1 | | % (c) 2009-2025 Lehrstuhl fuer Softwaretechnik und Programmiersprachen, |
2 | | % Heinrich Heine Universitaet Duesseldorf |
3 | | % This software is licenced under EPL 1.0 (http://www.eclipse.org/org/documents/epl-v10.html) |
4 | | |
5 | | |
6 | | :- module(custom_explicit_sets,[is_set_value/2, |
7 | | is_custom_explicit_set/1, is_custom_explicit_set/2, is_custom_explicit_set_nonvar/1, |
8 | | %equal_explicit_sets/2, |
9 | | equal_explicit_sets_wf/3, |
10 | | not_equal_explicit_sets_wf/3, |
11 | | equality_explicit_sets_wf/4, same_texpr_body/2, same_closure/2, |
12 | | is_empty_explicit_set/1, is_empty_explicit_set_wf/2, is_empty_closure_wf/4, |
13 | | is_non_empty_explicit_set/1, is_non_empty_explicit_set_wf/2, |
14 | | is_non_empty_closure_wf/4, |
15 | | test_empty_explicit_set_wf/3, test_empty_closure_wf/5, |
16 | | is_definitely_maximal_set/1, |
17 | | explicit_set_cardinality/2, explicit_set_cardinality_wf/3, |
18 | | explicit_set_cardinality_for_wf/2, |
19 | | card_for_specific_custom_set/3, % only succeeds if we can compute it efficiently |
20 | | card_for_specific_closure/4, |
21 | | efficient_card_for_set/3, % same, but also for lists |
22 | | quick_custom_explicit_set_approximate_size/2, |
23 | | avl_approximate_size/2, avl_approximate_size/3, |
24 | | is_infinite_explicit_set/1, is_infinite_closure/3, |
25 | | is_infinite_global_set/2, is_simple_infinite_set/1, |
26 | | dont_expand_this_explicit_set/1, dont_expand_this_explicit_set/2, |
27 | | dont_expand_symbolic_explicit_set/1, |
28 | | definitely_expand_this_explicit_set/1, |
29 | | is_infinite_or_very_large_explicit_set/1, |
30 | | is_infinite_or_very_large_explicit_set/2, |
31 | | is_cartesian_product_closure/3, |
32 | | expand_custom_set/2, expand_custom_set_wf/4, |
33 | | try_expand_custom_set/2, try_expand_custom_set_with_catch/3, |
34 | | try_expand_custom_set_wf/4, |
35 | | expand_custom_set_to_list/2, expand_custom_set_to_list/4, |
36 | | expand_custom_set_to_list_wf/5, |
37 | | try_expand_custom_set_to_list_wf/5, |
38 | | expand_custom_set_to_list_no_dups_wf/5, |
39 | | expand_custom_set_to_list_gg/4, |
40 | | try_expand_custom_set_to_list/4, |
41 | | expand_interval_closure_to_avl/3, |
42 | | expand_custom_set_to_list_now/2, |
43 | | expand_closure_to_avl_or_list/6, |
44 | | expand_closure_to_list/7, |
45 | | expand_only_custom_closure_global/4, %try_expand_only_custom_closure_global/2, |
46 | | expand_and_convert_to_avl_set/4, |
47 | | ord_list_to_avlset_direct/3, sorted_ground_normalised_list_to_avlset/3, |
48 | | try_expand_and_convert_to_avl/2, convert_to_avl/2, |
49 | | should_be_converted_to_avl_from_lists/1, should_be_converted_to_avl/1, |
50 | | try_expand_and_convert_to_avl_with_check/3, |
51 | | try_expand_and_convert_to_avl_with_check/4, |
52 | | try_expand_and_convert_to_avl_unless_large_wf/3, |
53 | | %try_expand_and_convert_to_avl_unless_large_wf/3, |
54 | | try_expand_and_convert_to_avl_if_smaller_than/3, |
55 | | is_small_specific_custom_set/2, |
56 | | quick_propagation_element_information/4, |
57 | | element_of_custom_set/2, element_of_custom_set_wf/3, |
58 | | element_of_closure/5, |
59 | | check_element_of_function_closure/6, |
60 | | not_element_of_custom_set_wf/3, |
61 | | membership_custom_set/3, membership_custom_set_wf/4, membership_avl_set_wf/4, |
62 | | quick_test_avl_membership/3, |
63 | | lazy_check_elements_of_closure/6, |
64 | | |
65 | | is_efficient_custom_set/1, |
66 | | remove_minimum_element_custom_set/3, |
67 | | |
68 | | is_maximal_global_set/1, quick_is_definitely_maximal_set/1, |
69 | | quick_definitely_maximal_set_avl/1, |
70 | | is_one_element_custom_set/2, singleton_set/2, construct_singleton_avl_set/2, |
71 | | is_one_element_avl/2, |
72 | | construct_one_element_custom_set/2, |
73 | | avl_is_interval/3, |
74 | | |
75 | | %closure0_for_explicit_set/2, |
76 | | closure1_for_explicit_set/2, closure1_for_explicit_set_from/3, |
77 | | check_in_domain_of_avlset/2, check_unique_in_domain_of_avlset/2, |
78 | | domain_of_explicit_set_wf/3, range_of_explicit_set_wf/3, |
79 | | is_avl_partial_function/1, is_not_avl_partial_function/2, |
80 | | is_avl_total_function_over_domain/2, |
81 | | quick_definitely_maximal_total_function_avl/1, |
82 | | is_avl_relation/1, |
83 | | is_avl_relation_over_domain/3, |
84 | | is_avl_relation_over_range/3, |
85 | | is_not_avl_relation_over_domain_range/4, is_not_avl_relation_over_range/3, |
86 | | is_avl_sequence/1, safe_is_avl_sequence/1, |
87 | | get_avl_sequence/2, |
88 | | is_injective_avl_relation/2, |
89 | | invert_explicit_set/2, union_of_explicit_set/3, |
90 | | union_generalized_explicit_set/3, |
91 | | difference_of_explicit_set_wf/4, |
92 | | intersection_of_explicit_set_wf/4, intersection_with_interval_closure/3, |
93 | | disjoint_intervals_with_inf/4, |
94 | | image_for_id_closure/3, image_for_explicit_set/4, |
95 | | rel_composition_for_explicit_set/3, |
96 | | element_can_be_added_or_removed_to_avl/1, |
97 | | add_element_to_explicit_set_wf/4, remove_element_from_explicit_set/3, |
98 | | delete_element_from_explicit_set/3, |
99 | | at_most_one_match_possible/3, |
100 | | apply_to_avl_set/5, try_apply_to_avl_set/3, |
101 | | min_of_explicit_set_wf/3, max_of_explicit_set_wf/3, |
102 | | sum_or_mul_of_explicit_set/3, |
103 | | %sum_of_range_custom_explicit_set/2, mul_of_range_custom_explicit_set/2, |
104 | | domain_restriction_explicit_set_wf/4, |
105 | | range_restriction_explicit_set_wf/4, |
106 | | domain_subtraction_explicit_set_wf/4, |
107 | | range_subtraction_explicit_set_wf/4, |
108 | | override_pair_explicit_set/4, |
109 | | direct_product_explicit_set/3, |
110 | | override_custom_explicit_set_wf/4, |
111 | | symbolic_functionality_check_closure/2, symbolic_injectivity_check_closure/2, |
112 | | |
113 | | subset_of_explicit_set/4, not_subset_of_explicit_set/4, |
114 | | test_subset_of_explicit_set/5, |
115 | | |
116 | | conc_custom_explicit_set/2, |
117 | | prefix_of_custom_explicit_set/4, suffix_of_custom_explicit_set/4, |
118 | | concat_custom_explicit_set/4, prepend_custom_explicit_set/3, |
119 | | append_custom_explicit_set/4, |
120 | | tail_sequence_custom_explicit_set/5, |
121 | | last_sequence_explicit_set/2, %first_sequence_explicit_set/2, |
122 | | front_sequence_custom_explicit_set/3, |
123 | | reverse_custom_explicit_set/2, |
124 | | size_of_custom_explicit_set/3, |
125 | | |
126 | | get_first_avl_elements/4, |
127 | | construct_avl_from_lists/2, construct_avl_from_lists_wf/3, |
128 | | equal_avl_tree/2, |
129 | | check_avl_in_interval/3, check_interval_in_custom_set/4, |
130 | | check_avl_subset/2, |
131 | | construct_closure/4, is_closure/4, % from closures |
132 | | construct_member_closure/5, % from closures |
133 | | |
134 | | construct_interval_closure/3, |
135 | | is_interval_closure/3, % checks if we have a finite interval closure Low..Up (but bounds can be variables) |
136 | | is_interval_closure/5, |
137 | | is_interval_closure_or_integerset/3, is_interval_closure_or_integerset/4, |
138 | | is_interval_with_integer_bounds/3, % checks that bounds are known |
139 | | |
140 | | is_powerset_closure/3, |
141 | | |
142 | | dom_range_for_specific_closure/5, |
143 | | dom_for_specific_closure/4, |
144 | | dom_for_lambda_closure/2, |
145 | | portray_custom_explicit_set/1, |
146 | | closure_occurs_check/4 |
147 | | ]). |
148 | | |
149 | | :- meta_predicate call_card_for_relations(-,-,0). |
150 | | |
151 | | :- use_module(error_manager). |
152 | | :- use_module(self_check). |
153 | | :- use_module(library(avl)). |
154 | | :- use_module(kernel_waitflags). |
155 | | :- use_module(kernel_tools). |
156 | | :- use_module(delay). |
157 | | :- use_module(tools). |
158 | | :- use_module(avl_tools). |
159 | | :- use_module(library(clpfd)). |
160 | | |
161 | | :- use_module(module_information,[module_info/2]). |
162 | | :- module_info(group,kernel). |
163 | | :- module_info(description,'This module provides customised operations for the custom explicit set representations of ProB (closures, avl_sets and global_sets).'). |
164 | | |
165 | | :- use_module(tools_printing,[print_term_summary/1, print_error/1]). |
166 | | :- use_module(preferences,[preference/2]). |
167 | | :- use_module(kernel_objects,[equal_object/2, equal_object/3]). |
168 | | :- use_module(kernel_freetypes,[enumerate_freetype_wf/4,freetype_cardinality/2, |
169 | | is_infinite_freetype/1, is_empty_freetype/1, |
170 | | is_non_empty_freetype/1, test_empty_freetype/2]). |
171 | | |
172 | | :- use_module(clpfd_interface,[try_post_constraint/1, clpfd_reify_inlist/4]). |
173 | | :- use_module(closures). |
174 | | :- use_module(b_compiler). |
175 | | |
176 | | :- load_files(library(system), [when(compile_time), imports([environ/2])]). |
177 | | |
178 | | /* These meta_predicate declarations do not seem to have the right effect; |
179 | | the predicates below return code, they do not get passed code |
180 | | :- meta_predicate card_for_specific_custom_set(*,*,0). |
181 | | :- meta_predicate card_for_specific_closure(*,*,0). |
182 | | :- meta_predicate is_a_relation(*,*,*,*,*,*,0). |
183 | | :- meta_predicate subset_of_explicit_set(*,*,0,*). |
184 | | :- meta_predicate not_subset_of_explicit_set(*,*,0,*). |
185 | | */ |
186 | | |
187 | | construct_avl_from_lists(S,Res) :- |
188 | | (convert_to_avl(S,CS) -> true ; print(convert_to_avl_failed(S,CS)),nl,CS=S), |
189 | | Res = CS. |
190 | | |
191 | | % version with WF to see call stack in case of virtual time-outs due to expansions |
192 | | construct_avl_from_lists_wf(S,Res,WF) :- |
193 | | (convert_to_avl_wf(S,CS,WF) -> true ; print(convert_to_avl_wf_failed(S,CS)),nl,CS=S), |
194 | | Res = CS. |
195 | | |
196 | | :- use_module(tools,[safe_sort/3]). |
197 | | :- block normalised_list_to_avl_when_ground(-,?). |
198 | | normalised_list_to_avl_when_ground(S,R) :- % call if you are not sure that S will be ground; e.g. after closure expansion |
199 | | ground_value_check(S,GS), |
200 | | blocking_normalised_list_to_avl(GS,S,R). |
201 | | :- block blocking_normalised_list_to_avl(-,?,?). |
202 | | blocking_normalised_list_to_avl(_,S,R) :- normalised_list_to_avl(S,R). |
203 | | |
204 | | normalised_list_to_avl(S,R) :- safe_sort(normalised_list_to_avl,S,SS), |
205 | | ord_list_to_avlset_direct(SS,AVL,normalised_list_to_avl), |
206 | | equal_object(AVL,R). % due to co-routine, R can now be instantiated |
207 | | |
208 | | %set_to_avl(List,R) :- empty_avl(A), add_to_avl(List,A,AR), R=avl_set(AR). |
209 | | add_to_avl([],R,R). |
210 | | add_to_avl([H|T],AVL,AVLOUT) :- avl_store(H,AVL,true,AVL1), |
211 | | add_to_avl(T,AVL1,AVLOUT). |
212 | | |
213 | | |
214 | | % get only the first x elements of an AVL tree |
215 | | get_first_avl_elements(empty,_,R,all) :- !,R=[]. |
216 | | get_first_avl_elements(AVL,X,FirstXEls,CutOff) :- |
217 | | avl_min(AVL,Min), get_first_els(X,Min,AVL,FirstXEls,CutOff). |
218 | | |
219 | | get_first_els(X,_,_AVL,R,CutOff) :- X<1,!,R=[], CutOff=not_all. |
220 | | get_first_els(X,Cur,AVL,[Cur|T],CutOff) :- |
221 | | (avl_next(Cur,AVL,Nxt) -> X1 is X-1,get_first_els(X1,Nxt,AVL,T,CutOff) |
222 | | ; T=[],CutOff=all). |
223 | | |
224 | | %expand_and_try_convert_to_avl(C,R) :- is_closure(C,_,_,_), expand_custom_set(C,EC), expand_and_convert_to_avl |
225 | | %expand_and_convert_to_avl(C,R) :- convert_to_avl(C,R). |
226 | | |
227 | | /* convert all list data-values (with all-sub-values) into avl-form */ |
228 | | /* assumption: the value is ground when convert_to_avl is called */ |
229 | | |
230 | | :- load_files(library(system), [when(compile_time), imports([environ/2])]). |
231 | | :- if(environ(prob_safe_mode,true)). |
232 | | convert_to_avl(X,R) :- \+ ground_value(X), !, add_error(convert_to_avl,'Non-ground argument: ',convert_to_avl(X,R)), R=X. |
233 | | :- endif. |
234 | | convert_to_avl(X,R) :- var(X), !, add_error(convert_to_avl,'Variable argument: ',convert_to_avl(X,R)), R=X. |
235 | ? | convert_to_avl(Term,R) :- no_conversion_necessary(Term),!, |
236 | | R=Term. |
237 | | convert_to_avl(closure(P,T,B),R) :- !, |
238 | | R=closure(P,T,B). |
239 | | convert_to_avl(avl_set(A),R) :- !,(A==empty -> add_warning(convert_to_avl,'Emtpy avl_set'), R=[] |
240 | | ; R=avl_set(A)). |
241 | | convert_to_avl((A,B),(CA,CB)) :- !,convert_to_avl(A,CA), convert_to_avl(B,CB). |
242 | | convert_to_avl(freetype(X),R) :- !, R=freetype(X). |
243 | | convert_to_avl(freeval(ID,Case,Value),R) :- !, R=freeval(ID,Case,CValue),convert_to_avl(Value,CValue). |
244 | | convert_to_avl(rec(Fields),R) :- !, convert_fields(Fields,CFields), R=rec(CFields). |
245 | | convert_to_avl(global_set(GS),R) :- !, R=global_set(GS). |
246 | ? | convert_to_avl([H|T],R) :- !, convert_cons_to_avl_inside_set_wf(H,T,R,no_wf_available). |
247 | | %convert_to_avl(abort(X),_R) :- print(deprecetated_convert_to_avl(abort(X))),nl,!, fail. |
248 | | convert_to_avl(X,R) :- add_internal_error('Unknown term: ',convert_to_avl(X,R)), R=X. |
249 | | |
250 | | % pass WF for call stack in case of expansions TODO: complete |
251 | | convert_to_avl_wf((A,B),(CA,CB),WF) :- !,convert_to_avl_wf(A,CA,WF), convert_to_avl_wf(B,CB,WF). |
252 | | convert_to_avl_wf([H|T],R,WF) :- !, convert_cons_to_avl_inside_set_wf(H,T,R,WF). |
253 | | convert_to_avl_wf(X,R,_) :- convert_to_avl(X,R). |
254 | | |
255 | | convert_fields(Var,R) :- var(Var),!, |
256 | | add_internal_error('Var arg: ',convert_fields(Var,R)),fail. |
257 | | convert_fields([],[]). |
258 | | convert_fields([field(FieldName,Value)|T],[field(FieldName,CValue)|CT]) :- |
259 | | convert_to_avl_inside_set(Value,CValue), |
260 | | convert_fields(T,CT). |
261 | | |
262 | | l_convert_to_avl_wf(Var,_,WF) :- var(Var),!, |
263 | | add_warning_wf(l_convert_to_avl_wf,'Cannot expand variable to avl: ',Var,unknown,WF), |
264 | | fail. |
265 | | l_convert_to_avl_wf([],[],_). |
266 | | l_convert_to_avl_wf(avl_set(A),R,WF) :- |
267 | | expand_custom_set_wf(avl_set(A),ES,l_convert_to_avl,WF), |
268 | | l_convert_to_avl_wf(ES,R,WF). |
269 | | l_convert_to_avl_wf(closure(P,T,B),R,WF) :- |
270 | | expand_custom_set_wf(closure(P,T,B),ES,l_convert_to_avl,WF), |
271 | | l_convert_to_avl_wf(ES,R,WF). |
272 | | l_convert_to_avl_wf([H|T],[CH-true|CT],WF) :- |
273 | ? | convert_to_avl_inside_set_wf(H,CH,WF), l_convert_to_avl_wf(T,CT,WF). |
274 | | |
275 | | :- assert_must_succeed((X=(fd(1,'Name'),fd(2,'Name')), |
276 | | custom_explicit_sets:convert_to_avl_inside_set(X,R), R==X)). |
277 | | |
278 | | convert_to_avl_inside_set(Var,R) :- var(Var),!, |
279 | | add_internal_error('Var arg: ',convert_to_avl_inside_set(Var,R)),fail. |
280 | | :- if(environ(prob_safe_mode,true)). |
281 | | convert_to_avl_inside_set(fd(A,T),R) :- var(A),!, |
282 | | add_error(convert_to_avl,'Non-ground FD-Term: ',convert_to_avl_inside_set(fd(A,T),R)), R=fd(A,T). |
283 | | convert_to_avl_inside_set(int(X),R) :- var(X),!, |
284 | | add_error(convert_to_avl,'Non-ground integer: ',convert_to_avl_inside_set(int(X),R)), R=int(X). |
285 | | convert_to_avl_inside_set(string(X),R) :- var(X),!, |
286 | | add_error(convert_to_avl,'Non-ground string: ',convert_to_avl_inside_set(string(X),R)), R=string(X). |
287 | | convert_to_avl_inside_set(term(X),R) :- (var(X) ; X=floating(F), var(F)), !, |
288 | | add_error(convert_to_avl,'Non-ground term: ',convert_to_avl_inside_set(term(X),R)), R=term(X). |
289 | | :- endif. |
290 | ? | convert_to_avl_inside_set(Term,R) :- no_conversion_necessary(Term),!,R=Term. |
291 | | convert_to_avl_inside_set(closure(P,T,B),R) :- !, |
292 | | % inside a set, closures need to be expanded to check against other elements |
293 | | expand_closure_to_avl_wf(P,T,B,R,no_wf_available). |
294 | | %convert_to_avl_inside_set(closure_x(_P,_T,_B,E),R) :- !, convert_to_avl_inside_set(E,R). |
295 | | convert_to_avl_inside_set(avl_set(A),R) :- !, normalise_avl_set(A,R). %AVL's inside other AVL's need to be normalised ! |
296 | | convert_to_avl_inside_set((A,B),(CA,CB)) :- !,convert_to_avl_inside_set(A,CA), convert_to_avl_inside_set(B,CB). |
297 | | convert_to_avl_inside_set(freetype(X),R) :- !, |
298 | | expand_custom_set(freetype(X),EC,check), convert_to_avl_inside_set(EC,R). |
299 | | convert_to_avl_inside_set(freeval(ID,Case,Value),R) :- !, |
300 | | R=freeval(ID,Case,CValue),convert_to_avl_inside_set(Value,CValue). |
301 | | convert_to_avl_inside_set(rec(Fields),R) :- !, convert_fields(Fields,CFields), R=rec(CFields). |
302 | | convert_to_avl_inside_set(global_set(GS),R) :- !, |
303 | | % first check if GS infinite integer set: in this case do not expand; there can be no confusion with finite avl_sets |
304 | ? | (is_infinite_global_set(GS,_) -> R = global_set(GS) |
305 | | ; expand_only_custom_closure_global(global_set(GS),EC,check,no_wf_available), convert_to_avl_inside_set(EC,R)). |
306 | | convert_to_avl_inside_set([H|T],R) :- !,convert_cons_to_avl_inside_set_wf(H,T,R,no_wf_available). |
307 | | convert_to_avl_inside_set(X,R) :- |
308 | | add_internal_error('Unknown or non-ground argument: ',convert_to_avl_inside_set(X,R)), |
309 | | fail. |
310 | | |
311 | ? | convert_to_avl_inside_set_wf(Term,R,_WF) :- no_conversion_necessary(Term),!,R=Term. |
312 | | convert_to_avl_inside_set_wf(closure(P,T,B),R,WF) :- !, |
313 | ? | expand_closure_to_avl_wf(P,T,B,R,WF). % inside a set, closures need to be expanded to check against other elements |
314 | | convert_to_avl_inside_set_wf((A,B),(CA,CB),WF) :- !, |
315 | ? | convert_to_avl_inside_set_wf(A,CA,WF), convert_to_avl_inside_set_wf(B,CB,WF). |
316 | | convert_to_avl_inside_set_wf([H|T],R,WF) :- !,convert_cons_to_avl_inside_set_wf(H,T,R,WF). |
317 | | convert_to_avl_inside_set_wf(V,CV,_WF) :- % use version without WF; TO DO: adapt fully |
318 | | convert_to_avl_inside_set(V,CV). |
319 | | |
320 | | % true when we have a simple value that does not need to be converted for use within an avl_set: |
321 | | no_conversion_necessary([]). |
322 | | no_conversion_necessary(pred_false). /* bool_false */ |
323 | | no_conversion_necessary(pred_true). /* bool_true */ |
324 | | no_conversion_necessary(fd(FD,_)) :- nonvar(FD). |
325 | | no_conversion_necessary(int(I)) :- nonvar(I). |
326 | | no_conversion_necessary(string(S)) :- nonvar(S). |
327 | ? | no_conversion_necessary(term(T)) :- nonvar(T), no_conversion_nec_term(T). |
328 | | |
329 | | no_conversion_nec_term(floating(T)) :- nonvar(T). |
330 | | no_conversion_nec_term(T) :- atom(T). |
331 | | |
332 | | normalise_avl_set(A,R) :- A=node(_,_,0,empty,empty), !,R=avl_set(A). |
333 | | normalise_avl_set(A,R) :- |
334 | | avl_to_list(A,L), |
335 | | ord_list_to_avlset_direct(L,R,convert_to_avl_inside_set). %AVL's inside other AVL's need to be normalised ! |
336 | | |
337 | | convert_cons_to_avl_inside_set_wf(H,T,R,WF) :- T==[], !, |
338 | | convert_to_avl_inside_set_wf(H,CH,WF), |
339 | | R = avl_set(node(CH,true,0,empty,empty)). |
340 | ? | convert_cons_to_avl_inside_set_wf(H,T,R,WF) :- l_convert_to_avl_wf([H|T],S,WF), |
341 | | sort(S,SS), |
342 | | ord_list_to_avlset_direct(SS,R,convert_to_avl_inside_set). |
343 | | |
344 | | construct_singleton_avl_set(Val,avl_set(node(Val,true,0,empty,empty))). |
345 | | |
346 | | |
347 | | is_set_value(X,Origin) :- var(X), !,print(is_set_value(Origin)),nl,fail. |
348 | | is_set_value([],_) :- !. |
349 | | is_set_value([_|_],_) :- !. |
350 | | is_set_value(X,_) :- is_custom_explicit_set(X). |
351 | | |
352 | | is_custom_explicit_set(X,Origin) :- var(X), !,print(var_is_custom_explicit_set(Origin)),nl,fail. |
353 | | is_custom_explicit_set(X,_) :- is_custom_explicit_set(X). |
354 | | |
355 | | is_custom_explicit_set(X) :- var(X), !,print(var_is_custom_explicit_set),nl,fail. |
356 | | is_custom_explicit_set(global_set(_)). |
357 | | is_custom_explicit_set(freetype(_)). |
358 | | %is_custom_explicit_set(integer_global_set(_)). |
359 | | is_custom_explicit_set(avl_set(_)). |
360 | | is_custom_explicit_set(closure(_Parameters,_PT,_Cond)). |
361 | | |
362 | | % use if you know the argument to be nonvar |
363 | | is_custom_explicit_set_nonvar(global_set(_)). |
364 | | is_custom_explicit_set_nonvar(freetype(_)). |
365 | | is_custom_explicit_set_nonvar(avl_set(_)). |
366 | | is_custom_explicit_set_nonvar(closure(_Parameters,_PT,_Cond)). |
367 | | |
368 | | %:- assert_must_succeed(( custom_explicit_sets:portray_custom_explicit_set(avl_set(empty)) )). % now generates error |
369 | | :- use_module(translate,[translate_bvalue/2]). |
370 | | portray_custom_explicit_set(S) :- translate_bvalue(S,A), format(A,[]),nl. |
371 | | |
372 | | /* a predicate to check equality of two custom explicit sets */ |
373 | | |
374 | | %equal_explicit_sets(A,B) :- equal_explicit_sets_wf(A,B,no_wf_available). |
375 | | |
376 | | %equal_explicit_sets(X,Y) :- print_term_summary(equal_explicit_sets(X,Y)),fail. |
377 | | :- block equal_explicit_sets_wf(-,?,?), equal_explicit_sets_wf(?,-,?). |
378 | ? | equal_explicit_sets_wf(A,B,WF) :- equal_explicit_sets4(A,B,allow_expansion,WF). |
379 | | |
380 | | equal_explicit_sets4(global_set(X),global_set(Y),_,_WF) :- !,X=Y. |
381 | | equal_explicit_sets4(global_set(B),avl_set(A),E,WF) :- !,equal_explicit_sets4(avl_set(A),global_set(B),E,WF). |
382 | | equal_explicit_sets4(freetype(X),freetype(Y),_,_WF) :- !,X=Y. |
383 | | equal_explicit_sets4(avl_set(A),avl_set(B),_,_WF) :- !, |
384 | | equal_avl_tree(A,B). % alternatively, we could normalise avl_trees and only store normalised versions |
385 | | equal_explicit_sets4(avl_set(A),I2,_,_WF) :- |
386 | | is_interval_closure_or_integerset(I2,L2,U2,Finite2),!, % also covers I2=global_set(...) |
387 | | Finite2=finite, % only a finite interval can be equal to an AVL set |
388 | | avl_equal_to_interval(A,L2,U2). |
389 | | equal_explicit_sets4(avl_set(A),global_set(B),_,WF) :- \+ b_global_sets:b_integer_set(B), !, % integersets dealt with above |
390 | | explicit_set_cardinality_wf(global_set(B),Card,WF), |
391 | | is_finite_card(Card), % Card \= inf as avl_set must be finite |
392 | | explicit_set_cardinality_wf(avl_set(A),Card,WF). /* the sets must be identical as global_set contains all values */ |
393 | | equal_explicit_sets4(avl_set(A),CPB,_,WF) :- |
394 | | is_cartesian_product_closure(CPB,B1,B2),!, |
395 | | decompose_avl_set_into_cartesian_product_wf(A,A1,A2,WF), |
396 | | kernel_objects:equal_object_wf(A1,B1,equal_explicit_sets4,WF), |
397 | | kernel_objects:equal_object_wf(A2,B2,equal_explicit_sets4,WF). |
398 | ? | equal_explicit_sets4(closure(P,T,B),avl_set(A),E,WF) :- !, equal_explicit_sets4(avl_set(A),closure(P,T,B),E,WF). |
399 | | equal_explicit_sets4(I1,I2,_,_WF) :- is_interval_closure_or_integerset(I1,L1,U1,Finite1), |
400 | | is_interval_closure_or_integerset(I2,L2,U2,Finite2), !, |
401 | | Finite1=Finite2, % either both finite or infinite |
402 | | L1=L2, U1=U2. |
403 | | equal_explicit_sets4(CPA,CPB,_,WF) :- |
404 | ? | is_cartesian_product_closure(CPA,A1,A2), |
405 | | is_cartesian_product_closure(CPB,B1,B2),!, |
406 | | equal_cartesian_product_wf(A1,A2,B1,B2,WF). |
407 | | % what if both subset or relations or functions ... closure: TO DO: add support |
408 | | equal_explicit_sets4(S1,S2,_,WF) :- |
409 | | is_not_member_value_closure_or_integerset(S1,TYPE,MS1), |
410 | | is_not_member_value_closure_or_integerset(S2,TYPE,MS2), |
411 | | !, |
412 | | kernel_objects:equal_object_wf(MS1,MS2,equal_explicit_sets4,WF). |
413 | | equal_explicit_sets4(closure(P1,T1,B1),closure(P2,T2,B2),_,_WF) :- |
414 | | same_closure_body(P1,T1,B1,P2,T2,B2),!. |
415 | | %equal_explicit_sets4(X,Y) :- X==Y,!. |
416 | | equal_explicit_sets4(Set1,Set2,allow_expansion,WF) :- |
417 | | %kernel_objects:test_finite_set_wf(Set1,F1,WF), kernel_objects:test_finite_set_wf(Set2,F2,WF), equal_expansions(F1,F2,Set1,Set2) |
418 | | card_for_specific_custom_set(Set1,Card1,Code1), % TO DO: do not throw info away if Set2 cannot be determined |
419 | | card_for_specific_custom_set(Set2,Card2,Code2), |
420 | | !, |
421 | | call(Code1), call(Code2), |
422 | | % TO DO: if one of the two sets is infinite, then it would be enough to know that the other is not infinite for failure without expansion |
423 | | equal_expansions(Card1,Card2,Set1,Set2,WF). |
424 | ? | equal_explicit_sets4(Set1,Set2,allow_expansion,WF) :- equal_expansions(0,0,Set1,Set2,WF). |
425 | | |
426 | | |
427 | | :- use_module(btypechecker, [unify_types_strict/2]). |
428 | | % detect e.g. when one closure has seq(Type) and the other one set(integer,Type) |
429 | | same_types([],[]). |
430 | | same_types([H1|T1],[H2|T2]) :- unify_types_strict(H1,H2), same_types(T1,T2). |
431 | | |
432 | | :- block equal_expansions(-,?,?,?,?). |
433 | | equal_expansions(F1,F2,Set1,Set2,WF) :- (number(F1);number(F2)),!, |
434 | | % NOTE: sometimes we get inf for finite but very large sets |
435 | | F1=F2, % unify; can propagate info back to closure; e.g. prj2(BOOL,NAT) = prj2(BOOL,0..n) |
436 | ? | equal_expansions2(F1,F2,Set1,Set2,WF). |
437 | | equal_expansions(F1,F2,Set1,Set2,WF) :- |
438 | | equal_expansions2(F1,F2,Set1,Set2,WF). |
439 | | |
440 | | :- block equal_expansions2(-,?,?,?,?), equal_expansions2(?,-,?,?,?). |
441 | | %equal_expansions(0,0,avl_set(A),closure(P,T,B)) :- check_subset ?? in both directions ? |
442 | | %equal_expansions2(inf,inf,Set1,Set2,WF) :- WF \= no_wf_available, !, % symbolic treatment |
443 | | equal_expansions2(F,F,Set1,Set2,WF) :- |
444 | | % only expand if both sets have same cardinality |
445 | | % print_term_summary(equal_expansions3(F,Set1,Set2)),nl, |
446 | ? | equal_expansions3(F,Set1,Set2,WF). |
447 | | |
448 | | % TO DO: check if this brings something: |
449 | | %equal_expansions3(avl_set(A),closure(P,T,B),_WF) :- !, |
450 | | % expand_closure_to_avl_or_list(P,T,B,E2,check), % in case E2 is avl_set; we can use equal_avl_tree |
451 | | % ((nonvar(E2),E2=avl_set(B2)) |
452 | | % -> print(eql_avl),nl, print_term_summary(equal_avl_tree(A,B2)),nl, equal_avl_tree(A,B2) |
453 | | % ; print(eql_non_avl),nl,equal_object(avl_set(A),E2,equal_expansions3) |
454 | | % ). |
455 | | %:- use_module(library(lists),[perm2/4]). |
456 | | %equal_expansions3(F,Set1,Set2,_WF) :- number(F), F>100, % test with: {{},{TRUE},{FALSE},{TRUE,FALSE}} = /*@symbolic */ {x|x<:BOOL} or |
457 | | % {x|x<:POW(BOOL*BOOL) & (x={} or card(x)>0)} = /*@symbolic */ {x|x<:POW(BOOL*BOOL)} 26 sec -> 14 sec |
458 | | % case does not seem to appear very often |
459 | | % perm2(Set1,Set2,avl_set(_),Set), |
460 | | % is_definitely_maximal_set(Set), |
461 | | %Set2 is maximal and has the same cardinality as F, hence Set1 must be identical to Set2 |
462 | | % !, |
463 | | % debug_println(9,equal_to_maximal_closure(F)). |
464 | | equal_expansions3(F,Set1,Set2,WF) :- |
465 | ? | get_identity_as_equivalence(F,Set1,Set2,EQUIV), |
466 | | !,% translate:print_bexpr(EQUIV),nl, |
467 | | copy_wf_start(WF,equal_expansions,CWF), |
468 | | b_test_boolean_expression(EQUIV,[],[],CWF), |
469 | | copy_wf_finish(WF,CWF). |
470 | | % Alternative could be, if difference were to be fully treated symbolically: |
471 | | % difference_of_explicit_set_wf(Set1,Set2,R12,WF), difference_of_explicit_set_wf(Set2,Set1,R21,WF), |
472 | | % kernel_objects:empty_set_wf(R12,WF), kernel_objects:empty_set_wf(R21,WF). |
473 | | equal_expansions3(_,Set1,Set2,WF) :- |
474 | | expand_custom_set_wf(Set1,E1,equal_expansions1,WF), |
475 | | expand_custom_set_wf(Set2,E2,equal_expansions2,WF), |
476 | | E1=E2. /* ensure that ordering and normalization is same for all representations ! */ |
477 | | |
478 | | |
479 | | :- use_module(b_ast_cleanup, [clean_up/3]). |
480 | | get_identity_as_equivalence(F,Set1,Set2,CleanedEQUIV) :- |
481 | | (F=inf %; is_infinite_explicit_set(Set1) ; is_infinite_explicit_set(Set2) |
482 | | ; Set1 \= avl_set(_),Set2 \= avl_set(_), % if one of the two sets is an AVL Set: better compute the other set explicitly instead of using this symbolic treatment |
483 | ? | (dont_expand_this_explicit_set(Set1,100000) ; |
484 | ? | dont_expand_this_explicit_set(Set2,100000) |
485 | | ) |
486 | | % avl_test check for test 1081; TO DO: instead of test try to expand set and if this leads to enum warning use symbolic check |
487 | | ), |
488 | ? | get_identity_as_equivalence_aux(Set1,Set2,EQUIV), |
489 | | clean_up(EQUIV,[],CleanedEQUIV). |
490 | | % can be useful to replace x : {v|P(v)} --> x:P(x) (remove_member_comprehension) and reuse predicates, see 2483 |
491 | | get_identity_as_equivalence_aux(Set1,Set2,EQUIV) :- |
492 | ? | kernel_objects:infer_value_type(Set1,SType), |
493 | | is_set_type(SType,Type), |
494 | | % Construct: !x.(x:Set1 <=> x:Set2) ?? |
495 | | get_pos_infos_for_explicit_set(Set1,I1), |
496 | | get_pos_infos_for_explicit_set(Set2,I2), |
497 | | I12 = I1, % we could merge position_info; but two sets could be very far apart |
498 | | TID = b(identifier('_equality_sets_'),Type,[]), |
499 | | EQUIV = b(forall([TID],b(truth,pred,[used_ids([])]), |
500 | | b(equivalence( |
501 | | b(member(TID,b(value(Set1),SType,I1)),pred,I1), |
502 | | b(member(TID,b(value(Set2),SType,I2)),pred,I2) |
503 | | ) ,pred,I12) |
504 | | ),pred,[used_ids([]),I12]). |
505 | | |
506 | | :- use_module(bsyntaxtree, [get_texpr_pos/2]). |
507 | | get_pos_infos_for_explicit_set(closure(_,_,Body),[Pos]) :- get_texpr_pos(Body,Pos),!. |
508 | | get_pos_infos_for_explicit_set(_,[]). |
509 | | |
510 | | :- use_module(kernel_equality,[eq_atomic/4, equality_objects/3, |
511 | | equality_objects_wf_no_enum/4, equality_objects_with_type_wf/5]). |
512 | | /* maybe rewrite equal_explicit_sets and not_... to use this to avoid maintaining multiple versions */ |
513 | | equality_explicit_sets_wf(global_set(X),global_set(Y),R,_WF) :- !, eq_atomic(X,Y,set,R). |
514 | | equality_explicit_sets_wf(global_set(B),avl_set(A),R,WF) :- !,equality_explicit_sets_wf(avl_set(A),global_set(B),R,WF). |
515 | | equality_explicit_sets_wf(freetype(X),freetype(Y),R,_) :- !, eq_atomic(X,Y,set,R). |
516 | | equality_explicit_sets_wf(avl_set(A),avl_set(B),R,_) :- !, |
517 | | (equal_avl_tree(A,B) -> R=pred_true ; R=pred_false). % alternatively, we could normalise avl_trees and only store normalised versions |
518 | | equality_explicit_sets_wf(avl_set(A),I2,R,WF) :- is_interval_closure_or_integerset(I2,L2,U2),!, |
519 | | % also covers I2=global_set(...) |
520 | | avl_equality_to_interval(A,L2,U2,R,WF). |
521 | | equality_explicit_sets_wf(avl_set(A),global_set(B),R,WF) :- \+ b_global_sets:b_integer_set(B), !, |
522 | | explicit_set_cardinality_wf(global_set(B),Card,WF), |
523 | | (is_finite_card(Card), % Card \= inf, %as avl_set must be finite |
524 | | explicit_set_cardinality_wf(avl_set(A),Card,WF) |
525 | | -> R=pred_true /* the sets must be identical as global_set contains all values */ |
526 | | ; R=pred_false). |
527 | | equality_explicit_sets_wf(avl_set(A),CPB,R,WF) :- |
528 | | is_cartesian_product_closure(CPB,B1,B2),!, |
529 | | if(decompose_avl_set_into_cartesian_product_wf(A,A1,A2,WF), % should not produce pending co-routines |
530 | | equality_cartesian_product_wf(A1,A2,B1,B2,R,WF), |
531 | | R=pred_false % no cartesian product can be equal to this avl_set |
532 | | ). |
533 | | equality_explicit_sets_wf(closure(P,T,B),avl_set(A),R,WF) :- !, |
534 | | equality_explicit_sets_wf(avl_set(A),closure(P,T,B),R,WF). |
535 | | equality_explicit_sets_wf(I1,I2,R,WF) :- is_interval_closure_or_integerset(I1,L1,U1,Finite1), |
536 | | is_interval_closure_or_integerset(I2,L2,U2,Finite2), !, |
537 | | (Finite1=Finite2 -> equality_objects_wf_no_enum((int(L1),int(U1)),(int(L2),int(U2)),R,WF) |
538 | | ; R = pred_false). |
539 | | equality_explicit_sets_wf(CPA,CPB,R,WF) :- |
540 | | is_cartesian_product_closure(CPA,A1,A2), is_cartesian_product_closure(CPB,B1,B2),!, |
541 | | equality_cartesian_product_wf(A1,A2,B1,B2,R,WF). |
542 | | equality_explicit_sets_wf(S1,S2,R,WF) :- |
543 | | is_not_member_value_closure_or_integerset(S1,TYPE,MS1), |
544 | | is_not_member_value_closure_or_integerset(S2,TYPE,MS2),!, |
545 | | equality_objects_with_type_wf(TYPE,MS1,MS2,R,WF). |
546 | | equality_explicit_sets_wf(closure(P,T,B),closure(P,T,B2),R,_) :- |
547 | | same_texpr_body(B,B2),!,R=pred_true. |
548 | | equality_explicit_sets_wf(Set1,Set2,R,WF) :- |
549 | | Set1 \= [_|_], Set2 \= [_|_], % below we check for avl_set; i.e., useful are only closure/3, global_set/1, ... |
550 | ? | get_identity_as_equivalence(unknown,Set1,Set2,EQUIV),!, |
551 | | copy_wf_start(WF,equal_expansions,CWF), |
552 | | % EQUIV is a universal quantification, usually over an infinite domain |
553 | | b_interpreter_check:b_force_check_boolean_expression(EQUIV,[],[],CWF,R), % we know EQUIV cannot be reified |
554 | | copy_wf_finish(WF,CWF). |
555 | | % TO DO: add complement sets, |
556 | | |
557 | | /* Cartesian Product Comparison */ |
558 | | :- use_module(kernel_equality,[empty_cartesian_product_wf/4]). |
559 | | % A1*A2 = B1*B2 <=> (((A1={} or A2={}) & (B1={} or B2={})) or (A1=B1 & A2=B2)) |
560 | | equal_cartesian_product_wf(A1,A2,B1,B2,WF) :- |
561 | | equality_cartesian_product_wf(A1,A2,B1,B2,pred_true,WF). |
562 | | not_equal_cartesian_product_wf(A1,A2,B1,B2,WF) :- |
563 | | equality_cartesian_product_wf(A1,A2,B1,B2,pred_false,WF). |
564 | | |
565 | | equality_cartesian_product_wf(A1,A2,B1,B2,R,_WF) :- |
566 | | nonvar(A1), A1=closure(P,T,BdyA1), |
567 | | nonvar(B1), B1=closure(P,T,BdyB1), |
568 | | nonvar(A2), A2=closure(P2,T2,BdyA2), |
569 | | nonvar(B2), B2=closure(P2,T2,BdyB2), |
570 | | % they have the same names; probably we are comparing identical values (e.g., in bvisual2) |
571 | | same_texpr_body(BdyA1,BdyB1), |
572 | | % note: we cannot simply call equality of A2 and B2 as cartesian products can be empty, see test 2072 |
573 | | same_texpr_body(BdyA2,BdyB2), |
574 | | !, |
575 | | R=pred_true. |
576 | | equality_cartesian_product_wf(A1,A2,B1,B2,R,WF) :- |
577 | | empty_cartesian_product_wf(A1,A2,EmptyA,WF), |
578 | | equality_cart_product2(EmptyA,A1,A2,B1,B2,R,WF). |
579 | | :- block equality_cart_product2(-, ?,?,?,?,?,?). |
580 | | equality_cart_product2(pred_true,_,_,B1,B2,R,WF) :- empty_cartesian_product_wf(B1,B2,R,WF). |
581 | | equality_cart_product2(pred_false,A1,A2,B1,B2,R,WF) :- equality_objects_wf_no_enum((A1,A2),(B1,B2),R,WF). |
582 | | |
583 | | /* COMPARING AVL-SET with INTERVAL */ |
584 | | |
585 | | % check if an avl tree is equal to an interval range |
586 | | avl_equal_to_interval(_A,L2,U2) :- |
587 | | infinite_interval(L2,U2),!,fail. % otherwise infinite & avl_set is finite |
588 | | % we can now assume L2, U2 are numbers (but could not yet be instantiated) |
589 | | avl_equal_to_interval(A,L2,U2) :- |
590 | | avl_min(A,int(L2)), avl_max(A,int(U2)), |
591 | | Card is 1+U2-L2, |
592 | | explicit_set_cardinality(avl_set(A),Card). % sets are equal: same size + same lower & upper bound |
593 | | |
594 | | avl_not_equal_to_interval(A,L2,U2,WF) :- avl_equality_to_interval(A,L2,U2,pred_false,WF). |
595 | | |
596 | | avl_equality_to_interval(_A,L2,U2,R,_WF) :- |
597 | | infinite_interval(L2,U2),!,R=pred_false. % interval infinite & avl_set is finite |
598 | | % we can now assume L2, U2 are numbers (but could not yet be instantiated) |
599 | | avl_equality_to_interval(A,L2,U2,R,WF) :- |
600 | | avl_min(A,int(AL)), avl_max(A,int(AU)), |
601 | | Card is 1+AU-AL, |
602 | | explicit_set_cardinality_wf(avl_set(A),ACard,WF), |
603 | | equality_objects_wf_no_enum((int(ACard),(int(AL),int(AU))), |
604 | | (int(Card),(int(L2),int(U2))),R,WF). |
605 | | % sets are equal if same size + same lower & upper bound |
606 | | |
607 | | /* COMPARING TWO CLOSURES */ |
608 | | |
609 | | % a variation of equal_explicit_sets which tries not expand and just compares two closures |
610 | | |
611 | | same_closure(I1,I2) :- |
612 | | is_interval_closure_or_integerset(I1,L1,U1,Finite1), |
613 | | is_interval_closure_or_integerset(I2,L2,U2,Finite2), !, |
614 | | Finite1=Finite2, |
615 | | L1=L2, U1=U2. |
616 | | same_closure(CPA,CPB) :- |
617 | | is_cartesian_product_closure(CPA,A1,A2), |
618 | | is_cartesian_product_closure(CPB,B1,B2),!, |
619 | | equal_cartesian_product_wf(A1,A2,B1,B2,no_wf_available). % could be expensive |
620 | | same_closure(S1,S2) :- |
621 | | is_not_member_value_closure_or_integerset(S1,TYPE,MS1), |
622 | | is_not_member_value_closure_or_integerset(S2,TYPE,MS2), |
623 | | !, |
624 | | kernel_objects:equal_object(MS1,MS2,same_closure). % could be expensive |
625 | | same_closure(closure(P1,T1,B1),closure(P2,T2,B2)) :- same_closure_body_with_parameter_renaming(P1,T1,B1,P2,T2,B2). |
626 | | |
627 | | same_closure_body(P,T1, B1, P,T2,B2) :- |
628 | | same_types(T1,T2), |
629 | | same_texpr_body(B1,B2). |
630 | | |
631 | | % a version of same_closure_body which allows renaming of the parameters |
632 | | same_closure_body_with_parameter_renaming(P1,T1, B1, P2,T2,B2) :- |
633 | | same_types(T1,T2), |
634 | | create_renaming(P1,P2,Renaming), |
635 | | % TO DO: pass Renaming in AVL tree and rename on the fly |
636 | | rename_bt(B2,Renaming,RenamedB2), |
637 | | same_texpr_body(B1,RenamedB2). |
638 | | |
639 | | create_renaming([],[],[]). |
640 | | create_renaming([ID|T1],[ID|T2],TR) :- !, create_renaming(T1,T2,TR). |
641 | | create_renaming([ID1|T1],[ID2|T2],[rename(ID2,ID1)|TR]) :- |
642 | | create_renaming(T1,T2,TR). |
643 | | |
644 | | |
645 | | % check if two wrapped expressions are equal (modulo associated Info, e.g. source loc info) |
646 | | % and checking inserted values for equality (sometimes storing a closure will convert small inner closures into AVL sets) |
647 | | same_texpr_body(E1,E2) :- empty_avl(E),same_texpr_body(E1,E,E2). |
648 | | same_texpr_body(b(E1,Type1,_),AVL,b(E2,Type2,_)) :- |
649 | | unify_types_strict(Type1,Type2), % check in principle redundant |
650 | | same_texpr2(E1,AVL,E2). |
651 | | |
652 | | :- use_module(bsyntaxtree,[safe_syntaxelement_det/5, is_set_type/2,get_texpr_ids/2, |
653 | | get_texpr_expr/2, get_negated_operator_expr/2]). |
654 | | same_texpr2(value(V1),AVL,RHS) :- !,same_texpr_value2(RHS,AVL,V1). |
655 | | same_texpr2(LHS,AVL,value(V2)) :- !,same_texpr_value2(LHS,AVL,V2). |
656 | | same_texpr2(lazy_let_expr(ID,LHS,RHS),AVL,lazy_let_expr(ID2,LHS2,RHS2)) :- !, |
657 | | same_texpr_body(LHS,AVL,LHS2), |
658 | | avl_store(ID,AVL,ID2,NewAVL), |
659 | | same_texpr_body(RHS,NewAVL,RHS2). |
660 | | same_texpr2(lazy_let_pred(ID,LHS,RHS),AVL,lazy_let_pred(ID2,LHS2,RHS2)) :- !, |
661 | | same_texpr_body(LHS,AVL,LHS2), |
662 | | avl_store(ID,AVL,ID2,NewAVL), |
663 | | same_texpr_body(RHS,NewAVL,RHS2). |
664 | | same_texpr2(lazy_lookup(ID1), AVL,lazy_lookup(ID2)) :- !, avl_fetch(ID1,AVL,ID2). |
665 | | same_texpr2(E1,AVL,E2) :- % Should we only enable this for same_closure_body_with_parameter_renaming? |
666 | | quantifier_construct(E1,Functor,TParas1,Body1), |
667 | | quantifier_construct(E2,Functor,TParas2,Body2), |
668 | | !, |
669 | | same_quantified_expression(TParas1,Body1,AVL,TParas2,Body2). |
670 | | same_texpr2(E1,AVL,E2) :- |
671 | | functor(E1,F,Arity), |
672 | | functor(E2,F,Arity),!, |
673 | | safe_syntaxelement_det(E1,Subs1,_Names1,_List1,Constant1), |
674 | | safe_syntaxelement_det(E2,Subs2,_Names2,_List2,Constant2), |
675 | | Constant2==Constant1, |
676 | | same_sub_expressions(Subs1,AVL,Subs2). |
677 | | same_texpr2(E1,AVL,E2) :- same_texpr_with_rewrite(E1,AVL,E2),!. |
678 | | same_texpr2(E1,AVL,E2) :- same_texpr_with_rewrite(E2,AVL,E1). |
679 | | %same_texpr2(E1,_,E2) :- |
680 | | % functor(E1,F1,Arity1), |
681 | | % functor(E2,F2,Arity2), print(not_eq(F1,Arity1,F2,Arity2)),nl, print(E1),nl, print(E2),nl,nl,fail. |
682 | | % some differences: assertion_expression/3 and function/2, ... |
683 | | |
684 | | % some rewrite rules from ast_cleanup; but we cannot replicate all rules here |
685 | | same_texpr_with_rewrite(negation(TE1),AVL,E2) :- |
686 | | get_negated_operator_expr(b(E2,pred,[]),NegE2),!, |
687 | | get_texpr_expr(TE1,E1), |
688 | | same_texpr2(E1,AVL,NegE2). |
689 | | same_texpr_with_rewrite(member(X1,b(value(Set1),_,_)),AVL,equal(X2,b(El2,_,_))) :- |
690 | | singleton_set(Set1,El1), !, |
691 | | % X : {El} <===> X = El ; required for JSON trace replay of test 1491 |
692 | | same_texpr_body(X1,X2), |
693 | | same_texpr_value2(El2,AVL,El1). |
694 | | same_texpr_with_rewrite(not_member(X1,b(value(Set1),_,_)),AVL,not_equal(X2,b(El2,_,_))) :- |
695 | | singleton_set(Set1,El1), !, |
696 | | % X /: {El} <===> X /= El ; required for JSON trace replay of test 1491 |
697 | | same_texpr_body(X1,X2), |
698 | | same_texpr_value2(El2,AVL,El1). |
699 | | |
700 | | % constructs with local quantified parameters: |
701 | | quantifier_construct(comprehension_set(TParas,Body),comprehension_set,TParas,Body). |
702 | | quantifier_construct(exists(TParas,Body),exists,TParas,Body). |
703 | | quantifier_construct(forall(TParas,LHS,RHS),forall,TParas,Body) :- |
704 | | Body = b(implication(LHS,RHS),pred,[]). |
705 | | % TODO?: SIGMA, PI, UNION, INTER |
706 | | |
707 | | :- use_module(bsyntaxtree,[split_names_and_types/3]). |
708 | | same_quantified_expression(TParas1,Body1,AVL,TParas2,Body2) :- |
709 | | split_names_and_types(TParas1,P1,T1), |
710 | | split_names_and_types(TParas2,P2,T2), |
711 | | same_types(T1,T2), |
712 | | create_renaming(P1,P2,Renaming), |
713 | | rename_bt(Body2,Renaming,RenamedB2), % TODO: store renaming in AVL and lookup on the fly |
714 | | same_texpr_body(Body1,AVL,RenamedB2). |
715 | | |
716 | | same_texpr_value2(E2,_,V2) :- var(V2),!,V2==E2. |
717 | | same_texpr_value2(interval(Min,Max),_,avl_set(A)) :- !, % occurs in JSON trace replay for test 268 |
718 | | avl_equal_to_interval(A,Min,Max). % TODO: also compare the other way around above; only apply if Card not too large? |
719 | | same_texpr_value2(value(V2),_,V1) :- !, |
720 | | same_value_inside_closure(V1,V2). |
721 | | %(same_value_inside_closure(V1,V2) -> true ; print(not_eq_vals(V1,V2)),nl,fail). |
722 | | same_texpr_value2(comprehension_set(Paras,B2),AVL,closure(P,_,B1)) :- !, |
723 | | get_texpr_ids(Paras,P),!, |
724 | | same_texpr_body(B1,AVL,B2). |
725 | | same_texpr_value2(cartesian_product(TB1,TB2),AVL,V1) :- |
726 | | decompose_value_into_cartesian_product(V1,A1,A2), !, |
727 | | %print(cart(A1,A2)),nl, |
728 | | get_texpr_expr(TB1,B1), |
729 | | same_texpr_value2(B1,AVL,A1), |
730 | | get_texpr_expr(TB2,B2), |
731 | | same_texpr_value2(B2,AVL,A2). |
732 | | same_texpr_value2(StaticExpr,_,int(Nr)) :- number(Nr), |
733 | | b_ast_cleanup:pre_compute_static_int_expression(StaticExpr,Nr),!. |
734 | | % TO DO: maybe also check if both sides can be evaluated |
735 | | % TO DO: move pre_compute_static_int_expression to another module |
736 | | same_texpr_value2(E2,AVL,V1) :- rewrite_value(V1,E2,NewE1),!, |
737 | | same_texpr2(NewE1,AVL,E2). |
738 | | %same_texpr_value2(E1,_,E2) :- |
739 | | % functor(E1,F1,Arity1), |
740 | | % functor(E2,F2,Arity2), print(not_eq_val(F1,Arity1,F2,Arity2)),nl, fail,print(E1),nl, print(E2),nl,nl,fail. |
741 | | |
742 | | decompose_value_into_cartesian_product(avl_set(A),A1,A2) :- !, |
743 | | decompose_avl_set_into_cartesian_product_wf(A,A1,A2,no_wf_available). |
744 | | decompose_value_into_cartesian_product(Closure,A1,A2) :- is_cartesian_product_closure(Closure,A1,A2). |
745 | | |
746 | | |
747 | | % rewrite values back to AST nodes |
748 | | rewrite_value(value(V),OtherVal,New) :- nonvar(V), |
749 | | rewrite_value_aux(V,OtherVal,New). |
750 | | %rewrite_value(function(Lambda,Argument),assertion_expression(_,_,_),assertion_expression(Cond,Msg,Expr)) :- b_ast_cleanup:rewrite_function_application(Lambda,Argument,[],assertion_expression(Cond,Msg,Expr)). |
751 | | rewrite_value_aux(closure(P,T,B),_,Set) :- |
752 | | is_member_closure(P,T,B,_,Set). % TO DO: ensure that ast_cleanup does not generate useless member closures ? |
753 | | rewrite_value_aux(global_set(GS),_,AST) :- |
754 | | rewrite_glob_set(GS,AST). |
755 | | rewrite_value_aux(avl_set(A),interval(_,_),interval(TLow,TUp)) :- |
756 | | avl_equal_to_interval(A,Low,Up), |
757 | | TLow = b(integer(Low),integer,[]), TUp = b(integer(Up),integer,[]). |
758 | | rewrite_value_aux(int(A),integer(_),integer(A)) :- number(A). |
759 | | rewrite_value_aux(pred_true,_,boolean_true). |
760 | | rewrite_value_aux(pred_false,_,boolean_false). |
761 | | rewrite_value_aux(string(A),integer(_),string(A)) :- % value(string(A)) rewritten to AST node string(A) |
762 | | atom(A). |
763 | | |
764 | | |
765 | | rewrite_glob_set('REAL',real_set). |
766 | | rewrite_glob_set('FLOAT',float_set). |
767 | | rewrite_glob_set('STRING',string_set). |
768 | | rewrite_glob_set(I,integer_set(I)) :- |
769 | | kernel_objects:integer_global_set(I). |
770 | | |
771 | | allow_expansion(avl_set(_),closure(P,T,B)) :- |
772 | | is_small_specific_custom_set(closure(P,T,B),100). |
773 | | allow_expansion(closure(P,T,B),avl_set(_)) :- |
774 | | is_small_specific_custom_set(closure(P,T,B),100). |
775 | | |
776 | | same_sub_expressions([],_,[]). |
777 | | same_sub_expressions([H1|T1],AVL,[H2|T2]) :- |
778 | | same_texpr_body(H1,AVL,H2), |
779 | | same_sub_expressions(T1,AVL,T2). |
780 | | |
781 | | same_value_inside_closure(V1,V2) :- var(V1),!, V1==V2. |
782 | | same_value_inside_closure(_,V2) :- var(V2),!,fail. |
783 | | same_value_inside_closure(rec(Fields1),rec(Fields2)) :- !, |
784 | | % sets of records come in this form: struct(b(value(rec(FIELDS)),record(_),_)) |
785 | | same_fields_inside_closure(Fields1,Fields2). |
786 | | same_value_inside_closure(V1,V2) :- |
787 | | % we could attempt this only if the outer closure was large/infinite ?? |
788 | | is_custom_explicit_set(V1), is_custom_explicit_set(V2), |
789 | | !, |
790 | | (allow_expansion(V1,V2) -> EXP=allow_expansion ; EXP = no_expansion), |
791 | | equal_explicit_sets4(V1,V2,EXP,no_wf_available). % usually only sets compiled differently inside closures |
792 | | same_value_inside_closure([H1|T1],avl_set(A2)) :- !, % relevant for JSON trace replay for test 1263 |
793 | | try_convert_to_avl([H1|T1],V1), V1=avl_set(A1), |
794 | | equal_avl_tree(A1,A2). |
795 | | same_value_inside_closure(avl_set(A2),[H1|T1]) :- !, |
796 | | try_convert_to_avl([H1|T1],V1), V1=avl_set(A1), |
797 | | equal_avl_tree(A1,A2). |
798 | | same_value_inside_closure(V1,V2) :- V1==V2. |
799 | | |
800 | | same_fields_inside_closure(V1,V2) :- var(V1),!, V1==V2. |
801 | | same_fields_inside_closure(_,V2) :- var(V2),!,fail. |
802 | | same_fields_inside_closure([],[]). |
803 | | same_fields_inside_closure([field(Name,V1)|T1],[field(Name,V2)|T2]) :- |
804 | | same_value_inside_closure(V1,V2), |
805 | | same_fields_inside_closure(T1,T2). |
806 | | |
807 | | /* |
808 | | same_texpr_body_debug(H1,H2) :- |
809 | | (same_texpr_body(H1,H2) -> true |
810 | | ; print('FAIL: '),nl, |
811 | | translate:print_bexpr(H1),nl, translate:print_bexpr(H2),nl, print(H1),nl, print(H2),nl, fail). */ |
812 | | |
813 | | %test(Y2,Z2) :- empty_avl(X), avl_store(1,X,2,Y), avl_store(2,X,3,Z), |
814 | | % avl_store(2,Y,3,Y2), avl_store(1,Z,2,Z2), equal_avl_tree(Y2,Z2). |
815 | | |
816 | | %equal_avl_tree(A,B) :- avl_min(A,Min), avl_min(B,Min), cmp(Min,A,B). |
817 | | %cmp(El,A,B) :- |
818 | | % (avl_next(El,A,Nxt) -> (avl_next(El,B,Nxt), cmp(Nxt,A,B)) |
