1 % (c) 2020-2025 Lehrstuhl fuer Softwaretechnik und Programmiersprachen,
2 % Heinrich Heine Universitaet Duesseldorf
3 % This software is licenced under EPL 1.0 (http://www.eclipse.org/org/documents/epl-v10.html
4
5 :- module(well_def_hyps, [empty_hyps/1,
6 portray_hyps/1,
7 get_hyp_vars/2,
8 get_hyp_var_type/3,
9 push_hyp/4, push_hyps/4,
10 push_hyps_wo_renaming/4,
11 push_normalized_hyp/3,
12 push_and_rename_normalized_hyp/3,
13 hyps_inconsistent/1,
14 add_new_hyp_variables/3,
15 add_new_hyp_any_vars/3,
16 copy_hyp_variables/3,
17 is_hyp_var/2,
18 get_clash_renaming_subst/2,
19 get_renamed_expression/3,
20 get_normalized_and_renamed_predicate/4,
21 translate_norm_expr_with_limit/3,
22 negate_hyp/2,
23 negate_op/2,
24 is_finite_type_for_wd/2
25 ]).
26
27 :- use_module(probsrc(module_information),[module_info/2]).
28 :- module_info(group,well_def_prover).
29 :- module_info(description,'This module provides hypotheses stack management.').
30
31
32
33 :- use_module(wdsrc(well_def_tools), [not_occurs/2]).
34 :- use_module(probsrc(error_manager)).
35 :- use_module(probsrc(debug)).
36 :- use_module(library(avl)).
37 :- use_module(library(ordsets)).
38 :- use_module(probsrc(avl_tools),[avl_fetch_bin/4]).
39
40 % ------------------------------
41
42 % Hypotheses stack management:
43
44
45 % create an empty hyp stack
46 empty_hyps(hyp_rec(E,HI2)) :- empty_avl(E),
47 avl_store(hyp_typed_vars,E,[],HI1), % typed variables of the hypotheses (implicitly universally quantified)
48 avl_store(hyp_clash_vars,HI1,clash_rec(0,E),HI2). % variables which are currently in clash
49
50 hyps_inconsistent(hyp_rec(AVL,_)) :- avl_fetch(falsity,AVL).
51
52 :- use_module(probsrc(bsyntaxtree), [conjunct_predicates/2]).
53 % display the hypotheses stack:
54 portray_hyps(H) :- var(H), !, format('** ILLEGAL VAR Hypotheses: ~w~n',[H]).
55 portray_hyps(hyp_rec(AVL,HInfos)) :- fetch_hyp_vars(HInfos,Vars),
56 get_clashed_vars(HInfos,CVars),
57 (debug_mode(on) -> portray_hyp_vars(hyp_rec(AVL,HInfos)),nl ; true),
58 %b_global_sets:portray_global_sets,
59 !,
60 format('Hypotheses over ~w (clashes: ~w):~n',[Vars,CVars]),
61 %avl_domain(AVL,D), lists:maplist(well_def_hyps:println_nhyp,D),
62 avl_range(AVL,Hyp),
63 conjunct_predicates(Hyp,HypC),
64 translate:nested_print_bexpr(HypC),nl,nl.
65 portray_hyps(H) :- !, format('** ILLEGAL Hypotheses: ~w~n',[H]).
66
67 print_tvar(b(identifier(ID),Type,_)) :- format(' ~w : ~w~n',[ID,Type]).
68 :- use_module(library(lists),[maplist/2]).
69 portray_hyp_vars(hyp_rec(_,HInfos)) :- fetch_hyp_typed_vars(HInfos,TVars),!,
70 length(TVars,Len),
71 format('Typed vars in hyps (~w):~n',[Len]),
72 maplist(print_tvar,TVars).
73 portray_hyp_vars(H) :- !, format('** ILLEGAL Hypotheses: ~w~n',[H]).
74
75
76 %println_nhyp(NH) :- format(' --> ~w~n',[NH]).
77
78
79 % ---------------------
80
81 % for debugging:
82 :- public hyp_portray_hook/1.
83 hyp_portray_hook(X) :- nonvar(X), X= hyp_rec(AVL,HInfos),
84 avl_size(AVL,Size),
85 avl_size(HInfos,ISize),
86 format('hyp_rec(#~w,#~w)',[Size,ISize]).
87
88 :- public install_hyp_portray_hook/0.
89 install_hyp_portray_hook :- % mainly for the Prolog debugger
90 assertz(( user:portray(X) :- well_def_hyps:hyp_portray_hook(X) )).
91
92 %:- install_hyp_portray_hook.
93
94
95 % ------------------------
96
97 % get the variable ids currently in scope
98 get_hyp_vars(hyp_rec(_,HInfos),Res) :- get_hyp_vars(HInfos,Vars),!,Res=Vars.
99 get_hyp_vars(H,R) :- add_internal_error('Illegal hyps: ',get_hyp_vars(H,R)), R=[].
100
101 :- use_module(probsrc(bsyntaxtree), [def_get_texpr_ids/2]).
102 fetch_hyp_vars(HInfos,Vars) :- avl_fetch(hyp_typed_vars,HInfos,TVars),
103 def_get_texpr_ids(TVars,Vars).
104 fetch_hyp_typed_vars(HInfos,Vars) :-
105 avl_fetch(hyp_typed_vars,HInfos,Vars).
106 get_clashed_vars(HInfos,Vars) :- avl_fetch(hyp_clash_vars,HInfos,clash_rec(_,AVL)),
107 avl_domain(AVL,Vars).
108 get_clash_renaming(HInfos,Renamings) :- avl_fetch(hyp_clash_vars,HInfos,clash_rec(_,AVL)),
109 findall(rename(ID,FreshID), avl_member(ID,AVL,FreshID), Renamings).
110
111 % check if a variable id is currently in the scope of the hypotheses
112 % if not, it is a global identifier (e.g., enumerated or deferred set)
113 is_hyp_var(Var,hyp_rec(_,HInfos)) :- atomic(Var), nonvar(HInfos),!,
114 fetch_hyp_vars(HInfos,Vars),
115 ord_member(Var,Vars).
116 is_hyp_var(V,H) :- add_internal_error('Illegal call: ',is_hyp_var(V,H)),fail.
117
118 :- use_module(probsrc(tools_lists),[ord_member_nonvar_chk/2]).
119 get_hyp_var_type(Var,hyp_rec(_,HInfos),Type) :- atomic(Var),!,
120 fetch_hyp_typed_vars(HInfos,TVars),
121 TVar = b(identifier(Var),Type,_),
122 ord_member_nonvar_chk(TVar,TVars).
123 get_hyp_var_type(V,H,T) :- add_internal_error('Illegal call: ',is_hyp_var_type(V,H,T)),fail.
