem_construct(member(LHS,RHS),LHS) :- RHS = b(value(V),_,_), nonvar(V),
1915 (V=avl_set(_) -> true
1916 ; is_interval_closure_or_integerset(V,L,U), integer(L), integer(U), U-L < 1000
1917 ).
1918
1919 % dont_expand_this_explicit_set with default limit (20000)
1920 dont_expand_this_explicit_set(closure(P,T,B)) :- !,
1921 dont_expand_this_closure(P,T,B).
1922 dont_expand_this_explicit_set(S) :-
1923 is_infinite_or_very_large_explicit_set(S).
1924
1925 % dont_expand_this_explicit_set with extra limit argument:
1926 dont_expand_this_explicit_set(closure(P,T,B),Limit) :- !, dont_expand_this_closure(P,T,B,Limit).
1927 dont_expand_this_explicit_set(S,_) :- is_infinite_or_very_large_explicit_set(S).
1928
1929 % true if we have a closure / global_set that should not be expanded
1930 % TO DO: we could detect finite (is_lambda_value_domain_closure) closures which contain infinite elements such as %p.(p : BOOL|%t.(t : NATURAL|t .. t + 7))
1931 dont_expand_symbolic_explicit_set(closure(P,T,B)) :- !,
1932 dont_expand_this_closure(P,T,B).
1933 dont_expand_symbolic_explicit_set(avl_set(_)) :- !,
1934 fail. % already expanded
1935 dont_expand_symbolic_explicit_set(S) :-
1936 is_infinite_or_very_large_explicit_set(S).
1937
1938
1939 dont_expand_this_closure(P,T,B) :-
1940 get_preference(comprehension_set_symbolic_limit,Limit), % Default 20000
1941 dont_expand_this_closure(P,T,B,Limit). % % increase limit in Data valid mode?
1942
1943 dont_expand_this_closure(_P,_T,b(_,_,INFO),_Limit) :-
1944 ? member(prob_annotation(KIND),INFO),
1945 (KIND = 'SYMBOLIC' -> ! % cf is_symbolic_closure in closures
1946 ; KIND = 'FORCE' -> !, fail). % was wrapped in FORCE external_function
1947 dont_expand_this_closure(P,T,B,_Limit) :-
1948 is_interval_closure_or_integerset(closure(P,T,B),Low,Up), !,
1949 % interval closures are quite efficient for certain manipulations
1950 (number(Low), number(Up)
1951 -> dont_expand_interval(Low,Up)
1952 ; true % we have a closure with inf/minus_inf or variables as bounds; in both cases keep the closure
1953 ).
1954 dont_expand_this_closure(P,T,B,Limit) :-
1955 is_infinite_or_very_large_closure(P,T,B,Limit).
1956 %% TODO: also prevent expansion of things like ff = %x.(x:STRING & REGEX_MATCH(x,"[a-z]+")=TRUE|TRUE)
1957
1958 % do not automatically expand these intervals
1959 dont_expand_interval(Low,Up) :-
1960 Up+1-Low > 100. % another magic constant ; which value to choose ??
1961 do_expand_interval(Low,Up) :- Up+1-Low =< 100.
1962
1963 is_converted_lambda_closure(_P,_T,b(_,_,INFO)) :-
1964 ? member(prob_annotation('LAMBDA'),INFO).
1965
1966 is_symbolic_closure_or_symbolic_mode(P,T,B) :-
1967 ? (is_symbolic_closure(P,T,B) -> true
1968 ; preference(convert_comprehension_sets_into_closures,true)
1969 % by default suppose closures should be dealt with symbolically
1970 ).
1971 /*
1972 % check both LAMBDA + not RECURSIVE
1973 is_converted_non_recursive_lambda_closure(_,_,b(_,_,INFO)) :- is_conv_lambda_nonrec(INFO).
1974 is_conv_lambda_nonrec([prob_annotation(A)|T]) :- !,
1975 (A='LAMBDA' -> \+ memberchk(prob_annotation('RECURSIVE'),T)
1976 ; A\='RECURSIVE' -> is_conv_lambda_nonrec(T)).
1977 is_conv_lambda_nonrec([_|T]) :- is_conv_lambda_nonrec(T). */
1978
1979
1980
1981 % a set that is so large that expanding it would probably cause problems
1982 is_infinite_or_very_large_explicit_set(S) :-
1983 get_preference(comprehension_set_symbolic_limit,Limit), % Default 20000
1984 is_infinite_or_very_large_explicit_set(S,Limit). % increase limit in Data valid mode?
1985
1986 :- use_module(inf_arith,[infgreater/2]).
1987
1988 is_infinite_or_very_large_explicit_set(X,_) :- var(X),!,print(var_is_infinite_check(X)),nl,fail.
1989 is_infinite_or_very_large_explicit_set(closure(P,T,B),Limit) :- !,
1990 % treat closure separately here; some special rules
1991 is_infinite_or_very_large_closure(P,T,B,Limit).
1992 is_infinite_or_very_large_explicit_set(avl_set(A),Limit) :- !, % we could compute log and use avl_height_less_than
1993 quick_avl_approximate_size(A,Size), Size >= Limit.
1994 is_infinite_or_very_large_explicit_set(X,Limit) :- % closures are checked above
1995 explicit_set_cardinality(X,Card),
1996 nonvar(Card),infgreater(Card,Limit).
1997
1998
1999 is_very_large_or_symbolic_closure(P,T,B,Limit) :-
2000 ? (is_symbolic_closure(P,T,B) -> true ; is_infinite_or_very_large_closure(P,T,B,Limit)).
2001 :- use_module(bsyntaxtree,[is_a_disjunct/3]).
2002 is_infinite_or_very_large_closure(P,T,B,Limit) :-
2003 is_a_disjunct(B,D1,D2), % Assumption: there is no card_for_specific_closure code for disjuncts
2004 !,
2005 (is_infinite_or_very_large_closure(P,T,D1,Limit) -> true
2006 ; is_infinite_or_very_large_closure(P,T,D2,Limit)).
2007 is_infinite_or_very_large_closure(Par,T,Body,Limit) :-
2008 is_closure1_value_closure(Par,T,Body,VAL),!,
2009 nonvar(VAL), % it could still be large or infinite
2010 (Limit>1 -> NLimit is Limit/2 ; NLimit = Limit), % reduce limit as closure1 usually blows up
2011 is_infinite_or_very_large_explicit_set(VAL,NLimit).
2012 is_infinite_or_very_large_closure(P,T,B,Limit) :-
2013 card_for_specific_closure3(Kind,P,T,B,Card,Code),
2014 on_enumeration_warning(call(Code),
2015 (debug_println(9,cannot_expand_specific_closure_for_card(Kind,Limit)),
2016 % see test 1519 for relevance
2017 Card=inf)), % assume it is large
2018 !,
2019 nonvar(Card),infgreater(Card,Limit),
2020 perfmessages_bexpr(symbolic_closure,['Cardinality ',Card,' greater than limit ',Limit,' for '],B).
2021
2022
2023 is_infinite_or_symbolic_closure(P,T,B) :-
2024 ? (is_symbolic_closure(P,T,B) -> true ; is_infinite_closure(P,T,B)).
2025 is_infinite_closure(P,T,B) :-
2026 is_a_disjunct(B,D1,D2), % Assumption: there is no card_for_specific_closure code for disjuncts
2027 !,
2028 (is_infinite_closure(P,T,D1) -> true ; is_infinite_closure(P,T,D2)).
2029 is_infinite_closure(Par,T,Body) :-
2030 is_closure1_value_closure(Par,T,Body,VAL),!, % TO DO: also check if closure1 is large this way
2031 nonvar(VAL), % if var: it could still be infinite !! TO DO fix
2032 is_infinite_explicit_set(VAL).
2033 is_infinite_closure(Par,T,Body) :-
2034 card_for_specific_closure(closure(Par,T,Body),Card,Code),
2035 call(Code), % TO DO: catch enumeration exceptions (see is_infinite_or_very_large_closure above)
2036 Card == inf. % TODO: instantiate inf before to avoid computing huge numbers
2037
2038
2039 :- use_module(memoization,[compute_memo_hash/2, get_stored_memo_expansion/3, store_memo_expansion/3]).
2040 /* transitive closure */
2041 closure1_for_explicit_set(avl_set(A),Res) :-
2042 preferences:preference(use_closure_expansion_memoization,true),!,
2043 compute_memo_hash(closure1_for_explicit_set(A),Hash),
2044 (get_stored_memo_expansion(Hash,closure1_for_explicit_set(A),StoredResult)
2045 -> Res = StoredResult
2046 ; closure1_for_explicit_set_direct(avl_set(A),Result),
2047 store_memo_expansion(Hash,closure1_for_explicit_set(A),Result),
2048 Res = Result
2049 ).
2050 closure1_for_explicit_set(avl_set(A),Res) :- closure1_for_explicit_set_direct(avl_set(A),Res).
2051
2052 % sometimes faster, but can also be considerably slower:
2053 %:- use_module(extrasrc(avl_ugraphs),[avl_transitive_closure/2]).
2054 %closure1_for_explicit_set_direct(avl_set(A),Res) :-
2055 % avl_transitive_closure(A,TC),
2056 % construct_avl_set(TC,Res).
2057 closure1_for_explicit_set_direct(avl_set(A),Res) :-
2058 avl_domain(A,AList),
2059 iterate_closure(AList,A,A,IterationRes),
2060 construct_avl_set(IterationRes,Res).
2061
2062 /* transitive closure starting from some initial set */
2063 /* not sure if we should do this:
2064 closure1_for_explicit_set_from(avl_set(A),StartFrom,Res) :-
2065 preferences:preference(use_closure_expansion_memoization,true),
2066 compute_memo_hash(closure1_for_explicit_set(A),Hash),
2067 stored_expansion(Hash,closure1_for_explicit_set(A),StoredResult),!,
2068 domain_restriction_explicit_set(StartFrom,StoredResult,Res). */
2069 % StartFrom can be avl_set(empty)
2070 closure1_for_explicit_set_from(avl_set(A),StartFrom,Res) :-
2071 avl_domain(A,AList),
2072 filter_start_relation(AList,StartFrom,FAList),
2073 (FAList = [] -> Res=[]
2074 ; convert_to_avl(FAList,avl_set(Start)),
2075 iterate_closure(FAList,A,Start,IterationRes),
2076 construct_avl_set(IterationRes,Res)).
2077 filter_start_relation([],_,[]).
2078 filter_start_relation([(X,Y)|T],StartSet,Res) :-
2079 ? (element_of_custom_set(X,StartSet) -> Res = [(X,Y)|RT] ; Res=RT),
2080 filter_start_relation(T,StartSet,RT).
2081
2082 iterate_closure([],_,Res,Res).
2083 iterate_closure([(X,Y)|T],InitialRelation,Relation,Res) :-
2084 %(Key = (X,Y) -> true ; add_error_and_fail(iterate_closure,'Not a relation element: ',Key)),
2085 add_tuples(X,Y,InitialRelation,Relation,NewRelation,AddedTuples),
2086 % better: do added tuples straight away ?
2087 iterate_closure(T,InitialRelation,NewRelation,NewRelation2),
2088 iterate_closure(AddedTuples,InitialRelation,NewRelation2,Res).
2089
2090 add_tuples(X,Y,AVL,AVLClosureSoFar,Res,NewTuples) :-
2091 findall((X,Z), (avl_fetch_pair(Y,AVL,Z), %ok instead of safe_avl_member((Y,Z),AVL),; Y in AVL form, Z var
2092 %Y \= Z, % self-loops are already in initial AVLClosure, this will never add a new pair
2093 % if we use AVLClosureSoFar instead of AVL: considerably slower
2094 \+ avl_fetch((X,Z),AVLClosureSoFar)), NewTuples),
2095 add_to_avl(NewTuples,AVLClosureSoFar,Res).
2096
2097 :- use_module(bsyntaxtree,[create_negation/2]).
2098 % SUBSET_OF <:
2099 % subset_of_explicit_set: returns code to be executed if this subset check can be done in an optimized way
2100 % TO DO: add strict_subset <<: + more cases, e.g., interval & avl_set, ...
2101 % interval & interval already handled in check_subset_of_global_sets
2102 subset_of_explicit_set(AVL,Closure,Code,_WF) :- nonvar(AVL),AVL=avl_set(A),
2103 is_interval_closure_or_integerset(Closure,Low,Up),!,
2104 Code=custom_explicit_sets:check_avl_in_interval(A,Low,Up).
2105 subset_of_explicit_set(Closure,CS,Code,WF) :- nonvar(CS), is_custom_explicit_set(CS),
2106 is_interval_closure_or_integerset(Closure,Low,Up),!,
2107 Code=custom_explicit_sets:check_interval_in_custom_set(Low,Up,CS,WF).
2108 subset_of_explicit_set(AVL1,AVL2,Code,_WF) :-
2109 nonvar(AVL1),AVL1=avl_set(A1), nonvar(AVL2),AVL2=avl_set(A2),!,
2110 Code = custom_explicit_sets:check_avl_subset(A1,A2).
2111 subset_of_explicit_set(C1,AVL2,Code,_WF) :- nonvar(C1),
2112 simple_finite_set(AVL2),
2113 ? is_simple_infinite_set(C1),!, % infinite set cannot be subset of finite one
2114 Code = fail.
2115 subset_of_explicit_set(C1,C2,Code,WF) :- nonvar(C1),
2116 is_cartesian_product_closure(C1,S11,S12),!,
2117 ((S11==[] ; S12==[]) -> Code=true /* we always have a subset */
2118 ; is_definitely_not_empty(S11),
2119 is_definitely_not_empty(S12), % only use optimisation if we know S11, S12 to be non-empty
2120 nonvar(C2), is_cartesian_product_closure(C2,S21,S22),
2121 Code = (kernel_objects:check_subset_of_wf(S11,S21,WF),
2122 kernel_objects:check_subset_of_wf(S12,S22,WF) )
2123 ).
2124 subset_of_explicit_set(Set1,Set2,Code,WF) :-
2125 nonvar(Set2),is_cartesian_product_closure(Set2,S21,S22),!,
2126 % TO DO: maybe don't do this if Set1 is avl_set ??
2127 debug_println(9,'Applying C <: S21*S22 <=> C : S21 <-> S22'),
2128 Code = bsets_clp:relation_over_wf(Set1,S21,S22,WF).
2129 subset_of_explicit_set(C1,C2,Code,WF) :- nonvar(C1), nonvar(C2),
2130 ? is_powerset_closure(C1,Constructor1,Set1),
2131 ? is_powerset_closure(C2,Constructor2,Set2),
2132 subset_constructor(Constructor1,Constructor2,R),
2133 !,
2134 Code = (R=pred_true, kernel_objects:check_subset_of_wf(Set1,Set2,WF)).
2135 subset_of_explicit_set(Set1,Set2,Code,WF) :-
2136 AllowRegularClosure=false,
2137 symbolic_subset_of_explicit_set(Set1,Set2,AllowRegularClosure,Code,WF).
2138
2139 symbolic_subset_of_explicit_set(Set1,Set2,AllowRegularClosure,Code,WF) :-
2140 %print_term_summary(subset(Set1,Set2)),nl,
2141 get_subset_counter_example_closure(Set1,Set2,NewP,NewT,NewB,AllowRegularClosure,DefResult),
2142 % {x|P1} <: {x|P2} <=> {x|P1 & not(P2)}={}
2143 !, %translate:print_bexpr(NewB),nl,
2144 (DefResult==definitely_non_empty -> Code = fail
2145 ; clean_up(NewB,[],CNewB), % can be useful to apply remove_member_comprehension
2146 Code = custom_explicit_sets:is_empty_closure_wf(NewP,NewT,CNewB,WF)).
2147
2148 % get closure representing the counter examples to Set1 <: Set2: i.e. elements in Set1 and not in Set2
2149 % used for symbolic treatment of subset, not_subset and test_subset
2150 % note: in case this fails subset_test1 will expand Set1
2151 % DefiniteResultFlag may return the information that the generated closure is definitely not empty
2152 % AllowRegularClosure=false means it will only be applied for symbolic or infinite closures
2153 get_subset_counter_example_closure(Set1,Set2,NewP,NewT,NewB,AllowRegularClosure,DefiniteResultFlag) :-
2154 get_closure(Set1,P1,T1,B1),
2155 get_subset_counter_aux(P1,T1,B1,Set2,NewP,NewT,NewB,AllowRegularClosure,DefiniteResultFlag).
2156
2157 get_subset_counter_aux(P1,T1,B1,Set2,NewP,NewT,NewB,AllowRegularClosure,DefRes) :-
2158 nonvar(Set2), is_definitely_finite(Set2), !,
2159 create_couple_term(P1,T1,P1Couple), % can currently still fail for more than 2 args
2160 (is_infinite_closure(P1,T1,B1)
2161 -> DefRes=definitely_non_empty % there are definitely counter examples as Set2 is finite
2162 ; AllowRegularClosure=true -> DefRes = unknown
2163 ? ; is_symbolic_closure(P1,T1,B1) -> DefRes=unknown
2164 ),
2165 NewP=P1, NewT=T1,
2166 % {x|P1} <: {a1,...} <=> {x|P1 & x /: {a1,...}}={}
2167 get_texpr_type(P1Couple,CoupleType1),
2168 VSet2 = b(value(Set2),set(CoupleType1),[]),
2169 create_texpr(not_member(P1Couple,VSet2),pred,[],NegPred2),
2170 conjunct_predicates([B1,NegPred2],NewB).
2171 get_subset_counter_aux(P1,T1,B1,Set2,NewP,NewT,NewB,AllowRegularClosure,unknown) :-
2172 get_closure(Set2,P2,T2,B2),
2173 (AllowRegularClosure=true -> true
2174 ; is_infinite_or_symbolic_closure(P1,T1,B1) -> true
2175 % should we also allow ??
2176 % ; is_symbolic_closure(P2,T2,B2)
2177 ),
2178 % not necessary maybe as subset_test1 only expands Set1
2179 % {x|P1} <: {x|P2} <=> {x|P1 & not(P2)}={}
2180 unify_closure_predicates(P1,T1,B1, P2,T2,B2 , NewP,NewT, NewB1,NewB2),
2181 create_negation(NewB2,NegNewB2),
2182 bsyntaxtree:conjunct_predicates([NewB1,NegNewB2],NewB).
2183
2184
2185 % get_closure or infinite global set:
2186 get_closure(V,_,_,_) :- var(V),!,fail.
2187 get_closure(closure(P,T,B),P,T,B).
2188 ?get_closure(global_set(G),P,T,B) :- is_infinite_global_set(G,Type),!,
2189 ID = '_zzzz_unary',
2190 TID = b(identifier(ID),Type,[]),
2191 TSet = b(value(global_set(G)),set(Type),[]),
2192 P = [ID], T=[Type], B= b(member(TID,TSet),pred,[prob_annotation('SYMBOLIC')]).
2193
2194
2195 subset_constructor(X,X,R) :- !,R=pred_true.
2196 subset_constructor(fin1,_,R) :- !,R=pred_true.
2197 subset_constructor(fin,pow,R) :- !,R=pred_true.
2198 subset_constructor(X,Y,R) :- strict_subset_constructor(X,Y),!,R=pred_true.
2199 subset_constructor(X,Y,R) :- strict_subset_constructor(Y,X),!,R=pred_false.
2200 % pow1,fin1 ; pow,fin ; and pow1,fin only ok if type infinite
2201 strict_subset_constructor(pow1,pow).
2202 strict_subset_constructor(fin1,fin).
2203
2204 % more rules for <->, +->, ...
2205 % what if same closure: then we also know it is a subset
2206
2207 % to be completed:
2208 % code that instantiates R to subset or not_subset, may have to delay
2209 test_subset_of_explicit_set(Set1,_,_,_,_) :- var(Set1),!,fail.
2210 test_subset_of_explicit_set(avl_set(A),Closure,R,WF,Code) :-
2211 is_interval_closure_or_integerset(Closure,Low,Up),!,
2212 Code=custom_explicit_sets:test_avl_in_interval(A,Low,Up,R,WF).
2213 test_subset_of_explicit_set(_,Set2,_,_,_) :- var(Set2),!,fail.
2214 test_subset_of_explicit_set(avl_set(A1),avl_set(A2),R,_WF,Code) :-
2215 Code = (custom_explicit_sets:check_avl_subset(A1,A2) -> R=pred_true ; R=pred_false).
2216 test_subset_of_explicit_set(global_set(G),Set2,R,_WF,Code) :-
2217 is_infinite_global_set(G,_), % TODO: we could extend this to other infinite sets
2218 is_definitely_finite(Set2), !,
2219 Code =(R=pred_false).
2220 test_subset_of_explicit_set(Set1,Set2,Res,WF,Code) :-
2221 AllowRegular=false,
2222 get_subset_counter_example_closure(Set1,Set2,NewP,NewT,NewB,AllowRegular,DefResult),
2223 % {x|P1} <: {x|P2} <=> {x|P1 & not(P2)}={}
2224 !,
2225 (DefResult==definitely_non_empty -> Code = (Res=pred_false)
2226 ; Code = custom_explicit_sets:test_empty_closure_wf(NewP,NewT,NewB,Res,WF)
2227 ).
2228 % TO DO: add is_cartesian_product_closure case
2229 is_definitely_finite([]).
2230 is_definitely_finite(avl_set(_)).
2231
2232 :- use_module(kernel_equality,[test_interval_subset_wf/6]).
2233
2234 :- public test_avl_in_interval/5. % used in test_subset_of_explicit_set
2235 % see also check_avl_in_interval(A,Low,Up), check_avl_not_in_interval(A,Low,Up).
2236 test_avl_in_interval(A,Low2,Up2,Res,WF) :-
2237 avl_min(A,int(Min)), % not needed if Low2==minus_inf
2238 avl_max(A,int(Max)), % not needed if Up2==inf
2239 test_interval_subset_wf(Min,Max,Low2,Up2,Res,WF).
2240
2241 % ----------------------
2242
2243 is_definitely_not_empty(X) :- nonvar(X),
2244 (X=[_|_] -> true
2245 ; is_custom_explicit_set(X), is_non_empty_explicit_set(X)).
2246
2247 % check if defnitely not empty and provide a witness
2248 is_definitely_not_empty_with_witness(X,El) :- nonvar(X),
2249 get_witness_element(X,El).
2250 get_witness_element([H|_],H).
2251 get_witness_element(avl_set(node(H,_True,_,_,_)),H).
2252 % TO DO: add global_set(GS),...
2253
2254 check_avl_subset(A1,A2) :- avl_max(A1,Max1), avl_max(A2,Max2),
2255 Max1@>Max2,!, % then A1 cannot be subset of A2
2256 fail.
2257 check_avl_subset(A1,A2) :-
2258 avl_min(A1,Cur1), avl_min(A2,Cur2),
2259 check_avl_subset_loop(Cur1,A1,Cur2,A2).
2260 check_avl_subset_loop(Cur1,AVL1,Cur2,AVL2) :-
2261 (Cur1 @> Cur2 -> avl_next(Cur2,AVL2,NC2), check_avl_subset_loop(Cur1,AVL1,NC2,AVL2)
2262 ; Cur1=Cur2 -> (avl_next(Cur1,AVL1,NC1)
2263 -> avl_next(Cur2,AVL2,NC2),
2264 check_avl_subset_loop(NC1,AVL1,NC2,AVL2)
2265 ; true /* all objects of AVL1 inspected */)
2266 ).
2267
2268 % check A <: Low..Up
2269 check_avl_in_interval(A,Low,Up) :- % does not have to delay: if we have minus_inf & inf they will be known straightaway
2270 (Low==minus_inf -> true
2271 ; avl_min(A,Min), kernel_objects:less_than_equal(int(Low),Min)),
2272 (Up==inf -> true
2273 ; avl_max(A,Max), kernel_objects:less_than_equal(Max,int(Up))).
2274
2275 % some experiments:
2276 % 1..x <: {1,2,3,5} & x>1 & !y.(y>x & y<10 => 1..y /<: {1,2,3,5})
2277 % {ss | ss <: 0..0 & ss /= {} & ss=0..max(ss)}
2278 % {ss | ss <: 0..0 & ss /= {} & ss=min(ss)..max(ss)} // does not work yet
2279 % x..x+1 <: {0,2,3,5}
2280 % x..x+2 <: {0,2,3,5} // does not work yet
2281 % r = {x|x:1..400 & x mod 3/=0} & res={v|v:0..1300 & v..v+1 <: r}
2282 % check Low..Up <: Avl
2283
2284 check_interval_in_custom_set(Low,Up,CS,WF) :-
2285 Low \== minus_inf,
2286 Up \== inf,
2287 b_interpreter_check:check_arithmetic_operator('<=',Low,Up,LeqRes),
2288 (var(LeqRes) -> get_binary_choice_wait_flag_exp_backoff(16,check_interval_in_custom_set,WF,WF2) ; true),
2289 ? check_interval_in_custom_set_aux(LeqRes,Low,Up,CS,WF2).
2290
2291 :- block check_interval_in_custom_set_aux(-,?,?,?,-).
2292 check_interval_in_custom_set_aux(pred_true,Low,Up,CS,_WF2) :-
2293 ? element_of_custom_set_wf(int(Low),CS,WF),
2294 ? element_of_custom_set_wf(int(Up),CS,WF),
2295 ? interval_in_avl_block(Low,Up,CS,WF).
2296 check_interval_in_custom_set_aux(pred_false,_Low,_Up,_CS,_WF2). % Interval is empty; but infinitely many solutions for Low and Up exist in principle
2297
2298 :- block interval_in_avl_block(-,?,?,?), interval_in_avl_block(?,-,?,?).
2299 interval_in_avl_block(Low,Up,CS,WF) :-
2300 ? Low1 is Low+1, interval_in_avl_loop(Low1,Up,CS,WF).
2301 interval_in_avl_loop(Low,Up,_CS,_WF) :- Low>=Up,!. % Lower bound and upper bound already checked
2302 interval_in_avl_loop(Low,Up,CS,WF) :-
2303 ? element_of_custom_set_wf(int(Low),CS,WF), L1 is Low+1,
2304 ? interval_in_avl_loop(L1,Up,CS,WF).
2305
2306
2307 :- public not_check_avl_subset/2. % used in not_subset_of_explicit_set_aux
2308 not_check_avl_subset(A1,A2) :- \+ check_avl_subset(A1,A2).
2309
2310 not_subset_of_explicit_set(S1,S2,Code,WF) :- nonvar(S1),
2311 ? not_subset_of_explicit_set_aux(S1,S2,Code,WF).
2312 not_subset_of_explicit_set_aux(avl_set(A),Closure,Code,_WF) :-
2313 is_interval_closure_or_integerset(Closure,Low,Up),!,
2314 Code=custom_explicit_sets:check_avl_not_in_interval(A,Low,Up).
2315 not_subset_of_explicit_set_aux(avl_set(A1),AVL2,Code,_WF) :-
2316 nonvar(AVL2),AVL2=avl_set(A2),
2317 Code = custom_explicit_sets:not_check_avl_subset(A1,A2).
2318 not_subset_of_explicit_set_aux(CS,AVL,Code,_WF) :-
2319 ? is_simple_infinite_set(CS),
2320 % TO DO: provide code for interval/NAT/INT /<: AVL
2321 simple_finite_set(AVL),
2322 !,
2323 Code = true. % G cannot be subset of finite set
2324 not_subset_of_explicit_set_aux(C1,C2,Code,WF) :- is_cartesian_product_closure(C1,S11,S12),
2325 ((S11==[] ; S12==[]) -> Code=fail /* we always have a subset */
2326 ; is_definitely_not_empty(S11),
2327 is_definitely_not_empty(S12), % only use optimisation if we know S11, S12 to be non-empty
2328 nonvar(C2), is_cartesian_product_closure(C2,S21,S22),
2329 Code = (kernel_objects:not_both_subset_of(S11,S12, S21,S22, WF))
2330 ), !.
2331 not_subset_of_explicit_set_aux(C1,C2,Code,WF) :- nonvar(C2),
2332 ? is_powerset_closure(C1,Constructor1,Set1),
2333 ? is_powerset_closure(C2,Constructor2,Set2),
2334 subset_constructor(Constructor1,Constructor2,R),!,
2335 Code = (R=pred_false -> true ; kernel_objects:not_subset_of_wf(Set1,Set2,WF)).
2336 not_subset_of_explicit_set_aux(Set1,Set2,Code,WF) :-
2337 AllowRegular=false,
2338 get_subset_counter_example_closure(Set1,Set2,NewP,NewT,NewB,AllowRegular,DefResult),
2339 % {x|P1} <: {x|P2} <=> {x|P1 & not(P2)}={}
2340 !,
2341 (DefResult==definitely_non_empty -> Code = true
2342 ; Code = custom_explicit_sets:is_non_empty_closure_wf(NewP,NewT,NewB,WF)
2343 ).
2344
2345
2346 :- public check_avl_not_in_interval/3. % used in not_subset_of_explicit_set_aux
2347 :- block check_avl_not_in_interval(?,-,?). % TO DO: use non-blocking version, minus_inf, and inf set directly
2348 check_avl_not_in_interval(A,Low,Up) :- avl_min(A,int(Min)),
2349 check_avl_not_in_interval4(Low,Up,A,Min).
2350
2351 check_avl_not_in_interval4(Low,_Up,_A,Min) :- Low \== minus_inf, Min < Low,!.
2352 check_avl_not_in_interval4(_Low,Up,A,_Min) :-
2353 Up \== inf, avl_max(A,Max),
2354 kernel_objects:less_than(int(Up),Max). % Up could still be a variable
2355
2356
2357 % checks for simple infinite sets, without Cartesian Product, ... decomposition
2358 ?is_simple_infinite_set(global_set(X)) :- !, is_infinite_global_set(X,_).
2359 is_simple_infinite_set(CS) :- is_interval_closure_or_integerset(CS,Low,Up), infinite_interval(Low,Up).
2360
2361 simple_finite_set(AVL) :- nonvar(AVL), (AVL=avl_set(_) -> true ; AVL = []).
2362
2363 % IMAGE [.]
2364 image_for_id_closure(closure(Par,Types,Body),Set,Res) :-
2365 is_full_id_closure(Par,Types,Body),!,
2366 Res=Set.
2367
2368 image_for_explicit_set(closure(Par,Types,Body),Set,Res,WF) :-
2369 ? image_for_closure(Par,Types,Body,Set,Res,WF).
2370 image_for_explicit_set(avl_set(A),Set,Res,WF) :- nonvar(Set),
2371 image_for_explicit_avl_set(A,Set,Res,WF).
2372
2373
2374 image_for_closure(Par,Types,Body,Set,Res,_WF) :-
2375 is_id_closure_over(Par,Types,Body,ID_Domain,Full),!,
2376 (Full=true -> Res=Set ; kernel_objects:intersection(ID_Domain,Set,Res)).
2377 % infinite function case dealt with in image1 in bsets_clp
2378 % TO DO: other closure(); Maybe special case if Set is an interval ?
2379 image_for_closure(Par,Types,Body,Set,Res,WF) :-
2380 is_closure1_value_closure(Par,Types,Body,VAL), % TODO: also detect reflexive closure, iteration (iterate(rel,k))
2381 % compute closure1(VAL)[Set]
2382 ? bsets_clp:image_for_closure1_wf(VAL,Set,Res,WF).
2383
2384 is_closure1_value_closure(Par,Types,Body,VAL) :-
2385 is_member_closure(Par,Types,Body,couple(A,A),MemSET), nonvar(MemSET),
2386 MemSET = closure(V), % this is the closure1 B operator !
2387 nonvar(V), V=b(value(VAL),_,_).
2388
2389 image_for_explicit_avl_set(A,Set,Res,_WF) :- % Set is nonvar
2390 is_interval_closure_or_integerset(Set,From1,To1),!,
2391 % Note: if From1, To1 not yet known we will block and not revert to other image calculation code
2392 % Important e.g. for performance of San Juan (AdaptedBModelPropCheck/acs_as_env_cfg_ipart.mch)
2393 %we used to check for: ground(From1),ground(To1),
2394 interval_image_for_explicit_avl_set(From1,To1,A,Set,Res).
2395 image_for_explicit_avl_set(A,Set,Res,WF) :-
2396 \+ bsets_clp:keep_symbolic(Set), % in this case we fall back to treatment in bsets_clp (image1)
2397 expand_custom_set_to_list_gg(Set,ESet,GG,image_for_explicit_avl_set),
2398 empty_avl(Empty),
2399 (GG=guaranteed_ground -> image_explicit_ground(ESet,A,Empty,Res,WF)
2400 ; image_explicit(ESet,A,Empty,Res,WF)).
2401
2402 :- block interval_image_for_explicit_avl_set(-,?,?,?,?),
2403 interval_image_for_explicit_avl_set(?,-,?,?,?).
2404 interval_image_for_explicit_avl_set(From1,To1,_A,_Set,Res) :-
2405 number(From1), number(To1), From1>To1,!,
2406 kernel_objects:empty_set(Res).
2407 interval_image_for_explicit_avl_set(From1,To1,A,_Set,Res) :-
2408 findall(Image-true, avl_image_interval(From1,To1, A,Image),ImageList),
2409 normalised_list_to_avl(ImageList,ImageAvl),
2410 ? equal_object(ImageAvl,Res).
2411
2412
2413 %! singleton_set(+Set,-Element).
2414 singleton_set(X,_) :- var(X),!,fail.
2415 singleton_set([H|T],R) :- T==[], R=H.
2416 singleton_set(avl_set(node(Y,_,_,empty,empty)),Y). % same as is_one_element_custom_set
2417
2418 is_one_element_custom_set(avl_set(node(Y,_,_,empty,empty)),Y).
2419 is_one_element_avl(node(Y,_,_,empty,empty),Y).
2420
2421 % requires El to be ground
2422 construct_one_element_custom_set(El,avl_set(AVL)) :-
2423 empty_avl(E),avl_store(El,E,true,AVL).
2424
2425 construct_avl_set(Avl,Res) :- empty_avl(Avl) -> Res = [] ; Res = avl_set(Avl).
2426
2427 :- block image_explicit(-,?,?,?,?).
2428 image_explicit([],_,Acc,Res,WF) :- !,
2429 construct_avl_set(Acc,AVLS),
2430 ? kernel_objects:equal_object_wf(Res,AVLS,image_explicit,WF).
2431 image_explicit([D1|T],AVLRelation,In,Out,WF) :- !,
2432 ground_value_check(D1,G1),
2433 ((var(T);T==[]) % TO DO: see below, make propagation also interesting in other circumstances
2434 -> must_be_in_domain_check(G1,D1,T,AVLRelation,In,Out,WF)
2435 ; true),
2436 ? image_explicit_aux(G1,D1,AVLRelation,T,In,Out,WF).
2437 image_explicit(Set,_,_,_,_) :- add_error_and_fail(image_explicit,'Unknown set: ',Set).
2438
2439 % a version of image_explicit where the list is guaranteed to be ground
2440 image_explicit_ground([],_,Acc,Res,WF) :- !,
2441 construct_avl_set(Acc,AVLS),
2442 kernel_objects:equal_object_wf(Res,AVLS,image_explicit,WF).
2443 image_explicit_ground([D1|T],AVLRelation,In,Out,WF) :- !,
2444 image_explicit_aux_ground(D1,AVLRelation,T,In,Out,WF).
2445 image_explicit_ground(Set,_,_,_,_) :- add_error_and_fail(image_explicit_ground,'Unknown set: ',Set).
2446
2447 :- block must_be_in_domain_check(-,?,?,?,?,-,?),
2448 must_be_in_domain_check(-,?,-,?,?,?,?).
2449 % if result requires at least one more element, then D must be in domain of Relation
2450 % ensures that we get a domain for j in x = {1|->2,2|->4, 4|->8} & x[{j}]={8}
2451 % we could even propagate using inverse of AVLRelation ?!
2452 must_be_in_domain_check(GroundD,D,T,AVLRelation,In,Out,WF) :-
2453 T==[], % apart from D, there are no more elements to be added
2454 var(GroundD), % otherwise we already have a value for D
2455 delta_witness(In,Out,Witness), % obtain at least one value that D must map to
2456 !,
2457 quick_propagation_element_information(avl_set(AVLRelation),(D,Witness),WF,_). % Witness avoids pending co-routines
2458 % TO DO: we could check that *all* elements of Out have this value
2459 % TO DO: below we could check that In is a subset of Out; e.g., for x = %i.(i:1..10|i+i) & x[{5,j,k}]={16,11}; we could also check that Out is subset of range of relation
2460 must_be_in_domain_check(_,_D,_T,_,_In,_Out,_). % :- print(must_be(D,T,In,Out)),nl.
2461
2462 % provide, if possible, a witness element in Out not in In
2463 delta_witness(In,Out,_Witness) :- (var(In) ; var(Out)),!,fail.
2464 %delta_witness(empty,Out,Witness) :- is_definitely_not_empty_with_witness(Out,Witness).