819 | | % ; \+ avl_next(El,B,Nxt) ). |
820 | | |
821 | | % The following is faster than using avl_next |
822 | | equal_avl_tree(A,B) :- |
823 | | % statistics(walltime,[WT1,_]),if(equal_avl_tree2(A,B),true,(statistics(walltime,[_,W]),print(wall(W)),nl)). |
824 | | %equal_avl_tree2(A,B) :- |
825 | | avl_min(A,Min), |
826 | | !, |
827 | | avl_min(B,Min), |
828 | | avl_max(A,Max), avl_max(B,Max), |
829 | | % maybe also check avl_height +/- factor of 1.4405 (page 460, Knuth 3) ? but it seems this would trigger only extremely rarely |
830 | | %avl_height(A,H1), avl_height(A,H2), log(check(Min,Max,H1,H2)), |
831 | | avl_domain(A,L), avl_domain(B,L). |
832 | | equal_avl_tree(empty,_) :- !, format(user_error,'*** Warning: empty AVL tree in equal_avl_tree~n',[]). |
833 | | equal_avl_tree(A,B) :- add_internal_error('Illegal AVL tree: ',equal_avl_tree(A,B)),fail. |
834 | | |
835 | | /* a predicate to check equality of two custom explicit sets */ |
836 | | |
837 | | % TO DO: deal with second set being a variable with kernel_cardinality_attr attribute |
838 | | :- block not_equal_explicit_sets_wf(-,?,?), not_equal_explicit_sets_wf(?,-,?). |
839 | | not_equal_explicit_sets_wf(global_set(X),global_set(Y),_) :- !,dif(X,Y). |
840 | | not_equal_explicit_sets_wf(global_set(B),avl_set(A),WF) :- !, |
841 | | \+ equal_explicit_sets4(avl_set(A),global_set(B),allow_expansion,WF). |
842 | | not_equal_explicit_sets_wf(freetype(X),freetype(Y),_) :- !,dif(X,Y). |
843 | | not_equal_explicit_sets_wf(avl_set(A),avl_set(B),_) :- !, |
844 | | \+ equal_avl_tree(A,B). |
845 | | %not_equal_explicit_sets_wf(X,Y,_) :- X==Y,!,fail. |
846 | | not_equal_explicit_sets_wf(avl_set(A),I2,WF) :- is_interval_closure_or_integerset(I2,L2,U2),!, % also covers I2=global_set(...) |
847 | | avl_not_equal_to_interval(A,L2,U2,WF). |
848 | | not_equal_explicit_sets_wf(avl_set(A),global_set(B),WF) :- !, |
849 | | \+ equal_explicit_sets4(avl_set(A),global_set(B),allow_expansion,WF). |
850 | | not_equal_explicit_sets_wf(avl_set(A),CPB,WF) :- |
851 | | is_cartesian_product_closure(CPB,B1,B2),!, |
852 | | if(decompose_avl_set_into_cartesian_product_wf(A,A1,A2,WF), % should not produce pending co-routines, but better safe |
853 | | kernel_objects:not_equal_object_wf((A1,A2),(B1,B2),WF), |
854 | | true % no cartesian product can be equal to this avl_set |
855 | | ). |
856 | | not_equal_explicit_sets_wf(closure(P,T,B),avl_set(A),WF) :- !, |
857 | | not_equal_explicit_sets_wf(avl_set(A),closure(P,T,B),WF). |
858 | | not_equal_explicit_sets_wf(I1,I2,_) :- is_interval_closure_or_integerset(I1,L1,U1,Finite1), |
859 | | is_interval_closure_or_integerset(I2,L2,U2,Finite2), !, |
860 | | dif((Finite1,L1,U1),(Finite2,L2,U2)). % maybe we should call not_equal_objects on integers (not on inf values)? |
861 | | not_equal_explicit_sets_wf(CPA,CPB,WF) :- |
862 | ? | is_cartesian_product_closure(CPA,A1,A2), is_cartesian_product_closure(CPB,B1,B2),!, |
863 | | not_equal_cartesian_product_wf(A1,A2,B1,B2,WF). |
864 | | not_equal_explicit_sets_wf(S1,S2,WF) :- |
865 | | is_not_member_value_closure_or_integerset(S1,TYPE,MS1), |
866 | | is_not_member_value_closure_or_integerset(S2,TYPE,MS2),!, |
867 | | kernel_objects:not_equal_object_wf(MS1,MS2,WF). |
868 | | not_equal_explicit_sets_wf(closure(P,T,B),closure(P,T,B2),_) :- |
869 | | same_texpr_body(B,B2),!,fail. |
870 | | % TO DO: maybe support interval & avl_set comparison |
871 | | not_equal_explicit_sets_wf(Set1,Set2,WF) :- |
872 | | card_for_specific_custom_set(Set1,Card1,Code1), card_for_specific_custom_set(Set2,Card2,Code2), |
873 | | call(Code1), call(Code2),!, |
874 | ? | not_equal_expansions(Card1,Card2,Set1,Set2,WF). |
875 | ? | not_equal_explicit_sets_wf(Set1,Set2,WF) :- not_equal_expansions(0,0,Set1,Set2,WF). |
876 | | |
877 | | |
878 | | :- block not_equal_expansions(-,?,?,?,?), not_equal_expansions(?,-,?,?,?). |
879 | | not_equal_expansions(F1,F2,_,_,_) :- F1 \= F2,!. % sets guaranteed to be different |
880 | | not_equal_expansions(F,F,Set1,Set2,WF) :- |
881 | ? | get_identity_as_equivalence(F,Set1,Set2,EQUIV), |
882 | | !, %write(not),nl,translate:print_bexpr(EQUIV),nl, |
883 | | copy_wf_start(WF,equal_expansions,CWF), |
884 | | b_not_test_boolean_expression(EQUIV,[],[],CWF), |
885 | ? | copy_wf_finish(WF,CWF). |
886 | | not_equal_expansions(F,F,Set1,Set2,WF) :- |
887 | | % only expand if both sets have same cardinality |
888 | | expand_custom_set_wf(Set1,E1,not_equal_expansions1,WF), |
889 | | expand_custom_set_wf(Set2,E2,not_equal_expansions2,WF), |
890 | | dif(E1,E2). /* TO DO: ensure that ordering and normalization is same for all representations ! */ |
891 | | |
892 | | |
893 | | |
894 | | |
895 | | :- use_module(b_global_sets,[b_empty_global_set/1, b_non_empty_global_set/1, b_global_set_cardinality/2]). |
896 | | is_empty_explicit_set_wf(closure(P,T,B),WF) :- !, |
897 | | is_empty_closure_wf(P,T,B,WF). |
898 | | is_empty_explicit_set_wf(S,_WF) :- is_empty_explicit_set(S). |
899 | | |
900 | | % with WF we can delay computing Card; see test 1272 / card({x|x:1..10 & x*x<i}) = 0 & i>1 |
901 | | % TO DO: ideally we could just write this: is_empty_closure_wf(P,T,B,WF) :- closure_cardinality(P,T,B,0,WF). ; but empty_set / not_exists optimisation not triggered in closure_cardinality (yet); would avoid duplicate code |
902 | | is_empty_closure_wf(P,T,B,WF) :- |
903 | | is_lambda_value_domain_closure(P,T,B, DomainValue,_Expr),!, |
904 | | kernel_objects:empty_set_wf(DomainValue,WF). |
905 | | is_empty_closure_wf(P,T,B,WF) :- is_cartesian_product_closure_aux(P,T,B,A1,A2),!, |
906 | | very_approximate_cardinality(A1,C1,WF), |
907 | | very_approximate_cardinality(A2,C2,WF), |
908 | | blocking_safe_mul(C1,C2,0). |
909 | | is_empty_closure_wf(P,T,B,_WF) :- |
910 | | card_for_specific_closure2(P,T,B,CC,Code), |
911 | | !, |
912 | | call(Code),CC=0. |
913 | | is_empty_closure_wf(P,T,Body,WF) :- |
914 | | WF \== no_wf_available, % only do this if we have a WF store; see comments for closure_cardinality ; code relevant for test 1272; card({x|x:1..10 & x*x<i}) = 0 & i>1 |
915 | | \+ ground_bexpr(Body), % otherwise better to use not_test_exists below (e.g., Bosch v6 Codespeed benchmark) |
916 | | b_interpreter_check:reify_closure_with_small_cardinality(P,T,Body, WF, ReifiedList), |
917 | | !, |
918 | | domain(ReifiedList,0,1), |
919 | | sum(ReifiedList,'#=',0). |
920 | | is_empty_closure_wf(P,T,B,WF) :- |
921 | ? | get_recursive_identifier_of_closure_body(B,TRID),!, |
922 | | def_get_texpr_id(TRID,RID), |
923 | | gen_typed_ids(P,T,TypedParas), |
924 | | % now add Recursive ID's value to local state: |
925 | | b_interpreter:b_not_test_exists(TypedParas,B,[used_ids([RID])],[bind(RID,closure(P,T,B))],[],no_compile,WF). |
926 | | is_empty_closure_wf(P,T,B,WF) :- !, % try and check that not(#(P).(B)); i.e., there is no solution for the Body B; solves tests 1542, detecting that {x|x>100 & x mod 102 = 2} = {} is false |
927 | | gen_typed_ids(P,T,TypedParas), |
928 | | b_interpreter:b_not_test_exists(TypedParas,B,[used_ids([])],[],[],no_compile,WF). % used_ids are empty, as all variables already compiled into values |
929 | | |
930 | | % very_approximate_cardinality: only required to return 0 for empty set, and number or inf for non-empty set, tested in 1893 |
931 | | :- block very_approximate_cardinality(-,?,?). |
932 | | very_approximate_cardinality(avl_set(A),C,_) :- !, (A=empty -> print(empty_avl),nl,C=0 ; C=1). |
933 | | very_approximate_cardinality([],C,_) :- !, C=0. |
934 | | very_approximate_cardinality([_|_],C,_) :- !, C=1. |
935 | | very_approximate_cardinality(Set,C,WF) :- kernel_objects:cardinality_as_int_wf(Set,int(C),WF). |
936 | | % TO DO: maybe call is_empty_closure or similar for closures |
937 | | |
938 | | gen_typed_ids([],[],R) :- !, R=[]. |
939 | | gen_typed_ids([ID|IT],[Type|TT],[b(identifier(ID),Type,[])|TTT]) :- !, |
940 | | % TO DO: add Info field from outer set comprehension |
941 | | gen_typed_ids(IT,TT,TTT). |
942 | | gen_typed_ids(I,T,TI) :- add_internal_error('Call failed: ',gen_typed_ids(I,T,TI)),fail. |
943 | | |
944 | | % version with WF can also deal with closures via exists ! |
945 | | is_empty_explicit_set(global_set(GS)) :- !, b_empty_global_set(GS). |
946 | | is_empty_explicit_set(freetype(ID)) :- !, is_empty_freetype(ID). |
947 | | is_empty_explicit_set(avl_set(A)) :- !, |
948 | | (var(A) -> add_warning(is_empty_explicit_set,'Variable avl_set') |
949 | | ; empty_avl(A), add_warning(is_empty_explicit_set,'Empty avl_set') |
950 | | ). |
951 | | is_empty_explicit_set(C) :- card_for_specific_closure(C,CC,Code),!,call(Code),CC=0. |
952 | | is_empty_explicit_set(ES) :- expand_custom_set(ES,[],is_empty_explicit_set). |
953 | | |
954 | | |
955 | | is_non_empty_explicit_set(CS) :- is_non_empty_explicit_set_wf(CS,no_wf_available). |
956 | | |
957 | | is_non_empty_explicit_set_wf(global_set(GS),_WF) :- !, b_non_empty_global_set(GS). |
958 | | is_non_empty_explicit_set_wf(freetype(ID),_WF) :- !, is_non_empty_freetype(ID). |
959 | | is_non_empty_explicit_set_wf(avl_set(A),_WF) :- !, |
960 | | (empty_avl(A) -> print('### Warning: empty avl_set (2)'),nl,fail |
961 | | ; true). |
962 | ? | is_non_empty_explicit_set_wf(closure(P,T,B),WF) :- !, is_non_empty_closure_wf(P,T,B,WF). |
963 | | %is_non_empty_explicit_set_wf(ES,_WF) :- expand_custom_set(ES,[_|_],is_non_empty_explicit_set). |
964 | | |
965 | | |
966 | | % TO DO: this code is a bit redundant with is_empty_closure_wf |
967 | | is_non_empty_closure_wf(P,T,B,WF) :- |
968 | | is_lambda_value_domain_closure(P,T,B, DomainValue,_Expr),!, |
969 | ? | kernel_objects:not_empty_set_wf(DomainValue,WF). |
970 | | is_non_empty_closure_wf(P,T,B,WF) :- is_cartesian_product_closure_aux(P,T,B,A1,A2),!, |
971 | | very_approximate_cardinality(A1,C1,WF), |
972 | | very_approximate_cardinality(A2,C2,WF), |
973 | | blocking_safe_mul(C1,C2,CC),gt0(CC). |
974 | | is_non_empty_closure_wf(P,T,B,_WF) :- |
975 | | card_for_specific_closure2(P,T,B,CC,Code),!,call(Code),gt0(CC). |
976 | | % TO DO: reify_closure_with_small_cardinality |
977 | | is_non_empty_closure_wf(P,T,B,WF) :- WF \== no_wf_available, |
978 | ? | get_recursive_identifier_of_closure_body(B,TRID),!, |
979 | | def_get_texpr_id(TRID,RID), |
980 | | gen_typed_ids(P,T,TypedParas), |
981 | | % now add Recursive ID's value to local state: |
982 | | b_interpreter:b_test_exists(TypedParas,B,[used_ids([RID])],[bind(RID,closure(P,T,B))],[],WF). |
983 | | is_non_empty_closure_wf(P,T,B,WF) :- WF \== no_wf_available, |
984 | | % otherwise enumeration of test_exists will behave strangely; leading to enumeration warnings,... [TO DO: ensure we always have a WF or fix this below ?] |
985 | | % try and check that not(#(P).(B)); i.e., there is no solution for the Body B; solves tests 1542; test 1146 also triggers this code |
986 | | (debug_mode(off) -> true ; print(non_empty_closure_test(P)),nl, translate:print_bexpr(B),nl), |
987 | | gen_typed_ids(P,T,TypedParas), |
988 | | !, |
989 | ? | b_interpreter:b_test_exists(TypedParas,B,[used_ids([])],[],[],WF). % used_ids are empty, as all variables already compiled into values |
990 | | % some rules for set_subtraction, ... closures ?? if left part infinite and right part finite it must be infinite |
991 | | is_non_empty_closure_wf(P,T,B,WF) :- |
992 | | expand_custom_set_wf(closure(P,T,B),[_|_],is_non_empty_closure_wf,WF). |
993 | | |
994 | | |
995 | | % TO DO: expand cart / reify and use for pf_test |
996 | | test_empty_closure_wf(P,T,B,Res,WF) :- |
997 | | is_lambda_value_domain_closure(P,T,B, DomainValue,_Expr),!, |
998 | | kernel_equality:empty_set_test_wf(DomainValue,Res,WF). |
999 | | %test_empty_closure_wf(P,T,B,WF) :- is_cartesian_product_closure_aux(P,T,B,A1,A2),!, |
1000 | | test_empty_closure_wf(P,T,B,Res,_WF) :- |
1001 | | card_for_specific_closure2(P,T,B,CC,Code),!,call(Code),leq0(CC,Res). |
1002 | | test_empty_closure_wf(P,T,B,Res,WF) :- |
1003 | | \+ is_memoization_closure(P,T,B,_MemoID), |
1004 | | preferences:preference(use_closure_expansion_memoization,false), |
1005 | | !, |
1006 | | bexpr_variables(B,ClosureWaitVars), |
1007 | | % this does not perform a few optimisations of expand_normal closure: |
1008 | | % memoization, stored_memo_expansion, is_closure1_value_closure, is_lambda_closure |
1009 | | % print(test_empty_closure_wf),nl, translate:print_bexpr(B),nl, |
1010 | | when((ground(ClosureWaitVars) ; nonvar(Res)), |
1011 | | test_empty_closure_wf2(P,T,B,Res,WF)). |
1012 | | test_empty_closure_wf(P,T,B,Res,WF) :- % print(expand_test(P)),nl, |
1013 | | % was expand_custom_set_wf(closure(P,T,B),ExpES,test_empty_closure_wf,WF), in turn calls expand_closure_to_list |
1014 | | expand_normal_closure(P,T,B,ExpES,_CDone,check(test_empty_closure_wf),WF), |
1015 | | kernel_equality:empty_set_test_wf(ExpES,Res,WF). |
1016 | | % /*@symbolic */ {x|x:1..100000000 & x mod 22=1} = x & (x={} <=> B=TRUE) |
1017 | | |
1018 | | test_empty_closure_wf2(P,T,B,Res,WF) :- |
1019 | | Res == pred_true,!, |
1020 | | is_empty_closure_wf(P,T,B,WF). |
1021 | | test_empty_closure_wf2(P,T,B,Res,WF) :- Res == pred_false,!, |
1022 | | is_non_empty_closure_wf(P,T,B,WF). |
1023 | | test_empty_closure_wf2(P,T,B,Res,WF) :- |
1024 | | (is_empty_closure_now(P,T,B,WF) % we need to force expansion here to be able to use local cut -> |
1025 | | % expand_normal_closure would now also expand the closure; |
1026 | | -> Res=pred_true |
1027 | | ; Res=pred_false). |
1028 | | |
1029 | | % check if closure now; ground everything except WFE |
1030 | | is_empty_closure_now(P,T,B,OuterWF) :- |
1031 | | create_inner_wait_flags(OuterWF,is_empty_closure_now,WF), |
1032 | | debug_opt_push_wait_flag_call_stack_info(WF, |
1033 | | external_call('Check if empty set',[closure(P,T,B)],unknown),WF2), |
1034 | | is_empty_closure_wf(P,T,B,WF2), |
1035 | | ground_inner_wait_flags(WF2). % does not ground WFE in case WD errors are pending |
1036 | | |
1037 | | :- block leq0(-,?). |
1038 | | leq0(inf,Res) :- !, Res=pred_false. |
1039 | | leq0(inf_overflow,Res) :- !, Res=pred_false. |
1040 | | leq0(CC,Res) :- (CC>0 -> Res=pred_false ; Res=pred_true). |
1041 | | |
1042 | | test_empty_explicit_set_wf(V,Res,_) :- var(V),!, |
1043 | | add_internal_error('Illegal call: ',test_empty_explicit_set(V,Res,_)),fail. |
1044 | | test_empty_explicit_set_wf(global_set(GS),Res,_WF) :- !, |
1045 | | (b_empty_global_set(GS) -> Res=pred_true ; Res=pred_false). |
1046 | | test_empty_explicit_set_wf(freetype(ID),Res,_WF) :- !, test_empty_freetype(ID,Res). |
1047 | | test_empty_explicit_set_wf(avl_set(A),Res,_WF) :- !, |
1048 | | (var(A) -> add_warning(test_empty_explicit_set_wf,'Variable avl_set'), Res=pred_true |
1049 | | ; empty_avl(A), add_warning(test_empty_explicit_set_wf,'Empty avl_set'), Res = pred_true |
1050 | | ; Res=pred_false). |
1051 | | test_empty_explicit_set_wf(closure(P,T,B),Res,WF) :- !, |
1052 | | test_empty_closure_wf(P,T,B,Res,WF). |
1053 | | test_empty_explicit_set_wf(ES,Res,WF) :- |
1054 | | expand_custom_set(ES,ExpES,test_empty_explicit_set), |
1055 | | kernel_equality:empty_set_test_wf(ExpES,Res,WF). |
1056 | | |
1057 | | :- block gt0(-). |
1058 | | gt0(CC) :- (CC=inf -> true ; CC=inf_overflow -> true ; CC>0). |
1059 | | |
1060 | | % a version to compute cardinality for |
1061 | | explicit_set_cardinality_for_wf(closure(P,T,B),Card) :- |
1062 | | (is_symbolic_closure_or_symbolic_mode(P,T,B) ; \+ ground_bexpr(B)), |
1063 | | !, |
1064 | | Card = inf. % assume card is infinite for WF computation; it may be finite! |
1065 | | %explicit_set_cardinality_for_wf(avl_set(AVL),Size) :- !, quick_avl_approximate_size(AVL,Size). |
1066 | | explicit_set_cardinality_for_wf(CS,Card) :- card_for_specific_custom_set(CS,Card,Code),!, |
1067 | | on_enumeration_warning(call(Code),Card=inf). % see test 1519 for relevance |
1068 | | explicit_set_cardinality_for_wf(_,inf). % assume card is infinite for WF computation; it may be finite! |
1069 | | % TO DO: maybe never expand closures here !? -> closure_cardinality can expand closure !!!!!! |
1070 | | %explicit_set_cardinality_for_wf(CS,Card) :- |
1071 | | % on_enumeration_warning( |
1072 | | % explicit_set_cardinality(CS,Card), |
1073 | | % (debug_println(assuming_inf_card_for_wf), % see test 1519 for relevance |
1074 | | % Card = inf)). % assume card is infinite for WF computation; it may be finite! |
1075 | | |
1076 | | explicit_set_cardinality(CS,Card) :- |
1077 | | % init_wait_flags(WF,[explicit_set_cardinality]), % there are a few checks for no_wf_available below |
1078 | | explicit_set_cardinality_wf(CS,Card,no_wf_available). |
1079 | | % ground_wait_flags(WF). |
1080 | | |
1081 | | explicit_set_cardinality_wf(global_set(GS),Card,_) :- !,b_global_set_cardinality(GS,Card). |
1082 | | explicit_set_cardinality_wf(freetype(GS),Card,_WF) :- !, freetype_cardinality(GS,Card). |
1083 | | explicit_set_cardinality_wf(avl_set(S),Card,_WF) :- !,avl_size(S,Card). |
1084 | ? | explicit_set_cardinality_wf(closure(P,T,B),Card,WF) :- closure_cardinality(P,T,B,Card,WF). |
1085 | | |
1086 | | :- use_module(performance_messages). |
1087 | | closure_cardinality(P,T,B,Card,WF) :- |
1088 | | is_lambda_value_domain_closure(P,T,B, DomainValue,_Expr),!, |
1089 | | kernel_objects:cardinality_as_int_wf(DomainValue,int(Card),WF). % always compute it; card_for_specific_closure will only compute it if it can be done efficiently |
1090 | | closure_cardinality(P,T,B,Card,WF) :- is_cartesian_product_closure_aux(P,T,B,A1,A2),!, |
1091 | | kernel_objects:cardinality_as_int_wf(A1,int(C1),WF), |
1092 | | kernel_objects:cardinality_as_int_wf(A2,int(C2),WF), |
1093 | | blocking_safe_mul(C1,C2,Card). |
1094 | | % TO DO: card_for_specific_closure2 calls is_lambda_value_domain_closure and is_cartesian_product_closure_aux again ! |
1095 | | closure_cardinality(P,T,B,Card,_WF) :- |
1096 | | card_for_specific_closure2(P,T,B,CC,Code), |
1097 | | !, |
1098 | | call(Code),Card=CC. |
1099 | | closure_cardinality(P,T,Body,Card,WF) :- |
1100 | | (WF == no_wf_available -> CBody=Body |
1101 | ? | ; b_compiler:b_compile(Body,P,[],[],CBody) |
1102 | | ), |
1103 | | % reify will work better if we used b_compiler:compile so that more sets can be detected as small |
1104 | | closure_cardinality2(P,T,CBody,Card,WF). |
1105 | | closure_cardinality2(P,T,Body,Card,WF) :- |
1106 | | WF \== no_wf_available, % only do this if we have a WF store |
1107 | ? | if(b_interpreter_check:reify_closure_with_small_cardinality(P,T,Body, WF, ReifiedList), |
1108 | | true, |
1109 | | (perfmessagecall(reify,reification_of_closure_for_card_failed(P),translate:print_bexpr(Body),Body),fail)), |
1110 | | !, |
1111 | | domain(ReifiedList,0,1), |
1112 | | sum(ReifiedList,'#=',Card), |
1113 | | % in this case we know card to be finite ! TO DO: ensure that check_finite propagates Card variable |
1114 | | debug_println(9,reified_cardinality_sum(ReifiedList,Card)). % fd_dom(Card,Dom),print(dom(Card,Dom)),nl. |
1115 | | % should we add a special check if Card=0 ? usually Card not instantiated at this point ! |
1116 | | %closure_cardinality(P,T,B,Card,WF) :- Card==0, %is_symbolic_closure(P,T,B), |
1117 | | % !, is_empty_closure_wf(P,T,B,WF). |
1118 | | closure_cardinality2(P,T,B,Card,WF) :- |
1119 | | % TO DO: bexpr_variables(ClosureBody,ClosureWaitVars) and wait until those are bound; if Card = 0 -> empty_set; we can try to reifiy again |
1120 | | expand_custom_set_wf(closure(P,T,B),Expansion,closure_cardinality,WF), |
1121 | | my_length(Expansion,0,Card). |
1122 | | |
1123 | | :- block my_length(-,?,?). |
1124 | | my_length([],A,A). |
1125 | | my_length([_|T],A,R) :- A1 is A+1, my_length(T,A1,R). |
1126 | | |
1127 | | % compute domain and range for specific relations; |
1128 | | % not the closure is total over the domain and surjective over the range |
1129 | | % WARNING: this should never enumerate on its own, it is often called with |
1130 | | % a cut straight after it; if some enumeration happens then only first solution |
1131 | | % will be pursued (e.g., cond_assign_eq_obj) |
1132 | | dom_range_for_specific_closure([],[],[],function(bijection),_WF). |
1133 | | dom_range_for_specific_closure(closure(P,T,Pred),Domain,Range,Functionality,WF) :- |
1134 | | dom_range_for_specific_closure2(P,T,Pred, Domain,Range,dom_and_range,Functionality,WF). |
1135 | | |
1136 | | dom_range_for_specific_closure2(Par,Typ,Body, Domain,Range,Required,Functionality,WF) :- |
1137 | | is_member_closure(Par,Typ,Body,TYPE,SET), |
1138 | | dom_range_for_member_closure(SET,TYPE,Domain,Range,Required,Functionality,WF),!. |
1139 | | dom_range_for_specific_closure2(Par,Typ,Body, DOMAIN,RANGE,_,Functionality,WF) :- |
1140 | | is_cartesian_product_closure_aux(Par,Typ,Body,SET1,SET2),!, |
1141 | | (singleton_set(SET2,_) % checks nonvar |
1142 | | -> Functionality = function(total) % function if card(SET2)=1 |
1143 | | ; Functionality=relation), |
1144 | | kernel_equality:empty_set_test_wf(SET1,EqRes1,WF), |
1145 | | cond_assign_eq_obj_wf(EqRes1,RANGE,[],SET2,WF), % if SET1=[] then Range=[] |
1146 | | kernel_equality:empty_set_test_wf(SET2,EqRes2,WF), |
1147 | | cond_assign_eq_obj_wf(EqRes2,DOMAIN,[],SET1,WF). %if SET2=[] then Domain=[] |
1148 | | dom_range_for_specific_closure2(Par,Typ,Body, DomainRange,DomainRange,_,function(bijection),_WF) :- |
1149 | | is_id_closure_over(Par,Typ,Body,DomainRange,_). |
1150 | | |
1151 | | |
1152 | | dom_range_for_member_closure(identity(b(value(SET1),ST1,_)),_SEQT,SET1,SET1,_,function(bijection),_) :- |
1153 | | is_set_type(ST1,_). /* _SEQT=id(T1) */ |
1154 | | dom_range_for_member_closure(closure(V),_SEQT,Domain,Range,Required,Functionality,WF) :- % closure1 transitive closure |
1155 | | % rx : A <-> B <=> closure1(rx) : A <-> B means we can simply remove closure1(.) wrapper |
1156 | | V = b(value(VAL),_,_), nonvar(VAL), |
1157 | | %write(peel_clos1_dom_range(Required)),nl, tools_printing:print_term_summary(closure(V)),nl, |
1158 | | (VAL = closure(P,T,B) |
1159 | | -> dom_range_for_specific_closure2(P,T,B,Domain,Range,Required,Functionality,WF) |
1160 | | ; Functionality = relation, % we do not know if this is going to be a function |
1161 | | (Required=domain_only -> true ; range_of_explicit_set_wf(VAL,Range,WF)), |
1162 | | (Required=range_only -> true ; domain_of_explicit_set_wf(VAL,Domain,WF)) |
1163 | | ). |
1164 | | |
1165 | | % not sure if we need this: memoized functions are infinite usually and range can never be computed anyway |
1166 | | %dom_range_for_member_closure(Expr,_,Domain,Range,Func) :- |
1167 | | % expand_memoize_stored_function_reference(Expr,ExpandedValue), |
1168 | | % dom_range_for_specific_closure(ExpandedValue,Domain,Range,Func,no_wf_available). |
1169 | | |
1170 | | :- block cond_assign_eq_obj_wf(-,?,?,?,?). |
1171 | | %cond_assign_eq_obj_wf(PTF,R,A,B,_) :- var(PTF), add_error(cond_assign_eq_obj,'block declaration bug warning: ',cond_assign_eq_obj(PTF,R,A,B)),fail. % comment in to detect if affected by block declaration bug |
1172 | | cond_assign_eq_obj_wf(pred_true,Res,A,_,WF) :- equal_object_wf(Res,A,cond_assign_eq_obj_wf_1,WF). |
1173 | | cond_assign_eq_obj_wf(pred_false,Res,_,B,WF) :- equal_object_wf(Res,B,cond_assign_eq_obj_wf_2,WF). |
1174 | | |
1175 | | is_cartesian_product_closure(closure(Par,Typ,Body),SET1,SET2) :- |
1176 | ? | is_cartesian_product_closure_aux(Par,Typ,Body,SET1,SET2). |
1177 | | is_cartesian_product_closure_aux(Par,Types,b(truth,pred,Info),SET1,SET2) :- Par=[_,_|_],!, |
1178 | | append(LPar,[RParID],Par), append(LTypes,[RType],Types), |
1179 | | construct_closure_if_necessary(LPar,LTypes,b(truth,pred,Info),SET1), |
1180 | | construct_closure_if_necessary([RParID],[RType],b(truth,pred,Info),SET2). |
1181 | | is_cartesian_product_closure_aux(Par,Types,Body,SET1,SET2) :- Par=[_,_|_],!, |
1182 | | append(LPar,[RParID],Par), append(LTypes,[RType],Types),!, |
1183 | | split_conjunct(Body,[RParID], RConjL, LPar, LConjL), |
1184 | | bsyntaxtree:conjunct_predicates(RConjL,RConj), bsyntaxtree:conjunct_predicates(LConjL,LConj), |
1185 | | construct_closure_if_necessary(LPar,LTypes,LConj,SET1), |
1186 | | construct_closure_if_necessary([RParID],[RType],RConj,SET2). |
1187 | | is_cartesian_product_closure_aux(Par,Typ,Body,SET1,SET2) :- |
1188 | | SET = cartesian_product(b(value(SET1),ST1,_), b(value(SET2),ST2,_)), |
1189 | | is_member_closure(Par,Typ,Body,couple(T1m,T2m),SET), |
1190 | | is_set_type(ST1,T1),unify_types_strict(T1,T1m), |
1191 | | is_set_type(ST2,T2),unify_types_strict(T2,T2m),!. |
1192 | | %is_cartesian_product_closure_aux([ID1,ID2],[T1,T2],FBody,SET1,SET2) :- % is this not redundant wrt split ?? |
1193 | | % % a closure of the form {ID1,ID2|ID1 : SET1 & ID2 : SET2} ; |
1194 | | % % can get generated when computing domain symbolically of lambda abstraction |
1195 | | % FBody = b(Body,pred,_), |
1196 | | % is_cartesian_product_body(Body,ID1,ID2,T1,T2,SET1,SET2). % ,print(cart_res(SET1,SET2)),nl. |
1197 | | |
1198 | | % try and split conjunct into two disjoint parts (for detecting cartesian products) |
1199 | | % on the specified variables |
1200 | | % fails if it cannot be done |
1201 | | split_conjunct(b(PRED,pred,Info),Vars1,C1,Vars2,C2) :- |
1202 | | split_conjunct_aux(PRED,Info,Vars1,C1,Vars2,C2). |
1203 | | split_conjunct_aux(truth,_Info,_Vars1,C1,_Vars2,C2) :- !,C1=[],C2=[]. |
1204 | | split_conjunct_aux(conjunct(A,B),_Info,Vars1,C1,Vars2,C2) :- !, % TO DO: use DCG |
1205 | | split_conjunct(B,Vars1,CB1,Vars2,CB2), !, % Note: conjunct_predicates will create inner conjunct in A and atomic Expression in B |
1206 | | split_conjunct(A,Vars1,CA1,Vars2,CA2),!, |
1207 | | append(CA1,CB1,C1), append(CA2,CB2,C2). |
1208 | | split_conjunct_aux(E,Info,Vars1,C1,_Vars2,C2) :- unique_id_comparison(E,ID),!, |
1209 | | (member(ID,Vars1) -> C1=[b(E,pred,Info)], C2=[] ; C1=[], C2=[b(E,pred,Info)]). |
1210 | | |
1211 | | unique_id_comparison(less(b(L,_,_),b(R,_,_)), ID) :- unique_id_comparison_aux(L,R,ID). |
1212 | | unique_id_comparison(less_equal(b(L,_,_),b(R,_,_)), ID) :- unique_id_comparison_aux(L,R,ID). |
1213 | | unique_id_comparison(greater(b(L,_,_),b(R,_,_)), ID) :- unique_id_comparison_aux(L,R,ID). |
1214 | | unique_id_comparison(greater_equal(b(L,_,_),b(R,_,_)), ID) :- unique_id_comparison_aux(L,R,ID). |
1215 | | unique_id_comparison(member(b(identifier(ID),_,_),b(V,_,_)), ID) :- explicit_value(V). |
1216 | | unique_id_comparison(subset(b(identifier(ID),_,_),b(V,_,_)), ID) :- explicit_value(V). |
1217 | | unique_id_comparison(equal(b(L,_,_),b(R,_,_)), ID) :- unique_id_comparison_aux(L,R,ID). % means we also detect something like %x.(x : INTEGER|0) as cartesian product |
1218 | | % what about not_equal |
1219 | | |
1220 | | unique_id_comparison_aux(identifier(ID),V,ID) :- !,explicit_value(V). |
1221 | | unique_id_comparison_aux(V,identifier(ID),ID) :- explicit_value(V). |
1222 | | |
1223 | | explicit_value(value(_)) :- !. |
1224 | | explicit_value(integer(_)) :- !. |
1225 | | explicit_value(unary_minus(TV)) :- !, explicit_tvalue(TV). |
1226 | | explicit_value(interval(TV1,TV2)) :- !, |
1227 | | explicit_tvalue(TV1), explicit_tvalue(TV2). |
1228 | | %explicit_value(seq(B)) :- !, explicit_tvalue(B). % are encoded as values by b_compile |
1229 | | %explicit_value(seq1(B)) :- !, explicit_tvalue(B). |
1230 | | %explicit_value(iseq(B)) :- !, explicit_tvalue(B). |
1231 | | %explicit_value(iseq1(B)) :- !, explicit_tvalue(B). |
1232 | | %explicit_value(struct(B)) :- !, explicit_tvalue(B). |
1233 | | %explicit_value(rec(Fields)) :- !, explicit_tfields(Fields). |
1234 | | explicit_value(total_bijection(A,B)) :- !, explicit_tvalue(A),explicit_tvalue(B). % see test 1897 for cases below |
1235 | | explicit_value(total_injection(A,B)) :- !, explicit_tvalue(A),explicit_tvalue(B). |
1236 | | explicit_value(total_function(A,B)) :- !, explicit_tvalue(A),explicit_tvalue(B). |
1237 | | explicit_value(total_surjection(A,B)) :- !, explicit_tvalue(A),explicit_tvalue(B). |
1238 | | explicit_value(partial_function(A,B)) :- !, explicit_tvalue(A),explicit_tvalue(B). |
1239 | | explicit_value(partial_injection(A,B)) :- !, explicit_tvalue(A),explicit_tvalue(B). |
1240 | | explicit_value(partial_surjection(A,B)) :- !, explicit_tvalue(A),explicit_tvalue(B). |
1241 | | explicit_value(relations(A,B)) :- !, explicit_tvalue(A),explicit_tvalue(B). |
1242 | | explicit_value(total_relation(A,B)) :- !, explicit_tvalue(A),explicit_tvalue(B). |
1243 | | explicit_value(surjection_relation(A,B)) :- !, explicit_tvalue(A),explicit_tvalue(B). |
1244 | | explicit_value(total_surjection_relation(A,B)) :- !, explicit_tvalue(A),explicit_tvalue(B). |
1245 | | explicit_value(real_set) :- !. |
1246 | | explicit_value(string_set) :- !. |
1247 | | |
1248 | | explicit_tvalue(b(B,_,_)) :- !, explicit_value(B). |
1249 | | |
1250 | | %explicit_tfields(V) :- var(V),!,fail. |
1251 | | %explicit_tfields([]). |
1252 | | %explicit_tfields([field(N,V)|T]) :- ground(N),explicit_tvalue(V),explicit_tfields(T). |
1253 | | |
1254 | | % conjunct_predicates([CA1,CB1],C1), |
1255 | | % conjunct_predicates([CA2,CB2],C2). |
1256 | | |
1257 | | /* ********* |
1258 | | is_cartesian_product_body(conjunct(A,B),ID1,ID2,_T1,_T2,SET1,SET2) :- !, |
1259 | | member_pred_value(A,CID1,CSET1), |
1260 | | member_pred_value(B,CID2,CSET2), |
1261 | | (ID1=CID1,ID2=CID2,SET1=CSET1,SET2=CSET2 ; ID1=CID2,ID2=CID1,SET1=CSET2,SET2=CSET1). |
1262 | | is_cartesian_product_body(A,ID1,ID2,T1,T2,SET1,SET2) :- |
1263 | | member_pred_value2(A,AID,ASET), |
1264 | | ( AID=ID1 -> SET1=ASET, construct_closure_if_necessary([ID2],[T2],b(truth,pred,[]),SET2) |
1265 | | ; AID=ID2 -> SET2=ASET, construct_closure_if_necessary([ID1],[T1],b(truth,pred,[]),SET1)). |
1266 | | |
1267 | | member_pred_value(b(B,pred,_), ID,VAL) :- print(member_pred_value2(B,ID,VAL)),nl, |
1268 | | member_pred_value2(B,ID,VAL). |
1269 | | member_pred_value2(member(b(identifier(ID),_CT1,_),b(value(VAL),_SCT1,_)), ID,VAL). %_SCT1 = set(CT1) |
1270 | | */ |
1271 | | |
1272 | | % check if we have POW(SET1) or SET1<->SET2 (equiv. to POW(SET1*SET2)) |
1273 | | is_full_powerset_or_relations_or_struct_closure(closure(Par,Typ,Body),SUBSETS) :- |
1274 | | %TYPE = set(T), |
1275 | | is_member_closure(Par,Typ,Body,TYPE,SET), |
1276 | | is_full_powset_aux(SET,TYPE,SUBSETS). |
1277 | | |
1278 | | :- use_module(library(lists),[maplist/3, maplist/4]). |
1279 | | is_full_powset_aux(pow_subset(b(value(SET1),set(T1),_)),set(T1),[SET1]). |
1280 | | is_full_powset_aux(relations(S1,S2),set(couple(T1,T2)),[SET1,SET2]) :- |
1281 | | S1 = b(value(SET1),set(T1),_), S2 = b(value(SET2),set(T2),_). |
1282 | | is_full_powset_aux(struct(b(value(rec(FIELDS)),record(_),_)),record(_),FieldValueSets) :- |
1283 | | maplist(get_field_val,FIELDS,FieldValueSets). |
1284 | | |
1285 | | get_field_val(field(_,Val),Val). |
1286 | | |
1287 | | %[field(duration,global_set('INTEGER')),field(rhythm,global_set('INTEGER')),field(slot,avl_set(...))] |
1288 | | |
1289 | | is_powerset_closure(closure(Par,Typ,Body),PType,Subset) :- |
1290 | ? | is_set_type(TYPE,T), |
1291 | | is_member_closure(Par,Typ,Body,TYPE,SET), |
1292 | | nonvar(SET), |
1293 | | is_powset_aux(SET,PType,b(VS,set(T),_)) , |
1294 | | nonvar(VS), VS = value(Subset). %,print(powerset(Subset)),nl. |
1295 | | is_powset_aux(pow_subset(A),pow,A). |
1296 | | is_powset_aux(pow1_subset(A),pow1,A). |
1297 | | is_powset_aux(fin_subset(A),fin,A). |
1298 | | is_powset_aux(fin1_subset(A),fin1,A). |
1299 | | |
1300 | | % group together closures which can be treated like cartesian products in the sense that: |
1301 | | % Closure is empty if either Set1 or Set2 (could also be empty in other conditions though) |
1302 | | % Closure is subset of other Closure if same Constructor and both sets are subsets |
1303 | | /* is_cartesian_product_like_closure(Closure,Constructor,Set1,Set2) :- |
1304 | | is_cartesian_product_closure(Closure,S11,S12),!, |
1305 | | Constructor = cartesian_product,Set1=S11,Set2=S12. |
1306 | | is_cartesian_product_like_closure(closure(Par,Typ,Body),Constructor,Set1,Set2) :- |
1307 | | is_member_closure(Par,Typ,Body,TYPE,SET), |
1308 | | is_cart_like_relation(SET,Constructor,b(value(Set1),set(_T1),_), b(value(Set1),set(_T2),_)). |
1309 | | is_cart_like_relation(relations(A,B),relations,A,B). |
1310 | | is_cart_like_relation(partial_function(A,B),partial_function,A,B). |
1311 | | is_cart_like_relation(partial_injection(A,B),partial_injection,A,B). */ |
1312 | | |
1313 | | % (closure([_zzzz_unary],[set(couple(integer,string))],b(member(b(identifier(_zzzz_unary),set(couple(integer,string)),[]),b(relations(b(value(global_set(INTEGER)),set(integer),[]),b(value(global_set(STRING)),set(string),[])),set(set(couple(integer,string))),[])),pred,[]))) |
1314 | | % 1 1 Fail: custom_explicit_sets:is_powset_aux(relations(b(value(global_set('INTEGER')),set(integer),[]),b(value(global_set('STRING')),set(string),[])),couple(integer,string),_19584) ? |
1315 | | |
1316 | | % card_for_specific_custom_set(+Set,-Cardinality,-CodeToComputeCardinality) |
1317 | | % succeeds if card can be computed efficiently |
1318 | | card_for_specific_custom_set(CS,C,Cd) :- var(CS),!, |
1319 | | add_internal_error('Internal error: var ',card_for_specific_custom_set(CS,C,Cd)),fail. |
1320 | | card_for_specific_custom_set(global_set(GS),Card,true) :- !, b_global_set_cardinality(GS,Card). |
1321 | | card_for_specific_custom_set(freetype(Id),Card,true) :- !, freetype_cardinality(Id,Card). |
1322 | | card_for_specific_custom_set(avl_set(S),Card,true) :- !,avl_size(S,Card). |
1323 | | card_for_specific_custom_set(closure(P,T,B),Card,CodeToComputeCard) :- |
1324 | | card_for_specific_closure3(_,P,T,B,Card,CodeToComputeCard). |
1325 | | |
1326 | | card_for_specific_closure(closure(P,T,Pred),Card,CodeToComputeCard) :- |
1327 | | card_for_specific_closure3(_ClosureKind,P,T,Pred,Card,CodeToComputeCard). |
1328 | | card_for_specific_closure(closure(P,T,Pred),ClosureKind,Card,CodeToComputeCard) :- |
1329 | | card_for_specific_closure3(ClosureKind,P,T,Pred,Card,CodeToComputeCard). |
1330 | | |
1331 | | :- use_module(btypechecker,[couplise_list/2]). |
1332 | | :- use_module(bsyntaxtree,[is_truth/1]). |
1333 | | card_for_specific_closure2(Par,Typ,Body, Card,Code) :- |
1334 | | card_for_specific_closure3(_ClosureKind,Par,Typ,Body, Card,Code). |
1335 | | |
1336 | | % first argument for debugging purposes or filtering |
1337 | | card_for_specific_closure3(special_closure,Par,Typ,Body, Card,Code) :- |
1338 | | is_special_infinite_closure(Par,Typ,Body),!,Card=inf, Code=true. |
1339 | | card_for_specific_closure3(truth_closure,_,Types,Body,Card,Code) :- is_truth(Body),!, |
1340 | | % TO DO: also treat multiple parameters |
1341 | | couplise_list(Types,Type), |
1342 | | Code=kernel_objects:max_cardinality(Type,Card). |
1343 | | card_for_specific_closure3(interval_closure,Par,Typ,Body, Card,Code) :- |
1344 | ? | is_geq_leq_interval_closure(Par,Typ,Body,Low,Up), !, |
1345 | | card_of_interval_inf(Low,Up,Card), |
1346 | | Code=true. % should we return card_of_interval_inf as code ? |
1347 | | % TO DO: deal with non-infinite not_member_closures, prj1, prj2, id, ... |
1348 | | card_for_specific_closure3(lambda_closure,Par,Typ,Body, Card,Code) :- |
1349 | | is_lambda_value_domain_closure(Par,Typ,Body, DomainValue,_Expr),!, nonvar(DomainValue), |
1350 | | efficient_card_for_set(DomainValue,Card,Code). |
1351 | | card_for_specific_closure3(cartesian_product,Par,Typ,Body, Card,Code) :- |
1352 | | is_cartesian_product_closure_aux(Par,Typ,Body,A1,A2),!, nonvar(A1), nonvar(A2), |
1353 | | efficient_card_for_set(A1,Card1,Code1), |
1354 | | efficient_card_for_set(A2,Card2,Code2), |
1355 | | Code = (Code1,Code2, custom_explicit_sets:blocking_safe_mul(Card1,Card2,Card)). |
1356 | | card_for_specific_closure3(member_closure,Par,Typ,Body, Card,Code) :- |
1357 | | is_member_closure(Par,Typ,Body,TYPE,SET), |
1358 | | nonvar(SET),!, |
1359 | | card_for_member_closure(SET,TYPE,Card,Code). |
1360 | | % Note: _ExprInfo could have: contains_wd_condition, |
1361 | | % but if lambda is well-defined we compute the correct card ; if not then card is not well-defined anyway |
1362 | | % maybe we should check contains_wd_condition produce a warning msg ? |
1363 | | |
1364 | | % inner values can sometimes be a list, e.g., [pred_true,pred_false] for BOOL |
1365 | | efficient_card_for_set(VAR,_,_) :- var(VAR),!,fail. |
1366 | | efficient_card_for_set([],Card,Code) :- !, Card=0,Code=true. |
1367 | | efficient_card_for_set([_|T],Card,Code) :- known_length(T,1,C), !, Card = C, Code=true. |
1368 | | efficient_card_for_set(CS,Card,Code) :- card_for_specific_custom_set(CS,Card,Code). |
1369 | | known_length(X,_,_) :- var(X),!,fail. |
1370 | | known_length([],A,A). |
1371 | | known_length([_|T],A,R) :- A1 is A+1, known_length(T,A1,R). |
1372 | | known_length(avl_set(S),Acc,Res) :- avl_size(S,Card), |
1373 | | Res is Acc+Card. |
1374 | | % TO DO: also support closures |
1375 | | |
1376 | | card_for_member_closure(parallel_product(b(value(A1),ST1,_),b(value(A2),ST1,_)),_T,Card,CodeToComputeCard) :- !, |
1377 | | nonvar(A1), nonvar(A2), |
1378 | | efficient_card_for_set(A1,Card1,Code1), |
1379 | | CodeToComputeCard = (Code1,Code2, custom_explicit_sets:blocking_safe_mul(Card1,Card2,Card)), |
1380 | | % cardinality computed like for cartesian_product. |
1381 | | efficient_card_for_set(A2,Card2,Code2). |
1382 | | card_for_member_closure(seq(b(value(SET1),ST1,_)),_SEQT,Card,CodeToComputeCard) :- !, /* _SEQT=seq(T1) */ |
1383 | | is_set_type(ST1,_T1), |
1384 | | CodeToComputeCard = custom_explicit_sets:seq_card(SET1,Card). |
1385 | | card_for_member_closure(seq1(b(value(SET1),ST1,_)),_SEQT,Card,CodeToComputeCard) :- !, /* _SEQT=seq1(T1) */ |
1386 | | is_set_type(ST1,_T1), |
1387 | | CodeToComputeCard = custom_explicit_sets:seq1_card(SET1,Card). |
1388 | | card_for_member_closure(perm(b(value(SET1),ST1,_)),_SEQT,Card,CodeToComputeCard) :- !, /* _SEQT=perm(T1) */ |
1389 | | is_set_type(ST1,_T1), |
1390 | | CodeToComputeCard = (kernel_objects:cardinality_as_int(SET1,int(SCard)), |
1391 | | custom_explicit_sets:blocking_factorial(SCard,Card)). |
1392 | | card_for_member_closure(iseq(b(value(SET1),ST1,_)),_SEQT,Card,CodeToComputeCard) :- !, /* _SEQT=iseq(T1) */ |
1393 | | is_set_type(ST1,_T1), |
1394 | | CodeToComputeCard = (kernel_objects:cardinality_as_int(SET1,int(SCard)), |
1395 | | kernel_card_arithmetic:blocking_nr_iseq(SCard,Card)). |
1396 | | card_for_member_closure(iseq1(b(value(SET1),ST1,_)),_SEQT,Card,CodeToComputeCard) :- !, /* _SEQT=iseq1(T1) */ |
1397 | | is_set_type(ST1,_T1), |
1398 | | CodeToComputeCard = (kernel_objects:cardinality_as_int(SET1,int(SCard)), |
1399 | | kernel_card_arithmetic:blocking_nr_iseq1(SCard,Card)). |
1400 | | card_for_member_closure(identity(b(value(SET1),ST1,_)),_SEQT,Card,CodeToComputeCard) :- !, /* _SEQT=id(T1) */ |
1401 | | is_set_type(ST1,_T1), |
1402 | | CodeToComputeCard = |
1403 | | kernel_objects:cardinality_as_int(SET1,int(Card)). |
1404 | | card_for_member_closure(struct(b(RecVal,record(_FieldSetTypes),_)), record(_FieldTypes), % set of records |
1405 | | Card,CodeToComputeCard) :- |
1406 | | !, |
1407 | | (RecVal=value(RECF), nonvar(RECF), RECF=rec(FIELDS) % value has been computed: |
1408 | | -> CodeToComputeCard = custom_explicit_sets:get_field_cardinality(FIELDS,Card) |
1409 | | ; RecVal = rec(TypedFields), % we still have a typed AST |
1410 | | maplist(get_field_val_type,TypedFields,Exprs,Types), |
1411 | | l_card_for_member_closure(Exprs,Types,Card, CodeToComputeCard) |
1412 | | ). |
1413 | | % now dealt with separately above: card_for_member_closure(cartesian_product(b(value(SET1),set(T1),_), b(value(SET2),set(T2),_)), |
1414 | | % couple(T1,T2), Card,CodeToComputeCard) :- !, |
1415 | | % CodeToComputeCard = |
1416 | | % (kernel_objects:cardinality_as_int(SET1,int(SCard1)), |
1417 | | % kernel_objects:cardinality_as_int(SET2,int(SCard2)), |
1418 | | % custom_explicit_sets:blocking_safe_mul(SCard1,SCard2,Card) ). |
1419 | | card_for_member_closure(POW,TYPE, Card,CodeToComputeCard) :- |
1420 | | (POW = pow_subset(b(value(SET),TYPE,_)) ; |
1421 | | POW = fin_subset(b(value(SET),TYPE,_))),!, |
1422 | | CodeToComputeCard = |
1423 | | (kernel_objects:cardinality_as_int(SET,int(SCard)), |
1424 | | custom_explicit_sets:blocking_safe_pow2(SCard,Card) |
1425 | | ). |
1426 | | card_for_member_closure(POW,TYPE, Card,CodeToComputeCard) :- |
1427 | | (POW = pow1_subset(b(value(SET),TYPE,_)) ; |
1428 | | POW = fin1_subset(b(value(SET),TYPE,_))),!, |
1429 | | CodeToComputeCard = |
1430 | | (kernel_objects:cardinality_as_int(SET,int(SCard)), |
1431 | | custom_explicit_sets:blocking_safe_pow2(SCard,C1), |
1432 | | custom_explicit_sets:safe_dec(C1,Card) |
1433 | | ). |
1434 | | card_for_member_closure(RELEXPR,SType, Card,CodeToComputeCard) :- |
1435 | | is_set_type(SType,couple(T1,T2)), |
1436 | | is_a_relation(RELEXPR, b(value(DOM),set(T1),_), |
1437 | | b(value(RAN),set(T2),_), DCard,RCard,Card,RELCODE),!, |
1438 | | CodeToComputeCard = |
1439 | | ( |
1440 | | kernel_objects:cardinality_as_int(DOM,int(DCard)), |
1441 | | kernel_objects:cardinality_as_int(RAN,int(RCard)), |
1442 | | custom_explicit_sets:call_card_for_relations(DCard,RCard,RELCODE) |
1443 | | ). |
1444 | | card_for_member_closure(BODY, integer, Card,CodeToComputeCard) :- |
1445 | | is_interval_with_integer_bounds(BODY,Low,Up),!, |
1446 | | CodeToComputeCard = custom_explicit_sets:card_of_interval_inf(Low,Up,Card). |
1447 | | card_for_member_closure(value(Value), _Type, Card,CodeToComputeCard) :- |
1448 | | % we have a closure of the type {x|x:S}; equivalent to S |
1449 | | (nonvar(Value), |
1450 | | Value=closure(P,T,B) |
1451 | | -> % cardinality_as_int may expand it ! is bad if e.g. we called this code to check if a closure is infinite |
1452 | | card_for_specific_closure2(P,T,B,Card,CodeToComputeCard) % will not expand, but fail if cannot be computed |
1453 | | % TO DO: provide an argument: precise_or_efficient |
1454 | | ; CodeToComputeCard = kernel_objects:cardinality_as_int(Value,int(Card)) |
1455 | | ). |
1456 | | %card_for_member_closure(BODY, Type, Card,CodeToComputeCard) :- print(try_card(BODY,Type)),nl,fail. |
1457 | | % TO DO: add maybe other common closures ? simple value closure |
1458 | | % also: what if subexpressions are not of value() type ? |
1459 | | |
1460 | | :- public call_card_for_relations/3. |
1461 | | :- block call_card_for_relations(-,?,?), call_card_for_relations(?,-,?). |
1462 | | call_card_for_relations(_,_,RELCODE) :- call(RELCODE). |
1463 | | |
1464 | | get_field_val_type(field(_F1,b(Expr1,Type1,_)),Expr1,Type1). |
1465 | | |
1466 | | l_card_for_member_closure([Expr1],[Type1],Card,CodeToComputeCard) :- !, |
1467 | | card_for_member_closure(Expr1,Type1,Card, CodeToComputeCard). |
1468 | | l_card_for_member_closure([Expr1|ET],[Type1|TT],Card,CodeToComputeCard) :- |
1469 | | CodeToComputeCard = (Code1,Code2, custom_explicit_sets:blocking_safe_mul(Card1,Card2,Card)), |
1470 | | card_for_member_closure(Expr1,Type1,Card1, Code1), |
1471 | | l_card_for_member_closure(ET,TT,Card2,Code2). |
1472 | | |
1473 | | :- public safe_dec/2. % used in card_for_member_closure |
1474 | | :- block safe_dec(-,?). |
1475 | | safe_dec(inf,R) :- !, R=inf. |
1476 | | safe_dec(inf_overflow,R) :- !, R=inf_overflow. |
1477 | | safe_dec(X,R) :- R is X-1. |
1478 | | |
1479 | | :- use_module(kernel_equality,[empty_set_test/2]). |
1480 | | :- public seq_card/2. % used in card_for_member_closure |
1481 | | :- block seq_card(-,?). |
1482 | | seq_card([],R) :- !,R=1. |
1483 | | seq_card([_|_],R) :- !,R=inf. |
1484 | | seq_card(X,Res) :- empty_set_test(X,EqRes), |
1485 | | set_card(EqRes,1,Res). |
1486 | | |
1487 | | :- block set_card(-,?,?). |
1488 | | set_card(pred_true,Nr,Nr). |
1489 | | set_card(pred_false,_,inf). |
1490 | | % card(seq({n|n>10 & (n mod 20=3 & n mod 20 = 4) })) |
1491 | | |
1492 | | :- public seq1_card/2. % used in card_for_member_closure |
1493 | | :- block seq1_card(-,?). |
1494 | | seq1_card([],R) :- !,R=0. |
1495 | | seq1_card([_|_],R) :- !,R=inf. |
1496 | | seq1_card(X,Res) :- empty_set_test(X,EqRes), set_card(EqRes,0,Res). |
1497 | | |
1498 | | :- public get_field_cardinality/2. % used in card_for_member_closure |
1499 | | get_field_cardinality([],1). |
1500 | | get_field_cardinality([field(_Name,Value)|T],ResCard) :- |
1501 | | kernel_objects:cardinality_as_int(Value,int(SCard1)), |
1502 | | get_field_cardinality(T,RestCard), blocking_safe_mul(SCard1,RestCard,ResCard). |
1503 | | |
1504 | | :- use_module(kernel_card_arithmetic). |
1505 | | |
1506 | | :- block blocking_safe_mul(-,-,?). |
1507 | | blocking_safe_mul(A,B,R) :- |
1508 | | ( A==0 -> R=0 |
1509 | | ; B==0 -> R=0 |
1510 | | ; A==1 -> R=B |
1511 | | ; B==1 -> R=A |
1512 | | ; blocking_safe_mul2(A,B,R) ). |
1513 | | |
1514 | | :- block blocking_safe_mul2(-,?,?), blocking_safe_mul2(?,-,?). |
1515 | | blocking_safe_mul2(A,B,Res) :- |
1516 | | (safe_mul(A,B,AB) -> Res=AB |
1517 | | ; add_warning(blocking_safe_mul2,'Call failed: ',blocking_safe_mul2(A,B,Res)), |
1518 | | % could happen for something like prj2(BOOL,NAT) = prj2(BOOL,0..n) |
1519 | | fail). |
1520 | | |
1521 | | :- public blocking_safe_pow2/2. % used in card_for_member_closure above |
1522 | | :- block blocking_safe_pow2(-,?). |
1523 | | blocking_safe_pow2(A,Res) :- |
1524 | | (safe_pow2(A,A2) -> Res=A2 |
1525 | | ; add_warning(blocking_safe_pow2,'Call failed: ',safe_pow2(A,Res)),fail). |
1526 | | |
1527 | | |
1528 | | |
1529 | | |
1530 | | :- assert_must_succeed((custom_explicit_sets:card_for_specific_closure2(['_zzzz_binary'],[integer], |
1531 | | b(member(b(identifier('_zzzz_binary'),integer,[generated]), |
1532 | | b(interval(b(value(int(1)),integer,[]),b(value(int(10)),integer,[])),set(integer),[])),pred,[]),R,C), |
1533 | | call(C), |
1534 | | R=10)). |
1535 | | |
1536 | | %! is_interval_closure_or_integerset(+I,-L,-U) |
1537 | | is_interval_closure_or_integerset(Var,_,_) :- var(Var),!,fail. |
1538 | | is_interval_closure_or_integerset(global_set(X),Low,Up) :- !, get_integer_set_interval(X,Low,Up). |
1539 | | is_interval_closure_or_integerset(Set,El,El) :- singleton_set(Set,ELX), |
1540 | | nonvar(ELX), ELX=int(El),!. % new, useful?? |
1541 | | is_interval_closure_or_integerset(closure(P,T,B),Low,Up) :- |
1542 | ? | (is_geq_leq_interval_closure(P,T,B,Low,Up) -> true ; is_interval_closure(P,T,B,Low,Up)). |
1543 | | |
1544 | | % with an additional argument to know if the set is finite or infinite: |
1545 | | is_interval_closure_or_integerset(Set,Low,Up,Finite) :- |
1546 | | is_interval_closure_or_integerset(Set,Low,Up), |
1547 | | % if we obtain Low, Up as variables then these must be finite numbers; they cannot stand for inf |
1548 | | (infinite_interval(Low,Up) -> Finite=infinite ; Finite=finite). |
1549 | | |
1550 | | |
1551 | | get_integer_set_interval('NAT',0,MAXINT) :- (preferences:preference(maxint,MAXINT)->true). |
1552 | | get_integer_set_interval('NAT1',1,MAXINT) :- (preferences:preference(maxint,MAXINT)->true). |
1553 | | get_integer_set_interval('INT',MININT,MAXINT) :- |