124
125 :- use_module(probsrc(bsyntaxtree), [conjunction_to_list/2]).
126 % push a new Hypothesis H on the hyp stack
127 push_hyp(Hyps,H,Options,NewHyps) :-
128 check_valid_hyp_rec(Hyps,push_hyp),
129 conjunction_to_list(H,Hs),
130 push_hyps(Hyps,Hs,Options,NewHyps).
131
132 check_valid_hyp_rec(Hyps,PP) :- var(Hyps),!,
133 add_internal_error('Illegal variable hyp_rec: ',check_hyp_rec(Hyps,PP)),fail.
134 check_valid_hyp_rec(Hyps,PP) :- Hyps \= hyp_rec(_,_),!,
135 add_internal_error('Illegal hyp_rec: ',check_valid_hyp_rec(Hyps,PP)),fail.
136 check_valid_hyp_rec(_,_).
137
138 % push a list of hypotheses
139 push_hyps(hyp_rec(NHyps,HInfos),Hs,Options,hyp_rec(NewNHyps,HInfos)) :- !,
140 get_clash_renaming(HInfos,ClashRenaming),
141 push_hyp_aux(Hs,ClashRenaming,Options,NHyps,NewNHyps).
142 push_hyps(A,B,C,D) :- add_internal_error('Illegal call: ', push_hyps(A,B,C,D)),fail.
143
144 % useful if renaming done outside, e.g., for treating x:=x-1 in WD analyser
145 push_hyps_wo_renaming(hyp_rec(NHyps,HInfos),Hs,Options,hyp_rec(NewNHyps,HInfos)) :- !, ClashRenaming=[],
146 push_hyp_aux(Hs,ClashRenaming,Options,NHyps,NewNHyps).
147 push_hyps_wo_renaming(A,B,C,D) :- add_internal_error('Illegal call: ', push_hyps(A,B,C,D)),fail.
148
149 push_hyp_aux(Hyps,_,_,_,_) :- var(Hyps),!, add_internal_error('Unbound hyps: ',push_hyps(Hyps)),fail.
150 push_hyp_aux([],_,_,NH,NH).
151 push_hyp_aux([H|T],ClashRenaming,Options,NHyps,NewNHyps) :-
152 ((var(NHyps) ; NHyps=hyp_rec(_,_)) -> add_internal_error('Illegal AVL: ',NHyps),fail ; true),
153 push_individual_hyp(H,ClashRenaming,Options,NHyps,NHyps3),
154 push_hyp_aux(T,ClashRenaming,Options,NHyps3,NewNHyps).
155
156 % sometimes we still have conjuncts in the list of hypotheses (e.g., coming from Rodin)
157 push_individual_hyp(b(conjunct(H1,H2),_,_),ClashRenaming,Options,NHyps,NHyps3) :- !,
158 push_individual_hyp(H1,ClashRenaming,Options,NHyps,NHyps2),
159 push_individual_hyp(H2,ClashRenaming,Options,NHyps2,NHyps3).
160 push_individual_hyp(H,ClashRenaming,Options,NHyps,NHyps3) :-
161 normalize_and_rename_predicate(ClashRenaming,H,RenH,NH),
162 % print('PUSH: '),nl, debug:print_quoted_with_max_depth(NH,6), print(' '), error_manager:print_message_span(H),nl,
163 push_normalized_hyp_aux(NH,RenH,Options,NHyps,NHyps3).
164
165 % utility: used to push already normalized and renamed hyp from within prover for normalized sub-goals
166 % should normally be renamed with get_clash_renaming_subst result
167 push_normalized_hyp(NH,hyp_rec(NHyps,I),hyp_rec(NHyps3,I)) :-
168 norm_aux(NH,NormPred),
169 unknown_source_term(NormPred,CorrespondingTExpr),
170 push_normalized_hyp_aux(NormPred,CorrespondingTExpr,[],NHyps,NHyps3).
171
172
173 push_normalized_hyp_aux(NH0,RenH,Options,NHyps,NHyps2) :-
174 simplify_hyp(NH0,NHyps,NH),
175 ((useful_hyp(NH) ; safe_ord_member(create_full_po,Options)
176 ; potentially_useful_for_hyp_rule(NH), safe_ord_member(push_more_hyps,Options)
177 ; useful_implication(NH,Options),
178 true %safe_ord_member(push_more_hyps,Options) % seems useful for Event-B benchmark models, enable by default?
179 )
180 -> avl_store_with_commutes_if_new(NH,NHyps,RenH,NHyps2,Options)
181 ; push_commutative_hyps(NH,RenH,Options,NHyps,NHyps2)
182 % hypothesis not directly used by prover, but there could be alternatives e.g., for disjunct
183 %,functor(NH,FF,NN), print(not_pushing(FF,NN)),nl
184 ).
185
186 :- use_module(wdsrc(well_def_tools), [rename_norm_term/3]).
187 % rename and push an already normalized hyp; also splitting conjuncts
188 push_and_rename_normalized_hyp(Pred,Hyps,NewHyps) :-
189 get_clash_renaming_subst(Hyps,Renaming),
190 rename_norm_term(Pred,Renaming,RenamedPred), %write(push(RenamedPred)),nl,
191 push_conj(RenamedPred,Hyps,NewHyps).
192 push_conj(conjunct(A,B),Hyps,NewHyps) :-
193 push_conj(A,Hyps,Hyps1), push_conj(B,Hyps1,NewHyps).
194 push_conj(A,Hyps,NewHyps) :- push_normalized_hyp(A,Hyps,NewHyps).
195
196
197 % push equivalent or implied hypotheses on the stack:
198 push_commutative_hyps(NH,RenH,Options,NHyps1,NHyps2) :-
199 commute_bin_op(NH,_,Options), % somehow faster than using findall directly
200 !,
201 findall(NH3,commute_bin_op(NH,NH3,Options),NH3s),
202 l_avl_store_nhyps(NH3s,NHyps1,RenH,NHyps2,Options).
203 push_commutative_hyps(_,_,_,NHyps,NHyps).
204
205 safe_ord_member(El,List) :- var(List),!, add_internal_error('Illegal call: ',safe_ord_member(El,List)),fail.
206 safe_ord_member(El,List) :- ord_member(El,List).
207
208 l_avl_store_nhyps([],NHyps,_,NHyps,_Options).
209 l_avl_store_nhyps([NH1|TNH],NHyps1,RenH,NHyps3,Options) :-
210 simplify_hyp(NH1,NHyps1,NH1s),
211 avl_store_if_new(NH1s,NHyps1,RenH,NHyps2,Options),
212 l_avl_store_nhyps(TNH,NHyps2,RenH,NHyps3,Options).