2465 delta_witness(In,Out,Witness) :-
2466 is_custom_explicit_set(Out,delta_witness),
2467 difference_of_explicit_set(Out,avl_set(In),Diff), % could be expensive to compute !? delay ? print(delta(Diff)),nl,
2468 is_definitely_not_empty_with_witness(Diff,Witness).
2469
2470
2471 :- block image_explicit_aux(-,?,?, ?,?,?,?). % we know that D1 is ground
2472 image_explicit_aux(_,D1,AVLRelation,T,In,Out,WF) :-
2473 all_images(D1,AVLRelation,NewImages), % compute AVLRelation[{D1}]
2474 add_to_avl(NewImages,In,In2),
2475 ? image_explicit(T,AVLRelation,In2,Out,WF).
2476 image_explicit_aux_ground(D1,AVLRelation,T,In,Out,WF) :-
2477 all_images(D1,AVLRelation,NewImages), % compute AVLRelation[{D1}]
2478 add_to_avl(NewImages,In,In2),
2479 image_explicit_ground(T,AVLRelation,In2,Out,WF).
2480
2481 all_images(From,AVLRelation,Images) :-
2482 findall(AY,avl_member_pair_arg1_ground(From,AY,AVLRelation),Images).
2483 % we know that From is ground and AY free variable
2484
2485
2486 % compute relational composition ( ; ) if second arg is an AVL set
2487 % TO DO: add support for infinite closures; avoid expanding them [currently handled by symbolic composition in bsets_clp]
2488 rel_composition_for_explicit_set(Rel1,Rel2,Comp) :- nonvar(Rel2),
2489 Rel2=avl_set(A2), % TO DO: see if we can maybe convert Rel2 to AVL ?
2490 % \+ bsets_clp:keep_symbolic(Rel1), check already done in bsets
2491 expand_custom_set_to_list_gg(Rel1,Relation1,GG,rel_composition_for_explicit_set),
2492 empty_avl(In),
2493 (GG=guaranteed_ground
2494 -> rel_avl_compose2_ground(Relation1,A2,In,Comp)
2495 ; rel_avl_compose2(Relation1,A2,In,Comp)).
2496
2497 :- block rel_avl_compose2(-,?,?,?).
2498 rel_avl_compose2([],_,In,Res) :- construct_avl_set(In,A),
2499 ? equal_object(Res,A,rel_avl_compose2). % as we delay; we need to use equal_object at the end
2500 rel_avl_compose2([(X,Y)|T],A2,In,Out) :-
2501 when((ground(X),ground(Y)),
2502 (all_image_pairs_ground(X,Y,A2,ImagePairs),
2503 add_to_avl(ImagePairs,In,In2),
2504 rel_avl_compose2(T,A2,In2,Out))).
2505
2506 % a version where argument is guaranteed to be ground; no when-ground checks
2507 rel_avl_compose2_ground([],_,In,Res) :- construct_avl_set(In,A),
2508 equal_object(Res,A,rel_avl_compose2). % as we delay; we need to use equal_object at the end
2509 rel_avl_compose2_ground([(X,Y)|T],A2,In,Out) :-
2510 all_image_pairs_ground(X,Y,A2,ImagePairs),
2511 add_to_avl(ImagePairs,In,In2),
2512 rel_avl_compose2_ground(T,A2,In2,Out).
2513
2514 all_image_pairs_ground(From,To,AVLRelation,ImagePairs) :-
2515 findall((From,AY),avl_member_pair_arg1_ground(To,AY,AVLRelation),ImagePairs).
2516 % To: already in AVL format; AY is variable -> we could use avl_fetch_pair directly : findall((From,AY),avl_fetch_pair(To,AVLRelation,AY),ImagePairs).
2517
2518 /* succeeds if it can compute domain by some clever way */
2519 domain_of_explicit_set_wf(global_set(GS),_R,_) :- !,
2520 add_error_and_fail(domain_of_explicit_set_wf,'Cannot compute domain of global set: ',GS).
2521 domain_of_explicit_set_wf(freetype(GS),_R,_) :- !,
2522 add_error_and_fail(domain_of_explicit_set_wf,'Cannot compute domain of freetype: ',GS).
2523 domain_of_explicit_set_wf(avl_set(A),Res,_) :- !,
2524 domain_of_avl_set(A,Res).
2525 domain_of_explicit_set_wf(C,R,WF) :- dom_for_specific_closure(C,Dom,_,WF),!,
2526 Dom=R.
2527 domain_of_explicit_set_wf(C,R,_) :-
2528 ? dom_symbolic(C,CC),!,
2529 R=CC.
2530 domain_of_explicit_set_wf(closure(P,T,B),Res,WF) :-
2531 % does not seem to be reached, as dom_symbolic now seems to cover all cases
2532 expand_custom_set_wf(closure(P,T,B),EC,domain_of_explicit_set,WF),
2533 domain_of_list_blocking(EC,R),
2534 normalised_list_to_avl_when_ground(R,Res).
2535
2536 % avl tree is a relation with an integer domain
2537 %avl_integer_domain(node((int(_From),_KeyTo),_True,_,_L,_R)).
2538
2539 % the first clause is in principle faster
2540 % but we don't gain time compared to treatment in second clause; we just avoid building up the domain list
2541 %domain_of_avl_set(A,Res) :- avl_integer_domain(A),
2542 % \+ avl_tools:avl_height_less_than(A,10), % try and detect interval if height >= 10
2543 % avl_is_pf_with_interval_domain(A,First,Last),!,
2544 % construct_interval_closure(First,Last,Res).
2545 domain_of_avl_set(A,Res) :-
2546 avl_domain(A,EC), % -> expand_custom_set(avl_set(A),EC),
2547 domain_of_sorted_list(EC,SizeRes,R), % size of list can be smaller than A if we have a relation
2548 (SizeRes=size_res(Size,int(Last)), R=[int(First)-true|_],
2549 Size>1000,
2550 Size is Last+1-First % we have an interval; quite common that we have functions with intervals as domain
2551 -> debug_println(19,constructing_interval_for_domain(First,Last)),
2552 construct_interval_closure(First,Last,Res)
2553 ; ord_list_to_avlset(R,Res,domain)
2554 ).
2555
2556 % check if an AVL tree represents a function with an interval domain
2557 %avl_is_pf_with_interval_domain(AVL,Min,Max) :-
2558 % avl_min(AVL,(int(Min),_)),avl_max(AVL,(int(Max),_)),
2559 % Size is 1+Max-Min, avl_size_possible(AVL,Size),
2560 % is_avl_partial_function(AVL),
2561 % % now check real size
2562 % avl_size(AVL,Size).
2563
2564 % check if an avl represents a set of integers:
2565 avl_integer_set(node(int(_TOP),_True,_,_L,_R)).
2566
2567 % check if an avl set is an interval:
2568 avl_is_interval(AVL,Min,Max) :-
2569 avl_integer_set(AVL),
2570 avl_min(AVL,int(Min)),avl_max(AVL,int(Max)),
2571 Size is 1+Max-Min,
2572 avl_size_possible(AVL,Size),
2573 avl_size(AVL,Size).
2574
2575
2576
2577 :- use_module(bsyntaxtree,[create_typed_id/3]).
2578 dom_symbolic(closure(Paras,Types,Pred), Res) :-
2579 expand_pair_closure(Paras,Types,Pred,[X,Y],[TX,TY],NewPred),
2580 !, % single argument which is a pair
2581 % simply call code for range ; inverting arguments
2582 bsyntaxtree:check_used_ids_in_ast(Pred),
2583 bsyntaxtree:check_used_ids_in_ast(NewPred),
2584 ran_symbolic_closure(Y,[X],TY,[TX],NewPred,Res).
2585 dom_symbolic(closure(Paras,Types,Pred), Res) :-
2586 append(Xs,[Y],Paras), Xs \= [],
2587 append(TXs,[TY],Types),
2588 % simply call code for range ; inverting arguments
2589 ran_symbolic_closure(Y,Xs,TY,TXs,Pred,Res).
2590 % TO DO: allow computation if Paras is a single argument and more than pair
2591
2592 % just computes domain: it can also be successful for lambda closures
2593 dom_for_specific_closure(closure(P,T,Pred),Domain,Functionality,WF) :-
2594 dom_for_specific_closure_aux(P,T,Pred,Domain,Functionality,WF).
2595 dom_for_specific_closure_aux(P,T,Pred,Domain,Functionality,_WF) :-
2596 is_lambda_value_domain_closure(P,T,Pred, DomainValue,Expr),
2597 (preference(find_abort_values,full) -> bsyntaxtree:always_well_defined_or_disprover_mode(Expr)
2598 ; true),
2599 % Warning: this will lead to dom(%x.(x:1..3|1/0)) = 1..3 to be true; discarding WD condition
2600 % this is not as bad as {1|->2}(0) = 3 to be silently failing though; hence only done if TRY_FIND_ABORT = full
2601 !,
2602 Domain=DomainValue,
2603 Functionality=function(total).
2604 %dom_for_specific_closure_aux([ID],[Type],Pred,Domain,Functionality,_WF) :- Functionality=relation,
2605 % Pred = b(exists(Paras,ClosurePred),pred,Info1),
2606 % % dom({res|#(paras).(.... & res= domVal|->ran)}) = {res|#(paras).(.... & res= domVal)}
2607 % closures:select_equality(ClosurePred,ID,RHSExpr,Type,Info,RestPred),
2608 % RHSExpr = couple(DomValue,_),
2609 % closures:does_not_occur_in(ID,RestPred),
2610 % Type = couple(DomT,_),
2611 % TID = b(identifier(ID),DomT,[]),
2612 % % safe_create_texpr
2613 % conjunct_predicates([RestPred,b(equal(TID,DomValue),pred,[])],NewClosurePred),
2614 % NewPred = b(exists(Paras,NewClosurePred),pred,Info1),
2615 % Domain = closure([ID],[DomT],NewPred).
2616 dom_for_specific_closure_aux(P,T,Pred,Domain,Functionality,WF) :-
2617 dom_range_for_specific_closure2(P,T,Pred, Domain,_Range,domain_only,Functionality,WF).
2618 %TO DO treat overwrite closure dom(F1<+F2) = dom(F1) \/ dom(F2)
2619
2620 dom_for_lambda_closure(closure(P,T,Pred),Domain) :-
2621 is_lambda_value_domain_closure(P,T,Pred, DomainValue,_Expr),
2622 Domain=DomainValue.
2623
2624 % TO DO: add total functions
2625 %dom_for_specific_closure2([F],[T],
2626 % b(member(b(identifier(F),T,_), b(total_function(value(A),B),set(couple(DOM,RAN)),_)), pred,_) ,
2627 % A).
2628
2629 :- block domain_of_list_blocking(-,?).
2630 % the list will be sorted according to the term ordering for (_,_); hence it will
2631 % already be sorted for the projection onto the first element
2632 % maybe the speed difference is not worth it ??
2633 domain_of_list_blocking([],[]).
2634 domain_of_list_blocking([(A,_B)|T],[A-true|DT]) :- domain_blocking_aux(T,A,DT).
2635 :- block domain_blocking_aux(-,?,?).
2636 domain_blocking_aux([],_,[]).
2637 domain_blocking_aux([(A,_B)|T],Prev,Res) :-
2638 compare(Comp,A,Prev),
2639 (Comp = '='
2640 -> domain_blocking_aux(T,Prev,Res)
2641 ; Res = [A-true|DT],
2642 (Comp = '<' -> add_error_fail(custom_explicit_sets,'Domain list not_sorted: ',(A,Prev)) ; true),
2643 domain_blocking_aux(T,A,DT) ).
2644
2645 % and now a non-blocking version:
2646 domain_of_sorted_list([],size_res(0,'$none'),[]).
2647 domain_of_sorted_list([(A,_B)|T],Size,[A-true|DT]) :- domain_aux(T,A,DT,1,Size).
2648
2649 % TO DO: count length and determine when we have an interval
2650 domain_aux([],Prev,[],Acc,size_res(Acc,Prev)).
2651 domain_aux([(A,_B)|T],Prev,Res,SizeAcc,Size) :- SA1 is SizeAcc+1,
2652 compare(Comp,A,Prev),
2653 (Comp = '='
2654 -> domain_aux(T,Prev,Res,SA1,Size)
2655 ; Res = [A-true|DT],
2656 (Comp = '<' -> add_error_fail(custom_explicit_sets,'Domain list not_sorted: ',(A,Prev)) ; true),
2657 domain_aux(T,A,DT,SA1,Size) ).
2658
2659 /* succeeds if it can compute domain by some clever way */
2660 range_of_explicit_set_wf(global_set(GS),_R,_) :- !,
2661 add_error_and_fail(range_of_explicit_set_wf,'Cannot compute domain of global set: ',GS).
2662 range_of_explicit_set_wf(freetype(GS),_R,_) :- !,
2663 add_error_and_fail(range_of_explicit_set_wf,'Cannot compute domain of freetype: ',GS).
2664 range_of_explicit_set_wf(avl_set(A),Res,_) :- !,
2665 avl_domain(A,EC), % -> expand_custom_set(avl_set(A),EC),
2666 range(EC,R),
2667 normalised_list_to_avl(R,Res).
2668 range_of_explicit_set_wf(C,R,WF) :-
2669 ran_for_specific_closure(C,Ran,WF),!,
2670 Ran=R.
2671 range_of_explicit_set_wf(C,R,_) :-
2672 ran_symbolic(C,CC),!,
2673 R=CC.
2674 range_of_explicit_set_wf(closure(P,T,B),Res,WF) :-
2675 expand_custom_set_wf(closure(P,T,B),EC,range_of_explicit_set_wf,WF),
2676 % TO DO: it would be more useful here to directly just expand the projection onto the last component of P
2677 range_blocking(EC,R),
2678 normalised_list_to_avl_when_ground(R,Res).
2679
2680 % TO DO: in future it is maybe better to add an in_range_wf kernel predicate
2681 ran_symbolic(closure(Paras,Types,Pred), Res) :-
2682 ? (is_memoization_closure(Paras,Types,Pred,_)
2683 -> !,fail % memoization closures can never be dealt with symbolically; we need expansion
2684 ; true),
2685 expand_pair_closure(Paras,Types,Pred,[Y,X],[TY,TX],NewPred),!,
2686 % following test (1541) works with this: 2 : ran({y|#(x).(y = x |-> x + 2 & x : NATURAL)})
2687 ran_symbolic_closure(Y,[X],TY,[TX],NewPred,Res). %, print('res: '),translate:print_bvalue(Res),nl.
2688 ran_symbolic(closure([Y,X],[TY,TX],Pred), Res) :-
2689 ran_symbolic_closure(Y,[X],TY,[TX],Pred,Res).
2690 % TO DO: treat closures with more arguments: we need to quantify Y1,...Yn [Y1,...,Yn,X]
2691
2692 % Replace single Identifier YX of type pair by pair (Y,X) where Y,X are (fresh) variables not occuring in Pred
2693 % example: {y| #(x).(y = x |-> x + 2 & x : NATURAL)} --> {y__1,y__2|#(x).(y__1 |-> y__2 = x |-> x + 2 & x : NATURAL)}
2694 expand_pair_closure([YX],[TYX],Pred,[Y,X],[TY,TX],NewPred) :- TYX = couple(TY,TX),
2695 % Replace single ID YX of type pair by pair (Y,X) where Y,X are (fresh) variables not occuring in Pred
2696 % example: {y| #(x).(y = x |-> x + 2 & x : NATURAL)} --> {y__1,y__2|#(x).(y__1 |-> y__2 = x |-> x + 2 & x : NATURAL)}
2697 % following test (1541) works with this: 2 : ran({y|#(x).(y = x |-> x + 2 & x : NATURAL)})
2698 gensym:gensym(YX,Y),gensym:gensym(YX,X),
2699 create_typed_id(Y,TY,YTID), create_typed_id(X,TX,XTID),
2700 Pair = b(couple(YTID,XTID),TYX,[]),
2701 bsyntaxtree:replace_id_by_expr(Pred,YX,Pair,NewPred).
2702
2703 :- use_module(bsyntaxtree,[create_exists_opt_liftable/3]).
2704 %:- use_module(bsyntaxtree,[add_texpr_info_if_new/3]).
2705 ran_symbolic_closure(Y,Xs,TY,TXs,Pred,Res) :-
2706 % create closure for {Xs | #Y.(Pred)} where Pred uses Y|->Xs
2707 rename_ran_ids(Xs,Pred,[],XIDs,Pred2),
2708 create_typed_id(Y,TY,YTID),
2709 create_exists_opt_liftable([YTID],Pred2,Exists), % Y is liftable as the source is a closure with all ids
2710 %bsyntaxtree:check_used_ids_in_ast(Exists),
2711 %bsyntaxtree:create_exists_opt([YTID],[Pred2],Exists), %or
2712 %b_interpreter_components:create_and_simplify_exists([YTID],Pred2,Exists),
2713 %bsyntaxtree:add_texpr_info_if_new(Exists,allow_to_lift_exists,Exists2), % leads to pending co-routines in self_checks for bsets for apply_to;
2714 % Reason: the tests ground only det WF; without lifting the exists is fully evaluated (and its waitflags with prio 2 and higher grounded) as the wait arguments are ground; with lifting only the det WF is grounded leading to pending coroutines
2715 Res = closure(XIDs,TXs,Exists).
2716
2717
2718
2719 :- use_module(library(lists),[select/3]).
2720
2721 % rename lambda_results :
2722 rename_ran_ids([],Pred,_,[],Pred).
2723 rename_ran_ids([X|TX],Pred,Acc,[XID|TTX],Pred2) :-
2724 % in case X is _lambda_result_ we need to rename it as it then would not get enumerated !
2725 (X == '_lambda_result_'
2726 -> get_fresh_id('_was_lambda_result_',TX,Acc,XID),
2727 % we could remove lambda_result info field, but it will no longer match new id anyway
2728 ? rename_bt(Pred,[rename(X,XID)],Pred2),
2729 TTX=TX
2730 % TODO: maybe we should also remove the prob_annotation('LAMBDA-EQUALITY') info inside Pred for the ids and equality !?
2731 ? ; XID = X, rename_ran_ids(TX,Pred,[X|Acc],TTX,Pred2)
2732 ).
2733
2734 :- use_module(b_ast_cleanup,[get_unique_id/2]).
2735 get_fresh_id(ID,List1,List2,Res) :- nonmember(ID,List1), nonmember(ID,List2),!, Res=ID.
2736 get_fresh_id(ID,_,_,FRESHID) :- nl,print('*** VARIABLE_CLASH PREVENTED: '), print(ID),nl,
2737 get_unique_id(ID,FRESHID).
2738
2739 :- block range_blocking(-,?).
2740 range_blocking([],[]).
2741 range_blocking([(_A,B)|T],[B-true|DT]) :- range_blocking(T,DT).
2742 % and a non-blocking version:
2743 range([],[]).
2744 range([(_A,B)|T],[B-true|DT]) :- range(T,DT).
2745
2746 ran_for_specific_closure(closure(P,T,Pred),Range,WF) :-
2747 dom_range_for_specific_closure2(P,T,Pred, _Domain,Range,range_only,_Functionality,WF).
2748 %ran_for_specific_closure(closure_x(P,T,Pred,_Exp),Card,_) :- ran_for_specific_closure2(P,T,Pred,Card).
2749
2750 :- use_module(bsyntaxtree,[conjunct_predicates/2, disjunct_predicates/2, create_typed_id/3, get_texpr_type/2]).
2751 override_custom_explicit_set_wf(R,S,Res,WF) :- /* R <+ S */
2752 ? nonvar(R),override_custom_explicit_set_aux(R,S,Res,WF).
2753 override_custom_explicit_set_aux(CL,Rel2,Res,_WF) :-
2754 CL=closure(P0,T,B0),
2755 ( preference(convert_comprehension_sets_into_closures,true), % cf keep_symbolic in bsets_clp
2756 (var(Rel2) -> true
2757 ; Rel2 \= avl_set(_)) % if Rel2 is avl_set then maybe better to compute explicitly; unless infinite
2758 ; quick_size_check_larger_than(Rel2,Size2,133) ->
2759 % if we have a large AVL set anyway; then allow expansion up to a larger limit; cf machine 670_002.mch
2760 % a lot of machines use A*B*C <+ {....} to more compactly define large explicit sets
2761 (Size2=inf -> Limit = 200000
2762 ; Limit is min(200000,Size2*150)),
2763 dont_expand_this_closure(P0,T,B0,Limit)
2764 ; dont_expand_this_closure(P0,T,B0) % use default limit and checks for symbolic closure
2765 ),
2766 !,
2767 ? rename_ran_ids(P0,B0,[],P,B), % any '_lambda_result_' id is no longer guaranteed to be assigned a value in all cases
2768 NewClosure=closure(P,T,NewBody),
2769 % B <+ Rel2 ---> NewBody = P:Rel2 or (prj1(P) /: dom(Rel2) & B)
2770 % TODO better? : %x.(x:Domain|IF x:dom(SFF) THEN SFF(x) ELSE DEFAULT)?
2771 generate_typed_id_pairs(P,T,NestedPairs),
2772 get_texpr_type(NestedPairs,PairsType),
2773 RelPairsType = set(PairsType),
2774 ValS = b(value(Rel2),RelPairsType,[]),
2775 MemS = b(member(NestedPairs,ValS),pred,[]), % P:Rel2
2776 get_prj1(NestedPairs,DomExpr),
2777 get_texpr_type(DomExpr,DomType),
2778 Domain = b(domain(ValS),set(DomType),[]), % TO DO: perform some optimisations like dom(%x.(P|E)) --> {x|P}
2779 %bsets_clp:domain_wf(Rel2,DomainOfRel2,WF), Domain = b(value(DomainOfRel2),DomType,[]), % this DOES NOT work for 1619, 1706 where override is used for infinite functions
2780 NotMemDomS = b(not_member(DomExpr,Domain),pred,[]), % prj1(P) /: dom(Rel2)
2781 conjunct_predicates([NotMemDomS,B],RHS),
2782 disjunct_predicates([MemS,RHS],NewBody),
2783 %print(override),nl, bsyntaxtree:check_used_ids_in_ast(NewBody),
2784 mark_closure_as_symbolic(NewClosure,Res).
2785 % TO DO: add a case where for second set we have: dont_expand_this_closure
2786 override_custom_explicit_set_aux(R,S,Res,WF) :-
2787 is_custom_explicit_set(R,override_custom_explicit_set),
2788 nonvar(S), is_custom_explicit_set(S,override_custom_explicit_set),
2789 %% hit_profiler:add_profile_hit(override(R,S),3), %%
2790 override_custom_explicit_set2(R,S,Res,WF).
2791
2792 override_custom_explicit_set2(R,S,Res,_WF) :- is_one_element_custom_set(S,(X,Y)),
2793 override_pair_explicit_set(R,X,Y,NewR),!,
2794 Res=NewR.
2795 % TO DO: if R is very large and S relatively small : iterate by calling override_pair_explicit_set
2796 override_custom_explicit_set2(R,S,Res,WF) :-
2797 expand_custom_set_wf(R,ER,override_custom_explicit_set_aux1,WF),
2798 expand_custom_set_wf(S,ES,override_custom_explicit_set_aux2,WF),
2799 override_list(ER,ES,LRes,Done),
2800 finish_restriction(Done,LRes,Res).
2801
2802 quick_size_check_larger_than(Set,Size,Limit) :-
2803 quick_custom_explicit_set_approximate_size(Set,Size),
2804 (is_inf_or_overflow_card(Size) -> true ; Size > Limit).
2805 get_prj1(b(couple(DomExpr,_),_,_),Prj1) :- !, Prj1 = DomExpr.
2806 get_prj1(BE,b(first_of_pair(BE),DT,[])) :- % some closures have a single identifier; we need to apply prj1
2807 BE = b(_E,couple(DT,_RT),_I).
2808
2809 % translate a parameter name and type list into a nested-pair value
2810 generate_typed_id_pairs([ID|IT],[Type|TT],Res) :- create_typed_id(ID,Type,TypedID),
2811 conv2(IT,TT,TypedID,Res).
2812 conv2([],[],X,X).
2813 conv2([ID|IT],[Type|TT],Acc,Res) :- create_typed_id(ID,Type,TypedID),
2814 get_texpr_type(Acc,AccType),
2815 Couple = b(couple(Acc,TypedID),couple(AccType,Type),[]),
2816 conv2(IT,TT,Couple,Res).
2817
2818 :- block override_list(-,?,?,?), override_list(?,-,?,?).
2819 override_list([],S,Res,Done) :- !, copy_to_true_list(S,Res,Done).
2820 override_list(R,[],Res,Done) :- !, copy_to_true_list(R,Res,Done).
2821 override_list([(From1,To1)|T1],[(From2,To2)|T2],Res,Done) :-
2822 (From1 @< From2
2823 -> Res = [(From1,To1)-true|TR], override_list(T1,[(From2,To2)|T2],TR,Done)
2824 ; From2 @< From1
2825 -> Res = [(From2,To2)-true|TR], override_list([(From1,To1)|T1],T2,TR,Done)
2826 ; override_list(T1,[(From2,To2)|T2],Res,Done)).
2827
2828 :- block copy_to_true_list(-,?,?).
2829 % add -true to get lists that can be converted to avl
2830 copy_to_true_list([],[],true).
2831 copy_to_true_list([H|T],[H-true|CT],Done) :- copy_to_true_list(T,CT,Done).
2832
2833 :- use_module(closures,[get_domain_range_for_closure_types/3]).
2834 % compute a closure with the functionality violations of a closure
2835 symbolic_functionality_check_closure(closure(P,T,B),closure([DID,ID1,ID2],[DomType,RanType,RanType],Body)) :-
2836 % construct {d,z_,z__| (d,z_):R & (d,z__):R & z_\= z__}
2837 generate_typed_id_pairs(P,T,NestedPairs),
2838 get_texpr_type(NestedPairs,PairsType),
2839 RelPairsType = set(PairsType),
2840 TRel = b(value(closure(P,T,B)),RelPairsType,[]),
2841 DID = '_domain', ID1 = '_zzzz_unary', ID2 = '_zzzz_binary',
2842 TDID = b(identifier(DID),DomType,[]),
2843 TID1 = b(identifier(ID1),RanType,[]),
2844 TID2 = b(identifier(ID2),RanType,[]),
2845 Mem1 = b(member( b(couple(TDID,TID1),PairsType,[]),TRel),pred,[]),
2846 Mem2 = b(member( b(couple(TDID,TID2),PairsType,[]),TRel),pred,[]),
2847 get_domain_range_for_closure_types(T,DomType,RanType),
2848 NeqRan = b(not_equal(TID1,TID2), pred, []),
2849 conjunct_predicates([Mem1,Mem2,NeqRan],Body),
2850 bsyntaxtree:check_used_ids_in_ast(Body).
2851 %bsyntaxtree:check_ast(Body).
2852
2853 % compute a closure with the injectivity violations of a closure
2854 symbolic_injectivity_check_closure(closure(P,T,B),closure([RID,ID1,ID2],[RanType,DomType,DomType],Body)) :-
2855 % construct {r,z_,z__| (z_,r):R & (z__,r):R & z_\= z__}
2856 generate_typed_id_pairs(P,T,NestedPairs),
2857 get_texpr_type(NestedPairs,PairsType),
2858 RelPairsType = set(PairsType),
2859 TRel = b(value(closure(P,T,B)),RelPairsType,[]), % what if closure body B has WD condition?
2860 RID = '_range', ID1 = '_zzzz_unary', ID2 = '_zzzz_binary',
2861 TRID = b(identifier(RID),RanType,[]),
2862 TID1 = b(identifier(ID1),DomType,[]),
2863 TID2 = b(identifier(ID2),DomType,[]),
2864 Mem1 = b(member( b(couple(TID1,TRID),PairsType,[]),TRel),pred,[]),
2865 Mem2 = b(member( b(couple(TID2,TRID),PairsType,[]),TRel),pred,[]),
2866 get_domain_range_for_closure_types(T,DomType,RanType),
2867 NeqRan = b(not_equal(TID1,TID2), pred, []),
2868 conjunct_predicates([Mem1,Mem2,NeqRan],Body),
2869 bsyntaxtree:check_used_ids_in_ast(Body).
2870 %bsyntaxtree:check_ast(Body).
2871
2872 % -------------------------
2873
2874
2875 % check whether we have a partial function
2876 is_avl_partial_function(empty) :- !.
2877 is_avl_partial_function(node((KeyFrom,_KeyTo),_True,_,L,R)) :- !,
2878 is_avl_partial_function2(L,'$$MIN$$',KeyFrom),
2879 is_avl_partial_function2(R,KeyFrom,'$$MAX$$').
2880 is_avl_partial_function(X) :- add_internal_error('Not avl_set or relation: ',is_avl_partial_function(X)),fail.
2881
2882 % we traverse the tree from top to bottom, keeping track of possible upper- and lower-bounds
2883 % if any value matches the upper or lower bound, the we do not have a partial function
2884 is_avl_partial_function2(empty,_,_).
2885 is_avl_partial_function2(node((KeyFrom,_KeyTo),_True,_,L,R),ParentFrom,ParentTo) :-
2886 KeyFrom \= ParentFrom, KeyFrom \= ParentTo,
2887 is_avl_partial_function2(L,ParentFrom,KeyFrom),
2888 is_avl_partial_function2(R,KeyFrom,ParentTo).
2889
2890 % the dual of the above, returning a counter example
2891 is_not_avl_partial_function(node((KeyFrom,_KeyTo),_True,_,L,R),DuplicateKey) :- !,
2892 (is_not_avl_partial_function2(L,'$$MIN$$',KeyFrom,DuplicateKey) -> true
2893 ; is_not_avl_partial_function2(R,KeyFrom,'$$MAX$$',DuplicateKey)).
2894 is_not_avl_partial_function2(node((KeyFrom,_KeyTo),_True,_,L,R),ParentFrom,ParentTo,DuplicateKey) :-
2895 ( KeyFrom = ParentFrom -> DuplicateKey=KeyFrom
2896 ; KeyFrom = ParentTo -> DuplicateKey=KeyFrom
2897 ; is_not_avl_partial_function2(L,ParentFrom,KeyFrom,DuplicateKey) -> true
2898 ; is_not_avl_partial_function2(R,KeyFrom,ParentTo,DuplicateKey) -> true).
2899
2900
2901 % check whether we have a function which is total over a given domain; both as AVL sets
2902 is_avl_total_function_over_domain(empty,empty) :- !.
2903 is_avl_total_function_over_domain(AVLFun,AVLDom) :-
2904 avl_domain(AVLFun,FunList),
2905 avl_domain(AVLDom,DomList),
2906 is_avl_total_fun2(FunList,DomList).
2907
2908 is_avl_total_fun2([],[]).
2909 is_avl_total_fun2([(From,_To)|FT],[From|DomT]) :- is_avl_total_fun2(FT,DomT).
2910
2911
2912 %not_is_avl_partial_function(AVLF) :- \+ is_avl_partial_function(AVLF).
2913
2914 :- use_module(kernel_equality,[membership_test_wf/4]).
2915 % check whether an AVL Relation is not over a specific domain & range
2916 is_not_avl_relation_over_domain_range(AVLRel,Domain,Range,WF) :- AVLRel \= empty,
2917 avl_min_pair(AVLRel,RFrom,RTo),
2918 membership_test_wf(Domain,RFrom,MemRes,WF),
2919 is_not_avl_rel_dom1(MemRes,RFrom,RTo,AVLRel,Domain,Range,WF).
2920
2921 :- block is_not_avl_rel_dom1(-, ?,?,?,?,?,?).
2922 is_not_avl_rel_dom1(pred_false,_,_,_,_,_,_WF).
2923 is_not_avl_rel_dom1(pred_true,RFrom,RTo,AVLRel,Domain,Range,WF) :-
2924 membership_test_wf(Range,RTo,MemRes,WF),
2925 is_not_avl_rel_dom2(MemRes,RFrom,RTo,AVLRel,Domain,Range,WF).
2926
2927 :- block is_not_avl_rel_dom2(-, ?,?,?,?,?,?).
2928 is_not_avl_rel_dom2(pred_false,_,_,_,_,_,_WF).
2929 is_not_avl_rel_dom2(pred_true,RFrom,RTo,AVLRel,Domain,Range,WF) :-
2930 avl_next((RFrom,RTo),AVLRel,(RFrom2,RTo2)),
2931 membership_test_wf(Domain,RFrom2,MemRes,WF),
2932 is_not_avl_rel_dom1(MemRes,RFrom2,RTo2,AVLRel,Domain,Range,WF).
2933
2934 % check whether an AVL Relation is not over a specific range
2935 is_not_avl_relation_over_range(AVLRel,Range,WF) :- AVLRel \= empty,
2936 avl_min_pair(AVLRel,RFrom,RTo),
2937 membership_test_wf(Range,RTo,MemRes,WF),
2938 is_not_avl_rel_ran2(MemRes,RFrom,RTo,AVLRel,Range,WF).
2939
2940 :- block is_not_avl_rel_ran2(-, ?,?,?,?,?).
2941 is_not_avl_rel_ran2(pred_false,_,_,_,_,_WF).
2942 is_not_avl_rel_ran2(pred_true,RFrom,RTo,AVLRel,Range,WF) :-
2943 avl_next((RFrom,RTo),AVLRel,(RFrom2,RTo2)),
2944 kernel_equality:membership_test_wf(Range,RTo2,MemRes,WF),
2945 is_not_avl_rel_ran2(MemRes,RFrom2,RTo2,AVLRel,Range,WF).
2946
2947 % check whether we have a relation
2948 is_avl_relation(node((_KeyFrom,_KeyTo),_True,_,_,_)).
2949
2950 % check whether a Relation has all its range elments in a certain Range (not necessarily AVL)
2951 % TO DO: if Domain is an interval: we could take avl_min and avl_max and rely on lexicographic ordering
2952 is_avl_relation_over_domain(AVL,IntervalClosure,_WF) :-
2953 is_interval_closure_or_integerset(IntervalClosure,Low,Up),!,
2954 ((avl_min(AVL,(int(ALow),_)), avl_max(AVL,(int(AUp),_)))
2955 -> cs_greater_than_equal(ALow,Low), cs_greater_than_equal(Up,AUp) %,print(ok),nl
2956 ; (AVL=empty -> true ; add_error_and_fail(is_avl_relation_over_domain,'Not a relation with integer domain: ',AVL))).
2957 is_avl_relation_over_domain(_,Domain,_) :-
2958 quick_is_definitely_maximal_set(Domain),!.
2959 %is_definitely_maximal_set(Domain),!.
2960 ?is_avl_relation_over_domain(AVL,Domain,WF) :- is_avl_relation_over_domain2(AVL,Domain,WF).
2961 is_avl_relation_over_domain2(empty,_,_).
2962 is_avl_relation_over_domain2(node((KeyFrom,_KeyTo),_,_,L,R), Domain,WF) :-
2963 ? is_avl_relation_over_domain2(L, Domain,WF),
2964 ? is_avl_relation_over_domain2(R, Domain,WF),
2965 ? kernel_objects:check_element_of_wf(KeyFrom,Domain,WF).
2966
2967 % : faster to check than is_definitely_maximal_set
2968 quick_is_definitely_maximal_set(X) :- nonvar(X),
2969 quick_is_definitely_maximal_set_aux(X).
2970 quick_is_definitely_maximal_set_aux(global_set(GS)) :-
2971 nonvar(GS),is_maximal_global_set(GS).
2972 quick_is_definitely_maximal_set_aux(avl_set(AVL)) :-
2973 quick_definitely_maximal_set_avl(AVL).
2974
2975 % check whether a Relation has all its range elments in a certain Range (not necessarily AVL)
2976
2977
2978
2979 is_avl_relation_over_range(empty,_,_) :- !.
2980 is_avl_relation_over_range(_,Range,_) :-
2981 %quick_is_definitely_maximal_set(Range),
2982 is_definitely_maximal_set(Range),
2983 !.
2984 ?is_avl_relation_over_range(AVL,Range,WF) :- is_avl_relation_over_range2(AVL,Range,WF).
2985
2986 is_avl_relation_over_range2(empty,_,_).
2987 is_avl_relation_over_range2(node((_KeyFrom,KeyTo),_,_,L,R), Range,WF) :-
2988 ? is_avl_relation_over_range(L, Range,WF),
2989 ? kernel_objects:check_element_of_wf(KeyTo,Range,WF),
2990 ? is_avl_relation_over_range2(R, Range,WF).
2991
2992 % safe version of is_avl_sequence, does not throw error when type cannot be a sequence
2993 safe_is_avl_sequence(empty) :- !.
2994 safe_is_avl_sequence(node((int(KeyFrom),_KeyTo),_True,_,L,R)) :- !,
2995 is_avl_sequence2(L,0,KeyFrom),
2996 is_avl_sequence2(R,KeyFrom,'$$MAX$$').
2997
2998 is_avl_sequence(empty) :- !.