1554 | | ((preferences:preference(maxint,MAXINT),preferences:preference(minint,MININT))->true). |
1555 | | get_integer_set_interval('NATURAL',0,inf). |
1556 | | get_integer_set_interval('NATURAL1',1,inf). |
1557 | | get_integer_set_interval('INTEGER',minus_inf,inf). |
1558 | | % TO DO: add minus_inf to kernel_objects ! |
1559 | | |
1560 | | :- block geq_inf(-,?), geq_inf(?,-). |
1561 | | geq_inf(inf,_) :- !. |
1562 | | geq_inf(minus_inf,B) :- !, B=minus_inf. |
1563 | | geq_inf(_,minus_inf) :- !. |
1564 | | geq_inf(A,inf) :- !, A=inf. |
1565 | | geq_inf(inf_overflow,_) :- !. |
1566 | | geq_inf(A,inf_overflow) :- !, A=inf_overflow. |
1567 | | geq_inf(A,B) :- A >= B. |
1568 | | |
1569 | | :- block minimum_with_inf(-,-,?). |
1570 | | % in the first three cases we can determine outcome without knowing both args |
1571 | | minimum_with_inf(A,B,R) :- (A==minus_inf ; B==minus_inf),!,R=minus_inf. |
1572 | | minimum_with_inf(A,B,R) :- A==inf,!,R=B. |
1573 | | minimum_with_inf(A,B,R) :- B==inf,!,R=A. |
1574 | | minimum_with_inf(A,B,R) :- minimum_with_inf1(A,B,R), geq_inf(A,R), geq_inf(B,R). |
1575 | | :- block minimum_with_inf1(-,?,?), minimum_with_inf1(?,-,?). |
1576 | | minimum_with_inf1(minus_inf,_,R) :- !, R=minus_inf. |
1577 | | minimum_with_inf1(_,minus_inf,R) :- !, R=minus_inf. |
1578 | | minimum_with_inf1(inf,B,R) :- !, R=B. |
1579 | | minimum_with_inf1(A,inf,R) :- !, R=A. |
1580 | | minimum_with_inf1(inf_overflow,B,R) :- !, R=B. |
1581 | | minimum_with_inf1(A,inf_overflow,R) :- !, R=A. |
1582 | | minimum_with_inf1(A,B,R) :- (A<B -> R=A ; R=B). |
1583 | | |
1584 | | :- block maximum_with_inf(-,-,?). |
1585 | | % in the first three cases we can determine outcome without knowing both args |
1586 | | maximum_with_inf(A,B,R) :- (A==inf ; B==inf),!,R=inf. |
1587 | | maximum_with_inf(A,B,R) :- A==minus_inf,!,R=B. |
1588 | | maximum_with_inf(A,B,R) :- B==minus_inf,!,R=A. |
1589 | | maximum_with_inf(A,B,R) :- maximum_with_inf1(A,B,R), geq_inf(R,A), geq_inf(R,B). |
1590 | | :- block maximum_with_inf1(-,?,?), maximum_with_inf1(?,-,?). |
1591 | | maximum_with_inf1(inf,_,R) :- !, R=inf. |
1592 | | maximum_with_inf1(_,inf,R) :- !, R=inf. |
1593 | | maximum_with_inf1(minus_inf,B,R) :- !, R=B. |
1594 | | maximum_with_inf1(A,minus_inf,R) :- !, R=A. |
1595 | | maximum_with_inf1(inf_overflow,_,R) :- !, R=inf_overflow. |
1596 | | maximum_with_inf1(_,inf_overflow,R) :- !, R=inf_overflow. |
1597 | | maximum_with_inf1(A,B,R) :- (A>B -> R=A ; R=B). |
1598 | | |
1599 | | /* utilities for detecting interval closures */ |
1600 | | construct_interval_closure(Low,Up,Res) :- (Low==inf;Up==minus_inf),!,Res=[]. |
1601 | | construct_interval_closure(Low,Up,Res) :- number(Low),number(Up), Low>Up,!,Res=[]. |
1602 | | construct_interval_closure(Low,Up,Res) :- Up==inf,!, |
1603 | | ( Low==0 -> Res = global_set('NATURAL') |
1604 | | ; Low==1 -> Res = global_set('NATURAL1') |
1605 | | ; Low==minus_inf -> Res = global_set('INTEGER') |
1606 | | ; Low==inf -> Res = [] |
1607 | | ; construct_greater_equal_closure(Low,Res) |
1608 | | ). |
1609 | | construct_interval_closure(Low,Up,Res) :- Low==minus_inf,!, |
1610 | | construct_less_equal_closure(Up,Res). |
1611 | | construct_interval_closure(Low,Up,Res) :- Low==Up,!, |
1612 | | (number(Low) -> construct_one_element_custom_set(int(Low),Res) |
1613 | | ; Res = [int(Low)]). |
1614 | | construct_interval_closure(Low,Up,Res) :- |
1615 | | construct_interval_set(Low,Up,Set), |
1616 | | construct_member_closure('_zzzz_unary',integer,[],Set,Res). |
1617 | | |
1618 | | transform_global_sets_into_closure(closure(P,T,B),closure(P,T,B)). |
1619 | | transform_global_sets_into_closure(global_set(X),Res) :- |
1620 | | transform_global_set_into_closure_aux(X,Res). |
1621 | | transform_global_set_into_closure_aux('NATURAL',Res) :- |
1622 | | construct_greater_equal_closure(0,Res). |
1623 | | transform_global_set_into_closure_aux('NATURAL1',Res) :- |
1624 | | construct_greater_equal_closure(1,Res). |
1625 | | % TO DO: add INTEGER |
1626 | | |
1627 | | |
1628 | | |
1629 | | is_geq_leq_interval_closure([Par],[integer],b(Body,pred,Span),Low,Up) :- |
1630 | | (var(Par) |
1631 | | -> add_internal_error('Non-ground closure: ',closure([Par],[integer],b(Body,pred,Span))),fail |
1632 | ? | ; get_geq_leq_bounds(Body,Par,Low,Up)). |
1633 | | |
1634 | | infinite_interval(Low,Up) :- (Low==minus_inf -> true ; Up==inf). |
1635 | | |
1636 | | :- assert_must_succeed((card_of_interval_inf(1,10,10))). |
1637 | | :- assert_must_succeed((card_of_interval_inf(1,inf,R),R==inf)). |
1638 | | :- assert_must_succeed((card_of_interval_inf(minus_inf,0,R),R==inf)). |
1639 | | :- assert_must_succeed((card_of_interval_inf(2,2,R), R==1)). |
1640 | | :- assert_must_succeed((card_of_interval_inf(12,2,R), R==0)). |
1641 | | :- assert_must_succeed((card_of_interval_inf(2,B,10), B==11)). |
1642 | | :- assert_must_succeed((card_of_interval_inf(A,12,10), A==3)). |
1643 | | :- assert_must_succeed((card_of_interval_inf(A,12,0), A=222)). |
1644 | | :- assert_must_succeed((card_of_interval_inf(12,B,0), B=11)). |
1645 | | :- assert_must_fail((card_of_interval_inf(A,12,0), A=12)). |
1646 | | % compute cardinality of interval; allow bounds to be inf and minus_inf (but if so, they must be bound straightaway) |
1647 | | card_of_interval_inf(A,B,Card) :- |
1648 | ? | at_least_two_vars(A,B,Card), % initially this will usually be true, if only one variable we can compute result |
1649 | | preferences:preference(use_clpfd_solver,true), |
1650 | | !, |
1651 | | clpfd_interface:post_constraint(Card #= max(0,1+B-A),custom_explicit_sets:block_card_of_interval_inf(A,B,Card)). |
1652 | | card_of_interval_inf(A,B,Card) :- block_card_of_interval_inf(A,B,Card). |
1653 | | |
1654 | ? | at_least_two_vars(A,B,C) :- var(A),!,(var(B) -> not_infinite_bound(C) ; number(B),var(C)). |
1655 | | at_least_two_vars(A,B,C) :- number(A), var(B),var(C). |
1656 | | not_infinite_bound(A) :- (var(A) ; number(A)). % inf can only appear immediately, not for variables |
1657 | | |
1658 | | :- block block_card_of_interval_inf(-,?,-),block_card_of_interval_inf(?,-,-). |
1659 | | block_card_of_interval_inf(A,_,Card) :- A==minus_inf,!, Card=inf. |
1660 | | block_card_of_interval_inf(_,B,Card) :- B==inf,!, Card=inf. |
1661 | | block_card_of_interval_inf(From,To,Card) :- number(From),number(To),!, |
1662 | | (From>To -> Card=0 ; Card is (To-From)+1). |
1663 | | block_card_of_interval_inf(A,B,C) :- number(C),!, number_card_of_interval_inf_aux(C,A,B). |
1664 | | block_card_of_interval_inf(A,B,C) :- C==inf,!, |
1665 | | % probably this should systematically fail; if A and B are not inf/minus_inf now they will never be |
1666 | | print(infinite_interval_requested(A,B,C)),nl, |
1667 | | when((nonvar(A),nonvar(B)), block_card_of_interval_inf(A,B,C)). |
1668 | | block_card_of_interval_inf(A,B,C) :- add_internal_error('Illegal call: ',card_of_interval_inf(A,B,C)). |
1669 | | :- use_module(inf_arith,[block_inf_greater/2]). |
1670 | | number_card_of_interval_inf_aux(0,A,B) :- !, % empty interval |
1671 | | % if A and B are variables then they will not become inf later ?? |
1672 | | % inf can only be set directly for sets such as {x|x>4} or NATURAL1 |
1673 | | (((var(A);number(A)),(var(B);number(B))) |
1674 | | % hence we can use ordinary comparison (with CLPFD) here |
1675 | | -> kernel_objects:less_than_direct(B,A) |
1676 | | % TO DO: we could do this even if both A and B are variables !! ex : {n,m|n..m = {} & m..100={} & 103..n={}} |
1677 | | ; block_inf_greater(A,B)). |
1678 | | %number_card_of_interval_inf_aux(Card,From,B) :- number(From),!, B is (From+Card)-1. |
1679 | | %number_card_of_interval_inf_aux(Card,A,To) :- number(To),!, A is 1+To-Card. |
1680 | | number_card_of_interval_inf_aux(Card,A,B) :- |
1681 | | Card>0, C1 is Card-1, |
1682 | | kernel_objects:int_minus(int(B),int(A),int(C1)). |
1683 | | |
1684 | | |
1685 | | get_geq_leq_bounds(conjunct(b(LEFT,pred,_),b(RIGHT,pred,_)), Par,Low,Up) :- |
1686 | ? | get_geq_leq_bounds(LEFT,Par,From1,To1), |
1687 | ? | get_geq_leq_bounds(RIGHT,Par,From2,To2), |
1688 | | intersect_intervals_with_inf(From1,To1,From2,To2,Low,Up). |
1689 | | get_geq_leq_bounds(member(b(identifier(Par),integer,_), |
1690 | | b(Value,set(integer),_)),Par,Low,Up) :- |
1691 | | get_value_bounds(Value,Low,Up). |
1692 | ? | get_geq_leq_bounds(greater_equal(b(A,_,_),b(B,_,_)),Par,Low,Up) :- get_bounds2(greater_equal,A,B,Par,Low,Up). |
1693 | ? | get_geq_leq_bounds( less_equal(b(A,_,_),b(B,_,_)),Par,Low,Up) :- get_bounds2(less_equal,A,B,Par,Low,Up). |
1694 | ? | get_geq_leq_bounds( greater(b(A,_,_),b(B,_,_)),Par,Low,Up) :- get_bounds2(greater,A,B,Par,Low,Up). |
1695 | ? | get_geq_leq_bounds( less(b(A,_,_),b(B,_,_)),Par,Low,Up) :- get_bounds2(less,A,B,Par,Low,Up). |
1696 | | |
1697 | | get_value_bounds(value(GS),Low,Up) :- is_interval_closure_or_integerset(GS,Low,Up). % recursive call |
1698 | | % nonvar(GS), GS=global_set(ISET), get_integer_set_interval(ISET,Low,Up). |
1699 | | get_value_bounds(interval(b(TLow,_,_),b(TUp,_,_)),Low,Up) :- |
1700 | | integer_value(TLow,Low), |
1701 | | integer_value(TUp,Up). |
1702 | | |
1703 | | get_bounds2(greater_equal,identifier(Par),V,Par,X,inf) :- integer_value(V,X). |
1704 | | get_bounds2(greater_equal,V,identifier(Par),Par,minus_inf,X) :- integer_value(V,X). |
1705 | | get_bounds2(less_equal,identifier(Par),V,Par,minus_inf,X) :- integer_value(V,X). |
1706 | | get_bounds2(less_equal,V,identifier(Par),Par,X,inf) :- integer_value(V,X). |
1707 | | get_bounds2(greater,identifier(Par),V,Par,X1,inf) :- integer_value(V,X), kernel_objects:int_plus(int(X),int(1),int(X1)). %, X1 is X+1. |
1708 | | get_bounds2(greater,V,identifier(Par),Par,minus_inf,X1) :- integer_value(V,X), kernel_objects:int_minus(int(X),int(1),int(X1)). %X1 is X-1. |
1709 | | get_bounds2(less,V,identifier(Par),Par,X1,inf) :- integer_value(V,X), kernel_objects:int_plus(int(X),int(1),int(X1)). %X1 is X+1. |
1710 | | get_bounds2(less,identifier(Par),V,Par,minus_inf,X1) :- integer_value(V,X), |
1711 | | kernel_objects:int_minus(int(X),int(1),int(X1)). %X1 is X-1. |
1712 | | % to do: add negation thereof ?? |
1713 | | |
1714 | | integer_value(V,_) :- var(V),!, print(var_integer_value(V)),nl,fail. |
1715 | | integer_value(integer(X),R) :- !, R=X. |
1716 | | integer_value(unary_minus(b(X,_,_)),R) :- !, integer_value(X,RM), |
1717 | | number(RM), % if RM is not a number we could setup CLPFD constraint ?! |
1718 | | R is -(RM). |
1719 | | integer_value(minus(b(X,_,_),b(Y,_,_)),R) :- !, % some AST compilation rules generate X-1, X+1 ... |
1720 | | integer_value(X,RMX), |
1721 | | integer_value(Y,RMY), |
1722 | | kernel_objects:int_minus(int(RMX),int(RMY),int(R)). |
1723 | | integer_value(plus(b(X,_,_),b(Y,_,_)),R) :- !, % some AST compilation rules generate X-1, X+1 ... |
1724 | | integer_value(X,RMX), |
1725 | | integer_value(Y,RMY), |
1726 | | kernel_objects:int_plus(int(RMX),int(RMY),int(R)). |
1727 | | integer_value(value(V),R) :- !, V=int(R). |
1728 | | |
1729 | | is_interval_closure(closure(Par,[integer],Pred),Low,Up) :- |
1730 | | is_interval_closure_aux(Par,Pred,Low,Up). |
1731 | | is_interval_closure(Par,[integer],Pred,Low,Up) :- |
1732 | | is_interval_closure_aux(Par,Pred,Low,Up). |
1733 | | is_interval_closure_aux(Par,Pred,Low,Up) :- |
1734 | | is_member_closure(Par,[integer],Pred,integer,Set), |
1735 | | is_interval_with_integer_bounds(Set,Low,Up). |
1736 | | %is_interval_closure(closure_x(Par,[integer],Pred,_),Low,Up) :- |
1737 | | % is_interval_closure(closure(Par,[integer],Pred),Low,Up). |
1738 | | |
1739 | | is_interval_closure_body(Body,ID,Low,Up) :- |
1740 | | is_member_closure([ID],[integer],Body,integer,Set),!, |
1741 | | is_interval_with_integer_bounds(Set,Low,Up). |
1742 | | is_interval_closure_body(Body,ID,Low,Up) :- |
1743 | ? | is_geq_leq_interval_closure([ID],[integer],Body,Low,Up), |
1744 | | number(Low), number(Up). |
1745 | | |
1746 | | :- use_module(bsyntaxtree,[get_texpr_info/2,get_texpr_id/2]). |
1747 | | % do a single check if we have interval, member or not-member closure, avoiding redundant checking |
1748 | | % TO DO: move this and related predicates to closures module ? |
1749 | | is_special_closure(_Ids,_Types,Pred,Result) :- |
1750 | | get_texpr_info(Pred,Info),memberchk(prob_annotation(recursive(RId)),Info),!, |
1751 | | Result = recursive_special_closure(RId). |
1752 | | is_special_closure(Ids,Types,Pred,Result) :- |
1753 | ? | is_memoization_closure(Ids,Types,Pred,MemoID),!, |
1754 | | Result = memoization_closure(MemoID). |
1755 | | is_special_closure([ID],[TYPE],b(PRED,_,_), Result) :- |
1756 | | ( closures:is_member_closure_aux(PRED, ID,TYPE,SET) -> |
1757 | | ( (TYPE=integer, is_interval_with_integer_bounds(SET,Low,Up)) -> |
1758 | | Result = interval(Low,Up) |
1759 | | ; Result = member_closure(ID,TYPE,SET)) |
1760 | | ; closures:is_not_member_closure_aux(PRED,ID,TYPE,SET) -> |
1761 | | Result = not_member_closure(ID,TYPE,SET) |
1762 | ? | ; (TYPE=integer,get_geq_leq_bounds(PRED,ID,Low,Up),number(Low), number(Up)) -> |
1763 | | Result = interval(Low,Up) |
1764 | | ). |
1765 | | |
1766 | | |
1767 | | construct_interval_set(Low,Up,Res) :- |
1768 | | Res = interval(b(value(int(Low)),integer,[]), |
1769 | | b(value(int(Up)), integer,[])). |
1770 | | is_interval_with_integer_bounds(X,L,U) :- var(X),!, |
1771 | | add_internal_error('var arg: ',is_interval_with_integer_bounds(X,L,U)),fail. |
1772 | | is_interval_with_integer_bounds(interval(b(TLOW,integer,_),b(TUP, integer,_)),Low,Up) :- |
1773 | | integer_value(TLOW,Low), integer_value(TUP,Up). |
1774 | | |
1775 | | |
1776 | | is_a_relation(relations(Domain,Range),Domain,Range,DCard,RCard,Card,Code) :- %% '<->' |
1777 | | Code = (kernel_card_arithmetic:safe_mul(DCard,RCard,Exp), kernel_card_arithmetic:safe_pow2(Exp,Card)). |
1778 | | is_a_relation(partial_function(Domain,Range),Domain,Range,DCard,RCard,Card,Code) :- %% '+->' |
1779 | | Code = (kernel_card_arithmetic:safe_add_card(RCard,1,R1),kernel_card_arithmetic:safe_pown(R1,DCard,Card)). |
1780 | | is_a_relation(total_function(Domain,Range),Domain,Range,DCard,RCard,Card,Code) :- %% '-->' |
1781 | | Code = (kernel_card_arithmetic:safe_pown(RCard,DCard,Card)). |
1782 | | is_a_relation(partial_bijection(Domain,Range),Domain,Range,DCard,RCard,Card,Code) :- %% '>+>>' |
1783 | | Code = (kernel_card_arithmetic:partial_bijection_card(DCard,RCard,Card)). |
1784 | | is_a_relation(total_bijection(Domain,Range),Domain,Range,DCard,RCard,Card,Code) :- %% '>->>' |
1785 | | Code = (kernel_card_arithmetic:total_bijection_card(DCard,RCard,Card)). |
1786 | | is_a_relation(total_injection(Domain,Range),Domain,Range,DCard,RCard,Card,Code) :- %% '>->' |
1787 | | Code = (kernel_card_arithmetic:blocking_factorial_k(RCard,DCard,Card)). |
1788 | | is_a_relation(partial_injection(Domain,Range),Domain,Range,DCard,RCard,Card,Code) :- %% '>+>' |
1789 | | Code = (kernel_card_arithmetic:partial_injection_card(DCard,RCard,Card)). |
1790 | | is_a_relation(total_surjection(Domain,Range),Domain,Range,DCard,RCard,Card,Code) :- %% '-->>' |
1791 | | Code = (kernel_card_arithmetic:total_surjection_card(DCard,RCard,Card)). |
1792 | | is_a_relation(partial_surjection(Domain,Range),Domain,Range,DCard,RCard,Card,Code) :- %% '+->>' |
1793 | | Code = (kernel_card_arithmetic:partial_surjection_card(DCard,RCard,Card)). |
1794 | | is_a_relation(total_relation(Domain,Range),Domain,Range,DCard,RCard,Card,Code) :- %% '<<->' |
1795 | | Code = (kernel_card_arithmetic:total_relation_card(DCard,RCard,Card)). |
1796 | | is_a_relation(surjection_relation(Domain,Range),Domain,Range,DCard,RCard,Card,Code) :- %% '<->>' |
1797 | | % just swap args: card(A<->>B) = card(B<<->A) |
1798 | | Code = (kernel_card_arithmetic:total_relation_card(RCard,DCard,Card)). |
1799 | | % TO DO: total_surjection_relation <<->> |
1800 | | |
1801 | | |
1802 | | |
1803 | | :- use_module(b_global_sets,[infinite_global_set/1]). |
1804 | | |
1805 | | :- block is_infinite_global_set(-,?). |
1806 | | is_infinite_global_set('NATURAL',integer). |
1807 | | is_infinite_global_set('NATURAL1',integer). |
1808 | | is_infinite_global_set('INTEGER',integer). |
1809 | | is_infinite_global_set('FLOAT',real). |
1810 | | is_infinite_global_set('REAL',real). |
1811 | | is_infinite_global_set('STRING',string). |
1812 | | is_infinite_global_set(G,global(G)) :- infinite_global_set(G). |
1813 | | |
1814 | | %is_finite_integer_global_set('NAT'). |
1815 | | %is_finite_integer_global_set('NAT1'). |
1816 | | %is_finite_integer_global_set('INT'). |
1817 | | |
1818 | | % detects (certain) infinite explict sets |
1819 | | is_infinite_explicit_set(X) :- var(X),!, add_internal_error(is_infinite_explicit_set,var(X)),fail. |
1820 | ? | is_infinite_explicit_set(global_set(X)) :- is_infinite_global_set(X,_). |
1821 | | is_infinite_explicit_set(freetype(X)) :- is_infinite_freetype(X). |
1822 | | is_infinite_explicit_set(closure(Par,T,Body)) :- is_infinite_closure(Par,T,Body). |
1823 | | |
1824 | | % detect some closure that we should definitely expand; even in SYMBOLIC mode or for ABSTRACT_CONSTANTS |
1825 | | definitely_expand_this_explicit_set(Var) :- var(Var),!,fail. |
1826 | | definitely_expand_this_explicit_set(closure(P,_T,B)) :- |
1827 | | B = b(Body,_,_), definitely_expand(Body,P). |
1828 | | % some lambda functions have small domain, but are very complicated to compute (test 1078, 1376) |
1829 | | % hence the following is not sufficient: |
1830 | | % ;is_small_specific_custom_set(closure(P,T,B),100), print(exp(T)),nl,translate:print_bexpr(B),nl,fail). |
1831 | | |
1832 | | definitely_expand(Body,_) :- avl_mem_construct(Body,_). |
1833 | | definitely_expand(exists(TEIDS,Body),P) :- P = [ID], TEIDS = [TEID], % TO DO: detect multiple ids |
1834 | | % detect {res|#y.(y:AVL & res=Expr(y))} % test 1101 |
1835 | | Body = b(conjunct(b(Mem,pred,_),Eq),pred,_), |
1836 | | Eq = b(equal(EqA,EqB),pred,_), |
1837 | | avl_mem_construct(Mem,LHS), get_texpr_id(LHS,EID), get_texpr_id(TEID,EID), |
1838 | | (get_texpr_id(EqA,ID) -> true ; get_texpr_id(EqB,ID)). |
1839 | | |
1840 | | avl_mem_construct(member(LHS,RHS),LHS) :- RHS = b(value(V),_,_), nonvar(V), V=avl_set(_). |
1841 | | |
1842 | | dont_expand_this_explicit_set(closure(P,T,B)) :- !, |
1843 | ? | dont_expand_this_closure(P,T,B). |
1844 | | dont_expand_this_explicit_set(S) :- |
1845 | | is_infinite_or_very_large_explicit_set(S). |
1846 | | |
1847 | | % true if we have a closure / global_set that should not be expanded |
1848 | | % TO DO: we could detect finite (is_lambda_value_domain_closure) closures which contain infinite elements such as %p.(p : BOOL|%t.(t : NATURAL|t .. t + 7)) |
1849 | | dont_expand_symbolic_explicit_set(closure(P,T,B)) :- !, |
1850 | | dont_expand_this_closure(P,T,B). |
1851 | | dont_expand_symbolic_explicit_set(avl_set(_)) :- !, |
1852 | | fail. % already expanded |
1853 | | dont_expand_symbolic_explicit_set(S) :- |
1854 | | is_infinite_or_very_large_explicit_set(S). |
1855 | | |
1856 | | |
1857 | ? | dont_expand_this_explicit_set(closure(P,T,B),Limit) :- !, dont_expand_this_closure(P,T,B,Limit). |
1858 | | dont_expand_this_explicit_set(S,_) :- is_infinite_or_very_large_explicit_set(S). |
1859 | | |
1860 | ? | dont_expand_this_closure(P,T,B) :- dont_expand_this_closure(P,T,B,20000). |
1861 | | |
1862 | | dont_expand_this_closure(P,T,B,_Limit) :- |
1863 | | is_interval_closure_or_integerset(closure(P,T,B),Low,Up), !, |
1864 | | % interval closures are quite efficient for certain manipulations |
1865 | | (number(Low), number(Up) |
1866 | | -> Size is Up+1-Low, Size>100 % another magic constant ; which value to choose ?? |
1867 | | ; true % we have a closure with inf/minus_inf or variables as bounds; in both cases keep the closure |
1868 | | ). |
1869 | | dont_expand_this_closure(_P,_T,b(_,_,INFO),_Limit) :- |
1870 | ? | member(prob_annotation('SYMBOLIC'),INFO). % cf is_symbolic_closure in closures |
1871 | | dont_expand_this_closure(P,T,B,Limit) :- |
1872 | | is_infinite_or_very_large_closure(P,T,B,Limit). |
1873 | | %% TODO: also prevent expansion of things like ff = %x.(x:STRING & REGEX_MATCH(x,"[a-z]+")=TRUE|TRUE) |
1874 | | |
1875 | | is_converted_lambda_closure(_P,_T,b(_,_,INFO)) :- |
1876 | ? | member(prob_annotation('LAMBDA'),INFO). |
1877 | | |
1878 | | is_symbolic_closure_or_symbolic_mode(P,T,B) :- |
1879 | ? | (is_symbolic_closure(P,T,B) -> true |
1880 | | ; preference(convert_comprehension_sets_into_closures,true) |
1881 | | % by default suppose closures should be dealt with symbolically |
1882 | | ). |
1883 | | /* |
1884 | | % check both LAMBDA + not RECURSIVE |
1885 | | is_converted_non_recursive_lambda_closure(_,_,b(_,_,INFO)) :- is_conv_lambda_nonrec(INFO). |
1886 | | is_conv_lambda_nonrec([prob_annotation(A)|T]) :- !, |
1887 | | (A='LAMBDA' -> \+ memberchk(prob_annotation('RECURSIVE'),T) |
1888 | | ; A\='RECURSIVE' -> is_conv_lambda_nonrec(T)). |
1889 | | is_conv_lambda_nonrec([_|T]) :- is_conv_lambda_nonrec(T). */ |
1890 | | |
1891 | | |
1892 | | |
1893 | | % a set that is so large that expanding it would probably cause problems |
1894 | | is_infinite_or_very_large_explicit_set(S) :- is_infinite_or_very_large_explicit_set(S,20000). |
1895 | | |
1896 | | :- use_module(inf_arith,[infgreater/2]). |
1897 | | |
1898 | | is_infinite_or_very_large_explicit_set(X,_) :- var(X),!,print(var_is_infinite_check(X)),nl,fail. |
1899 | | is_infinite_or_very_large_explicit_set(closure(P,T,B),Limit) :- !, |
1900 | | % treat closure separately here; some special rules |
1901 | | is_infinite_or_very_large_closure(P,T,B,Limit). |
1902 | | is_infinite_or_very_large_explicit_set(avl_set(A),Limit) :- !, % we could compute log and use avl_height_less_than |
1903 | | quick_avl_approximate_size(A,Size), Size >= Limit. |
1904 | | is_infinite_or_very_large_explicit_set(X,Limit) :- % closures are checked above |
1905 | | explicit_set_cardinality(X,Card), |
1906 | | nonvar(Card),infgreater(Card,Limit). |
1907 | | |
1908 | | |
1909 | | is_very_large_or_symbolic_closure(P,T,B,Limit) :- |
1910 | ? | (is_symbolic_closure(P,T,B) -> true ; is_infinite_or_very_large_closure(P,T,B,Limit)). |
1911 | | :- use_module(bsyntaxtree,[is_a_disjunct/3]). |
1912 | | is_infinite_or_very_large_closure(P,T,B,Limit) :- |
1913 | | is_a_disjunct(B,D1,D2), % Assumption: there is no card_for_specific_closure code for disjuncts |
1914 | | !, |
1915 | | (is_infinite_or_very_large_closure(P,T,D1,Limit) -> true |
1916 | | ; is_infinite_or_very_large_closure(P,T,D2,Limit)). |
1917 | | is_infinite_or_very_large_closure(Par,T,Body,Limit) :- |
1918 | | is_closure1_value_closure(Par,T,Body,VAL),!, |
1919 | | nonvar(VAL), % it could still be large or infinite |
1920 | | (Limit>1 -> NLimit is Limit/2 ; NLimit = Limit), % reduce limit as closure1 usually blows up |
1921 | | is_infinite_or_very_large_explicit_set(VAL,NLimit). |
1922 | | is_infinite_or_very_large_closure(P,T,B,Limit) :- |
1923 | | card_for_specific_closure3(Kind,P,T,B,Card,Code), |
1924 | | on_enumeration_warning(call(Code), |
1925 | | (debug_println(9,cannot_expand_specific_closure_for_card(Kind,Limit)), |
1926 | | % see test 1519 for relevance |
1927 | | Card=inf)), % assume it is large |
1928 | | !, |
1929 | | nonvar(Card),infgreater(Card,Limit). |
1930 | | |
1931 | | |
1932 | | is_infinite_or_symbolic_closure(P,T,B) :- |
1933 | ? | (is_symbolic_closure(P,T,B) -> true ; is_infinite_closure(P,T,B)). |
1934 | | is_infinite_closure(P,T,B) :- |
1935 | | is_a_disjunct(B,D1,D2), % Assumption: there is no card_for_specific_closure code for disjuncts |
1936 | | !, |
1937 | | (is_infinite_closure(P,T,D1) -> true ; is_infinite_closure(P,T,D2)). |
1938 | | is_infinite_closure(Par,T,Body) :- |
1939 | | is_closure1_value_closure(Par,T,Body,VAL),!, % TO DO: also check if closure1 is large this way |
1940 | | nonvar(VAL), % if var: it could still be infinite !! TO DO fix |
1941 | | is_infinite_explicit_set(VAL). |
1942 | | is_infinite_closure(Par,T,Body) :- |
1943 | | card_for_specific_closure(closure(Par,T,Body),Card,Code), |
1944 | | call(Code), % TO DO: catch enumeration exceptions (see is_infinite_or_very_large_closure above) |
1945 | | Card == inf. % TODO: instantiate inf before to avoid computing huge numbers |
1946 | | |
1947 | | |
1948 | | :- use_module(memoization,[compute_memo_hash/2, get_stored_memo_expansion/3, store_memo_expansion/3]). |
1949 | | /* transitive closure */ |
1950 | | closure1_for_explicit_set(avl_set(A),Res) :- |
1951 | | preferences:preference(use_closure_expansion_memoization,true),!, |
1952 | | compute_memo_hash(closure1_for_explicit_set(A),Hash), |
1953 | | (get_stored_memo_expansion(Hash,closure1_for_explicit_set(A),StoredResult) |
1954 | | -> Res = StoredResult |
1955 | | ; closure1_for_explicit_set_direct(avl_set(A),Result), |
1956 | | store_memo_expansion(Hash,closure1_for_explicit_set(A),Result), |
1957 | | Res = Result |
1958 | | ). |
1959 | | closure1_for_explicit_set(avl_set(A),Res) :- closure1_for_explicit_set_direct(avl_set(A),Res). |
1960 | | |
1961 | | % sometimes faster, but can also be considerably slower: |
1962 | | %:- use_module(extrasrc(avl_ugraphs),[avl_transitive_closure/2]). |
1963 | | %closure1_for_explicit_set_direct(avl_set(A),Res) :- |
1964 | | % avl_transitive_closure(A,TC), |
1965 | | % construct_avl_set(TC,Res). |
1966 | | closure1_for_explicit_set_direct(avl_set(A),Res) :- |
1967 | | avl_domain(A,AList), |
1968 | | iterate_closure(AList,A,A,IterationRes), |
1969 | | construct_avl_set(IterationRes,Res). |
1970 | | |
1971 | | /* transitive closure starting from some initial set */ |
1972 | | /* not sure if we should do this: |
1973 | | closure1_for_explicit_set_from(avl_set(A),StartFrom,Res) :- |
1974 | | preferences:preference(use_closure_expansion_memoization,true), |
1975 | | compute_memo_hash(closure1_for_explicit_set(A),Hash), |
1976 | | stored_expansion(Hash,closure1_for_explicit_set(A),StoredResult),!, |
1977 | | domain_restriction_explicit_set(StartFrom,StoredResult,Res). */ |
1978 | | % StartFrom can be avl_set(empty) |
1979 | | closure1_for_explicit_set_from(avl_set(A),StartFrom,Res) :- |
1980 | | avl_domain(A,AList), |
1981 | | filter_start_relation(AList,StartFrom,FAList), |
1982 | | (FAList = [] -> Res=[] |
1983 | | ; convert_to_avl(FAList,avl_set(Start)), |
1984 | | iterate_closure(FAList,A,Start,IterationRes), |
1985 | | construct_avl_set(IterationRes,Res)). |
1986 | | filter_start_relation([],_,[]). |
1987 | | filter_start_relation([(X,Y)|T],StartSet,Res) :- |
1988 | | (element_of_custom_set(X,StartSet) -> Res = [(X,Y)|RT] ; Res=RT), |
1989 | | filter_start_relation(T,StartSet,RT). |
1990 | | |
1991 | | iterate_closure([],_,Res,Res). |
1992 | | iterate_closure([(X,Y)|T],InitialRelation,Relation,Res) :- |
1993 | | %(Key = (X,Y) -> true ; add_error_and_fail(iterate_closure,'Not a relation element: ',Key)), |
1994 | | add_tuples(X,Y,InitialRelation,Relation,NewRelation,AddedTuples), |
1995 | | % better: do added tuples straight away ? |
1996 | | iterate_closure(T,InitialRelation,NewRelation,NewRelation2), |
1997 | | iterate_closure(AddedTuples,InitialRelation,NewRelation2,Res). |
1998 | | |
1999 | | add_tuples(X,Y,AVL,AVLClosureSoFar,Res,NewTuples) :- |
2000 | | findall((X,Z), (avl_fetch_pair(Y,AVL,Z), %ok instead of safe_avl_member((Y,Z),AVL),; Y in AVL form, Z var |
2001 | | %Y \= Z, % self-loops are already in initial AVLClosure, this will never add a new pair |
2002 | | % if we use AVLClosureSoFar instead of AVL: considerably slower |
2003 | | \+ avl_fetch((X,Z),AVLClosureSoFar)), NewTuples), |
2004 | | add_to_avl(NewTuples,AVLClosureSoFar,Res). |
2005 | | |
2006 | | :- use_module(bsyntaxtree,[create_negation/2]). |
2007 | | % SUBSET_OF <: |
2008 | | % subset_of_explicit_set: returns code to be executed if this subset check can be done in an optimized way |
2009 | | % TO DO: add strict_subset <<: + more cases, e.g., interval & avl_set, ... |
2010 | | % interval & interval already handled in check_subset_of_global_sets |
2011 | | subset_of_explicit_set(AVL,Closure,Code,_WF) :- nonvar(AVL),AVL=avl_set(A), |
2012 | | is_interval_closure_or_integerset(Closure,Low,Up),!, |
2013 | | Code=custom_explicit_sets:check_avl_in_interval(A,Low,Up). |
2014 | | subset_of_explicit_set(Closure,CS,Code,WF) :- nonvar(CS), is_custom_explicit_set(CS), |
2015 | | is_interval_closure_or_integerset(Closure,Low,Up),!, |
2016 | | Code=custom_explicit_sets:check_interval_in_custom_set(Low,Up,CS,WF). |
2017 | | subset_of_explicit_set(AVL1,AVL2,Code,_WF) :- |
2018 | | nonvar(AVL1),AVL1=avl_set(A1), nonvar(AVL2),AVL2=avl_set(A2),!, |
2019 | | Code = custom_explicit_sets:check_avl_subset(A1,A2). |
2020 | | subset_of_explicit_set(C1,AVL2,Code,_WF) :- nonvar(C1), |
2021 | | simple_finite_set(AVL2), |
2022 | ? | is_simple_infinite_set(C1),!, % infinite set cannot be subset of finite one |
2023 | | Code = fail. |
2024 | | subset_of_explicit_set(C1,C2,Code,WF) :- nonvar(C1), |
2025 | | is_cartesian_product_closure(C1,S11,S12),!, |
2026 | | ((S11==[] ; S12==[]) -> Code=true /* we always have a subset */ |
2027 | | ; is_definitely_not_empty(S11), |
2028 | | is_definitely_not_empty(S12), % only use optimisation if we know S11, S12 to be non-empty |
2029 | | nonvar(C2), is_cartesian_product_closure(C2,S21,S22), |
2030 | | Code = (kernel_objects:check_subset_of_wf(S11,S21,WF), |
2031 | | kernel_objects:check_subset_of_wf(S12,S22,WF) ) |
2032 | | ). |
2033 | | subset_of_explicit_set(Set1,Set2,Code,WF) :- |
2034 | | nonvar(Set2),is_cartesian_product_closure(Set2,S21,S22),!, |
2035 | | % TO DO: maybe don't do this if Set1 is avl_set ?? |
2036 | | debug_println(9,'Applying C <: S21*S22 <=> C : S21 <-> S22'), |
2037 | | Code = bsets_clp:relation_over_wf(Set1,S21,S22,WF). |
2038 | | subset_of_explicit_set(C1,C2,Code,WF) :- nonvar(C1), nonvar(C2), |
2039 | ? | is_powerset_closure(C1,Constructor1,Set1), |
2040 | ? | is_powerset_closure(C2,Constructor2,Set2), |
2041 | | subset_constructor(Constructor1,Constructor2,R), |
2042 | | !, |
2043 | | Code = (R=pred_true, kernel_objects:check_subset_of_wf(Set1,Set2,WF)). |
2044 | | subset_of_explicit_set(Set1,Set2,Code,WF) :- |
2045 | | AllowRegularClosure=false, |
2046 | | symbolic_subset_of_explicit_set(Set1,Set2,AllowRegularClosure,Code,WF). |
2047 | | |
2048 | | symbolic_subset_of_explicit_set(Set1,Set2,AllowRegularClosure,Code,WF) :- |
2049 | | %print_term_summary(subset(Set1,Set2)),nl, |
2050 | | get_subset_counter_example_closure(Set1,Set2,NewP,NewT,NewB,AllowRegularClosure,DefResult), |
2051 | | % {x|P1} <: {x|P2} <=> {x|P1 & not(P2)}={} |
2052 | | !, %translate:print_bexpr(NewB),nl, |
2053 | | (DefResult==definitely_non_empty -> Code = fail |
2054 | | ; clean_up(NewB,[],CNewB), % can be useful to apply remove_member_comprehension |
2055 | | Code = custom_explicit_sets:is_empty_closure_wf(NewP,NewT,CNewB,WF)). |
2056 | | |
2057 | | % get closure representing the counter examples to Set1 <: Set2: i.e. elements in Set1 and not in Set2 |
2058 | | % used for symbolic treatment of subset, not_subset and test_subset |
2059 | | % note: in case this fails subset_test1 will expand Set1 |
2060 | | % DefiniteResultFlag may return the information that the generated closure is definitely not empty |
2061 | | % AllowRegularClosure=false means it will only be applied for symbolic or infinite closures |
2062 | | get_subset_counter_example_closure(Set1,Set2,NewP,NewT,NewB,AllowRegularClosure,DefiniteResultFlag) :- |
2063 | | get_closure(Set1,P1,T1,B1), |
2064 | | get_subset_counter_aux(P1,T1,B1,Set2,NewP,NewT,NewB,AllowRegularClosure,DefiniteResultFlag). |
2065 | | |
2066 | | get_subset_counter_aux(P1,T1,B1,Set2,NewP,NewT,NewB,AllowRegularClosure,DefRes) :- |
2067 | | nonvar(Set2), is_definitely_finite(Set2), !, |
2068 | | create_couple_term(P1,T1,P1Couple), % can currently still fail for more than 2 args |
2069 | | (is_infinite_closure(P1,T1,B1) |
2070 | | -> DefRes=definitely_non_empty % there are definitely counter examples as Set2 is finite |
2071 | | ; AllowRegularClosure=true -> DefRes = unknown |
2072 | ? | ; is_symbolic_closure(P1,T1,B1) -> DefRes=unknown |
2073 | | ), |
2074 | | NewP=P1, NewT=T1, |
2075 | | % {x|P1} <: {a1,...} <=> {x|P1 & x /: {a1,...}}={} |
2076 | | get_texpr_type(P1Couple,CoupleType1), |
2077 | | VSet2 = b(value(Set2),set(CoupleType1),[]), |
2078 | | create_texpr(not_member(P1Couple,VSet2),pred,[],NegPred2), |
2079 | | conjunct_predicates([B1,NegPred2],NewB). |
2080 | | get_subset_counter_aux(P1,T1,B1,Set2,NewP,NewT,NewB,AllowRegularClosure,unknown) :- |
2081 | | get_closure(Set2,P2,T2,B2), |
2082 | | (AllowRegularClosure=true -> true |
2083 | | ; is_infinite_or_symbolic_closure(P1,T1,B1) -> true |
2084 | | % should we also allow ?? |
2085 | | % ; is_symbolic_closure(P2,T2,B2) |
2086 | | ), |
2087 | | % not necessary maybe as subset_test1 only expands Set1 |
2088 | | % {x|P1} <: {x|P2} <=> {x|P1 & not(P2)}={} |
2089 | | unify_closure_predicates(P1,T1,B1, P2,T2,B2 , NewP,NewT, NewB1,NewB2), |
2090 | | create_negation(NewB2,NegNewB2), |
2091 | | bsyntaxtree:conjunct_predicates([NewB1,NegNewB2],NewB). |
2092 | | |
2093 | | |
2094 | | % get_closure or infinite global set: |
2095 | | get_closure(V,_,_,_) :- var(V),!,fail. |
2096 | | get_closure(closure(P,T,B),P,T,B). |
2097 | ? | get_closure(global_set(G),P,T,B) :- is_infinite_global_set(G,Type),!, |
2098 | | ID = '_zzzz_unary', |
2099 | | TID = b(identifier(ID),Type,[]), |
2100 | | TSet = b(value(global_set(G)),set(Type),[]), |
2101 | | P = [ID], T=[Type], B= b(member(TID,TSet),pred,[prob_annotation('SYMBOLIC')]). |
2102 | | |
2103 | | |
2104 | | subset_constructor(X,X,R) :- !,R=pred_true. |
2105 | | subset_constructor(fin1,_,R) :- !,R=pred_true. |
2106 | | subset_constructor(fin,pow,R) :- !,R=pred_true. |
2107 | | subset_constructor(X,Y,R) :- strict_subset_constructor(X,Y),!,R=pred_true. |
2108 | | subset_constructor(X,Y,R) :- strict_subset_constructor(Y,X),!,R=pred_false. |
2109 | | % pow1,fin1 ; pow,fin ; and pow1,fin only ok if type infinite |
2110 | | strict_subset_constructor(pow1,pow). |
2111 | | strict_subset_constructor(fin1,fin). |
2112 | | |
2113 | | % more rules for <->, +->, ... |
2114 | | % what if same closure: then we also know it is a subset |
2115 | | |
2116 | | % to be completed: |
2117 | | % code that instantiates R to subset or not_subset, may have to delay |
2118 | | test_subset_of_explicit_set(Set1,_,_,_,_) :- var(Set1),!,fail. |
2119 | | test_subset_of_explicit_set(avl_set(A),Closure,R,WF,Code) :- |
2120 | | is_interval_closure_or_integerset(Closure,Low,Up),!, |
2121 | | Code=custom_explicit_sets:test_avl_in_interval(A,Low,Up,R,WF). |
2122 | | test_subset_of_explicit_set(_,Set2,_,_,_) :- var(Set2),!,fail. |
2123 | | test_subset_of_explicit_set(avl_set(A1),avl_set(A2),R,_WF,Code) :- |
2124 | | Code = (custom_explicit_sets:check_avl_subset(A1,A2) -> R=pred_true ; R=pred_false). |
2125 | | test_subset_of_explicit_set(global_set(G),Set2,R,_WF,Code) :- |
2126 | ? | is_infinite_global_set(G,_), % TODO: we could extend this to other infinite sets |
2127 | | is_definitely_finite(Set2), !, |
2128 | | Code =(R=pred_false). |
2129 | | test_subset_of_explicit_set(Set1,Set2,Res,WF,Code) :- |
2130 | | AllowRegular=false, |
2131 | | get_subset_counter_example_closure(Set1,Set2,NewP,NewT,NewB,AllowRegular,DefResult), |
2132 | | % {x|P1} <: {x|P2} <=> {x|P1 & not(P2)}={} |
2133 | | !, |
2134 | | (DefResult==definitely_non_empty -> Code = (Res=pred_false) |
2135 | | ; Code = custom_explicit_sets:test_empty_closure_wf(NewP,NewT,NewB,Res,WF) |
2136 | | ). |
2137 | | % TO DO: add is_cartesian_product_closure case |
2138 | | is_definitely_finite([]). |
2139 | | is_definitely_finite(avl_set(_)). |
2140 | | |
2141 | | :- use_module(kernel_equality,[test_interval_subset_wf/6]). |
2142 | | |
2143 | | :- public test_avl_in_interval/5. % used in test_subset_of_explicit_set |
2144 | | % see also check_avl_in_interval(A,Low,Up), check_avl_not_in_interval(A,Low,Up). |
2145 | | test_avl_in_interval(A,Low2,Up2,Res,WF) :- |
2146 | | avl_min(A,int(Min)), % not needed if Low2==minus_inf |
2147 | | avl_max(A,int(Max)), % not needed if Up2==inf |
2148 | | test_interval_subset_wf(Min,Max,Low2,Up2,Res,WF). |
2149 | | |
2150 | | % ---------------------- |
2151 | | |
2152 | | is_definitely_not_empty(X) :- nonvar(X), |
2153 | | (X=[_|_] -> true |
2154 | | ; is_custom_explicit_set(X), is_non_empty_explicit_set(X)). |
2155 | | |
2156 | | % check if defnitely not empty and provide a witness |
2157 | | is_definitely_not_empty_with_witness(X,El) :- nonvar(X), |
2158 | | get_witness_element(X,El). |
2159 | | get_witness_element([H|_],H). |
2160 | | get_witness_element(avl_set(node(H,_True,_,_,_)),H). |
2161 | | % TO DO: add global_set(GS),... |
2162 | | |
2163 | | check_avl_subset(A1,A2) :- avl_max(A1,Max1), avl_max(A2,Max2), |
2164 | | Max1@>Max2,!, % then A1 cannot be subset of A2 |
2165 | | fail. |
2166 | | check_avl_subset(A1,A2) :- |
2167 | | avl_min(A1,Cur1), avl_min(A2,Cur2), |
2168 | | check_avl_subset_loop(Cur1,A1,Cur2,A2). |
2169 | | check_avl_subset_loop(Cur1,AVL1,Cur2,AVL2) :- |
2170 | | (Cur1 @> Cur2 -> avl_next(Cur2,AVL2,NC2), check_avl_subset_loop(Cur1,AVL1,NC2,AVL2) |
2171 | | ; Cur1=Cur2 -> (avl_next(Cur1,AVL1,NC1) |
2172 | | -> avl_next(Cur2,AVL2,NC2), |
2173 | | check_avl_subset_loop(NC1,AVL1,NC2,AVL2) |
2174 | | ; true /* all objects of AVL1 inspected */) |
2175 | | ). |
2176 | | |
2177 | | % check A <: Low..Up |
2178 | | check_avl_in_interval(A,Low,Up) :- % does not have to delay: if we have minus_inf & inf they will be known straightaway |
2179 | | (Low==minus_inf -> true |
2180 | | ; avl_min(A,Min), kernel_objects:less_than_equal(int(Low),Min)), |
2181 | | (Up==inf -> true |
2182 | | ; avl_max(A,Max), kernel_objects:less_than_equal(Max,int(Up))). |
2183 | | |
2184 | | % some experiments: |
2185 | | % 1..x <: {1,2,3,5} & x>1 & !y.(y>x & y<10 => 1..y /<: {1,2,3,5}) |
2186 | | % {ss | ss <: 0..0 & ss /= {} & ss=0..max(ss)} |
2187 | | % {ss | ss <: 0..0 & ss /= {} & ss=min(ss)..max(ss)} // does not work yet |
2188 | | % x..x+1 <: {0,2,3,5} |
2189 | | % x..x+2 <: {0,2,3,5} // does not work yet |
2190 | | % r = {x|x:1..400 & x mod 3/=0} & res={v|v:0..1300 & v..v+1 <: r} |
2191 | | % check Low..Up <: Avl |
2192 | | |
2193 | | check_interval_in_custom_set(Low,Up,CS,WF) :- |
2194 | | Low \== minus_inf, |
2195 | | Up \== inf, |
2196 | | b_interpreter_check:check_arithmetic_operator('<=',Low,Up,LeqRes), |
2197 | | (var(LeqRes) -> get_binary_choice_wait_flag_exp_backoff(16,check_interval_in_custom_set,WF,WF2) ; true), |
2198 | | check_interval_in_custom_set_aux(LeqRes,Low,Up,CS,WF2). |
2199 | | |
2200 | | :- block check_interval_in_custom_set_aux(-,?,?,?,-). |
2201 | | check_interval_in_custom_set_aux(pred_true,Low,Up,CS,_WF2) :- |
2202 | | element_of_custom_set_wf(int(Low),CS,WF), |
2203 | | element_of_custom_set_wf(int(Up),CS,WF), |
2204 | | interval_in_avl_block(Low,Up,CS,WF). |
2205 | | check_interval_in_custom_set_aux(pred_false,_Low,_Up,_CS,_WF2). % Interval is empty; but infinitely many solutions for Low and Up exist in principle |
2206 | | |
2207 | | :- block interval_in_avl_block(-,?,?,?), interval_in_avl_block(?,-,?,?). |
2208 | | interval_in_avl_block(Low,Up,CS,WF) :- |
2209 | | Low1 is Low+1, interval_in_avl_loop(Low1,Up,CS,WF). |
2210 | | interval_in_avl_loop(Low,Up,_CS,_WF) :- Low>=Up,!. % Lower bound and upper bound already checked |
2211 | | interval_in_avl_loop(Low,Up,CS,WF) :- |
2212 | | element_of_custom_set_wf(int(Low),CS,WF), L1 is Low+1, |
2213 | | interval_in_avl_loop(L1,Up,CS,WF). |
2214 | | |
2215 | | |
2216 | | :- public not_check_avl_subset/2. % used in not_subset_of_explicit_set_aux |
2217 | | not_check_avl_subset(A1,A2) :- \+ check_avl_subset(A1,A2). |
2218 | | |
2219 | | not_subset_of_explicit_set(S1,S2,Code,WF) :- nonvar(S1), |
2220 | ? | not_subset_of_explicit_set_aux(S1,S2,Code,WF). |
2221 | | not_subset_of_explicit_set_aux(avl_set(A),Closure,Code,_WF) :- |
2222 | | is_interval_closure_or_integerset(Closure,Low,Up),!, |
2223 | | Code=custom_explicit_sets:check_avl_not_in_interval(A,Low,Up). |
2224 | | not_subset_of_explicit_set_aux(avl_set(A1),AVL2,Code,_WF) :- |
2225 | | nonvar(AVL2),AVL2=avl_set(A2), |
2226 | | Code = custom_explicit_sets:not_check_avl_subset(A1,A2). |
2227 | | not_subset_of_explicit_set_aux(CS,AVL,Code,_WF) :- |
2228 | ? | is_simple_infinite_set(CS), |
2229 | | % TO DO: provide code for interval/NAT/INT /<: AVL |
2230 | | simple_finite_set(AVL), |
2231 | | !, |
2232 | | Code = true. % G cannot be subset of finite set |
2233 | | not_subset_of_explicit_set_aux(C1,C2,Code,WF) :- is_cartesian_product_closure(C1,S11,S12), |
2234 | | ((S11==[] ; S12==[]) -> Code=fail /* we always have a subset */ |
2235 | | ; is_definitely_not_empty(S11), |
2236 | | is_definitely_not_empty(S12), % only use optimisation if we know S11, S12 to be non-empty |
2237 | | nonvar(C2), is_cartesian_product_closure(C2,S21,S22), |
2238 | | Code = (kernel_objects:not_both_subset_of(S11,S12, S21,S22, WF)) |
2239 | | ), !. |
2240 | | not_subset_of_explicit_set_aux(C1,C2,Code,WF) :- nonvar(C2), |
2241 | ? | is_powerset_closure(C1,Constructor1,Set1), |
2242 | ? | is_powerset_closure(C2,Constructor2,Set2), |
2243 | | subset_constructor(Constructor1,Constructor2,R),!, |
2244 | | Code = (R=pred_false -> true ; kernel_objects:not_subset_of_wf(Set1,Set2,WF)). |
2245 | | not_subset_of_explicit_set_aux(Set1,Set2,Code,WF) :- |
2246 | | AllowRegular=false, |
2247 | | get_subset_counter_example_closure(Set1,Set2,NewP,NewT,NewB,AllowRegular,DefResult), |
2248 | | % {x|P1} <: {x|P2} <=> {x|P1 & not(P2)}={} |
2249 | | !, |
2250 | | (DefResult==definitely_non_empty -> Code = true |
2251 | | ; Code = custom_explicit_sets:is_non_empty_closure_wf(NewP,NewT,NewB,WF) |
2252 | | ). |
2253 | | |
2254 | | |
2255 | | :- public check_avl_not_in_interval/3. % used in not_subset_of_explicit_set_aux |
2256 | | :- block check_avl_not_in_interval(?,-,?). % TO DO: use non-blocking version, minus_inf, and inf set directly |
2257 | | check_avl_not_in_interval(A,Low,Up) :- avl_min(A,int(Min)), |
2258 | | check_avl_not_in_interval4(Low,Up,A,Min). |
2259 | | |
2260 | | check_avl_not_in_interval4(Low,_Up,_A,Min) :- Low \== minus_inf, Min < Low,!. |
2261 | | check_avl_not_in_interval4(_Low,Up,A,_Min) :- |
2262 | | Up \== inf, avl_max(A,Max), |
2263 | | kernel_objects:less_than(int(Up),Max). % Up could still be a variable |
2264 | | |
2265 | | |
2266 | | % checks for simple infinite sets, without Cartesian Product, ... decomposition |
2267 | ? | is_simple_infinite_set(global_set(X)) :- !, is_infinite_global_set(X,_). |
2268 | | is_simple_infinite_set(CS) :- is_interval_closure_or_integerset(CS,Low,Up), infinite_interval(Low,Up). |
2269 | | |
2270 | | simple_finite_set(AVL) :- nonvar(AVL), (AVL=avl_set(_) -> true ; AVL = []). |
2271 | | |
2272 | | % IMAGE [.] |
2273 | | image_for_id_closure(closure(Par,Types,Body),Set,Res) :- |
2274 | | is_full_id_closure(Par,Types,Body),!, |
2275 | | Res=Set. |
2276 | | |
2277 | | image_for_explicit_set(closure(Par,Types,Body),Set,Res,WF) :- |
2278 | ? | image_for_closure(Par,Types,Body,Set,Res,WF). |
2279 | | image_for_explicit_set(avl_set(A),Set,Res,WF) :- nonvar(Set), |
2280 | | image_for_explicit_avl_set(A,Set,Res,WF). |
2281 | | |
2282 | | |
2283 | | image_for_closure(Par,Types,Body,Set,Res,_WF) :- |
2284 | | is_id_closure_over(Par,Types,Body,ID_Domain,Full),!, |
2285 | | (Full=true -> Res=Set ; kernel_objects:intersection(ID_Domain,Set,Res)). |
2286 | | % infinite function case dealt with in image1 in bsets_clp |
2287 | | % TO DO: other closure(); Maybe special case if Set is an interval ? |
2288 | | image_for_closure(Par,Types,Body,Set,Res,WF) :- |
2289 | | is_closure1_value_closure(Par,Types,Body,VAL), % TODO: also detect reflexive closure, iteration (iterate(rel,k)) |
2290 | | % compute closure1(VAL)[Set] |
2291 | ? | bsets_clp:image_for_closure1_wf(VAL,Set,Res,WF). |
2292 | | |
2293 | | is_closure1_value_closure(Par,Types,Body,VAL) :- |
2294 | | is_member_closure(Par,Types,Body,couple(A,A),MemSET), nonvar(MemSET), |
2295 | | MemSET = closure(V), % this is the closure1 B operator ! |
2296 | | nonvar(V), V=b(value(VAL),_,_). |
2297 | | |
2298 | | image_for_explicit_avl_set(A,Set,Res,_WF) :- % Set is nonvar |
2299 | | is_interval_closure_or_integerset(Set,From1,To1),!, |
2300 | | % Note: if From1, To1 not yet known we will block and not revert to other image calculation code |
2301 | | % Important e.g. for performance of San Juan (AdaptedBModelPropCheck/acs_as_env_cfg_ipart.mch) |
2302 | | %we used to check for: ground(From1),ground(To1), |
2303 | | interval_image_for_explicit_avl_set(From1,To1,A,Set,Res). |
2304 | | image_for_explicit_avl_set(A,Set,Res,WF) :- |
2305 | | \+ bsets_clp:keep_symbolic(Set), % in this case we fall back to treatment in bsets_clp (image1) |
2306 | | expand_custom_set_to_list_gg(Set,ESet,GG,image_for_explicit_avl_set), |
2307 | | empty_avl(Empty), |
2308 | | (GG=guaranteed_ground -> image_explicit_ground(ESet,A,Empty,Res,WF) |
2309 | | ; image_explicit(ESet,A,Empty,Res,WF)). |
2310 | | |
2311 | | :- block interval_image_for_explicit_avl_set(-,?,?,?,?), |
2312 | | interval_image_for_explicit_avl_set(?,-,?,?,?). |
2313 | | interval_image_for_explicit_avl_set(From1,To1,_A,_Set,Res) :- |
2314 | | number(From1), number(To1), From1>To1,!, |
2315 | | kernel_objects:empty_set(Res). |
2316 | | interval_image_for_explicit_avl_set(From1,To1,A,_Set,Res) :- |
2317 | | findall(Image-true, avl_image_interval(From1,To1, A,Image),ImageList), |
2318 | | normalised_list_to_avl(ImageList,ImageAvl), |
2319 | ? | equal_object(ImageAvl,Res). |
2320 | | |
2321 | | |
2322 | | %! singleton_set(+Set,-Element). |
2323 | | singleton_set(X,_) :- var(X),!,fail. |
2324 | | singleton_set([H|T],R) :- T==[], R=H. |
2325 | | singleton_set(avl_set(node(Y,_,_,empty,empty)),Y). % same as is_one_element_custom_set |
2326 | | |
2327 | | is_one_element_custom_set(avl_set(node(Y,_,_,empty,empty)),Y). |
2328 | | is_one_element_avl(node(Y,_,_,empty,empty),Y). |
2329 | | |
2330 | | % requires El to be ground |
2331 | | construct_one_element_custom_set(El,avl_set(AVL)) :- |
2332 | | empty_avl(E),avl_store(El,E,true,AVL). |
2333 | | |
2334 | | construct_avl_set(Avl,Res) :- empty_avl(Avl) -> Res = [] ; Res = avl_set(Avl). |
2335 | | |
2336 | | :- block image_explicit(-,?,?,?,?). |
2337 | | image_explicit([],_,Acc,Res,WF) :- !, |
2338 | | construct_avl_set(Acc,AVLS), |
2339 | ? | kernel_objects:equal_object_wf(Res,AVLS,image_explicit,WF). |
2340 | | image_explicit([D1|T],AVLRelation,In,Out,WF) :- !, |
2341 | | ground_value_check(D1,G1), |
2342 | | ((var(T);T==[]) % TO DO: see below, make propagation also interesting in other circumstances |
2343 | | -> must_be_in_domain_check(G1,D1,T,AVLRelation,In,Out,WF) |
2344 | | ; true), |
2345 | ? | image_explicit_aux(G1,D1,AVLRelation,T,In,Out,WF). |
2346 | | image_explicit(Set,_,_,_,_) :- add_error_and_fail(image_explicit,'Unknown set: ',Set). |
2347 | | |
2348 | | % a version of image_explicit where the list is guaranteed to be ground |
2349 | | image_explicit_ground([],_,Acc,Res,WF) :- !, |