213
214 % store a hypothesis if new (without storing commutative versions of it)
215 avl_store_if_new(NH,H,_,H2,_) :- avl_fetch(NH,H),!, H2=H.
216 avl_store_if_new(NH,H1,RH,H3,Options) :- %write(prop_new(NH)),nl, avl_domain(H1,H1D), write(H1D),nl,nl,
217 propagate_resolution_with_hyp(NH,H1,H2,Options),
218 avl_store(NH,H2,RH,H3).
219
220 % propagate new hyp by applying (simple) resolution: Hyp & not(Hyp) -> add false as hypothesis
221 % also propagates implications Hyp => Q -> add Q as hypothesis
222 propagate_resolution_with_hyp(NormHyp,Hyps,H2,_) :- negate_norm_op(NormHyp,NegNormHyp),
223 avl_fetch(NegNormHyp,Hyps),!,
224 debug_println(9,contradiction_found_in_hypotheses(NormHyp)),
225 avl_store(falsity,Hyps,b(falsity,pred,[neg_hyp]),H2). % false_hyp rule can later trigger
226 propagate_resolution_with_hyp(NH,Hyps,H2,Options) :-
227 %write(fetch_impl(NH)),nl, avl_domain(Hyps,D), write(hyps(D)),nl,
228 findall(NRHS,avl_fetch_bin(NH,implication,Hyps,NRHS),TriggeredImplications),
229 propagate_implications(TriggeredImplications,NH,Hyps,H2,Options).
230
231
232
233 negate_norm_op(NormHyp,NegNormHyp) :- negate_op(NormHyp,NegNH),
234 norm_aux(NegNH,NegNormHyp).
235
236 propagate_implications([],_,Hyps,Hyps,_).
237 propagate_implications([NRHS|TR],NLHS,NHyps1,NHyps4,Options) :-
238 (avl_delete(implication(NLHS,NRHS),NHyps1,TE,NHyps2)
239 -> % write('propagate : '),translate:print_bexpr(TE),nl,
240 (TE=b(implication(_,RHS),_,_) -> true
241 ; TE=b(disjunct(_,RHS),_,_) -> true
242 ; unknown_source_term(NRHS,RHS),
243 true %add_warning(wd_prover,'Unexpected un-normalised hyp: ',TE)
244 ),
245 simplify_hyp(NRHS,NHyps2,NRHS2),
246 avl_store_with_commutes_if_new(NRHS2,NHyps2,RHS,NHyps3,Options)
247 ; % implication has already been triggered by processing a previous NRHS in the list
248 NHyps3=NHyps1
249 ),
250 propagate_implications(TR,NLHS,NHyps3,NHyps4,Options).
251
252 unknown_source_term(NormPred,b(unknown_truth_value(NormPred),pred,[trigger_implication])).
253
254 avl_store_with_commutes_if_new(NH,H,_,H2,_) :- avl_fetch(NH,H),!, H2=H.
255 avl_store_with_commutes_if_new(conjunct(NH1,NH2),H0,TE,H2,Options) :- !,
256 (TE=b(conjunct(TE1,TE2),_,_) -> true ; unknown_source_term(NH1,TE1), unknown_source_term(NH2,TE2)),
257 simplify_hyp(NH1,H0,SNH1),
258 avl_store_with_commutes_if_new(SNH1,H0,TE1,H1,Options),
259 simplify_hyp(NH2,H1,SNH2),
260 avl_store_with_commutes_if_new(SNH2,H1,TE2,H2,Options).
261 avl_store_with_commutes_if_new(NH,H0,RH,H3,Options) :- %write(prop_new(NH)),nl, avl_domain(H,H1D), write(H1D),nl,nl,
262 avl_store(NH,H0,RH,H1),
263 propagate_resolution_with_hyp(NH,H1,H2,Options),
264 push_commutative_hyps(NH,RH,Options,H2,H3).
265
266 normalize_expression(Expr,NormExpr) :-
267 (Expr \= b(_,pred,_) -> true ; add_error(well_def_hyps,'Expected expression, but got predicate')),
268 b_interpreter_check:norm_expr_check(Expr,NormExpr).
269
270 :- use_module(probsrc(bsyntaxtree), [rename_bt/3]).
271 normalize_and_rename_predicate(_,H,_,_) :- var(H),!,
272 add_internal_error('Unbound predicate: ',normalize_and_rename_predicate(H)),fail.
273 normalize_and_rename_predicate([],H,RenH,NH) :- !, RenH=H,
274 normalize_predicate(H,NH).
275 normalize_and_rename_predicate(ClashRenaming,H,RenH,NH) :- !,
276 %format('Rename Hyp: ~w ',[ClashRenaming]),translate:print_bexpr(H),nl,
277 rename_bt(H,ClashRenaming,RenH),
278 %print(' > renamed Hyp: '),translate:print_bexpr(RenH),nl,
279 normalize_predicate(RenH,NH).
280
281 % :- use_module(probsrc(bsyntaxtree),[expand_all_lets/2]).
282 % TO DO: expand lets; but can be very expensive; e.g., B/Tickets/Schneider3_Trees/NewSolver_v2.mch -wd-check
283 normalize_predicate(Pred,NormPred) :-
284 b_interpreter_check:norm_pred_check(Pred,NP),
285 norm_aux(NP,NormPred).
286
287
288 % put identifiers first, so that we can more efficiently do lookups;
289 % hence we try and replace less/greater by less_equal/greater_equal when possible
290 norm_aux(equal(A,B),equal(NA,NB)) :- !, norm_equal(A,B,NA,NB).
291 norm_aux(greater(Val,Nr),greater_equal(Val,N1)) :- integer(Nr),!, N1 is Nr+1.
292 norm_aux(greater(Nr,Val),greater_equal(N1,Val)) :- integer(Nr),!, N1 is Nr-1.
293 norm_aux(greater(A,B),less(B,A)) :- !. % we only look up less (when both args are known)
294 norm_aux(less(Val,Nr),less_equal(Val,N1)) :- integer(Nr),!, N1 is Nr-1.
295 norm_aux(less(Nr,Val),less_equal(N1,Val)) :- integer(Nr),!, N1 is Nr+1.
296 norm_aux(not_equal(Val,EMPTY),not_equal(Val,empty_set)) :- is_empty_set_alternative(EMPTY),!.
297 norm_aux(not_equal(EMPTY,Val),not_equal(Val,empty_set)) :- is_empty_set_alternative(EMPTY),!.
298 norm_aux(negation(Pred),NormPred) :- negate_op(Pred,NP),!, norm_aux(NP,NormPred).
299 norm_aux(implication(Pred1,Pred2),NormPred) :- !,
300 norm_implication(Pred1,Pred2,NormPred).