2999 is_avl_sequence(node((int(KeyFrom),_KeyTo),_True,_,L,R)) :- !,
3000 is_avl_sequence2(L,0,KeyFrom),
3001 is_avl_sequence2(R,KeyFrom,'$$MAX$$').
3002 is_avl_sequence(X) :- add_error_and_fail(is_avl_sequence,'Not avl_set or sequence: ',X).
3003
3004 % we traverse the tree from top to bottom, keeping track of possible upper- and lower-bounds
3005 % if any value matches the upper or lower bound, then we do not have a partial function
3006 is_avl_sequence2(empty,X,Y) :-
3007 (Y=='$$MAX$$' -> true ; Y is X+1). % otherwise there is a gap in the sequence
3008 is_avl_sequence2(node((int(KeyFrom),_KeyTo),_,_,L,R),ParentFrom,ParentTo) :-
3009 KeyFrom > ParentFrom, KeyFrom \= ParentTo,
3010 is_avl_sequence2(L,ParentFrom,KeyFrom),
3011 is_avl_sequence2(R,KeyFrom,ParentTo).
3012
3013 % for performance: it is not worthwhile to make a version that checks that
3014 % we have a sequence over a range using a single traversal
3015
3016
3017 % get avl_sequence elements as sorted list (without indices)
3018 % used by external function REPLACE
3019 get_avl_sequence(AVL,SeqList) :-
3020 get_avl_sequence_dcg(AVL,SeqList,[]).
3021
3022 get_avl_sequence_dcg(empty) --> [].
3023 get_avl_sequence_dcg(node((int(_),SeqEl),_True,_,L,R)) -->
3024 get_avl_sequence_dcg(L),
3025 [SeqEl],
3026 get_avl_sequence_dcg(R).
3027
3028
3029 % ---------------------------
3030 prefix_of_custom_explicit_set(avl_set(A),MinIndex,Result,WF) :-
3031 size_of_avl_sequence(A,Size,WF),
3032 (MinIndex > Size
3033 -> add_wd_error('index larger than size of sequence in prefix_sequence (/|\\)! ', '>'(MinIndex,Size),WF)
3034 % ; MinIndex = 0 -> Result = [] % case already treated in bsets_clp
3035 ; MinIndex = Size -> Result=avl_set(A)
3036 ; prefix_of_custom_explicit_set2(A,MinIndex,OrdList,[]),
3037 ord_list_to_avlset(OrdList,Result,prefix_of_custom_explicit_set)
3038 ).
3039 prefix_of_custom_explicit_set2(empty,_MaxIndex) --> {true}.
3040 prefix_of_custom_explicit_set2(node((int(KeyFrom),KeyTo),_True,_,L,R),MaxIndex) -->
3041 ({KeyFrom = MaxIndex}
3042 -> prefix_of_custom_explicit_set2(L,MaxIndex), [((int(KeyFrom),KeyTo)-true)]
3043 ; {KeyFrom > MaxIndex} -> prefix_of_custom_explicit_set2(L,MaxIndex)
3044 ; prefix_of_custom_explicit_set2(L,MaxIndex), [((int(KeyFrom),KeyTo)-true)],
3045 prefix_of_custom_explicit_set2(R,MaxIndex)
3046 ).
3047
3048 % size is only well-defined for sequences:
3049 size_of_custom_explicit_set(avl_set(AVL),int(Size),WF) :- size_of_avl_sequence(AVL,Size,WF).
3050 size_of_custom_explicit_set(closure(P,T,B),Res,WF) :-
3051 is_lambda_value_domain_closure(P,T,B, DomainValue,_Expr),
3052 kernel_cardinality_attr:finite_cardinality_as_int_wf(DomainValue,Res,WF).
3053
3054 size_of_avl_sequence(AVL,Size,WF) :-
3055 avl_min_pair(AVL,int(One),_), One =\= 1,
3056 !,
3057 avl_size(AVL,Sz),
3058 add_wd_error('Applying size to a value which is not a sequence (minimum index is not 1)',b(value(avl_set(AVL)),seq(any),[]),WF),
3059 Size=Sz. % other calls to size_of_avl_sequence currently expect a value
3060 size_of_avl_sequence(AVL,Size,WF) :-
3061 \+ preference(find_abort_values,false),
3062 \+ is_avl_sequence(AVL),
3063 !,
3064 avl_size(AVL,Sz),
3065 add_wd_error('Applying size to a value which is not a sequence',b(value(avl_set(AVL)),seq(any),[]),WF),
3066 Size=Sz. % other calls to size_of_avl_sequence currently expect a value
3067 size_of_avl_sequence(AVL,Size,WF) :-
3068 avl_max_pair(AVL,int(Sz),_),
3069 avl_height(AVL,H), % we cannot compute the height together with max; we need the longest path!
3070 get_min_max_card(H,MinSize,MaxSize),
3071 %avl_size(AVL,Real),format('AVL SeqSize: ~w, height: ~w, real size:~w, min: ~w, max: ~w~n',[Sz,H,Real,MinSize,MaxSize]),
3072 (Sz > MaxSize
3073 -> add_wd_error('Applying size to a value which is not a sequence (maximum index too large)',b(value(avl_set(AVL)),seq(any),[]),WF),
3074 avl_size(AVL,Size)
3075 % triggered by e.g. size({0|->1,0|->2,1|->3}) or size({0|->1,1|->2,3|->3,1|->22,1|->23,1|->24,1|->25,1|->26})
3076 ; Sz < MinSize
3077 -> add_wd_error('Applying size to a value which is not a sequence (maximum index too small)',b(value(avl_set(AVL)),seq(any),[]),WF),
3078 avl_size(AVL,Size)
3079 % triggered by e.g. size([0,2,2,2] |> {2})
3080 ; Size=Sz).
3081
3082 get_min_max_card(Height,MinCard,MaxCard) :-
3083 % page 460, Knuth 3: The height of a balanced tree with N internal nodes always lies between lg(N+1) and 1.4405 lg(N+2) - 0.3277
3084 MaxCard is 2^Height - 1,
3085 % 1.618034 is golden ration phi 0.5(1+sqrt(5)) , 2.236068 is sqrt(5)
3086 % proof in Knuth uses fact: N > phi^(h+2)/sqrt(5) - 2
3087 MinCard is ceiling((1.61803398875**(Height+2)) / 2.2360679775 - 2).
3088
3089 % check if a candidate size is possible given height:
3090 avl_size_possible(AVL,SizeCandidate) :-
3091 avl_height(AVL,Height), % TO DO: restrict to something like log2 of Height
3092 get_min_max_card(Height,MinCard,MaxCard),
3093 MinCard =< SizeCandidate,
3094 SizeCandidate =< MaxCard.
3095
3096
3097 suffix_of_custom_explicit_set(avl_set(A),MinIndex,Result,WF) :-
3098 size_of_avl_sequence(A,Size,WF),
3099 (MinIndex > Size
3100 -> add_wd_error('index larger than size of sequence in suffix_sequence (\\|/)! ', '>'(MinIndex,Size),WF)
3101 % ; MinIndex = 0 -> Result = avl_set(A) % case already treated in bsets_clp
3102 ; MinIndex = Size -> Result=[]
3103 ; suffix_of_custom_explicit_set2(A,MinIndex,OrdList,[]),
3104 ord_list_to_avlset(OrdList,Result,suffix_of_custom_explicit_set)
3105 ).
3106 suffix_of_custom_explicit_set2(empty,_MinIndex) --> {true}.
3107 suffix_of_custom_explicit_set2(node((int(KeyFrom),KeyTo),_True,_,L,R),MinIndex) -->
3108 ({KeyFrom =< MinIndex} -> suffix_of_custom_explicit_set2(R,MinIndex)
3109 ; {ShiftedKeyFrom is KeyFrom-MinIndex},
3110 ({KeyFrom =:= MinIndex+1}
3111 -> {true} ; suffix_of_custom_explicit_set2(L,MinIndex)),
3112 [((int(ShiftedKeyFrom),KeyTo)-true)],
3113 suffix_of_custom_explicit_set2(R,MinIndex)
3114 ).
3115
3116 shift_avl_sequence_to_ord_list(AVL,Offset,ShiftedOrdList) :-
3117 avl_to_list(AVL,List),shift_seq(List,Offset,ShiftedOrdList).
3118 % it does not seem to be worth to use avl_to_list_dcg_offset or a variation thereof
3119 % it is not really slower to do two traversals (avl_to_list and shift_seq)
3120
3121 shift_seq([],_,[]).
3122 shift_seq([(int(I),Val)-true|T],Offset,[(int(NI),Val)-true|ST]) :- NI is I+Offset,
3123 shift_seq(T,Offset,ST).
3124
3125 :- use_module(debug).
3126 concat_custom_explicit_set(avl_set(S1),Seq2,Res,WF) :- nonvar(Seq2), Seq2=avl_set(S2),
3127 size_of_avl_sequence(S1,Size1,WF),
3128 shift_avl_sequence_to_ord_list(S2,Size1,OL2),
3129 % if OL2 is small we could use avl_store like in append_custom_explicit_set
3130 %avl_to_list(S1,OL1),
3131 avl_to_list_dcg(S1,NewOrdList,OL2), % use OL2 rather than [] as tail
3132 %append(OL1,OL2,NewOrdList), % we could avoid traversing OL1 again by doing a custom avl_to_list/3 which specifies tail
3133 ord_list_to_avlset(NewOrdList,Res,concat). % , print_term_summary(res_concat(Res)).
3134
3135 % a DCG version of avl_to_list; allows to call it with something else than [] as tail
3136 avl_to_list_dcg(empty) --> [].
3137 avl_to_list_dcg(node(Key,Val,_,L,R)) -->
3138 avl_to_list_dcg(L), [(Key-Val)],
3139 avl_to_list_dcg(R).
3140
3141 /* conc: concatenation of sequence of sequences (general_concat) */
3142 conc_custom_explicit_set(avl_set(AVL),Res) :-
3143 avl_min_pair(AVL,int(ONE),First),
3144 conc2_cs(First,ONE,AVL,0,NewOrdList),
3145 ord_list_to_avlset(NewOrdList,Res,conc).
3146
3147 conc2_cs(Seq,NrSeq,AVL,Offset,OrdList) :-
3148 add_seq(Seq,Offset,OrdList,NewOffset,TailOrd),
3149 (avl_next((int(NrSeq),Seq),AVL,(int(N2),Seq2))
3150 -> conc2_cs(Seq2,N2,AVL,NewOffset,TailOrd)
3151 ; TailOrd=[]).
3152
3153 add_seq([],Offset,OrdRes,NewOffset,TailOrdRes) :- NewOffset=Offset, TailOrdRes=OrdRes.
3154 add_seq(avl_set(ASeq),Offset,OrdRes,NewOffset,TailOrd) :-
3155 avl_to_list_dcg_offset(ASeq,Offset,NrEls,OrdRes,TailOrd), NewOffset is Offset+NrEls.
3156
3157 % a version of avl_to_list for sequences which autmatically adds an offset
3158 avl_to_list_dcg_offset(empty,_,0) --> [].
3159 avl_to_list_dcg_offset(node((int(Idx),El),Val,_,L,R),Offset,NrEls) -->
3160 {NIdx is Idx+Offset},
3161 avl_to_list_dcg_offset(L,Offset,N1),
3162 [((int(NIdx),El)-Val)],
3163 avl_to_list_dcg_offset(R,Offset,N2), {NrEls is N1+N2+1}.
3164
3165 prepend_custom_explicit_set(avl_set(S1),ObjectToPrepend,Res) :-
3166 %hit_profiler:add_profile_hit(prepend_custom_explicit_set(avl_set(S1),ObjectToPrepend,Res)),
3167 element_can_be_added_or_removed_to_avl(ObjectToPrepend),
3168 shift_avl_sequence_to_ord_list(S1,1,OL1),
3169 ord_list_to_avlset([(int(1),ObjectToPrepend)-true|OL1],Res).
3170
3171 append_custom_explicit_set(avl_set(S1),ObjectToAppend,Res,WF) :-
3172 element_can_be_added_or_removed_to_avl(ObjectToAppend), % implies that ObjectToAppend is ground
3173 size_of_avl_sequence(S1,Size1,WF), NewSize is Size1+1,
3174 add_ground_element_to_explicit_set_wf(avl_set(S1),(int(NewSize),ObjectToAppend),Res,WF).
3175
3176 % compute tail of a sequence and also return first element
3177 tail_sequence_custom_explicit_set(avl_set(S1),First,Res,Span,WF) :-
3178 shift_avl_sequence_to_ord_list(S1,-1,NewOrdList),
3179 (NewOrdList = [(int(0),First)-true|TailOL] -> ord_list_to_avlset(TailOL,Res)
3180 ; add_wd_error_span('tail argument is not a sequence!', avl_set(S1),Span,WF)
3181 % add_error_fail(tail_sequence,'tail applied to ', NewOrdList))
3182 ).
3183 last_sequence_explicit_set(avl_set(AVL),Last) :-
3184 avl_max_pair(AVL,int(_Sz),Last).
3185 % TO DO: we could compute height of the path to max H, then check that Sz is in 2**(H-1)+1 .. 2**(H+1)-1 ?
3186 %first_sequence_explicit_set(avl_set(AVL),First) :- % not used anymore; apply_to used instead
3187 % avl_min_pair(AVL,int(_One),First).
3188
3189 % compute front and return last element at the same time
3190 front_sequence_custom_explicit_set(avl_set(AVL),Last,Res) :-
3191 avl_max_pair(AVL,int(Size),Last),
3192 direct_remove_element_from_avl(AVL, (int(Size),Last), Res). % we know Last is already in AVL-converted format
3193
3194
3195 reverse_custom_explicit_set(avl_set(AVL),Res) :-
3196 avl_to_list_dcg_offset(AVL,0,Size,List,[]),
3197 S1 is Size+1,
3198 reverse_list(List,S1,[],RevList),
3199 ord_list_to_avl(RevList,RevAVL),
3200 Res=avl_set(RevAVL).
3201
3202 reverse_list([],_,Acc,Acc).
3203 reverse_list([(int(Idx),El)-V|T],S1,Acc,Res) :-
3204 NewIdx is S1 - Idx,
3205 reverse_list(T,S1,[(int(NewIdx),El)-V|Acc],Res).
3206
3207 % check if a relation is injective ; compute range at the same time; note AVL can be empty
3208 is_injective_avl_relation(AVL,RangeRes) :-
3209 avl_domain(AVL,ElList),
3210 empty_avl(EmptyAcc),
3211 is_avl_inj_list(ElList,EmptyAcc,Range),
3212 construct_avl_set(Range,RangeRes).
3213
3214 is_avl_inj_list([],Range,Range).
3215 is_avl_inj_list([(_From,To)|T],InRange,OutRange) :-
3216 (avl_fetch(To,InRange) -> fail /* this is not an injection; a range element is repeated */
3217 ; avl_store(To,InRange,true,InRange1),
3218 is_avl_inj_list(T,InRange1,OutRange)
3219 ).
3220
3221 % Example predicates that work with code below:
3222 % card(id((1..1000)*(1..1000))~)=1000*1000
3223 % card(((1..1000)*(1..1000))~)=1000*1000
3224 invert_explicit_set(global_set(GS),_R) :- !,
3225 add_error_and_fail(invert_explicit_set,'Cannot compute inverse of global set: ',GS).
3226 invert_explicit_set(freetype(GS),_R) :- !,
3227 add_error_and_fail(invert_explicit_set,'Cannot compute inverse of freetype: ',GS).
3228 invert_explicit_set(closure([P1,P2],[T1,T2],Clo),R) :- !,
3229 % TODO: also invert closures with single argument or more arguments
3230 % e.g., {a,b,c|a=1 & b=1 &c:1..10}~ = {c,ab|ab=(1,1) & c:1..10}
3231 R = closure([P2,P1],[T2,T1],Clo).
3232 invert_explicit_set(closure([P1],[T1],Clo),R) :-
3233 is_member_closure_with_info([P1],[T1],Clo,_Type,Info,MEM),
3234 invert_member_predicate(MEM,T1,InvMEM,InvT1),!,
3235 construct_member_closure(P1,InvT1,Info,InvMEM,R).
3236 invert_explicit_set(C,AVL) :- expand_custom_set(C,EC,invert_explicit_set), %% convert to AVL ?
3237 inv_and_norm(EC,AVL).
3238
3239 invert_member_predicate(cartesian_product(A,B),couple(TA,TB),
3240 cartesian_product(B,A),couple(TB,TA)).
3241 invert_member_predicate(identity(A),TA,identity(A),TA).
3242
3243
3244 :- block inv_and_norm(-,?).
3245 inv_and_norm(EC,AVL) :- inv(EC,R,Done), norm(Done,R,AVL).
3246
3247 :- block norm(-,?,?).
3248 norm(_,R,AVL) :- normalised_list_to_avl(R,AVL).
3249
3250 :- block inv(-,?,?).
3251 inv([],[],done).
3252 inv([(A,B)|T],[(B,A)-true|DT],Done) :- inv(T,DT,Done).
3253
3254
3255
3256 % checks whether a ground value is in the domain of an AVL relation
3257 check_in_domain_of_avlset_wf(X,AVL,_WF) :-
3258 convert_to_avl_inside_set(X,AX),!,
3259 ? (avl_fetch_pair(AX,AVL,_) -> true ; fail).
3260 check_in_domain_of_avlset_wf(X,AVL,WF) :-
3261 print('### could not convert arg for check_in_domain_of_avlset'),nl,
3262 print(X),nl,
3263 safe_flex_avl_member_default_wf((X,_),AVL,WF).
3264
3265 % checks whether a ground value is in the domain of an AVL relation and has only one solution
3266 check_unique_in_domain_of_avlset(X,AVL) :- convert_to_avl_inside_set(X,AX),!,
3267 ? avl_fetch_pair(AX,AVL,AY1),!,
3268 ? (avl_fetch_pair(AX,AVL,AY2), AY1 \= AY2 -> fail
3269 ; true).
3270
3271
3272 % utility to check if for a value there is at most one matching element in an AVL set
3273 % optimized for function application
3274 at_most_one_match_possible(Element,AVL,Matches) :- nonvar(Element),
3275 Element=(Index,_Rest), % Function Application; TO DO: does this cover all func. appl ?
3276 element_can_be_added_or_removed_to_avl(Index),
3277 convert_to_avl_inside_set(Index,AX), % is ground and normalised ?
3278 % TO DO: check AVL size ? Check other patterns ?
3279 findall((AX,Match),avl_tools:avl_fetch_pair(AX,AVL,Match),Matches),
3280 Matches \= [_,_|_].
3281
3282
3283
3284 apply_to_avl_set(A,X,Y,Span,WF) :-
3285 ground_value_check(X,GroundX),
3286 ? apply_to_avl_set_aux(A,X,Y,GroundX,Span,WF).
3287
3288 apply_to_avl_set_aux(A,X,Y,GroundX,Span,WF) :- nonvar(GroundX),!,
3289 ? apply_check_tuple(X,Y,A,Span,WF). % we could call apply_check_tuple_ground to avoid one ground test
3290 % We know that A is a function: we can deterministically apply if X is ground;
3291 % if Y is ground this is only the cases for injective functions
3292 apply_to_avl_set_aux(A,X,Y,GroundX,Span,WF) :-
3293 %(preference(data_validation_mode,true); % we now reduce priority of backpropagation below
3294 \+ preference(find_abort_values,false),
3295 % do not try inverse propagation onto argument X of function application A(X) = Y
3296 !,
3297 avl_approximate_size(A,3,ApproxSizeA),
3298 apply_check_tuple_delay(X,Y,A,ApproxSizeA,Span,WF,GroundX,_,_).
3299 apply_to_avl_set_aux(A,X,Y,GroundX,Span,WF) :-
3300 ground_value_check(Y,GroundY),
3301 avl_approximate_size(A,3,ApproxSizeA), % exact size for height <= 3; approximate size above
3302 (ApproxSizeA < 4 -> SPrio=ApproxSizeA ; SPrio is ApproxSizeA * 10), % magic number; ideally we want X or Y to be known beforehand; if none are known we may miss WD errors and may enumerate useless intermediate variables
3303 get_bounded_wait_flag(SPrio,apply_to_explicit(X,Y),WF,WF1), % this only makes sense if X is a domain variable to be enumerated
3304 %propagate_avl_element_information((X,Y),A,ApproxSizeA,WF), % could be done; but would prevent WD problems from being detected
3305 % this waitflag is used when neither X nor Y are ground;
3306 % quite often not much is gained by enumerating possible values; unless X or Y are constrained or trigger other computations
3307 % WSz is 10*ApproxSizeA, % magic value
3308 %(ApproxSizeA > 100 -> InversePrioSize = 4
3309 % ; avl_range_size_and_propagate_element_info(A,X,Y,RSize), InversePrioSize is ApproxSizeA // RSize), % we could probably compute the exact worst case with the same complexity
3310 % delay_get_wait_flag(GroundY,GroundX,WF1,InversePrioSize,apply_to_explicit_inverse(X,Y),WF,WF2),
3311 %(ApproxSizeA<4000 -> propagate_apply(X,Y,A,ApproxSizeA,WF,GroundX,GroundY) ; true),
3312 ? apply_check_tuple_delay(X,Y,A,ApproxSizeA,Span,WF,GroundX,WF1,GroundY),
3313 (preference(use_clpfd_solver,false) -> true
3314 % should we also check: preference(find_abort_values,true)?
3315 ; get_wait_flag0(WF,WF0),
3316 ? propagate_apply(X,Y,A,ApproxSizeA,WF,WF0,GroundX,WF1,GroundY)).
3317
3318 :- block propagate_apply(?,?,?,?,?,-,?,?,?).
3319 propagate_apply(X,Y,AVL,ApproxSizeA,WF,_,GroundX,WF1,GroundY) :-
3320 var(GroundX), var(WF1), var(GroundY),
3321 (preference(disprover_mode,true)
3322 -> XX=X % this will also instantiate X and prevent finding WD errors
3323 ; (ApproxSizeA<128 -> true
3324 ; preference(solver_strength,SS), ApproxSizeA < 128+SS*100), % up until 4000 it may make sense to constrain Y
3325 preference(data_validation_mode,false), % note: this can slow down ProB, e.g., test 1105; hence allow disabling it
3326 preference(find_abort_values,false), % TO DO: v = %x.(x:1..20|x+x) & {y,z|y<4 & z=v(y) & (y:{-1,2})} =res: no WD ERROR found
3327 propagate_value(X,XX) % only instantiate X, propagation only makes sense for propagate_avl_element_information_small, as otherwise only X will be bounded
3328 ),
3329 !,
3330 ? propagate_avl_element_information_direct((XX,Y),AVL,ApproxSizeA,WF).
3331 propagate_apply(_,_,_,_,_,_,_,_,_).
3332
3333 % only propagate in one direction to allow to find WD errors but also prevent pending co-routines/constraints
3334 :- block propagate_value(-,?).
3335 propagate_value(int(X),R) :- !,
3336 (
3337 %%integer(X) -> R=int(X) ; % relevant for SWI 8.5.10 and older where fd_set fails for integers, see test 788; should be fixed in next release
3338 propagate_fd_dom(X,RX), R=int(RX), propagate_atomic_value(X,RX)
3339 ).
3340 propagate_value(fd(X,T),R) :- !,
3341 (
3342 %%integer(X) -> R=fd(X,T) ; % for SWI 8.5.10 and older, see above
3343 propagate_fd_dom(X,RX), R=fd(RX,T), propagate_atomic_value(X,RX)
3344 ).
3345 propagate_value((X1,X2),R) :- !, R=(RX1,RX2), propagate_value(X1,RX1), propagate_value(X2,RX2).
3346 propagate_value(pred_true,R) :- !, if(R=pred_true,true,debug_println(9,function_arg_outside_domain(pred_true))).
3347 propagate_value(pred_false,R) :- !, if(R=pred_false,true,debug_println(9,function_arg_outside_domain(pred_false))).
3348 propagate_value(string(X),R) :- !, R=string(RX),propagate_atomic_value(X,RX).
3349 propagate_value(X,RX) :- equal_object(X,RX). % TO DO: get rid of this: this propagates and prevents finding WD errors
3350 :- block propagate_atomic_value(-,?).
3351 propagate_atomic_value(X,Y) :-
3352 if(X=Y,true,debug_println(9,function_arg_outside_domain(X))).
3353
3354 %propagate_fd_dom(X,RX) :- integer(X),!,RX=X. % relevant for SWI 8.5.10 and older where fd_set fails for integers
3355 propagate_fd_dom(X,RX) :- fd_set(X,Dom),in_set(RX,Dom).
3356
3357
3358 /*
3359 :- block propagate_apply(-,?,?,?,?,-,-).
3360 % call propagate as soon as we know something about the function argument and we do not propgagate completely using GroundX/Y anyway
3361 propagate_apply(X,Y,AVL,Size,WF,GroundX,GroundY) :- print(prop_apply(Size,GroundX,GroundY,X,Y)),nl,
3362 (nonvar(GroundX) -> true ; nonvar(GroundY) -> true
3363 ; propagate_avl_element_information((X,Y),AVL,Size,WF)).
3364
3365 % get the waitflag when first WF set and other two not
3366 :- block delay_get_wait_flag(-,-,-,?,?,?,?).
3367 delay_get_wait_flag(_,WF1,WF2, _,_,_,_) :- (nonvar(WF1);nonvar(WF2)),!. % DO NOTHING
3368 delay_get_wait_flag(_,_,_,Prio,Info,WF,WF2) :- get_wait_flag(Prio,Info,WF,WF2).
3369 */
3370
3371 :- block apply_check_tuple_delay(?,?,?, ?,?,?, -,-,-).
3372 apply_check_tuple_delay(X,Y,AVL,_ApproxSizeA,Span,WF,GroundX,WF1,_) :-
3373 (nonvar(GroundX);nonvar(WF1)),!,
3374 ? apply_check_tuple(X,Y,AVL,Span,WF).
3375 apply_check_tuple_delay(X,Y,AVL,ApproxSizeA,Span,WF,_GroundX,_WF1,_GroundY) :-
3376 % Y is ground; try to do an inverse function lookup
3377 ? inverse_apply_ok(Y,X,AVL,ApproxSizeA,Span),
3378 !,
3379 % print(inverse_apply(Y,X,ApproxSizeA,_GroundX)),nl,
3380 inverse_get_possible_values(X,Y,AVL,Res),
3381 Res=avl_set(InvAVL), % if empty set : we fail
3382 (preference(data_validation_mode,true),
3383 avl_approximate_size(InvAVL,10,ApproxSize),
3384 ApproxSize>1
3385 -> A2 is (ApproxSize*15*ApproxSize)//ApproxSizeA, % used to be A2 is ApproxSize*100,
3386 A22 is max(A2,ApproxSize),
3387 ? (get_inversion_penalty(Span)
3388 -> A23 is A22 * 100 %, add_message(f,'Inversion Penalty: ',Y:A22,Span)
3389 ; A23=A22),
3390 % give lower priority for backwards propagation, upto 15 times if no reduction from backwards propagation
3391 % but also take into account how much we reduce the size by inverting
3392 % relevant for, e.g., Machines_perf_0111/Thales_All/rule_OPS_SDS_3940.mch
3393 % or rule_OPS_SDS_6496 -> 15 instead of 150 improves performance
3394 get_bounded_wait_flag(A23,element_of_avl_inverse_apply_ok(X),WF,WF2),
3395 % does not call propagate_avl_element_information(X,InvAVL,ApproxSize,WF) or avl_to_table
3396 element_of_avl_set_wf3(X,InvAVL,ApproxSize,WF2,WF) % TODO: pass GroundX
3397 %apply_check_tuple_delay(X,Y,AVL,ApproxSizeA,Span,WF,GroundX,WF1,_) % now wait on WF1 or GroundX
3398 ? ; element_of_avl_set_wf(InvAVL,X,WF)
3399 ).
3400 apply_check_tuple_delay(X,Y,AVL,ApproxSizeA,Span,WF,GroundX,WF1,_GroundY) :-
3401 apply_check_tuple_delay(X,Y,AVL,ApproxSizeA,Span,WF,GroundX,WF1,_). % now wait on WF1 or GroundX
3402
3403 % check if the function call was annotated as not suitable for backwards inverse function lookup propagation
3404 get_inversion_penalty(span_predicate(b(_Function,_,Info),_LS,_S)) :- !,
3405 ? get_inversion_penalty(Info).
3406 get_inversion_penalty(Info) :-
3407 ? member(prob_annotation('INVERSION_PENALTY'),Info).
3408
3409 inverse_get_possible_values(X,Y,AVL,Res) :-
3410 get_template(X,XX,_),
3411 copy_term(XX,XX_Copy), % avoid that findall instantiates X
3412 % TODO: copy_value_term similar to ground_value to avoid traversing avl_sets; but usually X is not a set
3413 findall(XX_Copy, safe_avl_member_default((XX_Copy,Y),AVL), PossibleValues),
3414 PossibleValues \= [], % fail straightaway
3415 sort(PossibleValues,SPV),
3416 % length(SPV,Len),print(inverse_image(Y,Len)),nl, print_term_summary(apply_check_tuple_delay(X,Y,AVL)),nl,
3417 convert_to_avl(SPV,Res).
3418
3419 % is it ok to compute inverse ? only makes sense if AVL tree not too big and quite functional
3420 inverse_apply_ok(pred_true,_,_AVL,ApproxSizeA,_) :- !, % only two values possible, probably half of AVL will be returned
3421 ApproxSizeA < 1023. % corresponds to avl_height < 10
3422 inverse_apply_ok(pred_false,_,_AVL,ApproxSizeA,_) :- !,ApproxSizeA < 1023.
3423 % TO DO: other small types, such as fd(_,_)
3424 inverse_apply_ok(_,_,_AVL,ApproxSizeA,_) :- ApproxSizeA < 255,!.
3425 inverse_apply_ok(_,X,_AVL,ApproxSizeA,Span) :- ApproxSizeA < 65535, % corresponds Height < 16
3426 (preference(data_validation_mode,true) ->
3427 (preference(solver_strength,SS), ApproxSizeA < 16383+SS -> true
3428 ; perfmessage(inverse,'Function call not inverted (increase SOLVER_STRENGTH to enable this), approximate function size: ',ApproxSizeA,Span),
3429 fail
3430 )
3431 ; true),
3432 ? quick_non_ground_check(X).
3433 %inverse_apply_ok(_,_,_,_).
3434
3435 % sometimes the ground_value_check co-routine hasn't grounded GroundX yet ! so do a quick check
3436 quick_non_ground_check(X) :- var(X),!.
3437 quick_non_ground_check([]) :- !,fail.
3438 quick_non_ground_check(avl_set(_)) :- !,fail.
3439 quick_non_ground_check(pred_true) :- !,fail.
3440 quick_non_ground_check(pred_false) :- !,fail.
3441 quick_non_ground_check(int(X)) :- !,var(X).
3442 quick_non_ground_check(string(X)) :- !,var(X).
3443 quick_non_ground_check(fd(X,T)) :- !,(var(X) ; var(T)).
3444 quick_non_ground_check((A,B)) :- !, (quick_non_ground_check(A) -> true ; quick_non_ground_check(B)).
3445 quick_non_ground_check(_). % assume it is non ground
3446
3447
3448
3449 % apply_check_tuple is allowed to enumerate: either X is ground or Y is ground
3450 apply_check_tuple(X,Y,A,Span,WF) :-
3451 ground_value(X),
3452 convert_to_avl_inside_set_wf(X,AX,WF),!, % we can do optimized lookup + checking in one go
3453 % (but avl_apply only does partial check)
3454 avl_apply(AX,A,XY,Span,WF),
3455 ? kernel_objects:equal_object_wf(XY,Y,apply_check_tuple,WF).
3456 :- if(environ(no_wd_checking, true)).
3457 apply_check_tuple(X,Y,A,_Span,WF) :- safe_avl_member_default_wf((X,Y),A,WF).
3458 :- else.
3459 apply_check_tuple(X,Y,A,_Span,WF) :- preferences:preference(find_abort_values,false), !,
3460 ? safe_flex_avl_member_default_wf((X,Y),A,WF). % will do a ground check again for X in flexible_decompose_index
3461 apply_check_tuple(X,Y,A,Span,WF) :- !,
3462 if(safe_flex_avl_member_default_wf((X,XY),A,WF), % does not detect abort errors if X unbound
3463 kernel_objects:equal_object_wf(XY,Y,apply_check_tuple_avl,WF),
3464 add_wd_error_span('function applied outside of domain (#4): ','@fun'(X,avl_set(A)),Span,WF)).
3465 :- endif.
3466
3467
3468 % ------------------------------------------
3469
3470
3471 :- use_module(b_global_sets,[b_type2_set/2]).
3472 :- use_module(bsyntaxtree,[rename_bt/3]).
3473 union_of_explicit_set(global_set(GS),_,R) :- is_maximal_global_set(GS), !,
3474 R= global_set(GS). /* global_set is already maximal */
3475 union_of_explicit_set(freetype(GS),_,R) :- !, R= freetype(GS). /* freetype is already maximal */
3476 union_of_explicit_set(closure(P,T,B),_,R) :- is_definitely_maximal_closure(P,T,B), !,
3477 R= closure(P,T,B). /* global_set is already maximal */
3478 union_of_explicit_set(_,S2,R) :- is_definitely_maximal_set(S2),!, % will also look at AVL set
3479 R=S2.
3480 union_of_explicit_set(S1,S2,R) :- nonvar(S2), S2 = [], !, R=S1.
3481 union_of_explicit_set(S1,S2,_) :- (var(S1);var(S2)),!,fail. % then we cannot compute it here
3482 union_of_explicit_set(S2,S1,R) :-
3483 is_not_member_value_closure(S1,TYPE,MS1), nonvar(MS1), is_efficient_custom_set(MS1),
3484 % also works if S2 is complement closure
3485 difference_of_explicit_set(MS1,S2,Diff),!,
3486 construct_complement_closure_if_necessary(Diff,TYPE,R).
3487 union_of_explicit_set(avl_set(A1),S2,R) :- !, union_of_avl_set(S2,A1,R).
3488 union_of_explicit_set(S1,S2,R) :-
3489 ? is_not_member_value_closure(S1,TYPE,MS1), nonvar(MS1), is_efficient_custom_set(MS1),
3490 difference_of_explicit_set(MS1,S2,Diff),!,
3491 construct_complement_closure_if_necessary(Diff,TYPE,R).
3492 union_of_explicit_set(S1,avl_set(A2),R) :- !, union_of_avl_set(S1,A2,R).
3493 union_of_explicit_set(I1,I2,R) :- is_interval_closure_or_integerset(I1,From1,To1), ground(From1), ground(To1),
3494 is_interval_closure_or_integerset(I2,From2,To2), ground(From2), ground(To2),
3495 !,
3496 (union_of_interval(From1,To1,From2,To2,FromRes,ToRes)
3497 -> construct_interval_closure(FromRes,ToRes,R)
3498 ; small_enough_for_expansion(From1,To1),small_enough_for_expansion(From2,To2) ->
3499 % do not attempt union_of_closure below
3500 expand_interval_closure_to_avl(From1,To1,R1), R1=avl_set(A1), % empty interval already dealt with above !?
3501 expand_interval_closure_to_avl(From2,To2,R2), R2=avl_set(A2), % Note: unification after call as expand_interval calls equal_object (which gets confused by partially instantiated avl_set(_))
3502 union_of_avl(A1,A2,ARes),R=avl_set(ARes) /* AVL not normalised */
3503 ; transform_global_sets_into_closure(I1,closure(Par,T,Body)),
3504 union_of_closure(I2,Par,T,Body,R)
3505 ).
3506 union_of_explicit_set(closure(P,T,B),C2,Res) :-
3507 union_of_closure(C2,P,T,B,Res).
3508
3509 small_enough_for_expansion(From1,To1) :- number(To1), number(From1), To1-From1<250.
3510
3511 :- use_module(bsyntaxtree,[extract_info/2, extract_info_wo_used_ids/2, extract_info/3, rename_bt/3, replace_id_by_expr/4]).
3512
3513 union_of_closure(global_set(X),P,T,B,Res) :- !, transform_global_sets_into_closure(global_set(X),C),
3514 union_of_closure(C,P,T,B,Res).
3515 union_of_closure(closure(P2,T2,B2),P,T,B,Res) :- !,
3516 % T2 should be equal to T, module seq(_) <-> set(couple(integer,_))
3517 unify_closure_predicates(P,T,B, P2,T2,B2 , NewP,NewT, NewB1,NewB2),
3518 debug:debug_println(9,union_of_two_closures(P,P2,NewP,NewT)),
3519 extract_info(B,B2,NewInfo),
3520 construct_disjunct(NewB1,NewB2,Disj),
3521 Res = closure(NewP,NewT,b(Disj,pred,NewInfo)).
3522
3523 % rename predicates of two closures so that they work on common closure parameter ids
3524 % and can then be either joined by conjunction or disjunction
3525 unify_closure_predicates(P,T,B, P2,T2,B2 , NewP,NewT, NewB1,NewB2) :-
3526 length(P,Len1), length(P2,Len2),
3527 (Len1=Len2
3528 -> generate_renaming_list(P,P2,RL),
3529 rename_bt(B2,RL,NewB2),
3530 NewP=P, NewT=T, NewB1 = B
3531 ; Len1 < Len2 -> unify_clos_lt(P,T,B, P2,T2,B2 , NewP,NewT, NewB1,NewB2)
3532 ; unify_clos_lt(P2,T2,B2, P,T,B , NewP,NewT, NewB2,NewB1) % inverted the predicate
3533 ).