2350 | | construct_avl_set(Acc,AVLS), |
2351 | | kernel_objects:equal_object_wf(Res,AVLS,image_explicit,WF). |
2352 | | image_explicit_ground([D1|T],AVLRelation,In,Out,WF) :- !, |
2353 | | image_explicit_aux_ground(D1,AVLRelation,T,In,Out,WF). |
2354 | | image_explicit_ground(Set,_,_,_,_) :- add_error_and_fail(image_explicit_ground,'Unknown set: ',Set). |
2355 | | |
2356 | | :- block must_be_in_domain_check(-,?,?,?,?,-,?), |
2357 | | must_be_in_domain_check(-,?,-,?,?,?,?). |
2358 | | % if result requires at least one more element, then D must be in domain of Relation |
2359 | | % ensures that we get a domain for j in x = {1|->2,2|->4, 4|->8} & x[{j}]={8} |
2360 | | % we could even propagate using inverse of AVLRelation ?! |
2361 | | must_be_in_domain_check(GroundD,D,T,AVLRelation,In,Out,WF) :- |
2362 | | T==[], % apart from D, there are no more elements to be added |
2363 | | var(GroundD), % otherwise we already have a value for D |
2364 | | delta_witness(In,Out,Witness), % obtain at least one value that D must map to |
2365 | | !, |
2366 | | quick_propagation_element_information(avl_set(AVLRelation),(D,Witness),WF,_). % Witness avoids pending co-routines |
2367 | | % TO DO: we could check that *all* elements of Out have this value |
2368 | | % TO DO: below we could check that In is a subset of Out; e.g., for x = %i.(i:1..10|i+i) & x[{5,j,k}]={16,11}; we could also check that Out is subset of range of relation |
2369 | | must_be_in_domain_check(_,_D,_T,_,_In,_Out,_). % :- print(must_be(D,T,In,Out)),nl. |
2370 | | |
2371 | | % provide, if possible, a witness element in Out not in In |
2372 | | delta_witness(In,Out,_Witness) :- (var(In) ; var(Out)),!,fail. |
2373 | | %delta_witness(empty,Out,Witness) :- is_definitely_not_empty_with_witness(Out,Witness). |
2374 | | delta_witness(In,Out,Witness) :- |
2375 | | is_custom_explicit_set(Out,delta_witness), |
2376 | | difference_of_explicit_set(Out,avl_set(In),Diff), % could be expensive to compute !? delay ? print(delta(Diff)),nl, |
2377 | | is_definitely_not_empty_with_witness(Diff,Witness). |
2378 | | |
2379 | | |
2380 | | :- block image_explicit_aux(-,?,?, ?,?,?,?). % we know that D1 is ground |
2381 | | image_explicit_aux(_,D1,AVLRelation,T,In,Out,WF) :- |
2382 | | all_images(D1,AVLRelation,NewImages), % compute AVLRelation[{D1}] |
2383 | | add_to_avl(NewImages,In,In2), |
2384 | ? | image_explicit(T,AVLRelation,In2,Out,WF). |
2385 | | image_explicit_aux_ground(D1,AVLRelation,T,In,Out,WF) :- |
2386 | | all_images(D1,AVLRelation,NewImages), % compute AVLRelation[{D1}] |
2387 | | add_to_avl(NewImages,In,In2), |
2388 | | image_explicit_ground(T,AVLRelation,In2,Out,WF). |
2389 | | |
2390 | | all_images(From,AVLRelation,Images) :- |
2391 | | findall(AY,avl_member_pair_arg1_ground(From,AY,AVLRelation),Images). % we know From ground and AY free variable |
2392 | | % findall(AY,safe_avl_member_pair(From,AY,AVLRelation),Images). % |
2393 | | |
2394 | | % compute relational composition ( ; ) if second arg is an AVL set |
2395 | | % TO DO: add support for infinite closures; avoid expanding them [currently handled by symbolic composition in bsets_clp] |
2396 | | rel_composition_for_explicit_set(Rel1,Rel2,Comp) :- nonvar(Rel2), |
2397 | | Rel2=avl_set(A2), % TO DO: see if we can maybe convert Rel2 to AVL ? |
2398 | | % \+ bsets_clp:keep_symbolic(Rel1), check already done in bsets |
2399 | | expand_custom_set_to_list_gg(Rel1,Relation1,GG,rel_composition_for_explicit_set), |
2400 | | empty_avl(In), |
2401 | | (GG=guaranteed_ground |
2402 | | -> rel_avl_compose2_ground(Relation1,A2,In,Comp) |
2403 | | ; rel_avl_compose2(Relation1,A2,In,Comp)). |
2404 | | |
2405 | | :- block rel_avl_compose2(-,?,?,?). |
2406 | | rel_avl_compose2([],_,In,Res) :- construct_avl_set(In,A), |
2407 | ? | equal_object(Res,A,rel_avl_compose2). % as we delay; we need to use equal_object at the end |
2408 | | rel_avl_compose2([(X,Y)|T],A2,In,Out) :- |
2409 | | when((ground(X),ground(Y)), |
2410 | | (all_image_pairs_ground(X,Y,A2,ImagePairs), |
2411 | | add_to_avl(ImagePairs,In,In2), |
2412 | | rel_avl_compose2(T,A2,In2,Out))). |
2413 | | |
2414 | | % a version where argument is guaranteed to be ground; no when-ground checks |
2415 | | rel_avl_compose2_ground([],_,In,Res) :- construct_avl_set(In,A), |
2416 | | equal_object(Res,A,rel_avl_compose2). % as we delay; we need to use equal_object at the end |
2417 | | rel_avl_compose2_ground([(X,Y)|T],A2,In,Out) :- |
2418 | | all_image_pairs_ground(X,Y,A2,ImagePairs), |
2419 | | add_to_avl(ImagePairs,In,In2), |
2420 | | rel_avl_compose2_ground(T,A2,In2,Out). |
2421 | | |
2422 | | %all_image_pairs(From,To,AVLRelation,ImagePairs) :- |
2423 | | % findall((From,AY),safe_avl_member_pair(To,AY,AVLRelation),ImagePairs). |
2424 | | all_image_pairs_ground(From,To,AVLRelation,ImagePairs) :- |
2425 | | findall((From,AY),avl_member_pair_arg1_ground(To,AY,AVLRelation),ImagePairs). |
2426 | | % To: already in AVL format; AY is variable -> we could use avl_fetch_pair directly : findall((From,AY),avl_fetch_pair(To,AVLRelation,AY),ImagePairs). |
2427 | | |
2428 | | /* succeeds if it can compute domain by some clever way */ |
2429 | | domain_of_explicit_set_wf(global_set(GS),_R,_) :- !, |
2430 | | add_error_and_fail(domain_of_explicit_set_wf,'Cannot compute domain of global set: ',GS). |
2431 | | domain_of_explicit_set_wf(freetype(GS),_R,_) :- !, |
2432 | | add_error_and_fail(domain_of_explicit_set_wf,'Cannot compute domain of freetype: ',GS). |
2433 | | domain_of_explicit_set_wf(avl_set(A),Res,_) :- !, |
2434 | | domain_of_avl_set(A,Res). |
2435 | | domain_of_explicit_set_wf(C,R,WF) :- dom_for_specific_closure(C,Dom,_,WF),!, |
2436 | | Dom=R. |
2437 | | domain_of_explicit_set_wf(C,R,_) :- |
2438 | ? | dom_symbolic(C,CC),!, |
2439 | | R=CC. |
2440 | | domain_of_explicit_set_wf(closure(P,T,B),Res,WF) :- |
2441 | | % does not seem to be reached, as dom_symbolic now seems to cover all cases |
2442 | | expand_custom_set_wf(closure(P,T,B),EC,domain_of_explicit_set,WF), |
2443 | | domain_of_list_blocking(EC,R), |
2444 | | normalised_list_to_avl_when_ground(R,Res). |
2445 | | |
2446 | | % avl tree is a relation with an integer domain |
2447 | | %avl_integer_domain(node((int(_From),_KeyTo),_True,_,_L,_R)). |
2448 | | |
2449 | | % the first clause is in principle faster |
2450 | | % but we don't gain time compared to treatment in second clause; we just avoid building up the domain list |
2451 | | %domain_of_avl_set(A,Res) :- avl_integer_domain(A), |
2452 | | % \+ avl_tools:avl_height_less_than(A,10), % try and detect interval if height >= 10 |
2453 | | % avl_is_pf_with_interval_domain(A,First,Last),!, |
2454 | | % construct_interval_closure(First,Last,Res). |
2455 | | domain_of_avl_set(A,Res) :- |
2456 | | avl_domain(A,EC), % -> expand_custom_set(avl_set(A),EC), |
2457 | | domain_of_sorted_list(EC,SizeRes,R), % size of list can be smaller than A if we have a relation |
2458 | | (SizeRes=size_res(Size,int(Last)), R=[int(First)-true|_], |
2459 | | Size>1000, |
2460 | | Size is Last+1-First % we have an interval; quite common that we have functions with intervals as domain |
2461 | | -> debug_println(19,constructing_interval_for_domain(First,Last)), |
2462 | | construct_interval_closure(First,Last,Res) |
2463 | | ; ord_list_to_avlset(R,Res,domain) |
2464 | | ). |
2465 | | |
2466 | | % check if an AVL tree represents a function with an interval domain |
2467 | | %avl_is_pf_with_interval_domain(AVL,Min,Max) :- |
2468 | | % avl_min(AVL,(int(Min),_)),avl_max(AVL,(int(Max),_)), |
2469 | | % Size is 1+Max-Min, avl_size_possible(AVL,Size), |
2470 | | % is_avl_partial_function(AVL), |
2471 | | % % now check real size |
2472 | | % avl_size(AVL,Size). |
2473 | | |
2474 | | % check if an avl represents a set of integers: |
2475 | | avl_integer_set(node(int(_TOP),_True,_,_L,_R)). |
2476 | | |
2477 | | % check if an avl set is an interval: |
2478 | | avl_is_interval(AVL,Min,Max) :- |
2479 | | avl_integer_set(AVL), |
2480 | | avl_min(AVL,int(Min)),avl_max(AVL,int(Max)), |
2481 | | Size is 1+Max-Min, |
2482 | | avl_size_possible(AVL,Size), |
2483 | | avl_size(AVL,Size). |
2484 | | |
2485 | | |
2486 | | |
2487 | | :- use_module(bsyntaxtree,[create_typed_id/3]). |
2488 | | dom_symbolic(closure(Paras,Types,Pred), Res) :- |
2489 | | expand_pair_closure(Paras,Types,Pred,[X,Y],[TX,TY],NewPred), |
2490 | | !, % single argument which is a pair |
2491 | | % simply call code for range ; inverting arguments |
2492 | | bsyntaxtree:check_used_ids_in_ast(Pred), |
2493 | | bsyntaxtree:check_used_ids_in_ast(NewPred), |
2494 | | ran_symbolic_closure(Y,[X],TY,[TX],NewPred,Res). |
2495 | | dom_symbolic(closure(Paras,Types,Pred), Res) :- |
2496 | | append(Xs,[Y],Paras), Xs \= [], |
2497 | | append(TXs,[TY],Types), |
2498 | | % simply call code for range ; inverting arguments |
2499 | | ran_symbolic_closure(Y,Xs,TY,TXs,Pred,Res). |
2500 | | % TO DO: allow computation if Paras is a single argument and more than pair |
2501 | | |
2502 | | % just computes domain: it can also be successful for lambda closures |
2503 | | dom_for_specific_closure(closure(P,T,Pred),Domain,Functionality,WF) :- |
2504 | | dom_for_specific_closure_aux(P,T,Pred,Domain,Functionality,WF). |
2505 | | dom_for_specific_closure_aux(P,T,Pred,Domain,Functionality,_WF) :- |
2506 | | is_lambda_value_domain_closure(P,T,Pred, DomainValue,Expr), |
2507 | | (preference(find_abort_values,full) -> bsyntaxtree:always_well_defined_or_disprover_mode(Expr) |
2508 | | ; true), |
2509 | | % Warning: this will lead to dom(%x.(x:1..3|1/0)) = 1..3 to be true; discarding WD condition |
2510 | | % this is not as bad as {1|->2}(0) = 3 to be silently failing though; hence only done if TRY_FIND_ABORT = full |
2511 | | !, |
2512 | | Domain=DomainValue, |
2513 | | Functionality=function(total). |
2514 | | %dom_for_specific_closure_aux([ID],[Type],Pred,Domain,Functionality,_WF) :- Functionality=relation, |
2515 | | % Pred = b(exists(Paras,ClosurePred),pred,Info1), |
2516 | | % % dom({res|#(paras).(.... & res= domVal|->ran)}) = {res|#(paras).(.... & res= domVal)} |
2517 | | % closures:select_equality(ClosurePred,ID,RHSExpr,Type,Info,RestPred), |
2518 | | % RHSExpr = couple(DomValue,_), |
2519 | | % closures:does_not_occur_in(ID,RestPred), |
2520 | | % Type = couple(DomT,_), |
2521 | | % TID = b(identifier(ID),DomT,[]), |
2522 | | % % safe_create_texpr |
2523 | | % conjunct_predicates([RestPred,b(equal(TID,DomValue),pred,[])],NewClosurePred), |
2524 | | % NewPred = b(exists(Paras,NewClosurePred),pred,Info1), |
2525 | | % Domain = closure([ID],[DomT],NewPred). |
2526 | | dom_for_specific_closure_aux(P,T,Pred,Domain,Functionality,WF) :- |
2527 | | dom_range_for_specific_closure2(P,T,Pred, Domain,_Range,domain_only,Functionality,WF). |
2528 | | %TO DO treat overwrite closure dom(F1<+F2) = dom(F1) \/ dom(F2) |
2529 | | |
2530 | | dom_for_lambda_closure(closure(P,T,Pred),Domain) :- |
2531 | | is_lambda_value_domain_closure(P,T,Pred, DomainValue,_Expr), |
2532 | | Domain=DomainValue. |
2533 | | |
2534 | | % TO DO: add total functions |
2535 | | %dom_for_specific_closure2([F],[T], |
2536 | | % b(member(b(identifier(F),T,_), b(total_function(value(A),B),set(couple(DOM,RAN)),_)), pred,_) , |
2537 | | % A). |
2538 | | |
2539 | | :- block domain_of_list_blocking(-,?). |
2540 | | % the list will be sorted according to the term ordering for (_,_); hence it will |
2541 | | % already be sorted for the projection onto the first element |
2542 | | % maybe the speed difference is not worth it ?? |
2543 | | domain_of_list_blocking([],[]). |
2544 | | domain_of_list_blocking([(A,_B)|T],[A-true|DT]) :- domain_blocking_aux(T,A,DT). |
2545 | | :- block domain_blocking_aux(-,?,?). |
2546 | | domain_blocking_aux([],_,[]). |
2547 | | domain_blocking_aux([(A,_B)|T],Prev,Res) :- |
2548 | | compare(Comp,A,Prev), |
2549 | | (Comp = '=' |
2550 | | -> domain_blocking_aux(T,Prev,Res) |
2551 | | ; Res = [A-true|DT], |
2552 | | (Comp = '<' -> add_error_fail(custom_explicit_sets,'Domain list not_sorted: ',(A,Prev)) ; true), |
2553 | | domain_blocking_aux(T,A,DT) ). |
2554 | | |
2555 | | % and now a non-blocking version: |
2556 | | domain_of_sorted_list([],size_res(0,'$none'),[]). |
2557 | | domain_of_sorted_list([(A,_B)|T],Size,[A-true|DT]) :- domain_aux(T,A,DT,1,Size). |
2558 | | |
2559 | | % TO DO: count length and determine when we have an interval |
2560 | | domain_aux([],Prev,[],Acc,size_res(Acc,Prev)). |
2561 | | domain_aux([(A,_B)|T],Prev,Res,SizeAcc,Size) :- SA1 is SizeAcc+1, |
2562 | | compare(Comp,A,Prev), |
2563 | | (Comp = '=' |
2564 | | -> domain_aux(T,Prev,Res,SA1,Size) |
2565 | | ; Res = [A-true|DT], |
2566 | | (Comp = '<' -> add_error_fail(custom_explicit_sets,'Domain list not_sorted: ',(A,Prev)) ; true), |
2567 | | domain_aux(T,A,DT,SA1,Size) ). |
2568 | | |
2569 | | /* succeeds if it can compute domain by some clever way */ |
2570 | | range_of_explicit_set_wf(global_set(GS),_R,_) :- !, |
2571 | | add_error_and_fail(range_of_explicit_set_wf,'Cannot compute domain of global set: ',GS). |
2572 | | range_of_explicit_set_wf(freetype(GS),_R,_) :- !, |
2573 | | add_error_and_fail(range_of_explicit_set_wf,'Cannot compute domain of freetype: ',GS). |
2574 | | range_of_explicit_set_wf(avl_set(A),Res,_) :- !, |
2575 | | avl_domain(A,EC), % -> expand_custom_set(avl_set(A),EC), |
2576 | | range(EC,R), |
2577 | | normalised_list_to_avl(R,Res). |
2578 | | range_of_explicit_set_wf(C,R,WF) :- |
2579 | | ran_for_specific_closure(C,Ran,WF),!, |
2580 | | Ran=R. |
2581 | | range_of_explicit_set_wf(C,R,_) :- |
2582 | | ran_symbolic(C,CC),!, |
2583 | | R=CC. |
2584 | | range_of_explicit_set_wf(closure(P,T,B),Res,WF) :- |
2585 | | expand_custom_set_wf(closure(P,T,B),EC,range_of_explicit_set_wf,WF), |
2586 | | % TO DO: it would be more useful here to directly just expand the projection onto the last component of P |
2587 | | range_blocking(EC,R), |
2588 | | normalised_list_to_avl_when_ground(R,Res). |
2589 | | |
2590 | | % TO DO: in future it is maybe better to add an in_range_wf kernel predicate |
2591 | | ran_symbolic(closure(Paras,Types,Pred), Res) :- |
2592 | ? | (is_memoization_closure(Paras,Types,Pred,_) |
2593 | | -> !,fail % memoization closures can never be dealt with symbolically; we need expansion |
2594 | | ; true), |
2595 | | expand_pair_closure(Paras,Types,Pred,[Y,X],[TY,TX],NewPred),!, |
2596 | | % following test (1541) works with this: 2 : ran({y|#(x).(y = x |-> x + 2 & x : NATURAL)}) |
2597 | | ran_symbolic_closure(Y,[X],TY,[TX],NewPred,Res). %, print('res: '),translate:print_bvalue(Res),nl. |
2598 | | ran_symbolic(closure([Y,X],[TY,TX],Pred), Res) :- |
2599 | | ran_symbolic_closure(Y,[X],TY,[TX],Pred,Res). |
2600 | | % TO DO: treat closures with more arguments: we need to quantify Y1,...Yn [Y1,...,Yn,X] |
2601 | | |
2602 | | % Replace single Identifier YX of type pair by pair (Y,X) where Y,X are (fresh) variables not occuring in Pred |
2603 | | % example: {y| #(x).(y = x |-> x + 2 & x : NATURAL)} --> {y__1,y__2|#(x).(y__1 |-> y__2 = x |-> x + 2 & x : NATURAL)} |
2604 | | expand_pair_closure([YX],[TYX],Pred,[Y,X],[TY,TX],NewPred) :- TYX = couple(TY,TX), |
2605 | | % Replace single ID YX of type pair by pair (Y,X) where Y,X are (fresh) variables not occuring in Pred |
2606 | | % example: {y| #(x).(y = x |-> x + 2 & x : NATURAL)} --> {y__1,y__2|#(x).(y__1 |-> y__2 = x |-> x + 2 & x : NATURAL)} |
2607 | | % following test (1541) works with this: 2 : ran({y|#(x).(y = x |-> x + 2 & x : NATURAL)}) |
2608 | | gensym:gensym(YX,Y),gensym:gensym(YX,X), |
2609 | | create_typed_id(Y,TY,YTID), create_typed_id(X,TX,XTID), |
2610 | | Pair = b(couple(YTID,XTID),TYX,[]), |
2611 | | bsyntaxtree:replace_id_by_expr(Pred,YX,Pair,NewPred). |
2612 | | |
2613 | | :- use_module(bsyntaxtree,[create_exists_opt_liftable/3]). |
2614 | | %:- use_module(bsyntaxtree,[add_texpr_info_if_new/3]). |
2615 | | ran_symbolic_closure(Y,Xs,TY,TXs,Pred,Res) :- |
2616 | | % create closure for {Xs | #Y.(Pred)} where Pred uses Y|->Xs |
2617 | | rename_ran_ids(Xs,Pred,[],XIDs,Pred2), |
2618 | | create_typed_id(Y,TY,YTID), |
2619 | | create_exists_opt_liftable([YTID],Pred2,Exists), % Y is liftable as the source is a closure with all ids |
2620 | | %bsyntaxtree:check_used_ids_in_ast(Exists), |
2621 | | %bsyntaxtree:create_exists_opt([YTID],[Pred2],Exists), %or |
2622 | | %b_interpreter_components:create_and_simplify_exists([YTID],Pred2,Exists), |
2623 | | %bsyntaxtree:add_texpr_info_if_new(Exists,allow_to_lift_exists,Exists2), % leads to pending co-routines in self_checks for bsets for apply_to; |
2624 | | % Reason: the tests ground only det WF; without lifting the exists is fully evaluated (and its waitflags with prio 2 and higher grounded) as the wait arguments are ground; with lifting only the det WF is grounded leading to pending coroutines |
2625 | | Res = closure(XIDs,TXs,Exists). |
2626 | | |
2627 | | |
2628 | | |
2629 | | :- use_module(library(lists),[select/3]). |
2630 | | |
2631 | | % rename lambda_results : |
2632 | | rename_ran_ids([],Pred,_,[],Pred). |
2633 | | rename_ran_ids([X|TX],Pred,Acc,[XID|TTX],Pred2) :- |
2634 | | % in case X is _lambda_result_ we need to rename it as it then would not get enumerated ! |
2635 | | (X == '_lambda_result_' |
2636 | | -> get_fresh_id('_was_lambda_result_',TX,Acc,XID), |
2637 | | % we could remove lambda_result info field, but it will no longer match new id anyway |
2638 | ? | rename_bt(Pred,[rename(X,XID)],Pred2), |
2639 | | TTX=TX |
2640 | | % TODO: maybe we should also remove the prob_annotation('LAMBDA-EQUALITY') info inside Pred for the ids and equality !? |
2641 | ? | ; XID = X, rename_ran_ids(TX,Pred,[X|Acc],TTX,Pred2) |
2642 | | ). |
2643 | | |
2644 | | :- use_module(b_ast_cleanup,[get_unique_id/2]). |
2645 | | get_fresh_id(ID,List1,List2,Res) :- nonmember(ID,List1), nonmember(ID,List2),!, Res=ID. |
2646 | | get_fresh_id(ID,_,_,FRESHID) :- nl,print('*** VARIABLE_CLASH PREVENTED: '), print(ID),nl, |
2647 | | get_unique_id(ID,FRESHID). |
2648 | | |
2649 | | :- block range_blocking(-,?). |
2650 | | range_blocking([],[]). |
2651 | | range_blocking([(_A,B)|T],[B-true|DT]) :- range_blocking(T,DT). |
2652 | | % and a non-blocking version: |
2653 | | range([],[]). |
2654 | | range([(_A,B)|T],[B-true|DT]) :- range(T,DT). |
2655 | | |
2656 | | ran_for_specific_closure(closure(P,T,Pred),Range,WF) :- |
2657 | | dom_range_for_specific_closure2(P,T,Pred, _Domain,Range,range_only,_Functionality,WF). |
2658 | | %ran_for_specific_closure(closure_x(P,T,Pred,_Exp),Card,_) :- ran_for_specific_closure2(P,T,Pred,Card). |
2659 | | |
2660 | | :- use_module(bsyntaxtree,[conjunct_predicates/2, disjunct_predicates/2, create_typed_id/3, get_texpr_type/2]). |
2661 | | override_custom_explicit_set_wf(R,S,Res,WF) :- /* R <+ S */ |
2662 | ? | nonvar(R),override_custom_explicit_set_aux(R,S,Res,WF). |
2663 | | override_custom_explicit_set_aux(CL,Rel2,Res,_WF) :- |
2664 | | CL=closure(P0,T,B0), |
2665 | | % TO DO: maybe call keep_symbolic in bsets_clp ?? |
2666 | | ( preferences:get_preference(convert_comprehension_sets_into_closures,true), |
2667 | | (var(Rel2) -> true ; Rel2 \= avl_set(_)) % if Rel2 is avl_set then maybe better to compute explicitly; unless infinite |
2668 | | ; quick_size_check_larger_than(Rel2,Size2,133) -> |
2669 | | % if we have a large AVL set anyway; then allow expansion up to a larger limit; cf machine 670_002.mch |
2670 | | % a lot of machines use A*B*C <+ {....} to more compactly define large explicit sets |
2671 | | (Size2=inf -> Limit = 200000 |
2672 | ? | ; Limit is min(200000,Size2*150)), dont_expand_this_closure(P0,T,B0,Limit) |
2673 | ? | ; dont_expand_this_closure(P0,T,B0) % use default limit |
2674 | | ), |
2675 | | !, |
2676 | ? | rename_ran_ids(P0,B0,[],P,B), % any '_lambda_result_' id is no longer guaranteed to be assigned a value in all cases |
2677 | | NewClosure=closure(P,T,NewBody), |
2678 | | % B <+ Rel2 ---> NewBody = P:Rel2 or (prj1(P) /: dom(Rel2) & B) |
2679 | | % TODO better? : %x.(x:Domain|IF x:dom(SFF) THEN SFF(x) ELSE DEFAULT)? |
2680 | | generate_typed_id_pairs(P,T,NestedPairs), |
2681 | | get_texpr_type(NestedPairs,PairsType), |
2682 | | RelPairsType = set(PairsType), |
2683 | | ValS = b(value(Rel2),RelPairsType,[]), |
2684 | | MemS = b(member(NestedPairs,ValS),pred,[]), % P:Rel2 |
2685 | | get_prj1(NestedPairs,DomExpr), |
2686 | | get_texpr_type(DomExpr,DomType), |
2687 | | Domain = b(domain(ValS),set(DomType),[]), % TO DO: perform some optimisations like dom(%x.(P|E)) --> {x|P} |
2688 | | %bsets_clp:domain_wf(Rel2,DomainOfRel2,WF), Domain = b(value(DomainOfRel2),DomType,[]), % this DOES NOT work for 1619, 1706 where override is used for infinite functions |
2689 | | NotMemDomS = b(not_member(DomExpr,Domain),pred,[]), % prj1(P) /: dom(Rel2) |
2690 | | conjunct_predicates([NotMemDomS,B],RHS), |
2691 | | disjunct_predicates([MemS,RHS],NewBody), |
2692 | | %print(override),nl, bsyntaxtree:check_used_ids_in_ast(NewBody), |
2693 | | mark_closure_as_symbolic(NewClosure,Res). |
2694 | | % TO DO: add a case where for second set we have: dont_expand_this_closure |
2695 | | override_custom_explicit_set_aux(R,S,Res,WF) :- |
2696 | | is_custom_explicit_set(R,override_custom_explicit_set), |
2697 | | nonvar(S), is_custom_explicit_set(S,override_custom_explicit_set), |
2698 | | %% hit_profiler:add_profile_hit(override(R,S),3), %% |
2699 | | override_custom_explicit_set2(R,S,Res,WF). |
2700 | | |
2701 | | override_custom_explicit_set2(R,S,Res,_WF) :- is_one_element_custom_set(S,(X,Y)), |
2702 | | override_pair_explicit_set(R,X,Y,NewR),!, |
2703 | | Res=NewR. |
2704 | | % TO DO: if R is very large and S relatively small : iterate by calling override_pair_explicit_set |
2705 | | override_custom_explicit_set2(R,S,Res,WF) :- |
2706 | | expand_custom_set_wf(R,ER,override_custom_explicit_set_aux1,WF), |
2707 | | expand_custom_set_wf(S,ES,override_custom_explicit_set_aux2,WF), |
2708 | | override_list(ER,ES,LRes,Done), |
2709 | | finish_restriction(Done,LRes,Res). |
2710 | | |
2711 | | quick_size_check_larger_than(Set,Size,Limit) :- |
2712 | | quick_custom_explicit_set_approximate_size(Set,Size), |
2713 | | (is_inf_or_overflow_card(Size) -> true ; Size > Limit). |
2714 | | get_prj1(b(couple(DomExpr,_),_,_),Prj1) :- !, Prj1 = DomExpr. |
2715 | | get_prj1(BE,b(first_of_pair(BE),DT,[])) :- % some closures have a single identifier; we need to apply prj1 |
2716 | | BE = b(_E,couple(DT,_RT),_I). |
2717 | | |
2718 | | % translate a parameter name and type list into a nested-pair value |
2719 | | generate_typed_id_pairs([ID|IT],[Type|TT],Res) :- create_typed_id(ID,Type,TypedID), |
2720 | | conv2(IT,TT,TypedID,Res). |
2721 | | conv2([],[],X,X). |
2722 | | conv2([ID|IT],[Type|TT],Acc,Res) :- create_typed_id(ID,Type,TypedID), |
2723 | | get_texpr_type(Acc,AccType), |
2724 | | Couple = b(couple(Acc,TypedID),couple(AccType,Type),[]), |
2725 | | conv2(IT,TT,Couple,Res). |
2726 | | |
2727 | | :- block override_list(-,?,?,?), override_list(?,-,?,?). |
2728 | | override_list([],S,Res,Done) :- !, copy_to_true_list(S,Res,Done). |
2729 | | override_list(R,[],Res,Done) :- !, copy_to_true_list(R,Res,Done). |
2730 | | override_list([(From1,To1)|T1],[(From2,To2)|T2],Res,Done) :- |
2731 | | (From1 @< From2 |
2732 | | -> Res = [(From1,To1)-true|TR], override_list(T1,[(From2,To2)|T2],TR,Done) |
2733 | | ; From2 @< From1 |
2734 | | -> Res = [(From2,To2)-true|TR], override_list([(From1,To1)|T1],T2,TR,Done) |
2735 | | ; override_list(T1,[(From2,To2)|T2],Res,Done)). |
2736 | | |
2737 | | :- block copy_to_true_list(-,?,?). |
2738 | | % add -true to get lists that can be converted to avl |
2739 | | copy_to_true_list([],[],true). |
2740 | | copy_to_true_list([H|T],[H-true|CT],Done) :- copy_to_true_list(T,CT,Done). |
2741 | | |
2742 | | :- use_module(closures,[get_domain_range_for_closure_types/3]). |
2743 | | % compute a closure with the functionality violations of a closure |
2744 | | symbolic_functionality_check_closure(closure(P,T,B),closure([DID,ID1,ID2],[DomType,RanType,RanType],Body)) :- |
2745 | | % construct {d,z_,z__| (d,z_):R & (d,z__):R & z_\= z__} |
2746 | | generate_typed_id_pairs(P,T,NestedPairs), |
2747 | | get_texpr_type(NestedPairs,PairsType), |
2748 | | RelPairsType = set(PairsType), |
2749 | | TRel = b(value(closure(P,T,B)),RelPairsType,[]), |
2750 | | DID = '_domain', ID1 = '_zzzz_unary', ID2 = '_zzzz_binary', |
2751 | | TDID = b(identifier(DID),DomType,[]), |
2752 | | TID1 = b(identifier(ID1),RanType,[]), |
2753 | | TID2 = b(identifier(ID2),RanType,[]), |
2754 | | Mem1 = b(member( b(couple(TDID,TID1),PairsType,[]),TRel),pred,[]), |
2755 | | Mem2 = b(member( b(couple(TDID,TID2),PairsType,[]),TRel),pred,[]), |
2756 | | get_domain_range_for_closure_types(T,DomType,RanType), |
2757 | | NeqRan = b(not_equal(TID1,TID2), pred, []), |
2758 | | conjunct_predicates([Mem1,Mem2,NeqRan],Body), |
2759 | | bsyntaxtree:check_used_ids_in_ast(Body). |
2760 | | %bsyntaxtree:check_ast(Body). |
2761 | | |
2762 | | % compute a closure with the injectivity violations of a closure |
2763 | | symbolic_injectivity_check_closure(closure(P,T,B),closure([RID,ID1,ID2],[RanType,DomType,DomType],Body)) :- |
2764 | | % construct {r,z_,z__| (z_,r):R & (z__,r):R & z_\= z__} |
2765 | | generate_typed_id_pairs(P,T,NestedPairs), |
2766 | | get_texpr_type(NestedPairs,PairsType), |
2767 | | RelPairsType = set(PairsType), |
2768 | | TRel = b(value(closure(P,T,B)),RelPairsType,[]), % what if closure body B has WD condition? |
2769 | | RID = '_range', ID1 = '_zzzz_unary', ID2 = '_zzzz_binary', |
2770 | | TRID = b(identifier(RID),RanType,[]), |
2771 | | TID1 = b(identifier(ID1),DomType,[]), |
2772 | | TID2 = b(identifier(ID2),DomType,[]), |
2773 | | Mem1 = b(member( b(couple(TID1,TRID),PairsType,[]),TRel),pred,[]), |
2774 | | Mem2 = b(member( b(couple(TID2,TRID),PairsType,[]),TRel),pred,[]), |
2775 | | get_domain_range_for_closure_types(T,DomType,RanType), |
2776 | | NeqRan = b(not_equal(TID1,TID2), pred, []), |
2777 | | conjunct_predicates([Mem1,Mem2,NeqRan],Body), |
2778 | | bsyntaxtree:check_used_ids_in_ast(Body). |
2779 | | %bsyntaxtree:check_ast(Body). |
2780 | | |
2781 | | % ------------------------- |
2782 | | |
2783 | | |
2784 | | % check whether we have a partial function |
2785 | | is_avl_partial_function(empty) :- !. |
2786 | | is_avl_partial_function(node((KeyFrom,_KeyTo),_True,_,L,R)) :- !, |
2787 | | is_avl_partial_function2(L,'$$MIN$$',KeyFrom), |
2788 | | is_avl_partial_function2(R,KeyFrom,'$$MAX$$'). |
2789 | | is_avl_partial_function(X) :- add_internal_error('Not avl_set or relation: ',is_avl_partial_function(X)),fail. |
2790 | | |
2791 | | % we traverse the tree from top to bottom, keeping track of possible upper- and lower-bounds |
2792 | | % if any value matches the upper or lower bound, the we do not have a partial function |
2793 | | is_avl_partial_function2(empty,_,_). |
2794 | | is_avl_partial_function2(node((KeyFrom,_KeyTo),_True,_,L,R),ParentFrom,ParentTo) :- |
2795 | | KeyFrom \= ParentFrom, KeyFrom \= ParentTo, |
2796 | | is_avl_partial_function2(L,ParentFrom,KeyFrom), |
2797 | | is_avl_partial_function2(R,KeyFrom,ParentTo). |
2798 | | |
2799 | | % the dual of the above, returning a counter example |
2800 | | is_not_avl_partial_function(node((KeyFrom,_KeyTo),_True,_,L,R),DuplicateKey) :- !, |
2801 | | (is_not_avl_partial_function2(L,'$$MIN$$',KeyFrom,DuplicateKey) -> true |
2802 | | ; is_not_avl_partial_function2(R,KeyFrom,'$$MAX$$',DuplicateKey)). |
2803 | | is_not_avl_partial_function2(node((KeyFrom,_KeyTo),_True,_,L,R),ParentFrom,ParentTo,DuplicateKey) :- |
2804 | | ( KeyFrom = ParentFrom -> DuplicateKey=KeyFrom |
2805 | | ; KeyFrom = ParentTo -> DuplicateKey=KeyFrom |
2806 | | ; is_not_avl_partial_function2(L,ParentFrom,KeyFrom,DuplicateKey) -> true |
2807 | | ; is_not_avl_partial_function2(R,KeyFrom,ParentTo,DuplicateKey) -> true). |
2808 | | |
2809 | | |
2810 | | % check whether we have a function which is total over a given domain; both as AVL sets |
2811 | | is_avl_total_function_over_domain(empty,empty) :- !. |
2812 | | is_avl_total_function_over_domain(AVLFun,AVLDom) :- |
2813 | | avl_domain(AVLFun,FunList), |
2814 | | avl_domain(AVLDom,DomList), |
2815 | | is_avl_total_fun2(FunList,DomList). |
2816 | | |
2817 | | is_avl_total_fun2([],[]). |
2818 | | is_avl_total_fun2([(From,_To)|FT],[From|DomT]) :- is_avl_total_fun2(FT,DomT). |
2819 | | |
2820 | | |
2821 | | %not_is_avl_partial_function(AVLF) :- \+ is_avl_partial_function(AVLF). |
2822 | | |
2823 | | :- use_module(kernel_equality,[membership_test_wf/4]). |
2824 | | % check whether an AVL Relation is not over a specific domain & range |
2825 | | is_not_avl_relation_over_domain_range(AVLRel,Domain,Range,WF) :- AVLRel \= empty, |
2826 | | avl_min_pair(AVLRel,RFrom,RTo), |
2827 | | membership_test_wf(Domain,RFrom,MemRes,WF), |
2828 | | is_not_avl_rel_dom1(MemRes,RFrom,RTo,AVLRel,Domain,Range,WF). |
2829 | | |
2830 | | :- block is_not_avl_rel_dom1(-, ?,?,?,?,?,?). |
2831 | | is_not_avl_rel_dom1(pred_false,_,_,_,_,_,_WF). |
2832 | | is_not_avl_rel_dom1(pred_true,RFrom,RTo,AVLRel,Domain,Range,WF) :- |
2833 | | membership_test_wf(Range,RTo,MemRes,WF), |
2834 | | is_not_avl_rel_dom2(MemRes,RFrom,RTo,AVLRel,Domain,Range,WF). |
2835 | | |
2836 | | :- block is_not_avl_rel_dom2(-, ?,?,?,?,?,?). |
2837 | | is_not_avl_rel_dom2(pred_false,_,_,_,_,_,_WF). |
2838 | | is_not_avl_rel_dom2(pred_true,RFrom,RTo,AVLRel,Domain,Range,WF) :- |
2839 | | avl_next((RFrom,RTo),AVLRel,(RFrom2,RTo2)), |
2840 | | membership_test_wf(Domain,RFrom2,MemRes,WF), |
2841 | | is_not_avl_rel_dom1(MemRes,RFrom2,RTo2,AVLRel,Domain,Range,WF). |
2842 | | |
2843 | | % check whether an AVL Relation is not over a specific range |
2844 | | is_not_avl_relation_over_range(AVLRel,Range,WF) :- AVLRel \= empty, |
2845 | | avl_min_pair(AVLRel,RFrom,RTo), |
2846 | | membership_test_wf(Range,RTo,MemRes,WF), |
2847 | | is_not_avl_rel_ran2(MemRes,RFrom,RTo,AVLRel,Range,WF). |
2848 | | |
2849 | | :- block is_not_avl_rel_ran2(-, ?,?,?,?,?). |
2850 | | is_not_avl_rel_ran2(pred_false,_,_,_,_,_WF). |
2851 | | is_not_avl_rel_ran2(pred_true,RFrom,RTo,AVLRel,Range,WF) :- |
2852 | | avl_next((RFrom,RTo),AVLRel,(RFrom2,RTo2)), |
2853 | | kernel_equality:membership_test_wf(Range,RTo2,MemRes,WF), |
2854 | | is_not_avl_rel_ran2(MemRes,RFrom2,RTo2,AVLRel,Range,WF). |
2855 | | |
2856 | | % check whether we have a relation |
2857 | | is_avl_relation(node((_KeyFrom,_KeyTo),_True,_,_,_)). |
2858 | | |
2859 | | % check whether a Relation has all its range elments in a certain Range (not necessarily AVL) |
2860 | | % TO DO: if Domain is an interval: we could take avl_min and avl_max and rely on lexicographic ordering |
2861 | | is_avl_relation_over_domain(AVL,IntervalClosure,_WF) :- |
2862 | | is_interval_closure_or_integerset(IntervalClosure,Low,Up),!, |
2863 | | ((avl_min(AVL,(int(ALow),_)), avl_max(AVL,(int(AUp),_))) |
2864 | | -> cs_greater_than_equal(ALow,Low), cs_greater_than_equal(Up,AUp) %,print(ok),nl |
2865 | | ; (AVL=empty -> true ; add_error_and_fail(is_avl_relation_over_domain,'Not a relation with integer domain: ',AVL))). |
2866 | | is_avl_relation_over_domain(_,Domain,_) :- |
2867 | | quick_is_definitely_maximal_set(Domain),!. |
2868 | | %is_definitely_maximal_set(Domain),!. |
2869 | | is_avl_relation_over_domain(AVL,Domain,WF) :- is_avl_relation_over_domain2(AVL,Domain,WF). |
2870 | | is_avl_relation_over_domain2(empty,_,_). |
2871 | | is_avl_relation_over_domain2(node((KeyFrom,_KeyTo),_,_,L,R), Domain,WF) :- |
2872 | | is_avl_relation_over_domain2(L, Domain,WF), |
2873 | | is_avl_relation_over_domain2(R, Domain,WF), |
2874 | | kernel_objects:check_element_of_wf(KeyFrom,Domain,WF). |
2875 | | |
2876 | | % : faster to check than is_definitely_maximal_set |
2877 | | quick_is_definitely_maximal_set(X) :- nonvar(X), |
2878 | | quick_is_definitely_maximal_set_aux(X). |
2879 | | quick_is_definitely_maximal_set_aux(global_set(GS)) :- |
2880 | | nonvar(GS),is_maximal_global_set(GS). |
2881 | | quick_is_definitely_maximal_set_aux(avl_set(AVL)) :- |
2882 | | quick_definitely_maximal_set_avl(AVL). |
2883 | | |
2884 | | % check whether a Relation has all its range elments in a certain Range (not necessarily AVL) |
2885 | | |
2886 | | |
2887 | | |
2888 | | is_avl_relation_over_range(empty,_,_) :- !. |
2889 | | is_avl_relation_over_range(_,Range,_) :- |
2890 | | %quick_is_definitely_maximal_set(Range), |
2891 | | is_definitely_maximal_set(Range), |
2892 | | !. |
2893 | | is_avl_relation_over_range(AVL,Range,WF) :- is_avl_relation_over_range2(AVL,Range,WF). |
2894 | | |
2895 | | is_avl_relation_over_range2(empty,_,_). |
2896 | | is_avl_relation_over_range2(node((_KeyFrom,KeyTo),_,_,L,R), Range,WF) :- |
2897 | | is_avl_relation_over_range(L, Range,WF), |
2898 | | kernel_objects:check_element_of_wf(KeyTo,Range,WF), |
2899 | | is_avl_relation_over_range2(R, Range,WF). |
2900 | | |
2901 | | % safe version of is_avl_sequence, does not throw error when type cannot be a sequence |
2902 | | safe_is_avl_sequence(empty) :- !. |
2903 | | safe_is_avl_sequence(node((int(KeyFrom),_KeyTo),_True,_,L,R)) :- !, |
2904 | | is_avl_sequence2(L,0,KeyFrom), |
2905 | | is_avl_sequence2(R,KeyFrom,'$$MAX$$'). |
2906 | | |
2907 | | is_avl_sequence(empty) :- !. |
2908 | | is_avl_sequence(node((int(KeyFrom),_KeyTo),_True,_,L,R)) :- !, |
2909 | | is_avl_sequence2(L,0,KeyFrom), |
2910 | | is_avl_sequence2(R,KeyFrom,'$$MAX$$'). |
2911 | | is_avl_sequence(X) :- add_error_and_fail(is_avl_sequence,'Not avl_set or sequence: ',X). |
2912 | | |
2913 | | % we traverse the tree from top to bottom, keeping track of possible upper- and lower-bounds |
2914 | | % if any value matches the upper or lower bound, the we do not have a partial function |
2915 | | is_avl_sequence2(empty,X,Y) :- |
2916 | | (Y=='$$MAX$$' -> true ; Y is X+1). % otherwise there is a gap in the sequence |
2917 | | is_avl_sequence2(node((int(KeyFrom),_KeyTo),_,_,L,R),ParentFrom,ParentTo) :- |
2918 | | KeyFrom > ParentFrom, KeyFrom \= ParentTo, |
2919 | | is_avl_sequence2(L,ParentFrom,KeyFrom), |
2920 | | is_avl_sequence2(R,KeyFrom,ParentTo). |
2921 | | |
2922 | | % for performance: it is not worthwhile to make a version that checks that |
2923 | | % we have a sequence over a range using a single traversal |
2924 | | |
2925 | | |
2926 | | % get avl_sequence elements as sorted list (without indices) |
2927 | | % used by external function REPLACE |
2928 | | get_avl_sequence(AVL,SeqList) :- |
2929 | | get_avl_sequence_dcg(AVL,SeqList,[]). |
2930 | | |
2931 | | get_avl_sequence_dcg(empty) --> []. |
2932 | | get_avl_sequence_dcg(node((int(_),SeqEl),_True,_,L,R)) --> |
2933 | | get_avl_sequence_dcg(L), |
2934 | | [SeqEl], |
2935 | | get_avl_sequence_dcg(R). |
2936 | | |
2937 | | |
2938 | | % --------------------------- |
2939 | | prefix_of_custom_explicit_set(avl_set(A),MinIndex,Result,WF) :- |
2940 | | size_of_avl_sequence(A,Size,WF), |
2941 | | (MinIndex > Size |
2942 | | -> add_wd_error('index larger than size of sequence in prefix_sequence (/|\\)! ', '>'(MinIndex,Size),WF) |
2943 | | % ; MinIndex = 0 -> Result = [] % case already treated in bsets_clp |
2944 | | ; MinIndex = Size -> Result=avl_set(A) |
2945 | | ; prefix_of_custom_explicit_set2(A,MinIndex,OrdList,[]), |
2946 | | ord_list_to_avlset(OrdList,Result,prefix_of_custom_explicit_set) |
2947 | | ). |
2948 | | prefix_of_custom_explicit_set2(empty,_MaxIndex) --> {true}. |
2949 | | prefix_of_custom_explicit_set2(node((int(KeyFrom),KeyTo),_True,_,L,R),MaxIndex) --> |
2950 | | ({KeyFrom = MaxIndex} |
2951 | | -> prefix_of_custom_explicit_set2(L,MaxIndex), [((int(KeyFrom),KeyTo)-true)] |
2952 | | ; {KeyFrom > MaxIndex} -> prefix_of_custom_explicit_set2(L,MaxIndex) |
2953 | | ; prefix_of_custom_explicit_set2(L,MaxIndex), [((int(KeyFrom),KeyTo)-true)], |
2954 | | prefix_of_custom_explicit_set2(R,MaxIndex) |
2955 | | ). |
2956 | | |
2957 | | % size is only well-defined for sequences: |
2958 | | size_of_custom_explicit_set(avl_set(AVL),int(Size),WF) :- size_of_avl_sequence(AVL,Size,WF). |
2959 | | size_of_custom_explicit_set(closure(P,T,B),Res,WF) :- |
2960 | | is_lambda_value_domain_closure(P,T,B, DomainValue,_Expr), |
2961 | | kernel_cardinality_attr:finite_cardinality_as_int_wf(DomainValue,Res,WF). |
2962 | | size_of_avl_sequence(AVL,Size,WF) :- |
2963 | | preference(find_abort_values,true), |
2964 | | \+ is_avl_sequence(AVL),!, |
2965 | | avl_max_pair(AVL,int(Sz),_), |
2966 | | add_wd_error('Applying size to a value which is not a sequence',b(value(avl_set(AVL)),seq(any),[]),WF), |
2967 | | Size=Sz. % other calls to size_of_avl_sequence currently expect a value |
2968 | | size_of_avl_sequence(AVL,Size,WF) :- |
2969 | | % TO DO: checking minimum is 1? |
2970 | | avl_max_pair(AVL,int(Sz),_), |
2971 | | avl_height(AVL,H), % we cannot compute the height together with max; we need the longest path! |
2972 | | get_min_max_card(H,MinSize,MaxSize), |
2973 | | %avl_size(AVL,Real),format('AVL SeqSize: ~w, height: ~w, real size:~w, min: ~w, max: ~w~n',[Sz,H,Real,MinSize,MaxSize]), |
2974 | | (Sz > MaxSize |
2975 | | -> add_wd_error('Applying size to a value which is not a sequence (maximum index too large)',b(value(avl_set(AVL)),seq(any),[]),WF), |
2976 | | avl_size(AVL,Size) |
2977 | | % triggered by e.g. size({0|->1,0|->2,1|->3}) or size({0|->1,1|->2,3|->3,1|->22,1|->23,1|->24,1|->25,1|->26}) |
2978 | | ; Sz < MinSize |
2979 | | -> add_wd_error('Applying size to a value which is not a sequence (maximum index too small)',b(value(avl_set(AVL)),seq(any),[]),WF), |
2980 | | avl_size(AVL,Size) |
2981 | | % triggered by e.g. size([0,2,2,2] |> {2}) |
2982 | | ; Size=Sz). |
2983 | | |
2984 | | get_min_max_card(Height,MinCard,MaxCard) :- |
2985 | | % page 460, Knuth 3: The height of a balanced tree with N internal nodes always lies between lg(N+1) and 1.4405 lg(N+2) - 0.3277 |
2986 | | MaxCard is 2^Height - 1, |
2987 | | % 1.618034 is golden ration phi 0.5(1+sqrt(5)) , 2.236068 is sqrt(5) |
2988 | | % proof in Knuth uses fact: N > phi^(h+2)/sqrt(5) - 2 |
2989 | | MinCard is ceiling((1.61803398875**(Height+2)) / 2.2360679775 - 2). |
2990 | | |
2991 | | % check if a candidate size is possible given height: |
2992 | | avl_size_possible(AVL,SizeCandidate) :- |
2993 | | avl_height(AVL,Height), % TO DO: restrict to something like log2 of Height |
2994 | | get_min_max_card(Height,MinCard,MaxCard), |
2995 | | MinCard =< SizeCandidate, |
2996 | | SizeCandidate =< MaxCard. |
2997 | | |
2998 | | |
2999 | | suffix_of_custom_explicit_set(avl_set(A),MinIndex,Result,WF) :- |
3000 | | size_of_avl_sequence(A,Size,WF), |
3001 | | (MinIndex > Size |
3002 | | -> add_wd_error('index larger than size of sequence in suffix_sequence (\\|/)! ', '>'(MinIndex,Size),WF) |
3003 | | % ; MinIndex = 0 -> Result = avl_set(A) % case already treated in bsets_clp |
3004 | | ; MinIndex = Size -> Result=[] |
3005 | | ; suffix_of_custom_explicit_set2(A,MinIndex,OrdList,[]), |
3006 | | ord_list_to_avlset(OrdList,Result,suffix_of_custom_explicit_set) |
3007 | | ). |
3008 | | suffix_of_custom_explicit_set2(empty,_MinIndex) --> {true}. |
3009 | | suffix_of_custom_explicit_set2(node((int(KeyFrom),KeyTo),_True,_,L,R),MinIndex) --> |
3010 | | ({KeyFrom =< MinIndex} -> suffix_of_custom_explicit_set2(R,MinIndex) |
3011 | | ; {ShiftedKeyFrom is KeyFrom-MinIndex}, |
3012 | | ({KeyFrom =:= MinIndex+1} |
3013 | | -> {true} ; suffix_of_custom_explicit_set2(L,MinIndex)), |
3014 | | [((int(ShiftedKeyFrom),KeyTo)-true)], |
3015 | | suffix_of_custom_explicit_set2(R,MinIndex) |
3016 | | ). |
3017 | | |
3018 | | shift_avl_sequence_to_ord_list(AVL,Offset,ShiftedOrdList) :- |
3019 | | avl_to_list(AVL,List),shift_seq(List,Offset,ShiftedOrdList). |
3020 | | % it does not seem to be worth to use avl_to_list_dcg_offset or a variation thereof |
3021 | | % it is not really slower to do two traversals (avl_to_list and shift_seq) |
3022 | | |
3023 | | shift_seq([],_,[]). |
3024 | | shift_seq([(int(I),Val)-true|T],Offset,[(int(NI),Val)-true|ST]) :- NI is I+Offset, |
3025 | | shift_seq(T,Offset,ST). |
3026 | | |
3027 | | :- use_module(debug). |
3028 | | concat_custom_explicit_set(avl_set(S1),Seq2,Res,WF) :- nonvar(Seq2), Seq2=avl_set(S2), |
3029 | | size_of_avl_sequence(S1,Size1,WF), |
3030 | | shift_avl_sequence_to_ord_list(S2,Size1,OL2), |
3031 | | % if OL2 is small we could use avl_store like in append_custom_explicit_set |
3032 | | %avl_to_list(S1,OL1), |
3033 | | avl_to_list_dcg(S1,NewOrdList,OL2), % use OL2 rather than [] as tail |
3034 | | %append(OL1,OL2,NewOrdList), % we could avoid traversing OL1 again by doing a custom avl_to_list/3 which specifies tail |
3035 | | ord_list_to_avlset(NewOrdList,Res,concat). % , print_term_summary(res_concat(Res)). |
3036 | | |
3037 | | % a DCG version of avl_to_list; allows to call it with something else than [] as tail |
3038 | | avl_to_list_dcg(empty) --> []. |
3039 | | avl_to_list_dcg(node(Key,Val,_,L,R)) --> |
3040 | | avl_to_list_dcg(L), [(Key-Val)], |
3041 | | avl_to_list_dcg(R). |
3042 | | |
3043 | | /* conc: concatenation of sequence of sequences (general_concat) */ |
3044 | | conc_custom_explicit_set(avl_set(AVL),Res) :- |
3045 | | avl_min_pair(AVL,int(ONE),First), |
3046 | | conc2_cs(First,ONE,AVL,0,NewOrdList), |
3047 | | ord_list_to_avlset(NewOrdList,Res,conc). |
3048 | | |
3049 | | conc2_cs(Seq,NrSeq,AVL,Offset,OrdList) :- |
3050 | | add_seq(Seq,Offset,OrdList,NewOffset,TailOrd), |
3051 | | (avl_next((int(NrSeq),Seq),AVL,(int(N2),Seq2)) |
3052 | | -> conc2_cs(Seq2,N2,AVL,NewOffset,TailOrd) |
3053 | | ; TailOrd=[]). |
3054 | | |
3055 | | add_seq([],Offset,OrdRes,NewOffset,TailOrdRes) :- NewOffset=Offset, TailOrdRes=OrdRes. |
3056 | | add_seq(avl_set(ASeq),Offset,OrdRes,NewOffset,TailOrd) :- |
3057 | | avl_to_list_dcg_offset(ASeq,Offset,NrEls,OrdRes,TailOrd), NewOffset is Offset+NrEls. |
3058 | | |
3059 | | % a version of avl_to_list for sequences which autmatically adds an offset |
3060 | | avl_to_list_dcg_offset(empty,_,0) --> []. |
3061 | | avl_to_list_dcg_offset(node((int(Idx),El),Val,_,L,R),Offset,NrEls) --> |
3062 | | {NIdx is Idx+Offset}, |
3063 | | avl_to_list_dcg_offset(L,Offset,N1), |
3064 | | [((int(NIdx),El)-Val)], |
3065 | | avl_to_list_dcg_offset(R,Offset,N2), {NrEls is N1+N2+1}. |
3066 | | |
3067 | | prepend_custom_explicit_set(avl_set(S1),ObjectToPrepend,Res) :- |
3068 | | %hit_profiler:add_profile_hit(prepend_custom_explicit_set(avl_set(S1),ObjectToPrepend,Res)), |
3069 | | element_can_be_added_or_removed_to_avl(ObjectToPrepend), |
3070 | | shift_avl_sequence_to_ord_list(S1,1,OL1), |
3071 | | ord_list_to_avlset([(int(1),ObjectToPrepend)-true|OL1],Res). |
3072 | | |
3073 | | append_custom_explicit_set(avl_set(S1),ObjectToAppend,Res,WF) :- |
3074 | | element_can_be_added_or_removed_to_avl(ObjectToAppend), % implies that ObjectToAppend is ground |
3075 | | size_of_avl_sequence(S1,Size1,WF), NewSize is Size1+1, |
3076 | | add_ground_element_to_explicit_set_wf(avl_set(S1),(int(NewSize),ObjectToAppend),Res,WF). |
3077 | | |
3078 | | % compute tail of a sequence and also return first element |
3079 | | tail_sequence_custom_explicit_set(avl_set(S1),First,Res,Span,WF) :- |
3080 | | shift_avl_sequence_to_ord_list(S1,-1,NewOrdList), |
3081 | | (NewOrdList = [(int(0),First)-true|TailOL] -> ord_list_to_avlset(TailOL,Res) |
3082 | | ; add_wd_error_span('tail argument is not a sequence!', avl_set(S1),Span,WF) |
3083 | | % add_error_fail(tail_sequence,'tail applied to ', NewOrdList)) |
3084 | | ). |
3085 | | last_sequence_explicit_set(avl_set(AVL),Last) :- |
3086 | | avl_max_pair(AVL,int(_Sz),Last). |
3087 | | % TO DO: we could compute height of the path to max H, then check that Sz is in 2**(H-1)+1 .. 2**(H+1)-1 ? |
3088 | | %first_sequence_explicit_set(avl_set(AVL),First) :- % not used anymore; apply_to used instead |
3089 | | % avl_min_pair(AVL,int(_One),First). |
3090 | | |
3091 | | % compute front and return last element at the same time |
3092 | | front_sequence_custom_explicit_set(avl_set(AVL),Last,Res) :- |
3093 | | avl_max_pair(AVL,int(Size),Last), |
3094 | | direct_remove_element_from_avl(AVL, (int(Size),Last), Res). % we know Last is already in AVL-converted format |
3095 | | |
3096 | | |
3097 | | reverse_custom_explicit_set(avl_set(AVL),Res) :- |
3098 | | avl_to_list_dcg_offset(AVL,0,Size,List,[]), |
3099 | | S1 is Size+1, |
3100 | | reverse_list(List,S1,[],RevList), |
3101 | | ord_list_to_avl(RevList,RevAVL), |
3102 | | Res=avl_set(RevAVL). |
3103 | | |
3104 | | reverse_list([],_,Acc,Acc). |
3105 | | reverse_list([(int(Idx),El)-V|T],S1,Acc,Res) :- |
3106 | | NewIdx is S1 - Idx, |
3107 | | reverse_list(T,S1,[(int(NewIdx),El)-V|Acc],Res). |
3108 | | |
3109 | | % check if a relation is injective ; compute range at the same time; note AVL can be empty |
3110 | | is_injective_avl_relation(AVL,RangeRes) :- |
3111 | | avl_domain(AVL,ElList), |
3112 | | empty_avl(EmptyAcc), |
3113 | | is_avl_inj_list(ElList,EmptyAcc,Range), |
3114 | | construct_avl_set(Range,RangeRes). |
3115 | | |
3116 | | is_avl_inj_list([],Range,Range). |
3117 | | is_avl_inj_list([(_From,To)|T],InRange,OutRange) :- |
3118 | | (avl_fetch(To,InRange) -> fail /* this is not an injection; a range element is repeated */ |
3119 | | ; avl_store(To,InRange,true,InRange1), |
3120 | | is_avl_inj_list(T,InRange1,OutRange) |
3121 | | ). |
3122 | | |
3123 | | % Example predicates that work with code below: |
3124 | | % card(id((1..1000)*(1..1000))~)=1000*1000 |
3125 | | % card(((1..1000)*(1..1000))~)=1000*1000 |
3126 | | invert_explicit_set(global_set(GS),_R) :- !, |
3127 | | add_error_and_fail(invert_explicit_set,'Cannot compute inverse of global set: ',GS). |
3128 | | invert_explicit_set(freetype(GS),_R) :- !, |
3129 | | add_error_and_fail(invert_explicit_set,'Cannot compute inverse of freetype: ',GS). |
3130 | | invert_explicit_set(closure([P1,P2],[T1,T2],Clo),R) :- !, |
3131 | | % TODO: also invert closures with single argument or more arguments |
3132 | | % e.g., {a,b,c|a=1 & b=1 &c:1..10}~ = {c,ab|ab=(1,1) & c:1..10} |
3133 | | R = closure([P2,P1],[T2,T1],Clo). |
3134 | | invert_explicit_set(closure([P1],[T1],Clo),R) :- |
3135 | | is_member_closure_with_info([P1],[T1],Clo,_Type,Info,MEM), |
3136 | | invert_member_predicate(MEM,T1,InvMEM,InvT1),!, |
3137 | | construct_member_closure(P1,InvT1,Info,InvMEM,R). |
3138 | | invert_explicit_set(C,AVL) :- expand_custom_set(C,EC,invert_explicit_set), %% convert to AVL ? |
3139 | | inv_and_norm(EC,AVL). |
3140 | | |
3141 | | invert_member_predicate(cartesian_product(A,B),couple(TA,TB), |
3142 | | cartesian_product(B,A),couple(TB,TA)). |
3143 | | invert_member_predicate(identity(A),TA,identity(A),TA). |
3144 | | |
3145 | | |
3146 | | :- block inv_and_norm(-,?). |
3147 | | inv_and_norm(EC,AVL) :- inv(EC,R,Done), norm(Done,R,AVL). |
3148 | | |
3149 | | :- block norm(-,?,?). |
3150 | | norm(_,R,AVL) :- normalised_list_to_avl(R,AVL). |
3151 | | |
3152 | | :- block inv(-,?,?). |
3153 | | inv([],[],done). |
3154 | | inv([(A,B)|T],[(B,A)-true|DT],Done) :- inv(T,DT,Done). |
3155 | | |
3156 | | |