301 norm_aux(disjunct(Pred1,Pred2),disjunct(NormPred1,NormPred2)) :- !,
302 norm_aux(Pred1,NormPred1),norm_aux(Pred2,NormPred2).
303 norm_aux(equivalence(Pred1,Pred2),equivalence(NormPred1,NormPred2)) :- !,
304 norm_aux(Pred1,NormPred1),norm_aux(Pred2,NormPred2).
305 %norm_aux(Term,NormPred) :- print(Term),nl,functor(Term,union,2),flatten(Term,union,List,[]), print(union(List)),nl,
306 % sort(List,SL),print(sorted(SL)),nl,fail.
307 norm_aux(V,V).
308 % TO DO: subset_strict -> subset and not_equal
309 % TO DO: normalize value(X) terms -> value(int(Nr)) -> Nr, ...
310 % TO DO: maybe process a few rules here x<: dom(f) or x = dom(f) - other
311
312 norm_equal(A,B,RA,RB) :- peel_eq(A,B,SA,SB),
313 (SB='$'(_), SA \= '$'(_) -> RA=SB,RB=SA ; RA=SA, RB=SB).
314
315 peel_eq(reverse(A),reverse(B),SA,SB) :- !, peel_eq(A,B,SA,SB).
316 % TODO: add other injective/reversible operators; also cf. simplify_hyp
317 peel_eq(A,B,A,B).
318
319 norm_implication(conjunct(A,B),Pred2,Implication) :- !,
320 % A & B => C ---> A => (B => C) (so that we can use avl_fetch on LHS of implication)
321 norm_implication(B,Pred2,Implication2),
322 norm_implication(A,Implication2,Implication).
323 norm_implication(Pred1,Pred2,implication(NormPred1,NormPred2)) :-
324 norm_aux(Pred1,NormPred1),norm_aux(Pred2,NormPred2).
325
326
327 % TO DO: flatten and sort union and possibly other operators:
328 %flatten(Term,BOP) --> {functor(Term,BOP,2), arg(1,Term,B1), arg(2,Term,B2)},!,
329 % flatten(B1,BOP), flatten(B2,BOP).
330 %flatten(Term,_) --> [Term].
331
332 is_empty_set_alternative(empty_sequence).
333 is_empty_set_alternative(value(V)) :- V==[]. % should now be handled in norm_expr / norm_value
334
335 negate_op(truth,falsity).
336 negate_op(falsity,truth).
337 negate_op(equal(A,B),not_equal(A,B)).
338 negate_op(not_equal(A,B),equal(A,B)).
339 negate_op(less(A,B),less_equal(B,A)).
340 negate_op(greater(A,B),less_equal(A,B)).
341 negate_op(less_equal(A,B),less(B,A)).
342 negate_op(greater_equal(A,B),less(A,B)).
343 negate_op(less_real(A,B),less_equal_real(B,A)).
344 negate_op(less_equal_real(A,B),less_real(B,A)).
345 negate_op(negation(P),P).
346 negate_op(not_member(A,B),member(A,B)).
347 negate_op(member(A,B),not_member(A,B)). % should we do this?
348 negate_op(not_subset(A,B),subset(A,B)).
349 negate_op(subset(A,B),not_subset(A,B)).
350 negate_op(not_subset_strict(A,B),subset_strict(A,B)).
351 negate_op(subset_strict(A,B),not_subset_strict(A,B)).
352 % should we negate_op(conjunct ...), we also treat negation in prove_po/prove_negated_po
353
354 % for commutative binary operators: also store commutative version to enable lookup on either argument
355 commute_bin_op(OpTerm,CommutativeOrDerivedVersion,_Options) :-
356 commute_bin_op(OpTerm,CommutativeOrDerivedVersion).
357 commute_bin_op(OpTerm,CommutativeOrDerivedVersion,Options) :-
358 safe_ord_member(push_more_hyps,Options),
359 commute_bin_op_aggressive(OpTerm,CommutativeOrDerivedVersion,Options).
360
361 commute_bin_op(equal(A,B),Pred) :- compute_bin_op_equal(A,B,Pred).
362 % not_equal: no need to reverse: we always know both values when doing a lookup
363 commute_bin_op(greater_equal(A,B),less_equal(B,A)) :- can_be_used_for_lookups(B).
364 commute_bin_op(greater(A,B),Pred) :- compute_bin_op_less(B,A,Pred).
365 commute_bin_op(less_equal(A,B),Pred) :- compute_bin_op_less_equal(A,B,Pred).
366 commute_bin_op(less(A,B),Pred) :- compute_bin_op_less(A,B,Pred).
367 commute_bin_op(less_real(A,B),not_equal(A,B)). % TO DO: extend
368 commute_bin_op(subset_strict(A,B),Pred) :- gen_subset(A,B,Pred).
369 commute_bin_op(subset_strict(A,B),not_equal(A,B)).
370 commute_bin_op(subset(A,B),superset(B,A)) :- % new operator, for efficient lookups !
371 can_be_used_for_lookups(B).
372 commute_bin_op(subset(A,cartesian_product(Dom,Ran)),member(A,relations(Dom,Ran))) :-
373 can_be_used_for_lookups(A).
374 commute_bin_op(subset_strict(A,cartesian_product(Dom,Ran)),member(A,relations(Dom,Ran))) :-
375 can_be_used_for_lookups(A).
376 commute_bin_op(not_subset(A,B),not_equal(A,B)). % also implies not_subset_strict
377 commute_bin_op(member(_,Set),not_equal(Set,empty_set)). % x:Set ==> Set /= {}
378 commute_bin_op(member(couple(A,B),C),NewHyp) :-
379 ( NewHyp = member(A,domain(C)) % A|->B : C ==> A : dom(C)
380 ; NewHyp = member(B,range(C)) ). % A|->B : C ==> B : ran(C)
381 commute_bin_op(member(X,interval(Low,Up)),NewHyp) :-
382 (NewHyp = less_equal(Low,Up) % x : Low..Up => Low <= Up
383 ; NewHyp = less_equal(Low,X) % Low <= X if X: Low..UP
384 ; can_be_used_for_lookups(X), NewHyp = greater_equal(X,Low)
385 ; NewHyp = less_equal(X,Up) % X <= UP if X: Low..UP
386 ; can_be_used_for_lookups(Up), NewHyp = greater_equal(Up,X)
387 ).