3534
3535 % TO DO: generalize: currently only works for single identifier on left
3536 % but works for id(NATURAL) \/ %x.(x<0|-x) or abs = id(NATURAL) \/ %x.(x<0|-x) & abs(2)=a2 & abs(-2)=am2
3537 unify_clos_lt([ID1],[couple(_,_)],B, P2,T2,B2 , NewP,NewT, NewB1,NewB2) :-
3538 rename_lambda_result_id(P2,B2,P3,B3),
3539 create_couple_term(P3,T2,Pair),
3540 replace_id_by_expr(B,ID1,Pair,NewB1),
3541 NewP=P3, NewT=T2, NewB2=B3.
3542
3543 % _lambda_result_ id is not enumerated, hence we have to avoid inserting such ids into NewB1 as part of the pPair
3544 rename_lambda_result_id(['_lambda_result_',ID2],B2,[FRESHID,ID2],B3) :- !,get_unique_id('_RANGE_',FRESHID),
3545 rename_bt(B2,[rename('_lambda_result_',FRESHID)],B3).
3546 rename_lambda_result_id([ID1,'_lambda_result_'],B2,[ID1,FRESHID],B3) :- !,get_unique_id('_RANGE_',FRESHID),
3547 rename_bt(B2,[rename('_lambda_result_',FRESHID)],B3).
3548 rename_lambda_result_id(P2,B2,P2,B2).
3549
3550 % translate a list of atomic ids and a list of types into a couple-term
3551 create_couple_term([ID1],[T1],Res) :- !,
3552 create_texpr(identifier(ID1),T1,[],Res).
3553 create_couple_term([ID1,ID2],[T1,T2],Res) :-
3554 bsyntaxtree:create_couple(b(identifier(ID1),T1,[]),b(identifier(ID2),T2,[]),Res).
3555 % TODO: extend for more than two args
3556
3557 generate_renaming_list([],[],[]).
3558 generate_renaming_list([ID|T],[ID2|T2],RL) :-
3559 (ID==ID2 -> generate_renaming_list(T,T2,RL)
3560 ; RL = [rename(ID2,ID)|RL2],
3561 generate_renaming_list(T,T2,RL2)).
3562
3563
3564 % a more clever way of constructing a disjunct; factor out common prefixes
3565 % (A & B1) or (A1 & B2) <=> A1 & (B1 or B2)
3566 % TO DO: we should try and get the leftmost basic conjunct !
3567 /* construct_disjunct(b(conjunct(A1,A2),pred,IA), b(conjunct(B1,B2),pred,_IB), Res) :-
3568
3569 print('TRY DISJUNCT FACTOR: '), translate:print_bexpr(A1),nl,
3570 translate:print_bexpr(B1),nl,
3571 same_texpr_body(A1,B1),!,
3572 print('DISJUNCT FACTOR: '), translate:print_bexpr(A1),nl,
3573 Res = conjunct(A1,b(Disj,pred,IA)),
3574 construct_disjunct(A2,B2,Disj).
3575 */
3576 construct_disjunct(A,B,disjunct(A,B)).
3577
3578 :- use_module(btypechecker,[couplise_list/2]).
3579 % TO DO: quick_check if AVL A1 is maximal ?
3580 union_of_avl_set(avl_set(A2),A1,R) :- !, union_of_avl(A1,A2,ARes), R=avl_set(ARes). /* AVL not normalised */
3581 union_of_avl_set(I2,A1,R) :- is_interval_closure_or_integerset(I2,From2,To2), !,
3582 ground(From2), ground(To2), % we can only compute it if bounds known
3583 (avl_min(A1,int(Min)), low_border(From2,Min,FromRes), avl_max(A1,int(Max)), up_border(To2,Max,ToRes)
3584 -> /* AVL contained (almost) in Interval */
3585 construct_interval_closure(FromRes,ToRes,R)
3586 ; \+ small_interval(From2,To2) ->
3587 transform_global_sets_into_closure(I2,closure(Par,T,Body)), % we may have something like NATURAL1,...
3588 union_of_avl_set_with_closure(Par,T,Body,A1,R)
3589 ; expand_and_convert_to_avl_set(I2,A2,union_of_avl_set,'? \\/ ARG'), % can generate ARel=empty; will fail if not possible to convert
3590 union_of_avl(A1,A2,ARes), R=avl_set(ARes)
3591 ).
3592 union_of_avl_set(closure(Par,T,Body),A1,Res) :- is_infinite_or_symbolic_closure(Par,T,Body),!,
3593 % TO DO: what if we are in SYMBOLIC mode and the type of T is infinite; maybe we should also keep the union symbolic ?? (cf Ticket/Georghe1)
3594 union_of_avl_set_with_closure(Par,T,Body,A1,Res).
3595 union_of_avl_set(S2,A1,Res) :-
3596 S2 \= freetype(_),
3597 ground_value(S2), % could be a closure
3598 !,
3599 (try_expand_and_convert_to_avl_set(S2,A2,union)
3600 -> union_of_avl(A1,A2,ARes), Res=avl_set(ARes) /* AVL not normalised */
3601 ; S2=closure(Par,T,Body),
3602 union_of_avl_set_with_closure(Par,T,Body,A1,Res)).
3603
3604 try_expand_and_convert_to_avl_set(S2,A2,Source) :-
3605 % false: do not add enumeration warning events as errors
3606 catch_enumeration_warning_exceptions(expand_and_convert_to_avl_set(S2,A2,Source,''),fail,false,ignore(Source)).
3607
3608 % try expanding to list, but catch enumeration warnings and fail if they do occur
3609 % used by override(...)
3610 %try_expand_custom_set_to_list(CS,_,_,_) :- nonvar(CS),CS=global_set(GS),is_infinite_global_set(GS,_),
3611 % !,
3612 % fail.
3613 try_expand_custom_set_to_list(CS,_,_,_) :- nonvar(CS),
3614 (is_symbolic_closure(CS) ; is_infinite_explicit_set(CS)),
3615 !, % we could also check is_symbolic_closure
3616 fail.
3617 try_expand_custom_set_to_list(CS,List,Done,Source) :-
3618 % false: do not add enumeration warning events as errors
3619 catch_enumeration_warning_exceptions(expand_custom_set_to_list(CS,List,Done,Source),fail,false,ignore(Source)).
3620
3621
3622 small_interval(From,To) :- number(From), number(To), To-From < 10000.
3623
3624 union_of_avl_set_with_closure(Par,T,Body,A1,Res) :-
3625 Body = b(_,BodyT,_),
3626 setup_typed_ids(Par,T,TypedPar),
3627 btypechecker:couplise_list(TypedPar,TypedCPar),
3628 generate_couple_types(TypedCPar,ParExpr,ParType),
3629 debug:debug_println(9,union_of_avl_and_infinite_closure(Par,T,BodyT)),
3630 BodyAvl = b(member(ParExpr,b(value(avl_set(A1)),set(ParType),[])),pred,[]),
3631 extract_info_wo_used_ids(Body,NewInfo),
3632 Res = closure(Par,T,b(disjunct(BodyAvl,Body),pred,NewInfo)).
3633 % mark_closure_as_symbolic(closure(Par,T,b(disjunct(BodyAvl,Body),pred,NewInfo)),Res).
3634
3635 low_border(Low,AVLMin,R) :- geq_inf(AVLMin,Low),!,R=Low.
3636 low_border(Low,AVLMin,R) :- number(Low),AVLMin is Low-1,R=AVLMin. % extend lower border by one
3637 up_border(Up,AVLMax,R) :- geq_inf(Up,AVLMax),!,R=Up.
3638 up_border(Up,AVLMax,R) :- number(Up),AVLMax is Up+1,R=AVLMax. % extend upper border by one
3639
3640
3641 setup_typed_ids([],[],[]).
3642 setup_typed_ids([ID|TI],[Type|TT],[b(identifier(ID),Type,[])|BT]) :- setup_typed_ids(TI,TT,BT).
3643
3644 generate_couple_types(couple(A,B),b(couple(TA,TB),Type,[]),Type) :- !, Type = couple(TTA,TTB),
3645 generate_couple_types(A,TA,TTA),
3646 generate_couple_types(B,TB,TTB).
3647 generate_couple_types(b(X,T,I),b(X,T,I),T).
3648
3649
3650 % try to see if two intervals can be unioned into a new interval
3651 union_of_interval(F1,T1,F2,T2,FR,TR) :-
3652 geq_inf(F2,F1), geq_inf(T1,T2),!,FR=F1,TR=T1. % interval [F2,T2] contained in [F1,T1]
3653 union_of_interval(F2,T2,F1,T1,FR,TR) :- geq_inf(F2,F1), geq_inf(T1,T2),!,FR=F1,TR=T1. % see above
3654 union_of_interval(F1,T1,F2,T2,FR,TR) :- number(F2),
3655 geq_inf(F2,F1), number(T1),T11 is T1+1,geq_inf(T11,F2), geq_inf(T2,F2),!,FR=F1,TR=T2. % intervals can be joined
3656 union_of_interval(F2,T2,F1,T1,FR,TR) :- number(F2),
3657 geq_inf(F2,F1), number(T1),T11 is T1+1,geq_inf(T11,F2), geq_inf(T2,F2),!,FR=F1,TR=T2. % see above
3658
3659 :- use_module(library(ordsets),[ord_union/3]).
3660 union_of_avl(A1,A2,ARes) :-
3661 avl_height(A2,Sz2),
3662 (Sz2 < 2 % we have something like Set := Set \/ {x}; no need to compute height of A1
3663 -> union_of_avl1(A1,99999,A2,Sz2,ARes)
3664 ; avl_height(A1,Sz1), % TODO: we could call avl_height_less_than or avl_height_compare
3665 (Sz1<Sz2 -> union_of_avl1(A2,Sz2,A1,Sz1,ARes) ; union_of_avl1(A1,Sz1,A2,Sz2,ARes))
3666 ).
3667 union_of_avl1(A1,Sz1,A2,Sz2,ARes) :- Sz2>2, Sz1 =< Sz2+3, % difference not too big; Sz2 at least a certain size
3668 !,
3669 avl_to_list(A2,List2), % get all members
3670 avl_to_list(A1,List1),
3671 ord_union(List1,List2,L12),
3672 ord_list_to_avl(L12,ARes).
3673 union_of_avl1(A1,_Sz1,A2,_Sz2,ARes) :- % this version is better when A2 is small compared to A1
3674 avl_domain(A2,List2), % get all members
3675 add_to_avl(List2,A1,ARes).
3676
3677 :- use_module(library(lists),[reverse/2]).
3678 % a custom version for union(A) where A is AVL set; avoid converting/expanding accumulators and computing avl_height
3679 % runtime of e.g., UNION(x).(x:1000..1514|0..x) 0.65 sec or UNION(n).(n:10000..10010|UNION(x).(x:n..n+1000|n..x)) 4.8 sec is considerably smaller with this version
3680 union_generalized_explicit_set(avl_set(SetsOfSets),Res,WF) :-
3681 expand_custom_set_to_list_wf(avl_set(SetsOfSets),ESetsOfSets,_,union_generalized_wf,WF),
3682 % length(ESetsOfSets,Len),print(union_gen(Len)),nl,
3683 (ESetsOfSets=[OneSet]
3684 -> Res=OneSet % avoid converting to list and back to Avl
3685 ; reverse(ESetsOfSets,RESetsOfSets), % be sure to insert larger values first, so that ord_union has less work to do below; useful if you have many small singleton sets, for example union(ran(%x.(x : 1 .. 10000|{x * x}))) 2.37 secs --> 0.15 secs
3686 % note: dom({r,x|x:1..50000 & r:{x*x}}) is still 3 times faster
3687 union_of_avls(RESetsOfSets,[],Res)).
3688
3689 % take the union of a list of avl_sets
3690 union_of_avls([],Acc,Res) :- ord_list_to_avl(Acc,ARes), construct_avl_set(ARes,Res).
3691 union_of_avls([H|T],Acc,Res) :-
3692 union_of_avl_with_acc(H,Acc,NewAcc),
3693 union_of_avls(T,NewAcc,Res).
3694
3695 union_of_avl_with_acc(avl_set(H),Acc,NewAcc) :- !,
3696 avl_to_list(H,HList),
3697 ord_union(Acc,HList,NewAcc).
3698 union_of_avl_with_acc([],Acc,Res) :- !,Res=Acc.
3699 % other custom sets should normally not appear, we obtain the list as elements stored in an avl_set
3700 union_of_avl_with_acc(G,_,_) :- add_internal_error('Uncovered element: ',union_of_avl_with_acc(G,_,_)),fail.
3701
3702
3703
3704 % TO DO: there are no rules for is_not_member_value_closure for intersection below
3705 intersection_of_explicit_set_wf(global_set(GS),S2,R,_WF) :- is_maximal_global_set(GS), !, R=S2.
3706 intersection_of_explicit_set_wf(freetype(_GS),S2,R,_WF) :- !, R=S2.
3707 intersection_of_explicit_set_wf(_,S2,_,_WF) :- var(S2),!,fail. % code below may instantiate S2
3708 intersection_of_explicit_set_wf(S1,S2,R,_WF) :- is_definitely_maximal_set(S2), !, R=S1.
3709 intersection_of_explicit_set_wf(_S1,[],R,_WF) :-!, R=[].
3710 intersection_of_explicit_set_wf(avl_set(A1),I2,R,_WF) :-
3711 is_interval_closure_or_integerset(I2,From1,To1),
3712 !,
3713 intersect_avl_interval(A1,From1,To1,R).
3714 intersection_of_explicit_set_wf(I1,I2,R,_WF) :-
3715 intersection_with_interval_closure(I1,I2,R),!.
3716 intersection_of_explicit_set_wf(S1,S2,R,_WF) :-
3717 get_avl_sets(S1,S2,A1,A2),
3718 !, % if too large: better to apply normal intersection code ?
3719 % if one of the args is an interval this is already caught in kernel_objects calling intersection_with_interval_closure; see SetIntersectionBig.mch
3720 avl_domain(A1,ES), % A1 has the smaller height; important for e.g. SetIntersectionBig2.mch
3721 inter2(ES,A2,IRes),
3722 ord_list_to_avlset(IRes,R,intersection). % we have generated the elements in the right order already
3723 intersection_of_explicit_set_wf(Set1,Set2,R,WF) :-
3724 transform_global_sets_into_closure(Set1,closure(P1,T1,B1)),
3725 transform_global_sets_into_closure(Set2,closure(P2,T2,B2)),
3726 % gets called, e.g., for {x|x /: NATURAL1} /\ NATURAL1
3727 unify_closure_predicates(P1,T1,B1, P2,T2,B2 , NewP,NewT, NewB1,NewB2),
3728 debug:debug_println(9,intersection_of_two_closures(P1,P2,NewP,NewT)),
3729 conjunct_predicates([NewB1,NewB2],BI),
3730 % create a conjunction: can be much more efficient than seperately expanding;
3731 % also works well if one of the closures is infinite
3732 C = closure(NewP,NewT,BI),
3733 expand_custom_set_wf(C,R,intersection_of_explicit_set_wf,WF). % we could keep it symbolic; maybe use SYMBOLIC pref
3734 % to do: also use above for closure and AVL set with member(P,value(avl_set(A)))
3735 % we could also apply the same principle to difference_of_explicit_set
3736 % currently we enable intersection to be treated symbolically (not_symbolic_binary(intersection) commented out)
3737 % This means the above clause for intersection_of_explicit_set_wf is less useful
3738 % a special case; just for interval closures
3739 intersection_with_interval_closure(I1,I2,R) :-
3740 is_interval_closure_or_integerset(I1,From1,To1), nonvar(I2),
3741 intersection_with_interval_closure_aux(I2,From1,To1,R).
3742 intersection_with_interval_closure(avl_set(A1),I2,R) :-
3743 is_interval_closure_or_integerset(I2,From1,To1),
3744 !,
3745 intersect_avl_interval(A1,From1,To1,R).
3746
3747 % try and get AVL sets from two args; first AVL set is smaller one according to height
3748 get_avl_sets(avl_set(A1),S2,AA1,AA2) :- nonvar(S2), S2=avl_set(A2),
3749 ? (avl_height_compare(A1,A2,R), R=lt
3750 -> (AA1,AA2)=(A1,A2)
3751 ; (AA1,AA2)=(A2,A1)).
3752 %get_avl_sets(S1,S2,AA1,AA2) :- nonvar(S2),S2=avl_set(A2), get_avl_set_arg(S1,A1),
3753 % (avl_height_compare(A1,A2,R),R=gt -> (AA1,AA2)=(A2,A1) ; (AA1,AA2)=(A1,A2)).
3754
3755
3756 %intersection_with_interval_closure_aux(avl_set(A),...
3757 intersection_with_interval_closure_aux(I2,From1,To1,R) :-
3758 is_interval_closure_or_integerset(I2,From2,To2),!,
3759 intersect_intervals_with_inf(From1,To1,From2,To2,FromRes,ToRes),
3760 construct_interval_closure(FromRes,ToRes,R).
3761 % (is_interval_closure_or_integerset(R,F,T) -> print(ok(F,T)),nl ; print(ko),nl).
3762 intersection_with_interval_closure_aux(avl_set(A2),From1,To1,R) :-
3763 intersect_avl_interval(A2,From1,To1,R).
3764
3765 % intersect avl with interval
3766 % TO DO: expand interval if small (or small intersection with AVL) and use avl intersection
3767 intersect_avl_interval(_,From2,To2,_) :- (var(From2) ; var(To2)),!,fail.
3768 intersect_avl_interval(A1,From2,To2,R) :- avl_min(A1,int(Min)),
3769 geq_inf(Min,From2),
3770 geq_inf(To2,Min), avl_max(A1,int(Max)),
3771 geq_inf(To2,Max),
3772 % AVL fully contained in interval; no need to expand to list and back again
3773 !,
3774 construct_avl_set(A1,R).
3775 intersect_avl_interval(A1,From2,To2,R) :-
3776 avl_domain(A1,ES),
3777 inter_interval(ES,From2,To2,IRes),
3778 ord_list_to_avlset(IRes,R,intersect_avl_interval).
3779
3780 inter_interval([],_,_, []).
3781 inter_interval([IH|T],From2,To2, Res) :- IH = int(H),
3782 (geq_inf(To2,H) ->
3783 (geq_inf(H,From2) -> Res = [IH-true|Res2] ; Res = Res2),
3784 inter_interval(T,From2,To2,Res2)
3785 ; Res = [] % we have exceeded the upper limit of the interval
3786 ).
3787
3788 intersect_intervals_with_inf(From1,To1,From2,To2,FromRes,ToRes) :-
3789 minimum_with_inf(To1,To2,ToRes),
3790 maximum_with_inf(From1,From2,FromRes).
3791
3792 % check if two intervals are disjoint
3793 disjoint_intervals_with_inf(From1,To1,From2,To2) :-
3794 intersect_intervals_with_inf(From1,To1,From2,To2,Low,Up),
3795 number(Up), number(Low), Low > Up.
3796
3797 inter2([],_, []).
3798 inter2([H|T],A1, Res) :-
3799 (avl_fetch(H,A1) -> Res = [H-true|Res2] ; Res = Res2), inter2(T,A1,Res2).
3800
3801 ord_list_to_avlset(OL,R) :- ord_list_to_avlset(OL,R,unknown).
3802 ord_list_to_avlset(OrdList,Res,Origin) :-
3803 % assumes that we have generated the elements in the right order already
3804 (OrdList=[] -> Res=[]
3805 ; check_sorted(OrdList,Origin),
3806 ord_list_to_avl(OrdList,ARes), Res=avl_set(ARes)).
3807
3808 % a version which accepts a list of values without -true
3809 % values have to be ground and already converted for use in avl_set
3810 sorted_ground_normalised_list_to_avlset(List,Res,PP) :-
3811 add_true_to_list(List,LT),
3812 ord_list_to_avlset_direct(LT,Res,PP).
3813
3814 add_true_to_list([],[]).
3815 add_true_to_list([H|T],[H-true|TT]) :- add_true_to_list(T,TT).
3816
3817 % the same, but without checking sorted (only use if you are really sure the list is sorted)
3818 ord_list_to_avlset_direct([],[],_).
3819 ord_list_to_avlset_direct([H|T],Res,_):-
3820 (T==[] -> H=Key-Val, Res = avl_set(node(Key,Val,0,empty,empty)) % slightly faster than calling ord_list_to_avl
3821 ; ord_list_to_avl([H|T],ARes), Res = avl_set(ARes)).
3822
3823 check_sorted([],_) :- !.
3824 check_sorted([H-_|T],Origin) :- !, check_sorted2(T,H,Origin).
3825 check_sorted(X,Origin) :- add_error_and_fail(ord_list_to_avlset,'Not a list of -/2 pairs: ',Origin:X).
3826
3827 check_sorted2([],_,_) :- !.
3828 check_sorted2([H-_|T],PH,Origin) :- PH @< H,!, check_sorted2(T,H,Origin).
3829 check_sorted2(X,Prev,Origin) :-
3830 add_error_and_fail(ord_list_to_avlset,'Not a sorted list of -/2 pairs: ',Origin:(X,Prev)).
3831
3832 % ------------------
3833
3834 :- use_module(kernel_freetypes,[is_maximal_freetype/1]).
3835 is_definitely_maximal_set(S) :- nonvar(S),
3836 is_definitely_maximal_set2(S).
3837 is_definitely_maximal_set2(freetype(ID)) :- is_maximal_freetype(ID).
3838 is_definitely_maximal_set2(global_set(GS)) :- is_maximal_global_set(GS).
3839 is_definitely_maximal_set2(closure(P,T,B)) :- is_definitely_maximal_closure(P,T,B).
3840 is_definitely_maximal_set2(avl_set(S)) :- quick_definitely_maximal_set_avl(S).
3841 is_definitely_maximal_set2([H|T]) :- nonvar(H), is_definitely_maximal_list(H,T). %, nl,print(maximal(H,T)),nl,nl.
3842 %H==pred_true, T == [pred_false]. % for some reason BOOL is sometimes presented this way
3843 is_definitely_maximal_set2(empty) :- % detect unwrapped AVL sets
3844 add_internal_error('Not a set: ',is_definitely_maximal_set2(empty)),fail.
3845 is_definitely_maximal_set2(node(A,B,C,D,E)) :-
3846 add_internal_error('Not a set: ',is_definitely_maximal_set2(node(A,B,C,D,E))),fail.
3847
3848 is_definitely_maximal_list(pred_true,T) :- nonvar(T), T=[_|_]. %
3849 is_definitely_maximal_list(pred_false,T) :- nonvar(T), T=[_|_].%
3850 is_definitely_maximal_list(fd(_,Type),T) :- nonvar(T),b_global_set_cardinality(Type,Card),
3851 % check if we have the same number of elements as the type: then the set must me maximal
3852 length_at_least(T,Card).
3853 % We could try and and also treat pairs
3854
3855 length_at_least(1,_) :- !. % we have already removed 1 element; T can be nil
3856 length_at_least(N,T) :- nonvar(T), T=[_|TT], N1 is N-1, length_at_least(N1,TT).
3857
3858 is_definitely_maximal_closure(_,_,b(truth,_Pred,_)) :- !.
3859 is_definitely_maximal_closure(P,T,B) :- is_cartesian_product_closure_aux(P,T,B,S1,S2),!,
3860 is_definitely_maximal_set(S1),is_definitely_maximal_set(S2).
3861 is_definitely_maximal_closure(P,T,B) :-
3862 is_full_powerset_or_relations_or_struct_closure(closure(P,T,B),Sets),
3863 l_is_definitely_maximal_set(Sets).
3864
3865 l_is_definitely_maximal_set([]).
3866 l_is_definitely_maximal_set([H|T]) :- is_definitely_maximal_set(H), l_is_definitely_maximal_set(T).
3867
3868 % check if we have an AVL tree covering all elements of the underlying type
3869 quick_definitely_maximal_set_avl(AVL) :-
3870 AVL=node(El,_True,_,_Left,_Right),
3871 quick_definitely_maximal_set_avl_aux(El,AVL).
3872 quick_definitely_maximal_set_avl_aux(El,AVL) :-
3873 try_get_finite_max_card_from_ground_value(El,Card),
3874 % this could fail if El contains empty sets !
3875 % also: it must fail if Card is infinite (no avl_set can be maximal)
3876 (Card < 1000 -> true
3877 ; preferences:preference(solver_strength,SS), Card < 1000+SS*100
3878 ), % otherwise too expensive a check avl_size
3879 quick_avl_approximate_size(AVL,MaxSize),
3880 MaxSize >= Card, % otherwise no sense in computing avl_size, which is linear in size of AVL
3881 avl_size(AVL,Size),
3882 %(MaxSize>=Size -> print(ok(Size,all(Card))),nl ; print('**** ERROR: '), print(Size),nl,trace),
3883 Size=Card.
3884
3885 % check if we have an AVL function with domain covering all elements of the underlying type
3886 quick_definitely_maximal_total_function_avl(AVL) :-
3887 AVL=node(El,_True,_,_Left,_Right),
3888 El=(DomEl,_),
3889 quick_definitely_maximal_set_avl_aux(DomEl,AVL), % the size is exactly the size of the domain
3890 is_avl_partial_function(AVL).
3891
3892 % ----------------------
3893 % set_subtraction /
3894 difference_of_explicit_set(S1,S2,R) :-
3895 difference_of_explicit_set_wf(S1,S2,R,no_wf_available).
3896 % this is called with first argument nonvar (for set_subtraction operator):
3897 difference_of_explicit_set_wf(_S1,S2,R,_) :-
3898 is_definitely_maximal_set(S2), !, R=[].
3899 difference_of_explicit_set_wf(S1,S2,R,_) :- nonvar(S2), S2=[],!, R=S1.
3900 difference_of_explicit_set_wf(S1,S2,R,_) :-
3901 %nonvar(S1),
3902 ? is_very_large_maximal_global_set(S1,Type), !, % TO DO: also for freetype ? cartesian products,...
3903 /* we have a complement-set */
3904 complement_set(S2,Type,R).
3905 difference_of_explicit_set_wf(S1,S2,Result,_) :-
3906 is_not_member_value_closure(S1,Type,MS1),
3907 nonvar(MS1), is_custom_explicit_set(MS1,difference_of_explicit_set_wf),!,
3908 union_complement_set(MS1,S2,Type,Result).
3909 difference_of_explicit_set_wf(_,S2,_,_) :- var(S2), !, fail. % then we cannot do anything below
3910 difference_of_explicit_set_wf(S1,S2,R,WF) :-
3911 is_not_member_value_closure(S2,_Type,MS2), nonvar(MS2),
3912 intersection_of_explicit_set_wf(MS2,S1,R,WF),!.
3913 difference_of_explicit_set_wf(I1,I2,R,_) :-
3914 is_interval_closure_or_integerset(I1,From1,To1),
3915 is_interval_closure_or_integerset(I2,From2,To2),
3916 difference_interval(From1,To1,From2,To2,FromRes,ToRes),
3917 % TO DO: also treat case when difference yields two disjoint intervals
3918 % i.e., do not fail and forget info about interval bounds in case we cannot compute difference as a an interval, e.g., INT - {0}
3919 !,
3920 construct_interval_closure(FromRes,ToRes,R).
3921 difference_of_explicit_set_wf(avl_set(A1),S2,R,WF) :-
3922 (S2=avl_set(A2) ;
3923 ground_value(S2), expand_and_convert_to_avl_set_unless_very_large(S2,A2,WF)),!,
3924 avl_height(A2,H2),
3925 %avl_min(A1,Min1),avl_max(A1,Max1), avl_min(A2,Min2),avl_max(A2,Max2), avl_height(A1,H1),nl,print(diff(avl(H1,Min1,Max1),avl(H2,Min2,Max2))),nl,
3926 avl_height(A1,H1),
3927 ((H2<2 -> true ; H1 > H2+1) % then it is more efficient to expand A2 and remove the A2 elements from A1;
3928 % note that difference_of_explicit_set2 now also sometimes expands both:
3929 % exact threshold when it is beneficial: difference_of_explicit_set2/3
3930 % for {x|x:1..200000 & x mod 2 = 0} - {y|y:2500..29010 & y mod 2 = 0} -> 150 ms vs 80 ms avl(17,int(2),int(200000)),avl(14,int(2500),int(29010)
3931 % {x|x:1..200000 & x mod 2 = 0} - {y|y:2500..59010 & y mod 2 = 0} -> 180 ms vs 80 ms avl(17,int(2),int(200000)),avl(15,int(2500),int(59010))
3932 % {x|x:1..200000 & x mod 2 = 0} - {y|y:500..159010 & y mod 2 = 0} -> 180 ms vs 250 ms avl(17,int(2),int(200000)),avl(17,int(500),int(159010))
3933 -> expand_custom_set_to_sorted_list(S2,ES,_,difference_of_explicit_set1,WF),
3934 difference_of_explicit_set3(ES,A1,R)
3935 ; expand_custom_set_to_sorted_list(avl_set(A1),ES,Done,difference_of_explicit_set2,WF),
3936 difference_of_explicit_set2(ES,H1,A2,H2,R,Done)).
3937 difference_of_explicit_set_wf(S1,S2,R,WF) :-
3938 (S2=avl_set(A2) ;
3939 ground_value(S2), expand_and_convert_to_avl_set_unless_very_large(S2,A2,WF)),!,
3940 avl_height(A2,A2Height),
3941 difference_with_avl(S1,A2,A2Height,R,WF).
3942 % to do: we could detect same_texpr_body for two closures and return R=[]
3943
3944 :- use_module(avl_tools,[avl_approximate_size_from_height/2]).
3945 :- use_module(bsyntaxtree,[safe_create_texpr/4, create_texpr/4, conjunct_predicates/2, mark_bexpr_as_symbolic/2]).
3946 difference_with_avl(S1,A2,A2Height,R,_) :-
3947 is_closure_or_integer_set(S1,[ID],[T],B),
3948 % check if the first argument is infinite; then do the difference set symbolically
3949 % this could supersed the complement set construction and be generalised to other sets apart from avl_sets as A2
3950 avl_approximate_size_from_height(A2Height,A2Size),
3951 Limit is max(A2Size*10,1000000), % if A2 is more than 10% size of S1, probably better to compute difference explicitly
3952 is_very_large_or_symbolic_closure([ID],[T],B,Limit),
3953 !, % TO DO: also allow multiple identifiers
3954 create_texpr(identifier(ID),T,[],TID),
3955 create_texpr(value(avl_set(A2)),set(T),[],A2Value),
3956 create_texpr(not_member(TID,A2Value),pred,[],NotMemA2),
3957 conjunct_predicates([B,NotMemA2],NewBody),
3958 mark_bexpr_as_symbolic(NewBody,NewBodyS),
3959 R = closure([ID],[T],NewBodyS).
3960 difference_with_avl(S1,A2,A2Height,R,WF) :-
3961 (nonvar(S1),S1=avl_set(A1) -> avl_height(A1,H1) ; H1=unknown),
3962 expand_custom_set_to_sorted_list(S1,ES,Done,difference_of_explicit_set3,WF),
3963 difference_of_explicit_set2(ES,H1,A2,A2Height,R,Done).
3964
3965
3966 % construct complement of a set
3967 union_complement_set(S1,S2,Type,Result) :-
3968 ground_value_check(S2,G2),
3969 when(nonvar(G2),union_complement_set2(S1,S2,Type,Result)).
3970 union_complement_set2(S1,S2,Type,Result) :-
3971 union_of_explicit_set(S1,S2,S12),
3972 construct_complement_closure_if_necessary(S12,Type,R),
3973 kernel_objects:equal_object(R,Result,union_complement_set2).
3974
3975 % construct complement of a set
3976 complement_set(S2,Type,Result) :-
3977 ground_value_check(S2,G2),
3978 when(nonvar(G2),complement_set2(S2,Type,Result)).
3979 complement_set2(S2,Type,Result) :-
3980 is_not_member_value_closure(S2,Type,MS2),!, % complement of complement
3981 kernel_objects:equal_object(MS2,Result,complement_set2).
3982 complement_set2(S2,Type,Result) :-
3983 try_expand_and_convert_to_avl_with_check(S2,ExpandedS2,difference_complement_set),
3984 construct_complement_closure_if_necessary(ExpandedS2,Type,R),
3985 kernel_objects:equal_object(R,Result,complement_set2).
3986
3987 :- block construct_complement_closure_if_necessary(-,?,?).
3988 construct_complement_closure_if_necessary(Set,TYPE,R) :-
3989 (Set=[] -> b_type2_set(TYPE,R)
3990 ; is_not_member_value_closure(Set,TYPE,MS) -> R=MS % complement of complement
3991 ; construct_complement_closure(Set,TYPE,R)).
3992
3993 % succeeds if difference of two intervals is also an interval
3994 % SourceLow..SourceUp \ DiffLow..DiffUp
3995 :- assert_must_succeed(custom_explicit_sets:difference_interval(1,10,9,11,1,8)).
3996 :- assert_must_succeed(custom_explicit_sets:difference_interval(1,10,9,inf,1,8)).
3997 :- assert_must_succeed(custom_explicit_sets:difference_interval(1,10,10,12,1,9)).
3998 :- assert_must_succeed(custom_explicit_sets:difference_interval(1,10,11,12,1,10)).
3999 :- assert_must_succeed(custom_explicit_sets:difference_interval(1,10,12,13,1,10)).
4000 :- assert_must_succeed(custom_explicit_sets:difference_interval(1,10,11,inf,1,10)).
4001 :- assert_must_succeed(custom_explicit_sets:difference_interval(1,inf,11,inf,1,10)).
4002 % :- assert_must_succeed(custom_explicit_sets:difference_interval(1,10,9,8,1,10)). % 9..8 empty not detected
4003 :- assert_must_succeed(custom_explicit_sets:difference_interval(1,10,1,8,9,10)).
4004 :- assert_must_succeed(custom_explicit_sets:difference_interval(1,10,1,10,11,10)). % empty
4005 :- assert_must_succeed(custom_explicit_sets:difference_interval(1,10,1,inf,inf,10)).
4006 :- assert_must_succeed(custom_explicit_sets:difference_interval(3,10,1,2,3,10)).
4007 :- assert_must_succeed(custom_explicit_sets:difference_interval(3,inf,1,2,3,inf)).
4008 :- assert_must_succeed(custom_explicit_sets:difference_interval(3,10,1,3,4,10)).
4009 :- assert_must_succeed(custom_explicit_sets:difference_interval(3,10,1,9,10,10)).
4010 :- assert_must_succeed(custom_explicit_sets:difference_interval(3,10,1,10,11,10)).
4011 difference_interval(SourceLow,SourceUp,DiffLow,DiffUp,ResLow,ResUp) :-
4012 (nonvar(SourceLow),nonvar(DiffLow),nonvar(DiffUp),
4013 geq_inf(SourceLow,DiffLow)
4014 -> % DiffLow is to left of SourceLow
4015 inc(DiffUp,D1),
4016 maximum_with_inf(D1,SourceLow,ResLow),
4017 ResUp=SourceUp % also works if SourceUp is a variable
4018 ; nonvar(DiffUp),nonvar(SourceUp),nonvar(DiffLow),
4019 geq_inf(DiffUp,SourceUp)
4020 -> % DiffUp is to right of SourceUp
4021 ResLow=SourceLow, % also works if SourceLow is a variable
4022 dec(DiffLow,D1),
4023 minimum_with_inf(SourceUp,D1,ResUp)).
4024
4025 inc(N,R) :- N==inf,!,R=inf.
4026 inc(N,N1) :- N1 is N+1.
4027 dec(N,R) :- N==inf,!,R=inf.
4028 dec(N,N1) :- N1 is N-1.
4029
4030 :- use_module(library(ordsets), [ord_subtract/3]).
4031 :- block difference_of_explicit_set2(?,?,?,?,?,-).
4032 difference_of_explicit_set2(ES,A1Height,A2,A2Height,R,_) :-
4033 (number(A1Height), A1Height+4 >= A2Height -> true
4034 ; A2Height < 5
4035 ; Limit is 2**(A2Height-4),
4036 length_larger_than(ES,Limit)
4037 % TO DO: we could try and pass sizes from specific closures to this predicate
4038 ),
4039 % A1 is not much larger than A2, then it is probably faster to use ord_subtract on expanded A2
4040 % {x|x mod 2 =0 & x:1..10000} - {y|y mod 3 =0 & y : 1..200000} : still more efficient with ord_subtract
4041 !,
4042 avl_domain(A2,A2Expanded),
4043 ord_subtract(ES,A2Expanded,OrdRes),
4044 sorted_ground_normalised_list_to_avlset(OrdRes,AVL,difference_of_explicit_set2),
4045 equal_object(AVL,R).
