1 % Heinrich Heine Universitaet Duesseldorf
2 % (c) 2025-2026 Lehrstuhl fuer Softwaretechnik und Programmiersprachen,
3 % This software is licenced under EPL 1.0 (http://www.eclipse.org/org/documents/epl-v10.html)
4
5
6 :- module(simplification_rules,[simplification_rule/6, is_true/1]).
7
8
9 :- use_module(probsrc(module_information),[module_info/2]).
10 :- module_info(group,sequent_prover).
11 :- module_info(description,'This module provides the simplification rules').
12
13 :- use_module(seqproversrc(prover_utils)).
14 :- use_module(library(lists)).
15 :- use_module(probsrc(tools),[list_intersection/3, list_difference/3]).
16
17 simplification_rule(Goal,NewGoal,_,Rule,Descr,Info) :-
18 simp_rule(Goal,NewGoal,Rule,level0,Descr,Info),
19 Goal \= NewGoal.
20 simplification_rule(Goal,NewGoal,Hyps,Rule,Descr,_Info) :-
21 simp_rule_with_hyps(Goal,NewGoal,Rule,Hyps),
22 create_descr(Rule,Goal,Descr),
23 Goal \= NewGoal.
24
25
26
27 is_true(equal(X,Y)) :- equal_terms(X,Y). % SIMP_MULTI_EQUAL
28 is_true(less_equal(X,Y)) :- equal_terms(X,Y). % SIMP_MULTI_LT + SIMP_MULTI_GT
29 is_true(greater_equal(X,Y)) :- equal_terms(X,Y). % SIMP_MULTI_LE + SIMP_MULTI_GE
30 is_true(negation(falsity)). % SIMP_SPECIAL_NOT_BFALSE
31 is_true(subset(empty_set,_)). % SIMP_SPECIAL_SUBSETEQ
32 is_true(subset(S,T)) :- equal_terms(S,T). % SIMP_MULTI_SUBSETEQ
33 is_true(implication(_P,truth)). % SIMP_SPECIAL_IMP_BTRUE_R
34 is_true(implication(falsity,_P)). % SIMP_SPECIAL_IMP_BFALSE_L
35 is_true(implication(P,Q)) :- equal_terms(P,Q). % SIMP_MULTI_IMP
36 is_true(equivalence(P,Q)) :- equal_terms(P,Q). % SIMP_MULTI_EQV
37 is_true(member(card(_S),Nat)) :- is_natural_set(Nat). % SIMP_CARD_NATURAL
38 is_true(P) :- is_less_eq(P,0,card(_S)). % SIMP_LIT_LE_CARD_0 + SIMP_LIT_GE_CARD_0
39 is_true(member(min(S),T)) :- equal_terms(S,T). % SIMP_MIN_IN
40 is_true(member(max(S),T)) :- equal_terms(S,T). % SIMP_MAX_IN
41 is_true(member(couple(E,F),event_b_identity)) :- equal_terms(E,F). % SIMP_SPECIAL_IN_ID
42 is_true(finite(bool_set)). % SIMP_FINITE_BOOL
43 is_true(finite(set_extension(_))). % SIMP_FINITE_SETENUM
44 is_true(finite(interval(_,_))). % SIMP_FINITE_UPTO
45 is_true(finite(empty_set)). % SIMP_SPECIAL_FINITE
46 is_true(member(I,Nat)) :- is_natural_set(Nat), number(I), I >= 0. % SIMP_LIT_IN_NATURAL
47 is_true(member(I,Nat)) :- is_natural1_set(Nat), number(I), I >= 1. % SIMP_LIT_IN_NATURAL1
48
49
50
51 % simp_rule/6
52 simp_rule(X,NewX,Rule,Op,Descr,Info) :-
53 (simp_rule(X,NewX,Rule)
54 ; simp_rule(X,NewX,Rule,Op)
55 ; simp_rule(X,NewX,Rule,Op,Info)
56 ; simp_rule_with_info(X,NewX,Rule,Info)),
57 create_descr(Rule,X,Descr).
58 simp_rule(X,NewX,Rule,_,Descr,_) :- simp_rule_with_descr(X,NewX,Rule,Descr).
59 simp_rule(Expr,Res,Expr,_,Descr,_) :- compute(Expr,Res), create_descr('Compute',Expr,Descr).