388 commute_bin_op(member(X,Rel),NewHyp) :- is_total_relation(Rel,Domain),
389 % we cannot efficiently lookup this info from Domain
390 can_be_used_for_lookups(Domain),
391 NewHyp = equal(Domain,domain(X)).
392 commute_bin_op(member(X,Rel),NewHyp) :- is_surjective_relation(Rel,Range),
393 % we cannot efficiently lookup this info from Range
394 can_be_used_for_lookups(Range),
395 NewHyp = equal(Range,range(X)).
396 commute_bin_op(member(card(X),_),NewHyp) :- can_be_used_for_lookups(X),
397 NewHyp=finite(X).
398 commute_bin_op(member(X,union(A,B)),NewHyp) :- can_be_used_for_lookups(X),
399 (NewHyp=implication(not_member(X,A),member(X,B)) % x:A\/B & x/:A => x:B
400 ; NewHyp=implication(not_member(X,B),member(X,A))). % ditto for B
401 commute_bin_op(member(X,set_subtraction(A,B)),NewHyp) :- can_be_used_for_lookups(X),
402 NewHyp=implication(not_member(X,B),member(X,A)). % x:A\B & x/:B => x:A
403 commute_bin_op(member(X,intersection(A,B)),NewHyp) :- can_be_used_for_lookups(X),
404 (NewHyp=member(X,A) ; NewHyp=member(X,B)).
405 commute_bin_op(disjunct(LHS,RHS),NewHyp) :- get_member_pred(LHS,X,A), get_member_pred(RHS,X,B),
406 NewHyp = member(X,union(A,B)).
407 commute_bin_op(disjunct(LHS,RHS),NewHyp) :- get_subset_pred(LHS,X,A), get_subset_pred(RHS,X,B),
408 NewHyp = subset(X,union(A,B)).
409 commute_bin_op(partition(A,List),equal(A,UNION)) :- gen_union(List,UNION).
410 % TO DO: is there a use in the all_disjoint feature?
411 commute_bin_op(forall(['$'(X)],LHSPred,RHSPred), Pred) :-
412 get_member_lhs(LHSPred,'$'(X),Set),
413 get_member_rhs(RHSPred,'$'(X),SET2),
414 useful_forall_superset(SET2),
415 % !x.(x:SET => x:dom(F)) => SET <: dom(F)
416 % !x.(x:SET => x:SET2) => SET <: SET2
417 not_occurs(Set,X),
418 not_occurs(SET2,X), %print(subset1(Set,SET2)),nl,
419 gen_subset(Set,SET2,Pred).
420 commute_bin_op(forall(['$'(X),'$'(Y)],LHSPred,RHSPred), Pred) :- % TO DO: generalise
421 get_member_lhs(LHSPred,couple('$'(X),'$'(Y)),Set), %TO DO: generalise -> domain/range
422 get_member_rhs(RHSPred,'$'(X),SET2),
423 useful_forall_superset(SET2),
424 % !x,y.(x|->y:SET => x:dom(F)) => dom(SET) <: dom(F)
425 % !x,y.(x|->y:SET => x:SET2) => dom(SET) <: SET2
426 not_occurs(Set,X),
427 not_occurs(Set,Y),
428 not_occurs(SET2,X), %print(subset2(Set,SET2)),nl,
429 gen_subset(domain(Set),SET2,Pred).
430 commute_bin_op(equal(A,reverse(B)),equal(B,reverse(A))).
431 commute_bin_op(not_equal(A,B),equal(A,NB)) :- negate_boolean_like_value(B,NB).
432 commute_bin_op(not_equal(intersection(Set1,Set2),empty_set), Pred) :-
433 % Set /\ {a} /= {} => a : Set
434 (Set1=set_extension([A]),B=Set2 -> true ; Set2=set_extension([A]),B=Set1),
435 Pred = member(A,B).
436 %commute_bin_op(X,_) :- print(binop(X)),nl,fail.
437
438 % transform disjuncts/equivalences/... into implications that we propagate:
439 commute_bin_op_aggressive(disjunct(LHS,RHS),implication(NegLHS,RHS),Options) :-
440 negate_norm_op(LHS,NegLHS), useful_hyp_or_imp(RHS,Options).
441 commute_bin_op_aggressive(disjunct(RHS,LHS),implication(NegLHS,RHS),Options) :-
442 negate_norm_op(LHS,NegLHS), useful_hyp_or_imp(RHS,Options).
443 commute_bin_op_aggressive(implication(LHS,RHS),implication(NegRHS,NegLHS),_) :- % contra-positive implication
444 negate_norm_op(LHS,NegLHS),
445 negate_norm_op(RHS,NegRHS).
446 commute_bin_op_aggressive(equivalence(LHS,RHS),implication(LHS,RHS),Options) :-
447 useful_hyp_or_imp(RHS,Options).
448 commute_bin_op_aggressive(equivalence(RHS,LHS),implication(LHS,RHS),Options) :-
449 useful_hyp_or_imp(RHS,Options).
450
451 % extract a membership predicate
452 get_member_pred(member(X,A),X,A).
453 get_member_pred(equal(X,A),X,set_extension([A])).
454 get_member_pred(equal(A,X),X,set_extension([A])).
455 get_member_pred(disjunct(LHS,RHS),X,union(A,B)) :- get_member_pred(LHS,X,A), get_member_pred(RHS,X,B).
456 % TO DO: same for subset?
457 get_subset_pred(subset(X,A),X,A).
458 get_subset_pred(subset_strict(X,A),X,A).
459 %get_subset_pred(member(X,power_set(A)),X,A).
460 get_subset_pred(disjunct(LHS,RHS),X,union(A,B)) :- get_subset_pred(LHS,X,A), get_subset_pred(RHS,X,B).
461
462 % for which supersets is it useful to derive informations from forall quantifier:
463 useful_forall_superset(domain(_)).
464 useful_forall_superset(range(_)).
465 useful_forall_superset(finite(_)).
466 useful_forall_superset(seq(_)).
467 useful_forall_superset(seq1(_)).
468 useful_forall_superset(iseq(_)).
469 useful_forall_superset(iseq1(_)).
470 useful_forall_superset(perm(_)).
471 useful_forall_superset(partial_function(_,_)).
472 useful_forall_superset(total_function(_,_)).
473 useful_forall_superset(total_injection(_,_)).
474 useful_forall_superset(total_surjection(_,_)).
475 useful_forall_superset('$'(_)).
476 useful_forall_superset(pow1_subset(_)). % not empty
477 useful_forall_superset(fin1_subset(_)). % not empty and finite
478 useful_forall_superset(fin_subset(_)). % finite info
479 % TO DO: more
480
481 is_total_relation(total_function(A,_),A).
482 is_total_relation(total_injection(A,_),A).
483 is_total_relation(total_surjection(A,_),A).
484 is_total_relation(total_bijection(A,_),A).
485 is_total_relation(total_surjection_relation(A,_),A).