4046 difference_of_explicit_set2(ES,_A1Height,A2,_A2Height,R,_) :-
4047 avl_min(A2,Min),
4048 diff1(ES,Min,A2,IRes),
4049 ord_list_to_avlset(IRes,AVL,difference), % we have generated the elements in the right order already
4050 equal_object(AVL,R). % due to delays in expansion the result could be instantiated
4051
4052
4053 length_larger_than([_|T],Limit) :-
4054 (Limit<1 -> true
4055 ; L1 is Limit-1, length_larger_than(T,L1)).
4056
4057 diff1([],_, _,[]).
4058 diff1([H|T],Min,A1, Res) :-
4059 (H @< Min -> Res = [H-true|Res2],diff1(T,Min,A1,Res2)
4060 ; diff2([H|T],A1,Res)).% TO DO: compute avl_max
4061
4062 diff2([],_, []).
4063 diff2([H|T],A1, Res) :-
4064 (avl_fetch(H,A1) -> Res = Res2 ; Res = [H-true|Res2]), diff2(T,A1,Res2).
4065
4066 % another version to be used when second set small in comparison to first set
4067 difference_of_explicit_set3([],A1,Res) :- construct_avl_set(A1,AVL),
4068 equal_object(AVL,Res). % due to delay in expansion, Res could now be instantiated
4069 difference_of_explicit_set3([H|T],A1,ARes) :-
4070 (avl_delete(H,A1,_True,A2) -> true ; A2=A1),
4071 difference_of_explicit_set3(T,A2,ARes).
4072
4073 % -------------------------
4074
4075 % a version of add_element_to_explicit_set where we have already done the groundness check
4076 add_ground_element_to_explicit_set_wf(avl_set(A),Element,R,WF) :- !,
4077 convert_to_avl_inside_set_wf(Element,AEl,WF),
4078 avl_store(AEl,A,true,A2),!,R=avl_set(A2).
4079 add_ground_element_to_explicit_set_wf(Set,Element,R,WF) :-
4080 add_element_to_explicit_set_wf(Set,Element,R,WF).
4081
4082 add_element_to_explicit_set_wf(global_set(GS),_,R,_) :- is_maximal_global_set(GS), !, R=global_set(GS).
4083 add_element_to_explicit_set_wf(freetype(ID),_,R,_) :- is_maximal_freetype(ID),!, R=freetype(ID).
4084 add_element_to_explicit_set_wf(avl_set(A),Element,R,WF) :-
4085 ground_value(Element), %% was element_can_be_added_or_removed_to_avl(Element),
4086 convert_to_avl_inside_set_wf(Element,AEl,WF),
4087 avl_store(AEl,A,true,A2),!,R=avl_set(A2). /* AVL not normalised */
4088 /* do we need to add support for (special) closures ??
4089 add_element_to_explicit_set_wf(Clos,Element,R,_) :- nonvar(Element),Element=int(X), nonvar(X),
4090 is_interval_closure_or_integerset(Clos,Low,Up), ground(Low), ground(Up),
4091 union_of_interval(X,X,Low,Up,FromRes,ToRes),
4092 !,
4093 construct_interval_closure(FromRes,ToRes,R).
4094 % not-member closure not dealt with here
4095 */
4096
4097 element_can_be_added_or_removed_to_avl(Element) :-
4098 ground_value(Element),
4099 does_not_contain_closure(Element).
4100 ground_element_can_be_added_or_removed_to_avl(Element) :- /* use if you know the element to be ground */
4101 does_not_contain_closure(Element).
4102
4103 % does not contain closure or infinite other sets
4104 does_not_contain_closure([]).
4105 does_not_contain_closure([H|T]) :-
4106 (simple_value(H) -> true /* TO DO: check if we could have a closure at the end ?? */
4107 ; does_not_contain_closure(H),list_does_not_contain_closure(T)).
4108 does_not_contain_closure(fd(_,_)).
4109 does_not_contain_closure(pred_true /* bool_true */).
4110 does_not_contain_closure(pred_false /* bool_false */).
4111 does_not_contain_closure(int(_)).
4112 does_not_contain_closure(string(_)).
4113 does_not_contain_closure(term(_)). % real/floating number
4114 does_not_contain_closure((X,Y)) :- does_not_contain_closure(X), does_not_contain_closure(Y).
4115 does_not_contain_closure(avl_set(_)).
4116 ?does_not_contain_closure(global_set(G)) :- \+ is_infinite_global_set(G,_).
4117 %does_not_contain_closure(freetype(_)).
4118 does_not_contain_closure(freeval(_,_,Value)) :- does_not_contain_closure(Value).
4119 does_not_contain_closure(rec(Fields)) :- does_not_contain_closure_fields(Fields).
4120
4121 does_not_contain_closure_fields([]).
4122 does_not_contain_closure_fields([field(_,Val)|T]) :- does_not_contain_closure(Val),
4123 does_not_contain_closure_fields(T).
4124
4125 list_does_not_contain_closure([]).
4126 list_does_not_contain_closure([H|T]) :-
4127 does_not_contain_closure(H),list_does_not_contain_closure(T).
4128 list_does_not_contain_closure(avl_set(_)).
4129 list_does_not_contain_closure(global_set(G)) :- \+ is_infinite_global_set(G,_).
4130
4131 simple_value(fd(_,_)).
4132 simple_value(pred_true /* bool_true */).
4133 simple_value(pred_false /* bool_false */).
4134 simple_value(int(_)).
4135 simple_value((A,B)) :- simple_value(A), simple_value(B).
4136 simple_value(string(_)).
4137
4138
4139 % a version of the above which throws error if element cannot be added
4140 % assumes element_can_be_added_or_removed_to_avl has been checked
4141 remove_element_from_explicit_set(avl_set(A),Element,R) :-
4142 element_can_be_added_or_removed_to_avl(Element), % remove check?
4143 convert_to_avl_inside_set(Element,AEl), !,
4144 direct_remove_element_from_avl(A,AEl,R).
4145 remove_element_from_explicit_set(ES,Element,R) :-
4146 add_internal_error('Cannot remove element from explicit set:',remove_element_from_explicit_set(ES,Element,R)).
4147
4148 direct_remove_element_from_avl(A,AEl,R) :-
4149 avl_delete(AEl,A,_True,A2),
4150 construct_avl_set(A2,R). /* AVL not normalised */
4151
4152 /* same as remove but element can be absent */
4153 delete_element_from_explicit_set(avl_set(A),Element,R) :-
4154 element_can_be_added_or_removed_to_avl(Element),
4155 convert_to_avl_inside_set(Element,AEl), !,
4156 (avl_delete(AEl,A,_True,A2)
4157 -> construct_avl_set(A2,R)
4158 ; R = avl_set(A)
4159 ). /* AVL not normalised */
4160
4161 is_maximal_global_set(GS) :- is_maximal_global_set(GS,_Type).
4162 is_maximal_global_set(GS,_) :- var(GS),!,fail.
4163 is_maximal_global_set('INTEGER',Type) :- !, Type=integer.
4164 is_maximal_global_set('REAL',Type) :- !, Type=real.
4165 is_maximal_global_set('FLOAT',_) :- !, fail.
4166 is_maximal_global_set('STRING',Type) :- !, Type=string.
4167 is_maximal_global_set(GS,global(GS)) :-
4168 \+ kernel_objects:integer_global_set(GS).
4169
4170 % To do: maybe get rid of all complement set code; add in_difference_set as symbolic binary operator
4171 %is_very_large_maximal_global_set(X,_) :- print(very(X)),nl,fail.
4172 is_very_large_maximal_global_set(closure(P,T,B),Type) :- is_definitely_maximal_closure(P,T,B),
4173 couplise_list(T,Type).
4174 is_very_large_maximal_global_set(global_set('INTEGER'),integer).
4175 is_very_large_maximal_global_set(global_set('STRING'),string).
4176 is_very_large_maximal_global_set(global_set('REAL'),string).
4177 is_very_large_maximal_global_set(freetype(ID),freetype(ID)) :- is_infinite_freetype(ID).
4178
4179
4180
4181 remove_minimum_element_custom_set(avl_set(S),X,RES) :- !,
4182 avl_del_min(S,X,_True,Res0),
4183 (empty_avl(Res0) -> RES=[] ; RES = avl_set(Res0)).
4184 %remove_minimum_element_custom_set(closure(P,T,B),X,RES) :-
4185 % is_interval_closure_or_integerset(Clos,Low,Up),!,
4186 % X = Low, TO DO: construct new interval closure
4187 remove_minimum_element_custom_set(CS,X,RES) :-
4188 expand_custom_set_to_list(CS,ECS,Done,remove_minimum_element_custom_set),
4189 remove_minimum_element_custom_set2(ECS,X,RES,Done).
4190
4191 :- block remove_minimum_element_custom_set2(?,?,?,-).
4192 % wait until Done: otherwise the Tail of the list could be instantiated by somebody else; interfering with expand_custom_set_to_list
4193 remove_minimum_element_custom_set2([H|T],X,RES,_) :- equal_object((H,T),(X,RES)).
4194
4195
4196 min_of_explicit_set_wf(avl_set(S),Min,_) :- !, avl_min(S,Min).
4197 min_of_explicit_set_wf(Clos,Min,WF) :-
4198 is_interval_closure_or_integerset(Clos,Low,Up),
4199 (Low == minus_inf
4200 -> add_wd_error('minimum of unbounded infinite set not defined:',Clos,WF)
4201 ; cs_greater_than_equal(Up,Low),
4202 Min=int(Low)).
4203
4204 cs_greater_than_equal(X,Y) :-
4205 ((X==inf;Y==minus_inf) -> true ; kernel_objects:less_than_equal_direct(Y,X)).
4206
4207
4208 max_of_explicit_set_wf(avl_set(S),Max,_) :- !,avl_max(S,Max).
4209 max_of_explicit_set_wf(Clos,Max,WF) :-
4210 is_interval_closure_or_integerset(Clos,Low,Up),
4211 (Up==inf
4212 -> add_wd_error('maximum of unbounded infinite set not defined:',Clos,WF)
4213 ; cs_greater_than_equal(Up,Low),
4214 Max=int(Up)).
4215
4216 % ------------- SIGMA/PI --------------
4217
4218 % compute sum or product of an integer set:
4219 sum_or_mul_of_explicit_set(avl_set(S),SUMorMUL,Result) :-
4220 avl_domain(S,Dom),
4221 (SUMorMUL=sum -> simple_sum_list(Dom,0,R) ; simple_mul_list(Dom,1,R)),
4222 Result = int(R).
4223 sum_or_mul_of_explicit_set(CS,SUMorMUL,Result) :- SUMorMUL == sum,
4224 is_interval_closure(CS,Low,Up),
4225 sum_interval(Low,Up,Result),
4226 sum_interval_clpfd_prop(Low,Up,Result).
4227
4228 :- block sum_interval(-,?,?), sum_interval(?,-,?).
4229 sum_interval(Low,Up,_) :- (\+ number(Low) ; \+ number(Up)),!,
4230 add_error(sum_interval,'Cannot compute sum of interval: ',Low:Up),fail.
4231 sum_interval(Low,Up,Result) :- Low>Up,!, Result=int(0).
4232 sum_interval(Low,Up,Result) :-
4233 R is ((1+Up-Low)*(Low+Up)) // 2, % generalisation of Gauss formula k*(k+1)//2
4234 Result = int(R).
4235
4236 sum_interval_clpfd_prop(Low,Up,Result) :-
4237 preferences:preference(use_clpfd_solver,true), Result=int(R),
4238 var(R), % we haven't computed the result yet; the bounds are not known; set up constraint propagation rules
4239 !,
4240 try_post_constraint((Low #>= 0) #=> (R #> 0)), % we could provide better bounds here for negative numbers
4241 try_post_constraint(((Low #=< Up) #\/ (R #\= 0)) #=> (R #= ((1+Up-Low)*(Low+Up))//2)),
4242 try_post_constraint((Low #> Up) #=> (R #= 0)).
4243 % not working yet: x = SIGMA(i).(i:-3..n|i) & x=0 & n< -1
4244 sum_interval_clpfd_prop(_,_,_).
4245
4246 simple_sum_list([],A,A).
4247 simple_sum_list([int(H)|T],Acc,R) :- NA is Acc+H, simple_sum_list(T,NA,R).
4248 simple_mul_list([],A,A).
4249 simple_mul_list([int(H)|T],Acc,R) :- NA is Acc*H, simple_mul_list(T,NA,R).
4250
4251
4252 /*
4253 direct_product_symbolic(S,R,Res) :- % NOT YET FINISHED
4254 nonvar(S), S=closure(PS,[T1,TS2],RS),
4255 nonvar(R), R=closure(PR,[T1,TR1],RR),
4256 is_lambda_value_domain_closure(PS,TS,RS, SDomainValue,SExpr),
4257 is_lambda_value_domain_closure(PR,TR,RR, RDomainValue,RExpr),
4258 construct_closure(['zzz','_lambda_result_'],[T1,couple(TR1,TR2)],
4259 member(zzz,SDomainValue) , member(zzz,RDomainValue), eq(lambda,pair(SExpr,RExpr))).
4260 */
4261
4262 % we assume that try_expand_and_convert_to_avl_unless_very_large already called on arguments
4263 direct_product_explicit_set(S,R,Res) :-
4264 nonvar(R), %is_custom_explicit_set(R,direct_product),
4265 nonvar(S), %is_custom_explicit_set(S,direct_product),
4266 direct_product_explicit_set_aux(S,R,Res).
4267 %direct_product_explicit_set_aux(S,R,Res) :- (S = closure(_,_,_) ; R = closure(_,_,_)),
4268 % print_term_summary(direct_product_explicit_set_aux(S,R,Res)),nl,
4269 % % TO DO: generate closure
4270 % fail.
4271 direct_product_explicit_set_aux(avl_set(AS),avl_set(AR),Res) :-
4272 % the expansion guarantees that we have the lists ES and ER then in sorted order
4273 avl_domain(AS,ES), % -> expand_custom_set(avl_set(AS),ES),
4274 avl_domain(AR,ER), % -> expand_custom_set(avl_set(AR),ER),
4275 direct_product3(ES,ER,DPList),
4276 ord_list_to_avlset(DPList,DPAVL,direct_product), % is it really ordered ? findall must also return things ordered!
4277 equal_object(DPAVL,Res,direct_product_explicit_set).
4278
4279 direct_product3([],_Rel2,[]).
4280 direct_product3([(From,To1)|T1],Rel2,Res) :-
4281 get_next_mapped_to_eq(T1,From,TTo,Tail1), ToList1 = [To1|TTo],
4282 get_next_mapped_to(Rel2,From,ToList2,Tail2),
4283 calc_direct_product(ToList1,From,ToList2,Res,Rest),
4284 (Tail2=[] -> Rest=[] ; direct_product3(Tail1,Tail2,Rest)).
4285
4286 % get all elements which map to From, supposing that the list is sorted & we have already had a match
4287 get_next_mapped_to_eq([],_,[],[]).
4288 get_next_mapped_to_eq([(From2,To2)|T],From,Result,Tail) :-
4289 (From=From2 -> Result = [To2|RR], get_next_mapped_to_eq(T,From,RR,Tail)
4290 ; Result = [], Tail = [(From2,To2)|T]
4291 ).
4292
4293 % get all elements which map to From, supposing the list is sorted
4294 get_next_mapped_to([],_,[],[]).
4295 get_next_mapped_to([(From2,To2)|T],From,Result,Tail) :-
4296 (From=From2 -> Result = [To2|RR], get_next_mapped_to_eq(T,From,RR,Tail)
4297 ; From2 @> From -> Result = [], Tail = [(From2,To2)|T]
4298 ; get_next_mapped_to(T,From,Result,Tail)
4299 ).
4300
4301 calc_direct_product([],_From,_,Tail,Tail).
4302 calc_direct_product([To1|T1],From,To2List,Result,Tail) :-
4303 findall((From,(To1,To2))-true,member(To2,To2List),Result,ResResult),
4304 calc_direct_product(T1,From,To2List,ResResult,Tail).
4305
4306 % TO DO: maybe also add a special rule for infinite R such as event_b_identity ?
4307 domain_restriction_explicit_set_wf(S,R,Res,WF) :- /* S <| R */
4308 nonvar(R),
4309 (nonvar(S),is_one_element_custom_set(S,El),R \= closure(_,_,_) ->
4310 domain_restrict_singleton_element(El,R,Res)
4311 ; restriction_explicit_set_wf(S,R,Res,domain,pred_true,WF)).
4312 domain_subtraction_explicit_set_wf(S,R,Res,WF) :- /* S <<| R */
4313 (nonvar(S),is_one_element_custom_set(S,El), nonvar(R), R=avl_set(AVL) ->
4314 avl_domain_subtraction_singleton(AVL,El,ARes),
4315 construct_avl_set(ARes,Res) % TO DO: use this also when S is small and R large
4316 ; restriction_explicit_set_wf(S,R,Res,domain,pred_false,WF)).
4317 range_restriction_explicit_set_wf(R,S,Res,WF) :- /* R |> S */
4318 restriction_explicit_set_wf(S,R,Res,range,pred_true,WF).
4319 range_subtraction_explicit_set_wf(R,S,Res,WF) :- /* R |>> S */
4320 restriction_explicit_set_wf(S,R,Res,range,pred_false,WF).
4321
4322
4323 domain_restrict_singleton_element(El,R,Res) :- /* {El} <| R ; TO DO maybe apply this technique for "small" sets as well */
4324 nonvar(R), is_custom_explicit_set(R,domain_restrict_singleton_element),
4325 expand_and_convert_to_avl_set(R,AR,domain_restrict_singleton_element,''), % can generate ARel=empty; will fail if not possible to convert
4326 findall((El,Z)-true, avl_fetch_pair(El,AR,Z), RTuples),
4327 ord_list_to_avlset(RTuples,Res,domain_restrict_singleton_element).
4328
4329 restriction_explicit_set_wf(Set,Rel,Res,_RanOrDom,AddWhen,WF) :- Set==[],!,
4330 (AddWhen=pred_false
4331 -> equal_object_wf(Rel,Res,restriction_explicit_set_wf,WF) % {} <<| Rel = Rel |>> {} = Rel
4332 ; kernel_objects:empty_set_wf(Res,WF)
4333 ).
4334 restriction_explicit_set_wf(Set,Rel,Res,_RanOrDom,AddWhen,WF) :- is_definitely_maximal_set(Set),!,
4335 (AddWhen=pred_true
4336 -> equal_object_wf(Rel,Res,restriction_explicit_set_wf,WF) % TYPE <| Rel = Rel |> TYPE = Rel
4337 ; kernel_objects:empty_set_wf(Res,WF)
4338 ).
4339 restriction_explicit_set_wf(_,Rel,_,_,_,_) :- var(Rel),!,fail.
4340 restriction_explicit_set_wf(Set,closure(Paras,Types,Body),Res,RanOrDom,AddWhen,WF) :-
4341 % perform symbolic treatment by adding restriction predicate to Body
4342 !,
4343 (RanOrDom=domain
4344 -> get_domain_id_or_expr(Paras,Types,TID,TT)
4345 ; get_range_id_or_expr(Paras,Types,TID,TT)
4346 ),
4347 TSet=b(value(Set),set(TT),[]),
4348 (AddWhen = pred_true
4349 -> PRED = member(TID,TSet)
4350 ; PRED = not_member(TID,TSet) ),
4351 conjunct_predicates([b(PRED,pred,[]),Body],NewBody),
4352 % translate:print_bexpr(NewBody),nl,
4353 try_expand_and_convert_to_avl_with_catch_wf(closure(Paras,Types,NewBody),Res,restriction_explicit_set_wf,WF).
4354 restriction_explicit_set_wf(Set,Rel,Res,RanOrDom,AddWhen,WF) :-
4355 is_custom_explicit_set(Rel,restriction_explicit_set_wf),
4356 expand_and_convert_to_avl_set(Rel,ARel,restriction_explicit_set_wf,''), % can generate ARel=empty; will fail if not possible to convert
4357 avl_domain(ARel,ERel), % -> expand_custom_set(avl_set(ARel),ERel),
4358 %try_expand_and_convert_to_avl_unless_large_wf(Set,ES,WF),
4359 (nonvar(Set),Set=avl_set(AVLS)
4360 -> restrict2_avl(ERel,AVLS,DRes,RanOrDom,AddWhen,Done)
4361 ; restrict2(ERel,Set,DRes,RanOrDom,AddWhen,Done,WF)
4362 ),
4363 finish_restriction(Done,DRes,Res).
4364
4365 % extract domain expression for domain restriction/subtraction predicate:
4366 get_domain_id_or_expr([DR],[couple(TD,TR)], PRJ1, TD) :- !, % special case: just one parameter in closure
4367 TID = b(identifier(DR),couple(TD,TR),[]),
4368 PRJ1 = b(first_of_pair(TID),TD,[]).
4369 get_domain_id_or_expr([D1|Paras],[TD1|Types],Expr,Type) :-
4370 get_dom_couple_aux(Paras,Types, b(identifier(D1),TD1,[]), TD1, Expr,Type).
4371
4372 get_dom_couple_aux([_RangeID],[_], AccExpr, AccType, Expr, Type) :- !, Expr=AccExpr, Type=AccType.
4373 get_dom_couple_aux([D2|TParas],[TD2|Types], AccExpr, AccType, Expr, Type) :-
4374 TID2 = b(identifier(D2),TD2,[]),
4375 NewAccType = couple(AccType,TD2),
4376 NewAcc = b(couple(AccExpr,TID2),NewAccType,[]),
4377 get_dom_couple_aux(TParas,Types,NewAcc,NewAccType,Expr,Type).
4378
4379 :- use_module(library(lists),[last/2]).
4380 % extract range expression for range restriction/subtraction predicate:
4381 get_range_id_or_expr( [DR],[CType], PRJ2, TR) :- !, % special case: just one parameter in closure
4382 CType = couple(TD,TR),
4383 TID = b(identifier(DR),CType,[]),
4384 PRJ2 = b(second_of_pair(TID),TD,[]).
4385 get_range_id_or_expr( [_|Paras],[_|Types], b(identifier(R),TR,[]), TR) :-
4386 last(Paras,R), last(Types,TR).
4387
4388 :- block finish_restriction(-,?,?).
4389 finish_restriction(_,DRes,Res) :-
4390 ord_list_to_avlset(DRes,Restriction,restriction),
4391 ? equal_object(Restriction,Res,finish_restriction). % as we may block below: we need to use equal_object
4392
4393 restrict2([],_,[],_,_,done,_WF).
4394 restrict2([(From,To)|T],S,Res,RanOrDom,AddWhen,Done,WF) :-
4395 (RanOrDom==domain -> El=From ; El=To),
4396 kernel_equality:membership_test_wf(S,El,MemRes,WF), % TO DO: WF Version !!
4397 /* this only makes sense once we have the full result as argument:
4398 (nonvar(MemRes) -> true % it is already decided
4399 ; AddWhen=pred_true -> kernel_equality:membership_test_wf(Res,(From,To),MemRes,WF)
4400 ; kernel_equality:membership_test_wf(Res,(From,To),InResult,WF), bool_pred:negate(InResult,MemRes)
4401 ), */
4402 ? restrict3(MemRes,From,To,T,S,Res,RanOrDom,AddWhen,Done,WF).
4403 :- block restrict3(-, ?,?, ?,?,?, ?,?,?,?).
4404 restrict3(MemRes, From,To, T,S,Res, RanOrDom,AddWhen,Done,WF) :-
4405 (AddWhen=MemRes -> Res = [(From,To)-true|TRes]
4406 ; Res=TRes),
4407 ? restrict2(T,S,TRes,RanOrDom,AddWhen,Done,WF).
4408
4409 % optimised version when second set is also an AVL tree: less blocking,...
4410 restrict2_avl([],_,[],_,_,done).
4411 restrict2_avl([(From,To)|T],AVLS,Res,RanOrDom,AddWhen,Done) :-
4412 fetch(RanOrDom,From,To,AVLS,MemRes),
4413 (AddWhen=MemRes -> Res = [(From,To)-true|TRes]
4414 ; Res=TRes),
4415 restrict2_avl(T,AVLS,TRes,RanOrDom,AddWhen,Done).
4416
4417 fetch(domain,El,_,AVLS,MemRes) :- (avl_fetch(El,AVLS) -> MemRes=pred_true ; MemRes = pred_false).
4418 fetch(range,_,El,AVLS,MemRes) :- (avl_fetch(El,AVLS) -> MemRes=pred_true ; MemRes = pred_false).
4419
4420 % override R(X) := Y
4421 override_pair_explicit_set(avl_set(S),X,Y,avl_set(NewAVL)) :- element_can_be_added_or_removed_to_avl(X),
4422 element_can_be_added_or_removed_to_avl(Y),
4423 convert_to_avl_inside_set(X,AX),
4424 convert_to_avl_inside_set(Y,AY),
4425 avl_domain_subtraction_singleton(S,AX,AVL2),
4426 avl_store((AX,AY), AVL2, true, NewAVL).
4427
4428 avl_domain_subtraction_singleton(AVL,AX,NewAVL) :-
4429 avl_delete_pair(AX,AVL,_True,AVL2),
4430 !, % recurse, in case we have multiple entries
4431 % this recursion could be avoided if we know AVL to be a function
4432 avl_domain_subtraction_singleton(AVL2,AX,NewAVL).
4433 avl_domain_subtraction_singleton(AVL,_,AVL).
4434
4435 % try and decompose an AVL set into a cartesian product
4436 % AVL = Set1 * Set2
4437 % much faster e.g. for let xx = ((1..10)*(3..1000)\/ {0}*(3..1000)) and then xx = AA*BB
4438 % should not produce pending co-routines
4439 decompose_avl_set_into_cartesian_product_wf(AVL,DomainSet,RangeSet,WF) :-
4440 avl_domain(AVL,Expansion),
4441 decompose_cart(Expansion,'$none',DomainList,[],RangeList),
4442 construct_avl_from_lists_wf(DomainList,DomainSet,WF),
4443 construct_avl_from_lists_wf(RangeList,RangeSet,WF).
4444
4445 decompose_cart([],_,[],[],_).
4446 decompose_cart([(A,B)|T],Prev,Domain,Range,FullRange) :-
4447 (A=Prev
4448 -> Range = [B|TRange],
4449 decompose_cart(T,Prev,Domain,TRange,FullRange)
4450 ; Domain = [A|TDom], Range=[],
4451 FullRange = [B|TRange],
4452 decompose_cart(T,A,TDom,TRange,FullRange)
4453 ).
4454
4455 /* --------- */
4456 /* EXPANSION */
4457 /* --------- */
4458
4459 :- use_module(b_global_sets,[all_elements_of_type_wf/3, all_elements_of_type_rand_wf/3]).
4460 :- use_module(kernel_freetypes,[expand_freetype/3]).
4461
4462 expand_custom_set(X,R) :- expand_custom_set_wf(X,R,expand_custom_set,no_wf_available).
4463 expand_custom_set(X,R,Src) :- expand_custom_set_wf(X,R,Src,no_wf_available).
4464 expand_custom_set_wf(X,R,Source,WF) :- var(X), !,
4465 add_error_and_fail(expand_custom_set_wf, 'Variable as argument: ',expand_custom_set_wf(X,R,Source,WF)).
4466 expand_custom_set_wf(global_set(GS),ExpandedSet,_,WF) :- !,
4467 all_elements_of_type_wf(GS,ExpandedSet,WF). % they are generated in order
4468 expand_custom_set_wf(freetype(GS),ValueList,_,WF) :- !,
4469 expand_freetype(GS,ValueList,WF).
4470 expand_custom_set_wf(avl_set(AVL),ExpandedSet,_,_) :- !,
4471 avl_domain(AVL,ExpandedSet).
4472 expand_custom_set_wf(closure(Parameters,PTypes,Cond),Res,Source,WF) :- !,
4473 ? expand_closure_to_list(Parameters,PTypes,Cond,Res,_Done,Source,WF).
4474 %wait_try_expand_custom_set(Res1,Res). % could be in AVL form; no longer the case !
4475 expand_custom_set_wf(Set,_,Source,_) :-
4476 add_error_and_fail(expand_custom_set(Source),'Cannot expand custom set: ',Set).
4477
4478
4479
4480 %try_expand_only_custom_closure_global(X,Y) :-
4481 % (var(X) -> X=Y ; expand_only_custom_closure_global(X,Y,check)).
4482
4483 expand_only_custom_closure_global(X,R,C,_WF) :- var(X), !,
4484 add_error_and_fail(expand_only_custom_closure_global, 'Variable as argument: ',expand_only_custom_closure_global(X,R,C)).
4485 expand_only_custom_closure_global(global_set(GS),ExpandedSet,_,WF) :- !,all_elements_of_type_wf(GS,ExpandedSet,WF).
4486 expand_only_custom_closure_global(freetype(GS),ExpandedSet,_,_WF) :- !,ExpandedSet=freetype(GS).
4487 expand_only_custom_closure_global(avl_set(AVL),ExpandedSet,_,_WF) :- !, ExpandedSet=avl_set(AVL).
4488 expand_only_custom_closure_global(closure(Parameters,PTypes,Cond),Res,CheckTimeOuts,WF) :- !,
4489 (Res==[] -> is_empty_explicit_set(closure(Parameters,PTypes,Cond)) % TO DO: think about other special cases
4490 ; expand_closure_to_avl_or_list(Parameters,PTypes,Cond,Res,CheckTimeOuts,WF)).
4491 expand_only_custom_closure_global(Set,Set,_CheckTimeOuts,_WF).
4492 %:- add_error_and_fail(expand_only_custom_closure_global,'Cannot expand custom set: ',Set).
4493
4494
4495 try_expand_custom_set_with_catch(CS,Expansion,PP) :-
4496 on_enumeration_warning(try_expand_custom_set_wf(CS,Expansion,PP,no_wf_available),
4497 Expansion=CS).
4498
4499 try_expand_custom_set(CS,Expansion) :-
4500 try_expand_custom_set_wf(CS,Expansion,try_expand_custom_set,no_wf_available).
4501
4502
4503 try_expand_custom_set_wf(CS,Res,_,_) :- var(CS),!,Res=CS.
4504 try_expand_custom_set_wf([],Res,_,_) :- !, Res=[].
4505 try_expand_custom_set_wf([H|T],Res,_,_) :- !, Res=[H|T].
4506 try_expand_custom_set_wf(CS,Res,Src,WF) :-
4507 expand_custom_set_wf(CS,Res,Src,WF). % will generate error message for illegal sets
4508
4509
4510 :- assert_must_succeed((expand_custom_set_to_list(closure(['_zzzz_unit_tests'],
4511 [couple(integer,integer)],
4512 b(member(b(identifier('_zzzz_unit_tests'),couple(integer,integer),[generated]),
4513 b(value([(int(1),int(22))]),set(couple(integer,integer)),[])),pred,[])),R),R==[(int(1),int(22))])).
4514
4515 expand_custom_set_to_list(CS,List) :- expand_custom_set_to_list(CS,List,_Done,unknown).
4516
4517 % a version of expansion which returns guaranteed_ground if the List is guaranteed to be ground
4518 expand_custom_set_to_list_gg(CS,List,GuaranteedGround,_PP) :-
4519 nonvar(CS), CS=avl_set(AVL), var(List),
4520 !,
4521 GuaranteedGround = guaranteed_ground,
4522 avl_domain(AVL,List).
4523 expand_custom_set_to_list_gg(CS,List,not_guaranteed_ground,PP) :-
4524 expand_custom_set_to_list(CS,List,_Done,PP).
4525
4526 % a version where the expansion should happen straightaway and should not block:
4527 expand_custom_set_to_list_now(CS,List) :- expand_custom_set_to_list(CS,List,Done,unknown),
4528 (Done==true -> true ; print_error(expand_custom_set_to_list_not_done(CS,List))).
4529
4530 :- block expand_custom_set_to_sorted_list(-,-,?,?,?).
4531 % sorts the resulting list if needed
4532 % due to random enumeration
4533 expand_custom_set_to_sorted_list(From,To,Done,Source,WF) :-
4534 expand_custom_set_to_list(From,UnsortedTo,Done,Source),
4535 (get_preference(randomise_enumeration_order,true)
4536 -> sort_when_done(Done,UnsortedTo,To,WF) ; UnsortedTo = To).
4537
4538 :- block sort_when_done(-,?,?,?).
4539 sort_when_done(_,Unsorted,Res,WF) :- sort(Unsorted,Sorted),
4540 equal_object_wf(Sorted,Res,sort_when_done,WF).
4541
4542 expand_custom_set_to_list(From,To,Done,Source) :-
4543 expand_custom_set_to_list_wf(From,To,Done,Source,no_wf_available).
4544
4545 :- use_module(kernel_objects,[equal_object_wf/4]).
4546
4547 % try expand custom set to list; on enumeration warning set Done to enumeration_warning
4548 try_expand_custom_set_to_list_wf(From,To,Done,Source,WF) :-
4549 on_enumeration_warning(expand_custom_set_to_list_wf(From,To,Done,Source,WF),
4550 (Done=enumeration_warning)).
4551
4552 expand_custom_set_to_list_wf(From,To,Done,Source,WF) :-
4553 expand_custom_set_to_list_k_wf(From,To,Done,_Kind,Source,WF).
4554
4555 % a variation of expand_custom_set_to_list which also checks that there are no duplicates in the list
4556 expand_custom_set_to_list_no_dups_wf(From,To,Done,Source,WF) :-
4557 expand_custom_set_to_list_k_wf(From,To,Done,Kind,Source,WF),
4558 check_dups(Kind,To,WF).
4559
4560 :- block check_dups(-,?,?).
4561 check_dups(unsorted_list,List,WF) :- !,
4562 kernel_objects:check_no_duplicates_in_list(List,[],WF).
4563 check_dups(_,_,_).
4564
4565 % warn if duplicates in list; to do: use in prob_safe mode
4566 %:- block warn_dups(-,?,?,?).
4567 %warn_dups(unsorted_list,List,Src,WF) :- !,
4568 % kernel_objects:warn_if_duplicates_in_list(List,Src,WF).
4569 %warn_dups(_,_,_,_).
4570
4571
4572
4573 :- block expand_custom_set_to_list_k_wf(-,-,?,?,?,?).
4574 % ensures that the output is a pure list; the list skeleton should not be instantiated by anybody else
4575 expand_custom_set_to_list_k_wf(From,To,Done,Kind,Source,WF) :-
4576 (var(From) ->
4577 (is_list_skeleton(To)
4578 ? -> equal_object_wf(To,From,Source,WF), Done=true, Kind=unsorted_list
4579 ? ; expand_custom_set_to_list2(To,From,Done,Kind,Source,WF))
4580 ; var(To),is_list_skeleton(From)
4581 -> To=From, Done=true, Kind=unsorted_list % equal_object_wf will also to a Prolog unification
4582 ? ; expand_custom_set_to_list2(From,To,Done,Kind,Source,WF)).
4583
4584 expand_custom_set_to_list2([],ExpandedSet,Done,Kind,_Source,WF) :- !,
4585 ? equal_object_wf([],ExpandedSet,expand_custom_set_to_list2,WF),Done=true,Kind=empty_set.
4586 expand_custom_set_to_list2([H|T],ExpandedSet,Done,Kind,Source,WF) :- !, Kind=unsorted_list,
4587 ? equal_object_wf([H|ET],ExpandedSet,expand_custom_set_to_list2,WF),
4588 ? expand_custom_set_to_list3(T,ET,Done,Source,WF).
4589 expand_custom_set_to_list2(global_set(GS),ExpandedSet,Done,Kind,_Source,WF) :- !,
4590 all_elements_of_type_rand_wf(GS,R,WF),
4591 check_list(R,expand_custom_set_to_list2),
4592 equal_object_wf(R,ExpandedSet,expand_custom_set_to_list2,WF),Done=true,Kind=sorted_list.
4593 expand_custom_set_to_list2(avl_set(AVL),ExpandedSet,Done,Kind,_Source,WF) :- !,
4594 avl_domain(AVL,R),
4595 ? equal_object_wf(R,ExpandedSet,expand_custom_set_to_list2,WF), Done=true,Kind=sorted_list.
4596 expand_custom_set_to_list2(closure(Parameters,PTypes,Cond),ExpandedSet,Done,Kind,Source,WF) :- !,
4597 expand_closure_to_list(Parameters,PTypes,Cond,ExpandedSet,Done,Source,WF),
4598 Kind=sorted_list.
4599 %assign_expand_result(CDone,Res,ExpandedSet,Done).