60 % allow simplifications deeper inside the term:
61 simp_rule(C,NewC,Rule,_,Descr,Info) :- C=..[F,P], simp_rule(P,Q,Rule,F,Descr,Info), NewC=..[F,Q].
62 simp_rule(C,NewC,Rule,_,Descr,Info) :- C=..[F,P,R], simp_rule(P,Q,Rule,F,Descr,Info), NewC=..[F,Q,R].
63 simp_rule(C,NewC,Rule,_,Descr,Info) :- C=..[F,R,P], simp_rule(P,Q,Rule,F,Descr,Info), NewC=..[F,R,Q].
64
65
66 compute(Expr,Res) :- evaluate(Expr,Res).
67
68 evaluate(I,I) :- number(I).
69 evaluate(add(I,J),Res) :- evaluate(I,NewI), evaluate(J,NewJ), Res is NewI + NewJ.
70 evaluate(minus(I,J),Res) :- evaluate(I,NewI), evaluate(J,NewJ), Res is NewI - NewJ.
71 evaluate(multiplication(I,J),Res) :- evaluate(I,NewI), evaluate(J,NewJ), Res is NewI * NewJ.
72 evaluate(div(I,J),Res) :- evaluate(I,NewI), evaluate(J,NewJ), J =\= 0, Res is NewI // NewJ.
73 evaluate(modulo(I,J),Res) :- evaluate(I,NewI), evaluate(J,NewJ), J =\= 0, Res is NewI mod NewJ.
74 evaluate(power_of(I,J),Res) :- evaluate(I,NewI), evaluate(J,NewJ), Res is NewI ^ NewJ.
75
76
77 % simp_rule/5
78 simp_rule(U,Ty,'SIMP_TYPE_BUNION',OuterOp,Info) :- OuterOp \= union,
79 % S \/ ... Ty \/ ... T == Ty
80 member_of_bin_op(union,Ty,U), type_expression(Ty,Info).
81 simp_rule(overwrite(P,Q),Res,'SIMP_TYPE_OVERL_CPROD',OuterOp,Info) :-
82 OuterOp \= overwrite,
83 op_to_list(overwrite(P,Q),List,overwrite),
84 overwrite_type(List,[],ResList,Info),
85 list_to_op(ResList,Res,overwrite).
86
87 % rules that do not require hyps:
88 simp_rule(not_equal(L,L),falsity,'SIMP_MULTI_NOTEQUAL').
89 simp_rule(less_equal(I,J),Res,'SIMP_LIT_LE') :- number(I), number(J), (I =< J -> Res=truth ; Res=falsity). % where I and J are literals
90 simp_rule(less(I,J),Res,'SIMP_LIT_LT') :- number(I), number(J), (I < J -> Res=truth ; Res=falsity).
91 simp_rule(greater_equal(I,J),Res,'SIMP_LIT_GE') :- number(I), number(J), (I >= J -> Res=truth ; Res=falsity).
92 simp_rule(greater(I,J),Res,'SIMP_LIT_GT') :- number(I), number(J), (I > J -> Res=truth ; Res=falsity).
93 simp_rule(equal(I,J),Res,'SIMP_LIT_EQUAL') :- number(I), number(J), (I = J -> Res=truth ; Res=falsity).
94 simp_rule(not_equal(L,R),negation(equal(L,R)),'SIMP_NOTEQUAL').
95 simp_rule(domain(event_b_comprehension_set(Ids,couple(E,_),P)),event_b_comprehension_set(Ids,E,P),'SIMP_DOM_LAMBDA').
96 simp_rule(range(event_b_comprehension_set(Ids,couple(_,F),P)),event_b_comprehension_set(Ids,F,P),'SIMP_RAN_LAMBDA').
97 simp_rule(NotEmpty,exists([X],member(X,Set)),'DEF_SPECIAL_NOT_EQUAL') :-
98 (is_inequality(NotEmpty,Set,empty_set) ; NotEmpty = negation(subset(Set,empty_set))),
99 new_identifier(Set,X).
100 simp_rule(convert_bool(Eq),P,'SIMP_KBOOL_LIT_EQUAL_TRUE') :- is_equality(Eq,P,boolean_true).
101 simp_rule(implication(truth,P),P,'SIMP_SPECIAL_IMP_BTRUE_L').
102 simp_rule(implication(P,falsity),negation(P),'SIMP_SPECIAL_IMP_BFALSE_R').