3157 | | |
3158 | | % checks whether a ground value is in the domain of an AVL relation |
3159 | | check_in_domain_of_avlset(X,AVL) :- convert_to_avl_inside_set(X,AX),!, |
3160 | ? | (avl_fetch_pair(AX,AVL,_) -> true ; fail). |
3161 | | check_in_domain_of_avlset(X,AVL) :- |
3162 | | print('### could not convert arg for check_in_domain_of_avlset'),nl, |
3163 | | print(X),nl, |
3164 | | safe_avl_member_pair(X,_,AVL). |
3165 | | |
3166 | | % checks whether a ground value is in the domain of an AVL relation and has only one solution |
3167 | | check_unique_in_domain_of_avlset(X,AVL) :- convert_to_avl_inside_set(X,AX),!, |
3168 | ? | avl_fetch_pair(AX,AVL,AY1),!, |
3169 | ? | (avl_fetch_pair(AX,AVL,AY2), AY1 \= AY2 -> fail |
3170 | | ; true). |
3171 | | |
3172 | | |
3173 | | % utility to check if for a value there is at most one matching element in an AVL set |
3174 | | % optimized for function application |
3175 | | at_most_one_match_possible(Element,AVL,Matches) :- nonvar(Element), |
3176 | | Element=(Index,_Rest), % Function Application; TO DO: does this cover all func. appl ? |
3177 | | element_can_be_added_or_removed_to_avl(Index), |
3178 | | convert_to_avl_inside_set(Index,AX), % is ground and normalised ? |
3179 | | % TO DO: check AVL size ? Check other patterns ? |
3180 | | findall((AX,Match),avl_tools:avl_fetch_pair(AX,AVL,Match),Matches), |
3181 | | Matches \= [_,_|_]. |
3182 | | |
3183 | | |
3184 | | |
3185 | | apply_to_avl_set(A,X,Y,Span,WF) :- |
3186 | | ground_value_check(X,GroundX), |
3187 | ? | apply_to_avl_set_aux(A,X,Y,GroundX,Span,WF). |
3188 | | |
3189 | | apply_to_avl_set_aux(A,X,Y,GroundX,Span,WF) :- nonvar(GroundX),!, |
3190 | ? | apply_check_tuple(X,Y,A,Span,WF). % we could call apply_check_tuple_ground to avoid one ground test |
3191 | | % We know that A is a function: we can deterministically apply if X is ground; |
3192 | | % if Y is ground this is only the cases for injective functions |
3193 | | apply_to_avl_set_aux(A,X,Y,GroundX,Span,WF) :- |
3194 | | %(preference(data_validation_mode,true); % we now reduce priority of backpropagation below |
3195 | | preference(find_abort_values,true), |
3196 | | % do not try inverse propagation onto argument X of function application A(X) = Y |
3197 | | !, |
3198 | | avl_approximate_size(A,3,ApproxSizeA), |
3199 | | apply_check_tuple_delay(X,Y,A,ApproxSizeA,Span,WF,GroundX,_,_). |
3200 | | apply_to_avl_set_aux(A,X,Y,GroundX,Span,WF) :- |
3201 | | ground_value_check(Y,GroundY), |
3202 | | avl_approximate_size(A,3,ApproxSizeA), % exact size for height <= 3; approximate size above |
3203 | | (ApproxSizeA < 4 -> SPrio=ApproxSizeA ; SPrio is ApproxSizeA * 10), % magic number; ideally we want X or Y to be known beforehand; if none are known we may miss WD errors and may enumerate useless intermediate variables |
3204 | | get_bounded_wait_flag(SPrio,apply_to_explicit(X,Y),WF,WF1), % this only makes sense if X is a domain variable to be enumerated |
3205 | | %propagate_avl_element_information((X,Y),A,ApproxSizeA,WF), % could be done; but would prevent WD problems from being detected |
3206 | | % this waitflag is used when neither X nor Y are ground; |
3207 | | % quite often not much is gained by enumerating possible values; unless X or Y are constrained or trigger other computations |
3208 | | % WSz is 10*ApproxSizeA, % magic value |
3209 | | %(ApproxSizeA > 100 -> InversePrioSize = 4 |
3210 | | % ; avl_range_size_and_propagate_element_info(A,X,Y,RSize), InversePrioSize is ApproxSizeA // RSize), % we could probably compute the exact worst case with the same complexity |
3211 | | % delay_get_wait_flag(GroundY,GroundX,WF1,InversePrioSize,apply_to_explicit_inverse(X,Y),WF,WF2), |
3212 | | %(ApproxSizeA<4000 -> propagate_apply(X,Y,A,ApproxSizeA,WF,GroundX,GroundY) ; true), |
3213 | | apply_check_tuple_delay(X,Y,A,ApproxSizeA,Span,WF,GroundX,WF1,GroundY), |
3214 | | (preference(use_clpfd_solver,false) -> true |
3215 | | % should we also check: preference(find_abort_values,true)? |
3216 | | ; get_wait_flag0(WF,WF0), |
3217 | ? | propagate_apply(X,Y,A,ApproxSizeA,WF,WF0,GroundX,WF1,GroundY)). |
3218 | | |
3219 | | :- block propagate_apply(?,?,?,?,?,-,?,?,?). |
3220 | | propagate_apply(X,Y,AVL,ApproxSizeA,WF,_,GroundX,WF1,GroundY) :- |
3221 | | var(GroundX), var(WF1), var(GroundY), |
3222 | | (preference(disprover_mode,true) |
3223 | | -> XX=X % this will also instantiate X and prevent finding WD errors |
3224 | | ; (ApproxSizeA<128 -> true |
3225 | | ; preference(solver_strength,SS), ApproxSizeA < 128+SS*100), % up until 4000 it may make sense to constrain Y |
3226 | | preference(data_validation_mode,false), % note: this can slow down ProB, e.g., test 1105; hence allow disabling it |
3227 | | preference(find_abort_values,false), % TO DO: v = %x.(x:1..20|x+x) & {y,z|y<4 & z=v(y) & (y:{-1,2})} =res: no WD ERROR found |
3228 | | propagate_value(X,XX) % only instantiate X, propagation only makes sense for propagate_avl_element_information_small, as otherwise only X will be bounded |
3229 | | ), |
3230 | | !, |
3231 | ? | propagate_avl_element_information_direct((XX,Y),AVL,ApproxSizeA,WF). |
3232 | | propagate_apply(_,_,_,_,_,_,_,_,_). |
3233 | | |
3234 | | % only propagate in one direction to allow to find WD errors but also prevent pending co-routines/constraints |
3235 | | :- block propagate_value(-,?). |
3236 | | propagate_value(int(X),R) :- !, |
3237 | | ( |
3238 | | %%integer(X) -> R=int(X) ; % relevant for SWI 8.5.10 and older where fd_set fails for integers, see test 788; should be fixed in next release |
3239 | | propagate_fd_dom(X,RX), R=int(RX), propagate_atomic_value(X,RX) |
3240 | | ). |
3241 | | propagate_value(fd(X,T),R) :- !, |
3242 | | ( |
3243 | | %%integer(X) -> R=fd(X,T) ; % for SWI 8.5.10 and older, see above |
3244 | | propagate_fd_dom(X,RX), R=fd(RX,T), propagate_atomic_value(X,RX) |
3245 | | ). |
3246 | | propagate_value((X1,X2),R) :- !, R=(RX1,RX2), propagate_value(X1,RX1), propagate_value(X2,RX2). |
3247 | | propagate_value(pred_true,R) :- !, if(R=pred_true,true,debug_println(9,function_arg_outside_domain(pred_true))). |
3248 | | propagate_value(pred_false,R) :- !, if(R=pred_false,true,debug_println(9,function_arg_outside_domain(pred_false))). |
3249 | | propagate_value(string(X),R) :- !, R=string(RX),propagate_atomic_value(X,RX). |
3250 | | propagate_value(X,RX) :- equal_object(X,RX). % TO DO: get rid of this: this propagates and prevents finding WD errors |
3251 | | :- block propagate_atomic_value(-,?). |
3252 | | propagate_atomic_value(X,Y) :- |
3253 | | if(X=Y,true,debug_println(9,function_arg_outside_domain(X))). |
3254 | | |
3255 | | %propagate_fd_dom(X,RX) :- integer(X),!,RX=X. % relevant for SWI 8.5.10 and older where fd_set fails for integers |
3256 | | propagate_fd_dom(X,RX) :- fd_set(X,Dom),in_set(RX,Dom). |
3257 | | |
3258 | | |
3259 | | /* |
3260 | | :- block propagate_apply(-,?,?,?,?,-,-). |
3261 | | % call propagate as soon as we know something about the function argument and we do not propgagate completely using GroundX/Y anyway |
3262 | | propagate_apply(X,Y,AVL,Size,WF,GroundX,GroundY) :- print(prop_apply(Size,GroundX,GroundY,X,Y)),nl, |
3263 | | (nonvar(GroundX) -> true ; nonvar(GroundY) -> true |
3264 | | ; propagate_avl_element_information((X,Y),AVL,Size,WF)). |
3265 | | |
3266 | | % get the waitflag when first WF set and other two not |
3267 | | :- block delay_get_wait_flag(-,-,-,?,?,?,?). |
3268 | | delay_get_wait_flag(_,WF1,WF2, _,_,_,_) :- (nonvar(WF1);nonvar(WF2)),!. % DO NOTHING |
3269 | | delay_get_wait_flag(_,_,_,Prio,Info,WF,WF2) :- get_wait_flag(Prio,Info,WF,WF2). |
3270 | | */ |
3271 | | |
3272 | | :- block apply_check_tuple_delay(?,?,?, ?,?,?, -,-,-). |
3273 | | apply_check_tuple_delay(X,Y,AVL,_ApproxSizeA,Span,WF,GroundX,WF1,_) :- |
3274 | | (nonvar(GroundX);nonvar(WF1)),!, |
3275 | ? | apply_check_tuple(X,Y,AVL,Span,WF). |
3276 | | apply_check_tuple_delay(X,Y,AVL,ApproxSizeA,Span,WF,_GroundX,_WF1,_GroundY) :- |
3277 | | % Y is ground; try to do an inverse function lookup |
3278 | ? | inverse_apply_ok(Y,X,AVL,ApproxSizeA), |
3279 | | !, |
3280 | | % print(inverse_apply(Y,X,ApproxSizeA,_GroundX)),nl, |
3281 | | inverse_get_possible_values(X,Y,AVL,Res), |
3282 | | Res=avl_set(InvAVL), % if empty set : we fail |
3283 | | (preference(data_validation_mode,true), |
3284 | | avl_approximate_size(InvAVL,10,ApproxSize), |
3285 | | ApproxSize>1 |
3286 | | -> A2 is (ApproxSize*15*ApproxSize)//ApproxSizeA, % used to be A2 is ApproxSize*100, |
3287 | | A22 is max(A2,ApproxSize), |
3288 | ? | (get_inversion_penalty(Span) |
3289 | | -> A23 is A22 * 100 %, add_message(f,'Inversion Penalty: ',Y:A22,Span) |
3290 | | ; A23=A22), |
3291 | | % give lower priority for backwards propagation, upto 15 times if no reduction from backwards propagation |
3292 | | % but also take into account how much we reduce the size by inverting |
3293 | | % relevant for, e.g., Machines_perf_0111/Thales_All/rule_OPS_SDS_3940.mch |
3294 | | % or rule_OPS_SDS_6496 -> 15 instead of 150 improves performance |
3295 | | get_bounded_wait_flag(A23,element_of_avl_inverse_apply_ok(X),WF,WF2), |
3296 | | % does not call propagate_avl_element_information(X,InvAVL,ApproxSize,WF) or avl_to_table |
3297 | | element_of_avl_set_wf3(X,InvAVL,ApproxSize,WF2,WF) % TODO: pass GroundX |
3298 | | %apply_check_tuple_delay(X,Y,AVL,ApproxSizeA,Span,WF,GroundX,WF1,_) % now wait on WF1 or GroundX |
3299 | ? | ; element_of_avl_set_wf(InvAVL,X,WF) |
3300 | | ). |
3301 | | apply_check_tuple_delay(X,Y,AVL,ApproxSizeA,Span,WF,GroundX,WF1,_GroundY) :- |
3302 | | apply_check_tuple_delay(X,Y,AVL,ApproxSizeA,Span,WF,GroundX,WF1,_). % now wait on WF1 or GroundX |
3303 | | |
3304 | | % check if the function call was annotated as not suitable for backwards inverse function lookup propagation |
3305 | | get_inversion_penalty(span_predicate(b(_Function,_,Info),_LS,_S)) :- !, |
3306 | ? | get_inversion_penalty(Info). |
3307 | | get_inversion_penalty(Info) :- |
3308 | ? | member(prob_annotation('INVERSION_PENALTY'),Info). |
3309 | | |
3310 | | inverse_get_possible_values(X,Y,AVL,Res) :- |
3311 | | get_template(X,XX,_), |
3312 | | copy_term(XX,XX_Copy), % avoid that findall instantiates X |
3313 | | % TODO: copy_value_term similar to ground_value to avoid traversing avl_sets; but usually X is not a set |
3314 | | findall(XX_Copy, safe_avl_member_default((XX_Copy,Y),AVL), PossibleValues), |
3315 | | PossibleValues \= [], % fail straightaway |
3316 | | sort(PossibleValues,SPV), |
3317 | | % length(SPV,Len),print(inverse_image(Y,Len)),nl, print_term_summary(apply_check_tuple_delay(X,Y,AVL)),nl, |
3318 | | convert_to_avl(SPV,Res). |
3319 | | |
3320 | | % is it ok to compute inverse ? only makes sense if AVL tree not too big and quite functional |
3321 | | inverse_apply_ok(pred_true,_,_AVL,ApproxSizeA) :- !, % only two values possible, probably half of AVL will be returned |
3322 | | ApproxSizeA < 1023. % corresponds to avl_height < 10 |
3323 | | inverse_apply_ok(pred_false,_,_AVL,ApproxSizeA) :- !,ApproxSizeA < 1023. |
3324 | | % TO DO: other small types, such as fd(_,_) |
3325 | | inverse_apply_ok(_,_,_AVL,ApproxSizeA) :- ApproxSizeA < 255,!. |
3326 | | inverse_apply_ok(_,X,_AVL,ApproxSizeA) :- ApproxSizeA < 65535, % corresponds Height < 16 |
3327 | | (preference(data_validation_mode,true) -> |
3328 | | (preference(solver_strength,SS), ApproxSizeA < 16383+SS -> true |
3329 | | ; perfmessage(inverse,function_call_not_inverted(ApproxSizeA)),fail |
3330 | | ) |
3331 | | ; true), |
3332 | ? | quick_non_ground_check(X). |
3333 | | %inverse_apply_ok(_,_,_,_). |
3334 | | |
3335 | | % sometimes the ground_value_check co-routine hasn't grounded GroundX yet ! so do a quick check |
3336 | | quick_non_ground_check(X) :- var(X),!. |
3337 | | quick_non_ground_check([]) :- !,fail. |
3338 | | quick_non_ground_check(avl_set(_)) :- !,fail. |
3339 | | quick_non_ground_check(pred_true) :- !,fail. |
3340 | | quick_non_ground_check(pred_false) :- !,fail. |
3341 | | quick_non_ground_check(int(X)) :- !,var(X). |
3342 | | quick_non_ground_check(string(X)) :- !,var(X). |
3343 | | quick_non_ground_check(fd(X,T)) :- !,(var(X) ; var(T)). |
3344 | | quick_non_ground_check((A,B)) :- !, (quick_non_ground_check(A) -> true ; quick_non_ground_check(B)). |
3345 | | quick_non_ground_check(_). % assume it is non ground |
3346 | | |
3347 | | |
3348 | | |
3349 | | % apply_check_tuple is allowed to enumerate: either X is ground or Y is ground |
3350 | | apply_check_tuple(X,Y,A,Span,WF) :- |
3351 | | ground_value(X), |
3352 | | convert_to_avl_inside_set_wf(X,AX,WF),!, % we can do optimized lookup + checking in one go (but avl_apply only does partial check) |
3353 | | avl_apply(AX,A,XY,Span,WF), |
3354 | ? | kernel_objects:equal_object_wf(XY,Y,apply_check_tuple,WF). |
3355 | | :- if(environ(no_wd_checking, true)). |
3356 | | apply_check_tuple(X,Y,A,_Span,WF) :- safe_avl_member_default_wf((X,Y),A,WF). |
3357 | | :- else. |
3358 | | apply_check_tuple(X,Y,A,_Span,WF) :- preferences:preference(find_abort_values,false), !, |
3359 | ? | safe_avl_member_default_wf((X,Y),A,WF). |
3360 | | apply_check_tuple(X,Y,A,Span,WF) :- !, |
3361 | | if(safe_avl_member_default_wf((X,XY),A,WF), % does not detect abort errors if X unbound |
3362 | | kernel_objects:equal_object_wf(XY,Y,apply_check_tuple_avl,WF), |
3363 | | add_wd_error_span('function applied outside of domain (#4): ','@fun'(X,avl_set(A)),Span,WF)). |
3364 | | :- endif. |
3365 | | |
3366 | | |
3367 | | % ------------------------------------------ |
3368 | | |
3369 | | |
3370 | | :- use_module(b_global_sets,[b_type2_set/2]). |
3371 | | :- use_module(bsyntaxtree,[rename_bt/3]). |
3372 | | union_of_explicit_set(global_set(GS),_,R) :- is_maximal_global_set(GS), !, |
3373 | | R= global_set(GS). /* global_set is already maximal */ |
3374 | | union_of_explicit_set(freetype(GS),_,R) :- !, R= freetype(GS). /* freetype is already maximal */ |
3375 | | union_of_explicit_set(closure(P,T,B),_,R) :- is_definitely_maximal_closure(P,T,B), !, |
3376 | | R= closure(P,T,B). /* global_set is already maximal */ |
3377 | | union_of_explicit_set(_,S2,R) :- is_definitely_maximal_set(S2),!, % will also look at AVL set |
3378 | | R=S2. |
3379 | | union_of_explicit_set(S1,S2,R) :- nonvar(S2), S2 = [], !, R=S1. |
3380 | | union_of_explicit_set(S1,S2,_) :- (var(S1);var(S2)),!,fail. % then we cannot compute it here |
3381 | | union_of_explicit_set(S2,S1,R) :- |
3382 | | is_not_member_value_closure(S1,TYPE,MS1), nonvar(MS1), is_efficient_custom_set(MS1), |
3383 | | % also works if S2 is complement closure |
3384 | | difference_of_explicit_set(MS1,S2,Diff),!, |
3385 | | construct_complement_closure_if_necessary(Diff,TYPE,R). |
3386 | | union_of_explicit_set(avl_set(A1),S2,R) :- !, union_of_avl_set(S2,A1,R). |
3387 | | union_of_explicit_set(S1,S2,R) :- |
3388 | ? | is_not_member_value_closure(S1,TYPE,MS1), nonvar(MS1), is_efficient_custom_set(MS1), |
3389 | | difference_of_explicit_set(MS1,S2,Diff),!, |
3390 | | construct_complement_closure_if_necessary(Diff,TYPE,R). |
3391 | | union_of_explicit_set(S1,avl_set(A2),R) :- !, union_of_avl_set(S1,A2,R). |
3392 | | union_of_explicit_set(I1,I2,R) :- is_interval_closure_or_integerset(I1,From1,To1), ground(From1), ground(To1), |
3393 | | is_interval_closure_or_integerset(I2,From2,To2), ground(From2), ground(To2), |
3394 | | !, |
3395 | | (union_of_interval(From1,To1,From2,To2,FromRes,ToRes) |
3396 | | -> construct_interval_closure(FromRes,ToRes,R) |
3397 | | ; small_enough_for_expansion(From1,To1),small_enough_for_expansion(From2,To2) -> |
3398 | | % do not attempt union_of_closure below |
3399 | | expand_interval_closure_to_avl(From1,To1,R1), R1=avl_set(A1), % empty interval already dealt with above !? |
3400 | | expand_interval_closure_to_avl(From2,To2,R2), R2=avl_set(A2), % Note: unification after call as expand_interval calls equal_object (which gets confused by partially instantiated avl_set(_)) |
3401 | | union_of_avl(A1,A2,ARes),R=avl_set(ARes) /* AVL not normalised */ |
3402 | | ; transform_global_sets_into_closure(I1,closure(Par,T,Body)), |
3403 | | union_of_closure(I2,Par,T,Body,R) |
3404 | | ). |
3405 | | union_of_explicit_set(closure(P,T,B),C2,Res) :- |
3406 | | union_of_closure(C2,P,T,B,Res). |
3407 | | |
3408 | | small_enough_for_expansion(From1,To1) :- number(To1), number(From1), To1-From1<250. |
3409 | | |
3410 | | :- use_module(bsyntaxtree,[extract_info/2, extract_info_wo_used_ids/2, extract_info/3, rename_bt/3, replace_id_by_expr/4]). |
3411 | | |
3412 | | union_of_closure(global_set(X),P,T,B,Res) :- !, transform_global_sets_into_closure(global_set(X),C), |
3413 | | union_of_closure(C,P,T,B,Res). |
3414 | | union_of_closure(closure(P2,T2,B2),P,T,B,Res) :- !, |
3415 | | % T2 should be equal to T, module seq(_) <-> set(couple(integer,_)) |
3416 | | unify_closure_predicates(P,T,B, P2,T2,B2 , NewP,NewT, NewB1,NewB2), |
3417 | | debug:debug_println(9,union_of_two_closures(P,P2,NewP,NewT)), |
3418 | | extract_info(B,B2,NewInfo), |
3419 | | construct_disjunct(NewB1,NewB2,Disj), |
3420 | | Res = closure(NewP,NewT,b(Disj,pred,NewInfo)). |
3421 | | |
3422 | | % rename predicates of two closures so that they work on common closure parameter ids |
3423 | | % and can then be either joined by conjunction or disjunction |
3424 | | unify_closure_predicates(P,T,B, P2,T2,B2 , NewP,NewT, NewB1,NewB2) :- |
3425 | | length(P,Len1), length(P2,Len2), |
3426 | | (Len1=Len2 |
3427 | | -> generate_renaming_list(P,P2,RL), |
3428 | | rename_bt(B2,RL,NewB2), |
3429 | | NewP=P, NewT=T, NewB1 = B |
3430 | | ; Len1 < Len2 -> unify_clos_lt(P,T,B, P2,T2,B2 , NewP,NewT, NewB1,NewB2) |
3431 | | ; unify_clos_lt(P2,T2,B2, P,T,B , NewP,NewT, NewB2,NewB1) % inverted the predicate |
3432 | | ). |
3433 | | |
3434 | | % TO DO: generalize: currently only works for single identifier on left |
3435 | | % but works for id(NATURAL) \/ %x.(x<0|-x) or abs = id(NATURAL) \/ %x.(x<0|-x) & abs(2)=a2 & abs(-2)=am2 |
3436 | | unify_clos_lt([ID1],[couple(_,_)],B, P2,T2,B2 , NewP,NewT, NewB1,NewB2) :- |
3437 | | rename_lambda_result_id(P2,B2,P3,B3), |
3438 | | create_couple_term(P3,T2,Pair), |
3439 | | replace_id_by_expr(B,ID1,Pair,NewB1), |
3440 | | NewP=P3, NewT=T2, NewB2=B3. |
3441 | | |
3442 | | % _lambda_result_ id is not enumerated, hence we have to avoid inserting such ids into NewB1 as part of the pPair |
3443 | | rename_lambda_result_id(['_lambda_result_',ID2],B2,[FRESHID,ID2],B3) :- !,get_unique_id('_RANGE_',FRESHID), |
3444 | | rename_bt(B2,[rename('_lambda_result_',FRESHID)],B3). |
3445 | | rename_lambda_result_id([ID1,'_lambda_result_'],B2,[ID1,FRESHID],B3) :- !,get_unique_id('_RANGE_',FRESHID), |
3446 | | rename_bt(B2,[rename('_lambda_result_',FRESHID)],B3). |
3447 | | rename_lambda_result_id(P2,B2,P2,B2). |
3448 | | |
3449 | | % translate a list of atomic ids and a list of types into a couple-term |
3450 | | create_couple_term([ID1],[T1],Res) :- !, |
3451 | | create_texpr(identifier(ID1),T1,[],Res). |
3452 | | create_couple_term([ID1,ID2],[T1,T2],Res) :- |
3453 | | bsyntaxtree:create_couple(b(identifier(ID1),T1,[]),b(identifier(ID2),T2,[]),Res). |
3454 | | % TODO: extend for more than two args |
3455 | | |
3456 | | generate_renaming_list([],[],[]). |
3457 | | generate_renaming_list([ID|T],[ID2|T2],RL) :- |
3458 | | (ID==ID2 -> generate_renaming_list(T,T2,RL) |
3459 | | ; RL = [rename(ID2,ID)|RL2], |
3460 | | generate_renaming_list(T,T2,RL2)). |
3461 | | |
3462 | | |
3463 | | % a more clever way of constructing a disjunct; factor out common prefixes |
3464 | | % (A & B1) or (A1 & B2) <=> A1 & (B1 or B2) |
3465 | | % TO DO: we should try and get the leftmost basic conjunct ! |
3466 | | /* construct_disjunct(b(conjunct(A1,A2),pred,IA), b(conjunct(B1,B2),pred,_IB), Res) :- |
3467 | | |
3468 | | print('TRY DISJUNCT FACTOR: '), translate:print_bexpr(A1),nl, |
3469 | | translate:print_bexpr(B1),nl, |
3470 | | same_texpr_body(A1,B1),!, |
3471 | | print('DISJUNCT FACTOR: '), translate:print_bexpr(A1),nl, |
3472 | | Res = conjunct(A1,b(Disj,pred,IA)), |
3473 | | construct_disjunct(A2,B2,Disj). |
3474 | | */ |
3475 | | construct_disjunct(A,B,disjunct(A,B)). |
3476 | | |
3477 | | :- use_module(btypechecker,[couplise_list/2]). |
3478 | | % TO DO: quick_check if AVL A1 is maximal ? |
3479 | | union_of_avl_set(avl_set(A2),A1,R) :- !, union_of_avl(A1,A2,ARes), R=avl_set(ARes). /* AVL not normalised */ |
3480 | | union_of_avl_set(I2,A1,R) :- is_interval_closure_or_integerset(I2,From2,To2), !, |
3481 | | ground(From2), ground(To2), % we can only compute it if bounds known |
3482 | | (avl_min(A1,int(Min)), low_border(From2,Min,FromRes), avl_max(A1,int(Max)), up_border(To2,Max,ToRes) |
3483 | | -> /* AVL contained (almost) in Interval */ |
3484 | | construct_interval_closure(FromRes,ToRes,R) |
3485 | | ; \+ small_interval(From2,To2) -> |
3486 | | transform_global_sets_into_closure(I2,closure(Par,T,Body)), % we may have something like NATURAL1,... |
3487 | | union_of_avl_set_with_closure(Par,T,Body,A1,R) |
3488 | | ; expand_and_convert_to_avl_set(I2,A2,union_of_avl_set,'? \\/ ARG'), % can generate ARel=empty; will fail if not possible to convert |
3489 | | union_of_avl(A1,A2,ARes), R=avl_set(ARes) |
3490 | | ). |
3491 | | union_of_avl_set(closure(Par,T,Body),A1,Res) :- is_infinite_or_symbolic_closure(Par,T,Body),!, |
3492 | | % TO DO: what if we are in SYMBOLIC mode and the type of T is infinite; maybe we should also keep the union symbolic ?? (cf Ticket/Georghe1) |
3493 | | union_of_avl_set_with_closure(Par,T,Body,A1,Res). |
3494 | | union_of_avl_set(S2,A1,Res) :- |
3495 | | S2 \= freetype(_), |
3496 | | ground_value(S2), % could be a closure |
3497 | | !, |
3498 | | (try_expand_and_convert_to_avl_set(S2,A2,union) |
3499 | | -> union_of_avl(A1,A2,ARes), Res=avl_set(ARes) /* AVL not normalised */ |
3500 | | ; S2=closure(Par,T,Body), |
3501 | | union_of_avl_set_with_closure(Par,T,Body,A1,Res)). |
3502 | | |
3503 | | try_expand_and_convert_to_avl_set(S2,A2,Source) :- |
3504 | | % false: do not add enumeration warning events as errors |
3505 | | catch_enumeration_warning_exceptions(expand_and_convert_to_avl_set(S2,A2,Source,''),fail,false,ignore(Source)). |
3506 | | |
3507 | | % try expanding to list, but catch enumeration warnings and fail if they do occur |
3508 | | % used by override(...) |
3509 | | %try_expand_custom_set_to_list(CS,_,_,_) :- nonvar(CS),CS=global_set(GS),is_infinite_global_set(GS,_), |
3510 | | % !, |
3511 | | % fail. |
3512 | | try_expand_custom_set_to_list(CS,_,_,_) :- nonvar(CS), |
3513 | | (is_symbolic_closure(CS) ; is_infinite_explicit_set(CS)), |
3514 | | !, % we could also check is_symbolic_closure |
3515 | | fail. |
3516 | | try_expand_custom_set_to_list(CS,List,Done,Source) :- |
3517 | | % false: do not add enumeration warning events as errors |
3518 | | catch_enumeration_warning_exceptions(expand_custom_set_to_list(CS,List,Done,Source),fail,false,ignore(Source)). |
3519 | | |
3520 | | |
3521 | | small_interval(From,To) :- number(From), number(To), To-From < 10000. |
3522 | | |
3523 | | union_of_avl_set_with_closure(Par,T,Body,A1,Res) :- |
3524 | | Body = b(_,BodyT,_), |
3525 | | setup_typed_ids(Par,T,TypedPar), |
3526 | | btypechecker:couplise_list(TypedPar,TypedCPar), |
3527 | | generate_couple_types(TypedCPar,ParExpr,ParType), |
3528 | | debug:debug_println(9,union_of_avl_and_infinite_closure(Par,T,BodyT)), |
3529 | | BodyAvl = b(member(ParExpr,b(value(avl_set(A1)),set(ParType),[])),pred,[]), |
3530 | | extract_info_wo_used_ids(Body,NewInfo), |
3531 | | Res = closure(Par,T,b(disjunct(BodyAvl,Body),pred,NewInfo)). |
3532 | | % mark_closure_as_symbolic(closure(Par,T,b(disjunct(BodyAvl,Body),pred,NewInfo)),Res). |
3533 | | |
3534 | | low_border(Low,AVLMin,R) :- geq_inf(AVLMin,Low),!,R=Low. |
3535 | | low_border(Low,AVLMin,R) :- number(Low),AVLMin is Low-1,R=AVLMin. % extend lower border by one |
3536 | | up_border(Up,AVLMax,R) :- geq_inf(Up,AVLMax),!,R=Up. |
3537 | | up_border(Up,AVLMax,R) :- number(Up),AVLMax is Up+1,R=AVLMax. % extend upper border by one |
3538 | | |
3539 | | |
3540 | | setup_typed_ids([],[],[]). |
3541 | | setup_typed_ids([ID|TI],[Type|TT],[b(identifier(ID),Type,[])|BT]) :- setup_typed_ids(TI,TT,BT). |
3542 | | |
3543 | | generate_couple_types(couple(A,B),b(couple(TA,TB),Type,[]),Type) :- !, Type = couple(TTA,TTB), |
3544 | | generate_couple_types(A,TA,TTA), |
3545 | | generate_couple_types(B,TB,TTB). |
3546 | | generate_couple_types(b(X,T,I),b(X,T,I),T). |
3547 | | |
3548 | | |
3549 | | % try to see if two intervals can be unioned into a new interval |
3550 | | union_of_interval(F1,T1,F2,T2,FR,TR) :- |
3551 | | geq_inf(F2,F1), geq_inf(T1,T2),!,FR=F1,TR=T1. % interval [F2,T2] contained in [F1,T1] |
3552 | | union_of_interval(F2,T2,F1,T1,FR,TR) :- geq_inf(F2,F1), geq_inf(T1,T2),!,FR=F1,TR=T1. % see above |
3553 | | union_of_interval(F1,T1,F2,T2,FR,TR) :- number(F2), |
3554 | | geq_inf(F2,F1), number(T1),T11 is T1+1,geq_inf(T11,F2), geq_inf(T2,F2),!,FR=F1,TR=T2. % intervals can be joined |
3555 | | union_of_interval(F2,T2,F1,T1,FR,TR) :- number(F2), |
3556 | | geq_inf(F2,F1), number(T1),T11 is T1+1,geq_inf(T11,F2), geq_inf(T2,F2),!,FR=F1,TR=T2. % see above |
3557 | | |
3558 | | :- use_module(library(ordsets),[ord_union/3]). |
3559 | | union_of_avl(A1,A2,ARes) :- |
3560 | | avl_height(A2,Sz2), |
3561 | | (Sz2 < 2 % we have something like Set := Set \/ {x}; no need to compute height of A1 |
3562 | | -> union_of_avl1(A1,99999,A2,Sz2,ARes) |
3563 | | ; avl_height(A1,Sz1), % TODO: we could call avl_height_less_than or avl_height_compare |
3564 | | (Sz1<Sz2 -> union_of_avl1(A2,Sz2,A1,Sz1,ARes) ; union_of_avl1(A1,Sz1,A2,Sz2,ARes)) |
3565 | | ). |
3566 | | union_of_avl1(A1,Sz1,A2,Sz2,ARes) :- Sz2>2, Sz1 =< Sz2+3, % difference not too big; Sz2 at least a certain size |
3567 | | !, |
3568 | | avl_to_list(A2,List2), % get all members |
3569 | | avl_to_list(A1,List1), |
3570 | | ord_union(List1,List2,L12), |
3571 | | ord_list_to_avl(L12,ARes). |
3572 | | union_of_avl1(A1,_Sz1,A2,_Sz2,ARes) :- % this version is better when A2 is small compared to A1 |
3573 | | avl_domain(A2,List2), % get all members |
3574 | | add_to_avl(List2,A1,ARes). |
3575 | | |
3576 | | :- use_module(library(lists),[reverse/2]). |
3577 | | % a custom version for union(A) where A is AVL set; avoid converting/expanding accumulators and computing avl_height |
3578 | | % runtime of e.g., UNION(x).(x:1000..1514|0..x) 0.65 sec or UNION(n).(n:10000..10010|UNION(x).(x:n..n+1000|n..x)) 4.8 sec is considerably smaller with this version |
3579 | | union_generalized_explicit_set(avl_set(SetsOfSets),Res,WF) :- |
3580 | | expand_custom_set_to_list_wf(avl_set(SetsOfSets),ESetsOfSets,_,union_generalized_wf,WF), |
3581 | | % length(ESetsOfSets,Len),print(union_gen(Len)),nl, |
3582 | | (ESetsOfSets=[OneSet] |
3583 | | -> Res=OneSet % avoid converting to list and back to Avl |
3584 | | ; reverse(ESetsOfSets,RESetsOfSets), % be sure to insert larger values first, so that ord_union has less work to do below; useful if you have many small singleton sets, for example union(ran(%x.(x : 1 .. 10000|{x * x}))) 2.37 secs --> 0.15 secs |
3585 | | % note: dom({r,x|x:1..50000 & r:{x*x}}) is still 3 times faster |
3586 | | union_of_avls(RESetsOfSets,[],Res)). |
3587 | | |
3588 | | % take the union of a list of avl_sets |
3589 | | union_of_avls([],Acc,Res) :- ord_list_to_avl(Acc,ARes), construct_avl_set(ARes,Res). |
3590 | | union_of_avls([H|T],Acc,Res) :- |
3591 | | union_of_avl_with_acc(H,Acc,NewAcc), |
3592 | | union_of_avls(T,NewAcc,Res). |
3593 | | |
3594 | | union_of_avl_with_acc(avl_set(H),Acc,NewAcc) :- !, |
3595 | | avl_to_list(H,HList), |
3596 | | ord_union(Acc,HList,NewAcc). |
3597 | | union_of_avl_with_acc([],Acc,Res) :- !,Res=Acc. |
3598 | | % other custom sets should normally not appear, we obtain the list as elements stored in an avl_set |
3599 | | union_of_avl_with_acc(G,_,_) :- add_internal_error('Uncovered element: ',union_of_avl_with_acc(G,_,_)),fail. |
3600 | | |
3601 | | |
3602 | | |
3603 | | % TO DO: there are no rules for is_not_member_value_closure for intersection below |
3604 | | intersection_of_explicit_set_wf(global_set(GS),S2,R,_WF) :- is_maximal_global_set(GS), !, R=S2. |
3605 | | intersection_of_explicit_set_wf(freetype(_GS),S2,R,_WF) :- !, R=S2. |
3606 | | intersection_of_explicit_set_wf(_,S2,_,_WF) :- var(S2),!,fail. % code below may instantiate S2 |
3607 | | intersection_of_explicit_set_wf(S1,S2,R,_WF) :- is_definitely_maximal_set(S2), !, R=S1. |
3608 | | intersection_of_explicit_set_wf(_S1,[],R,_WF) :-!, R=[]. |
3609 | | intersection_of_explicit_set_wf(avl_set(A1),I2,R,_WF) :- |
3610 | | is_interval_closure_or_integerset(I2,From1,To1), |
3611 | | !, |
3612 | | intersect_avl_interval(A1,From1,To1,R). |
3613 | | intersection_of_explicit_set_wf(I1,I2,R,_WF) :- |
3614 | | intersection_with_interval_closure(I1,I2,R),!. |
3615 | | intersection_of_explicit_set_wf(S1,S2,R,_WF) :- |
3616 | | get_avl_sets(S1,S2,A1,A2), |
3617 | | !, % if too large: better to apply normal intersection code ? |
3618 | | % if one of the args is an interval this is already caught in kernel_objects calling intersection_with_interval_closure; see SetIntersectionBig.mch |
3619 | | avl_domain(A1,ES), % A1 has the smaller height; important for e.g. SetIntersectionBig2.mch |
3620 | | inter2(ES,A2,IRes), |
3621 | | ord_list_to_avlset(IRes,R,intersection). % we have generated the elements in the right order already |
3622 | | intersection_of_explicit_set_wf(Set1,Set2,R,WF) :- |
3623 | | transform_global_sets_into_closure(Set1,closure(P1,T1,B1)), |
3624 | | transform_global_sets_into_closure(Set2,closure(P2,T2,B2)), |
3625 | | % gets called, e.g., for {x|x /: NATURAL1} /\ NATURAL1 |
3626 | | unify_closure_predicates(P1,T1,B1, P2,T2,B2 , NewP,NewT, NewB1,NewB2), |
3627 | | debug:debug_println(9,intersection_of_two_closures(P1,P2,NewP,NewT)), |
3628 | | conjunct_predicates([NewB1,NewB2],BI), |
3629 | | % create a conjunction: can be much more efficient than seperately expanding; |
3630 | | % also works well if one of the closures is infinite |
3631 | | C = closure(NewP,NewT,BI), |
3632 | | expand_custom_set_wf(C,R,intersection_of_explicit_set_wf,WF). % we could keep it symbolic; maybe use SYMBOLIC pref |
3633 | | % to do: also use above for closure and AVL set with member(P,value(avl_set(A))) |
3634 | | % we could also apply the same principle to difference_of_explicit_set |
3635 | | % currently we enable intersection to be treated symbolically (not_symbolic_binary(intersection) commented out) |
3636 | | % This means the above clause for intersection_of_explicit_set_wf is less useful |
3637 | | % a special case; just for interval closures |
3638 | | intersection_with_interval_closure(I1,I2,R) :- |
3639 | | is_interval_closure_or_integerset(I1,From1,To1), nonvar(I2), |
3640 | | intersection_with_interval_closure_aux(I2,From1,To1,R). |
3641 | | intersection_with_interval_closure(avl_set(A1),I2,R) :- |
3642 | | is_interval_closure_or_integerset(I2,From1,To1), |
3643 | | !, |
3644 | | intersect_avl_interval(A1,From1,To1,R). |
3645 | | |
3646 | | % try and get AVL sets from two args; first AVL set is smaller one according to height |
3647 | | get_avl_sets(avl_set(A1),S2,AA1,AA2) :- nonvar(S2), S2=avl_set(A2), |
3648 | ? | (avl_height_compare(A1,A2,R), R=lt |
3649 | | -> (AA1,AA2)=(A1,A2) |
3650 | | ; (AA1,AA2)=(A2,A1)). |
3651 | | %get_avl_sets(S1,S2,AA1,AA2) :- nonvar(S2),S2=avl_set(A2), get_avl_set_arg(S1,A1), |
3652 | | % (avl_height_compare(A1,A2,R),R=gt -> (AA1,AA2)=(A2,A1) ; (AA1,AA2)=(A1,A2)). |
3653 | | |
3654 | | |
3655 | | %intersection_with_interval_closure_aux(avl_set(A),... |
3656 | | intersection_with_interval_closure_aux(I2,From1,To1,R) :- |
3657 | | is_interval_closure_or_integerset(I2,From2,To2),!, |
3658 | | intersect_intervals_with_inf(From1,To1,From2,To2,FromRes,ToRes), |
3659 | | construct_interval_closure(FromRes,ToRes,R). |
3660 | | % (is_interval_closure_or_integerset(R,F,T) -> print(ok(F,T)),nl ; print(ko),nl). |
3661 | | intersection_with_interval_closure_aux(avl_set(A2),From1,To1,R) :- |
3662 | | intersect_avl_interval(A2,From1,To1,R). |
3663 | | |
3664 | | % intersect avl with interval |
3665 | | % TO DO: expand interval if small (or small intersection with AVL) and use avl intersection |
3666 | | intersect_avl_interval(_,From2,To2,_) :- (var(From2) ; var(To2)),!,fail. |
3667 | | intersect_avl_interval(A1,From2,To2,R) :- avl_min(A1,int(Min)), |
3668 | | geq_inf(Min,From2), |
3669 | | geq_inf(To2,Min), avl_max(A1,int(Max)), |
3670 | | geq_inf(To2,Max), |
3671 | | % AVL fully contained in interval; no need to expand to list and back again |
3672 | | !, |
3673 | | construct_avl_set(A1,R). |
3674 | | intersect_avl_interval(A1,From2,To2,R) :- |
3675 | | avl_domain(A1,ES), |
3676 | | inter_interval(ES,From2,To2,IRes), |
3677 | | ord_list_to_avlset(IRes,R,intersect_avl_interval). |
3678 | | |
3679 | | inter_interval([],_,_, []). |
3680 | | inter_interval([IH|T],From2,To2, Res) :- IH = int(H), |
3681 | | (geq_inf(To2,H) -> |
3682 | | (geq_inf(H,From2) -> Res = [IH-true|Res2] ; Res = Res2), |
3683 | | inter_interval(T,From2,To2,Res2) |
3684 | | ; Res = [] % we have exceeded the upper limit of the interval |
3685 | | ). |
3686 | | |
3687 | | intersect_intervals_with_inf(From1,To1,From2,To2,FromRes,ToRes) :- |
3688 | | minimum_with_inf(To1,To2,ToRes), |
3689 | | maximum_with_inf(From1,From2,FromRes). |
3690 | | |
3691 | | % check if two intervals are disjoint |
3692 | | disjoint_intervals_with_inf(From1,To1,From2,To2) :- |
3693 | | intersect_intervals_with_inf(From1,To1,From2,To2,Low,Up), |
3694 | | number(Up), number(Low), Low > Up. |
3695 | | |
3696 | | inter2([],_, []). |
3697 | | inter2([H|T],A1, Res) :- |
3698 | | (avl_fetch(H,A1) -> Res = [H-true|Res2] ; Res = Res2), inter2(T,A1,Res2). |
3699 | | |
3700 | | ord_list_to_avlset(OL,R) :- ord_list_to_avlset(OL,R,unknown). |
3701 | | ord_list_to_avlset(OrdList,Res,Origin) :- |
3702 | | % assumes that we have generated the elements in the right order already |
3703 | | (OrdList=[] -> Res=[] |
3704 | | ; check_sorted(OrdList,Origin), |
3705 | | ord_list_to_avl(OrdList,ARes), Res=avl_set(ARes)). |
3706 | | |
3707 | | % a version which accepts a list of values without -true |
3708 | | % values have to be ground and already converted for use in avl_set |
3709 | | sorted_ground_normalised_list_to_avlset(List,Res,PP) :- |
3710 | | add_true_to_list(List,LT), |
3711 | | ord_list_to_avlset_direct(LT,Res,PP). |
3712 | | |
3713 | | add_true_to_list([],[]). |
3714 | | add_true_to_list([H|T],[H-true|TT]) :- add_true_to_list(T,TT). |
3715 | | |
3716 | | % the same, but without checking sorted (only use if you are really sure the list is sorted) |
3717 | | ord_list_to_avlset_direct([],[],_). |
3718 | | ord_list_to_avlset_direct([H|T],Res,_):- |
3719 | | (T==[] -> H=Key-Val, Res = avl_set(node(Key,Val,0,empty,empty)) % slightly faster than calling ord_list_to_avl |
3720 | | ; ord_list_to_avl([H|T],ARes), Res = avl_set(ARes)). |
3721 | | |
3722 | | check_sorted([],_) :- !. |
3723 | | check_sorted([H-_|T],Origin) :- !, check_sorted2(T,H,Origin). |
3724 | | check_sorted(X,Origin) :- add_error_and_fail(ord_list_to_avlset,'Not a list of -/2 pairs: ',Origin:X). |
3725 | | |
3726 | | check_sorted2([],_,_) :- !. |
3727 | | check_sorted2([H-_|T],PH,Origin) :- PH @< H,!, check_sorted2(T,H,Origin). |
3728 | | check_sorted2(X,Prev,Origin) :- |
3729 | | add_error_and_fail(ord_list_to_avlset,'Not a sorted list of -/2 pairs: ',Origin:(X,Prev)). |
3730 | | |
3731 | | % ------------------ |
3732 | | |
3733 | | :- use_module(kernel_freetypes,[is_maximal_freetype/1]). |
3734 | | is_definitely_maximal_set(S) :- nonvar(S), |
3735 | | is_definitely_maximal_set2(S). |
3736 | | is_definitely_maximal_set2(freetype(ID)) :- is_maximal_freetype(ID). |
3737 | | is_definitely_maximal_set2(global_set(GS)) :- is_maximal_global_set(GS). |
3738 | | is_definitely_maximal_set2(closure(P,T,B)) :- is_definitely_maximal_closure(P,T,B). |
3739 | | is_definitely_maximal_set2(avl_set(S)) :- quick_definitely_maximal_set_avl(S). |
3740 | | is_definitely_maximal_set2([H|T]) :- nonvar(H), is_definitely_maximal_list(H,T). %, nl,print(maximal(H,T)),nl,nl. |
3741 | | %H==pred_true, T == [pred_false]. % for some reason BOOL is sometimes presented this way |
3742 | | is_definitely_maximal_set2(empty) :- % detect unwrapped AVL sets |
3743 | | add_internal_error('Not a set: ',is_definitely_maximal_set2(empty)),fail. |
3744 | | is_definitely_maximal_set2(node(A,B,C,D,E)) :- |
3745 | | add_internal_error('Not a set: ',is_definitely_maximal_set2(node(A,B,C,D,E))),fail. |
3746 | | |
3747 | | is_definitely_maximal_list(pred_true,T) :- nonvar(T), T=[_|_]. % |
3748 | | is_definitely_maximal_list(pred_false,T) :- nonvar(T), T=[_|_].% |
3749 | | is_definitely_maximal_list(fd(_,Type),T) :- nonvar(T),b_global_set_cardinality(Type,Card), |
3750 | | % check if we have the same number of elements as the type: then the set must me maximal |
3751 | | length_at_least(T,Card). |
3752 | | % We could try and and also treat pairs |
3753 | | |
3754 | | length_at_least(1,_) :- !. % we have already removed 1 element; T can be nil |
3755 | | length_at_least(N,T) :- nonvar(T), T=[_|TT], N1 is N-1, length_at_least(N1,TT). |
3756 | | |
3757 | | is_definitely_maximal_closure(_,_,b(truth,_Pred,_)) :- !. |
3758 | | is_definitely_maximal_closure(P,T,B) :- is_cartesian_product_closure_aux(P,T,B,S1,S2),!, |
3759 | | is_definitely_maximal_set(S1),is_definitely_maximal_set(S2). |
3760 | | is_definitely_maximal_closure(P,T,B) :- |
3761 | | is_full_powerset_or_relations_or_struct_closure(closure(P,T,B),Sets), |
3762 | | l_is_definitely_maximal_set(Sets). |
3763 | | |
3764 | | l_is_definitely_maximal_set([]). |
3765 | | l_is_definitely_maximal_set([H|T]) :- is_definitely_maximal_set(H), l_is_definitely_maximal_set(T). |
3766 | | |
3767 | | % check if we have an AVL tree covering all elements of the underlying type |
3768 | | quick_definitely_maximal_set_avl(AVL) :- |
3769 | | AVL=node(El,_True,_,_Left,_Right), |
3770 | | quick_definitely_maximal_set_avl_aux(El,AVL). |
3771 | | quick_definitely_maximal_set_avl_aux(El,AVL) :- |
3772 | | try_get_finite_max_card_from_ground_value(El,Card), |
3773 | | % this could fail if El contains empty sets ! |
3774 | | % also: it must fail if Card is infinite (no avl_set can be maximal) |
3775 | | (Card < 1000 -> true |
3776 | | ; preferences:preference(solver_strength,SS), Card < 1000+SS*100 |
3777 | | ), % otherwise too expensive a check avl_size |
3778 | | quick_avl_approximate_size(AVL,MaxSize), |
3779 | | MaxSize >= Card, % otherwise no sense in computing avl_size, which is linear in size of AVL |
3780 | | avl_size(AVL,Size), |
3781 | | %(MaxSize>=Size -> print(ok(Size,all(Card))),nl ; print('**** ERROR: '), print(Size),nl,trace), |
3782 | | Size=Card. |
3783 | | |
3784 | | % check if we have an AVL function with domain covering all elements of the underlying type |
3785 | | quick_definitely_maximal_total_function_avl(AVL) :- |
3786 | | AVL=node(El,_True,_,_Left,_Right), |
3787 | | El=(DomEl,_), |
3788 | | quick_definitely_maximal_set_avl_aux(DomEl,AVL), % the size is exactly the size of the domain |
3789 | | is_avl_partial_function(AVL). |
3790 | | |
3791 | | % ---------------------- |
3792 | | % set_subtraction / |
3793 | | difference_of_explicit_set(S1,S2,R) :- |
3794 | | difference_of_explicit_set_wf(S1,S2,R,no_wf_available). |
3795 | | % this is called with first argument nonvar (for set_subtraction operator): |
3796 | | difference_of_explicit_set_wf(_S1,S2,R,_) :- |
3797 | | is_definitely_maximal_set(S2), !, R=[]. |
3798 | | difference_of_explicit_set_wf(S1,S2,R,_) :- nonvar(S2), S2=[],!, R=S1. |
3799 | | difference_of_explicit_set_wf(S1,S2,R,_) :- |
3800 | | %nonvar(S1), |
3801 | ? | is_very_large_maximal_global_set(S1,Type), !, % TO DO: also for freetype ? cartesian products,... |
3802 | | /* we have a complement-set */ |
3803 | | complement_set(S2,Type,R). |
3804 | | difference_of_explicit_set_wf(S1,S2,Result,_) :- |
3805 | | is_not_member_value_closure(S1,Type,MS1), |
3806 | | nonvar(MS1), is_custom_explicit_set(MS1,difference_of_explicit_set_wf),!, |
3807 | | union_complement_set(MS1,S2,Type,Result). |
3808 | | difference_of_explicit_set_wf(_,S2,_,_) :- var(S2), !, fail. % then we cannot do anything below |
3809 | | difference_of_explicit_set_wf(S1,S2,R,WF) :- |
3810 | | is_not_member_value_closure(S2,_Type,MS2), nonvar(MS2), |
3811 | | intersection_of_explicit_set_wf(MS2,S1,R,WF),!. |
3812 | | difference_of_explicit_set_wf(I1,I2,R,_) :- |
3813 | | is_interval_closure_or_integerset(I1,From1,To1), |
3814 | | is_interval_closure_or_integerset(I2,From2,To2), |
3815 | | difference_interval(From1,To1,From2,To2,FromRes,ToRes), |
3816 | | % TO DO: also treat case when difference yields two disjoint intervals |
3817 | | % i.e., do not fail and forget info about interval bounds in case we cannot compute difference as a an interval, e.g., INT - {0} |
3818 | | !, |
3819 | | construct_interval_closure(FromRes,ToRes,R). |
3820 | | difference_of_explicit_set_wf(avl_set(A1),S2,R,WF) :- |
3821 | | (S2=avl_set(A2) ; |
3822 | | ground_value(S2), expand_and_convert_to_avl_set_unless_very_large(S2,A2,WF)),!, |
3823 | | avl_height(A2,H2), |
3824 | | %avl_min(A1,Min1),avl_max(A1,Max1), avl_min(A2,Min2),avl_max(A2,Max2), avl_height(A1,H1),nl,print(diff(avl(H1,Min1,Max1),avl(H2,Min2,Max2))),nl, |
3825 | | avl_height(A1,H1), |
3826 | | ((H2<2 -> true ; H1 > H2+1) % then it is more efficient to expand A2 and remove the A2 elements from A1; |
3827 | | % note that difference_of_explicit_set2 now also sometimes expands both: |
3828 | | % exact threshold when it is beneficial: difference_of_explicit_set2/3 |
3829 | | % for {x|x:1..200000 & x mod 2 = 0} - {y|y:2500..29010 & y mod 2 = 0} -> 150 ms vs 80 ms avl(17,int(2),int(200000)),avl(14,int(2500),int(29010) |
3830 | | % {x|x:1..200000 & x mod 2 = 0} - {y|y:2500..59010 & y mod 2 = 0} -> 180 ms vs 80 ms avl(17,int(2),int(200000)),avl(15,int(2500),int(59010)) |
3831 | | % {x|x:1..200000 & x mod 2 = 0} - {y|y:500..159010 & y mod 2 = 0} -> 180 ms vs 250 ms avl(17,int(2),int(200000)),avl(17,int(500),int(159010)) |
3832 | | -> expand_custom_set_to_sorted_list(S2,ES,_,difference_of_explicit_set1,WF), |
3833 | | difference_of_explicit_set3(ES,A1,R) |
3834 | | ; expand_custom_set_to_sorted_list(avl_set(A1),ES,Done,difference_of_explicit_set2,WF), |
3835 | | difference_of_explicit_set2(ES,H1,A2,H2,R,Done)). |
3836 | | difference_of_explicit_set_wf(S1,S2,R,WF) :- |
3837 | | (S2=avl_set(A2) ; |
3838 | | ground_value(S2), expand_and_convert_to_avl_set_unless_very_large(S2,A2,WF)),!, |
3839 | | avl_height(A2,A2Height), |
3840 | | difference_with_avl(S1,A2,A2Height,R,WF). |
3841 | | % to do: we could detect same_texpr_body for two closures and return R=[] |
3842 | | |
3843 | | :- use_module(avl_tools,[avl_approximate_size_from_height/2]). |
3844 | | :- use_module(bsyntaxtree,[safe_create_texpr/4, create_texpr/4, conjunct_predicates/2, mark_bexpr_as_symbolic/2]). |
3845 | | difference_with_avl(S1,A2,A2Height,R,_) :- |
3846 | | is_closure_or_integer_set(S1,[ID],[T],B), |
3847 | | % check if the first argument is infinite; then do the difference set symbolically |
3848 | | % this could supersed the complement set construction and be generalised to other sets apart from avl_sets as A2 |
3849 | | avl_approximate_size_from_height(A2Height,A2Size), |
3850 | | Limit is max(A2Size*10,1000000), % if A2 is more than 10% size of S1, probably better to compute difference explicitly |
3851 | | is_very_large_or_symbolic_closure([ID],[T],B,Limit), |
3852 | | !, % TO DO: also allow multiple identifiers |
3853 | | create_texpr(identifier(ID),T,[],TID), |
3854 | | create_texpr(value(avl_set(A2)),set(T),[],A2Value), |
3855 | | create_texpr(not_member(TID,A2Value),pred,[],NotMemA2), |
3856 | | conjunct_predicates([B,NotMemA2],NewBody), |
3857 | | mark_bexpr_as_symbolic(NewBody,NewBodyS), |
3858 | | R = closure([ID],[T],NewBodyS). |
3859 | | difference_with_avl(S1,A2,A2Height,R,WF) :- |
3860 | | (nonvar(S1),S1=avl_set(A1) -> avl_height(A1,H1) ; H1=unknown), |
3861 | | expand_custom_set_to_sorted_list(S1,ES,Done,difference_of_explicit_set3,WF), |
3862 | | difference_of_explicit_set2(ES,H1,A2,A2Height,R,Done). |
3863 | | |
3864 | | |
3865 | | % construct complement of a set |
3866 | | union_complement_set(S1,S2,Type,Result) :- |
3867 | | ground_value_check(S2,G2), |
3868 | | when(nonvar(G2),union_complement_set2(S1,S2,Type,Result)). |
3869 | | union_complement_set2(S1,S2,Type,Result) :- |
3870 | | union_of_explicit_set(S1,S2,S12), |
3871 | | construct_complement_closure_if_necessary(S12,Type,R), |
3872 | | kernel_objects:equal_object(R,Result,union_complement_set2). |
3873 | | |
3874 | | % construct complement of a set |
3875 | | complement_set(S2,Type,Result) :- |
3876 | | ground_value_check(S2,G2), |
3877 | | when(nonvar(G2),complement_set2(S2,Type,Result)). |
3878 | | complement_set2(S2,Type,Result) :- |
3879 | | is_not_member_value_closure(S2,Type,MS2),!, % complement of complement |
3880 | | kernel_objects:equal_object(MS2,Result,complement_set2). |
3881 | | complement_set2(S2,Type,Result) :- |
3882 | | try_expand_and_convert_to_avl_with_check(S2,ExpandedS2,difference_complement_set), |
3883 | | construct_complement_closure_if_necessary(ExpandedS2,Type,R), |
3884 | | kernel_objects:equal_object(R,Result,complement_set2). |
3885 | | |
3886 | | :- block construct_complement_closure_if_necessary(-,?,?). |
3887 | | construct_complement_closure_if_necessary(Set,TYPE,R) :- |
3888 | | (Set=[] -> b_type2_set(TYPE,R) |
3889 | | ; is_not_member_value_closure(Set,TYPE,MS) -> R=MS % complement of complement |
3890 | | ; construct_complement_closure(Set,TYPE,R)). |
3891 | | |
3892 | | % succeeds if difference of two intervals is also an interval |
3893 | | % SourceLow..SourceUp \ DiffLow..DiffUp |
3894 | | :- assert_must_succeed(custom_explicit_sets:difference_interval(1,10,9,11,1,8)). |
3895 | | :- assert_must_succeed(custom_explicit_sets:difference_interval(1,10,9,inf,1,8)). |
3896 | | :- assert_must_succeed(custom_explicit_sets:difference_interval(1,10,10,12,1,9)). |
3897 | | :- assert_must_succeed(custom_explicit_sets:difference_interval(1,10,11,12,1,10)). |
3898 | | :- assert_must_succeed(custom_explicit_sets:difference_interval(1,10,12,13,1,10)). |
3899 | | :- assert_must_succeed(custom_explicit_sets:difference_interval(1,10,11,inf,1,10)). |
3900 | | :- assert_must_succeed(custom_explicit_sets:difference_interval(1,inf,11,inf,1,10)). |
3901 | | % :- assert_must_succeed(custom_explicit_sets:difference_interval(1,10,9,8,1,10)). % 9..8 empty not detected |
3902 | | :- assert_must_succeed(custom_explicit_sets:difference_interval(1,10,1,8,9,10)). |
3903 | | :- assert_must_succeed(custom_explicit_sets:difference_interval(1,10,1,10,11,10)). % empty |
3904 | | :- assert_must_succeed(custom_explicit_sets:difference_interval(1,10,1,inf,inf,10)). |