4600 expand_custom_set_to_list2(freetype(ID),ExpandedSet,Done,Kind,_Source,WF) :- !,
4601 expand_freetype(ID,R,WF),
4602 equal_object_wf(R,ExpandedSet,expand_custom_set_to_list2,WF),
4603 Done=true,Kind=sorted_list.
4604 % missing avl_set wrapper:
4605 expand_custom_set_to_list2(node(A,B,C,D,E),ExpandedSet,Done,Kind,Source,WF) :- !,
4606 add_internal_error('Illegal argument: ',expand_custom_set_to_list2(node(A,B,C,D,E),ExpandedSet,Done,Source)),
4607 expand_custom_set_to_list2(avl_set(node(A,B,C,D,E)),ExpandedSet,Done,Kind,Source,WF).
4608 expand_custom_set_to_list2(E,ES,Done,Kind,Source,WF) :-
4609 add_internal_error('Illegal argument: ',expand_custom_set_to_list2(E,ES,Done,Kind,Source,WF)),fail.
4610
4611 :- block expand_custom_set_to_list3(-,-,?,?,?). % we are no longer sure which was From and which is To
4612 expand_custom_set_to_list3(From,To,Done,Source,WF) :-
4613 ? (var(From) -> expand_custom_set_to_list2(To,From,Done,_,Source,WF) ;
4614 ? expand_custom_set_to_list2(From,To,Done,_,Source,WF)).
4615
4616
4617 is_list_skeleton(X) :- var(X),!,fail.
4618 is_list_skeleton([]).
4619 is_list_skeleton([_|T]) :- is_list_skeleton(T).
4620
4621 % true if it is more efficient to keep this, rather than expand into list
4622 is_efficient_custom_set(avl_set(_)).
4623 is_efficient_custom_set(closure(P,T,B)) :-
4624 (is_interval_closure(closure(P,T,B),_,_) -> true ; is_infinite_or_symbolic_closure(P,T,B)).
4625 ?is_efficient_custom_set(global_set(X)) :- is_infinite_global_set(X,_).
4626 is_efficient_custom_set(freetype(_)).
4627
4628 % tries to expand & convert to avl_set; fails if not possible: NOTE: also generates empty AVL
4629 expand_and_convert_to_avl_set(R,AER,Origin,Source) :-
4630 try_expand_and_convert_to_avl(R,ER,Origin,Source),
4631 nonvar(ER),(ER==[] -> AER=empty ; ER=avl_set(AER)).
4632
4633
4634 expand_and_convert_to_avl_set_unless_very_large(R,AER,WF) :-
4635 try_expand_and_convert_to_avl_unless_very_large_wf(R,ER,WF),
4636 nonvar(ER),(ER==[] -> AER=empty ; ER=avl_set(AER)).
4637
4638
4639 % similar to unless_large version, but will only expand if it is guaranteed to be small
4640
4641 try_expand_and_convert_to_avl_if_smaller_than(freetype(GS),Res,_) :- !, Res = freetype(GS).
4642 try_expand_and_convert_to_avl_if_smaller_than([H|T],Res,_) :- !, try_expand_and_convert_to_avl([H|T],Res).
4643 try_expand_and_convert_to_avl_if_smaller_than(avl_set(A),Res,_) :- !, Res=avl_set(A).
4644 try_expand_and_convert_to_avl_if_smaller_than(CS,Res,Limit) :-
4645 (is_small_specific_custom_set(CS,Limit)
4646 -> try_expand_and_convert_to_avl(CS,Res,try_expand_and_convert_to_avl_if_smaller_than,'')
4647 ; Res = CS % TO DO: maybe look at cardinality of types and determine max. cardinality
4648 ).
4649 is_small_specific_custom_set(CS,Limit) :- card_for_specific_custom_set(CS,Card,Code),
4650 call(Code), is_finite_card(Card), Card<Limit.
4651 get_card_for_specific_custom_set(CS,Card) :-
4652 card_for_specific_custom_set(CS,Card,Code),
4653 call(Code), ground(Card).
4654
4655 try_expand_and_convert_to_avl_unless_very_large_wf(CS,Res,WF) :-
4656 try_expand_and_convert_to_avl_unless_large_wf(CS,Res,10000,WF).
4657
4658 try_expand_and_convert_to_avl_unless_large_wf(CS,Res,WF) :-
4659 try_expand_and_convert_to_avl_unless_large_wf(CS,Res,2000,WF).
4660
4661 try_expand_and_convert_to_avl_unless_large_wf(CS,Res,_,_WF) :- var(CS), !, CS=Res.
4662 try_expand_and_convert_to_avl_unless_large_wf(global_set(GS),Res,_,_WF) :- !, Res = global_set(GS).
4663 try_expand_and_convert_to_avl_unless_large_wf(freetype(GS),Res,_,_WF) :- !, Res = freetype(GS).
4664 %try_expand_and_convert_to_avl_unless_large_wf(CS,Res,_WF) :- is_interval_closure(CS,Low,Up),!,
4665 % ((ground(Low),ground(Up),Size is 1+Up-Low, Size<2000)
4666 %% -> try_expand_and_convert_to_avl(CS,Res)
4667 % ; Res = CS
4668 % ).
4669 try_expand_and_convert_to_avl_unless_large_wf(closure(P,T,B),Res,Limit,_WF) :-
4670 is_very_large_or_symbolic_closure(P,T,B,Limit),!, % is explicitly marked as SYMBOLIC
4671 Res=closure(P,T,B).
4672 try_expand_and_convert_to_avl_unless_large_wf(CS,Res,_Limit,WF) :-
4673 % TO DO: check if maybe we cannot determine card explicitly, but have a large lower-bound
4674 try_expand_and_convert_to_avl_wf(CS,Res,try_expand_and_convert_to_avl_unless_large,'',WF).
4675
4676
4677
4678 % calls try_expand_and_convert_to_avl and returns original value if enumeration warning occured
4679 try_expand_and_convert_to_avl_with_catch_wf(CS,Res,Origin,WF) :-
4680 on_enumeration_warning(try_expand_and_convert_to_avl_wf(CS,Res,Origin,'',WF),
4681 Res=CS).
4682
4683 /* tries to generate an avl-structure, if possible */
4684 try_expand_and_convert_to_avl(CS,Res) :-
4685 try_expand_and_convert_to_avl_wf(CS,Res,try_expand_and_convert_to_avl,'',no_wf_available).
4686
4687 try_expand_and_convert_to_avl(CS,Res,Origin,Source) :-
4688 try_expand_and_convert_to_avl_wf(CS,Res,Origin,Source,no_wf_available).
4689
4690 try_expand_and_convert_to_avl_wf(CS,Res,_,_,_WF) :- var(CS), !, CS=Res.
4691 try_expand_and_convert_to_avl_wf(avl_set(A),R,_,_,_WF) :- !, R=avl_set(A).
4692 try_expand_and_convert_to_avl_wf([],R,_,_,_WF) :- !, R=[].
4693 try_expand_and_convert_to_avl_wf([H|T],R,_,_,WF) :- !, try_convert_to_avl_wf([H|T],R,WF).
4694 try_expand_and_convert_to_avl_wf(closure(P,T,B),Res,Origin,_Source,WF) :- !,
4695 debug_opt_push_wait_flag_call_stack_info(WF,
4696 external_call('TRY EXPANDING',[closure(P,T,B)],unknown),WF2),
4697 expand_only_custom_closure_global(closure(P,T,B),Expansion,check(Origin),WF2),
4698 try_convert_to_avl_wf(Expansion,Res,WF).
4699 try_expand_and_convert_to_avl_wf(CS,Res,Origin,_Source,WF) :-
4700 (\+ is_custom_explicit_set(CS,try_expand_and_convert_to_avl_wf)
4701 -> Expansion = CS
4702 ; expand_only_custom_closure_global(CS,Expansion,check(Origin),WF)
4703 ),
4704 try_convert_to_avl_wf(Expansion,Res,WF).
4705
4706 try_convert_to_avl(Expansion,Res) :-
4707 (should_be_converted_to_avl_from_lists(Expansion) -> construct_avl_from_lists(Expansion,Res) ; Res=Expansion).
4708 try_convert_to_avl_wf(Expansion,Res,WF) :-
4709 (should_be_converted_to_avl_from_lists(Expansion) -> construct_avl_from_lists_wf(Expansion,Res,WF) ; Res=Expansion).
4710
4711 should_be_converted_to_avl_from_lists(Value) :- var(Value),!,fail.
4712 should_be_converted_to_avl_from_lists(Value) :-
4713 \+ is_custom_explicit_set(Value,should_be_converted_to_avl_from_lists), % already avl_set, global_set or closure
4714 ? \+ do_not_convert_aux(Value),
4715 ground_value(Value).
4716
4717 do_not_convert_aux(V) :- var(V),!.
4718 do_not_convert_aux((A,B)) :- !,
4719 ? (do_not_convert_aux(A) -> true ; do_not_convert_aux(B)).
4720 do_not_convert_aux([H|T]) :- !, % do not convert a set containing a symbolic closure
4721 ? (var(T) -> true ; do_not_convert_aux(H)).
4722 do_not_convert_aux(rec(Fields)) :- !,
4723 (var(Fields) -> true
4724 ? ; member(field(_,V),Fields), do_not_convert_aux(V) -> true).
4725 do_not_convert_aux(H) :-
4726 ? is_symbolic_closure(H).
4727
4728 should_be_converted_to_avl(Value) :- %preference(use_avl_trees_for_sets,true),
4729 ground_value(Value).
4730
4731 try_expand_and_convert_to_avl_with_check(CS,Res,Origin) :-
4732 try_expand_and_convert_to_avl_with_check(CS,Res,do_not_keep_intervals,Origin).
4733
4734 try_expand_and_convert_to_avl_with_check(CS,Res,_,_Origin) :- var(CS),!, Res = CS.
4735 try_expand_and_convert_to_avl_with_check([],Res,_,_Origin) :- !, Res=[].
4736 try_expand_and_convert_to_avl_with_check(avl_set(A),Res,_,_Origin) :- !, Res=avl_set(A).
4737 try_expand_and_convert_to_avl_with_check([H|T],Res,_,Origin) :- !, try_expand_and_convert_to_avl([H|T],Res,Origin,'').
4738 %try_expand_and_convert_to_avl_with_check(CS,Res,_Origin) :-
4739 % \+ is_custom_explicit_set(CS,try_expand_and_convert_to_avl),!, Res = CS.
4740 try_expand_and_convert_to_avl_with_check(CS,Res,KeepIntervals,_Origin) :-
4741 is_interval_closure(CS,Low,Up),
4742 (var(Low) -> true ; var(Up) -> true % better keep this symbolic as we may be able to do constraint propagation
4743 ; KeepIntervals=keep_intervals(Size) -> Up-Low >= Size
4744 ),
4745 !, % TO DO: see if we should do this check in try_expand_and_convert_to_avl above instead
4746 Res=CS.
4747 try_expand_and_convert_to_avl_with_check(CS,Res,_,Origin) :-
4748 get_card_for_specific_custom_set(CS,Size), % TO DO: avoid checking for special closures twice (below in try_expand_and_convert_to_avl ?)
4749 !,
4750 try_expconv_to_avl_with_size(Size,CS,Res,Origin).
4751 try_expand_and_convert_to_avl_with_check(CS,Res,_,Origin) :-
4752 try_expand_and_convert_to_avl(CS,Res,Origin,'').
4753
4754 try_expconv_to_avl_with_size(inf,CS,Res,Origin) :- !,
4755 debug_format(9,'### Not expanding infinite set~n### ORIGIN: ~w~n',[Origin]),
4756 Res=CS.
4757 try_expconv_to_avl_with_size(inf_overflow,CS,Res,Origin) :- !,
4758 debug_format(9,'### Not expanding very large set~n### ORIGIN: ~w~n',[Origin]),
4759 Res=CS.
4760 try_expconv_to_avl_with_size(Size,CS,Res,Origin) :- Size>=10000000, !,
4761 /* will probably never terminate */
4762 debug_format(9,'### Not expanding very large set with cardinality ~w~n### ORIGIN: ~w~n',[Size,Origin]),
4763 Res=CS.
4764 try_expconv_to_avl_with_size(Size,CS,Res,Origin) :- Size>=50000, !,
4765 print('### WARNING: expanding very large comprehension set, size = '), print(Size),nl,
4766 print('### ORIGIN: '), print(Origin),nl,
4767 try_expand_and_convert_to_avl(CS,Res,Origin,'').
4768 try_expconv_to_avl_with_size(_Size,CS,Res,Origin) :-
4769 try_expand_and_convert_to_avl(CS,Res,Origin,'').
4770
4771 /* underlying assumption for var case: if G is a global set: we get back the
4772 global_set tag immediately: no need to use when to wait;
4773 better: ensure that b_compute_expression always returns a nonvar term */
4774
4775
4776 :- assert_must_succeed((custom_explicit_sets:try_expand_custom_set(closure([xx],[integer],b(falsity,pred,[])),R),R = [])).
4777 :- assert_must_succeed((custom_explicit_sets:test_closure(X),custom_explicit_sets:expand_custom_set(X,EX),
4778 EX = [(fd(1,'Name'),_),(fd(3,'Name'),_)])).
4779
4780 test_closure(X) :- X = closure(['_zzzz_binary'],[couple(global('Name'),set(global('Name')))],
4781 b(member(b(identifier('_zzzz_binary'),couple(global('Name'),set(global('Name'))),[generated]),
4782 b(cartesian_product(b(value([fd(1,'Name'),fd(3,'Name')]),set(global('Name')),[]),
4783 b(value([[fd(2,'Name'),fd(3,'Name')]]),set(set(global('Name'))),[])),
4784 set(couple(global('Name'),set(global('Name')))),[])),pred,[])).
4785
4786
4787 /* --------- */
4788 /* ELEMENT_OF */
4789 /* --------- */
4790
4791
4792 /* A function that instantiates last argument when membership test can be decided */
4793
4794 membership_custom_set(CS,X,R) :- print(warning_deprecated_non_wf_version(CS,X,R)),nl,
4795 membership_custom_set_wf(CS,X,R,_WF).
4796
4797 ?membership_custom_set_wf(avl_set(A),X,R,WF) :- !, membership_avl_set_wf(A,X,R,WF).
4798 membership_custom_set_wf(freetype(_GS),_X,R,_WF) :- !, R=pred_true. % should be covered by clause above
4799 membership_custom_set_wf(CS,X,R,WF) :- R==pred_true,!, element_of_custom_set_wf(X,CS,WF).
4800 membership_custom_set_wf(CS,X,R,WF) :- R==pred_false,!, not_element_of_custom_set_wf(X,CS,WF).
4801 membership_custom_set_wf(CS,_X,R,_WF) :-
4802 is_definitely_maximal_set(CS),!,
4803 R=pred_true.
4804 membership_custom_set_wf(closure(Par,Types,Body),X,R,WF) :- !,
4805 ? closure_membership_wf(X,Par,Types,Body,R,WF).
4806 %membership_custom_set_wf(CS,X,R,WF) :- is_one_element_custom_set(CS,Y),!, % only succeeds for AVL
4807 % kernel_equality:equality_objects_wf_no_enumr(X,Y,R,WF).
4808 membership_custom_set_wf(global_set(GS),X,R,WF) :- !,
4809 membership_global_set(GS,X,R,WF).
4810 membership_custom_set_wf(CS,X,R,WF) :-
4811 add_internal_error('Illegal custom set: ',membership_custom_set_wf(CS,X,R,WF)),fail.
4812
4813 membership_avl_set_wf(A,X,R,WF) :- R==pred_true,!, element_of_avl_set_wf(A,X,WF).
4814 membership_avl_set_wf(A,X,R,WF) :- R==pred_false,!, not_element_of_custom_set_wf(X,avl_set(A),WF).
4815 membership_avl_set_wf(A,X,R,WF) :- is_one_element_avl(A,Y),!,
4816 ? kernel_equality:equality_objects_wf_no_enum(X,Y,R,WF).
4817 membership_avl_set_wf(A,_X,R,_WF) :-
4818 quick_definitely_maximal_set_avl(A),!,
4819 R=pred_true.
4820 membership_avl_set_wf(A,X,R,WF) :- reify_avl_membership(A,X,R,FullReification),
4821 (FullReification==true
4822 -> true %print_term_summary(full_reification(A,X,R)),nl,nl %% did slow down e.g. Bosch Deadlock v9, seems no longer the case
4823 ? ; when((ground(X);nonvar(R)),membership_avl_set_wf2(A,X,R,WF))).
4824
4825 ?membership_avl_set_wf2(A,X,R,WF) :- R==pred_true,!, element_of_avl_set_wf(A,X,WF).
4826 membership_avl_set_wf2(A,X,R,WF) :- R==pred_false,!, not_element_of_custom_set_wf(X,avl_set(A),WF).
4827 membership_avl_set_wf2(AVL,X,R,_WF) :-
4828 ground_element_can_be_added_or_removed_to_avl(X), !,
4829 ? (safe_avl_member(X,AVL) %safe_avl_member_ground(X,AVL)
4830 -> R=pred_true ; R=pred_false).
4831 membership_avl_set_wf2(AVL,X,Res,WF) :- % X is ground but cannot be added
4832 (Res \== pred_false, element_of_avl_set_wf(AVL,X,WF), Res=pred_true
4833 ;
4834 Res \== pred_true, not_element_of_custom_set_wf(X,avl_set(AVL),WF), Res=pred_false).
4835
4836 membership_global_set(GS,_X,R,_WF) :- is_maximal_global_set(GS),!,
4837 R=pred_true.
4838 membership_global_set(GS,X,R,WF) :- ground(X),!,
4839 (element_of_global_set_wf(X,GS,WF) -> R=pred_true ; R=pred_false).
4840 membership_global_set(GS,X,R,_WF) :- get_integer_set_interval(GS,Low,Up),!,
4841 membership_interval(X,Low,Up,R).
4842 membership_global_set(GS,X,R,WF) :- % this case should probably never apply
4843 (GS=='FLOAT' -> true % currently it actually is also treated like REAL
4844 ; print(uncovered_membership(GS,X,R,WF)),nl),
4845 when(ground(X), (element_of_global_set_wf(X,GS,WF) -> R=pred_true ; R=pred_false)).
4846
4847 membership_interval(X,Low,Up,Res) :- nonvar(Up),Up=inf,!,X=int(IX),
4848 b_interpreter_check:check_arithmetic_operator('<=',Low,IX,Res).
4849 membership_interval(X,Low,Up,Res) :- kernel_equality:in_nat_range_test(X,int(Low),int(Up),Res).
4850
4851 :- use_module(bool_pred).
4852 closure_membership_wf(X,[ZZZZ],[integer],CondClosure,Res,_WF) :-
4853 is_interval_closure_body(CondClosure,ZZZZ,LOW,UP),!,
4854 kernel_equality:in_nat_range_test(X,int(LOW),int(UP),Res).
4855 % TO DO: deal with open intervals 0..inf ...
4856 closure_membership_wf(X,Par,Types,Body,Res,WF) :-
4857 is_member_closure(Par,Types,Body,_Type,VAL),
4858 (VAL=value(_) ; VAL = cartesian_product(b(value(A),_,_),b(value(B),_,_))),!,
4859 (VAL=value(Set)
4860 -> kernel_objects:membership_test_wf(Set,X,Res,WF)
4861 ? ; kernel_equality:cartesian_pair_test_wf(X,A,B,Res,WF)).
4862 closure_membership_wf(X,Par,Typ,Body,Res,WF) :-
4863 is_not_member_closure(Par,Typ,Body,_Type,value(Set)),!,
4864 bool_pred:negate(ResXSet,Res), % was kernel_equality:inv_mem_obj(ResXSet,Res),
4865 kernel_objects:membership_test_wf(Set,X,ResXSet,WF).
4866 % TO DO: if closure = POW closure -> translate into subset_test pow_subset
4867 % TO DO: support a few other closures related to symbolic unary/binary operators: closure1, POW(..), ... ?
4868 % TO DO: expand if set is small
4869 closure_membership_wf(X,Par,Types,Body,Res,WF) :- ground_value(X),!,
4870 closure_membership_ground_wf(X,closure(Par,Types,Body),Res,WF).
4871 closure_membership_wf(X,Par,Types,Body,Res,WF) :-
4872 CS = closure(Par,Types,Body),
4873 is_small_specific_custom_set(CS,100),
4874 try_expand_and_convert_to_avl_wf(CS,Expanded,closure_membership_wf,'',WF),
4875 nonvar(Expanded), Expanded=avl_set(_),
4876 !,
4877 membership_custom_set_wf(Expanded,X,Res,WF).
4878 closure_membership_wf(X,Par,Types,Body,Res,WF) :-
4879 Body \= b(member(_,_),_,_), % otherwise we may have an infinite loop; b_check_boolean_expression will generate a closure which will call closure_membership_wf again; TO DO: refine to allow certain memberships to go through
4880 get_texpr_info(Body,BodyInfo),
4881 \+ member(prob_annotation(recursive(_RID)),BodyInfo), % otherwise we can get errors as recursive identifier _RID needs to be added to local state ! (test 1151 fails otherwise)
4882 % TO DO: add recursive parameter below in set_up_typed_localstate2; + in which other circumstances do we need to set up recursion identifier !
4883 % Try reifiyng the body
4884 NegationContext=positive,
4885 copy_wf_start(WF,closure_membership_wf,CWF),
4886 b_interpreter:set_up_typed_localstate2(Par,Types,BodyInfo,ParValues,TypedVals,[],State,NegationContext),
4887 %couplise_list(Types,XType),
4888 convert_list_into_pairs(ParValues,SingleParValue),
4889 kernel_objects:equal_object(X,SingleParValue,closure_membership_wf),
4890 b_interpreter_check:b_check_boolean_expression(Body,[],State,CWF,PredRes),
4891 !,
4892 (debug_mode(on) -> print('REIFICATION of closure: '), translate:print_bexpr(Body),nl, print(pred_res(X,PredRes)),nl ; true),
4893 b_enumerate:b_tighter_enumerate_all_values(TypedVals,WF), % not necessary ?? as X should get enumerated
4894 Res=PredRes,
4895 copy_wf_finish(WF,CWF).
4896 closure_membership_wf(X,Par,Types,Body,Res,WF) :-
4897 when( (ground(X);nonvar(Res)), %%
4898 % used to be ground(X), % with (ground(X);nonvar(Res)), test 292 failed {x,t|t : BOOL & (x : POW(1024 .. 1025) & bool(x : POW(NATURAL1)) = t)} = {{} |-> TRUE,{1024} |-> TRUE,{1024,1025} |-> TRUE,{1025} |-> TRUE} and test 1088 failed
4899 closure_membership_ground_wf(X,closure(Par,Types,Body),Res,WF)).
4900
4901 closure_membership_ground_wf(X,CS,Res,WF) :- nonvar(Res),!,
4902 % this optimization is checked in test 1452
4903 ? (Res==pred_true -> element_of_custom_set_wf(X,CS,WF) ; not_element_of_custom_set_wf(X,CS,WF)).
4904 closure_membership_ground_wf(X,CS,Res,WF) :-
4905 % to ensure that we leave no choice point behind we have to force full evaluation of element/not_element calls:
4906 % hence we do not call element_of_custom_set_wf or not_element_of_custom_set_wf below !!
4907 kernel_waitflags:get_idle_wait_flag(closure_membership_ground_wf,WF,LWF), % enable other triggered co-routines to fire first; some maybe much more efficient to deal with than closure expansion;
4908 % used to be important for test 1146, but this is no longer the case
4909 %term_variables(CS,Vars),print(closure_membership_ground_wf_aux(LWF,vars(Vars),CS)),nl,
4910 ground_value_check(CS,CSGr),
4911 %when((nonvar(LWF),(nonvar(CSGr);nonvar(Res))),closure_membership_ground_wf_aux(X,CS,Res)).
4912 block_closure_membership_ground_wf_aux(X,CS,Res,CSGr,LWF,WF). % Note: wrong block in commit 332cb17487017d819e9140427b1017a3045b3685 caused problem for test 1162
4913
4914 :- block block_closure_membership_ground_wf_aux(?,?,?,?,-,?),
4915 block_closure_membership_ground_wf_aux(?,?,-,-,?,?).
4916 block_closure_membership_ground_wf_aux(X,CS,Res, _,_,WF) :-
4917 ? closure_membership_ground_wf_aux(X,CS,Res,WF).
4918
4919 % X & CS are ground or Res is known
4920 closure_membership_ground_wf_aux(X,CS,Res,WF) :- Res==pred_true,!,
4921 ? element_of_custom_set_wf(X,CS,WF).
4922 closure_membership_ground_wf_aux(X,CS,Res,WF) :- Res==pred_false,!,
4923 not_element_of_custom_set_wf(X,CS,WF).
4924 closure_membership_ground_wf_aux(X,CS,Res,_WF) :-
4925 % we know that X is a ground value and CS is ground: we can determine completely whether X is element of CS or not
4926 ? if(element_of_custom_set(X,CS),Res=pred_true, Res=pred_false).
4927 /* used to be: (Res \== pred_false, element_of_custom_set(X,CS), Res=pred_true
4928 ; Res \== pred_true, not_element_of_custom_set(X,CS), Res=pred_false)).
4929 */
4930
4931
4932
4933 :- use_module(kernel_objects,[element_of_global_set/2,element_of_global_set_wf/3]).
4934 element_of_custom_set_wf(X,CS,WF) :-
4935 ? element_of_custom_set_wf2(CS,X,WF). %, print(check_ok(X)),nl.
4936
4937 element_of_custom_set_wf2(node(A,B,C,D,E),X,WF) :-
4938 add_internal_error('Unwrapped avl_set: ',element_of_custom_set_wf2(node(A,B,C,D,E),X,WF)),fail.
4939 element_of_custom_set_wf2(global_set(GS),X,WF) :- element_of_global_set_wf(X,GS,WF).
4940 element_of_custom_set_wf2(freetype(ID),X,WF) :-
4941 (is_maximal_freetype(ID) -> true
4942 ; add_internal_error('Uncovered case: ',element_of_custom_set_wf2(freetype(ID),X,WF))
4943 ). % we assume freetypes to be maximal !
4944 ?element_of_custom_set_wf2(avl_set(AVL),X,WF) :- element_of_avl_set_wf(AVL,X,WF).
4945 element_of_custom_set_wf2(closure(Parameters,PT,Cond),X,WF) :-
4946 ? element_of_closure(X,Parameters,PT,Cond,WF).
4947
4948 element_of_avl_set_wf(node(Y,_,_,empty,empty),X,WF) :- !,
4949 ? kernel_objects:equal_object_wf(X,Y,element_of_custom_set_wf2,WF).
4950 ?element_of_avl_set_wf(AVL,X,_WF) :- ground_value(X),!, safe_avl_member(X,AVL). %safe_avl_member_ground(X,AVL).
4951 element_of_avl_set_wf(AVL,X,WF) :-
4952 avl_approximate_size(AVL,10,ApproxSize),
4953 ? element_of_avl_set_wf(AVL,ApproxSize,X,WF).
4954
4955 :- use_module(clpfd_tables).
4956
4957 element_of_avl_set_wf(AVL,ApproxSize,X,WF) :-
4958 % first check if worthwhile to attempt table treatment
4959 % after fixing table/2 bug runtimes have slowed down and test 1753 became much slower
4960 % for test 1753 a threshold of < 63 would be ideal; but test 1716 requires size 91
4961 % TODO: re-evaluate when SICStus 4.8 available
4962 preferences:preference(use_clpfd_solver,true),
4963 preferences:preference(solver_strength,SS),
4964 ApproxSize < 100+SS,
4965 (var(X) -> true
4966 ; X = (X1,_X2) -> (ground_value(X1) -> ApproxSize < 10+SS ; true)
4967 ; X=rec(_) -> true
4968 %; X=int(_) -> true ; X=fd(_,_) -> true % for scalar values we already use in_fd_value_list_wf via avl_fd_value_check
4969 ),
4970 can_translate_avl_to_table(AVL,SkeletonType),
4971 !,
4972 ? check_element_of_avl_with_table(X,SkeletonType,AVL,WF).
4973 element_of_avl_set_wf(AVL,ApproxSize,X,WF) :-
4974 ? propagate_avl_element_information(X,AVL,ApproxSize,WF), %translate:translate_bvalue(avl_set(AVL),SS),
4975 get_bounded_wait_flag(ApproxSize,element_of_avl(X),WF,WF1),
4976 ? element_of_avl_set_wf3(X,AVL,ApproxSize,WF1,WF).
4977
4978
4979 % compute an approximate size (small sets are computed exactly)
4980 avl_approximate_size(AVL,Size) :- avl_approximate_size(AVL,10,Size).
4981
4982 avl_approximate_size(AVL,HeightBound,Size) :- var(AVL),!,
4983 add_internal_error('AVL Set is variable: ', avl_approximate_size(AVL,HeightBound,Size)),
4984 Size=1000000.
4985 avl_approximate_size(AVL,HeightBound,Size) :- % when the AVL gets too large; not so important that we have a precise estimation anyway
4986 % so: save some time and just compute height
4987 avl_height(AVL,Height),
4988 (Height>HeightBound
4989 -> Size is floor(2**Height-1)
4990 ; avl_size(AVL,Size)).
4991
4992 :- block element_of_avl_set_wf3(-,?,?,-,?).
4993 element_of_avl_set_wf3(X,AVL,_ApproxSize,_WF1,_WF) :- var(X), !,
4994 ? safe_avl_member(X,AVL).
4995 % TO DO: if randomise_enumeration_order is true then choose elements in random order
4996 element_of_avl_set_wf3((X,Y),AVL,ApproxSize,WF1,WF) :- !,
4997 ground_value_check(X,GrX), % as soon as X is ground we can efficiently find possible values for Y
4998 % TODO: it could be that X is also a pair or a record with first field known;
4999 % see flexible_decompose_index and safe_flex_avl_member_default_wf
5000 ? block_couple_element_of_avl_set_grX_wf1(X,Y,AVL,ApproxSize,GrX,WF1,WF).
5001 element_of_avl_set_wf3(X,AVL,_ApproxSize,WF1,_WF) :-
5002 ground_value_check(X,GrX),
5003 ? safe_avl_member_block(X,AVL,GrX,WF1).
5004
5005 :- block safe_avl_member_block(?,?,-,-).
5006 safe_avl_member_block(X,AVL,_,_) :-
5007 ? safe_avl_member(X,AVL).
5008
5009 % ---------------------------------------------------
5010
5011
5012 :- block block_couple_element_of_avl_set_grX_wf1(?, - ,?,?,-,-,?).
5013 block_couple_element_of_avl_set_grX_wf1(X,Y,AVL,ApproxSize,GrX,WF1,WF) :-
5014 var(GrX), var(WF1),
5015 !,
5016 % we know the result Y but not yet fully the input value X
5017 (ApproxSize < 129 % TO DO: improve this; unify with inverse_apply_ok(Y,X,AVL,ApproxSize) ?
5018 -> ground_value_check(Y,GrY) % wait until Y is fully known
5019 ; (preference(solver_strength,SS), ApproxSize < 129+SS)
5020 -> ground_value_check(Y,GrY)
5021 % TO DO: we could look at avl_min and avl_max and estimate spread of range keys
5022 ; cond_perfmessage([data_validation_mode/false],no_inverse_avl_lookup(ApproxSize,Y)) % do not bind GrY; we wait until GrX or WF1 is bound
5023 ),
5024 ? block_couple_element_of_avl_set_grX_grY_wf1(X,Y,AVL,ApproxSize,GrX,GrY,WF1,WF).
5025 block_couple_element_of_avl_set_grX_wf1(X,Y,AVL,_ApproxSize,GrX,WF1,WF) :-
5026 ? couple_element_of_avl_set(X,Y,AVL,GrX,WF1,WF).
5027
5028 :- block block_couple_element_of_avl_set_grX_grY_wf1(?,?,?,?, -,-,-,?).
5029 block_couple_element_of_avl_set_grX_grY_wf1(X,Y,AVL,_ApproxSize, GrX,_GrY,WF1,WF) :-
5030 var(GrX), var(WF1), % i.e., Y is known
5031 % we know the result Y but not yet fully the input value X
5032 %inverse_apply_ok(Y,X,AVL,ApproxSize),
5033 !,
5034 inverse_get_possible_values(X,Y,AVL,Res),
5035 Res = avl_set(InvAVL),
5036 ? element_of_avl_set_wf(InvAVL,X,WF).
5037 block_couple_element_of_avl_set_grX_grY_wf1(X,Y,AVL,_ApproxSize,GrX,_GrY,WF1,WF) :-
5038 ? couple_element_of_avl_set(X,Y,AVL,GrX,WF1,WF).
5039
5040
5041 % special treatment for relations: if the first component is known: then we can check how many images there are
5042 couple_element_of_avl_set(X,Y,AVL,GrX,WF1,WF) :-
5043 nonvar(WF1), var(GrX), %\+ground(X),
5044 !,
5045 ? safe_flex_avl_member_default_wf((X,Y),AVL,WF).
5046 couple_element_of_avl_set(X,Y,AVLRelation,_GrX,_,WF) :- % X must be ground
5047 get_template(Y,TY,_ToUnifyAfter), % was copy_term(Y,CY) but could cause issues with closures with variables
5048 copy_term(TY,CY), % avoid that we instantiate Y and trigger co-routines
5049 findall(CY,avl_member_pair_arg1_ground(X,CY,AVLRelation),Images),
5050 Images \= [],
5051 construct_avl_from_lists_wf(Images,AVL,WF),
5052 ? element_of_custom_set_wf2(AVL,Y,WF). % will set up waitflag if necessary
5053
5054 % a version of safe_avl_member_default_wf which tries to flexibly find a usable index into the AVL first
5055 % it checks if a value can be decomposed into a ground index and the rest of a value
5056 % it also works for records indexing on first field
5057 % see tests 2351, 2353, 1966;
5058 safe_flex_avl_member_default_wf(Element,AVL,WF) :-
5059 \+ avl_height_less_than(AVL,4), % AVL tree large enough for indexing; check not necessary?; see test 2287
5060 flexible_decompose_index(Element,Key,Rest1,Path),!, % TODO: if fails: perfmessage
5061 % see Machine_Nov25/RVF428_MSTE_FOLIO.mch where this optimisation is very useful
5062 ? avl_fetch_with_flexible_index(Key, Path, AVL ,Rest2),
5063 ? kernel_objects:equal_object_wf(Rest1,Rest2,avl_fetch_with_flexible_index,WF).
5064 safe_flex_avl_member_default_wf(Element,AVL,WF) :-
5065 ? safe_avl_member_default_wf(Element,AVL,WF).
5066
5067 % set Res -> pred_true or pred_false if membership can be decided early
5068 % interval closures already dealt with by closure_membership
5069 % maximal sets are also already dealt with by membership_custom_set
5070 reify_avl_membership(AVL,Element,Res,FullReification) :-
5071 is_avl_simple_set(AVL,Type),
5072 preferences:preference(use_clpfd_solver,true), % to do: require maybe only for integer type !?
5073 \+ ground_value(Element),
5074 !,
5075 reify_avl_mem2(Type,Element,AVL,Res,FullReification).
5076 reify_avl_membership(_,_,_,false).
5077
5078
5079 is_avl_simple_set(node(El,_True,_,_,_),Type) :- simple_type(El,Type).
5080 simple_type(int(_),integer).
5081 simple_type(fd(_,GS),global(GS)).
5082
5083
5084 reify_avl_mem2(integer,int(El),AVL,Res,FullReification) :-
5085 avl_min(AVL,int(Min)), avl_max(AVL,int(Max)),
5086 (reify_integer_avl_mem(AVL,Min,Max) % reify if AVL small enough
5087 -> avl_domain(AVL,R),project_avl_domain_on_fd(R,FDList),
5088 clpfd_reify_inlist(El,FDList,FDRes,Posted),
5089 propagate_fd_membership(FDRes,Res,inlist(El,FDList)),
5090 FullReification=Posted
5091 ; clpfd_interface:try_post_constraint((El in Min..Max) #<=> FDRes),
5092 propagate_not_membership(FDRes,Res,int(El,Min,Max)),
5093 FullReification=false
5094 ).
5095 % this could also be enabled with CLPFD = FALSE ?? no overflows are possible
5096 reify_avl_mem2(global(GS),fd(El,GS),AVL,Res,FullReification) :-
5097 avl_domain(AVL,R),project_avl_domain_on_fd(R,FDList),
5098 b_global_sets:b_get_fd_type_bounds(GS,Low,Up),
5099 (is_full_fdlist(FDList,Low,Up)
5100 -> Res=pred_true, % all the values are in the list; it must be a member
5101 % normally this should also be detected by clpfd_reify_inlist, unless no constraint was set up for El
5102 % it seems to have an effect for test 426: probcli examples/EventBPrologPackages/SSF/Bepi_Soton/M1_mch.eventb -cbc all -strict -p CLPFD TRUE -p SMT TRUE -strict -p STRICT_RAISE_WARNINGS TRUE
5103 FullReification=true
5104 ; clpfd_reify_inlist(El,FDList,FDRes,Posted),
5105 propagate_fd_membership(FDRes,Res,inlist(El,FDList)),
5106 FullReification=Posted
5107 ).