103 simp_rule(not_member(L,R),negation(member(L,R)),'SIMP_NOTIN').
104 simp_rule(not_subset_strict(L,R),negation(subset_strict(L,R)),'SIMP_NOTSUBSET').
105 simp_rule(not_subset(L,R),negation(subset(L,R)),'SIMP_NOTSUBSETEQ').
106 simp_rule(I,equal(E,boolean_true),'SIMP_SPECIAL_NOT_EQUAL_FALSE') :- is_inequality(I,E,boolean_false). % SIMP_SPECIAL_NOT_EQUAL_FALSE_L, SIMP_SPECIAL_NOT_EQUAL_FALSE_R
107 simp_rule(I,equal(E,boolean_false),'SIMP_SPECIAL_NOT_EQUAL_TRUE') :- is_inequality(I,E,boolean_true). % SIMP_SPECIAL_NOT_EQUAL_TRUE_L, SIMP_SPECIAL_NOT_EQUAL_TRUE_R
108 simp_rule(forall(X,P1,P2),Res,'SIMP_FORALL_AND') :- P2 = conjunct(_,_), distribute_forall(X,P1,P2,Res).
109 simp_rule(exists(X,D),Res,'SIMP_EXISTS_OR') :- D = disjunct(_,_), distribute_exists(X,D,Res).
110 simp_rule(exists(X,implication(P,Q)),implication(forall(X,truth,P),exists(X,Q)),'SIMP_EXISTS_IMP').
111 simp_rule(forall(L,P1,P2),forall(Used,P1,P2),'SIMP_FORALL') :- remove_unused_identifier(L,P1,Used).
112 simp_rule(exists(L,P),exists(Used,P),'SIMP_EXISTS') :- remove_unused_identifier(L,P,Used).
113 simp_rule(negation(forall(X,P1,P2)),exists(X,negation(implication(P1,P2))),'DERIV_NOT_FORALL').
114 simp_rule(negation(exists(X,P)),forall(X,truth,negation(P)),'DERIV_NOT_EXISTS').
115 simp_rule(event_b_comprehension_set(Ids,E,P),event_b_comprehension_set(Used,E,P),'SIMP_COMPSET') :- % own rule
116 remove_unused_identifier(Ids,P,Used).
117 simp_rule(equal(boolean_true,boolean_false),falsity,'SIMP_SPECIAL_EQUAL_TRUE').
118 simp_rule(equal(couple(E,F),couple(G,H)),conjunct(equal(E,G),equal(F,H)),'SIMP_EQUAL_MAPSTO').
119 simp_rule(equal(SetE,SetF),equal(E,F),'SIMP_EQUAL_SING') :- singleton_set(SetE,E),singleton_set(SetF,F).
120 simp_rule(set_subtraction(S,S),empty_set,'SIMP_MULTI_SETMINUS').
121 simp_rule(set_subtraction(S,empty_set),S,'SIMP_SPECIAL_SETMINUS_R').
122 simp_rule(set_subtraction(empty_set,_),empty_set,'SIMP_SPECIAL_SETMINUS_L').
123 simp_rule(member(E,set_subtraction(_,set_extension(L))),falsity,'DERIV_MULTI_IN_SETMINUS') :- member(F,L), equal_terms(E,F).
124 simp_rule(member(E,U),truth,'DERIV_MULTI_IN_BUNION') :-
125 % E\in A\/...\/ {..., E,...} \/...\/ B == \btrue
126 % U = union(_,_), this requirement is not necessary for soundness of the rule
127 member_of(union,set_extension(L),U),
128 member(F,L),
129 equal_terms(E,F).
130 simp_rule(convert_bool(truth),boolean_true,'SIMP_SPECIAL_KBOOL_BTRUE').
131 simp_rule(convert_bool(falsity),boolean_false,'SIMP_SPECIAL_KBOOL_BFALSE').
132 simp_rule(unary_minus(C),NewC,'DISTRI_MINUS') :-
133 distribute_unary_minus(C,NewC).
134 simp_rule(C,Res,'DISTRI_MINUS') :-
135 distribute_binary_minus(C,NewC),
136 left_associate_additions(NewC,Res).
137 simp_rule(subset(Union,T),Res,'DISTRI_SUBSETEQ_BUNION_SING') :-
138 member_of(union,SetF,Union),
139 singleton_set(SetF,_),
140 union_subset_member(T,Union,Res).