486
487
488 is_surjective_relation(partial_surjection(_,B),B).
489 is_surjective_relation(surjection_relation(_,B),B).
490 is_surjective_relation(total_surjection(_,B),B).
491 is_surjective_relation(total_bijection(_,B),B).
492 is_surjective_relation(total_surjection_relation(_,B),B).
493 is_surjective_relation(perm(B),B).
494
495 negate_boolean_like_value(boolean_true,boolean_false).
496 negate_boolean_like_value(boolean_false,boolean_true).
497 % TO DO: also treat enumerated sets with exactly two values
498
499 % must match completely
500 get_member_lhs(member(X,Set),X,Set).
501 get_member_lhs(truth,_,typeset).
502
503 % must be an conjunct in rhs
504 get_member_rhs(member(X,Set),X,Set).
505 get_member_rhs(conjunct(A,B),X,Set) :- get_member_rhs(A,X,Set) ; get_member_rhs(B,X,Set).
506 get_member_rhs(not_equal(empty_set,X),X,pow1_subset(typeset)).
507 get_member_rhs(not_equal(X,empty_set),X,pow1_subset(typeset)).
508 get_member_rhs(finite(X),X,fin_subset(typeset)).
509
510
511 compute_bin_op_less_equal(A,B,greater_equal(B,A)) :- can_be_used_for_lookups(B).
512 compute_bin_op_less_equal(card(X),_,finite(X)) :- can_be_used_for_lookups(X).
513
514 compute_bin_op_less(A,B,less_equal(A,B)).
515 compute_bin_op_less(A,B,greater_equal(B,A)) :- can_be_used_for_lookups(B). % we do not lookup greater
516 compute_bin_op_less(A,B,not_equal(A,B)). % for not_equal we only need to store one direction
517 compute_bin_op_less(card(X),_,finite(X)) :- can_be_used_for_lookups(X). % actually card(X)>1 also implies finite(X)
518
519 compute_bin_op_equal(A,B,equal(B,A)) :-
520 can_be_used_for_lookups(B).
521 compute_bin_op_equal(A,B,falsity) :- % sometimes we have FALSE=TRUE as an alternative to falsity
522 is_explicit_value(A,VA),
523 is_explicit_value(B,VB),
524 VA \= VB.
525 compute_bin_op_equal(Set,A,Pred) :-
526 % e.g., A = B \ C => A <: B, useful for examples/B/Alstom/etcs/actions_scn_f6_372_bis.mch
527 derive_superset(Set,B), B \= A,
528 gen_superset(B,A,Pred). % only generate superset rule; for subset there are rules to treat set_subtraction
529 compute_bin_op_equal(A,Set,Pred) :- % interchange args
530 derive_superset(Set,B), B \= A,
531 gen_superset(B,A,Pred).
532 compute_bin_op_equal(A,Set,subset(B,A)) :- % A = B \/ C => B <: A ; useful to allow lookups of B
533 derive_subset(Set,B),
534 can_be_used_for_lookups(B), B \= A.
535 compute_bin_op_equal(A,Add,Res) :- is_add_with_nr(Add,B,Nr),
536 % A = B+Nr => B < A
537 (Nr>0 -> compute_bin_op_less(B,A,Res)
538 ; Nr<0 -> compute_bin_op_less(A,B,Res)
539 ; Res = equal(A,B)).
540 compute_bin_op_equal(A,B,finite(X)) :-
541 (A=card(X);B=card(X)), can_be_used_for_lookups(X). % actually: if any sub-expression uses card(.) we could add it?
542
543 % cf is_explicit_value/3 in well_def_prover
544 % explicit value that can be compared using Prolog unification:
545 is_explicit_value(boolean_true,pred_true).
546 is_explicit_value(boolean_false,pred_false).
547 is_explicit_value(string(A),A).
548 is_explicit_value(Nr,Nr) :- number(Nr).
549
550 is_add_with_nr(add(A,B),X,Nr) :- (number(B) -> (X,Nr)=(A,B) ; number(A) -> (X,Nr)=(B,A)).
551 is_add_with_nr(minus(A,B),A,Nr) :- number(B), Nr is -B.
552
553 derive_superset(set_subtraction(B,_),B). % B \ C <: B
554 derive_superset(intersection(B,_),B). % B /\ C <: B
555 derive_superset(intersection(_,C),C). % B /\ C <: C
556
557 derive_subset(union(B,_),B). % B <: B \/ C
558 derive_subset(union(_,C),C). % C <: B /\ C
559
560 gen_subset(A,B,subset(A,B)) :- can_be_used_for_lookups(A).
561 gen_subset(A,B,superset(B,A)) :- can_be_used_for_lookups(B).
562
563 gen_superset(A,B,superset(A,B)) :- can_be_used_for_lookups(A).
564
565 gen_union([],emptyset).
566 gen_union([X],R) :- !, R=X.
567 gen_union([X|T],union(X,UT)) :- gen_union(T,UT).
568
569 % true if we are likely to need looking up these kinds of terms
570 can_be_used_for_lookups('$'(_)).
571 %can_be_used_for_lookups(Nr) :- number(Nr).
572 can_be_used_for_lookups(domain(_)). % lookup domain of a function
573 can_be_used_for_lookups(range(_)).
574 can_be_used_for_lookups(card(_)).
575 can_be_used_for_lookups(size(_)). % TO DO: normalize size to card, we assume hyps are WD; so no difference
576 can_be_used_for_lookups(interval(_,_)).
577 % ADD: records,...
578
579 useful_hyp(finite(_)).
580 %useful_hyp(partition(_,_)). % now rewritten
581 useful_hyp(member(_,_)).
582 useful_hyp(subset(_,_)).
583 useful_hyp(equal(_,_)).
584 useful_hyp(greater_equal(_,_)).
585 useful_hyp(less_equal(_,_)).
586 useful_hyp(less_equal_real(_,_)).
587 %useful_hyp(less(_,_)). % less is now no longer looked up; we look up not_equal
588 useful_hyp(not_equal(_,_)).
589 useful_hyp(not_member(_,_)). % used in check_not_member_of_set
590 %useful_hyp(equal(A,B)) :- check if A is ID which occurs in B; e.g, x = x*1 not useful
591
592 useful_implication(implication(_,RHS),Options) :-
593 useful_hyp_or_imp(RHS,Options).
594 useful_hyp_or_imp(RHS,Options) :-
595 (useful_hyp(RHS) -> true
596 ; useful_implication_body(RHS,Options)). % useful upon pushing hyps in propagate_resolution_with_hyp
597
598 % implication or similar which could be useful (i.e., triggered so that it produces a really useful hypothesis)
599 useful_implication_body(implication(_,RHS),Options) :-
600 useful_hyp_or_imp(RHS,Options).