5108 %reify_avl_mem2(global(GS),fd(El,GS),AVL,Res) :-
5109 % avl_min(AVL,fd(Min,GS)), avl_max(AVL,fd(Max,GS)),
5110 % clpfd_interface:try_post_constraint((El in Min..Max) #<=> FDRes),
5111 % propagate_not_membership(FDRes,Res,fd(El,GS,Min,Max)).
5112
5113 % assumes list is sorted
5114 is_full_fdlist(List,Low,Up) :- integer(Up), is_full_fdlist2(List,Low,Up).
5115 is_full_fdlist2([],Low,Up) :- Low>Up.
5116 is_full_fdlist2([Low|T],Low,Up) :- L1 is Low+1, is_full_fdlist2(T,L1,Up).
5117
5118 % check if avl small enough to call clpfd_reify_inlist
5119 reify_integer_avl_mem(_AVL,Min,Max) :- MaxSizeM1 is Max-Min, MaxSizeM1 =< 20,!.
5120 reify_integer_avl_mem(AVL,_Min,_Max) :- avl_height_less_than_with_solver_strength(AVL,5).
5121
5122
5123
5124 project_avl_domain_on_fd([],[]).
5125 project_avl_domain_on_fd([H|T],[PH|PT]) :- project_avl_domain(H,PH), project_avl_domain_on_fd(T,PT).
5126 project_avl_domain(int(X),X).
5127 project_avl_domain(fd(X,_),X).
5128
5129
5130 :- block propagate_fd_membership(-,-,?).
5131 % if we make it propagate_fd_membership(-,-?) Bosch examples becomes much slower ?
5132 % Indeed: membership_custom_set will already force membership or non-membership !
5133 %propagate_fd_membership(X,M,Info) :- var(X),!, print(propagate_fd(X,M,Info)),nl, (M=pred_true ->X=1 ; X=0).
5134 propagate_fd_membership(1,pred_true,_Info).
5135 propagate_fd_membership(0,pred_false,_Info).
5136
5137 :- block propagate_not_membership(-,?,?).
5138 propagate_not_membership(1,_,_). % there could be elements in the interval which are not in the set
5139 propagate_not_membership(0,Res,_Info) :-
5140 Res=pred_false.
5141
5142 % -----------------
5143
5144 % fails if not possible to quickly compute approximate size
5145 quick_custom_explicit_set_approximate_size(V,_) :- var(V),!,fail.
5146 quick_custom_explicit_set_approximate_size(avl_set(AVL),Size) :- !,
5147 quick_avl_approximate_size(AVL,Size).
5148 quick_custom_explicit_set_approximate_size(CS,Size) :-
5149 card_for_specific_custom_set(CS,Size,Code),
5150 on_enumeration_warning(call(Code),fail),
5151 atomic(Size). % inf or number; sometimes card_for_specific_custom_set can return a variable
5152
5153 :- use_module(clpfd_lists,[try_get_fd_value_list/4, get_fd_value/3, in_fd_value_list_wf/4]).
5154 % a membership propagation, but only done if it can be done quickly
5155
5156
5157 % quick_propagation_element_information(Set, Element, WF, PossiblyCompiledSet)
5158 % use last element for next iteration if you call quick_propagation_element_information in a loop
5159 :- block quick_propagation_element_information(-,?,?,?).
5160 quick_propagation_element_information(Set,_El,_,R) :-
5161 preferences:preference(use_clpfd_solver,false),
5162 !, R=Set.
5163 quick_propagation_element_information(avl_set(AVL),Element,WF,NewSet) :- !,
5164 quick_avl_approximate_size(AVL,Size),
5165 NewSet=avl_set_with_size(AVL,Size),
5166 propagate_avl_element_information_direct(Element,AVL,Size,WF).
5167 quick_propagation_element_information(avl_set_with_size(AVL,Size),Element,WF,NewSet) :- !,
5168 NewSet = avl_set_with_size(AVL,Size),
5169 propagate_avl_element_information_direct(Element,AVL,Size,WF).
5170 quick_propagation_element_information(closure(P,T,B),Element,WF,NewSet) :- !,
5171 NewSet = closure(P,T,B),
5172 ? element_of_closure(Element,P,T,B,WF).
5173 quick_propagation_element_information(fd_value_list(FDList,GroundList,Type),El,WF,NewSet) :- !,
5174 NewSet = fd_value_list(FDList,GroundList,Type),
5175 get_fd_value(Type,El,ElFD),
5176 in_fd_value_list_wf(GroundList,ElFD,FDList,WF).
5177 quick_propagation_element_information(Set,El,WF,NewSet) :-
5178 ? try_get_fd_value_list(Set,Type,FDList,GroundList),!,
5179 FDList \= [], % if list is empty membership fails
5180 NewSet = fd_value_list(FDList,GroundList,Type),
5181 % clpfd_inlist requires list of integers as second argument
5182 ? get_fd_value(Type,El,ElFD),
5183 % We could apply filter_non_matching_elements here
5184 in_fd_value_list_wf(GroundList,ElFD,FDList,WF).
5185 quick_propagation_element_information(Set,_,_,Set).
5186
5187 % -----------------
5188
5189 % infer information about an element of an AVL set
5190 propagate_avl_element_information(Element,AVL,Size,WF) :-
5191 (preferences:preference(use_clpfd_solver,true)
5192 ? -> propagate_avl_element_information_direct(Element,AVL,Size,WF)
5193 ; true).
5194
5195 propagate_avl_element_information_direct(Element,AVL,Size,WF) :-
5196 (Size<100 -> %30 which magic constant to use here; use larger value in SMT mode ?
5197 ? propagate_avl_element_information_small(Element,AVL,WF)
5198 ; is_avl_fd_index_set(AVL,Type) ->
5199 propagate_avl_element_information_large(Type,Element,AVL),
5200 (Size < 4000, nonvar(Element), Element = (_,_) % another magic constant
5201 -> Prio is Size // 60,
5202 get_wait_flag(Prio,propagate_avl_element_information(Element),WF,LWF),
5203 propagate_avl_el_large_block(Element,AVL,WF,LWF) % will do precise propagation
5204 ; true)
5205 ; true).
5206 % TO DO: we could call in_nat_range_wf; this way it would also work in non-CLPFD mode
5207
5208 :- block propagate_avl_el_large_block(?,?,?,-).
5209 propagate_avl_el_large_block((A,B),_,_,_) :-
5210 (ground(A); ground_value(B)), % in first: case we will apply AVL set ; in second case probably no benefit as propagate_avl_element_information_large already propagated first element
5211 !.
5212 propagate_avl_el_large_block(Element,AVL,WF,_LWF) :-
5213 % TO DO: maybe look if we should not use clpfd_list, but only upper & lower bound
5214 ? propagate_avl_element_information_small(Element,AVL,WF). % will do precise propagation.
5215
5216 :- use_module(clpfd_lists,[avl_fd_value_check/4]).
5217 :- use_module(clpfd_interface,[catch_and_ignore_clpfd_overflow/2]).
5218 propagate_avl_element_information_small(Element,AVL,WF) :-
5219 ? catch_and_ignore_clpfd_overflow(propagate_avl_element_information_small, % relevant test e.g. 1708 (with used_ids_defined_by_equality)
5220 avl_fd_value_check(AVL,Element,WF,_FullyChecked)).
5221
5222 propagate_avl_element_information_large(Type,El,AVL) :-
5223 avl_min(AVL,Min), avl_max(AVL,Max),
5224 % if Size small enough and smaller than Max-Min we call clpfd_inlist on domain
5225 % Note: overflows should be caught below; we could check that Min/Max are within CLPFD range
5226 couple_prj1_in_range(Type,El,Min,Max).
5227
5228 couple_prj1_in_range(integer,int(El),int(Min),int(Max)) :- clpfd_interface:clpfd_inrange(El,Min,Max).
5229 couple_prj1_in_range(global(GS),fd(El,GS),fd(Min,GS),fd(Max,GS)) :- clpfd_interface:clpfd_inrange(El,Min,Max).
5230 couple_prj1_in_range(couple_prj1(T),(El,_),(Min,_),(Max,_)) :- couple_prj1_in_range(T,El,Min,Max).
5231 couple_prj1_in_range(rec_first_field(Name,T),rec([field(Name,El)|TF]),
5232 rec([field(Name,Min)|TMin]),rec([field(Name,Max)|_])) :-
5233 (var(TF)
5234 -> copy_field_names(TMin,TF) % if Fields not yet instantiated: copy over all fields
5235 ; true),
5236 couple_prj1_in_range(T,El,Min,Max).
5237
5238 copy_field_names([],[]).
5239 copy_field_names([field(N,_)|T],[field(N,_)|CT]) :- copy_field_names(T,CT).
5240
5241 % check if the first component of the AVL elements of a type such that we can propagate FD information
5242 is_avl_fd_index_set(node(El,_True,_,_,_),Type) :-
5243 simple_index_type(El,Type).
5244 simple_index_type((El,_),couple_prj1(T)) :- simple_index_type(El,T).
5245 simple_index_type(int(_),integer).
5246 simple_index_type(fd(_,GS),global(GS)).
5247 simple_index_type(rec(Fields),rec_first_field(Name,T)) :- nonvar(Fields),
5248 Fields = [field(Name,El)|_],
5249 simple_index_type(El,T).
5250 %simple_index_type((int(_),_),couple_integer).
5251 %simple_index_type(((int(_),_),_),couple_couple_integer).
5252 %simple_index_type((fd(_,GS),_),couple_global(GS)).
5253
5254
5255 /* avoid instantiating non-normalised with normalised values leading to failure */
5256 :- assert_must_succeed((X=(fd(1,'Name'),fd(2,'Name')), A=node(X,true,0,empty,empty),
5257 custom_explicit_sets:safe_avl_member(X,A) )).
5258
5259 ?safe_avl_member(X,AVL) :- var(X), !, my_avl_member(X,AVL).
5260 %safe_avl_member(Value,AVL) :- decompose_index(Value,Key,RestVal), avl_fetch_indexed(Value,Key,RestVal,AVL).
5261 %safe_avl_member(X,AVL) :- ground_value(X), convert_to_avl_inside_set(X,AX), !, avl_fetch(AX,AVL).
5262 ?safe_avl_member(X,AVL) :- safe_flex_avl_member_default_wf(X,AVL,no_wf_available).
5263
5264
5265 % a version of safe_avl_member where the first argument is guaranteed to be ground
5266 % somehow using this seems to slow-down evaluation for vesg_Dec12; Caching ??
5267 %safe_avl_member_ground(X,AVL) :-
5268 % convert_to_avl_inside_set(X,AX), !, avl_fetch(AX,AVL).
5269 %safe_avl_member_ground((X,Y),AVL) :- !, avl_member_pair_arg1_ground(X,Y,AVL).
5270 %safe_avl_member_ground(X,AVL) :- safe_avl_member_default_wf(X,AVL,no_wf_available).
5271
5272
5273 % can be used to try and lookup a function value without creating WD errors, ...
5274 % used in b_compiler to compile function applications
5275 try_apply_to_avl_set_wf(X,Y,AVL,WF) :- ground_value(X),
5276 ? avl_member_pair_arg1_ground_wf(X,Y,AVL,WF).
5277
5278 % we know X is ground; typically Y is a free variable and it is used within a findall:
5279 avl_member_pair_arg1_ground(X,Y,AVL) :-
5280 ? avl_member_pair_arg1_ground_wf(X,Y,AVL,no_wf_available).
5281
5282 avl_member_pair_arg1_ground_wf(X,Y,AVL,WF) :- convert_to_avl_inside_set(X,AX), !,
5283 get_template(Y,RY,ToUnifyAfter),
5284 ? avl_fetch_pair(AX,AVL,RY), % see flexible_decompose_index, safe_flex_avl_member_default_wf
5285 unify_after_wf(ToUnifyAfter,WF).
5286 avl_member_pair_arg1_ground_wf(X,Y,AVL,_WF) :-
5287 safe_avl_member_default((X,Y),AVL).
5288
5289 safe_avl_member_default(X,AVL) :-
5290 ? safe_avl_member_default_wf(X,AVL,no_wf_available).
5291 safe_avl_member_default_wf(X,AVL,WF) :- % statistics(runtime,_),
5292 get_template(X,Template,ToUnifyAfter),
5293 ? my_avl_member(Template,AVL),
5294 % statistics(runtime,[_,T2]), print(avl_member(Template,T2)),nl,
5295 ? unify_after_wf(ToUnifyAfter,WF). % kernel_objects:equal_object(Template,X)).
5296
5297 unify_after_wf([],_).
5298 ?unify_after_wf([A/B|T],WF) :- kernel_objects:equal_object_wf(A,B,unify_after,WF),
5299 ? unify_after_wf(T,WF).
5300
5301
5302
5303 get_template(A,R,ToUnifyAfter) :-
5304 (var(A) -> ToUnifyAfter=[A/R]
5305 ; get_template2(A,R,ToUnifyAfter) -> true
5306 ; add_internal_error('Could_not_get_template: ',get_template(A,R,_))).
5307
5308 get_template2((A,B),(TA,TB),ToUnifyAfter) :- get_template(A,TA,ToUnifyAfter1), get_template(B,TB,ToUnifyAfter2),
5309 append(ToUnifyAfter1,ToUnifyAfter2,ToUnifyAfter). % TO DO: use DifferenceLists / DCG
5310 get_template2(int(X),int(X),[]).
5311 get_template2(fd(A,B),fd(A,B),[]).
5312 get_template2([],[],[]).
5313 get_template2(pred_false /* bool_false */,pred_false /* bool_false */,[]).
5314 get_template2(pred_true /* bool_true */,pred_true /* bool_true */,[]).
5315 get_template2([H|T],R,ToUnifyAfter) :-
5316 (ground_value(H),ground_value(T)
5317 -> convert_to_avl_inside_set([H|T],R),ToUnifyAfter=[]
5318 ; ToUnifyAfter=[[H|T]/R]).
5319 % ; R=avl_set(A), ToUnifyAfter=[[H|T]/avl_set(A)]).
5320 get_template2(closure(P,T,B),R,[]) :- ground_value(closure(P,T,B)),
5321 expand_closure_to_avl_wf(P,T,B,R,no_wf_available),!.
5322 get_template2(closure(P,T,B),AVL_OR_EMPTY_OR_GS,[closure(P,T,B)/AVL_OR_EMPTY_OR_GS]). % closure could be empty or an infinite global set ?
5323 %get_template2(closure_x(_,_,_),_AVL_OR_EMPTY).
5324 get_template2(avl_set(A),avl_set(NA),[]) :- convert_to_avl_inside_set(avl_set(A),avl_set(NA)). % do we need to normalise here ??
5325 get_template2(string(X),string(X),[]).
5326 get_template2(term(X),term(X),[]).
5327 get_template2(freetype(X),R,[]) :- convert_to_avl_inside_set(freetype(X),R).
5328 get_template2(rec(Fields),rec(TFields),ToUnifyAfter) :- get_fields_template(Fields,TFields,ToUnifyAfter).
5329 get_template2(freeval(ID,Case,Value),freeval(ID,Case,TValue),ToUnifyAfter) :- get_template(Value,TValue,ToUnifyAfter).
5330 get_template2(global_set(GS),R,[]) :- convert_to_avl_inside_set(global_set(GS),R).
5331
5332
5333 get_fields_template(A,R,[rec(A)/rec(R)]) :- var(A),!.
5334 get_fields_template([],[],ToUnifyAfter) :- !, ToUnifyAfter=[].
5335 get_fields_template([field(Name,Val)|T],[field(Name,TVal)|TT],ToUnifyAfter) :- nonvar(Name),!,
5336 get_template(Val,TVal,ToUnifyAfter1),
5337 get_fields_template(T,TT,ToUnifyAfter2), append(ToUnifyAfter1,ToUnifyAfter2,ToUnifyAfter).
5338 get_fields_template(A,R,[rec(A)/rec(R)]).
5339
5340
5341 % succeed if we can decide membership of an avl_set on the spot
5342 quick_test_avl_membership(AVL,X,Res) :-
5343 element_can_be_added_or_removed_to_avl(X),
5344 convert_to_avl_inside_set(X,AX),
5345 (avl_fetch(AX,AVL) -> Res=pred_true ; Res=pred_false).
5346
5347 % ---------------------
5348
5349 % a dispatch predicate
5350 my_avl_member(Key,AVL) :-
5351 (preferences:preference(randomise_enumeration_order,true)
5352 ? -> random_avl_member(Key,AVL) ; avl_member_opt(Key,AVL)).
5353 :- use_module(library(random),[random/3]).
5354 ?random_avl_member(Key,AVL) :- avl_height(AVL,Height), H1 is Height+1, random_avl_member(Key,H1,AVL).
5355 % TO DO: make more intelligent; this is not really a very uniform way of randomly enumerating an AVL set (e.g., Key never occurs between L and R)
5356 random_avl_member(Key, H, node(K,_,_,L,R)) :-
5357 random(1,H,1), !, H1 is H-1,
5358 ? (Key=K ; random_avl_member(Key,H1,L) ; random_avl_member(Key,H1,R)).
5359 random_avl_member(Key, H, node(K,_,_,L,R)) :- random(1,3,1), !, H1 is H-1,
5360 ? (random_avl_member(Key,H1,L) ; random_avl_member(Key,H1,R) ; Key=K).
5361 random_avl_member(Key, H, node(K,_,_,L,R)) :- H1 is H-1,
5362 ? (random_avl_member(Key,H1,R) ; random_avl_member(Key,H1,L) ; Key=K).
5363
5364 % a variation of avl_member from library(avl) which tries to avoid leaving choice points behind
5365 avl_member_opt(Key, node(K,_,_,L,R)) :-
5366 ? ( avl_member_opt(Key, L)
5367 ; R=empty -> Key = K % avoid trailing choice_point
5368 ? ; (Key=K ; avl_member_opt(Key, R))
5369 ).
5370
5371 % ---------------------
5372
5373 :- use_module(kernel_objects,[check_element_of_wf/3,not_element_of_wf/3]).
5374 :- use_module(memoization,[element_of_memoization_closure/6]).
5375 element_of_special_closure(interval(LOW,UP),X,WF,_,_,_) :- !,
5376 %hit_profiler:add_profile_hit(in_nat_range(X,LOW,UP,CondClosure)),
5377 kernel_objects:in_nat_range_wf(X,int(LOW),int(UP),WF).
5378 element_of_special_closure(member_closure(_ID,_Type,VAL),X,WF,_,_,_) :-
5379 (VAL=value(_) ; VAL = cartesian_product(b(value(A),_,_),b(value(B),_,_))),!,
5380 %hit_profiler:add_profile_hit(in_member_closure(X,Par,Typ,Body)),
5381 (VAL=value(Set) -> check_element_of_wf(X,Set,WF)
5382 ; X=(XA,XB),
5383 ? kernel_objects:check_element_of_wf(XA,A,WF),
5384 ? kernel_objects:check_element_of_wf(XB,B,WF)).
5385 element_of_special_closure(not_member_closure(_ID,_Type,value(Set)),X,WF,_,_,_) :- !,
5386 %hit_profiler:add_profile_hit(in_not_member_closure(X,Par,Typ,Set)),
5387 not_element_of_wf(X,Set,WF).
5388 % we used to have to add enumerator, as not_element_of does not instantiate; e.g. relevant when doing X :: GS - {y}
5389 % This is no longer required
5390 % see test 6 (../prob_examples/public_examples/B/FeatureChecks/NotMemberCheck.mch)
5391 element_of_special_closure(recursive_special_closure(RId),X,WF,Parameters,PT,CondClosure) :- !,
5392 add_recursive_parameter(Parameters,PT,X,RId,CondClosure,NewParameters,NewPT,Value,WF),
5393 ? element_of_normal_closure(Value,NewParameters,NewPT,CondClosure,WF).
5394 element_of_special_closure(memoization_closure(MemoID),X,WF,P,T,B) :- !,
5395 element_of_memoization_closure(MemoID,X,WF,P,T,B).
5396 element_of_special_closure(_,X,WF,Parameters,PT,CondClosure) :-
5397 % none of the special cases above apply after all
5398 ? element_of_normal_closure(X,Parameters,PT,CondClosure,WF).
5399
5400 :- block element_of_closure(?,-,?,?,?), element_of_closure(?,?,?,-,?).
5401 % element_of_closure(X,Para,T,Body,_WF): check if X is a member of closure(Para,T,Body)
5402 element_of_closure(X,Parameters,PT,CondClosure,WF) :-
5403 is_special_closure(Parameters,PT,CondClosure, SpecialClosure),!,
5404 %print_term_summary(element_of_special_closure(SpecialClosure,X,WF,Parameters,PT,CondClosure)), trace_in_debug_mode,
5405 ? element_of_special_closure(SpecialClosure,X,WF,Parameters,PT,CondClosure).
5406 element_of_closure(X,Parameters,PT,CondClosure,WF) :-
5407 %print_term_summary(element_of_normal_closure(X,Parameters,PT,CondClosure,WF)), trace_in_debug_mode,
5408 ? element_of_normal_closure(X,Parameters,PT,CondClosure,WF).
5409 element_of_normal_closure(X,Parameters,PT,CondClosure,WF) :-
5410 %hit_profiler:add_profile_hit(element_of_closure(X,Parameters,PT,CondClosure)),
5411 same_length(Parameters,ParValues),
5412 convert_list_into_pairs(ParValues,X),
5413 ? b_test_closure_wo_enum(Parameters,PT,CondClosure,ParValues,WF).
5414
5415 :- use_module(store,[set_up_localstate/4]).
5416 :- block b_test_closure_wo_enum(?,?,-,?,?).
5417 b_test_closure_wo_enum(Parameters,ParameterTypes,ClosurePred,ParValues,WF) :-
5418 % same_length(Parameters,ParValues), % not necessary
5419 set_up_localstate(Parameters,ParValues,[],LocalState),
5420 ? b_enumerate:b_type_values_in_store(Parameters,ParameterTypes,LocalState),
5421 copy_wf_start(WF,b_test_closure_wo_enum(Parameters),InnerWF),
5422 % avoid that WF0 actions triggered before we have had a chance to traverse the expression
5423 ? b_test_boolean_expression(ClosurePred,LocalState,[],InnerWF),
5424 ? copy_wf_finish(WF,InnerWF).
5425
5426 % recursive identifier to list of parameters with body as value
5427 % NewValue is the Value that should be checked for membership in the adapted closure; it has one argument more
5428 add_recursive_parameter(Parameters,Types,Value,TId,CondClosure,NewParameters,NewTypes,NewValue,WF) :-
5429 TId = b(identifier(RId),SetType,_), % unification replaces: get_texpr_id(TId,RId), get_texpr_type(TId,SetType),
5430 append(Parameters,[RId],NewParameters),
5431 append(Types,[SetType],NewTypes),
5432 %tools_printing:print_term_summary(recursion(Value)),nl,
5433 % TO DO check some variant decreases
5434 (kernel_waitflags:pending_abort_error(WF)
5435 -> NewValue = (_,_) % prevent further expansion of recursion, in case WD error in recursive function
5436 % TO DO: detect whether WD error occurs within recursive function,
5437 % indeed, the expansion of the recursive function could be unrelated to WD error and be important to detect inconsistency which prevents WD error: e.g., 1/x=res & recfun(x) \= 0
5438 ,debug_println(19,stopping_recursion_due_to_wd_error)
5439 ; NewValue = (Value,closure(Parameters,Types,CondClosure))
5440 ).
5441
5442
5443 % same as above, but without a waitflag
5444 ?element_of_custom_set(X,CS) :- element_of_custom_set2(CS,X).
5445
5446 element_of_custom_set2(global_set(GS),X) :- !,element_of_global_set(X,GS).
5447 element_of_custom_set2(freetype(ID),_) :- is_maximal_freetype(ID),!. % freetypes are always maximal at the moment
5448 element_of_custom_set2(avl_set(AVL),X) :- !,
5449 ? safe_avl_member(X,AVL).
5450 element_of_custom_set2(CS,X) :- init_wait_flags(WF,[element_of_custom_set2]),
5451 ? element_of_custom_set_wf2(CS,X,WF),
5452 ? ground_wait_flags(WF).
5453
5454 % ---------------
5455
5456 % function application for closure
5457
5458 % same as check_element_of_wf but does not wait on Y:
5459 % should also work for relation ??
5460
5461 check_element_of_function_closure(X,Y,Parameters,PT,CondClosure,WF) :-
5462 is_special_closure(Parameters,PT,CondClosure, SpecialClosure),!, % this covers recursive closures
5463 ? element_of_special_closure(SpecialClosure,(X,Y),WF,Parameters,PT,CondClosure).
5464 check_element_of_function_closure(X,Y, P,T,ClosureBody, WF) :-
5465 % affects test 1312, unless we add s:seq(0..9) before calling num
5466 % a special rule which tries and avoid enumerating solutions to arguments of function application
5467 % usually a function application will either be given all arguments or maybe be used in inverse
5468 ? is_converted_lambda_closure(P,T,ClosureBody), %is_converted_non_recursive_lambda_closure(P,T,ClosureBody),
5469 % TO DO: also make this work for recursive closures by adding recursive args (see e.g. test 1302)
5470 is_lambda_closure(P,T,ClosureBody, OtherIDs, OtherTypes, DomainPred, EXPR),
5471 (debug:debug_level_active_for(4) ->
5472 print('Apply Fun : '), translate:print_bexpr(DomainPred), print(' | '), translate:print_bexpr(EXPR),nl,
5473 get_texpr_info(ClosureBody,I), print(info(I,WF)),nl,
5474 print_term_summary((X,Y)),nl %,trace
5475 ; true),
5476 !,
5477 % alternative: annotate X,Y as inner variable ?
5478 get_texpr_info(ClosureBody,BInfo),
5479 ? b_interpreter:set_up_typed_localstate2(OtherIDs,OtherTypes,BInfo,ParValues,_TypedVals,[],LocalState,positive),
5480 convert_list_into_pairs(ParValues,SingleParValue),
5481 ? kernel_objects:equal_object_wf(X,SingleParValue,check_element_of_function_closure,WF),
5482 (is_truth(DomainPred) -> true
5483 ; init_wait_flags(InnerWF,[check_element_of_function_closure]),
5484 %copy_wf01e_wait_flags(WF,InnerWF), % we could delay copying WF0 until after test_boolean_expression of DomainPred ?
5485 ? b_test_boolean_expression(DomainPred,LocalState,[],InnerWF),
5486 ? get_wait_flag0(WF,WF0), get_wait_flag0(InnerWF,WF0), % was: ground_wait_flag0(InnerWF), but this can result in inner WF0 being set when outer is not yet set; see test 1948
5487 ground_value_check(X,GrX),
5488 (nonvar(GrX) -> copy_waitflag_store(InnerWF,WF) % block would trigger already
5489 ; ground_value_check(Y,GrY),
5490 (nonvar(GrY) -> copy_waitflag_store(InnerWF,WF) % block would trigger already
5491 ; get_last_wait_flag(check_element_of_function_closure(OtherIDs),WF,LastWF),
5492 block_copy_waitflag_store(InnerWF,WF,GrX,GrY,LastWF)
5493 )
5494 )
5495 ),
5496 ? b_interpreter:b_compute_expression(EXPR,LocalState,[],Y,WF).
5497 check_element_of_function_closure(X,Y, P,T,ClosureBody, WF) :-
5498 ? element_of_normal_closure((X,Y),P,T,ClosureBody,WF).
5499 % we could memoize on X here if /*@symbolic-memo */ pragma used and closure has special ID associated with it
5500
5501 :- block block_copy_waitflag_store(?,?,-,-,-).
5502 block_copy_waitflag_store(InnerWF,WF,_GrX,_GrY,_LWF) :-
5503 % copy waitflags from InnerWF store to WF
5504 copy_waitflag_store(InnerWF,WF).
5505
5506 /* -------------- */
5507 /* NOT_ELEMENT_OF */
5508 /* -------------- */
5509
5510 :- use_module(kernel_objects,[not_element_of_global_set/2]).
5511
5512 not_element_of_custom_set_wf(X,CS,WF) :-
5513 ? not_element_of_custom_set_wf2(CS,X,WF).
5514
5515 not_element_of_custom_set_wf2(global_set(GS),X,_WF) :- not_element_of_global_set(X,GS).
5516 not_element_of_custom_set_wf2(freetype(_),_,_) :- !,fail. % TO DO: what if we have List(1..3) ? can that occur ??
5517 not_element_of_custom_set_wf2(avl_set(node(Y,_,_,empty,empty)),X,WF) :- !,
5518 % X /: {Y} <=> X /= Y
5519 ? kernel_objects:not_equal_object_wf(X,Y,WF). % improve if X is ground
5520 not_element_of_custom_set_wf2(avl_set(AVL),X,_WF) :- !,
5521 ground_value_check(X,GrX),
5522 ? propagate_avl_not_element_information(X,GrX,AVL),
5523 not_element_of_avl_set_block(GrX,X,AVL).
5524 not_element_of_custom_set_wf2(closure(Parameters,PT,Cond),X,WF) :-
5525 ? closure_not_member(X,Parameters,PT,Cond,WF).
5526
5527 :- block not_element_of_avl_set_block(-,?,?).
5528 not_element_of_avl_set_block(_,X,AVL) :-
5529 convert_to_avl_inside_set(X,CX),
5530 \+ avl_fetch(CX,AVL). %% IMPROVE ??
5531
5532 propagate_avl_not_element_information(_,GrEl,_) :- nonvar(GrEl),!.
5533 propagate_avl_not_element_information(Element,_,AVL) :- preferences:preference(use_clpfd_solver,true),
5534 is_avl_simple_set(AVL,Type), % integer or global(GS) \+ground(Element) ,
5535 ((Type=integer -> avl_height_less_than_with_solver_strength(AVL,6) % 16-31 elements - was: avl_size<20
5536 ; true)
5537 -> !,
5538 ? propagate_avl_not_element_information3(Type,Element,AVL) % uses clpfd_not_inlist
5539 ; Type=integer, avl_height_less_than_with_solver_strength(AVL,15),
5540 avl_is_interval(AVL,Min,Max)
5541 -> !,
5542 kernel_objects:not_in_nat_range(Element,int(Min),int(Max)) % WF not used anyway in _wf version
5543 ).
5544 propagate_avl_not_element_information(_Element,_,AVL) :-
5545 quick_definitely_maximal_set_avl(AVL),
5546 !, % we require something not to be an element of the full set; impossible
5547 fail.
5548 % to do: check if all but one element is in set
5549 propagate_avl_not_element_information(_,_,_).
5550
5551 avl_height_less_than_with_solver_strength(AVL,Limit) :- preference(solver_strength,SS),
5552 RealLimit is Limit + SS/100,
5553 avl_height_less_than(AVL,RealLimit).
5554
5555 % try and compute a small finite cardinality for a ground value; fail if not possible
5556 try_get_finite_max_card_from_ground_value(pred_true,2).
5557 try_get_finite_max_card_from_ground_value(pred_false,2).
5558 try_get_finite_max_card_from_ground_value(fd(_,Type),Card) :-
5559 b_global_sets:b_fd_card(Type,Card), integer(Card).
5560 try_get_finite_max_card_from_ground_value((A,B),Card) :-
5561 try_get_finite_max_card_from_ground_value(A,CA),
5562 try_get_finite_max_card_from_ground_value(B,CB),
5563 Card is CA*CB,
5564 Card < 20000.
5565 try_get_finite_max_card_from_ground_value(rec(Fields),Card) :-
5566 try_get_finite_max_card_from_fields(Fields,Card).
5567 try_get_finite_max_card_from_ground_value(freeval(FreetypeId,_CaseId,_EArgs),Card) :-
5568 freetype_cardinality(FreetypeId,Card), number(Card), Card < 20000.
5569 try_get_finite_max_card_from_ground_value(avl_set(node(El,_True,_,_,_)),Card) :-
5570 try_get_finite_max_card_from_ground_value(El,CEl),
5571 CEl < 16,
5572 safe_pow2(CEl,Card).
5573 % int(_), term(floating(_)), string(_) are all infinite
5574
5575 try_get_finite_max_card_from_fields([],1).
5576 try_get_finite_max_card_from_fields([field(_,A)|TF],Card) :-
5577 try_get_finite_max_card_from_ground_value(A,CA),
5578 try_get_finite_max_card_from_fields(TF,CB),
5579 Card is CA*CB,
5580 Card < 20000.
5581
5582 :- use_module(b_global_sets,[get_global_type_value/3]).
5583 propagate_avl_not_element_information3(integer,int(El),AVL) :-
5584 avl_domain(AVL,R),project_avl_domain_on_fd(R,FDList),
5585 ? clpfd_interface:clpfd_not_inlist(El,FDList).
5586 propagate_avl_not_element_information3(global(GS),FD,AVL) :-
5587 get_global_type_value(FD,GS,El), % sets up the FD constraint if var; maybe we can detect inconsistency straightaway below
5588 avl_domain(AVL,R),project_avl_domain_on_fd(R,FDList), % maybe we can compute directly the complement ?
5589 ? clpfd_interface:clpfd_not_inlist(El,FDList).
5590
5591
5592 :- block closure_not_member(?,-,?,?,?).
5593 %, closure_not_member(-,?,?,?,?). /* El is unlikely to be instantiated by not_element_of test , but test 6 requires commenting out block declaration */
5594
5595 closure_not_member(X,Parameters,Types,Body,WF) :-
5596 is_special_closure(Parameters,Types,Body,SpecialClosure),!,
5597 ? not_element_of_special_closure(SpecialClosure,X,WF,Parameters,Types,Body).
5598 closure_not_member(El,Parameters,PT,Cond,WF) :-
5599 normal_closure_not_member(El,Parameters,PT,Cond,WF).
5600
5601 :- use_module(memoization,[not_element_of_memoization_closure/6]).
5602 not_element_of_special_closure(interval(LOW,UP),X,_WF,_Parameters,_Types,_Body) :-
5603 !,kernel_objects:not_in_nat_range(X,int(LOW),int(UP)).
5604 not_element_of_special_closure(member_closure(_ID,_Type,VAL),X,WF,_Parameters,_Types,_Body) :-
5605 ( VAL = value(_)
5606 ; VAL = cartesian_product(b(value(A),_,_),b(value(B),_,_))),!,
5607 %hit_profiler:add_profile_hit(member(X,Par,Typ,Body)),
5608 ( VAL=value(Set) -> kernel_objects:not_element_of_wf(X,Set,WF)
5609 ; kernel_objects:not_is_cartesian_pair(X,A,B,WF)).
5610 not_element_of_special_closure(not_member_closure(_ID,_Type,value(Set)),X,WF,_Parameters,_Types,_Body) :-
5611 ? !,kernel_objects:check_element_of_wf(X,Set,WF).
5612 not_element_of_special_closure(memoization_closure(MemoID),X,WF,P,T,B) :- !,
5613 not_element_of_memoization_closure(MemoID,X,WF,P,T,B).
5614 not_element_of_special_closure(recursive_special_closure(RId),X,WF,Parameters,Types,Body) :-
5615 !,
5616 add_recursive_parameter(Parameters,Types,X,RId,Body,NewParameters,NewPT,Value,WF),
5617 normal_closure_not_member(Value,NewParameters,NewPT,Body,WF).
5618
5619 not_element_of_special_closure(SC,_X,_WF,Parameters,Types,Body) :-
5620 SC \= interval(_,_),
5621 SC \= not_member_closure(_,_,_),
5622 is_definitely_maximal_closure(Parameters,Types,Body),
5623 !,
5624 fail.
5625 not_element_of_special_closure(_,X,WF,Parameters,Types,Body) :-
5626 % falling back to normal test
5627 normal_closure_not_member(X,Parameters,Types,Body,WF).
5628
5629 :- use_module(library(lists),[same_length/2]).
5630
5631 normal_closure_not_member(El,Parameters,PT,Cond,WF) :-
5632 %hit_profiler:add_profile_hit(closure_not_member(El,Parameters,PT,Cond,WF)),
5633 same_length(Parameters,ParValues),
5634 convert_list_into_pairs(ParValues,El),
5635 b_not_test_closure_wf(Parameters,PT,Cond,ParValues,WF).
5636
5637
5638
5639
5640 /* -------------------------- */
5641 /* VARIOUS CLOSURE PREDICATES */
5642 /* -------------------------- */
5643
5644
5645 :- use_module(tools,[convert_list_into_pairs/2]).
5646 :- use_module(b_interpreter,[b_test_boolean_expression/4, b_not_test_boolean_expression/4]).
5647 :- use_module(b_enumerate).
5648
5649 :- assert_pre(custom_explicit_sets:expand_closure_to_list(_,_,ClosureBody,_Result,_Done,_,_WF),
5650 (nonvar(ClosureBody),
5651 bsyntaxtree:check_if_typed_predicate(ClosureBody))).
5652 :- assert_post(custom_explicit_sets:expand_closure_to_list(_,_,_,Result,_Done,_,_WF),
5653 b_interpreter:value_type(Result)).