141 simp_rule(finite(S),exists([N,F],member(F,total_bijection(interval(1,N),S))),'DEF_FINITE') :-
142 new_identifier(S,N),
143 new_function(S,F).
144 simp_rule(finite(U),Conj,'SIMP_FINITE_BUNION') :- U = union(_,_), finite_union(U,Conj). % covers fin_bunion_r
145 simp_rule(finite(pow_subset(S)),finite(S),'SIMP_FINITE_POW').
146 simp_rule(finite(cartesian_product(S,T)),disjunct(disjunct(equal(S,empty_set),equal(T,empty_set)),conjunct(finite(S),finite(T))),'DERIV_FINITE_CPROD').
147 simp_rule(finite(reverse(R)),finite(R),'SIMP_FINITE_CONVERSE').
148 simp_rule(finite(domain_restriction(E,event_b_identity)),finite(E),'SIMP_FINITE_ID_DOMRES').
149 simp_rule(finite(domain_restriction(E,event_b_first_projection_v2)),finite(E),'SIMP_FINITE_PRJ1_DOMRES').
150 simp_rule(finite(domain_restriction(E,event_b_second_projection_v2)),finite(E),'SIMP_FINITE_PRJ2_DOMRES').
151 simp_rule(finite(Nat),falsity,'SIMP_FINITE_NATURAL') :- is_natural_set(Nat).
152 simp_rule(finite(Nat),falsity,'SIMP_FINITE_NATURAL1') :- is_natural1_set(Nat).
153 simp_rule(finite(Z),falsity,'SIMP_FINITE_INTEGER') :- is_integer_set(Z).
154 simp_rule(equivalence(A,B),P,'SIMP_SPECIAL_EQV_BTRUE') :- sym_unify(A,B,P,truth).
155 simp_rule(equivalence(A,B),negation(P),'SIMP_SPECIAL_EQV_BFALSE') :- sym_unify(A,B,P,falsity).
156 simp_rule(subset_strict(A,B),conjunct(subset(A,B),negation(equal(A,B))),'DEF_SUBSET').
157 simp_rule(subset_strict(_,empty_set),falsity,'SIMP_SPECIAL_SUBSET_R').
158 simp_rule(subset_strict(empty_set,S),negation(equal(S,empty_set)),'SIMP_SPECIAL_SUBSET_L').
159 simp_rule(subset_strict(S,T),falsity,'SIMP_MULTI_SUBSET') :- equal_terms(S,T).
160 simp_rule(C,Res,'DISTRI_PROD_PLUS') :- distri(C,Res,multiplication,add).
161 simp_rule(C,Res,'DISTRI_PROD_MINUS') :- distri(C,Res,multiplication,minus).
162 simp_rule(C,Res,'DISTRI_AND_OR') :- distri(C,Res,conjunct,disjunct).
163 simp_rule(C,Res,'DISTRI_OR_AND') :- distri(C,Res,disjunct,conjunct).
164 simp_rule(implication(P,Q),implication(negation(Q),negation(P)),'DERIV_IMP').
165 simp_rule(implication(P,implication(Q,R)),implication(conjunct(P,Q),R),'DERIV_IMP_IMP').
166 simp_rule(implication(P,C),Res,'DISTRI_IMP_AND') :- C = conjunct(_,_), and_imp(C,P,Res,conjunct).
167 simp_rule(implication(D,R),Res,'DISTRI_IMP_OR') :- D = disjunct(_,_), and_imp(D,R,Res,disjunct).
168 simp_rule(equivalence(P,Q),conjunct(implication(P,Q),implication(Q,P)),'DEF_EQV').
169 simp_rule(C,P,'SIMP_SPECIAL_AND_BTRUE') :- C = conjunct(P,truth) ; C = conjunct(truth,P).
170 simp_rule(D,P,'SIMP_SPECIAL_OR_BFALSE') :- D = disjunct(P,falsity) ; D = disjunct(falsity,P).
171 simp_rule(implication(NotP,P),P,'SIMP_MULTI_IMP_NOT_L') :- is_negation(P,NotP).
172 simp_rule(implication(P,NotP),NotP,'SIMP_MULTI_IMP_NOT_R') :- is_negation(P,NotP).
173 simp_rule(equivalence(A,B),falsity,'SIMP_MULTI_EQV_NOT') :- sym_unify(A,B,P,NotP), is_negation(P,NotP).