3905 | | :- assert_must_succeed(custom_explicit_sets:difference_interval(3,10,1,2,3,10)). |
3906 | | :- assert_must_succeed(custom_explicit_sets:difference_interval(3,inf,1,2,3,inf)). |
3907 | | :- assert_must_succeed(custom_explicit_sets:difference_interval(3,10,1,3,4,10)). |
3908 | | :- assert_must_succeed(custom_explicit_sets:difference_interval(3,10,1,9,10,10)). |
3909 | | :- assert_must_succeed(custom_explicit_sets:difference_interval(3,10,1,10,11,10)). |
3910 | | difference_interval(SourceLow,SourceUp,DiffLow,DiffUp,ResLow,ResUp) :- |
3911 | | (nonvar(SourceLow),nonvar(DiffLow),nonvar(DiffUp), |
3912 | | geq_inf(SourceLow,DiffLow) |
3913 | | -> % DiffLow is to left of SourceLow |
3914 | | inc(DiffUp,D1), |
3915 | | maximum_with_inf(D1,SourceLow,ResLow), |
3916 | | ResUp=SourceUp % also works if SourceUp is a variable |
3917 | | ; nonvar(DiffUp),nonvar(SourceUp),nonvar(DiffLow), |
3918 | | geq_inf(DiffUp,SourceUp) |
3919 | | -> % DiffUp is to right of SourceUp |
3920 | | ResLow=SourceLow, % also works if SourceLow is a variable |
3921 | | dec(DiffLow,D1), |
3922 | | minimum_with_inf(SourceUp,D1,ResUp)). |
3923 | | |
3924 | | inc(N,R) :- N==inf,!,R=inf. |
3925 | | inc(N,N1) :- N1 is N+1. |
3926 | | dec(N,R) :- N==inf,!,R=inf. |
3927 | | dec(N,N1) :- N1 is N-1. |
3928 | | |
3929 | | :- use_module(library(ordsets), [ord_subtract/3]). |
3930 | | :- block difference_of_explicit_set2(?,?,?,?,?,-). |
3931 | | difference_of_explicit_set2(ES,A1Height,A2,A2Height,R,_) :- |
3932 | | (number(A1Height), A1Height+4 >= A2Height -> true |
3933 | | ; A2Height < 5 |
3934 | | ; Limit is 2**(A2Height-4), |
3935 | | length_larger_than(ES,Limit) |
3936 | | % TO DO: we could try and pass sizes from specific closures to this predicate |
3937 | | ), |
3938 | | % A1 is not much larger than A2, then it is probably faster to use ord_subtract on expanded A2 |
3939 | | % {x|x mod 2 =0 & x:1..10000} - {y|y mod 3 =0 & y : 1..200000} : still more efficient with ord_subtract |
3940 | | !, |
3941 | | avl_domain(A2,A2Expanded), |
3942 | | ord_subtract(ES,A2Expanded,OrdRes), |
3943 | | sorted_ground_normalised_list_to_avlset(OrdRes,AVL,difference_of_explicit_set2), |
3944 | | equal_object(AVL,R). |
3945 | | difference_of_explicit_set2(ES,_A1Height,A2,_A2Height,R,_) :- |
3946 | | avl_min(A2,Min), |
3947 | | diff1(ES,Min,A2,IRes), |
3948 | | ord_list_to_avlset(IRes,AVL,difference), % we have generated the elements in the right order already |
3949 | | equal_object(AVL,R). % due to delays in expansion the result could be instantiated |
3950 | | |
3951 | | |
3952 | | length_larger_than([_|T],Limit) :- |
3953 | | (Limit<1 -> true |
3954 | | ; L1 is Limit-1, length_larger_than(T,L1)). |
3955 | | |
3956 | | diff1([],_, _,[]). |
3957 | | diff1([H|T],Min,A1, Res) :- |
3958 | | (H @< Min -> Res = [H-true|Res2],diff1(T,Min,A1,Res2) |
3959 | | ; diff2([H|T],A1,Res)).% TO DO: compute avl_max |
3960 | | |
3961 | | diff2([],_, []). |
3962 | | diff2([H|T],A1, Res) :- |
3963 | | (avl_fetch(H,A1) -> Res = Res2 ; Res = [H-true|Res2]), diff2(T,A1,Res2). |
3964 | | |
3965 | | % another version to be used when second set small in comparison to first set |
3966 | | difference_of_explicit_set3([],A1,Res) :- construct_avl_set(A1,AVL), |
3967 | | equal_object(AVL,Res). % due to delay in expansion, Res could now be instantiated |
3968 | | difference_of_explicit_set3([H|T],A1,ARes) :- |
3969 | | (avl_delete(H,A1,_True,A2) -> true ; A2=A1), |
3970 | | difference_of_explicit_set3(T,A2,ARes). |
3971 | | |
3972 | | % ------------------------- |
3973 | | |
3974 | | % a version of add_element_to_explicit_set where we have already done the groundness check |
3975 | | add_ground_element_to_explicit_set_wf(avl_set(A),Element,R,WF) :- !, |
3976 | | convert_to_avl_inside_set_wf(Element,AEl,WF), |
3977 | | avl_store(AEl,A,true,A2),!,R=avl_set(A2). |
3978 | | add_ground_element_to_explicit_set_wf(Set,Element,R,WF) :- |
3979 | | add_element_to_explicit_set_wf(Set,Element,R,WF). |
3980 | | |
3981 | | add_element_to_explicit_set_wf(global_set(GS),_,R,_) :- is_maximal_global_set(GS), !, R=global_set(GS). |
3982 | | add_element_to_explicit_set_wf(freetype(ID),_,R,_) :- is_maximal_freetype(ID),!, R=freetype(ID). |
3983 | | add_element_to_explicit_set_wf(avl_set(A),Element,R,WF) :- |
3984 | | ground_value(Element), %% was element_can_be_added_or_removed_to_avl(Element), |
3985 | | convert_to_avl_inside_set_wf(Element,AEl,WF), |
3986 | | avl_store(AEl,A,true,A2),!,R=avl_set(A2). /* AVL not normalised */ |
3987 | | /* do we need to add support for (special) closures ?? |
3988 | | add_element_to_explicit_set_wf(Clos,Element,R,_) :- nonvar(Element),Element=int(X), nonvar(X), |
3989 | | is_interval_closure_or_integerset(Clos,Low,Up), ground(Low), ground(Up), |
3990 | | union_of_interval(X,X,Low,Up,FromRes,ToRes), |
3991 | | !, |
3992 | | construct_interval_closure(FromRes,ToRes,R). |
3993 | | % not-member closure not dealt with here |
3994 | | */ |
3995 | | |
3996 | | element_can_be_added_or_removed_to_avl(Element) :- |
3997 | | ground_value(Element), |
3998 | | does_not_contain_closure(Element). |
3999 | | ground_element_can_be_added_or_removed_to_avl(Element) :- /* use if you know the element to be ground */ |
4000 | | does_not_contain_closure(Element). |
4001 | | |
4002 | | % does not contain closure or infinite other sets |
4003 | | does_not_contain_closure([]). |
4004 | | does_not_contain_closure([H|T]) :- |
4005 | | (simple_value(H) -> true /* TO DO: check if we could have a closure at the end ?? */ |
4006 | | ; does_not_contain_closure(H),list_does_not_contain_closure(T)). |
4007 | | does_not_contain_closure(fd(_,_)). |
4008 | | does_not_contain_closure(pred_true /* bool_true */). |
4009 | | does_not_contain_closure(pred_false /* bool_false */). |
4010 | | does_not_contain_closure(int(_)). |
4011 | | does_not_contain_closure(string(_)). |
4012 | | does_not_contain_closure(term(_)). % real/floating number |
4013 | | does_not_contain_closure((X,Y)) :- does_not_contain_closure(X), does_not_contain_closure(Y). |
4014 | | does_not_contain_closure(avl_set(_)). |
4015 | ? | does_not_contain_closure(global_set(G)) :- \+ is_infinite_global_set(G,_). |
4016 | | %does_not_contain_closure(freetype(_)). |
4017 | | does_not_contain_closure(freeval(_,_,Value)) :- does_not_contain_closure(Value). |
4018 | | does_not_contain_closure(rec(Fields)) :- does_not_contain_closure_fields(Fields). |
4019 | | |
4020 | | does_not_contain_closure_fields([]). |
4021 | | does_not_contain_closure_fields([field(_,Val)|T]) :- does_not_contain_closure(Val), |
4022 | | does_not_contain_closure_fields(T). |
4023 | | |
4024 | | list_does_not_contain_closure([]). |
4025 | | list_does_not_contain_closure([H|T]) :- |
4026 | | does_not_contain_closure(H),list_does_not_contain_closure(T). |
4027 | | list_does_not_contain_closure(avl_set(_)). |
4028 | | list_does_not_contain_closure(global_set(G)) :- \+ is_infinite_global_set(G,_). |
4029 | | |
4030 | | simple_value(fd(_,_)). |
4031 | | simple_value(pred_true /* bool_true */). |
4032 | | simple_value(pred_false /* bool_false */). |
4033 | | simple_value(int(_)). |
4034 | | simple_value((A,B)) :- simple_value(A), simple_value(B). |
4035 | | simple_value(string(_)). |
4036 | | |
4037 | | |
4038 | | % a version of the above which throws error if element cannot be added |
4039 | | % assumes element_can_be_added_or_removed_to_avl has been checked |
4040 | | remove_element_from_explicit_set(avl_set(A),Element,R) :- |
4041 | | element_can_be_added_or_removed_to_avl(Element), % remove check? |
4042 | | convert_to_avl_inside_set(Element,AEl), !, |
4043 | | direct_remove_element_from_avl(A,AEl,R). |
4044 | | remove_element_from_explicit_set(ES,Element,R) :- |
4045 | | add_internal_error('Cannot remove element from explicit set:',remove_element_from_explicit_set(ES,Element,R)). |
4046 | | |
4047 | | direct_remove_element_from_avl(A,AEl,R) :- |
4048 | | avl_delete(AEl,A,_True,A2), |
4049 | | construct_avl_set(A2,R). /* AVL not normalised */ |
4050 | | |
4051 | | /* same as remove but element can be absent */ |
4052 | | delete_element_from_explicit_set(avl_set(A),Element,R) :- |
4053 | | element_can_be_added_or_removed_to_avl(Element), |
4054 | | convert_to_avl_inside_set(Element,AEl), !, |
4055 | | (avl_delete(AEl,A,_True,A2) |
4056 | | -> construct_avl_set(A2,R) |
4057 | | ; R = avl_set(A) |
4058 | | ). /* AVL not normalised */ |
4059 | | |
4060 | | is_maximal_global_set(GS) :- is_maximal_global_set(GS,_Type). |
4061 | | is_maximal_global_set(GS,_) :- var(GS),!,fail. |
4062 | | is_maximal_global_set('INTEGER',Type) :- !, Type=integer. |
4063 | | is_maximal_global_set('REAL',Type) :- !, Type=real. |
4064 | | is_maximal_global_set('FLOAT',_) :- !, fail. |
4065 | | is_maximal_global_set('STRING',Type) :- !, Type=string. |
4066 | | is_maximal_global_set(GS,global(GS)) :- |
4067 | | \+ kernel_objects:integer_global_set(GS). |
4068 | | |
4069 | | % To do: maybe get rid of all complement set code; add in_difference_set as symbolic binary operator |
4070 | | %is_very_large_maximal_global_set(X,_) :- print(very(X)),nl,fail. |
4071 | | is_very_large_maximal_global_set(closure(P,T,B),Type) :- is_definitely_maximal_closure(P,T,B), |
4072 | | couplise_list(T,Type). |
4073 | | is_very_large_maximal_global_set(global_set('INTEGER'),integer). |
4074 | | is_very_large_maximal_global_set(global_set('STRING'),string). |
4075 | | is_very_large_maximal_global_set(global_set('REAL'),string). |
4076 | | is_very_large_maximal_global_set(freetype(ID),freetype(ID)) :- is_infinite_freetype(ID). |
4077 | | |
4078 | | |
4079 | | |
4080 | | remove_minimum_element_custom_set(avl_set(S),X,RES) :- !, |
4081 | | avl_del_min(S,X,_True,Res0), |
4082 | | (empty_avl(Res0) -> RES=[] ; RES = avl_set(Res0)). |
4083 | | %remove_minimum_element_custom_set(closure(P,T,B),X,RES) :- |
4084 | | % is_interval_closure_or_integerset(Clos,Low,Up),!, |
4085 | | % X = Low, TO DO: construct new interval closure |
4086 | | remove_minimum_element_custom_set(CS,X,RES) :- |
4087 | | expand_custom_set_to_list(CS,ECS,Done,remove_minimum_element_custom_set), |
4088 | | remove_minimum_element_custom_set2(ECS,X,RES,Done). |
4089 | | |
4090 | | :- block remove_minimum_element_custom_set2(?,?,?,-). |
4091 | | % wait until Done: otherwise the Tail of the list could be instantiated by somebody else; interfering with expand_custom_set_to_list |
4092 | | remove_minimum_element_custom_set2([H|T],X,RES,_) :- equal_object((H,T),(X,RES)). |
4093 | | |
4094 | | |
4095 | | min_of_explicit_set_wf(avl_set(S),Min,_) :- !, avl_min(S,Min). |
4096 | | min_of_explicit_set_wf(Clos,Min,WF) :- |
4097 | | is_interval_closure_or_integerset(Clos,Low,Up), |
4098 | | (Low == minus_inf |
4099 | | -> add_wd_error('minimum of unbounded infinite set not defined:',Clos,WF) |
4100 | | ; cs_greater_than_equal(Up,Low), |
4101 | | Min=int(Low)). |
4102 | | |
4103 | | cs_greater_than_equal(X,Y) :- |
4104 | | ((X==inf;Y==minus_inf) -> true ; kernel_objects:less_than_equal_direct(Y,X)). |
4105 | | |
4106 | | |
4107 | | max_of_explicit_set_wf(avl_set(S),Max,_) :- !,avl_max(S,Max). |
4108 | | max_of_explicit_set_wf(Clos,Max,WF) :- |
4109 | | is_interval_closure_or_integerset(Clos,Low,Up), |
4110 | | (Up==inf |
4111 | | -> add_wd_error('maximum of unbounded infinite set not defined:',Clos,WF) |
4112 | | ; cs_greater_than_equal(Up,Low), |
4113 | | Max=int(Up)). |
4114 | | |
4115 | | % ------------- SIGMA/PI -------------- |
4116 | | |
4117 | | % compute sum or product of an integer set: |
4118 | | sum_or_mul_of_explicit_set(avl_set(S),SUMorMUL,Result) :- |
4119 | | avl_domain(S,Dom), |
4120 | | (SUMorMUL=sum -> simple_sum_list(Dom,0,R) ; simple_mul_list(Dom,1,R)), |
4121 | | Result = int(R). |
4122 | | sum_or_mul_of_explicit_set(CS,SUMorMUL,Result) :- SUMorMUL == sum, |
4123 | | is_interval_closure(CS,Low,Up), |
4124 | | sum_interval(Low,Up,Result), |
4125 | | sum_interval_clpfd_prop(Low,Up,Result). |
4126 | | |
4127 | | :- block sum_interval(-,?,?), sum_interval(?,-,?). |
4128 | | sum_interval(Low,Up,_) :- (\+ number(Low) ; \+ number(Up)),!, |
4129 | | add_error(sum_interval,'Cannot compute sum of interval: ',Low:Up),fail. |
4130 | | sum_interval(Low,Up,Result) :- Low>Up,!, Result=int(0). |
4131 | | sum_interval(Low,Up,Result) :- |
4132 | | R is ((1+Up-Low)*(Low+Up)) // 2, % generalisation of Gauss formula k*(k+1)//2 |
4133 | | Result = int(R). |
4134 | | |
4135 | | sum_interval_clpfd_prop(Low,Up,Result) :- |
4136 | | preferences:preference(use_clpfd_solver,true), Result=int(R), |
4137 | | var(R), % we haven't computed the result yet; the bounds are not known; set up constraint propagation rules |
4138 | | !, |
4139 | | try_post_constraint((Low #>= 0) #=> (R #> 0)), % we could provide better bounds here for negative numbers |
4140 | | try_post_constraint(((Low #=< Up) #\/ (R #\= 0)) #=> (R #= ((1+Up-Low)*(Low+Up))//2)), |
4141 | | try_post_constraint((Low #> Up) #=> (R #= 0)). |
4142 | | % not working yet: x = SIGMA(i).(i:-3..n|i) & x=0 & n< -1 |
4143 | | sum_interval_clpfd_prop(_,_,_). |
4144 | | |
4145 | | simple_sum_list([],A,A). |
4146 | | simple_sum_list([int(H)|T],Acc,R) :- NA is Acc+H, simple_sum_list(T,NA,R). |
4147 | | simple_mul_list([],A,A). |
4148 | | simple_mul_list([int(H)|T],Acc,R) :- NA is Acc*H, simple_mul_list(T,NA,R). |
4149 | | |
4150 | | |
4151 | | /* |
4152 | | direct_product_symbolic(S,R,Res) :- % NOT YET FINISHED |
4153 | | nonvar(S), S=closure(PS,[T1,TS2],RS), |
4154 | | nonvar(R), R=closure(PR,[T1,TR1],RR), |
4155 | | is_lambda_value_domain_closure(PS,TS,RS, SDomainValue,SExpr), |
4156 | | is_lambda_value_domain_closure(PR,TR,RR, RDomainValue,RExpr), |
4157 | | construct_closure(['zzz','_lambda_result_'],[T1,couple(TR1,TR2)], |
4158 | | member(zzz,SDomainValue) , member(zzz,RDomainValue), eq(lambda,pair(SExpr,RExpr))). |
4159 | | */ |
4160 | | |
4161 | | % we assume that try_expand_and_convert_to_avl_unless_very_large already called on arguments |
4162 | | direct_product_explicit_set(S,R,Res) :- |
4163 | | nonvar(R), %is_custom_explicit_set(R,direct_product), |
4164 | | nonvar(S), %is_custom_explicit_set(S,direct_product), |
4165 | | direct_product_explicit_set_aux(S,R,Res). |
4166 | | %direct_product_explicit_set_aux(S,R,Res) :- (S = closure(_,_,_) ; R = closure(_,_,_)), |
4167 | | % print_term_summary(direct_product_explicit_set_aux(S,R,Res)),nl, |
4168 | | % % TO DO: generate closure |
4169 | | % fail. |
4170 | | direct_product_explicit_set_aux(avl_set(AS),avl_set(AR),Res) :- |
4171 | | % the expansion guarantees that we have the lists ES and ER then in sorted order |
4172 | | avl_domain(AS,ES), % -> expand_custom_set(avl_set(AS),ES), |
4173 | | avl_domain(AR,ER), % -> expand_custom_set(avl_set(AR),ER), |
4174 | | direct_product3(ES,ER,DPList), |
4175 | | ord_list_to_avlset(DPList,DPAVL,direct_product), % is it really ordered ? findall must also return things ordered! |
4176 | | equal_object(DPAVL,Res,direct_product_explicit_set). |
4177 | | |
4178 | | direct_product3([],_Rel2,[]). |
4179 | | direct_product3([(From,To1)|T1],Rel2,Res) :- |
4180 | | get_next_mapped_to_eq(T1,From,TTo,Tail1), ToList1 = [To1|TTo], |
4181 | | get_next_mapped_to(Rel2,From,ToList2,Tail2), |
4182 | | calc_direct_product(ToList1,From,ToList2,Res,Rest), |
4183 | | (Tail2=[] -> Rest=[] ; direct_product3(Tail1,Tail2,Rest)). |
4184 | | |
4185 | | % get all elements which map to From, supposing that the list is sorted & we have already had a match |
4186 | | get_next_mapped_to_eq([],_,[],[]). |
4187 | | get_next_mapped_to_eq([(From2,To2)|T],From,Result,Tail) :- |
4188 | | (From=From2 -> Result = [To2|RR], get_next_mapped_to_eq(T,From,RR,Tail) |
4189 | | ; Result = [], Tail = [(From2,To2)|T] |
4190 | | ). |
4191 | | |
4192 | | % get all elements which map to From, supposing the list is sorted |
4193 | | get_next_mapped_to([],_,[],[]). |
4194 | | get_next_mapped_to([(From2,To2)|T],From,Result,Tail) :- |
4195 | | (From=From2 -> Result = [To2|RR], get_next_mapped_to_eq(T,From,RR,Tail) |
4196 | | ; From2 @> From -> Result = [], Tail = [(From2,To2)|T] |
4197 | | ; get_next_mapped_to(T,From,Result,Tail) |
4198 | | ). |
4199 | | |
4200 | | calc_direct_product([],_From,_,Tail,Tail). |
4201 | | calc_direct_product([To1|T1],From,To2List,Result,Tail) :- |
4202 | | findall((From,(To1,To2))-true,member(To2,To2List),Result,ResResult), |
4203 | | calc_direct_product(T1,From,To2List,ResResult,Tail). |
4204 | | |
4205 | | % TO DO: maybe also add a special rule for infinite R such as event_b_identity ? |
4206 | | domain_restriction_explicit_set_wf(S,R,Res,WF) :- /* S <| R */ |
4207 | | nonvar(R), |
4208 | | (nonvar(S),is_one_element_custom_set(S,El),R \= closure(_,_,_) -> |
4209 | | domain_restrict_singleton_element(El,R,Res) |
4210 | | ; restriction_explicit_set_wf(S,R,Res,domain,pred_true,WF)). |
4211 | | domain_subtraction_explicit_set_wf(S,R,Res,WF) :- /* S <<| R */ |
4212 | | (nonvar(S),is_one_element_custom_set(S,El), nonvar(R), R=avl_set(AVL) -> |
4213 | | avl_domain_subtraction_singleton(AVL,El,ARes), |
4214 | | construct_avl_set(ARes,Res) % TO DO: use this also when S is small and R large |
4215 | | ; restriction_explicit_set_wf(S,R,Res,domain,pred_false,WF)). |
4216 | | range_restriction_explicit_set_wf(R,S,Res,WF) :- /* R |> S */ |
4217 | | restriction_explicit_set_wf(S,R,Res,range,pred_true,WF). |
4218 | | range_subtraction_explicit_set_wf(R,S,Res,WF) :- /* R |>> S */ |
4219 | | restriction_explicit_set_wf(S,R,Res,range,pred_false,WF). |
4220 | | |
4221 | | |
4222 | | domain_restrict_singleton_element(El,R,Res) :- /* {El} <| R ; TO DO maybe apply this technique for "small" sets as well */ |
4223 | | nonvar(R), is_custom_explicit_set(R,domain_restrict_singleton_element), |
4224 | | expand_and_convert_to_avl_set(R,AR,domain_restrict_singleton_element,''), % can generate ARel=empty; will fail if not possible to convert |
4225 | | findall((El,Z)-true, avl_fetch_pair(El,AR,Z), RTuples), |
4226 | | ord_list_to_avlset(RTuples,Res,domain_restrict_singleton_element). |
4227 | | |
4228 | | restriction_explicit_set_wf(Set,Rel,Res,_RanOrDom,AddWhen,WF) :- Set==[],!, |
4229 | | (AddWhen=pred_false |
4230 | | -> equal_object_wf(Rel,Res,restriction_explicit_set_wf,WF) % {} <<| Rel = Rel |>> {} = Rel |
4231 | | ; kernel_objects:empty_set_wf(Res,WF) |
4232 | | ). |
4233 | | restriction_explicit_set_wf(Set,Rel,Res,_RanOrDom,AddWhen,WF) :- is_definitely_maximal_set(Set),!, |
4234 | | (AddWhen=pred_true |
4235 | | -> equal_object_wf(Rel,Res,restriction_explicit_set_wf,WF) % TYPE <| Rel = Rel |> TYPE = Rel |
4236 | | ; kernel_objects:empty_set_wf(Res,WF) |
4237 | | ). |
4238 | | restriction_explicit_set_wf(_,Rel,_,_,_,_) :- var(Rel),!,fail. |
4239 | | restriction_explicit_set_wf(Set,closure(Paras,Types,Body),Res,RanOrDom,AddWhen,WF) :- |
4240 | | % perform symbolic treatment by adding restriction predicate to Body |
4241 | | !, |
4242 | | (RanOrDom=domain |
4243 | | -> get_domain_id_or_expr(Paras,Types,TID,TT) |
4244 | | ; get_range_id_or_expr(Paras,Types,TID,TT) |
4245 | | ), |
4246 | | TSet=b(value(Set),set(TT),[]), |
4247 | | (AddWhen = pred_true |
4248 | | -> PRED = member(TID,TSet) |
4249 | | ; PRED = not_member(TID,TSet) ), |
4250 | | conjunct_predicates([b(PRED,pred,[]),Body],NewBody), |
4251 | | % translate:print_bexpr(NewBody),nl, |
4252 | | try_expand_and_convert_to_avl_with_catch_wf(closure(Paras,Types,NewBody),Res,restriction_explicit_set_wf,WF). |
4253 | | restriction_explicit_set_wf(Set,Rel,Res,RanOrDom,AddWhen,WF) :- |
4254 | | is_custom_explicit_set(Rel,restriction_explicit_set_wf), |
4255 | | expand_and_convert_to_avl_set(Rel,ARel,restriction_explicit_set_wf,''), % can generate ARel=empty; will fail if not possible to convert |
4256 | | avl_domain(ARel,ERel), % -> expand_custom_set(avl_set(ARel),ERel), |
4257 | | %try_expand_and_convert_to_avl_unless_large_wf(Set,ES,WF), |
4258 | | (nonvar(Set),Set=avl_set(AVLS) |
4259 | | -> restrict2_avl(ERel,AVLS,DRes,RanOrDom,AddWhen,Done) |
4260 | | ; restrict2(ERel,Set,DRes,RanOrDom,AddWhen,Done,WF) |
4261 | | ), |
4262 | | finish_restriction(Done,DRes,Res). |
4263 | | |
4264 | | % extract domain expression for domain restriction/subtraction predicate: |
4265 | | get_domain_id_or_expr([DR],[couple(TD,TR)], PRJ1, TD) :- !, % special case: just one parameter in closure |
4266 | | TID = b(identifier(DR),couple(TD,TR),[]), |
4267 | | PRJ1 = b(first_of_pair(TID),TD,[]). |
4268 | | get_domain_id_or_expr([D1|Paras],[TD1|Types],Expr,Type) :- |
4269 | | get_dom_couple_aux(Paras,Types, b(identifier(D1),TD1,[]), TD1, Expr,Type). |
4270 | | |
4271 | | get_dom_couple_aux([_RangeID],[_], AccExpr, AccType, Expr, Type) :- !, Expr=AccExpr, Type=AccType. |
4272 | | get_dom_couple_aux([D2|TParas],[TD2|Types], AccExpr, AccType, Expr, Type) :- |
4273 | | TID2 = b(identifier(D2),TD2,[]), |
4274 | | NewAccType = couple(AccType,TD2), |
4275 | | NewAcc = b(couple(AccExpr,TID2),NewAccType,[]), |
4276 | | get_dom_couple_aux(TParas,Types,NewAcc,NewAccType,Expr,Type). |
4277 | | |
4278 | | :- use_module(library(lists),[last/2]). |
4279 | | % extract range expression for range restriction/subtraction predicate: |
4280 | | get_range_id_or_expr( [DR],[CType], PRJ2, TR) :- !, % special case: just one parameter in closure |
4281 | | CType = couple(TD,TR), |
4282 | | TID = b(identifier(DR),CType,[]), |
4283 | | PRJ2 = b(second_of_pair(TID),TD,[]). |
4284 | | get_range_id_or_expr( [_|Paras],[_|Types], b(identifier(R),TR,[]), TR) :- |
4285 | | last(Paras,R), last(Types,TR). |
4286 | | |
4287 | | :- block finish_restriction(-,?,?). |
4288 | | finish_restriction(_,DRes,Res) :- |
4289 | | ord_list_to_avlset(DRes,Restriction,restriction), |
4290 | ? | equal_object(Restriction,Res,finish_restriction). % as we may block below: we need to use equal_object |
4291 | | |
4292 | | restrict2([],_,[],_,_,done,_WF). |
4293 | | restrict2([(From,To)|T],S,Res,RanOrDom,AddWhen,Done,WF) :- |
4294 | | (RanOrDom==domain -> El=From ; El=To), |
4295 | | kernel_equality:membership_test_wf(S,El,MemRes,WF), % TO DO: WF Version !! |
4296 | | /* this only makes sense once we have the full result as argument: |
4297 | | (nonvar(MemRes) -> true % it is already decided |
4298 | | ; AddWhen=pred_true -> kernel_equality:membership_test_wf(Res,(From,To),MemRes,WF) |
4299 | | ; kernel_equality:membership_test_wf(Res,(From,To),InResult,WF), bool_pred:negate(InResult,MemRes) |
4300 | | ), */ |
4301 | ? | restrict3(MemRes,From,To,T,S,Res,RanOrDom,AddWhen,Done,WF). |
4302 | | :- block restrict3(-, ?,?, ?,?,?, ?,?,?,?). |
4303 | | restrict3(MemRes, From,To, T,S,Res, RanOrDom,AddWhen,Done,WF) :- |
4304 | | (AddWhen=MemRes -> Res = [(From,To)-true|TRes] |
4305 | | ; Res=TRes), |
4306 | ? | restrict2(T,S,TRes,RanOrDom,AddWhen,Done,WF). |
4307 | | |
4308 | | % optimised version when second set is also an AVL tree: less blocking,... |
4309 | | restrict2_avl([],_,[],_,_,done). |
4310 | | restrict2_avl([(From,To)|T],AVLS,Res,RanOrDom,AddWhen,Done) :- |
4311 | | fetch(RanOrDom,From,To,AVLS,MemRes), |
4312 | | (AddWhen=MemRes -> Res = [(From,To)-true|TRes] |
4313 | | ; Res=TRes), |
4314 | | restrict2_avl(T,AVLS,TRes,RanOrDom,AddWhen,Done). |
4315 | | |
4316 | | fetch(domain,El,_,AVLS,MemRes) :- (avl_fetch(El,AVLS) -> MemRes=pred_true ; MemRes = pred_false). |
4317 | | fetch(range,_,El,AVLS,MemRes) :- (avl_fetch(El,AVLS) -> MemRes=pred_true ; MemRes = pred_false). |
4318 | | |
4319 | | % override R(X) := Y |
4320 | | override_pair_explicit_set(avl_set(S),X,Y,avl_set(NewAVL)) :- element_can_be_added_or_removed_to_avl(X), |
4321 | | element_can_be_added_or_removed_to_avl(Y), |
4322 | | convert_to_avl_inside_set(X,AX), |
4323 | | convert_to_avl_inside_set(Y,AY), |
4324 | | avl_domain_subtraction_singleton(S,AX,AVL2), |
4325 | | avl_store((AX,AY), AVL2, true, NewAVL). |
4326 | | |
4327 | | avl_domain_subtraction_singleton(AVL,AX,NewAVL) :- |
4328 | | avl_delete_pair(AX,AVL,_True,AVL2), |
4329 | | !, % recurse, in case we have multiple entries |
4330 | | % this recursion could be avoided if we know AVL to be a function |
4331 | | avl_domain_subtraction_singleton(AVL2,AX,NewAVL). |
4332 | | avl_domain_subtraction_singleton(AVL,_,AVL). |
4333 | | |
4334 | | % try and decompose an AVL set into a cartesian product |
4335 | | % AVL = Set1 * Set2 |
4336 | | % much faster e.g. for let xx = ((1..10)*(3..1000)\/ {0}*(3..1000)) and then xx = AA*BB |
4337 | | % should not produce pending co-routines |
4338 | | decompose_avl_set_into_cartesian_product_wf(AVL,DomainSet,RangeSet,WF) :- |
4339 | | avl_domain(AVL,Expansion), |
4340 | | decompose_cart(Expansion,'$none',DomainList,[],RangeList), |
4341 | | construct_avl_from_lists_wf(DomainList,DomainSet,WF), |
4342 | | construct_avl_from_lists_wf(RangeList,RangeSet,WF). |
4343 | | |
4344 | | decompose_cart([],_,[],[],_). |
4345 | | decompose_cart([(A,B)|T],Prev,Domain,Range,FullRange) :- |
4346 | | (A=Prev |
4347 | | -> Range = [B|TRange], |
4348 | | decompose_cart(T,Prev,Domain,TRange,FullRange) |
4349 | | ; Domain = [A|TDom], Range=[], |
4350 | | FullRange = [B|TRange], |
4351 | | decompose_cart(T,A,TDom,TRange,FullRange) |
4352 | | ). |
4353 | | |
4354 | | /* --------- */ |
4355 | | /* EXPANSION */ |
4356 | | /* --------- */ |
4357 | | |
4358 | | :- use_module(b_global_sets,[all_elements_of_type_wf/3, all_elements_of_type_rand_wf/3]). |
4359 | | :- use_module(kernel_freetypes,[expand_freetype/3]). |
4360 | | |
4361 | | expand_custom_set(X,R) :- expand_custom_set_wf(X,R,expand_custom_set,no_wf_available). |
4362 | | expand_custom_set(X,R,Src) :- expand_custom_set_wf(X,R,Src,no_wf_available). |
4363 | | expand_custom_set_wf(X,R,Source,WF) :- var(X), !, |
4364 | | add_error_and_fail(expand_custom_set_wf, 'Variable as argument: ',expand_custom_set_wf(X,R,Source,WF)). |
4365 | | expand_custom_set_wf(global_set(GS),ExpandedSet,_,WF) :- !, |
4366 | | all_elements_of_type_wf(GS,ExpandedSet,WF). % they are generated in order |
4367 | | expand_custom_set_wf(freetype(GS),ValueList,_,WF) :- !, |
4368 | | expand_freetype(GS,ValueList,WF). |
4369 | | expand_custom_set_wf(avl_set(AVL),ExpandedSet,_,_) :- !, |
4370 | | avl_domain(AVL,ExpandedSet). |
4371 | | expand_custom_set_wf(closure(Parameters,PTypes,Cond),Res,Source,WF) :- !, |
4372 | ? | expand_closure_to_list(Parameters,PTypes,Cond,Res,_Done,Source,WF). |
4373 | | %wait_try_expand_custom_set(Res1,Res). % could be in AVL form; no longer the case ! |
4374 | | expand_custom_set_wf(Set,_,Source,_) :- |
4375 | | add_error_and_fail(expand_custom_set(Source),'Cannot expand custom set: ',Set). |
4376 | | |
4377 | | |
4378 | | |
4379 | | %try_expand_only_custom_closure_global(X,Y) :- |
4380 | | % (var(X) -> X=Y ; expand_only_custom_closure_global(X,Y,check)). |
4381 | | |
4382 | | expand_only_custom_closure_global(X,R,C,_WF) :- var(X), !, |
4383 | | add_error_and_fail(expand_only_custom_closure_global, 'Variable as argument: ',expand_only_custom_closure_global(X,R,C)). |
4384 | | expand_only_custom_closure_global(global_set(GS),ExpandedSet,_,WF) :- !,all_elements_of_type_wf(GS,ExpandedSet,WF). |
4385 | | expand_only_custom_closure_global(freetype(GS),ExpandedSet,_,_WF) :- !,ExpandedSet=freetype(GS). |
4386 | | expand_only_custom_closure_global(avl_set(AVL),ExpandedSet,_,_WF) :- !, ExpandedSet=avl_set(AVL). |
4387 | | expand_only_custom_closure_global(closure(Parameters,PTypes,Cond),Res,CheckTimeOuts,WF) :- !, |
4388 | | (Res==[] -> is_empty_explicit_set(closure(Parameters,PTypes,Cond)) % TO DO: think about other special cases |
4389 | | ; expand_closure_to_avl_or_list(Parameters,PTypes,Cond,Res,CheckTimeOuts,WF)). |
4390 | | expand_only_custom_closure_global(Set,Set,_CheckTimeOuts,_WF). |
4391 | | %:- add_error_and_fail(expand_only_custom_closure_global,'Cannot expand custom set: ',Set). |
4392 | | |
4393 | | |
4394 | | try_expand_custom_set_with_catch(CS,Expansion,PP) :- |
4395 | | on_enumeration_warning(try_expand_custom_set_wf(CS,Expansion,PP,no_wf_available), |
4396 | | Expansion=CS). |
4397 | | |
4398 | | try_expand_custom_set(CS,Expansion) :- |
4399 | | try_expand_custom_set_wf(CS,Expansion,try_expand_custom_set,no_wf_available). |
4400 | | |
4401 | | |
4402 | | try_expand_custom_set_wf(CS,Res,_,_) :- var(CS),!,Res=CS. |
4403 | | try_expand_custom_set_wf([],Res,_,_) :- !, Res=[]. |
4404 | | try_expand_custom_set_wf([H|T],Res,_,_) :- !, Res=[H|T]. |
4405 | | try_expand_custom_set_wf(CS,Res,Src,WF) :- |
4406 | | expand_custom_set_wf(CS,Res,Src,WF). % will generate error message for illegal sets |
4407 | | |
4408 | | |
4409 | | :- assert_must_succeed((expand_custom_set_to_list(closure(['_zzzz_unit_tests'], |
4410 | | [couple(integer,integer)], |
4411 | | b(member(b(identifier('_zzzz_unit_tests'),couple(integer,integer),[generated]), |
4412 | | b(value([(int(1),int(22))]),set(couple(integer,integer)),[])),pred,[])),R),R==[(int(1),int(22))])). |
4413 | | |
4414 | | expand_custom_set_to_list(CS,List) :- expand_custom_set_to_list(CS,List,_Done,unknown). |
4415 | | |
4416 | | % a version of expansion which returns guaranteed_ground if the List is guaranteed to be ground |
4417 | | expand_custom_set_to_list_gg(CS,List,GuaranteedGround,_PP) :- |
4418 | | nonvar(CS), CS=avl_set(AVL), var(List), |
4419 | | !, |
4420 | | GuaranteedGround = guaranteed_ground, |
4421 | | avl_domain(AVL,List). |
4422 | | expand_custom_set_to_list_gg(CS,List,not_guaranteed_ground,PP) :- |
4423 | | expand_custom_set_to_list(CS,List,_Done,PP). |
4424 | | |
4425 | | % a version where the expansion should happen straightaway and should not block: |
4426 | | expand_custom_set_to_list_now(CS,List) :- expand_custom_set_to_list(CS,List,Done,unknown), |
4427 | | (Done==true -> true ; print_error(expand_custom_set_to_list_not_done(CS,List))). |
4428 | | |
4429 | | :- block expand_custom_set_to_sorted_list(-,-,?,?,?). |
4430 | | % sorts the resulting list if needed |
4431 | | % due to random enumeration |
4432 | | expand_custom_set_to_sorted_list(From,To,Done,Source,WF) :- |
4433 | | expand_custom_set_to_list(From,UnsortedTo,Done,Source), |
4434 | | (preferences:get_preference(randomise_enumeration_order,true) |
4435 | | -> sort_when_done(Done,UnsortedTo,To,WF) ; UnsortedTo = To). |
4436 | | |
4437 | | :- block sort_when_done(-,?,?,?). |
4438 | | sort_when_done(_,Unsorted,Res,WF) :- sort(Unsorted,Sorted), |
4439 | | equal_object_wf(Sorted,Res,sort_when_done,WF). |
4440 | | |
4441 | | expand_custom_set_to_list(From,To,Done,Source) :- |
4442 | | expand_custom_set_to_list_wf(From,To,Done,Source,no_wf_available). |
4443 | | |
4444 | | :- use_module(kernel_objects,[equal_object_wf/4]). |
4445 | | |
4446 | | % try expand custom set to list; on enumeration warning set Done to enumeration_warning |
4447 | | try_expand_custom_set_to_list_wf(From,To,Done,Source,WF) :- |
4448 | | on_enumeration_warning(expand_custom_set_to_list_wf(From,To,Done,Source,WF), |
4449 | | (Done=enumeration_warning)). |
4450 | | |
4451 | | expand_custom_set_to_list_wf(From,To,Done,Source,WF) :- |
4452 | | expand_custom_set_to_list_k_wf(From,To,Done,_Kind,Source,WF). |
4453 | | |
4454 | | % a variation of expand_custom_set_to_list which also checks that there are no duplicates in the list |
4455 | | expand_custom_set_to_list_no_dups_wf(From,To,Done,Source,WF) :- |
4456 | | expand_custom_set_to_list_k_wf(From,To,Done,Kind,Source,WF), |
4457 | | check_dups(Kind,To,WF). |
4458 | | |
4459 | | :- block check_dups(-,?,?). |
4460 | | check_dups(unsorted_list,List,WF) :- !, |
4461 | | kernel_objects:check_no_duplicates_in_list(List,[],WF). |
4462 | | check_dups(_,_,_). |
4463 | | |
4464 | | % warn if duplicates in list; to do: use in prob_safe mode |
4465 | | %:- block warn_dups(-,?,?,?). |
4466 | | %warn_dups(unsorted_list,List,Src,WF) :- !, |
4467 | | % kernel_objects:warn_if_duplicates_in_list(List,Src,WF). |
4468 | | %warn_dups(_,_,_,_). |
4469 | | |
4470 | | |
4471 | | |
4472 | | :- block expand_custom_set_to_list_k_wf(-,-,?,?,?,?). |
4473 | | % ensures that the output is a pure list; the list skeleton should not be instantiated by anybody else |
4474 | | expand_custom_set_to_list_k_wf(From,To,Done,Kind,Source,WF) :- |
4475 | | (var(From) -> |
4476 | | (is_list_skeleton(To) |
4477 | ? | -> equal_object_wf(To,From,Source,WF), Done=true, Kind=unsorted_list |
4478 | ? | ; expand_custom_set_to_list2(To,From,Done,Kind,Source,WF)) |
4479 | | ; var(To),is_list_skeleton(From) |
4480 | | -> To=From, Done=true, Kind=unsorted_list % equal_object_wf will also to a Prolog unification |
4481 | ? | ; expand_custom_set_to_list2(From,To,Done,Kind,Source,WF)). |
4482 | | |
4483 | | expand_custom_set_to_list2([],ExpandedSet,Done,Kind,_Source,WF) :- !, |
4484 | ? | equal_object_wf([],ExpandedSet,expand_custom_set_to_list2,WF),Done=true,Kind=empty_set. |
4485 | | expand_custom_set_to_list2([H|T],ExpandedSet,Done,Kind,Source,WF) :- !, Kind=unsorted_list, |
4486 | ? | equal_object_wf([H|ET],ExpandedSet,expand_custom_set_to_list2,WF), |
4487 | ? | expand_custom_set_to_list3(T,ET,Done,Source,WF). |
4488 | | expand_custom_set_to_list2(global_set(GS),ExpandedSet,Done,Kind,_Source,WF) :- !, |
4489 | | all_elements_of_type_rand_wf(GS,R,WF), |
4490 | | check_list(R,expand_custom_set_to_list2), |
4491 | | equal_object_wf(R,ExpandedSet,expand_custom_set_to_list2,WF),Done=true,Kind=sorted_list. |
4492 | | expand_custom_set_to_list2(avl_set(AVL),ExpandedSet,Done,Kind,_Source,WF) :- !, |
4493 | | avl_domain(AVL,R), |
4494 | ? | equal_object_wf(R,ExpandedSet,expand_custom_set_to_list2,WF), Done=true,Kind=sorted_list. |
4495 | | expand_custom_set_to_list2(closure(Parameters,PTypes,Cond),ExpandedSet,Done,Kind,Source,WF) :- !, |
4496 | | expand_closure_to_list(Parameters,PTypes,Cond,ExpandedSet,Done,Source,WF), |
4497 | | Kind=sorted_list. |
4498 | | %assign_expand_result(CDone,Res,ExpandedSet,Done). |
4499 | | expand_custom_set_to_list2(freetype(ID),ExpandedSet,Done,Kind,_Source,WF) :- !, |
4500 | | expand_freetype(ID,R,WF), |
4501 | | equal_object_wf(R,ExpandedSet,expand_custom_set_to_list2,WF), |
4502 | | Done=true,Kind=sorted_list. |
4503 | | % missing avl_set wrapper: |
4504 | | expand_custom_set_to_list2(node(A,B,C,D,E),ExpandedSet,Done,Kind,Source,WF) :- !, |
4505 | | add_internal_error('Illegal argument: ',expand_custom_set_to_list2(node(A,B,C,D,E),ExpandedSet,Done,Source)), |
4506 | | expand_custom_set_to_list2(avl_set(node(A,B,C,D,E)),ExpandedSet,Done,Kind,Source,WF). |
4507 | | expand_custom_set_to_list2(E,ES,Done,Kind,Source,WF) :- |
4508 | | add_internal_error('Illegal argument: ',expand_custom_set_to_list2(E,ES,Done,Kind,Source,WF)),fail. |
4509 | | |
4510 | | :- block expand_custom_set_to_list3(-,-,?,?,?). % we are no longer sure which was From and which is To |
4511 | | expand_custom_set_to_list3(From,To,Done,Source,WF) :- |
4512 | ? | (var(From) -> expand_custom_set_to_list2(To,From,Done,_,Source,WF) ; |
4513 | ? | expand_custom_set_to_list2(From,To,Done,_,Source,WF)). |
4514 | | |
4515 | | |
4516 | | is_list_skeleton(X) :- var(X),!,fail. |
4517 | | is_list_skeleton([]). |
4518 | | is_list_skeleton([_|T]) :- is_list_skeleton(T). |
4519 | | |
4520 | | % true if it is more efficient to keep this, rather than expand into list |
4521 | | is_efficient_custom_set(avl_set(_)). |
4522 | | is_efficient_custom_set(closure(P,T,B)) :- |
4523 | | (is_interval_closure(closure(P,T,B),_,_) -> true ; is_infinite_or_symbolic_closure(P,T,B)). |
4524 | ? | is_efficient_custom_set(global_set(X)) :- is_infinite_global_set(X,_). |
4525 | | is_efficient_custom_set(freetype(_)). |
4526 | | |
4527 | | % tries to expand & convert to avl_set; fails if not possible: NOTE: also generates empty AVL |
4528 | | expand_and_convert_to_avl_set(R,AER,Origin,Source) :- |
4529 | | try_expand_and_convert_to_avl(R,ER,Origin,Source), |
4530 | | nonvar(ER),(ER==[] -> AER=empty ; ER=avl_set(AER)). |
4531 | | |
4532 | | |
4533 | | expand_and_convert_to_avl_set_unless_very_large(R,AER,WF) :- |
4534 | | try_expand_and_convert_to_avl_unless_very_large_wf(R,ER,WF), |
4535 | | nonvar(ER),(ER==[] -> AER=empty ; ER=avl_set(AER)). |
4536 | | |
4537 | | |
4538 | | % similar to unless_large version, but will only expand if it is guaranteed to be small |
4539 | | |
4540 | | try_expand_and_convert_to_avl_if_smaller_than(freetype(GS),Res,_) :- !, Res = freetype(GS). |
4541 | | try_expand_and_convert_to_avl_if_smaller_than([H|T],Res,_) :- !, try_expand_and_convert_to_avl([H|T],Res). |
4542 | | try_expand_and_convert_to_avl_if_smaller_than(avl_set(A),Res,_) :- !, Res=avl_set(A). |
4543 | | try_expand_and_convert_to_avl_if_smaller_than(CS,Res,Limit) :- |
4544 | | (is_small_specific_custom_set(CS,Limit) |
4545 | | -> try_expand_and_convert_to_avl(CS,Res,try_expand_and_convert_to_avl_if_smaller_than,'') |
4546 | | ; Res = CS % TO DO: maybe look at cardinality of types and determine max. cardinality |
4547 | | ). |
4548 | | is_small_specific_custom_set(CS,Limit) :- card_for_specific_custom_set(CS,Card,Code), |
4549 | | call(Code), is_finite_card(Card), Card<Limit. |
4550 | | get_card_for_specific_custom_set(CS,Card) :- |
4551 | | card_for_specific_custom_set(CS,Card,Code), |
4552 | | call(Code), ground(Card). |
4553 | | |
4554 | | try_expand_and_convert_to_avl_unless_very_large_wf(CS,Res,WF) :- |
4555 | | try_expand_and_convert_to_avl_unless_large_wf(CS,Res,10000,WF). |
4556 | | |
4557 | | try_expand_and_convert_to_avl_unless_large_wf(CS,Res,WF) :- |
4558 | | try_expand_and_convert_to_avl_unless_large_wf(CS,Res,2000,WF). |
4559 | | |
4560 | | try_expand_and_convert_to_avl_unless_large_wf(CS,Res,_,_WF) :- var(CS), !, CS=Res. |
4561 | | try_expand_and_convert_to_avl_unless_large_wf(global_set(GS),Res,_,_WF) :- !, Res = global_set(GS). |
4562 | | try_expand_and_convert_to_avl_unless_large_wf(freetype(GS),Res,_,_WF) :- !, Res = freetype(GS). |
4563 | | %try_expand_and_convert_to_avl_unless_large_wf(CS,Res,_WF) :- is_interval_closure(CS,Low,Up),!, |
4564 | | % ((ground(Low),ground(Up),Size is 1+Up-Low, Size<2000) |
4565 | | %% -> try_expand_and_convert_to_avl(CS,Res) |
4566 | | % ; Res = CS |
4567 | | % ). |
4568 | | try_expand_and_convert_to_avl_unless_large_wf(closure(P,T,B),Res,Limit,_WF) :- |
4569 | | is_very_large_or_symbolic_closure(P,T,B,Limit),!, % is explicitly marked as SYMBOLIC |
4570 | | Res=closure(P,T,B). |
4571 | | try_expand_and_convert_to_avl_unless_large_wf(CS,Res,_Limit,WF) :- |
4572 | | % TO DO: check if maybe we cannot determine card explicitly, but have a large lower-bound |
4573 | | try_expand_and_convert_to_avl_wf(CS,Res,try_expand_and_convert_to_avl_unless_large,'',WF). |
4574 | | |
4575 | | |
4576 | | |
4577 | | % calls try_expand_and_convert_to_avl and returns original value if enumeration warning occured |
4578 | | try_expand_and_convert_to_avl_with_catch_wf(CS,Res,Origin,WF) :- |
4579 | | on_enumeration_warning(try_expand_and_convert_to_avl_wf(CS,Res,Origin,'',WF), |
4580 | | Res=CS). |
4581 | | |
4582 | | /* tries to generate an avl-structure, if possible */ |
4583 | | try_expand_and_convert_to_avl(CS,Res) :- |
4584 | | try_expand_and_convert_to_avl_wf(CS,Res,try_expand_and_convert_to_avl,'',no_wf_available). |
4585 | | |
4586 | | try_expand_and_convert_to_avl(CS,Res,Origin,Source) :- |
4587 | | try_expand_and_convert_to_avl_wf(CS,Res,Origin,Source,no_wf_available). |
4588 | | |
4589 | | try_expand_and_convert_to_avl_wf(CS,Res,_,_,_WF) :- var(CS), !, CS=Res. |
4590 | | try_expand_and_convert_to_avl_wf(avl_set(A),R,_,_,_WF) :- !, R=avl_set(A). |
4591 | | try_expand_and_convert_to_avl_wf([],R,_,_,_WF) :- !, R=[]. |
4592 | | try_expand_and_convert_to_avl_wf([H|T],R,_,_,WF) :- !, try_convert_to_avl_wf([H|T],R,WF). |
4593 | | try_expand_and_convert_to_avl_wf(closure(P,T,B),Res,Origin,_Source,WF) :- !, |
4594 | | debug_opt_push_wait_flag_call_stack_info(WF, |
4595 | | external_call('TRY EXPANDING',[closure(P,T,B)],unknown),WF2), |
4596 | | expand_only_custom_closure_global(closure(P,T,B),Expansion,check(Origin),WF2), |
4597 | | try_convert_to_avl_wf(Expansion,Res,WF). |
4598 | | try_expand_and_convert_to_avl_wf(CS,Res,Origin,_Source,WF) :- |
4599 | | (\+ is_custom_explicit_set(CS,try_expand_and_convert_to_avl_wf) |
4600 | | -> Expansion = CS |
4601 | | ; expand_only_custom_closure_global(CS,Expansion,check(Origin),WF) |
4602 | | ), |
4603 | | try_convert_to_avl_wf(Expansion,Res,WF). |
4604 | | |
4605 | | try_convert_to_avl(Expansion,Res) :- |
4606 | | (should_be_converted_to_avl_from_lists(Expansion) -> construct_avl_from_lists(Expansion,Res) ; Res=Expansion). |
4607 | | try_convert_to_avl_wf(Expansion,Res,WF) :- |
4608 | | (should_be_converted_to_avl_from_lists(Expansion) -> construct_avl_from_lists_wf(Expansion,Res,WF) ; Res=Expansion). |
4609 | | |
4610 | | should_be_converted_to_avl_from_lists(Value) :- var(Value),!,fail. |
4611 | | should_be_converted_to_avl_from_lists(Value) :- |
4612 | | \+ is_custom_explicit_set(Value,should_be_converted_to_avl_from_lists), % already avl_set, global_set or closure |
4613 | ? | \+ do_not_convert_aux(Value), |
4614 | | ground_value(Value). |
4615 | | |
4616 | | do_not_convert_aux(V) :- var(V),!. |
4617 | | do_not_convert_aux((A,B)) :- !, |
4618 | ? | (do_not_convert_aux(A) -> true ; do_not_convert_aux(B)). |
4619 | | do_not_convert_aux([H|T]) :- !, % do not convert a set containing a symbolic closure |
4620 | ? | (var(T) -> true ; do_not_convert_aux(H)). |
4621 | | do_not_convert_aux(rec(Fields)) :- !, |
4622 | | (var(Fields) -> true |
4623 | ? | ; member(field(_,V),Fields), do_not_convert_aux(V) -> true). |
4624 | | do_not_convert_aux(H) :- |
4625 | ? | is_symbolic_closure(H). |
4626 | | |
4627 | | should_be_converted_to_avl(Value) :- %preference(use_avl_trees_for_sets,true), |
4628 | | ground_value(Value). |
4629 | | |
4630 | | try_expand_and_convert_to_avl_with_check(CS,Res,Origin) :- |
4631 | | try_expand_and_convert_to_avl_with_check(CS,Res,do_not_keep_intervals,Origin). |
4632 | | |
4633 | | try_expand_and_convert_to_avl_with_check(CS,Res,_,_Origin) :- var(CS),!, Res = CS. |
4634 | | try_expand_and_convert_to_avl_with_check([],Res,_,_Origin) :- !, Res=[]. |
4635 | | try_expand_and_convert_to_avl_with_check(avl_set(A),Res,_,_Origin) :- !, Res=avl_set(A). |
4636 | | try_expand_and_convert_to_avl_with_check([H|T],Res,_,Origin) :- !, try_expand_and_convert_to_avl([H|T],Res,Origin,''). |
4637 | | %try_expand_and_convert_to_avl_with_check(CS,Res,_Origin) :- |
4638 | | % \+ is_custom_explicit_set(CS,try_expand_and_convert_to_avl),!, Res = CS. |
4639 | | try_expand_and_convert_to_avl_with_check(CS,Res,KeepIntervals,_Origin) :- |
4640 | | is_interval_closure(CS,Low,Up), |
4641 | | (var(Low) -> true ; var(Up) -> true % better keep this symbolic as we may be able to do constraint propagation |
4642 | | ; KeepIntervals=keep_intervals(Size) -> Up-Low >= Size |
4643 | | ), |
4644 | | !, % TO DO: see if we should do this check in try_expand_and_convert_to_avl above instead |
4645 | | Res=CS. |
4646 | | try_expand_and_convert_to_avl_with_check(CS,Res,_,Origin) :- |
4647 | | get_card_for_specific_custom_set(CS,Size), % TO DO: avoid checking for special closures twice (below in try_expand_and_convert_to_avl ?) |
4648 | | !, |
4649 | | try_expconv_to_avl_with_size(Size,CS,Res,Origin). |
4650 | | try_expand_and_convert_to_avl_with_check(CS,Res,_,Origin) :- |
4651 | | try_expand_and_convert_to_avl(CS,Res,Origin,''). |
4652 | | |
4653 | | try_expconv_to_avl_with_size(inf,CS,Res,Origin) :- !, |
4654 | | debug_format(9,'### Not expanding infinite set~n### ORIGIN: ~w~n',[Origin]), |
4655 | | Res=CS. |
4656 | | try_expconv_to_avl_with_size(inf_overflow,CS,Res,Origin) :- !, |
4657 | | debug_format(9,'### Not expanding very large set~n### ORIGIN: ~w~n',[Origin]), |
4658 | | Res=CS. |
4659 | | try_expconv_to_avl_with_size(Size,CS,Res,Origin) :- Size>=10000000, !, |
4660 | | /* will probably never terminate */ |
4661 | | debug_format(9,'### Not expanding very large set with cardinality ~w~n### ORIGIN: ~w~n',[Size,Origin]), |
4662 | | Res=CS. |
4663 | | try_expconv_to_avl_with_size(Size,CS,Res,Origin) :- Size>=50000, !, |
4664 | | print('### WARNING: expanding very large comprehension set, size = '), print(Size),nl, |
4665 | | print('### ORIGIN: '), print(Origin),nl, |
4666 | | try_expand_and_convert_to_avl(CS,Res,Origin,''). |
4667 | | try_expconv_to_avl_with_size(_Size,CS,Res,Origin) :- |
4668 | | try_expand_and_convert_to_avl(CS,Res,Origin,''). |
4669 | | |
4670 | | /* underlying assumption for var case: if G is a global set: we get back the |
4671 | | global_set tag immediately: no need to use when to wait; |
4672 | | better: ensure that b_compute_expression always returns a nonvar term */ |
4673 | | |
4674 | | |
4675 | | :- assert_must_succeed((custom_explicit_sets:try_expand_custom_set(closure([xx],[integer],b(falsity,pred,[])),R),R = [])). |
4676 | | :- assert_must_succeed((custom_explicit_sets:test_closure(X),custom_explicit_sets:expand_custom_set(X,EX), |
4677 | | EX = [(fd(1,'Name'),_),(fd(3,'Name'),_)])). |
4678 | | |
4679 | | test_closure(X) :- X = closure(['_zzzz_binary'],[couple(global('Name'),set(global('Name')))], |
4680 | | b(member(b(identifier('_zzzz_binary'),couple(global('Name'),set(global('Name'))),[generated]), |
4681 | | b(cartesian_product(b(value([fd(1,'Name'),fd(3,'Name')]),set(global('Name')),[]), |
4682 | | b(value([[fd(2,'Name'),fd(3,'Name')]]),set(set(global('Name'))),[])), |
4683 | | set(couple(global('Name'),set(global('Name')))),[])),pred,[])). |
4684 | | |
4685 | | |
4686 | | /* --------- */ |
4687 | | /* ELEMENT_OF */ |
4688 | | /* --------- */ |
4689 | | |
4690 | | |
4691 | | /* A function that instantiates last argument when membership test can be decided */ |
4692 | | |
4693 | | membership_custom_set(CS,X,R) :- print(warning_deprecated_non_wf_version(CS,X,R)),nl, |
4694 | | membership_custom_set_wf(CS,X,R,_WF). |
4695 | | |
4696 | ? | membership_custom_set_wf(avl_set(A),X,R,WF) :- !, membership_avl_set_wf(A,X,R,WF). |
4697 | | membership_custom_set_wf(freetype(_GS),_X,R,_WF) :- !, R=pred_true. % should be covered by clause above |
4698 | | membership_custom_set_wf(CS,X,R,WF) :- R==pred_true,!, element_of_custom_set_wf(X,CS,WF). |
4699 | | membership_custom_set_wf(CS,X,R,WF) :- R==pred_false,!, not_element_of_custom_set_wf(X,CS,WF). |
4700 | | membership_custom_set_wf(CS,_X,R,_WF) :- |
4701 | | is_definitely_maximal_set(CS),!, |
4702 | | R=pred_true. |
4703 | | membership_custom_set_wf(closure(Par,Types,Body),X,R,WF) :- !, |
4704 | ? | closure_membership_wf(X,Par,Types,Body,R,WF). |
4705 | | %membership_custom_set_wf(CS,X,R,WF) :- is_one_element_custom_set(CS,Y),!, % only succeeds for AVL |
4706 | | % kernel_equality:equality_objects_wf_no_enumr(X,Y,R,WF). |
4707 | | membership_custom_set_wf(global_set(GS),X,R,WF) :- !, |
4708 | | membership_global_set(GS,X,R,WF). |
4709 | | membership_custom_set_wf(CS,X,R,WF) :- |
4710 | | add_internal_error('Illegal custom set: ',membership_custom_set_wf(CS,X,R,WF)),fail. |
4711 | | |
4712 | | membership_avl_set_wf(A,X,R,WF) :- R==pred_true,!, element_of_avl_set_wf(A,X,WF). |
4713 | | membership_avl_set_wf(A,X,R,WF) :- R==pred_false,!, not_element_of_custom_set_wf(X,avl_set(A),WF). |