601 useful_implication_body(equivalence(_,_),Options) :- safe_ord_member(push_more_hyps,Options).
602 useful_implication_body(disjunct(_,_),Options) :- safe_ord_member(push_more_hyps,Options).
603 useful_implication_body(conjunct(LHS,RHS),Options) :-
604 (useful_hyp_or_imp(LHS,Options) -> true ; useful_hyp_or_imp(RHS,Options)).
605
606 % check if we can simplify the hypothesis
607 simplify_hyp(implication(LHS,RHS),Hyps,Res) :- % true => RHS --> RHS
608 %write(check_imp_lhs_hyp(LHS)),nl, avl_domain(Hyps,D), write(dom(D)),nl,
609 avl_fetch(LHS,Hyps),!, % LHS is in the hyps
610 %write(simplify_imp(LHS,RHS)),nl,
611 simplify_hyp(RHS,Hyps,Res).
612 % TODO: disjunction, ...
613 simplify_hyp(Hyp,_,Hyp).
614
615
616 % a few more binary operations that are potentially useful for :prove, particularly if negation in goal
617 potentially_useful_for_hyp_rule(less(_,_)).
618 potentially_useful_for_hyp_rule(less_real(_,_)).
619 potentially_useful_for_hyp_rule(not_subset(_,_)).
620 potentially_useful_for_hyp_rule(not_subset_strict(_,_)).
621 potentially_useful_for_hyp_rule(subset_strict(_,_)).
622 potentially_useful_for_hyp_rule(partition(_,_)).
623
624 get_clash_renaming_subst(hyp_rec(_,HInfos),ClashRenaming) :- !,
625 get_clash_renaming(HInfos,ClashRenaming).
626 get_clash_renaming_subst(H,R) :- add_internal_error('Illegal hyps:',get_clash_renaming_subst(H,R)),fail.
627
628 % rename an expression or predicate given the current variable clashes
629 get_renamed_expression(Expr,Hyps,RenExpr) :-
630 get_clash_renaming_subst(Hyps,ClashRenaming),
631 rename_bt(Expr,ClashRenaming,RenExpr).
632
633 get_normalized_and_renamed_predicate(Pred,Hyps,RenPred,NormPred) :-
634 get_clash_renaming_subst(Hyps,ClashRenaming),
635 normalize_and_rename_predicate(ClashRenaming,Pred,RenPred,NormPred).
636
637 :- use_module(library(lists),[maplist/3]).
638 % add new quantified $ untyped variables to the hyp stack
639 create_any_type($(ID),b(identifier(ID),any,[])).
640 add_new_hyp_any_vars(H,DollarIDs,H2) :-
641 maplist(create_any_type,DollarIDs,TVars),!,
642 add_new_hyp_variables(H,TVars,H2).
643 add_new_hyp_any_vars(H,I,H2) :- add_internal_error('Illegal Ids:',add_new_hyp_any_vars(H,I,H)),
644 H2=H.
645
646 % add new quantified typed variables to the hyp stack
647 add_new_hyp_variables(H,[],R) :- !, R=H.
648 add_new_hyp_variables(hyp_rec(NH,HInfos1),NewAddedTVars,hyp_rec(NH,HInfos3)) :-
649 fetch_hyp_typed_vars(HInfos1,TVars),
650 list_to_ord_set(NewAddedTVars,SortedNewTVars),
651 add_new_hyp_vars(SortedNewTVars,TVars,NewTVars2,ClashTVars),
652 (ClashTVars=[] -> HInfos2=HInfos1, NewTVars3=NewTVars2
653 ; (debug_mode(off) -> true
654 ; add_message(well_def_analyser,'Variable clash, will rename future predicates: ', ClashTVars,ClashTVars)
655 ),
656 avl_fetch(hyp_clash_vars,HInfos1,clash_rec(GenSymCount,OldClashAVL)),
657 ren_clash_variables(ClashTVars,RenClashTVars,GenSymCount,NewGSC,OldClashAVL,NewClashAVL),
658 avl_store(hyp_clash_vars,HInfos1,clash_rec(NewGSC,NewClashAVL),HInfos2),
659 list_to_ord_set(RenClashTVars,SRenClashTVars),
660 ord_union(SRenClashTVars,NewTVars2,NewTVars3)
661 ),
662 avl_store(hyp_typed_vars,HInfos2,NewTVars3,HInfos3).
663
664 % add_new_typed_vars(AddedTVars,OldTVars,NewTVars,ClashVars)
665 add_new_hyp_vars([],TVars,NewTVars,[]) :- !, NewTVars=TVars.
666 add_new_hyp_vars(AddedTVars,[],NewTVars,[]) :- !,NewTVars=AddedTVars.
667 add_new_hyp_vars([b(identifier(ID1),Type1,I1)|T1],[b(identifier(ID2),Type2,I2)|T2],NewTVars,Clash) :- !,
668 (ID1 @> ID2
669 -> NewTVars = [b(identifier(ID2),Type2,I2)|NewT],
670 add_new_hyp_vars([b(identifier(ID1),Type1,I1)|T1],T2,NewT,Clash)
671 ; ID1 @< ID2
672 -> NewTVars = [b(identifier(ID1),Type1,I1)|NewT],
673 add_new_hyp_vars(T1,[b(identifier(ID2),Type2,I2)|T2],NewT,Clash)
674 ; NewTVars = [b(identifier(ID2),Type2,I2)|NewT],
675 Clash = [b(identifier(ID1),Type1,I1)|NewClash],
676 add_new_hyp_vars(T1,T2,NewT,NewClash)
677 ).
678 add_new_hyp_vars(T1,T2,_,_) :- add_internal_error('Illegal call: ',add_new_hyp_vars(T1,T2,_,_)),fail.
679
680 % add clash ids and their renaming to the clash AVL
681 ren_clash_variables([],[],C,C,Avl,Avl).
682 ren_clash_variables([b(identifier(ID1),Type1,I1)|T1],
683 [b(identifier(RenamedID),Type1,[was(ID1)|I1])|T2], Cin,Cout,AvlIn,AvlOut) :-
684 number_codes(Cin,NC), atom_codes(Ain,NC),
685 atom_concat('$wd_rename_',Ain,RenamedID), % print(rename(ID,RenamedID)),nl,
686 C1 is Cin+1,
687 avl_store(ID1,AvlIn,RenamedID,Avl2),
688 ren_clash_variables(T1,T2,C1,Cout,Avl2,AvlOut).