5654
5655 :- block expand_interval_closure_to_avl(-,?,?), expand_interval_closure_to_avl(?,-,?).
5656 expand_interval_closure_to_avl(Low,Up,Result) :-
5657 Delta is Up-Low,
5658 (Delta>9999 -> perfmessage(expanding_interval(Low,Up)) ; true),
5659 construct_interval_ord_list(Low,Up,OL),
5660 ord_list_to_avlset_direct(OL,ARes,expand_interval),
5661 ? equal_object(ARes,Result,expand_interval_closure_to_avl).
5662 construct_interval_ord_list(Low,Up,Res) :-
5663 (Low>Up -> Res = []
5664 ; Res = [int(Low)-true|T], L1 is Low+1, construct_interval_ord_list(L1,Up,T)
5665 ).
5666
5667 :- block expand_interval_closure_to_list(-,?,?,?), expand_interval_closure_to_list(?,-,?,?).
5668 expand_interval_closure_to_list(Low,Up,Result,Done) :-
5669 construct_interval_list(Low,Up,OL),
5670 ? equal_object(OL,Result,expand_interval_closure_to_list),
5671 Done=true.
5672 construct_interval_list(Low,Up,Res) :-
5673 (Low>Up -> Res = []
5674 ; Res = [int(Low)|T], L1 is Low+1, construct_interval_list(L1,Up,T)
5675 ).
5676
5677 expand_closure_to_list([X],[integer],Body,Result,Done,_,_) :-
5678 ? is_interval_closure_body(Body,X,Low,Up),!,
5679 expand_interval_closure_to_list(Low,Up,Result,Done).
5680 expand_closure_to_list(Par,Types,Body,Result,Done,Source,WF) :-
5681 ? expand_normal_closure(Par,Types,Body,CResult,CDone,expand_closure_to_list(Source),WF),
5682 expand_if_avl(CResult,Result,CDone,Done,Source),
5683 lazy_check_elements_of_closure(Result,CDone, Par,Types,Body,WF).
5684
5685 % Note: does slow down test 1306 (91ms mc time becomes 918 ms)
5686 % as long as a closure has not been fully expanded, lazily check elements
5687 % that are instantiated from the outside satisfy the closure predicate
5688 % Note: this can also instantiate unknown values used inside the closure body
5689 lazy_check_elements_of_closure(Result,CDone, Par,Types,Body,WF) :-
5690 (WF==no_wf_available -> true
5691 ? ; lazy_check_elements6(Result,CDone, Par,Types,Body,WF),
5692 propagate_closure_body_value_set(Par,Types,Body,Result,CDone,WF)
5693 ).
5694 % TODO: check if closure is a non-ground projection-member closure and check elements
5695 :- block lazy_check_elements6(-,-, ?,?,?,?).
5696 lazy_check_elements6(_Result,CDone, _Par,_Types,_Body,_WF) :- nonvar(CDone),!.
5697 lazy_check_elements6([H|T],CDone, Par,Types,Body,WF) :- !,
5698 ? element_of_closure(H,Par,Types,Body,WF),
5699 ? lazy_check_elements6(T,CDone, Par,Types,Body,WF).
5700 lazy_check_elements6(avl_set(A),_CDone, Par,Types,Body,WF) :- !,
5701 avl_max(A,X),
5702 element_of_closure(X,Par,Types,Body,WF).
5703 % TO DO: also check avl_min or even all elements ?
5704 lazy_check_elements6(_,_,_,_,_,_).
5705
5706 :- use_module(probsrc(bsyntaxtree),[create_typed_ids/3]).
5707 % lazy check elements from non-var closure body against a result
5708 % for example if we have {x| TRUE |-> x : Value } = Result and Value is not-ground,
5709 % we can check that for all elements TRUE|->x of Value the corresponding x is in Result, see test 2466
5710 % slows down test 1987
5711 :- block propagate_closure_body_value_set(?,?,?,-,-,?).
5712 % we delay until the result is known, possibly in SMT mode it could be useful to propagate earlier
5713 propagate_closure_body_value_set(ParIDs,Types,Body,Result,CDone,WF) :-
5714 var(CDone), % the closure has not yet been fully expanded
5715 % check if this closure can profit from set membership propagation:
5716 b_interpreter:is_for_all_set_membership_predicate2(Body,ParIDs,ParIDs,UnmatchedIDs,Set,_Pattern,_ParValues,_),
5717 UnmatchedIDs=[],
5718 Set = b(value(_Value),_,_), % check that the set is a value; it must be non-ground, otherwise CDone would be true
5719 create_couple_term(ParIDs,Types,CoupleTerm),
5720 SetTerm=b(value(Result),any,[]),
5721 safe_create_texpr(member(CoupleTerm,SetTerm),pred,[],RHS),
5722 create_typed_ids(ParIDs,Types,TIDs),
5723 !,
5724 propagate_closure_body_for_all(TIDs,Body,RHS,Result,CDone,WF).
5725 propagate_closure_body_value_set(_,_,_,_,_,_WF).
5726
5727 :- block propagate_closure_body_for_all(?,?,?,-,-,?).
5728 propagate_closure_body_for_all(TIDs,Body,RHS,_,CDone,WF) :- var(CDone),!,
5729 add_debug_message(closure,'Propagating from closure body to result: ',Body,Body),
5730 Infos=[],
5731 b_interpreter:b_for_all(TIDs,Infos,Body,RHS,[],[],WF).
5732 propagate_closure_body_for_all(_,_,_,_Result,_CDone,_WF). % propagation not required; closure expanded, cf test 1987
5733
5734 %check_valid_avl(AVL,Origin) :-
5735 % (nonvar(AVL) -> true
5736 % ; add_internal_error('Var avl_set: ', check_valid_avl(AVL,Origin)),fail).
5737
5738 :- block expand_if_avl(?,?,-,?,?).
5739 expand_if_avl(avl_set(S),Result,_,Done,Source) :- !, % we could transmit a flag to expand_normal_closure so that transform_result_into_set does not expand to avl
5740 ? expand_custom_set_to_list2(avl_set(S),Result,Done,_,expand_if_avl(Source),no_wf_available).
5741 expand_if_avl(Res,Result,_,Done,Source) :- check_list(Res,expand_if_avl(Source)),
5742 ? equal_object(Res,Result), Done=true.
5743
5744 check_list(Res,_) :- nonvar(Res), is_list(Res),!.
5745 check_list(Res,Src) :- add_error(Src,'Could not expand to list: ',Res).
5746 is_list([]). is_list([_|_]).
5747
5748 expand_closure_to_avl_or_list([X],[integer],Body,Result,_CheckTimeouts,_WF) :-
5749 ? is_interval_closure_body(Body,X,Low,Up),!,
5750 expand_interval_closure_to_avl(Low,Up,Result).
5751 %expand_closure_to_avl_or_list(P,T,Body,Result,_WF) :- is_member_closure(P,T,Body,TS,Set),
5752 % print(expand_member_closure(P,T,Body,TS,Set)),nl,fail.
5753 expand_closure_to_avl_or_list(Par,Types,Body,Result,CheckTimeouts,WF) :-
5754 expand_normal_closure(Par,Types,Body,CResult,_Done,CheckTimeouts,WF),
5755 kernel_objects:equal_object(Result,CResult,expand_closure_to_avl_or_list). % may convert to AVL, should we wait for _Done?
5756
5757
5758 % use WF just for call stack messages; we should not delay creating result
5759 expand_closure_to_avl_wf([X],[integer],Body,Result,_WF) :-
5760 is_interval_closure_body(Body,X,Low,Up),!,
5761 expand_interval_closure_to_avl(Low,Up,Result). % we could pass WF
5762 expand_closure_to_avl_wf(Par,Types,Body,Result,WF) :-
5763 ? expand_normal_closure(Par,Types,Body,S,Done,check(expand_closure_to_avl),WF),
5764 (ground_value(S) % ground value is sufficient to proceed; we do not need to check Done
5765 -> convert_to_avl_inside_set(S,R),equal_object(R,Result,expand_closure_to_avl)
5766 ; print(cannot_convert_closure_value_to_avl(closure(Par,Types),done(Done))),nl,
5767 translate:print_bexpr(Body),nl,trace,
5768 fail).
5769
5770
5771 % possible values for CheckTimeouts: check, check_no_inf, no_check, ...
5772 % Note: we no longer check is_infinite_explicit_set(closure(Parameters,ParameterTypes,ClosureBody))
5773 % and no longer raise add_closure_warning(Source,Parameters,ParameterTypes,ClosureBody,'### WARNING: expanding infinite comprehension set: ')
5774 % and no longer use preference warn_when_expanding_infinite_closures
5775 % this is relevant for e.g., test 1291
5776 expand_normal_closure(Parameters,ParameterTypes,ClosureBody,Result,Done,CheckTimeouts,WF) :-
5777 ? expand_normal_closure_memo(CheckTimeouts,Parameters,ParameterTypes,ClosureBody,Result,Done,WF).
5778
5779 :- public add_closure_warning_wf/6.
5780 add_closure_warning_wf(Source,Parameters,_ParameterTypes,_ClosureBody,_MSG,_WF) :-
5781 preference(provide_trace_information,false),preference(strict_raise_warnings,false),!,
5782 format('### TIME-OUT raised during closure expansion (~w,~w).~n### set TRACE_INFO preference to TRUE for more details.~n',[Parameters,Source]).
5783 add_closure_warning_wf(Source,Parameters,ParameterTypes,ClosureBody,MSG,WF) :-
5784 (debug_mode(on) -> Limit = 2500, AvlLim=10 ; Limit = 500, AvlLim=5),
5785 preferences:temporary_set_preference(expand_avl_upto,AvlLim,CHNG),
5786 call_cleanup(translate:translate_bvalue_with_limit(closure(Parameters,ParameterTypes,ClosureBody),Limit,CT),
5787 preferences:reset_temporary_preference(expand_avl_upto,CHNG)),
5788 bsyntaxtree:get_texpr_info(ClosureBody,Infos),
5789 add_warning_wf(Source,MSG,CT,Infos,WF), debug_print(19,'! infos: '), debug_println(Infos). %,trace.
5790
5791
5792 :- use_module(memoization,[is_memoization_closure/4,get_complete_memoization_expansion/6]).
5793
5794 % a version of closure expansion which memoizes its results; stored_expansion needs to be cleared when new machine loaded
5795 expand_normal_closure_memo(CHECK,Parameters,ParameterTypes,ClosureBody,FullResult,Done,WF) :-
5796 ? is_memoization_closure(Parameters,ParameterTypes,ClosureBody,MemoID),
5797 !, Span=ClosureBody,
5798 % MemoID can be a variable
5799 (var(MemoID) -> perfmessage(CHECK,'Getting full value of a memoized function',ClosureBody) ; true),
5800 get_complete_memoization_expansion(MemoID,FullResult,Done,Span,expand_normal_closure_memo(CHECK),WF).
5801 expand_normal_closure_memo(CHECK,Parameters,ParameterTypes,ClosureBody,FullResult,Done,WF) :-
5802 preferences:preference(use_closure_expansion_memoization,false),!,
5803 ? expand_normal_closure1(CHECK,Parameters,ParameterTypes,ClosureBody,FullResult,Done,WF).
5804 expand_normal_closure_memo(CHECK,Parameters,ParameterTypes,ClosureBody,FullResult,Done,WF) :-
5805 % maybe we should only memo when ClosureWaitVars are ground ?
5806 MemoLookupTerm = closure(Parameters,ParameterTypes,ClosureBody),
5807 compute_memo_hash(MemoLookupTerm,Hash),
5808 % idea: maybe store expansion only on second hit ?
5809 (get_stored_memo_expansion(Hash,MemoLookupTerm,StoredResult)
5810 -> %print_term_summary(reusing_expansion(Hash,Parameters,ParameterTypes,ClosureBody,StoredResult)),nl,
5811 UPV=StoredResult, %state_packing:unpack_value(StoredResult,UPV),
5812 FullResult = UPV, Done=true
5813 ; %statistics(runtime,[T1,_]), %%
5814 expand_normal_closure1(CHECK,Parameters,ParameterTypes,ClosureBody,FullResult,Done,WF),
5815 %statistics(runtime,[T2,_]), Time is T2-T1, store_memo_computation_time(Hash,Time),
5816 (Done==true/* ,T2-T1>0*/
5817 -> PackedValue=FullResult, %state_packing:pack_value(FullResult,PackedValue),
5818 store_memo_expansion(Hash,MemoLookupTerm,PackedValue)
5819 ; true)
5820 ).
5821
5822 expand_normal_closure1(CHECK,Parameters,ParameterTypes,ClosureBody,FullResult,Done,WF) :-
5823 preference(provide_trace_information,false),!,
5824 ? expand_normal_closure2(CHECK,Parameters,ParameterTypes,ClosureBody,FullResult,Done,WF).
5825 expand_normal_closure1(CHECK,Parameters,ParameterTypes,ClosureBody,FullResult,Done,WF) :-
5826 get_texpr_info(ClosureBody,Info),
5827 push_wait_flag_call_stack_info(WF,
5828 quantifier_call(comprehension_set(all_solutions),Parameters,[],Info),WF2),
5829 expand_normal_closure2(CHECK,Parameters,ParameterTypes,ClosureBody,FullResult,Done,WF2).
5830
5831
5832 expand_normal_closure2(_CHECK,Parameters,ParameterTypes,ClosureBody,FullResult,Done,WF) :-
5833 % TO DO: add more symbolic member closures who have expression computation code
5834 is_closure1_value_closure(Parameters,ParameterTypes,ClosureBody,VAL),!,
5835 ? bsets_clp:relational_trans_closure_wf(VAL,FullResult,WF),
5836 ground_value_check(FullResult,FRGr),
5837 when(nonvar(FRGr),Done=true).
5838 expand_normal_closure2(CHECK,Parameters,ParameterTypes,ClosureBody,FullResult,Done,WF) :-
5839 % special treatment for lambda closures: Advantage: we don't have to wait for variables in EXPR body of closure
5840 % Disadvantage: EXPR only gets evaluated after a solution has been found for args: can mean repeated computations !
5841 % (cf pas_as_env_inv_cv_sui, negated version of !(cv_i).(cv_i : t_cv_pas => closure(%cv_o2.((...|>> {cv_i} : t_cv_pas <-> t_cv_pas) ASSERTION
5842 % Advantage: it can solve constraints such as f = %x.(x:1..10|x+y) & f(5)=1005 (finding y without enumeration); see test 1168
5843 \+ preferences:preference(use_smt_mode,false),
5844 is_lambda_closure(Parameters,ParameterTypes,ClosureBody, OtherIDs,OtherTypes, DomainPred, EXPR),
5845 \+ ground_bexpr(EXPR), % if EXPR is ground, there is nothing to be gained by special treatment here
5846 WF \= no_wf_available, % otherwise we may have to enumerate EXPR result leading to choice points, e.g. in phase 0
5847 !,
5848 bexpr_variables(DomainPred,ClosureWaitVars),
5849 (CHECK=no_check -> TIMEOUTCODE = true ;
5850 TIMEOUTCODE = add_closure_warning_wf(CHECK,Parameters,ParameterTypes,ClosureBody,
5851 'TIME-OUT occurred while ProB was expanding: ',WF)),
5852 (CHECK=check_no_inf -> VIRTUALTIMEOUTCODE=true ; VIRTUALTIMEOUTCODE=TIMEOUTCODE),
5853 delay_setof_check_wf( ParTuple,
5854 (custom_explicit_sets:b_test_closure(OtherIDs,OtherTypes,DomainPred,OtherValues,all_solutions,WF),
5855 convert_list_into_pairs(OtherValues,ParTuple)
5856 % TO DO: compile EXPR when we start expanding the closure: to avoid repeated re-computation of expressions for every instance
5857 ),
5858 Result, ClosureWaitVars, __Done,
5859 TIMEOUTCODE,VIRTUALTIMEOUTCODE,WF,DomainPred),
5860 (WF = no_wf_available
5861 -> init_wait_flags(WF1,[expansion_context(lambda_function_result,Parameters)])
5862 ; WF1=WF
5863 ),
5864 evaluate_result_expr(Result,EXPR,OtherIDs,EvResult,EvDone,WF1),
5865 when(nonvar(EvDone),(
5866 (WF = no_wf_available -> ground_wait_flags(WF1) ; true),
5867 kernel_objects:equal_object_wf(EvResult,FullResult,expand_normal_closure2,WF),
5868 Done=true)).
5869 expand_normal_closure2(no_check,Parameters,ParameterTypes,ClosureBody,Result,Done,WF) :- !,
5870 expand_normal_closure_direct(Parameters,ParameterTypes,ClosureBody,Result,Done,WF).
5871 expand_normal_closure2(CHECK,Parameters,ParameterTypes,ClosureBody,Result,Done,WF) :-
5872 bexpr_variables(ClosureBody,ClosureWaitVars),
5873 TIMEOUTCODE = add_closure_warning_wf(CHECK,Parameters,ParameterTypes,ClosureBody,
5874 'TIME-OUT occurred while ProB was expanding: ',WF),
5875 (CHECK=check_no_inf -> VIRTUALTIMEOUTCODE=true ; VIRTUALTIMEOUTCODE=TIMEOUTCODE),
5876 % Note: delay_setof_check_wf will throw enumeration warning for virtual timeouts, after VIRTUALTIMEOUTCODE
5877 delay_setof_check_wf( ParTuple,
5878 custom_explicit_sets:test_closure_and_convert(Parameters,ParameterTypes,ClosureBody, ParTuple,WF),
5879 Result, ClosureWaitVars, Done, TIMEOUTCODE, VIRTUALTIMEOUTCODE,WF,ClosureBody).
5880
5881 expand_normal_closure_direct(Parameters,ParameterTypes,ClosureBody,Result,Done,WF) :-
5882 bexpr_variables(ClosureBody,ClosureWaitVars),
5883 Span = ClosureBody,
5884 delay_setof_wf( ParTuple,
5885 % TO DO: refresh waitflag in outer WF store to let pending code run to completion and avoid spurious WD errors ?
5886 custom_explicit_sets:test_closure_and_convert(Parameters,ParameterTypes,ClosureBody, ParTuple,WF),
5887 Result, ClosureWaitVars, Done,WF, Span).
5888
5889
5890
5891 :- block evaluate_result_expr(-,?,?,?,?,?).
5892 evaluate_result_expr(avl_set(AVL),EXPR,OtherIDs,Res,Done,WF) :-
5893 avl_domain(AVL,R),
5894 evaluate_result_expr(R,EXPR,OtherIDs,Res,Done,WF).
5895 evaluate_result_expr([],_EXPR,_OtherIDs,[],Done,_WF) :-
5896 %ground_wait_flags(WF),
5897 Done=true.
5898 evaluate_result_expr([ParTuple|T],EXPR,OtherIDs,[FullTuple|ET],Done,WF) :-
5899 % same_length(OtherIDs,ParValues), % not necessary
5900 set_up_localstate(OtherIDs,ParValues,[],LocalState),
5901 convert_list_into_pairs(ParValues,ParTuple), % bind values in ParTuple to LocalState
5902 b_interpreter:b_compute_expression(EXPR,LocalState,[],EXPRVALUE,WF),
5903 append(ParValues,[EXPRVALUE],FullValues),
5904 convert_list_into_pairs(FullValues,FullTuple),
5905 evaluate_result_expr(T,EXPR,OtherIDs,ET,Done,WF).
5906
5907 :- use_module(bsyntaxtree,[split_names_and_types/3]).
5908 :- use_module(probsrc(bsyntaxtree), [def_get_texpr_id/2]).
5909 %:- use_module(library(lists),[prefix_length/3, suffix_length/3]).
5910 % test a closure and convert into pairs; assume we want all solutions
5911 test_closure_and_convert(Parameters,ParameterTypes,ClosureBody, ParTuple, WF) :-
5912 ? is_recursive_closure(Parameters,ParameterTypes,ClosureBody),
5913 ? get_recursive_identifier_of_closure_body(ClosureBody,TRID),!,
5914 def_get_texpr_id(TRID,RID), get_texpr_type(TRID,RType),
5915 %print(test_recursion(RID)),nl, translate:nested_print_bexpr(ClosureBody),nl,
5916 RecVal = closure(Parameters,ParameterTypes,ClosureBody), % Recursive Value added to parameters
5917 same_length(Parameters,ParValues),
5918 reset_closure_solution_counter(Parameters),
5919 ? b_test_closure([RID|Parameters],[RType|ParameterTypes],ClosureBody,[RecVal|ParValues],all_solutions,WF),
5920 convert_sol_list_into_pairs(ParValues,Parameters,ParTuple). % convert tuple without recursive value to ParTuple
5921 test_closure_and_convert(Parameters,ParameterTypes,b(exists(EParAndTypes,ClosureBody),pred,OuterInfo), ParTuple, WF) :-
5922 % Motivation: enumerating Parameters can be quite inefficient
5923 % if for example we have something like {x|#y.(y:SmallSet & x=f(y))}
5924 % Problem: the existential quantifier will be delayed until the Parameters are instantiated !
5925 % relevant test: 1162
5926 % Note: this is duplicating to some extent the code in b_test_exists_wo_expansion
5927 % However, here we can also apply lambda_closure optimisation in b_test_closure below, this is
5928 % relevant for private_examples/2023/.../rule_FICHIER_MRGATKSAATPAR_RVF219_MRGA_DE.mch
5929 ? exists_should_be_lifted(Parameters,ParameterTypes,OuterInfo,ClosureBody),
5930 split_names_and_types(EParAndTypes,EPar,ETypes),
5931 !,
5932 % print(' Lifting existential quantifier (i.e., enumerating paras with closure paras): '), print(EPar),nl,
5933 % print(outer_paras(Parameters)),nl,
5934 % append Parameters at end; in case we have a lambda function
5935 append(EPar,Parameters,FullPar), length(Parameters,NrParas),
5936 append(ETypes,ParameterTypes,FullTypes),
5937 length(EPar,NrExistsParas),
5938 length(IrrelevantParas,NrExistsParas), length(Suffix,NrParas),
5939 append(IrrelevantParas,Suffix,FullParList),
5940 copy_identifier_infos(OuterInfo,ClosureBody,ClosureBody2),
5941 reset_closure_solution_counter(Parameters),
5942 % bsyntaxtree:check_used_ids_in_ast(ClosureBody2),
5943 ? b_test_closure(FullPar,FullTypes,ClosureBody2, FullParList,all_solutions,WF),
5944 convert_sol_list_into_pairs(Suffix,Parameters,ParTuple).
5945 test_closure_and_convert(Parameters,ParameterTypes,ClosureBody, ParTuple, WF) :-
5946 reset_closure_solution_counter(Parameters),
5947 % print(test),nl, translate:nested_print_bexpr(ClosureBody),nl,
5948 length(Parameters,Len), length(ParValues,Len),
5949 %(annotate_exists(Parameters,ParameterTypes,ClosureBody,Body2) -> true ; Body2=ClosureBody),
5950 ? b_test_closure(Parameters,ParameterTypes,ClosureBody,ParValues,all_solutions,WF),
5951 convert_sol_list_into_pairs(ParValues,Parameters,ParTuple). % ,print(solution(ParTuple)),nl,nl.
5952
5953 % Lifting existential quantifier was previously done here, but was duplicating code in b_test_exists_wo_expansion
5954 % we now simply generate the allow_to_lift_exists annotation here and let b_test_exists_wo_expansion do its job
5955 %annotate_exists(Parameters,ParameterTypes,
5956 % b(exists(EParAndTypes,ClosureBody),pred,OuterInfo),
5957 % b(exists(EParAndTypes,ClosureBody),pred,[allow_to_lift_exists|OuterInfo])) :-
5958 % exists_should_be_lifted(Parameters,ParameterTypes,OuterInfo,ClosureBody).
5959
5960 % check if a top-level exists with body ExistsClosureBody should be lifted
5961 % within a closure with paras Parameters of type ParameterTypes:
5962 exists_should_be_lifted(Parameters,ParameterTypes,OuterInfo,ExistsClosureBody) :-
5963 (Parameters == ['_was_lambda_result_'] % here we are quite sure that we gain by this optimisation
5964 ? ; member(allow_to_lift_exists,OuterInfo) % parameters were originally from a set comprehension,
5965 % see test 306: in this case existential quantifier is lifted in b_interpreter anyway;
5966 % Note we counter the rewrite ran({x1,...xn|P}) ---> {xn| #(x1,...).(P)} and similarly for dom({...})
5967 ; ExistsClosureBody = b(member(_,_),_,_) % we have a simple projection closure
5968 % TO DO: maybe support other ones as well
5969 ? ; basic_type_list_cardinality(ParameterTypes,Card),
5970 (Card=inf -> true ; Card=inf_overflow -> true ; Card>10000) % geq_inf(Card,10001)
5971 % if here are only a few parameter values: do not lift existential quantified variables
5972 ).
5973
5974 % we need to copy important infos about the outer Parameters to ClosureBody
5975 copy_identifier_infos(Info,b(InnerPred,T,II),b(InnerPred,T,II2)) :-
5976 findall(I,identifier_info(I,Info),ToCopy),
5977 append(ToCopy,II,II2).
5978 identifier_info(I,Info) :- I=prob_annotation('DO_NOT_ENUMERATE'(ID)),
5979 ? member(I,Info), ID \= '$$NONE$$'.
5980
5981 convert_sol_list_into_pairs(ParaValues,Parameters,ParTuple) :-
5982 convert_list_into_pairs(ParaValues,ParTuple),
5983 update_closure_solution_counter(Parameters,ParTuple).
5984
5985 :- if(environ(prob_debug_flag,true)).
5986 :- dynamic closure_solution_counter/3.
5987 % debugging long expansions of comprehension_set / closures
5988 reset_closure_solution_counter(Parameters) :- retractall(closure_solution_counter(Parameters,_,_)).
5989
5990 update_closure_solution_counter(Parameters,ParTuple) :-
5991 retract(closure_solution_counter(Parameters,OldCount,OldTime)),!,
5992 statistics(walltime,[W2,_]), Delta is W2-OldTime,
5993 NewCount is OldCount+1,
5994 ((Delta > 5000 ; NewCount mod 1000 =:= 0)
5995 -> format('--> Solution ~w for expansion of closure ~w (delta ~w ms): ',[NewCount,Parameters,Delta]),
5996 translate:print_bvalue(ParTuple),nl,
5997 assert(closure_solution_counter(Parameters,NewCount,W2))
5998 ; assert(closure_solution_counter(Parameters,NewCount,OldTime))
5999 ).
6000 update_closure_solution_counter(Parameters,_ParTuple) :-
6001 statistics(walltime,[W2,_]),
6002 assert(closure_solution_counter(Parameters,1,W2)).
6003 :- else.
6004 reset_closure_solution_counter(_).
6005 update_closure_solution_counter(_,_).
6006 :- endif.
6007
6008
6009
6010 % compute cardinality of a list of basic types
6011 basic_type_list_cardinality([],1).
6012 basic_type_list_cardinality([BasicType|T],Res) :-
6013 ? basic_type_list_cardinality(T,TCard),
6014 (TCard=inf -> Res=inf
6015 ? ; kernel_objects:max_cardinality(BasicType,Card),
6016 safe_mul(Card,TCard,Res)
6017 ).
6018
6019 % for lambda closures we can set up a second waitflag for the expression and only ground it when body enumeration finished
6020 % idea is to avoid perturbation of constraint solving of main closure predicate by lambda expression, see test 1737
6021 % something like %(x,y).(x:1..200 & y:1..100 & y+x<259 & y*x>10|(y+x*x+y) mod 100) is faster
6022 % this is slower : %(x,y).(x:1..200 & y:1..100 |(y+x*x+y))
6023 % currently this slows down test 1336
6024 :- block b_test_closure(?,?,-,?,?,?).
6025 b_test_closure(Parameters,ParameterTypes,ClosureBody, FullParValues, NegationContext, OuterWF) :-
6026 (preference(data_validation_mode,true)
6027 -> true % avoids ineraction between domain and range expression enumeration; see
6028 % private_examples/ClearSy/2019_May/perf_3264/rule_186.mch or
6029 % computation of 631 ic___DMI_MRGATKSAAT___Parametre_Identifiant_indices_function in rule_FICHIER_MRGATKSAATPAR_RVF219_MRGA_DE.mch
6030 % however, as b_optimize below does *not* evaluate nested set comprehensions, there can be a slowdown:
6031 % the nested set comprehension gets re-evaluated for every soluiton of the lambda parameters !
6032 % this was the case of private_examples/ClearSy/2019_Nov/rule_Regle_31C_0005/rule.mch before using SORT
6033 ; \+ preferences:preference(use_smt_mode,false)), % TO DO: enable in normal mode when performance of 1336 fixed
6034 % print(test_closure(Parameters,FullParValues)),nl,
6035 is_lambda_closure(Parameters,ParameterTypes,ClosureBody, OtherIDs,OtherTypes, DomainPred, EXPR),
6036 % TO DO: detect not only equalities at end, but any equality which is irrelevant for the rest
6037 % nl,print(lambda_closure(OtherIDs)),nl, translate:print_bexpr(EXPR),nl,
6038 append(ParValues,[LambdaResult],FullParValues),
6039 !,
6040 get_texpr_info(ClosureBody,BInfo),
6041 ? b_interpreter:set_up_typed_localstate2(OtherIDs,OtherTypes,BInfo,ParValues,TypedVals,[],LocalState,NegationContext),
6042 simplify_span(ClosureBody,BSpan), % sometimes BInfo no longer contains a position info, but first_sub_expr does
6043 init_quantifier_wait_flag(OuterWF,comprehension_set(NegationContext),OtherIDs,ParValues,BSpan,WF),
6044 ? b_test_boolean_expression(DomainPred,LocalState,[],WF),
6045 %print('PRED: '),translate:print_bexpr(ClosureBody),nl,
6046 b_tighter_enumerate_values_in_ctxt(TypedVals,DomainPred,WF), % also does: project_away_useless_enumeration_values
6047 init_quantifier_wait_flag(OuterWF,comprehension_set(NegationContext),OtherIDs,ParValues,BSpan,WF2),
6048 ? b_compiler:b_optimize(EXPR,[],LocalState,[],CEXPR,WF), % already pre-compile lookup, without constraint processing; is not sufficient for test 1336
6049 ? ground_wait_flags(WF), % TODO: also call ground inner WF in context
6050 ? b_interpreter:b_compute_expression(CEXPR,LocalState,[],LambdaResult,WF2),
6051 ground_inner_wait_flags_in_context(NegationContext,WF2).
6052 b_test_closure(Parameters,ParameterTypes,ClosureBody,ParValues,NegationContext, OuterWF) :-
6053 % tools:print_bt_message(b_test_closure_testing_closure(Parameters,ParValues)), %%
6054 get_texpr_info(ClosureBody,BInfo),
6055 ? b_interpreter:set_up_typed_localstate2(Parameters,ParameterTypes,BInfo,
6056 ParValues,TypedVals,[],LocalState,NegationContext),
6057 % print_message(b_interpreter:b_test_boolean_expression(ClosureBody,LocalState,[],WF)),
6058 simplify_span(ClosureBody,BSpan), % sometimes BInfo no longer contains a position info, but first_sub_expr does
6059 init_quantifier_wait_flag(OuterWF,comprehension_set(NegationContext),Parameters,ParValues,BSpan,WF),
6060 %external_functions:observe_parameters(Parameters,LocalState), %%
6061 ? b_test_boolean_expression(ClosureBody,LocalState,[],WF),
6062 % tools:print_bt_message(tested_bool_expr), translate:print_bexpr(ClosureBody),nl,
6063 b_enumerate:b_tighter_enumerate_values_in_ctxt(TypedVals,ClosureBody,WF), % also detects useless enumeration ids
6064 ? ground_inner_wait_flags_in_context(NegationContext,WF).
6065
6066
6067
6068 :- block b_not_test_closure_wf(?,?,?,-,?).
6069 b_not_test_closure_wf(Parameters,ParameterTypes,Closure,ParValues,WF) :-
6070 % same_length(Parameters,ParValues), % not necessary
6071 set_up_localstate(Parameters,ParValues,[],LocalState),
6072 b_enumerate:b_type_values_in_store(Parameters,ParameterTypes,LocalState),
6073 b_not_test_boolean_expression(Closure,LocalState,[],WF),
6074 get_last_wait_flag(b_not_test_closure_wf(Parameters),WF,WF2),
6075 get_texpr_info(Closure,Infos),
6076 b_not_test_closure_enum(Parameters,ParameterTypes,Infos,LocalState,WF,WF2).
6077
6078 :- block b_not_test_closure_enum(-,?,?,?,?,?).
6079 b_not_test_closure_enum(Parameters,ParameterTypes,Infos,LocalState,WF,WF2) :-
6080 b_enumerate:b_extract_typedvalc(Parameters,ParameterTypes,Infos,LocalState,TypedVals),
6081 (var(WF2) -> ground_typedvals_check(TypedVals,GrVals) ; true),
6082 b_not_test_closure_enum_aux(GrVals,WF2,TypedVals,WF).
6083
6084 :- block b_not_test_closure_enum_aux(-,-,?,?).
6085 b_not_test_closure_enum_aux(_,_,TypedVals,WF) :-
6086 b_enumerate:b_tighter_enumerate_all_values(TypedVals,WF).
6087 % , print(finished_enum(Parameters)),nl.
6088
6089
6090 :- use_module(library(terms)).
6091 % check whether a VARIABLE occurs inside a closure
6092 closure_occurs_check(VARIABLE,_Par,_ParTypes,ClosureBody) :- expression_contains_setvar(ClosureBody,VARIABLE).
6093 % /* occurs check; x = closure1(x) ; for other closures this cannot happen ???!!! TO DO: Check */
6094 % custom_explicit_sets:is_closure1_value_closure(Par,ParTypes,ClosureBody,Val),
6095 % contains_var(VARIABLE,Val).
6096
6097 expression_contains_setvar(b(E,_,_),Variable) :- !,
6098 expression_contains_setvar_aux(E,Variable).
6099 expression_contains_setvar(E,V) :- add_internal_error('Illegal Expression: ', expression_contains_setvar(E,V)),
6100 contains_var(V,E).
6101
6102 expression_contains_setvar_aux(value(Val),Variable) :- !,value_contains_setvar(Val,Variable).
6103 % a few very common cases for performance; currently this predicate is often called for recursive functions
6104 expression_contains_setvar_aux(identifier(_),_) :- !,fail.
6105 expression_contains_setvar_aux(equal(A,B),Variable) :- !,
6106 (expression_contains_setvar(A,Variable) -> true ; expression_contains_setvar(B,Variable)).
6107 expression_contains_setvar_aux(conjunct(A,B),Variable) :- !,
6108 (expression_contains_setvar(A,Variable) -> true ; expression_contains_setvar(B,Variable)).
6109 expression_contains_setvar_aux(function(A,B),Variable) :- !,
6110 (expression_contains_setvar(A,Variable) -> true ; expression_contains_setvar(B,Variable)).
6111 expression_contains_setvar_aux(union(A,B),Variable) :- !,
6112 (expression_contains_setvar(A,Variable) -> true ; expression_contains_setvar(B,Variable)).
6113 expression_contains_setvar_aux(couple(A,B),Variable) :- !,
6114 (expression_contains_setvar(A,Variable) -> true ; expression_contains_setvar(B,Variable)).
6115 % the rest via safe_syntaxelement:
6116 expression_contains_setvar_aux(Expr,V) :-
6117 safe_syntaxelement_det(Expr,Subs,_Names,_,_),!,
6118 ? member(Sub,Subs), expression_contains_setvar(Sub,V),!.
6119 expression_contains_setvar_aux(E,V) :- add_internal_error('Illegal Expression: ', expression_contains_setvar_aux(E,V)),
6120 contains_var(V,E).
6121
6122 value_contains_setvar(Val,V) :- var(Val),!,Val==V.
6123 value_contains_setvar(avl_set(_),_V) :- !, fail. % assume avl_set always properly grounded; avoid looking inside
6124 value_contains_setvar(closure(_,_,Body),V) :- !,
6125 expression_contains_setvar(Body,V).
6126 value_contains_setvar(int(_),_) :- !,fail. % we check for set variables
6127 value_contains_setvar(global_set(_),_) :- !,fail. % we check for set variables
6128 value_contains_setvar(freetype(_),_) :- !,fail. % we check for set variables
6129 value_contains_setvar(freeval(_ID,_Case,Val),V) :- !, value_contains_setvar(Val,V).
6130 value_contains_setvar(string(_),_) :- !,fail. % we check for set variables
6131 value_contains_setvar(fd(_,_),_) :- !,fail. % we check for set variables
6132 value_contains_setvar((A,B),V) :- !, (value_contains_setvar(A,V) ; value_contains_setvar(B,V)).
6133 value_contains_setvar([A|B],V) :- !, (value_contains_setvar(A,V) ; value_contains_setvar(B,V)).
6134 value_contains_setvar(Val,V) :-
6135 contains_var(V,Val).
6136
6137 % ------------------