4714 | | membership_avl_set_wf(A,X,R,WF) :- is_one_element_avl(A,Y),!, |
4715 | ? | kernel_equality:equality_objects_wf_no_enum(X,Y,R,WF). |
4716 | | membership_avl_set_wf(A,_X,R,_WF) :- |
4717 | | quick_definitely_maximal_set_avl(A),!, |
4718 | | R=pred_true. |
4719 | | membership_avl_set_wf(A,X,R,WF) :- reify_avl_membership(A,X,R,FullReification), |
4720 | | (FullReification==true |
4721 | | -> true %print_term_summary(full_reification(A,X,R)),nl,nl %% did slow down e.g. Bosch Deadlock v9, seems no longer the case |
4722 | ? | ; when((ground(X);nonvar(R)),membership_avl_set_wf2(A,X,R,WF))). |
4723 | | |
4724 | ? | membership_avl_set_wf2(A,X,R,WF) :- R==pred_true,!, element_of_avl_set_wf(A,X,WF). |
4725 | | membership_avl_set_wf2(A,X,R,WF) :- R==pred_false,!, not_element_of_custom_set_wf(X,avl_set(A),WF). |
4726 | | membership_avl_set_wf2(AVL,X,R,_WF) :- |
4727 | | ground_element_can_be_added_or_removed_to_avl(X), !, |
4728 | | (safe_avl_member(X,AVL) %safe_avl_member_ground(X,AVL) |
4729 | | -> R=pred_true ; R=pred_false). |
4730 | | membership_avl_set_wf2(AVL,X,Res,WF) :- % X is ground but cannot be added |
4731 | | (Res \== pred_false, element_of_avl_set_wf(AVL,X,WF), Res=pred_true |
4732 | | ; |
4733 | | Res \== pred_true, not_element_of_custom_set_wf(X,avl_set(AVL),WF), Res=pred_false). |
4734 | | |
4735 | | membership_global_set(GS,_X,R,_WF) :- is_maximal_global_set(GS),!, |
4736 | | R=pred_true. |
4737 | | membership_global_set(GS,X,R,WF) :- ground(X),!, |
4738 | | (element_of_global_set_wf(X,GS,WF) -> R=pred_true ; R=pred_false). |
4739 | | membership_global_set(GS,X,R,_WF) :- get_integer_set_interval(GS,Low,Up),!, |
4740 | | membership_interval(X,Low,Up,R). |
4741 | | membership_global_set(GS,X,R,WF) :- % this case should probably never apply |
4742 | | (GS=='FLOAT' -> true % currently it actually is also treated like REAL |
4743 | | ; print(uncovered_membership(GS,X,R,WF)),nl), |
4744 | | when(ground(X), (element_of_global_set_wf(X,GS,WF) -> R=pred_true ; R=pred_false)). |
4745 | | |
4746 | | membership_interval(X,Low,Up,Res) :- nonvar(Up),Up=inf,!,X=int(IX), |
4747 | | b_interpreter_check:check_arithmetic_operator('<=',Low,IX,Res). |
4748 | | membership_interval(X,Low,Up,Res) :- kernel_equality:in_nat_range_test(X,int(Low),int(Up),Res). |
4749 | | |
4750 | | :- use_module(bool_pred). |
4751 | | closure_membership_wf(X,[ZZZZ],[integer],CondClosure,Res,_WF) :- |
4752 | | is_interval_closure_body(CondClosure,ZZZZ,LOW,UP),!, |
4753 | | kernel_equality:in_nat_range_test(X,int(LOW),int(UP),Res). |
4754 | | % TO DO: deal with open intervals 0..inf ... |
4755 | | closure_membership_wf(X,Par,Types,Body,Res,WF) :- |
4756 | | is_member_closure(Par,Types,Body,_Type,VAL), |
4757 | | (VAL=value(_) ; VAL = cartesian_product(b(value(A),_,_),b(value(B),_,_))),!, |
4758 | | (VAL=value(Set) |
4759 | | -> kernel_objects:membership_test_wf(Set,X,Res,WF) |
4760 | ? | ; kernel_equality:cartesian_pair_test_wf(X,A,B,Res,WF)). |
4761 | | closure_membership_wf(X,Par,Typ,Body,Res,WF) :- |
4762 | | is_not_member_closure(Par,Typ,Body,_Type,value(Set)),!, |
4763 | | bool_pred:negate(ResXSet,Res), % was kernel_equality:inv_mem_obj(ResXSet,Res), |
4764 | | kernel_objects:membership_test_wf(Set,X,ResXSet,WF). |
4765 | | % TO DO: if closure = POW closure -> translate into subset_test pow_subset |
4766 | | % TO DO: support a few other closures related to symbolic unary/binary operators: closure1, POW(..), ... ? |
4767 | | % TO DO: expand if set is small |
4768 | | closure_membership_wf(X,Par,Types,Body,Res,WF) :- ground_value(X),!, |
4769 | | closure_membership_ground_wf(X,closure(Par,Types,Body),Res,WF). |
4770 | | closure_membership_wf(X,Par,Types,Body,Res,WF) :- |
4771 | | CS = closure(Par,Types,Body), |
4772 | | is_small_specific_custom_set(CS,100), |
4773 | | try_expand_and_convert_to_avl_wf(CS,Expanded,closure_membership_wf,'',WF), |
4774 | | nonvar(Expanded), Expanded=avl_set(_), |
4775 | | !, |
4776 | | membership_custom_set_wf(Expanded,X,Res,WF). |
4777 | | closure_membership_wf(X,Par,Types,Body,Res,WF) :- |
4778 | | Body \= b(member(_,_),_,_), % otherwise we may have an infinite loop; b_check_boolean_expression will generate a closure which will call closure_membership_wf again; TO DO: refine to allow certain memberships to go through |
4779 | | get_texpr_info(Body,BodyInfo), |
4780 | | \+ member(prob_annotation(recursive(_RID)),BodyInfo), % otherwise we can get errors as recursive identifier _RID needs to be added to local state ! (test 1151 fails otherwise) |
4781 | | % TO DO: add recursive parameter below in set_up_typed_localstate2; + in which other circumstances do we need to set up recursion identifier ! |
4782 | | % Try reifiyng the body |
4783 | | NegationContext=positive, |
4784 | | copy_wf_start(WF,closure_membership_wf,CWF), |
4785 | | b_interpreter:set_up_typed_localstate2(Par,Types,BodyInfo,ParValues,TypedVals,[],State,NegationContext), |
4786 | | %couplise_list(Types,XType), |
4787 | | convert_list_into_pairs(ParValues,SingleParValue), |
4788 | | kernel_objects:equal_object(X,SingleParValue,closure_membership_wf), |
4789 | | b_interpreter_check:b_check_boolean_expression(Body,[],State,CWF,PredRes), |
4790 | | !, |
4791 | | (debug_mode(on) -> print('REIFICATION of closure: '), translate:print_bexpr(Body),nl, print(pred_res(X,PredRes)),nl ; true), |
4792 | | b_enumerate:b_tighter_enumerate_all_values(TypedVals,WF), % not necessary ?? as X should get enumerated |
4793 | | Res=PredRes, |
4794 | | copy_wf_finish(WF,CWF). |
4795 | | closure_membership_wf(X,Par,Types,Body,Res,WF) :- |
4796 | | when( (ground(X);nonvar(Res)), %% |
4797 | | % used to be ground(X), % with (ground(X);nonvar(Res)), test 292 failed {x,t|t : BOOL & (x : POW(1024 .. 1025) & bool(x : POW(NATURAL1)) = t)} = {{} |-> TRUE,{1024} |-> TRUE,{1024,1025} |-> TRUE,{1025} |-> TRUE} and test 1088 failed |
4798 | | closure_membership_ground_wf(X,closure(Par,Types,Body),Res,WF)). |
4799 | | |
4800 | | closure_membership_ground_wf(X,CS,Res,WF) :- nonvar(Res),!, |
4801 | | % this optimization is checked in test 1452 |
4802 | | (Res==pred_true -> element_of_custom_set_wf(X,CS,WF) ; not_element_of_custom_set_wf(X,CS,WF)). |
4803 | | closure_membership_ground_wf(X,CS,Res,WF) :- |
4804 | | % to ensure that we leave no choice point behind we have to force full evaluation of element/not_element calls: |
4805 | | % hence we do not call element_of_custom_set_wf or not_element_of_custom_set_wf below !! |
4806 | | kernel_waitflags:get_idle_wait_flag(closure_membership_ground_wf,WF,LWF), % enable other triggered co-routines to fire first; some maybe much more efficient to deal with than closure expansion; |
4807 | | % used to be important for test 1146, but this is no longer the case |
4808 | | %term_variables(CS,Vars),print(closure_membership_ground_wf_aux(LWF,vars(Vars),CS)),nl, |
4809 | | ground_value_check(CS,CSGr), |
4810 | | %when((nonvar(LWF),(nonvar(CSGr);nonvar(Res))),closure_membership_ground_wf_aux(X,CS,Res)). |
4811 | | block_closure_membership_ground_wf_aux(X,CS,Res,CSGr,LWF,WF). % Note: wrong block in commit 332cb17487017d819e9140427b1017a3045b3685 caused problem for test 1162 |
4812 | | |
4813 | | :- block block_closure_membership_ground_wf_aux(?,?,?,?,-,?), |
4814 | | block_closure_membership_ground_wf_aux(?,?,-,-,?,?). |
4815 | | block_closure_membership_ground_wf_aux(X,CS,Res, _,_,WF) :- |
4816 | ? | closure_membership_ground_wf_aux(X,CS,Res,WF). |
4817 | | |
4818 | | % X & CS are ground or Res is known |
4819 | | closure_membership_ground_wf_aux(X,CS,Res,WF) :- Res==pred_true,!, |
4820 | | element_of_custom_set_wf(X,CS,WF). |
4821 | | closure_membership_ground_wf_aux(X,CS,Res,WF) :- Res==pred_false,!, |
4822 | | not_element_of_custom_set_wf(X,CS,WF). |
4823 | | closure_membership_ground_wf_aux(X,CS,Res,_WF) :- |
4824 | | % we know that X is a ground value and CS is ground: we can determine completely whether X is element of CS or not |
4825 | ? | if(element_of_custom_set(X,CS),Res=pred_true, Res=pred_false). |
4826 | | /* used to be: (Res \== pred_false, element_of_custom_set(X,CS), Res=pred_true |
4827 | | ; Res \== pred_true, not_element_of_custom_set(X,CS), Res=pred_false)). |
4828 | | */ |
4829 | | |
4830 | | |
4831 | | |
4832 | | :- use_module(kernel_objects,[element_of_global_set/2,element_of_global_set_wf/3]). |
4833 | | element_of_custom_set_wf(X,CS,WF) :- |
4834 | ? | element_of_custom_set_wf2(CS,X,WF). %, print(check_ok(X)),nl. |
4835 | | |
4836 | | element_of_custom_set_wf2(node(A,B,C,D,E),X,WF) :- |
4837 | | add_internal_error('Unwrapped avl_set: ',element_of_custom_set_wf2(node(A,B,C,D,E),X,WF)),fail. |
4838 | | element_of_custom_set_wf2(global_set(GS),X,WF) :- element_of_global_set_wf(X,GS,WF). |
4839 | | element_of_custom_set_wf2(freetype(ID),X,WF) :- |
4840 | | (is_maximal_freetype(ID) -> true |
4841 | | ; add_internal_error('Uncovered case: ',element_of_custom_set_wf2(freetype(ID),X,WF)) |
4842 | | ). % we assume freetypes to be maximal ! |
4843 | ? | element_of_custom_set_wf2(avl_set(AVL),X,WF) :- element_of_avl_set_wf(AVL,X,WF). |
4844 | | element_of_custom_set_wf2(closure(Parameters,PT,Cond),X,WF) :- |
4845 | ? | element_of_closure(X,Parameters,PT,Cond,WF). |
4846 | | |
4847 | | element_of_avl_set_wf(node(Y,_,_,empty,empty),X,WF) :- !, |
4848 | ? | kernel_objects:equal_object_wf(X,Y,element_of_custom_set_wf2,WF). |
4849 | | element_of_avl_set_wf(AVL,X,_WF) :- ground_value(X),!, safe_avl_member(X,AVL). %safe_avl_member_ground(X,AVL). |
4850 | | element_of_avl_set_wf(AVL,X,WF) :- |
4851 | | avl_approximate_size(AVL,10,ApproxSize), |
4852 | ? | element_of_avl_set_wf(AVL,ApproxSize,X,WF). |
4853 | | |
4854 | | :- use_module(clpfd_tables). |
4855 | | |
4856 | | element_of_avl_set_wf(AVL,ApproxSize,X,WF) :- |
4857 | | % first check if worthwhile to attempt table treatment |
4858 | | % after fixing table/2 bug runtimes have slowed down and test 1753 became much slower |
4859 | | % for test 1753 a threshold of < 63 would be ideal; but test 1716 requires size 91 |
4860 | | % TODO: re-evaluate when SICStus 4.8 available |
4861 | | preferences:preference(use_clpfd_solver,true), |
4862 | | preferences:preference(solver_strength,SS), |
4863 | | ApproxSize < 100+SS, |
4864 | | (var(X) -> true |
4865 | | ; X = (X1,_X2) -> (ground_value(X1) -> ApproxSize < 10+SS ; true) |
4866 | | ; X=rec(_) -> true |
4867 | | %; X=int(_) -> true ; X=fd(_,_) -> true % for scalar values we already use in_fd_value_list_wf via avl_fd_value_check |
4868 | | ), |
4869 | | can_translate_avl_to_table(AVL,SkeletonType), |
4870 | | !, |
4871 | ? | check_element_of_avl_with_table(X,SkeletonType,AVL,WF). |
4872 | | element_of_avl_set_wf(AVL,ApproxSize,X,WF) :- |
4873 | ? | propagate_avl_element_information(X,AVL,ApproxSize,WF), %translate:translate_bvalue(avl_set(AVL),SS), |
4874 | | get_bounded_wait_flag(ApproxSize,element_of_avl(X),WF,WF1), |
4875 | ? | element_of_avl_set_wf3(X,AVL,ApproxSize,WF1,WF). |
4876 | | |
4877 | | |
4878 | | % compute an approximate size (small sets are computed exactly) |
4879 | | avl_approximate_size(AVL,Size) :- avl_approximate_size(AVL,10,Size). |
4880 | | |
4881 | | avl_approximate_size(AVL,HeightBound,Size) :- var(AVL),!, |
4882 | | add_internal_error('AVL Set is variable: ', avl_approximate_size(AVL,HeightBound,Size)), |
4883 | | Size=1000000. |
4884 | | avl_approximate_size(AVL,HeightBound,Size) :- % when the AVL gets too large; not so important that we have a precise estimation anyway |
4885 | | % so: save some time and just compute height |
4886 | | avl_height(AVL,Height), |
4887 | | (Height>HeightBound |
4888 | | -> Size is floor(2**Height-1) |
4889 | | ; avl_size(AVL,Size)). |
4890 | | |
4891 | | :- block element_of_avl_set_wf3(-,?,?,-,?). |
4892 | ? | element_of_avl_set_wf3(X,AVL,_ApproxSize,_WF1,_WF) :- var(X), !, safe_avl_member(X,AVL). |
4893 | | % TO DO: if randomise_enumeration_order is true then choose elements in random order |
4894 | | :- if(environ(prob_data_validation_mode,xxxtrue)). % currently disabled due to bug related to 14082013/435_002.mch TO DO: investigate |
4895 | | element_of_avl_set_wf3((X,Y),AVL,ApproxSize,WF1,WF) :- !, |
4896 | | %% ((var(WF1), \+ ground(X)) -> print(avl_relation_check(X,Y)),nl, %% |
4897 | | %% copy_term((X,Y),Copy), findall(Copy,safe_avl_member(Copy,AVL),Cs), print(Cs),nl, Cs \=[] %% check that at least one element exists |
4898 | | %% ; true), |
4899 | | couple_element_of_avl_set_wf(X,Y,AVL,ApproxSize,WF1,WF). |
4900 | | :- else. |
4901 | | element_of_avl_set_wf3((X,Y),AVL,ApproxSize,WF1,WF) :- !, |
4902 | | ground_value_check(X,GrX), |
4903 | ? | block_couple_element_of_avl_set_grX_wf1(X,Y,AVL,ApproxSize,GrX,WF1,WF). |
4904 | | %when((nonvar(WF1) ; ground(X)), couple_element_of_avl_set(X,Y,AVL,GrX,WF1,WF)). |
4905 | | :- endif. |
4906 | | element_of_avl_set_wf3(X,AVL,_ApproxSize,WF1,_WF) :- |
4907 | | ground_value_check(X,GrX), |
4908 | | safe_avl_member_block(X,AVL,GrX,WF1). |
4909 | | |
4910 | | :- block safe_avl_member_block(?,?,-,-). |
4911 | | safe_avl_member_block(X,AVL,_,_) :- |
4912 | ? | safe_avl_member(X,AVL). |
4913 | | |
4914 | | :- if(environ(prob_data_validation_mode,true)). |
4915 | | :- public couple_element_of_avl_set_wf/6. % used in conditional if above |
4916 | | :- block couple_element_of_avl_set_wf(-,?,?,?,-,?). |
4917 | | couple_element_of_avl_set_wf(X,Y,AVL,ApproxSize,WF1,WF) :- |
4918 | | ground_value_check(X,GrX), |
4919 | | ((nonvar(WF1);nonvar(GrX)) -> couple_element_of_avl_set(X,Y,AVL,GrX,WF1,WF) |
4920 | | %; true -> when((nonvar(WF1) ; ground(X)), couple_element_of_avl_set(X,Y,AVL,WF1,WF)) |
4921 | | ; nonvar(X),X=(X1,X2),ground(X1) -> triple_element_of_avl_set(X1,X2,Y,AVL,WF) |
4922 | | ; nonvar(X),X=(X1,X2) -> |
4923 | | avl_member_blocking((X,Y),AVL), |
4924 | | (ground(Y),ground(X1) -> safe_avl_member_pair_wf(X,Y,AVL,WF) |
4925 | | ; when(ground(X1),(\+ ground(X2) -> triple_element_of_avl_set(X1,X2,Y,AVL,WF) ; true % avl_member_blocking will have done its work |
4926 | | )), |
4927 | | block_couple_element_of_avl_set(X,Y,AVL,WF1,WF) |
4928 | | ) |
4929 | | ; %when((nonvar(WF1) ; ground(X)), couple_element_of_avl_set(X,Y,AVL,WF1,WF)) |
4930 | | block_couple_element_of_avl_set_grX_wf1(X,Y,AVL,ApproxSize,GrX,WF1,WF) |
4931 | | /* ; (simple_avl_type(AVL) |
4932 | | -> avl_member_blocking((X,Y),AVL) % TO DO: don't call couple_element_of_avl_set ! avoid double traversal !! |
4933 | | ; true), |
4934 | | block_couple_element_of_avl_set_grX_wf1(X,Y,AVL,GrX,WF1,WF) */ |
4935 | | ). |
4936 | | |
4937 | | :- block block_couple_element_of_avl_set(?,?,?,-,?). |
4938 | | block_couple_element_of_avl_set(X,Y,_AVL,_WF1,_WF) :- ground(X),ground(Y),!. |
4939 | | block_couple_element_of_avl_set(X,Y,AVL,_WF1,WF) :- safe_avl_member_pair_wf(X,Y,AVL,WF). |
4940 | | |
4941 | | triple_element_of_avl_set(X1,X2,Y,AVLRelation,WF) :- % X1 must be ground |
4942 | | copy_term((X2,Y),(CX2,CY)), |
4943 | | findall((CX2,CY),safe_avl_member_pair((X1,CX2),CY,AVLRelation),Images), |
4944 | | % we pass no WF to safe_avl_member_pair; we need to fully evaluate all unifications due to findall |
4945 | | Images \= [], |
4946 | | construct_avl_from_lists_wf(Images,AVL,WF), |
4947 | | element_of_custom_set_wf2(AVL,(X2,Y),WF). % will set up waitflag if necessary |
4948 | | :- endif. |
4949 | | |
4950 | | % --------------------------------------------------- |
4951 | | |
4952 | | test_avl_set(node(((int(2),int(3)),int(6)),true,0,node(((int(1),int(2)),int(2)),true,0,empty,empty),node(((int(3),int(4)),int(12)),true,0,empty,empty))). |
4953 | | |
4954 | | %simple_avl_type(node(K,_,_,_,_)) :- simple_value(K). % we can index directly on AVL, without having to normalise inner values |
4955 | | % in particular, we can apply avl_member_blocking |
4956 | | |
4957 | | :- assert_must_succeed(( custom_explicit_sets:test_avl_set(A), custom_explicit_sets:avl_member_blocking(((X,Y),Z),A), X=int(2), Y==int(3),Z==int(6) )). |
4958 | | :- assert_must_succeed(( custom_explicit_sets:test_avl_set(A), custom_explicit_sets:avl_member_blocking(((X,Y),Z),A), X=int(3), Y==int(4),Z==int(12) )). |
4959 | | :- assert_must_succeed(( custom_explicit_sets:test_avl_set(A), custom_explicit_sets:avl_member_blocking(((X,Y),Z),A), X=int(1), Y==int(2),Z==int(2) )). |
4960 | | :- assert_must_fail(( custom_explicit_sets:test_avl_set(A), custom_explicit_sets:avl_member_blocking(((X,_Y),_Z),A), X=int(5) )). |
4961 | | % a blocking version of avl_member; will not instantiate the element; just prune |
4962 | | |
4963 | | avl_member_blocking(Key, AVL) :- AVL=node(K,_,_,L,R), |
4964 | | %avl_height(AVL,Height), |
4965 | | avl_member_blocking4(Key,K,L,R). |
4966 | | |
4967 | | avl_member_blocking4(Key,Kavl,L,R) :- L=empty,R=empty,!, |
4968 | | Key=Kavl. % we could do equal_object |
4969 | | avl_member_blocking4(Key,Kavl,L,R) :- |
4970 | | match_possible(Key,Kavl,MatchPossible), % check if in principle a match could occur |
4971 | | (Kavl=(_,_) -> |
4972 | | (avl_min(R,Knext) -> true ; dif(O,>), Knext=no_match, |
4973 | | force_comp(MatchPossible,O,'<')), |
4974 | | (avl_max(L,Kprev) -> true ; dif(O,<), Kprev=no_match, |
4975 | | force_comp(MatchPossible,O,'>')) |
4976 | | ; Knext = no_match, Kprev = no_match |
4977 | | ), |
4978 | | (nonvar(O) -> true |
4979 | | /* ; (MatchPossible==pred_false, avl_height(L,Height), Height < 8, |
4980 | | copy_term(Key,CKey), \+ safe_avl_member(CKey,L), \+ safe_avl_member(CKey,R)) |
4981 | | -> print(cannot_match(Key)),nl,fail */ |
4982 | | ; compare_blocking(O, Key, Kavl, Kprev,Knext)), |
4983 | | avl_member_blocking_aux(O, Key, Kavl, L, R). |
4984 | | |
4985 | | %force_comp(V,_,_) :- var(V),!. |
4986 | | :- block force_comp(-,?,?). |
4987 | | force_comp(pred_true,_,_). |
4988 | | force_comp(pred_false,R,R). |
4989 | | |
4990 | | :- block avl_member_blocking_aux(-,?,?,?,?). |
4991 | | avl_member_blocking_aux(<, Key, _K, AVL, _) :- avl_member_blocking(Key, AVL). |
4992 | | avl_member_blocking_aux(=, Key, Key, _L, _R). % we could use equal_object |
4993 | | avl_member_blocking_aux(>, Key, _K, _, AVL) :- avl_member_blocking(Key, AVL). |
4994 | | |
4995 | | % a blocking version of compare |
4996 | | compare_blocking(Res,A,Kavl, Kprev, Knext) :- block_compare(A,Kavl,Res, Kprev, Knext). |
4997 | | |
4998 | | :- block block_compare(-,?,?,?,?), block_compare(?,-,?,?,?). |
4999 | | block_compare((A,B),Kavl,Res, Kprev, Knext) :- !, |
5000 | | (Kavl=(RA,RB) -> |
5001 | | match_key(Kprev,RA,PA,PB), |
5002 | | match_key(Knext,RA,NA,NB), |
5003 | | block_compare(A,RA,ACRes,PA,NA), |
5004 | | block_compare_aux(ACRes,B,RB,Res,PB,NB) |
5005 | | ; add_internal_error('Illegal type: ',block_compare((A,B),Kavl,Res, Kprev, Knext)),fail). |
5006 | | % TO DO: same for records; but currently not used anyway |
5007 | | block_compare(int(A),int(B),Res,_,_) :- !, block_compare_atomic(A,B,Res). |
5008 | | block_compare(pred_false,B,Res,_,_) :- !, block_compare_atomic(pred_false,B,Res). |
5009 | | block_compare(pred_true,B,Res,_,_) :- !, block_compare_atomic(pred_true,B,Res). |
5010 | | block_compare(string(A),string(B),Res,_,_) :- !, block_compare_atomic(A,B,Res). |
5011 | | block_compare(fd(A,T),fd(B,T),Res,_,_) :- !, block_compare_atomic(A,B,Res). |
5012 | | block_compare(avl_set(A),Kavl,Res,_,_) :- !, |
5013 | | convert_to_avl_inside_set(avl_set(A),ConvertedA),compare(Res,ConvertedA,Kavl). |
5014 | | block_compare([],[],Res,_,_) :- !, Res = '='. |
5015 | | block_compare([],_,Res,_,_) :- !, Res = '<'. |
5016 | | block_compare(A,Kavl,Res,_,_) :- |
5017 | | % does deal with various representations of sets !! closure/global_set/... |
5018 | | when(ground(A), |
5019 | | (convert_to_avl_inside_set(A,ConvertedA),compare(Res,ConvertedA,Kavl))). |
5020 | | |
5021 | | match_key((KeyA,KeyB),Key,ResA,ResB) :- !, ResA=KeyA, |
5022 | | (Key==KeyA -> ResB=KeyB ; ResB = no_match). |
5023 | | match_key(_,_,no_match,no_match). |
5024 | | |
5025 | | :- block block_compare_atomic(-,?,?), block_compare_atomic(?,-,?). |
5026 | | block_compare_atomic(A,B,Res) :- compare(Res,A,B). |
5027 | | |
5028 | | :- block block_compare_aux(-,?,?,?, ?,?). |
5029 | | block_compare_aux(ACRes,B,D,Res, Kprev,Knext) :- |
5030 | | (ACRes='<' -> Res = '<' |
5031 | | ; ACRes = '>' -> Res = '>' |
5032 | | ; Kprev=no_match, Knext=no_match -> |
5033 | | Res = '=' % we cannot match neither previous nor next key: force match |
5034 | | ; block_compare(B,D,Res,Kprev,Knext)). % TO DO: check with prev & next value: if no match possible force Res='=' |
5035 | | |
5036 | | % check if a match is possible between two terms |
5037 | | :- block match_possible(-,?,?), match_possible(?,-,?). |
5038 | | match_possible([],[],Possible) :- !, Possible=pred_true. |
5039 | | match_possible([],avl_set(_),Possible) :- !, Possible=pred_false. |
5040 | | match_possible(avl_set(_),[],Possible) :- !, Possible=pred_false. |
5041 | | match_possible(int(A),int(B),Possible) :- !, match_possible_atomic(A,B,Possible). |
5042 | | match_possible(fd(A,T),fd(B,T),Possible) :- !, match_possible_atomic(A,B,Possible). |
5043 | | match_possible(string(A),string(B),Possible) :- !, match_possible_atomic(A,B,Possible). |
5044 | | match_possible((A1,A2),(B1,B2),Possible) :- !, match_possible(A1,B1,P1), |
5045 | | match_possible(A2,B2,P2), kernel_equality:conjoin_test(P1,P2,Possible,_WF). %% WF <--- TO DO |
5046 | | match_possible(_,_,pred_true). |
5047 | | |
5048 | | :- block match_possible_atomic(-,?,?), match_possible_atomic(?,-,?). |
5049 | | match_possible_atomic(A,B,Res) :- (A==B -> Res=pred_true ; Res=pred_false). |
5050 | | |
5051 | | % -------------------------------------------- |
5052 | | |
5053 | | :- block block_couple_element_of_avl_set_grX_wf1(?, - ,?,?,-,-,?). |
5054 | | block_couple_element_of_avl_set_grX_wf1(X,Y,AVL,ApproxSize,GrX,WF1,WF) :- |
5055 | | var(GrX), var(WF1), |
5056 | | !, |
5057 | | % we know the result Y but not yet fully the input value X |
5058 | | (ApproxSize < 129 % TO DO: improve this; unify with inverse_apply_ok(Y,X,AVL,ApproxSize) ? |
5059 | | -> ground_value_check(Y,GrY) % wait until Y is fully known |
5060 | | ; (preference(solver_strength,SS), ApproxSize < 129+SS) |
5061 | | -> ground_value_check(Y,GrY) |
5062 | | % TO DO: we could look at avl_min and avl_max and estimate spread of range keys |
5063 | | ; cond_perfmessage([data_validation_mode/false],no_inverse_avl_lookup(ApproxSize,Y)) % do not bind GrY; we wait until GrX or WF1 is bound |
5064 | | ), |
5065 | | block_couple_element_of_avl_set_grX_grY_wf1(X,Y,AVL,ApproxSize,GrX,GrY,WF1,WF). |
5066 | | block_couple_element_of_avl_set_grX_wf1(X,Y,AVL,_ApproxSize,GrX,WF1,WF) :- |
5067 | ? | couple_element_of_avl_set(X,Y,AVL,GrX,WF1,WF). |
5068 | | |
5069 | | :- block block_couple_element_of_avl_set_grX_grY_wf1(?,?,?,?, -,-,-,?). |
5070 | | block_couple_element_of_avl_set_grX_grY_wf1(X,Y,AVL,_ApproxSize, GrX,_GrY,WF1,WF) :- |
5071 | | var(GrX), var(WF1), % i.e., Y is known |
5072 | | % we know the result Y but not yet fully the input value X |
5073 | | %inverse_apply_ok(Y,X,AVL,ApproxSize), |
5074 | | !, |
5075 | | inverse_get_possible_values(X,Y,AVL,Res), |
5076 | | Res = avl_set(InvAVL), |
5077 | | element_of_avl_set_wf(InvAVL,X,WF). |
5078 | | %couple_element_of_avl_set(X,Y,AVL,GrX,1,WF). |
5079 | | block_couple_element_of_avl_set_grX_grY_wf1(X,Y,AVL,_ApproxSize,GrX,_GrY,WF1,WF) :- |
5080 | ? | couple_element_of_avl_set(X,Y,AVL,GrX,WF1,WF). |
5081 | | |
5082 | | |
5083 | | % special treatment for relations: if the first component is known: then we can check how many images there are |
5084 | | couple_element_of_avl_set(X,Y,AVL,GrX,WF1,WF) :- |
5085 | | nonvar(WF1), var(GrX), %\+ground(X), |
5086 | | !, |
5087 | ? | safe_avl_member_default_wf((X,Y),AVL,WF). |
5088 | | couple_element_of_avl_set(X,Y,AVLRelation,_GrX,_,WF) :- % X must be ground |
5089 | | get_template(Y,TY,_ToUnifyAfter), % was copy_term(Y,CY) but could cause issues with closures with variables |
5090 | | copy_term(TY,CY), % avoid that we instantiate Y and trigger co-routines |
5091 | | findall(CY,avl_member_pair_arg1_ground(X,CY,AVLRelation),Images), % should we use Y instead of CY |
5092 | | Images \= [], |
5093 | | construct_avl_from_lists_wf(Images,AVL,WF), |
5094 | ? | element_of_custom_set_wf2(AVL,Y,WF). % will set up waitflag if necessary |
5095 | | |
5096 | | |
5097 | | % set Res -> pred_true or pred_false if membership can be decided early |
5098 | | % interval closures already dealt with by closure_membership |
5099 | | % maximal sets are also already dealt with by membership_custom_set |
5100 | | reify_avl_membership(AVL,Element,Res,FullReification) :- |
5101 | | is_avl_simple_set(AVL,Type), |
5102 | | preferences:preference(use_clpfd_solver,true), % to do: require maybe only for integer type !? |
5103 | | \+ ground_value(Element), |
5104 | | !, |
5105 | | reify_avl_mem2(Type,Element,AVL,Res,FullReification). |
5106 | | reify_avl_membership(_,_,_,false). |
5107 | | |
5108 | | |
5109 | | is_avl_simple_set(node(El,_True,_,_,_),Type) :- simple_type(El,Type). |
5110 | | simple_type(int(_),integer). |
5111 | | simple_type(fd(_,GS),global(GS)). |
5112 | | |
5113 | | |
5114 | | reify_avl_mem2(integer,int(El),AVL,Res,FullReification) :- |
5115 | | avl_min(AVL,int(Min)), avl_max(AVL,int(Max)), |
5116 | | (reify_integer_avl_mem(AVL,Min,Max) % reify if AVL small enough |
5117 | | -> avl_domain(AVL,R),project_avl_domain_on_fd(R,FDList), |
5118 | | clpfd_reify_inlist(El,FDList,FDRes,Posted), |
5119 | | propagate_fd_membership(FDRes,Res,inlist(El,FDList)), |
5120 | | FullReification=Posted |
5121 | | ; clpfd_interface:try_post_constraint((El in Min..Max) #<=> FDRes), |
5122 | | propagate_not_membership(FDRes,Res,int(El,Min,Max)), |
5123 | | FullReification=false |
5124 | | ). |
5125 | | % this could also be enabled with CLPFD = FALSE ?? no overflows are possible |
5126 | | reify_avl_mem2(global(GS),fd(El,GS),AVL,Res,FullReification) :- |
5127 | | avl_domain(AVL,R),project_avl_domain_on_fd(R,FDList), |
5128 | | b_global_sets:b_get_fd_type_bounds(GS,Low,Up), |
5129 | | (is_full_fdlist(FDList,Low,Up) |
5130 | | -> Res=pred_true, % all the values are in the list; it must be a member |
5131 | | % normally this should also be detected by clpfd_reify_inlist, unless no constraint was set up for El |
5132 | | % it seems to have an effect for test 426: probcli examples/EventBPrologPackages/SSF/Bepi_Soton/M1_mch.eventb -cbc all -strict -p CLPFD TRUE -p SMT TRUE -strict -p STRICT_RAISE_WARNINGS TRUE |
5133 | | FullReification=true |
5134 | | ; clpfd_reify_inlist(El,FDList,FDRes,Posted), |
5135 | | propagate_fd_membership(FDRes,Res,inlist(El,FDList)), |
5136 | | FullReification=Posted |
5137 | | ). |
5138 | | %reify_avl_mem2(global(GS),fd(El,GS),AVL,Res) :- |
5139 | | % avl_min(AVL,fd(Min,GS)), avl_max(AVL,fd(Max,GS)), |
5140 | | % clpfd_interface:try_post_constraint((El in Min..Max) #<=> FDRes), |
5141 | | % propagate_not_membership(FDRes,Res,fd(El,GS,Min,Max)). |
5142 | | |
5143 | | % assumes list is sorted |
5144 | | is_full_fdlist(List,Low,Up) :- integer(Up), is_full_fdlist2(List,Low,Up). |
5145 | | is_full_fdlist2([],Low,Up) :- Low>Up. |
5146 | | is_full_fdlist2([Low|T],Low,Up) :- L1 is Low+1, is_full_fdlist2(T,L1,Up). |
5147 | | |
5148 | | % check if avl small enough to call clpfd_reify_inlist |
5149 | | reify_integer_avl_mem(_AVL,Min,Max) :- MaxSizeM1 is Max-Min, MaxSizeM1 =< 20,!. |
5150 | | reify_integer_avl_mem(AVL,_Min,_Max) :- avl_height_less_than_with_solver_strength(AVL,5). |
5151 | | |
5152 | | |
5153 | | |
5154 | | project_avl_domain_on_fd([],[]). |
5155 | | project_avl_domain_on_fd([H|T],[PH|PT]) :- project_avl_domain(H,PH), project_avl_domain_on_fd(T,PT). |
5156 | | project_avl_domain(int(X),X). |
5157 | | project_avl_domain(fd(X,_),X). |
5158 | | |
5159 | | |
5160 | | :- block propagate_fd_membership(-,-,?). |
5161 | | % if we make it propagate_fd_membership(-,-?) Bosch examples becomes much slower ? |
5162 | | % Indeed: membership_custom_set will already force membership or non-membership ! |
5163 | | %propagate_fd_membership(X,M,Info) :- var(X),!, print(propagate_fd(X,M,Info)),nl, (M=pred_true ->X=1 ; X=0). |
5164 | | propagate_fd_membership(1,pred_true,_Info). |
5165 | | propagate_fd_membership(0,pred_false,_Info). |
5166 | | |
5167 | | :- block propagate_not_membership(-,?,?). |
5168 | | propagate_not_membership(1,_,_). % there could be elements in the interval which are not in the set |
5169 | | propagate_not_membership(0,Res,_Info) :- |
5170 | | Res=pred_false. |
5171 | | |
5172 | | % ----------------- |
5173 | | |
5174 | | % fails if not possible to quickly compute approximate size |
5175 | | quick_custom_explicit_set_approximate_size(V,_) :- var(V),!,fail. |
5176 | | quick_custom_explicit_set_approximate_size(avl_set(AVL),Size) :- !, |
5177 | | quick_avl_approximate_size(AVL,Size). |
5178 | | quick_custom_explicit_set_approximate_size(CS,Size) :- |
5179 | | card_for_specific_custom_set(CS,Size,Code), |
5180 | | on_enumeration_warning(call(Code),fail), |
5181 | | atomic(Size). % inf or number; sometimes card_for_specific_custom_set can return a variable |
5182 | | |
5183 | | :- use_module(clpfd_lists,[try_get_fd_value_list/4, get_fd_value/3, in_fd_value_list_wf/4]). |
5184 | | % a membership propagation, but only done if it can be done quickly |
5185 | | |
5186 | | |
5187 | | % quick_propagation_element_information(Set, Element, WF, PossiblyCompiledSet) |
5188 | | % use last element for next iteration if you call quick_propagation_element_information in a loop |
5189 | | :- block quick_propagation_element_information(-,?,?,?). |
5190 | | quick_propagation_element_information(Set,_El,_,R) :- |
5191 | | preferences:preference(use_clpfd_solver,false), |
5192 | | !, R=Set. |
5193 | | quick_propagation_element_information(avl_set(AVL),Element,WF,NewSet) :- !, |
5194 | | quick_avl_approximate_size(AVL,Size), |
5195 | | NewSet=avl_set_with_size(AVL,Size), |
5196 | | propagate_avl_element_information_direct(Element,AVL,Size,WF). |
5197 | | quick_propagation_element_information(avl_set_with_size(AVL,Size),Element,WF,NewSet) :- !, |
5198 | | NewSet = avl_set_with_size(AVL,Size), |
5199 | | propagate_avl_element_information_direct(Element,AVL,Size,WF). |
5200 | | quick_propagation_element_information(closure(P,T,B),Element,WF,NewSet) :- !, |
5201 | | NewSet = closure(P,T,B), |
5202 | ? | element_of_closure(Element,P,T,B,WF). |
5203 | | quick_propagation_element_information(fd_value_list(FDList,GroundList,Type),El,WF,NewSet) :- !, |
5204 | | NewSet = fd_value_list(FDList,GroundList,Type), |
5205 | | get_fd_value(Type,El,ElFD), |
5206 | | in_fd_value_list_wf(GroundList,ElFD,FDList,WF). |
5207 | | quick_propagation_element_information(Set,El,WF,NewSet) :- |
5208 | ? | try_get_fd_value_list(Set,Type,FDList,GroundList),!, |
5209 | | FDList \= [], % if list is empty membership fails |
5210 | | NewSet = fd_value_list(FDList,GroundList,Type), |
5211 | | % clpfd_inlist requires list of integers as second argument |
5212 | ? | get_fd_value(Type,El,ElFD), |
5213 | | % We could apply filter_non_matching_elements here |
5214 | | in_fd_value_list_wf(GroundList,ElFD,FDList,WF). |
5215 | | quick_propagation_element_information(Set,_,_,Set). |
5216 | | |
5217 | | % ----------------- |
5218 | | |
5219 | | % infer information about an element of an AVL set |
5220 | | propagate_avl_element_information(Element,AVL,Size,WF) :- |
5221 | | (preferences:preference(use_clpfd_solver,true) |
5222 | ? | -> propagate_avl_element_information_direct(Element,AVL,Size,WF) |
5223 | | ; true). |
5224 | | |
5225 | | propagate_avl_element_information_direct(Element,AVL,Size,WF) :- |
5226 | | (Size<100 -> %30 which magic constant to use here; use larger value in SMT mode ? |
5227 | ? | propagate_avl_element_information_small(Element,AVL,WF) |
5228 | | ; is_avl_fd_index_set(AVL,Type) -> |
5229 | | propagate_avl_element_information_large(Type,Element,AVL), |
5230 | | (Size < 4000, nonvar(Element), Element = (_,_) % another magic constant |
5231 | | -> Prio is Size // 60, |
5232 | | get_wait_flag(Prio,propagate_avl_element_information(Element),WF,LWF), |
5233 | | propagate_avl_el_large_block(Element,AVL,WF,LWF) % will do precise propagation |
5234 | | ; true) |
5235 | | ; true). |
5236 | | % TO DO: we could call in_nat_range_wf; this way it would also work in non-CLPFD mode |
5237 | | |
5238 | | :- block propagate_avl_el_large_block(?,?,?,-). |
5239 | | propagate_avl_el_large_block((A,B),_,_,_) :- |
5240 | | (ground(A); ground_value(B)), % in first: case we will apply AVL set ; in second case probably no benefit as propagate_avl_element_information_large already propagated first element |
5241 | | !. |
5242 | | propagate_avl_el_large_block(Element,AVL,WF,_LWF) :- |
5243 | | % TO DO: maybe look if we should not use clpfd_list, but only upper & lower bound |
5244 | ? | propagate_avl_element_information_small(Element,AVL,WF). % will do precise propagation. |
5245 | | |
5246 | | :- use_module(clpfd_lists,[avl_fd_value_check/4]). |
5247 | | :- use_module(clpfd_interface,[catch_and_ignore_clpfd_overflow/2]). |
5248 | | propagate_avl_element_information_small(Element,AVL,WF) :- |
5249 | ? | catch_and_ignore_clpfd_overflow(propagate_avl_element_information_small, % relevant test e.g. 1708 (with used_ids_defined_by_equality) |
5250 | | avl_fd_value_check(AVL,Element,WF,_FullyChecked)). |
5251 | | |
5252 | | propagate_avl_element_information_large(Type,El,AVL) :- |
5253 | | avl_min(AVL,Min), avl_max(AVL,Max), |
5254 | | % if Size small enough and smaller than Max-Min we call clpfd_inlist on domain |
5255 | | % Note: overflows should be caught below; we could check that Min/Max are within CLPFD range |
5256 | | couple_prj1_in_range(Type,El,Min,Max). |
5257 | | |
5258 | | couple_prj1_in_range(integer,int(El),int(Min),int(Max)) :- clpfd_interface:clpfd_inrange(El,Min,Max). |
5259 | | couple_prj1_in_range(global(GS),fd(El,GS),fd(Min,GS),fd(Max,GS)) :- clpfd_interface:clpfd_inrange(El,Min,Max). |
5260 | | couple_prj1_in_range(couple_prj1(T),(El,_),(Min,_),(Max,_)) :- couple_prj1_in_range(T,El,Min,Max). |
5261 | | couple_prj1_in_range(rec_first_field(Name,T),rec([field(Name,El)|TF]), |
5262 | | rec([field(Name,Min)|TMin]),rec([field(Name,Max)|_])) :- |
5263 | | (var(TF) |
5264 | | -> copy_field_names(TMin,TF) % if Fields not yet instantiated: copy over all fields |
5265 | | ; true), |
5266 | | couple_prj1_in_range(T,El,Min,Max). |
5267 | | |
5268 | | copy_field_names([],[]). |
5269 | | copy_field_names([field(N,_)|T],[field(N,_)|CT]) :- copy_field_names(T,CT). |
5270 | | |
5271 | | % check if the first component of the AVL elements of a type such that we can propagate FD information |
5272 | | is_avl_fd_index_set(node(El,_True,_,_,_),Type) :- |
5273 | | simple_index_type(El,Type). |
5274 | | simple_index_type((El,_),couple_prj1(T)) :- simple_index_type(El,T). |
5275 | | simple_index_type(int(_),integer). |
5276 | | simple_index_type(fd(_,GS),global(GS)). |
5277 | | simple_index_type(rec(Fields),rec_first_field(Name,T)) :- nonvar(Fields), |
5278 | | Fields = [field(Name,El)|_], |
5279 | | simple_index_type(El,T). |
5280 | | %simple_index_type((int(_),_),couple_integer). |
5281 | | %simple_index_type(((int(_),_),_),couple_couple_integer). |
5282 | | %simple_index_type((fd(_,GS),_),couple_global(GS)). |
5283 | | |
5284 | | |
5285 | | /* avoid instantiating non-normalised with normalised values leading to failure */ |
5286 | | :- assert_must_succeed((X=(fd(1,'Name'),fd(2,'Name')), A=node(X,true,0,empty,empty), |
5287 | | custom_explicit_sets:safe_avl_member(X,A) )). |
5288 | | |
5289 | ? | safe_avl_member(X,AVL) :- var(X), !, my_avl_member(X,AVL). |
5290 | | %safe_avl_member((X,Y),AVL) :- !, safe_avl_member_pair(X,Y,AVL). |
5291 | | safe_avl_member(Value,AVL) :- decompose_index(Value,Key,RestVal), !, |
5292 | ? | avl_fetch_indexed(Value,Key,RestVal,AVL). |
5293 | | safe_avl_member(X,AVL) :- ground_value(X), convert_to_avl_inside_set(X,AX), !, avl_fetch(AX,AVL). |
5294 | ? | safe_avl_member(X,AVL) :- safe_avl_member_default_wf(X,AVL,no_wf_available). |
5295 | | |
5296 | | |
5297 | | % this is a generalisation of safe_avl_member_pair |
5298 | | % check if a value can be decomposed into an index and the rest of a value and the key is ground |
5299 | | % it also works for records indexing on first field |
5300 | | avl_fetch_indexed(Value,Key,RestVal,AVL) :- |
5301 | | ground_value_or_field(Key), |
5302 | | convert_value_or_field(Key,NormKey), |
5303 | | !, |
5304 | | (ground_value_or_field(RestVal), |
5305 | | convert_to_avl_inside_set(Value,NormValue) |
5306 | | -> avl_fetch(NormValue,AVL) |
5307 | ? | ; avl_fetch_with_index(NormKey,AVL,RestValLookup), |
5308 | ? | kernel_objects:equal_object(RestValLookup,RestVal,avl_fetch_indexed) |
5309 | | ). |
5310 | | avl_fetch_indexed(Value,_,_,AVL) :- |
5311 | ? | safe_avl_member_default_wf(Value,AVL,no_wf_available). |
5312 | | |
5313 | | convert_value_or_field(field(Name,Val),field(Name,NVal)) :- !, |
5314 | | convert_to_avl_inside_set(Val,NVal). |
5315 | | convert_value_or_field(Key,NormKey) :- |
5316 | | convert_to_avl_inside_set(Key,NormKey). |
5317 | | |
5318 | | % a version of safe_avl_member where the first argument is guaranteed to be ground |
5319 | | % somehow using this seems to slow-down evaluation for vesg_Dec12; Caching ?? |
5320 | | %safe_avl_member_ground(X,AVL) :- |
5321 | | % convert_to_avl_inside_set(X,AX), !, avl_fetch(AX,AVL). |
5322 | | %safe_avl_member_ground((X,Y),AVL) :- !, avl_member_pair_arg1_ground(X,Y,AVL). |
5323 | | %safe_avl_member_ground(X,AVL) :- safe_avl_member_default_wf(X,AVL,no_wf_available). |
5324 | | |
5325 | | |
5326 | | safe_avl_member_pair(X,Y,AVL) :- safe_avl_member_pair_wf(X,Y,AVL,no_wf_available). |
5327 | | |
5328 | | safe_avl_member_pair_wf(X,Y,AVL,_WF) :- ground_value(X),!, |
5329 | | ( ground_value(Y), |
5330 | | convert_to_avl_inside_set((X,Y),AX) |
5331 | | -> avl_fetch(AX,AVL) |
5332 | | ; avl_member_pair_arg1_ground(X,Y,AVL)). % TODO: pass WF |
5333 | | safe_avl_member_pair_wf(X,Y,AVL,WF) :- safe_avl_member_default_wf((X,Y),AVL,WF). |
5334 | | |
5335 | | % can be used to try and lookup a function value without creating WD errors, ... |
5336 | | % used in b_compiler to compile function applications |
5337 | | try_apply_to_avl_set(X,Y,AVL) :- ground_value(X), |
5338 | ? | avl_member_pair_arg1_ground(X,Y,AVL). |
5339 | | |
5340 | | %safe_avl_member_pair_ground(X,Y,AVL) :- convert_to_avl_inside_set((X,Y),AX),!, avl_fetch(AX,AVL). |
5341 | | %safe_avl_member_pair_ground(X,Y,AVL) :- avl_member_pair_arg1_ground(X,Y,AVL). |
5342 | | |
5343 | | avl_member_pair_arg1_ground(X,Y,AVL) :- convert_to_avl_inside_set(X,AX), !, |
5344 | | get_template(Y,RY,ToUnifyAfter), |
5345 | ? | avl_fetch_pair(AX,AVL,RY), |
5346 | | unify_after_wf(ToUnifyAfter,no_wf_available). %kernel_objects:equal_object(RY,Y). |
5347 | | avl_member_pair_arg1_ground(X,Y,AVL) :- |
5348 | | safe_avl_member_default((X,Y),AVL). |
5349 | | |
5350 | ? | safe_avl_member_default(X,AVL) :- safe_avl_member_default_wf(X,AVL,no_wf_available). |
5351 | | %safe_avl_member_default(PP,X,AVL) :- |
5352 | | % debug:timer_call(safe_avl_member_default(PP),custom_explicit_sets:safe_avl_member_default1(X,AVL)). |
5353 | | safe_avl_member_default_wf(X,AVL,WF) :- %statistics(runtime,_), |
5354 | | get_template(X,Template,ToUnifyAfter), |
5355 | ? | my_avl_member(Template,AVL), |
5356 | | % statistics(runtime,[_,T2]), print(avl_member(Template,T2)),nl, |
5357 | ? | unify_after_wf(ToUnifyAfter,WF). % kernel_objects:equal_object(Template,X)). |
5358 | | |
5359 | | unify_after_wf([],_). |
5360 | ? | unify_after_wf([A/B|T],WF) :- kernel_objects:equal_object_wf(A,B,unify_after,WF), |
5361 | ? | unify_after_wf(T,WF). |
5362 | | |
5363 | | |
5364 | | |
5365 | | get_template(A,R,ToUnifyAfter) :- |
5366 | | (var(A) -> ToUnifyAfter=[A/R] |
5367 | | ; get_template2(A,R,ToUnifyAfter) -> true |
5368 | | ; add_internal_error('Could_not_get_template: ',get_template(A,R,_))). |
5369 | | |
5370 | | get_template2((A,B),(TA,TB),ToUnifyAfter) :- get_template(A,TA,ToUnifyAfter1), get_template(B,TB,ToUnifyAfter2), |
5371 | | append(ToUnifyAfter1,ToUnifyAfter2,ToUnifyAfter). % TO DO: use DifferenceLists / DCG |
5372 | | get_template2(int(X),int(X),[]). |
5373 | | get_template2(fd(A,B),fd(A,B),[]). |
5374 | | get_template2([],[],[]). |
5375 | | get_template2(pred_false /* bool_false */,pred_false /* bool_false */,[]). |
5376 | | get_template2(pred_true /* bool_true */,pred_true /* bool_true */,[]). |
5377 | | get_template2([H|T],R,ToUnifyAfter) :- |
5378 | | (ground_value(H),ground_value(T) |
5379 | | -> convert_to_avl_inside_set([H|T],R),ToUnifyAfter=[] |
5380 | | ; ToUnifyAfter=[[H|T]/R]). |
5381 | | % ; R=avl_set(A), ToUnifyAfter=[[H|T]/avl_set(A)]). |
5382 | | get_template2(closure(P,T,B),R,[]) :- ground_value(closure(P,T,B)), |
5383 | | expand_closure_to_avl_wf(P,T,B,R,no_wf_available),!. |
5384 | | get_template2(closure(P,T,B),AVL_OR_EMPTY_OR_GS,[closure(P,T,B)/AVL_OR_EMPTY_OR_GS]). % closure could be empty or an infinite global set ? |
5385 | | %get_template2(closure_x(_,_,_),_AVL_OR_EMPTY). |
5386 | | get_template2(avl_set(A),avl_set(NA),[]) :- convert_to_avl_inside_set(avl_set(A),avl_set(NA)). % do we need to normalise here ?? |
5387 | | get_template2(string(X),string(X),[]). |
5388 | | get_template2(term(X),term(X),[]). |
5389 | | get_template2(freetype(X),R,[]) :- convert_to_avl_inside_set(freetype(X),R). |
5390 | | get_template2(rec(Fields),rec(TFields),ToUnifyAfter) :- get_fields_template(Fields,TFields,ToUnifyAfter). |
5391 | | get_template2(freeval(ID,Case,Value),freeval(ID,Case,TValue),ToUnifyAfter) :- get_template(Value,TValue,ToUnifyAfter). |
5392 | | get_template2(global_set(GS),R,[]) :- convert_to_avl_inside_set(global_set(GS),R). |
5393 | | |
5394 | | |
5395 | | get_fields_template(A,R,[rec(A)/rec(R)]) :- var(A),!. |
5396 | | get_fields_template([],[],ToUnifyAfter) :- !, ToUnifyAfter=[]. |
5397 | | get_fields_template([field(Name,Val)|T],[field(Name,TVal)|TT],ToUnifyAfter) :- nonvar(Name),!, |
5398 | | get_template(Val,TVal,ToUnifyAfter1), |
5399 | | get_fields_template(T,TT,ToUnifyAfter2), append(ToUnifyAfter1,ToUnifyAfter2,ToUnifyAfter). |
5400 | | get_fields_template(A,R,[rec(A)/rec(R)]). |
5401 | | |
5402 | | |
5403 | | % succeed if we can decide membership of an avl_set on the spot |
5404 | | quick_test_avl_membership(AVL,X,Res) :- |
5405 | | element_can_be_added_or_removed_to_avl(X), |
5406 | | convert_to_avl_inside_set(X,AX), |
5407 | | (avl_fetch(AX,AVL) -> Res=pred_true ; Res=pred_false). |
5408 | | |
5409 | | % --------------------- |
5410 | | |
5411 | | % a dispatch predicate |
5412 | | my_avl_member(Key,AVL) :- |
5413 | | (preferences:preference(randomise_enumeration_order,true) |
5414 | ? | -> random_avl_member(Key,AVL) ; avl_member_opt(Key,AVL)). |
5415 | | :- use_module(library(random),[random/3]). |
5416 | ? | random_avl_member(Key,AVL) :- avl_height(AVL,Height), H1 is Height+1, random_avl_member(Key,H1,AVL). |
5417 | | % TO DO: make more intelligent; this is not really a very uniform way of randomly enumerating an AVL set (e.g., Key never occurs between L and R) |
5418 | | random_avl_member(Key, H, node(K,_,_,L,R)) :- |
5419 | | random(1,H,1), !, H1 is H-1, |
5420 | ? | (Key=K ; random_avl_member(Key,H1,L) ; random_avl_member(Key,H1,R)). |
5421 | | random_avl_member(Key, H, node(K,_,_,L,R)) :- random(1,3,1), !, H1 is H-1, |
5422 | ? | (random_avl_member(Key,H1,L) ; random_avl_member(Key,H1,R) ; Key=K). |
5423 | | random_avl_member(Key, H, node(K,_,_,L,R)) :- H1 is H-1, |
5424 | ? | (random_avl_member(Key,H1,R) ; random_avl_member(Key,H1,L) ; Key=K). |
5425 | | |
5426 | | % a variation of avl_member from library(avl) which tries to avoid leaving choice points behind |
5427 | | avl_member_opt(Key, node(K,_,_,L,R)) :- |
5428 | ? | ( avl_member_opt(Key, L) |
5429 | | ; R=empty -> Key = K % avoid trailing choice_point |
5430 | ? | ; (Key=K ; avl_member_opt(Key, R)) |
5431 | | ). |
5432 | | |
5433 | | % --------------------- |
5434 | | |
5435 | | :- use_module(kernel_objects,[check_element_of_wf/3,not_element_of_wf/3]). |
5436 | | :- use_module(memoization,[element_of_memoization_closure/6]). |
5437 | | element_of_special_closure(interval(LOW,UP),X,WF,_,_,_) :- !, |
5438 | | %hit_profiler:add_profile_hit(in_nat_range(X,LOW,UP,CondClosure)), |
5439 | | kernel_objects:in_nat_range_wf(X,int(LOW),int(UP),WF). |
5440 | | element_of_special_closure(member_closure(_ID,_Type,VAL),X,WF,_,_,_) :- |
5441 | | (VAL=value(_) ; VAL = cartesian_product(b(value(A),_,_),b(value(B),_,_))),!, |
5442 | | %hit_profiler:add_profile_hit(in_member_closure(X,Par,Typ,Body)), |
5443 | | (VAL=value(Set) -> check_element_of_wf(X,Set,WF) |
5444 | | ; X=(XA,XB), |
5445 | ? | kernel_objects:check_element_of_wf(XA,A,WF), |
5446 | | kernel_objects:check_element_of_wf(XB,B,WF)). |
5447 | | element_of_special_closure(not_member_closure(_ID,_Type,value(Set)),X,WF,_,_,_) :- !, |
5448 | | %hit_profiler:add_profile_hit(in_not_member_closure(X,Par,Typ,Set)), |
5449 | | not_element_of_wf(X,Set,WF). |
5450 | | % we used to have to add enumerator, as not_element_of does not instantiate; e.g. relevant when doing X :: GS - {y} |
5451 | | % This is no longer required |
5452 | | % see test 6 (../prob_examples/public_examples/B/FeatureChecks/NotMemberCheck.mch) |
5453 | | element_of_special_closure(recursive_special_closure(RId),X,WF,Parameters,PT,CondClosure) :- !, |
5454 | | add_recursive_parameter(Parameters,PT,X,RId,CondClosure,NewParameters,NewPT,Value,WF), |
5455 | ? | element_of_normal_closure(Value,NewParameters,NewPT,CondClosure,WF). |
5456 | | element_of_special_closure(memoization_closure(MemoID),X,WF,P,T,B) :- !, |
5457 | | element_of_memoization_closure(MemoID,X,WF,P,T,B). |
5458 | | element_of_special_closure(_,X,WF,Parameters,PT,CondClosure) :- |
5459 | | % none of the special cases above apply after all |
5460 | ? | element_of_normal_closure(X,Parameters,PT,CondClosure,WF). |
5461 | | |
5462 | | :- block element_of_closure(?,-,?,?,?), element_of_closure(?,?,?,-,?). |
5463 | | % element_of_closure(X,Para,T,Body,_WF): check if X is a member of closure(Para,T,Body) |
5464 | | element_of_closure(X,Parameters,PT,CondClosure,WF) :- |
5465 | | is_special_closure(Parameters,PT,CondClosure, SpecialClosure),!, |
5466 | | %print_term_summary(element_of_special_closure(SpecialClosure,X,WF,Parameters,PT,CondClosure)), trace_in_debug_mode, |
5467 | ? | element_of_special_closure(SpecialClosure,X,WF,Parameters,PT,CondClosure). |
5468 | | element_of_closure(X,Parameters,PT,CondClosure,WF) :- |
5469 | | %print_term_summary(element_of_normal_closure(X,Parameters,PT,CondClosure,WF)), trace_in_debug_mode, |
5470 | ? | element_of_normal_closure(X,Parameters,PT,CondClosure,WF). |
5471 | | element_of_normal_closure(X,Parameters,PT,CondClosure,WF) :- |
5472 | | %hit_profiler:add_profile_hit(element_of_closure(X,Parameters,PT,CondClosure)), |
5473 | | same_length(Parameters,ParValues), |