689
690 % make a fresh copy of existing variables (the variables are not typed but atomic ids)
691 copy_hyp_variables(hyp_rec(NH,HInfos1),ExistingVars,Hyp2) :-
692 fetch_hyp_typed_vars(HInfos1,TVars),
693 list_to_ord_set(ExistingVars,SortedIds),
694 get_existing_tids(SortedIds,TVars,ResTVars),
695 add_new_hyp_variables(hyp_rec(NH,HInfos1),ResTVars,Hyp2).
696
697 get_existing_tids([],_,[]).
698 get_existing_tids([ID|TI],TIDs,Res) :- get_aux(TIDs,ID,TI,Res).
699 :- use_module(probsrc(bsyntaxtree), [get_texpr_id/2]).
700 get_aux([],ID,_,Res) :- add_internal_error('Cannot find existing hyp variable:',ID), Res=[].
701 get_aux([TID|TT],ID,TI,Res) :-
702 (get_texpr_id(TID,ID) -> Res=[TID|ResT], get_existing_tids(TI,TT,ResT)
703 ; get_aux(TT,ID,TI,Res)
704 ).
705
706
707 % similar to create_negation in bsyntaxtree but more rules adapted for hypotheses and WD prover
708
709 :- use_module(probsrc(bsyntaxtree),[extract_info/2]).
710 negate_hyp(b(P,pred,I),Res) :- create_negation_aux(P,I,R),!,Res=R.
711 negate_hyp(Pred,b(negation(Pred),pred,Infos)) :-
712 extract_info(Pred,Infos).
713
714 create_negation_aux(truth,I,R) :- !, R=b(falsity,pred,I).
715 create_negation_aux(falsity,I,R) :- !, R=b(truth,pred,I).
716 create_negation_aux(disjunct(A,B),I,R) :- !,
717 negate_hyp(A,NA), negate_hyp(B,NB), R = b(conjunct(NA,NB),pred,I).
718 create_negation_aux(implication(A,B),I,R) :- !, % not(A=>B) <===> A & not(B)
719 negate_hyp(B,NB), R = b(conjunct(A,NB),pred,I).
720 create_negation_aux(negation(Pred),_,R) :- !, R=Pred.
721 create_negation_aux(BOP,I,R) :- negate_op_aux(BOP,NBOP), R=b(NBOP,pred,I).
722 % no rule for conjunct(A,B)
723
724 % TODO: should we use negate_op ??
725 negate_op_aux(equal(A,B),not_equal(A,B)).
726 negate_op_aux(not_equal(A,B),equal(A,B)).
727 negate_op_aux(less(A,B),greater_equal(A,B)).
728 negate_op_aux(less_equal(A,B),greater(A,B)).
729 negate_op_aux(greater(A,B),less_equal(A,B)).
730 negate_op_aux(greater_equal(A,B),less(A,B)).
731
732 % --------------------
733
734 :- use_module(probsrc(preferences), [get_preference/2]).
735 :- use_module(probsrc(typing_tools),[is_finite_type_in_context/2]).
736 is_finite_type_for_wd(Type,_) :-
737 get_preference(wd_analysis_for_animation,true),!,
738 is_finite_type_in_context(animation,Type).
739 is_finite_type_for_wd(Type,_Hyps) :-
740 is_finite_type_in_context(proving,Type).
741
742
743 % -------------------
744
745 % convert a normalized expression to a raw expression (e.g., for pretty printing translate:print_raw_bexpr
746 % or translate:transform_raw)
747
748 :- use_module(library(lists),[is_list/1]).
749 convert_norm_expr_to_raw('$'(ID),Res) :- !, Res=identifier(unknown,ID).
750 convert_norm_expr_to_raw(Int,Res) :- integer(Int),!,Res=integer(unknown,Int).
751 convert_norm_expr_to_raw(Nr,Res) :- float(Nr),!,Res=real(unknown,Nr).
752 convert_norm_expr_to_raw(X,Res) :- integer_set_name_to_raw(X,Res), !.
753 convert_norm_expr_to_raw(set_extension(List),Res) :- !,
754 Res = set_extension(unknown,RList),
755 l_convert_norm(List,RList).
756 convert_norm_expr_to_raw(sequence_extension(List),Res) :- !,
757 Res = sequence_extension(unknown,RList),
758 l_convert_norm(List,RList).
759 convert_norm_expr_to_raw(Term,Res) :-
760 Term =.. [Functor,List,LHS,RHS],
761 member(Functor, [forall,event_b_comprehension_set,quantified_union,quantified_intersection]),!,
762 Res =.. [Functor,unknown,RList,RLHS,RRHS],
763 l_convert_norm(List,RList),
764 convert_norm_expr_to_raw(LHS,RLHS),
765 convert_norm_expr_to_raw(RHS,RRHS).
766 convert_norm_expr_to_raw(exists(List,Pred),Res) :- !,
767 Res = exists(unknown,RList,RPred),
768 l_convert_norm(List,RList),
769 convert_norm_expr_to_raw(Pred,RPred).
770 convert_norm_expr_to_raw(function(Functor,Args),Res) :- !,
771 Res = function(unknown,RFunctor,RList),
772 (is_list(Args) -> List=Args ; List=[Args]),
773 l_convert_norm(List,RList),
774 convert_norm_expr_to_raw(Functor,RFunctor).
775 convert_norm_expr_to_raw(partition(Set,Args),Res) :- !,
776 Res = partition(unknown,RSet,RArgs),
777 l_convert_norm(Args,RArgs),
778 convert_norm_expr_to_raw(Set,RSet).
779 % TODO: more special cases where generic code below does not work:
780 convert_norm_expr_to_raw(Term,Res) :- Term =.. [Functor|Args],
781 l_convert_norm(Args,RawArgs),
782 Res =.. [Functor,unknown|RawArgs].
783
784 l_convert_norm([],[]).
785 l_convert_norm([H|T],[RH|RT]) :- convert_norm_expr_to_raw(H,RH), l_convert_norm(T,RT).
786
787 integer_set_name_to_raw('INTEGER',integer_set(unknown)).
788 integer_set_name_to_raw('NATURAL',natural_set(unknown)).
789 integer_set_name_to_raw('NATURAL1',natural1_set(unknown)).
790 integer_set_name_to_raw('INT',int_set(unknown)).
791 integer_set_name_to_raw('NAT',nat_set(unknown)).
792 integer_set_name_to_raw('NAT1',nat1_set(unknown)).
793
794 :- use_module(probsrc(translate),[translate_raw_bexpr_with_limit/3]).
795 translate_norm_expr_with_limit(NormExpr,Limit,Str) :-
796 (convert_norm_expr_to_raw(NormExpr,RawExpr)
797 -> translate_raw_bexpr_with_limit(RawExpr,Limit,Str)
798 ; add_error(translate_norm_expr,'Cannot translate norm expression:',NormExpr),
799 Str = '???'
800 ).