5474 | | convert_list_into_pairs(ParValues,X), |
5475 | ? | b_test_closure_wo_enum(Parameters,PT,CondClosure,ParValues,WF). |
5476 | | |
5477 | | :- use_module(store,[set_up_localstate/4]). |
5478 | | :- block b_test_closure_wo_enum(?,?,-,?,?). |
5479 | | b_test_closure_wo_enum(Parameters,ParameterTypes,ClosurePred,ParValues,WF) :- |
5480 | | % same_length(Parameters,ParValues), % not necessary |
5481 | | set_up_localstate(Parameters,ParValues,[],LocalState), |
5482 | ? | b_enumerate:b_type_values_in_store(Parameters,ParameterTypes,LocalState), |
5483 | | copy_wf_start(WF,b_test_closure_wo_enum(Parameters),InnerWF), |
5484 | | % avoid that WF0 actions triggered before we have had a chance to traverse the expression |
5485 | ? | b_test_boolean_expression(ClosurePred,LocalState,[],InnerWF), |
5486 | ? | copy_wf_finish(WF,InnerWF). |
5487 | | |
5488 | | % recursive identifier to list of parameters with body as value |
5489 | | % NewValue is the Value that should be checked for membership in the adapted closure; it has one argument more |
5490 | | add_recursive_parameter(Parameters,Types,Value,TId,CondClosure,NewParameters,NewTypes,NewValue,WF) :- |
5491 | | TId = b(identifier(RId),SetType,_), % unification replaces: get_texpr_id(TId,RId), get_texpr_type(TId,SetType), |
5492 | | append(Parameters,[RId],NewParameters), |
5493 | | append(Types,[SetType],NewTypes), |
5494 | | %tools_printing:print_term_summary(recursion(Value)),nl, |
5495 | | % TO DO check some variant decreases |
5496 | | (kernel_waitflags:pending_abort_error(WF) |
5497 | | -> NewValue = (_,_) % prevent further expansion of recursion, in case WD error in recursive function |
5498 | | % TO DO: detect whether WD error occurs within recursive function, |
5499 | | % indeed, the expansion of the recursive function could be unrelated to WD error and be important to detect inconsistency which prevents WD error: e.g., 1/x=res & recfun(x) \= 0 |
5500 | | ,debug_println(19,stopping_recursion_due_to_wd_error) |
5501 | | ; NewValue = (Value,closure(Parameters,Types,CondClosure)) |
5502 | | ). |
5503 | | |
5504 | | |
5505 | | % same as above, but without a waitflag |
5506 | ? | element_of_custom_set(X,CS) :- element_of_custom_set2(CS,X). |
5507 | | |
5508 | | element_of_custom_set2(global_set(GS),X) :- !,element_of_global_set(X,GS). |
5509 | | element_of_custom_set2(freetype(ID),_) :- is_maximal_freetype(ID),!. % freetypes are always maximal at the moment |
5510 | | element_of_custom_set2(avl_set(AVL),X) :- !, |
5511 | | safe_avl_member(X,AVL). |
5512 | | element_of_custom_set2(CS,X) :- init_wait_flags(WF,[element_of_custom_set2]), |
5513 | | element_of_custom_set_wf2(CS,X,WF), |
5514 | ? | ground_wait_flags(WF). |
5515 | | |
5516 | | % --------------- |
5517 | | |
5518 | | % function application for closure |
5519 | | |
5520 | | % same as check_element_of_wf but does not wait on Y: |
5521 | | % should also work for relation ?? |
5522 | | |
5523 | | check_element_of_function_closure(X,Y,Parameters,PT,CondClosure,WF) :- |
5524 | | is_special_closure(Parameters,PT,CondClosure, SpecialClosure),!, % this covers recursive closures |
5525 | ? | element_of_special_closure(SpecialClosure,(X,Y),WF,Parameters,PT,CondClosure). |
5526 | | check_element_of_function_closure(X,Y, P,T,ClosureBody, WF) :- |
5527 | | % affects test 1312, unless we add s:seq(0..9) before calling num |
5528 | | % a special rule which tries and avoid enumerating solutions to arguments of function application |
5529 | | % usually a function application will either be given all arguments or maybe be used in inverse |
5530 | ? | is_converted_lambda_closure(P,T,ClosureBody), %is_converted_non_recursive_lambda_closure(P,T,ClosureBody), |
5531 | | % TO DO: also make this work for recursive closures by adding recursive args (see e.g. test 1302) |
5532 | | is_lambda_closure(P,T,ClosureBody, OtherIDs, OtherTypes, DomainPred, EXPR), |
5533 | | (debug:debug_level_active_for(4) -> |
5534 | | print('Apply Fun : '), translate:print_bexpr(DomainPred), print(' | '), translate:print_bexpr(EXPR),nl, |
5535 | | get_texpr_info(ClosureBody,I), print(info(I,WF)),nl, |
5536 | | print_term_summary((X,Y)),nl %,trace |
5537 | | ; true), |
5538 | | !, |
5539 | | % alternative: annotate X,Y as inner variable ? |
5540 | | get_texpr_info(ClosureBody,BInfo), |
5541 | ? | b_interpreter:set_up_typed_localstate2(OtherIDs,OtherTypes,BInfo,ParValues,_TypedVals,[],LocalState,positive), |
5542 | | convert_list_into_pairs(ParValues,SingleParValue), |
5543 | ? | kernel_objects:equal_object_wf(X,SingleParValue,check_element_of_function_closure,WF), |
5544 | | (is_truth(DomainPred) -> true |
5545 | | ; init_wait_flags(InnerWF,[check_element_of_function_closure]), |
5546 | | %copy_wf01e_wait_flags(WF,InnerWF), % we could delay copying WF0 until after test_boolean_expression of DomainPred ? |
5547 | | b_test_boolean_expression(DomainPred,LocalState,[],InnerWF), |
5548 | ? | get_wait_flag0(WF,WF0), get_wait_flag0(InnerWF,WF0), % was: ground_wait_flag0(InnerWF), but this can result in inner WF0 being set when outer is not yet set; see test 1948 |
5549 | | ground_value_check(X,GrX), |
5550 | | (nonvar(GrX) -> copy_waitflag_store(InnerWF,WF) % block would trigger already |
5551 | | ; ground_value_check(Y,GrY), |
5552 | | (nonvar(GrY) -> copy_waitflag_store(InnerWF,WF) % block would trigger already |
5553 | | ; get_last_wait_flag(check_element_of_function_closure(OtherIDs),WF,LastWF), |
5554 | | block_copy_waitflag_store(InnerWF,WF,GrX,GrY,LastWF) |
5555 | | ) |
5556 | | ) |
5557 | | ), |
5558 | ? | b_interpreter:b_compute_expression(EXPR,LocalState,[],Y,WF). |
5559 | | check_element_of_function_closure(X,Y, P,T,ClosureBody, WF) :- |
5560 | ? | element_of_normal_closure((X,Y),P,T,ClosureBody,WF). |
5561 | | % we could memoize on X here if /*@symbolic-memo */ pragma used and closure has special ID associated with it |
5562 | | |
5563 | | :- block block_copy_waitflag_store(?,?,-,-,-). |
5564 | | block_copy_waitflag_store(InnerWF,WF,_GrX,_GrY,_LWF) :- |
5565 | | % copy waitflags from InnerWF store to WF |
5566 | | copy_waitflag_store(InnerWF,WF). |
5567 | | |
5568 | | /* -------------- */ |
5569 | | /* NOT_ELEMENT_OF */ |
5570 | | /* -------------- */ |
5571 | | |
5572 | | :- use_module(kernel_objects,[not_element_of_global_set/2]). |
5573 | | |
5574 | | not_element_of_custom_set_wf(X,CS,WF) :- |
5575 | ? | not_element_of_custom_set_wf2(CS,X,WF). |
5576 | | |
5577 | | not_element_of_custom_set_wf2(global_set(GS),X,_WF) :- not_element_of_global_set(X,GS). |
5578 | | not_element_of_custom_set_wf2(freetype(_),_,_) :- !,fail. % TO DO: what if we have List(1..3) ? can that occur ?? |
5579 | | not_element_of_custom_set_wf2(avl_set(node(Y,_,_,empty,empty)),X,WF) :- !, |
5580 | | % X /: {Y} <=> X /= Y |
5581 | ? | kernel_objects:not_equal_object_wf(X,Y,WF). % improve if X is ground |
5582 | | not_element_of_custom_set_wf2(avl_set(AVL),X,_WF) :- !, |
5583 | | ground_value_check(X,GrX), |
5584 | ? | propagate_avl_not_element_information(X,GrX,AVL), |
5585 | | not_element_of_avl_set_block(GrX,X,AVL). |
5586 | | not_element_of_custom_set_wf2(closure(Parameters,PT,Cond),X,WF) :- |
5587 | | closure_not_member(X,Parameters,PT,Cond,WF). |
5588 | | |
5589 | | :- block not_element_of_avl_set_block(-,?,?). |
5590 | | not_element_of_avl_set_block(_,X,AVL) :- |
5591 | | convert_to_avl_inside_set(X,CX), |
5592 | | \+ avl_fetch(CX,AVL). %% IMPROVE ?? |
5593 | | |
5594 | | propagate_avl_not_element_information(_,GrEl,_) :- nonvar(GrEl),!. |
5595 | | propagate_avl_not_element_information(Element,_,AVL) :- preferences:preference(use_clpfd_solver,true), |
5596 | | is_avl_simple_set(AVL,Type), % integer or global(GS) \+ground(Element) , |
5597 | | ((Type=integer -> avl_height_less_than_with_solver_strength(AVL,6) % 16-31 elements - was: avl_size<20 |
5598 | | ; true) |
5599 | | -> !, |
5600 | ? | propagate_avl_not_element_information3(Type,Element,AVL) % uses clpfd_not_inlist |
5601 | | ; Type=integer, avl_height_less_than_with_solver_strength(AVL,15), |
5602 | | avl_is_interval(AVL,Min,Max) |
5603 | | -> !, |
5604 | | kernel_objects:not_in_nat_range(Element,int(Min),int(Max)) % WF not used anyway in _wf version |
5605 | | ). |
5606 | | propagate_avl_not_element_information(_Element,_,AVL) :- |
5607 | | quick_definitely_maximal_set_avl(AVL), |
5608 | | !, % we require something not to be an element of the full set; impossible |
5609 | | fail. |
5610 | | % to do: check if all but one element is in set |
5611 | | propagate_avl_not_element_information(_,_,_). |
5612 | | |
5613 | | avl_height_less_than_with_solver_strength(AVL,Limit) :- preference(solver_strength,SS), |
5614 | | RealLimit is Limit + SS/100, |
5615 | | avl_height_less_than(AVL,RealLimit). |
5616 | | |
5617 | | % try and compute a small finite cardinality for a ground value; fail if not possible |
5618 | | try_get_finite_max_card_from_ground_value(pred_true,2). |
5619 | | try_get_finite_max_card_from_ground_value(pred_false,2). |
5620 | | try_get_finite_max_card_from_ground_value(fd(_,Type),Card) :- |
5621 | | b_global_sets:b_fd_card(Type,Card), integer(Card). |
5622 | | try_get_finite_max_card_from_ground_value((A,B),Card) :- |
5623 | | try_get_finite_max_card_from_ground_value(A,CA), |
5624 | | try_get_finite_max_card_from_ground_value(B,CB), |
5625 | | Card is CA*CB, |
5626 | | Card < 20000. |
5627 | | try_get_finite_max_card_from_ground_value(rec(Fields),Card) :- |
5628 | | try_get_finite_max_card_from_fields(Fields,Card). |
5629 | | try_get_finite_max_card_from_ground_value(freeval(FreetypeId,_CaseId,_EArgs),Card) :- |
5630 | | freetype_cardinality(FreetypeId,Card), number(Card), Card < 20000. |
5631 | | try_get_finite_max_card_from_ground_value(avl_set(node(El,_True,_,_,_)),Card) :- |
5632 | | try_get_finite_max_card_from_ground_value(El,CEl), |
5633 | | CEl < 16, |
5634 | | safe_pow2(CEl,Card). |
5635 | | % int(_), term(floating(_)), string(_) are all infinite |
5636 | | |
5637 | | try_get_finite_max_card_from_fields([],1). |
5638 | | try_get_finite_max_card_from_fields([field(_,A)|TF],Card) :- |
5639 | | try_get_finite_max_card_from_ground_value(A,CA), |
5640 | | try_get_finite_max_card_from_fields(TF,CB), |
5641 | | Card is CA*CB, |
5642 | | Card < 20000. |
5643 | | |
5644 | | :- use_module(b_global_sets,[get_global_type_value/3]). |
5645 | | propagate_avl_not_element_information3(integer,int(El),AVL) :- |
5646 | | avl_domain(AVL,R),project_avl_domain_on_fd(R,FDList), |
5647 | | clpfd_interface:clpfd_not_inlist(El,FDList). |
5648 | | propagate_avl_not_element_information3(global(GS),FD,AVL) :- |
5649 | | get_global_type_value(FD,GS,El), % sets up the FD constraint if var; maybe we can detect inconsistency straightaway below |
5650 | | avl_domain(AVL,R),project_avl_domain_on_fd(R,FDList), % maybe we can compute directly the complement ? |
5651 | ? | clpfd_interface:clpfd_not_inlist(El,FDList). |
5652 | | |
5653 | | |
5654 | | :- block closure_not_member(?,-,?,?,?). |
5655 | | %, closure_not_member(-,?,?,?,?). /* El is unlikely to be instantiated by not_element_of test , but test 6 requires commenting out block declaration */ |
5656 | | |
5657 | | closure_not_member(X,Parameters,Types,Body,WF) :- |
5658 | | is_special_closure(Parameters,Types,Body,SpecialClosure),!, |
5659 | | not_element_of_special_closure(SpecialClosure,X,WF,Parameters,Types,Body). |
5660 | | closure_not_member(El,Parameters,PT,Cond,WF) :- |
5661 | | normal_closure_not_member(El,Parameters,PT,Cond,WF). |
5662 | | |
5663 | | :- use_module(memoization,[not_element_of_memoization_closure/6]). |
5664 | | not_element_of_special_closure(interval(LOW,UP),X,_WF,_Parameters,_Types,_Body) :- |
5665 | | !,kernel_objects:not_in_nat_range(X,int(LOW),int(UP)). |
5666 | | not_element_of_special_closure(member_closure(_ID,_Type,VAL),X,WF,_Parameters,_Types,_Body) :- |
5667 | | ( VAL = value(_) |
5668 | | ; VAL = cartesian_product(b(value(A),_,_),b(value(B),_,_))),!, |
5669 | | %hit_profiler:add_profile_hit(member(X,Par,Typ,Body)), |
5670 | | ( VAL=value(Set) -> kernel_objects:not_element_of_wf(X,Set,WF) |
5671 | | ; kernel_objects:not_is_cartesian_pair(X,A,B,WF)). |
5672 | | not_element_of_special_closure(not_member_closure(_ID,_Type,value(Set)),X,WF,_Parameters,_Types,_Body) :- |
5673 | | !,kernel_objects:check_element_of_wf(X,Set,WF). |
5674 | | not_element_of_special_closure(memoization_closure(MemoID),X,WF,P,T,B) :- !, |
5675 | | not_element_of_memoization_closure(MemoID,X,WF,P,T,B). |
5676 | | not_element_of_special_closure(recursive_special_closure(RId),X,WF,Parameters,Types,Body) :- |
5677 | | !, |
5678 | | add_recursive_parameter(Parameters,Types,X,RId,Body,NewParameters,NewPT,Value,WF), |
5679 | | normal_closure_not_member(Value,NewParameters,NewPT,Body,WF). |
5680 | | |
5681 | | not_element_of_special_closure(SC,_X,_WF,Parameters,Types,Body) :- |
5682 | | SC \= interval(_,_), |
5683 | | SC \= not_member_closure(_,_,_), |
5684 | | is_definitely_maximal_closure(Parameters,Types,Body), |
5685 | | !, |
5686 | | fail. |
5687 | | not_element_of_special_closure(_,X,WF,Parameters,Types,Body) :- |
5688 | | % falling back to normal test |
5689 | | normal_closure_not_member(X,Parameters,Types,Body,WF). |
5690 | | |
5691 | | :- use_module(library(lists),[same_length/2]). |
5692 | | |
5693 | | normal_closure_not_member(El,Parameters,PT,Cond,WF) :- |
5694 | | %hit_profiler:add_profile_hit(closure_not_member(El,Parameters,PT,Cond,WF)), |
5695 | | same_length(Parameters,ParValues), |
5696 | | convert_list_into_pairs(ParValues,El), |
5697 | | b_not_test_closure_wf(Parameters,PT,Cond,ParValues,WF). |
5698 | | |
5699 | | |
5700 | | |
5701 | | |
5702 | | /* -------------------------- */ |
5703 | | /* VARIOUS CLOSURE PREDICATES */ |
5704 | | /* -------------------------- */ |
5705 | | |
5706 | | |
5707 | | :- use_module(tools,[convert_list_into_pairs/2]). |
5708 | | :- use_module(b_interpreter,[b_test_boolean_expression/4, b_not_test_boolean_expression/4]). |
5709 | | :- use_module(b_enumerate). |
5710 | | |
5711 | | :- assert_pre(custom_explicit_sets:expand_closure_to_list(_,_,ClosureBody,_Result,_Done,_,_WF), |
5712 | | (nonvar(ClosureBody), |
5713 | | bsyntaxtree:check_if_typed_predicate(ClosureBody))). |
5714 | | :- assert_post(custom_explicit_sets:expand_closure_to_list(_,_,_,Result,_Done,_,_WF), |
5715 | | b_interpreter:value_type(Result)). |
5716 | | |
5717 | | :- block expand_interval_closure_to_avl(-,?,?), expand_interval_closure_to_avl(?,-,?). |
5718 | | expand_interval_closure_to_avl(Low,Up,Result) :- |
5719 | | Delta is Up-Low, |
5720 | | (Delta>9999 -> perfmessage(expanding_interval(Low,Up)) ; true), |
5721 | | construct_interval_ord_list(Low,Up,OL), |
5722 | | ord_list_to_avlset_direct(OL,ARes,expand_interval), |
5723 | ? | equal_object(ARes,Result,expand_interval_closure_to_avl). |
5724 | | construct_interval_ord_list(Low,Up,Res) :- |
5725 | | (Low>Up -> Res = [] |
5726 | | ; Res = [int(Low)-true|T], L1 is Low+1, construct_interval_ord_list(L1,Up,T) |
5727 | | ). |
5728 | | |
5729 | | :- block expand_interval_closure_to_list(-,?,?,?), expand_interval_closure_to_list(?,-,?,?). |
5730 | | expand_interval_closure_to_list(Low,Up,Result,Done) :- |
5731 | | construct_interval_list(Low,Up,OL), |
5732 | ? | equal_object(OL,Result,expand_interval_closure_to_list), |
5733 | | Done=true. |
5734 | | construct_interval_list(Low,Up,Res) :- |
5735 | | (Low>Up -> Res = [] |
5736 | | ; Res = [int(Low)|T], L1 is Low+1, construct_interval_list(L1,Up,T) |
5737 | | ). |
5738 | | |
5739 | | expand_closure_to_list([X],[integer],Body,Result,Done,_,_) :- |
5740 | ? | is_interval_closure_body(Body,X,Low,Up),!, |
5741 | | expand_interval_closure_to_list(Low,Up,Result,Done). |
5742 | | expand_closure_to_list(Par,Types,Body,Result,Done,Source,WF) :- |
5743 | ? | expand_normal_closure(Par,Types,Body,CResult,CDone,expand_closure_to_list(Source),WF), |
5744 | | expand_if_avl(CResult,Result,CDone,Done,Source), |
5745 | | lazy_check_elements_of_closure(Result,CDone, Par,Types,Body,WF). |
5746 | | |
5747 | | % Note: does slow down test 1306 (91ms mc time becomes 918 ms) |
5748 | | % as long as a closure has not been fully expanded, lazily check elements |
5749 | | % that are instantiated from the outside satisfy the closure predicate |
5750 | | % Note: this can also instantiate unknown values used inside the closure body |
5751 | | lazy_check_elements_of_closure(Result,CDone, Par,Types,Body,WF) :- |
5752 | | (WF==no_wf_available -> true |
5753 | | ; lazy_check_elements6(Result,CDone, Par,Types,Body,WF), |
5754 | | propagate_closure_body_value_set(Par,Types,Body,Result,CDone,WF) |
5755 | | ). |
5756 | | % TODO: check if closure is a non-ground projection-member closure and check elements |
5757 | | :- block lazy_check_elements6(-,-, ?,?,?,?). |
5758 | | lazy_check_elements6(_Result,CDone, _Par,_Types,_Body,_WF) :- nonvar(CDone),!. |
5759 | | lazy_check_elements6([H|T],CDone, Par,Types,Body,WF) :- !, |
5760 | ? | element_of_closure(H,Par,Types,Body,WF), |
5761 | ? | lazy_check_elements6(T,CDone, Par,Types,Body,WF). |
5762 | | lazy_check_elements6(avl_set(A),_CDone, Par,Types,Body,WF) :- !, |
5763 | | avl_max(A,X), |
5764 | | element_of_closure(X,Par,Types,Body,WF). |
5765 | | % TO DO: also check avl_min or even all elements ? |
5766 | | lazy_check_elements6(_,_,_,_,_,_). |
5767 | | |
5768 | | :- use_module(probsrc(bsyntaxtree),[create_typed_ids/3]). |
5769 | | % lazy check elements from non-var closure body against a result |
5770 | | % for example if we have {x| TRUE |-> x : Value } = Result and Value is not-ground, |
5771 | | % we can check that for all elements TRUE|->x of Value the corresponding x is in Result, see test 2466 |
5772 | | % slows down test 1987 |
5773 | | :- block propagate_closure_body_value_set(?,?,?,-,-,?). |
5774 | | % we delay until the result is known, possibly in SMT mode it could be useful to propagate earlier |
5775 | | propagate_closure_body_value_set(ParIDs,Types,Body,Result,CDone,WF) :- |
5776 | | var(CDone), % the closure has not yet been fully expanded |
5777 | | % check if this closure can profit from set membership propagation: |
5778 | | b_interpreter:is_for_all_set_membership_predicate2(Body,ParIDs,ParIDs,UnmatchedIDs,Set,_Pattern,_ParValues,_), |
5779 | | UnmatchedIDs=[], |
5780 | | Set = b(value(_Value),_,_), % check that the set is a value; it must be non-ground, otherwise CDone would be true |
5781 | | create_couple_term(ParIDs,Types,CoupleTerm), |
5782 | | SetTerm=b(value(Result),any,[]), |
5783 | | safe_create_texpr(member(CoupleTerm,SetTerm),pred,[],RHS), |
5784 | | create_typed_ids(ParIDs,Types,TIDs), |
5785 | | !, |
5786 | | propagate_closure_body_for_all(TIDs,Body,RHS,Result,CDone,WF). |
5787 | | propagate_closure_body_value_set(_,_,_,_,_,_WF). |
5788 | | |
5789 | | :- block propagate_closure_body_for_all(?,?,?,-,-,?). |
5790 | | propagate_closure_body_for_all(TIDs,Body,RHS,_,CDone,WF) :- var(CDone),!, |
5791 | | add_debug_message(closure,'Propagating from closure body to result: ',Body,Body), |
5792 | | Infos=[], |
5793 | | b_interpreter:b_for_all(TIDs,Infos,Body,RHS,[],[],WF). |
5794 | | propagate_closure_body_for_all(_,_,_,_Result,_CDone,_WF). % propagation not required; closure expanded, cf test 1987 |
5795 | | |
5796 | | %check_valid_avl(AVL,Origin) :- |
5797 | | % (nonvar(AVL) -> true |
5798 | | % ; add_internal_error('Var avl_set: ', check_valid_avl(AVL,Origin)),fail). |
5799 | | |
5800 | | :- block expand_if_avl(?,?,-,?,?). |
5801 | | expand_if_avl(avl_set(S),Result,_,Done,Source) :- !, % we could transmit a flag to expand_normal_closure so that transform_result_into_set does not expand to avl |
5802 | ? | expand_custom_set_to_list2(avl_set(S),Result,Done,_,expand_if_avl(Source),no_wf_available). |
5803 | | expand_if_avl(Res,Result,_,Done,Source) :- check_list(Res,expand_if_avl(Source)), |
5804 | ? | equal_object(Res,Result), Done=true. |
5805 | | |
5806 | | check_list(Res,_) :- nonvar(Res), is_list(Res),!. |
5807 | | check_list(Res,Src) :- add_error(Src,'Could not expand to list: ',Res). |
5808 | | is_list([]). is_list([_|_]). |
5809 | | |
5810 | | expand_closure_to_avl_or_list([X],[integer],Body,Result,_CheckTimeouts,_WF) :- |
5811 | ? | is_interval_closure_body(Body,X,Low,Up),!, |
5812 | | expand_interval_closure_to_avl(Low,Up,Result). |
5813 | | %expand_closure_to_avl_or_list(P,T,Body,Result,_WF) :- is_member_closure(P,T,Body,TS,Set), |
5814 | | % print(expand_member_closure(P,T,Body,TS,Set)),nl,fail. |
5815 | | expand_closure_to_avl_or_list(Par,Types,Body,Result,CheckTimeouts,WF) :- |
5816 | | expand_normal_closure(Par,Types,Body,CResult,_Done,CheckTimeouts,WF), |
5817 | | kernel_objects:equal_object(Result,CResult,expand_closure_to_avl_or_list). % may convert to AVL, should we wait for _Done? |
5818 | | |
5819 | | |
5820 | | % use WF just for call stack messages; we should not delay creating result |
5821 | | expand_closure_to_avl_wf([X],[integer],Body,Result,_WF) :- |
5822 | | is_interval_closure_body(Body,X,Low,Up),!, |
5823 | | expand_interval_closure_to_avl(Low,Up,Result). % we could pass WF |
5824 | | expand_closure_to_avl_wf(Par,Types,Body,Result,WF) :- |
5825 | ? | expand_normal_closure(Par,Types,Body,S,Done,check(expand_closure_to_avl),WF), |
5826 | | (ground_value(S) % ground value is sufficient to proceed; we do not need to check Done |
5827 | | -> convert_to_avl_inside_set(S,R),equal_object(R,Result,expand_closure_to_avl) |
5828 | | ; print(cannot_convert_closure_value_to_avl(closure(Par,Types),done(Done))),nl, |
5829 | | translate:print_bexpr(Body),nl,trace, |
5830 | | fail). |
5831 | | |
5832 | | |
5833 | | % possible values for CheckTimeouts: check, check_no_inf, no_check, ... |
5834 | | % Note: we no longer check is_infinite_explicit_set(closure(Parameters,ParameterTypes,ClosureBody)) |
5835 | | % and no longer raise add_closure_warning(Source,Parameters,ParameterTypes,ClosureBody,'### WARNING: expanding infinite comprehension set: ') |
5836 | | % and no longer use preference warn_when_expanding_infinite_closures |
5837 | | % this is relevant for e.g., test 1291 |
5838 | | expand_normal_closure(Parameters,ParameterTypes,ClosureBody,Result,Done,CheckTimeouts,WF) :- |
5839 | ? | expand_normal_closure_memo(CheckTimeouts,Parameters,ParameterTypes,ClosureBody,Result,Done,WF). |
5840 | | |
5841 | | :- public add_closure_warning_wf/6. |
5842 | | add_closure_warning_wf(Source,Parameters,_ParameterTypes,_ClosureBody,_MSG,_WF) :- |
5843 | | preference(provide_trace_information,false),preference(strict_raise_warnings,false),!, |
5844 | | format('### TIME-OUT raised during closure expansion (~w,~w).~n### set TRACE_INFO preference to TRUE for more details.~n',[Parameters,Source]). |
5845 | | add_closure_warning_wf(Source,Parameters,ParameterTypes,ClosureBody,MSG,WF) :- |
5846 | | (debug_mode(on) -> Limit = 2500, AvlLim=10 ; Limit = 500, AvlLim=5), |
5847 | | preferences:temporary_set_preference(expand_avl_upto,AvlLim,CHNG), |
5848 | | call_cleanup(translate:translate_bvalue_with_limit(closure(Parameters,ParameterTypes,ClosureBody),Limit,CT), |
5849 | | preferences:reset_temporary_preference(expand_avl_upto,CHNG)), |
5850 | | bsyntaxtree:get_texpr_info(ClosureBody,Infos), |
5851 | | add_warning_wf(Source,MSG,CT,Infos,WF), debug_print(19,'! infos: '), debug_println(Infos). %,trace. |
5852 | | |
5853 | | |
5854 | | :- use_module(memoization,[is_memoization_closure/4,get_complete_memoization_expansion/6]). |
5855 | | |
5856 | | % a version of closure expansion which memoizes its results; stored_expansion needs to be cleared when new machine loaded |
5857 | | expand_normal_closure_memo(CHECK,Parameters,ParameterTypes,ClosureBody,FullResult,Done,WF) :- |
5858 | ? | is_memoization_closure(Parameters,ParameterTypes,ClosureBody,MemoID), |
5859 | | !, Span=ClosureBody, |
5860 | | % MemoID can be a variable |
5861 | | (var(MemoID) -> perfmessage(CHECK,'Getting full value of a memoized function',ClosureBody) ; true), |
5862 | | get_complete_memoization_expansion(MemoID,FullResult,Done,Span,expand_normal_closure_memo(CHECK),WF). |
5863 | | expand_normal_closure_memo(CHECK,Parameters,ParameterTypes,ClosureBody,FullResult,Done,WF) :- |
5864 | | preferences:preference(use_closure_expansion_memoization,false),!, |
5865 | ? | expand_normal_closure2(CHECK,Parameters,ParameterTypes,ClosureBody,FullResult,Done,WF). |
5866 | | expand_normal_closure_memo(CHECK,Parameters,ParameterTypes,ClosureBody,FullResult,Done,WF) :- |
5867 | | % maybe we should only memo when ClosureWaitVars are ground ? |
5868 | | MemoLookupTerm = closure(Parameters,ParameterTypes,ClosureBody), |
5869 | | compute_memo_hash(MemoLookupTerm,Hash), |
5870 | | % idea: maybe store expansion only on second hit ? |
5871 | | (get_stored_memo_expansion(Hash,MemoLookupTerm,StoredResult) |
5872 | | -> %print_term_summary(reusing_expansion(Hash,Parameters,ParameterTypes,ClosureBody,StoredResult)),nl, |
5873 | | UPV=StoredResult, %state_packing:unpack_value(StoredResult,UPV), |
5874 | | FullResult = UPV, Done=true |
5875 | | ; %statistics(runtime,[T1,_]), %% |
5876 | | expand_normal_closure2(CHECK,Parameters,ParameterTypes,ClosureBody,FullResult,Done,WF), |
5877 | | %statistics(runtime,[T2,_]), Time is T2-T1, store_memo_computation_time(Hash,Time), |
5878 | | (Done==true/* ,T2-T1>0*/ |
5879 | | -> PackedValue=FullResult, %state_packing:pack_value(FullResult,PackedValue), |
5880 | | store_memo_expansion(Hash,MemoLookupTerm,PackedValue) |
5881 | | ; true) |
5882 | | ). |
5883 | | |
5884 | | |
5885 | | expand_normal_closure2(_CHECK,Parameters,ParameterTypes,ClosureBody,FullResult,Done,WF) :- |
5886 | | % TO DO: add more symbolic member closures who have expression computation code |
5887 | | is_closure1_value_closure(Parameters,ParameterTypes,ClosureBody,VAL),!, |
5888 | ? | bsets_clp:relational_trans_closure_wf(VAL,FullResult,WF), |
5889 | | ground_value_check(FullResult,FRGr), |
5890 | | when(nonvar(FRGr),Done=true). |
5891 | | expand_normal_closure2(CHECK,Parameters,ParameterTypes,ClosureBody,FullResult,Done,WF) :- |
5892 | | % special treatment for lambda closures: Advantage: we don't have to wait for variables in EXPR body of closure |
5893 | | % Disadvantage: EXPR only gets evaluated after a solution has been found for args: can mean repeated computations ! |
5894 | | % (cf pas_as_env_inv_cv_sui, negated version of !(cv_i).(cv_i : t_cv_pas => closure(%cv_o2.((...|>> {cv_i} : t_cv_pas <-> t_cv_pas) ASSERTION |
5895 | | % Advantage: it can solve constraints such as f = %x.(x:1..10|x+y) & f(5)=1005 (finding y without enumeration); see test 1168 |
5896 | | \+ preferences:preference(use_smt_mode,false), |
5897 | | is_lambda_closure(Parameters,ParameterTypes,ClosureBody, OtherIDs,OtherTypes, DomainPred, EXPR), |
5898 | | \+ ground_bexpr(EXPR), % if EXPR is ground, there is nothing to be gained by special treatment here |
5899 | | WF \= no_wf_available, % otherwise we may have to enumerate EXPR result leading to choice points, e.g. in phase 0 |
5900 | | !, |
5901 | | bexpr_variables(DomainPred,ClosureWaitVars), |
5902 | | (CHECK=no_check -> TIMEOUTCODE = true ; |
5903 | | TIMEOUTCODE = add_closure_warning_wf(CHECK,Parameters,ParameterTypes,ClosureBody, |
5904 | | 'TIME-OUT occurred while ProB was expanding: ',WF)), |
5905 | | (CHECK=check_no_inf -> VIRTUALTIMEOUTCODE=true ; VIRTUALTIMEOUTCODE=TIMEOUTCODE), |
5906 | | delay_setof_check_wf( ParTuple, |
5907 | | (custom_explicit_sets:b_test_closure(OtherIDs,OtherTypes,DomainPred,OtherValues,all_solutions,WF), |
5908 | | convert_list_into_pairs(OtherValues,ParTuple) |
5909 | | % TO DO: compile EXPR when we start expanding the closure: to avoid repeated re-computation of expressions for every instance |
5910 | | ), |
5911 | | Result, ClosureWaitVars, __Done, |
5912 | | TIMEOUTCODE,VIRTUALTIMEOUTCODE,WF,DomainPred), |
5913 | | (WF = no_wf_available |
5914 | | -> init_wait_flags(WF1,[expansion_context(lambda_function_result,Parameters)]) |
5915 | | ; WF1=WF |
5916 | | ), |
5917 | | evaluate_result_expr(Result,EXPR,OtherIDs,EvResult,EvDone,WF1), |
5918 | | when(nonvar(EvDone),( |
5919 | | (WF = no_wf_available -> ground_wait_flags(WF1) ; true), |
5920 | | kernel_objects:equal_object_wf(EvResult,FullResult,expand_normal_closure2,WF), |
5921 | | Done=true)). |
5922 | | expand_normal_closure2(no_check,Parameters,ParameterTypes,ClosureBody,Result,Done,WF) :- !, |
5923 | | expand_normal_closure_direct(Parameters,ParameterTypes,ClosureBody,Result,Done,WF). |
5924 | | expand_normal_closure2(CHECK,Parameters,ParameterTypes,ClosureBody,Result,Done,WF) :- |
5925 | | bexpr_variables(ClosureBody,ClosureWaitVars), |
5926 | | TIMEOUTCODE = add_closure_warning_wf(CHECK,Parameters,ParameterTypes,ClosureBody, |
5927 | | 'TIME-OUT occurred while ProB was expanding: ',WF), |
5928 | | (CHECK=check_no_inf -> VIRTUALTIMEOUTCODE=true ; VIRTUALTIMEOUTCODE=TIMEOUTCODE), |
5929 | | % Note: delay_setof_check_wf will throw enumeration warning for virtual timeouts, after VIRTUALTIMEOUTCODE |
5930 | | delay_setof_check_wf( ParTuple, |
5931 | | custom_explicit_sets:test_closure_and_convert(Parameters,ParameterTypes,ClosureBody, ParTuple,WF), |
5932 | | Result, ClosureWaitVars, Done, TIMEOUTCODE, VIRTUALTIMEOUTCODE,WF,ClosureBody). |
5933 | | |
5934 | | expand_normal_closure_direct(Parameters,ParameterTypes,ClosureBody,Result,Done,WF) :- |
5935 | | bexpr_variables(ClosureBody,ClosureWaitVars), |
5936 | | Span = ClosureBody, |
5937 | | delay_setof_wf( ParTuple, |
5938 | | % TO DO: refresh waitflag in outer WF store to let pending code run to completion and avoid spurious WD errors ? |
5939 | | custom_explicit_sets:test_closure_and_convert(Parameters,ParameterTypes,ClosureBody, ParTuple,WF), |
5940 | | Result, ClosureWaitVars, Done,WF, Span). |
5941 | | |
5942 | | |
5943 | | |
5944 | | :- block evaluate_result_expr(-,?,?,?,?,?). |
5945 | | evaluate_result_expr(avl_set(AVL),EXPR,OtherIDs,Res,Done,WF) :- |
5946 | | avl_domain(AVL,R), |
5947 | | evaluate_result_expr(R,EXPR,OtherIDs,Res,Done,WF). |
5948 | | evaluate_result_expr([],_EXPR,_OtherIDs,[],Done,_WF) :- |
5949 | | %ground_wait_flags(WF), |
5950 | | Done=true. |
5951 | | evaluate_result_expr([ParTuple|T],EXPR,OtherIDs,[FullTuple|ET],Done,WF) :- |
5952 | | % same_length(OtherIDs,ParValues), % not necessary |
5953 | | set_up_localstate(OtherIDs,ParValues,[],LocalState), |
5954 | | convert_list_into_pairs(ParValues,ParTuple), % bind values in ParTuple to LocalState |
5955 | | b_interpreter:b_compute_expression(EXPR,LocalState,[],EXPRVALUE,WF), |
5956 | | append(ParValues,[EXPRVALUE],FullValues), |
5957 | | convert_list_into_pairs(FullValues,FullTuple), |
5958 | | evaluate_result_expr(T,EXPR,OtherIDs,ET,Done,WF). |
5959 | | |
5960 | | :- use_module(bsyntaxtree,[split_names_and_types/3]). |
5961 | | :- use_module(probsrc(bsyntaxtree), [def_get_texpr_id/2]). |
5962 | | %:- use_module(library(lists),[prefix_length/3, suffix_length/3]). |
5963 | | % test a closure and convert into pairs; assume we want all solutions |
5964 | | test_closure_and_convert(Parameters,ParameterTypes,ClosureBody, ParTuple, WF) :- |
5965 | ? | is_recursive_closure(Parameters,ParameterTypes,ClosureBody), |
5966 | ? | get_recursive_identifier_of_closure_body(ClosureBody,TRID),!, |
5967 | | def_get_texpr_id(TRID,RID), get_texpr_type(TRID,RType), |
5968 | | %print(test_recursion(RID)),nl, translate:nested_print_bexpr(ClosureBody),nl, |
5969 | | RecVal = closure(Parameters,ParameterTypes,ClosureBody), % Recursive Value added to parameters |
5970 | | same_length(Parameters,ParValues), |
5971 | | reset_closure_solution_counter(Parameters), |
5972 | ? | b_test_closure([RID|Parameters],[RType|ParameterTypes],ClosureBody,[RecVal|ParValues],all_solutions,WF), |
5973 | | convert_sol_list_into_pairs(ParValues,Parameters,ParTuple). % convert tuple without recursive value to ParTuple |
5974 | | test_closure_and_convert(Parameters,ParameterTypes,b(exists(EParAndTypes,ClosureBody),pred,OuterInfo), ParTuple, WF) :- |
5975 | | % Motivation: enumerating Parameters can be quite inefficient |
5976 | | % if for example we have something like {x|#y.(y:SmallSet & x=f(y))} |
5977 | | % Problem: the existential quantifier will be delayed until the Parameters are instantiated ! |
5978 | | % relevant test: 1162 |
5979 | | % Note: this is duplicating to some extent the code in b_test_exists_wo_expansion |
5980 | | % However, here we can also apply lambda_closure optimisation in b_test_closure below, this is |
5981 | | % relevant for private_examples/2023/.../rule_FICHIER_MRGATKSAATPAR_RVF219_MRGA_DE.mch |
5982 | ? | exists_should_be_lifted(Parameters,ParameterTypes,OuterInfo,ClosureBody), |
5983 | | split_names_and_types(EParAndTypes,EPar,ETypes), |
5984 | | !, |
5985 | | % print(' Lifting existential quantifier (i.e., enumerating paras with closure paras): '), print(EPar),nl, |
5986 | | % print(outer_paras(Parameters)),nl, |
5987 | | % append Parameters at end; in case we have a lambda function |
5988 | | append(EPar,Parameters,FullPar), length(Parameters,NrParas), |
5989 | | append(ETypes,ParameterTypes,FullTypes), |
5990 | | length(EPar,NrExistsParas), |
5991 | | length(IrrelevantParas,NrExistsParas), length(Suffix,NrParas), |
5992 | | append(IrrelevantParas,Suffix,FullParList), |
5993 | | copy_identifier_infos(OuterInfo,ClosureBody,ClosureBody2), |
5994 | | reset_closure_solution_counter(Parameters), |
5995 | | % bsyntaxtree:check_used_ids_in_ast(ClosureBody2), |
5996 | ? | b_test_closure(FullPar,FullTypes,ClosureBody2, FullParList,all_solutions,WF), |
5997 | | convert_sol_list_into_pairs(Suffix,Parameters,ParTuple). |
5998 | | test_closure_and_convert(Parameters,ParameterTypes,ClosureBody, ParTuple, WF) :- |
5999 | | reset_closure_solution_counter(Parameters), |
6000 | | % print(test),nl, translate:nested_print_bexpr(ClosureBody),nl, |
6001 | | length(Parameters,Len), length(ParValues,Len), |
6002 | | %(annotate_exists(Parameters,ParameterTypes,ClosureBody,Body2) -> true ; Body2=ClosureBody), |
6003 | ? | b_test_closure(Parameters,ParameterTypes,ClosureBody,ParValues,all_solutions,WF), |
6004 | | convert_sol_list_into_pairs(ParValues,Parameters,ParTuple). % ,print(solution(ParTuple)),nl,nl. |
6005 | | |
6006 | | % Lifting existential quantifier was previously done here, but was duplicating code in b_test_exists_wo_expansion |
6007 | | % we now simply generate the allow_to_lift_exists annotation here and let b_test_exists_wo_expansion do its job |
6008 | | %annotate_exists(Parameters,ParameterTypes, |
6009 | | % b(exists(EParAndTypes,ClosureBody),pred,OuterInfo), |
6010 | | % b(exists(EParAndTypes,ClosureBody),pred,[allow_to_lift_exists|OuterInfo])) :- |
6011 | | % exists_should_be_lifted(Parameters,ParameterTypes,OuterInfo,ClosureBody). |
6012 | | |
6013 | | % check if a top-level exists with body ExistsClosureBody should be lifted |
6014 | | % within a closure with paras Parameters of type ParameterTypes: |
6015 | | exists_should_be_lifted(Parameters,ParameterTypes,OuterInfo,ExistsClosureBody) :- |
6016 | | (Parameters == ['_was_lambda_result_'] % here we are quite sure that we gain by this optimisation |
6017 | ? | ; member(allow_to_lift_exists,OuterInfo) % parameters were originally from a set comprehension, |
6018 | | % see test 306: in this case existential quantifier is lifted in b_interpreter anyway; |
6019 | | % Note we counter the rewrite ran({x1,...xn|P}) ---> {xn| #(x1,...).(P)} and similarly for dom({...}) |
6020 | | ; ExistsClosureBody = b(member(_,_),_,_) % we have a simple projection closure |
6021 | | % TO DO: maybe support other ones as well |
6022 | ? | ; basic_type_list_cardinality(ParameterTypes,Card), |
6023 | | (Card=inf -> true ; Card>10000) |
6024 | | % if here are only a few parameter values: do not lift existential quantified variables |
6025 | | ). |
6026 | | |
6027 | | % we need to copy important infos about the outer Parameters to ClosureBody |
6028 | | copy_identifier_infos(Info,b(InnerPred,T,II),b(InnerPred,T,II2)) :- |
6029 | | findall(I,identifier_info(I,Info),ToCopy), |
6030 | | append(ToCopy,II,II2). |
6031 | | identifier_info(I,Info) :- I=prob_annotation('DO_NOT_ENUMERATE'(ID)), |
6032 | ? | member(I,Info), ID \= '$$NONE$$'. |
6033 | | |
6034 | | convert_sol_list_into_pairs(ParaValues,Parameters,ParTuple) :- |
6035 | | convert_list_into_pairs(ParaValues,ParTuple), |
6036 | | update_closure_solution_counter(Parameters,ParTuple). |
6037 | | |
6038 | | :- if(environ(prob_debug_flag,true)). |
6039 | | :- dynamic closure_solution_counter/3. |
6040 | | % debugging long expansions of comprehension_set / closures |
6041 | | reset_closure_solution_counter(Parameters) :- retractall(closure_solution_counter(Parameters,_,_)). |
6042 | | |
6043 | | update_closure_solution_counter(Parameters,ParTuple) :- |
6044 | | retract(closure_solution_counter(Parameters,OldCount,OldTime)),!, |
6045 | | statistics(walltime,[W2,_]), Delta is W2-OldTime, |
6046 | | NewCount is OldCount+1, |
6047 | | ((Delta > 5000 ; NewCount mod 1000 =:= 0) |
6048 | | -> format('--> Solution ~w for expansion of closure ~w (delta ~w ms): ',[NewCount,Parameters,Delta]), |
6049 | | translate:print_bvalue(ParTuple),nl, |
6050 | | assert(closure_solution_counter(Parameters,NewCount,W2)) |
6051 | | ; assert(closure_solution_counter(Parameters,NewCount,OldTime)) |
6052 | | ). |
6053 | | update_closure_solution_counter(Parameters,_ParTuple) :- |
6054 | | statistics(walltime,[W2,_]), |
6055 | | assert(closure_solution_counter(Parameters,1,W2)). |
6056 | | :- else. |
6057 | | reset_closure_solution_counter(_). |
6058 | | update_closure_solution_counter(_,_). |
6059 | | :- endif. |
6060 | | |
6061 | | |
6062 | | |
6063 | | % compute cardinality of a list of basic types |
6064 | | basic_type_list_cardinality([],1). |
6065 | | basic_type_list_cardinality([BasicType|T],Res) :- |
6066 | ? | basic_type_list_cardinality(T,TCard), |
6067 | | (TCard=inf -> Res=inf |
6068 | ? | ; kernel_objects:max_cardinality(BasicType,Card), |
6069 | | safe_mul(Card,TCard,Res) |
6070 | | ). |
6071 | | |
6072 | | % for lambda closures we can set up a second waitflag for the expression and only ground it when body enumeration finished |
6073 | | % idea is to avoid perturbation of constraint solving of main closure predicate by lambda expression, see test 1737 |
6074 | | % something like %(x,y).(x:1..200 & y:1..100 & y+x<259 & y*x>10|(y+x*x+y) mod 100) is faster |
6075 | | % this is slower : %(x,y).(x:1..200 & y:1..100 |(y+x*x+y)) |
6076 | | % currently this slows down test 1336 |
6077 | | :- block b_test_closure(?,?,-,?,?,?). |
6078 | | b_test_closure(Parameters,ParameterTypes,ClosureBody, FullParValues, NegationContext, OuterWF) :- |
6079 | | (preference(data_validation_mode,true) |
6080 | | -> true % avoids ineraction between domain and range expression enumeration; see |
6081 | | % private_examples/ClearSy/2019_May/perf_3264/rule_186.mch or |
6082 | | % computation of 631 ic___DMI_MRGATKSAAT___Parametre_Identifiant_indices_function in rule_FICHIER_MRGATKSAATPAR_RVF219_MRGA_DE.mch |
6083 | | % however, as b_optimize below does *not* evaluate nested set comprehensions, there can be a slowdown: |
6084 | | % the nested set comprehension gets re-evaluated for every soluiton of the lambda parameters ! |
6085 | | % this was the case of private_examples/ClearSy/2019_Nov/rule_Regle_31C_0005/rule.mch before using SORT |
6086 | | ; \+ preferences:preference(use_smt_mode,false)), % TO DO: enable in normal mode when performance of 1336 fixed |
6087 | | % print(test_closure(Parameters,FullParValues)),nl, |
6088 | | is_lambda_closure(Parameters,ParameterTypes,ClosureBody, OtherIDs,OtherTypes, DomainPred, EXPR), |
6089 | | % TO DO: detect not only equalities at end, but any equality which is irrelevant for the rest |
6090 | | % nl,print(lambda_closure(OtherIDs)),nl, translate:print_bexpr(EXPR),nl, |
6091 | | append(ParValues,[LambdaResult],FullParValues), |
6092 | | !, |
6093 | | get_texpr_info(ClosureBody,BInfo), |
6094 | ? | b_interpreter:set_up_typed_localstate2(OtherIDs,OtherTypes,BInfo,ParValues,TypedVals,[],LocalState,NegationContext), |
6095 | | simplify_span(ClosureBody,BSpan), % sometimes BInfo no longer contains a position info, but first_sub_expr does |
6096 | | init_quantifier_wait_flag(OuterWF,comprehension_set(NegationContext),OtherIDs,ParValues,BSpan,WF), |
6097 | ? | b_test_boolean_expression(DomainPred,LocalState,[],WF), |
6098 | | %print('PRED: '),translate:print_bexpr(ClosureBody),nl, |
6099 | | b_tighter_enumerate_values_in_ctxt(TypedVals,DomainPred,WF), % also does: project_away_useless_enumeration_values |
6100 | | init_quantifier_wait_flag(OuterWF,comprehension_set(NegationContext),OtherIDs,ParValues,BSpan,WF2), |
6101 | ? | b_compiler:b_optimize(EXPR,[],LocalState,[],CEXPR,WF), % already pre-compile lookup, without constraint processing; is not sufficient for test 1336 |
6102 | ? | ground_wait_flags(WF), % TODO: also call ground inner WF in context |
6103 | ? | b_interpreter:b_compute_expression(CEXPR,LocalState,[],LambdaResult,WF2), |
6104 | | ground_inner_wait_flags_in_context(NegationContext,WF2). |
6105 | | b_test_closure(Parameters,ParameterTypes,ClosureBody,ParValues,NegationContext, OuterWF) :- |
6106 | | % tools:print_bt_message(b_test_closure_testing_closure(Parameters,ParValues)), %% |
6107 | | get_texpr_info(ClosureBody,BInfo), |
6108 | ? | b_interpreter:set_up_typed_localstate2(Parameters,ParameterTypes,BInfo, |
6109 | | ParValues,TypedVals,[],LocalState,NegationContext), |
6110 | | % print_message(b_interpreter:b_test_boolean_expression(ClosureBody,LocalState,[],WF)), |
6111 | | simplify_span(ClosureBody,BSpan), % sometimes BInfo no longer contains a position info, but first_sub_expr does |
6112 | | init_quantifier_wait_flag(OuterWF,comprehension_set(NegationContext),Parameters,ParValues,BSpan,WF), |
6113 | | %external_functions:observe_parameters(Parameters,LocalState), %% |
6114 | ? | b_test_boolean_expression(ClosureBody,LocalState,[],WF), |
6115 | | % tools:print_bt_message(tested_bool_expr), translate:print_bexpr(ClosureBody),nl, |
6116 | | b_enumerate:b_tighter_enumerate_values_in_ctxt(TypedVals,ClosureBody,WF), % also detects useless enumeration ids |
6117 | ? | ground_inner_wait_flags_in_context(NegationContext,WF). |
6118 | | |
6119 | | |
6120 | | |
6121 | | :- block b_not_test_closure_wf(?,?,?,-,?). |
6122 | | b_not_test_closure_wf(Parameters,ParameterTypes,Closure,ParValues,WF) :- |
6123 | | % same_length(Parameters,ParValues), % not necessary |
6124 | | set_up_localstate(Parameters,ParValues,[],LocalState), |
6125 | | b_enumerate:b_type_values_in_store(Parameters,ParameterTypes,LocalState), |
6126 | | b_not_test_boolean_expression(Closure,LocalState,[],WF), |
6127 | | get_last_wait_flag(b_not_test_closure_wf(Parameters),WF,WF2), |
6128 | | get_texpr_info(Closure,Infos), |
6129 | | b_not_test_closure_enum(Parameters,ParameterTypes,Infos,LocalState,WF,WF2). |
6130 | | |
6131 | | :- block b_not_test_closure_enum(-,?,?,?,?,?). |
6132 | | b_not_test_closure_enum(Parameters,ParameterTypes,Infos,LocalState,WF,WF2) :- |
6133 | | b_enumerate:b_extract_typedvalc(Parameters,ParameterTypes,Infos,LocalState,TypedVals), |
6134 | | (var(WF2) -> ground_typedvals_check(TypedVals,GrVals) ; true), |
6135 | | b_not_test_closure_enum_aux(GrVals,WF2,TypedVals,WF). |
6136 | | |
6137 | | :- block b_not_test_closure_enum_aux(-,-,?,?). |
6138 | | b_not_test_closure_enum_aux(_,_,TypedVals,WF) :- |
6139 | | b_enumerate:b_tighter_enumerate_all_values(TypedVals,WF). |
6140 | | % , print(finished_enum(Parameters)),nl. |
6141 | | |
6142 | | |
6143 | | :- use_module(library(terms)). |
6144 | | % check whether a VARIABLE occurs inside a closure |
6145 | | closure_occurs_check(VARIABLE,_Par,_ParTypes,ClosureBody) :- expression_contains_setvar(ClosureBody,VARIABLE). |
6146 | | % /* occurs check; x = closure1(x) ; for other closures this cannot happen ???!!! TO DO: Check */ |
6147 | | % custom_explicit_sets:is_closure1_value_closure(Par,ParTypes,ClosureBody,Val), |
6148 | | % contains_var(VARIABLE,Val). |
6149 | | |
6150 | | expression_contains_setvar(b(E,_,_),Variable) :- !, |
6151 | | expression_contains_setvar_aux(E,Variable). |
6152 | | expression_contains_setvar(E,V) :- add_internal_error('Illegal Expression: ', expression_contains_setvar(E,V)), |
6153 | | contains_var(V,E). |
6154 | | |
6155 | | expression_contains_setvar_aux(value(Val),Variable) :- !,value_contains_setvar(Val,Variable). |
6156 | | % a few very common cases for performance; currently this predicate is often called for recursive functions |
6157 | | expression_contains_setvar_aux(identifier(_),_) :- !,fail. |
6158 | | expression_contains_setvar_aux(equal(A,B),Variable) :- !, |
6159 | | (expression_contains_setvar(A,Variable) -> true ; expression_contains_setvar(B,Variable)). |
6160 | | expression_contains_setvar_aux(conjunct(A,B),Variable) :- !, |
6161 | | (expression_contains_setvar(A,Variable) -> true ; expression_contains_setvar(B,Variable)). |
6162 | | expression_contains_setvar_aux(function(A,B),Variable) :- !, |
6163 | | (expression_contains_setvar(A,Variable) -> true ; expression_contains_setvar(B,Variable)). |
6164 | | expression_contains_setvar_aux(union(A,B),Variable) :- !, |
6165 | | (expression_contains_setvar(A,Variable) -> true ; expression_contains_setvar(B,Variable)). |
6166 | | expression_contains_setvar_aux(couple(A,B),Variable) :- !, |
6167 | | (expression_contains_setvar(A,Variable) -> true ; expression_contains_setvar(B,Variable)). |
6168 | | % the rest via safe_syntaxelement: |
6169 | | expression_contains_setvar_aux(Expr,V) :- |
6170 | | safe_syntaxelement_det(Expr,Subs,_Names,_,_),!, |
6171 | ? | member(Sub,Subs), expression_contains_setvar(Sub,V),!. |
6172 | | expression_contains_setvar_aux(E,V) :- add_internal_error('Illegal Expression: ', expression_contains_setvar_aux(E,V)), |
6173 | | contains_var(V,E). |
6174 | | |
6175 | | value_contains_setvar(Val,V) :- var(Val),!,Val==V. |
6176 | | value_contains_setvar(avl_set(_),_V) :- !, fail. % assume avl_set always properly grounded; avoid looking inside |
6177 | | value_contains_setvar(closure(_,_,Body),V) :- !, |
6178 | | expression_contains_setvar(Body,V). |
6179 | | value_contains_setvar(int(_),_) :- !,fail. % we check for set variables |
6180 | | value_contains_setvar(global_set(_),_) :- !,fail. % we check for set variables |
6181 | | value_contains_setvar(freetype(_),_) :- !,fail. % we check for set variables |
6182 | | value_contains_setvar(freeval(_ID,_Case,Val),V) :- !, value_contains_setvar(Val,V). |
6183 | | value_contains_setvar(string(_),_) :- !,fail. % we check for set variables |
6184 | | value_contains_setvar(fd(_,_),_) :- !,fail. % we check for set variables |
6185 | | value_contains_setvar((A,B),V) :- !, (value_contains_setvar(A,V) ; value_contains_setvar(B,V)). |
6186 | | value_contains_setvar([A|B],V) :- !, (value_contains_setvar(A,V) ; value_contains_setvar(B,V)). |
6187 | | value_contains_setvar(Val,V) :- |
6188 | | contains_var(V,Val). |
6189 | | |
6190 | | % ------------------ |