174 simp_rule(implication(C,Q),truth,'SIMP_MULTI_IMP_AND') :-
175 % P & ... & Q & ... & R => Q == \btrue
176 member_of(conjunct,Q,C). % TODO: will not select a conjunction for Q
177 simp_rule(negation(truth),falsity,'SIMP_SPECIAL_NOT_BTRUE').
178 simp_rule(member(X,SetA),equal(X,A),'SIMP_IN_SING') :-
179 singleton_set(SetA,A).
180 simp_rule(subset(SetA,S),member(A,S),'SIMP_SUBSETEQ_SING') :- singleton_set(SetA,A).
181 simp_rule(subset(Union,S),Conj,'DERIV_SUBSETEQ_BUNION') :- Union = union(_,_), union_subset(S,Union,Conj).
182 simp_rule(subset(S,Inter),Conj,'DERIV_SUBSETEQ_BINTER') :- Inter = intersection(_,_), subset_inter(S,Inter,Conj).
183 simp_rule(member(_,empty_set),falsity,'SIMP_SPECIAL_IN') .
184 simp_rule(member(B,S),truth,'SIMP_MULTI_IN') :- S = set_extension(L), member(B,L).
185 simp_rule(set_extension(L),set_extension(Res),'SIMP_MULTI_SETENUM') :- without_duplicates(L,Res).
186 simp_rule(subset(S,U),truth,'SIMP_SUBSETEQ_BUNION') :- member_of(union,S,U).
187 simp_rule(subset(I,S),truth,'SIMP_SUBSETEQ_BINTER') :- member_of(intersection,S,I).
188 simp_rule(implication(C,negation(Q)),negation(C),'SIMP_MULTI_IMP_AND_NOT_R') :- member_of(conjunct,Q,C).
189 simp_rule(implication(C,Q),negation(C),'SIMP_MULTI_IMP_AND_NOT_L') :- member_of(conjunct,negation(Q),C).
190 simp_rule(U,S,'SIMP_SPECIAL_BUNION') :- U = union(S,empty_set) ; U = union(empty_set,S).
191 simp_rule(R,set_extension([empty_set]),'SIMP_SPECIAL_EQUAL_RELDOMRAN') :- R=..[Op,empty_set,empty_set],
192 member(Op,[total_surjection,total_bijection,total_surjection_relation]).
193 simp_rule(domain(cartesian_product(E,F)),E,'SIMP_MULTI_DOM_CPROD') :- equal_terms(E,F).
194 simp_rule(range(cartesian_product(E,F)),E,'SIMP_MULTI_RAN_CPROD') :- equal_terms(E,F).
195 simp_rule(image(cartesian_product(SetE,S),SetF),S,'SIMP_MULTI_RELIMAGE_CPROD_SING') :-
196 singleton_set(SetE,E),
197 singleton_set(SetF,F),
198 equal_terms(E,F).
199 simp_rule(image(set_extension([couple(E,G)]),SetF),set_extension([G]),'SIMP_MULTI_RELIMAGE_SING_MAPSTO') :-
200 singleton_set(SetF,F),
201 equal_terms(E,F).
202 simp_rule(domain(domain_restriction(A,F)),intersection(domain(F),A),'SIMP_MULTI_DOM_DOMRES').
203 simp_rule(domain(domain_subtraction(A,F)),set_subtraction(domain(F),A),'SIMP_MULTI_DOM_DOMSUB').
204 simp_rule(range(range_restriction(F,A)),intersection(range(F),A),'SIMP_MULTI_RAN_RANRES').
205 simp_rule(range(range_subtraction(F,A)),set_subtraction(range(F),A),'SIMP_MULTI_RAN_RANSUB').
206 simp_rule(M,exists([Y],member(couple(R,Y),F)),'DEF_IN_DOM') :-
207 M = member(R,domain(F)),
208 new_identifier(M,Y).
209 simp_rule(M,exists([X],member(couple(X,R),F)),'DEF_IN_RAN') :-
210 M = member(R,range(F)),
211 new_identifier(M,X).
212 simp_rule(member(couple(E,F),reverse(R)),member(couple(F,E),R),'DEF_IN_CONVERSE').
213 simp_rule(member(couple(E,F),domain_restriction(S,R)),conjunct(member(E,S),member(couple(E,F),R)),'DEF_IN_DOMRES').
214 simp_rule(member(couple(E,F),range_restriction(R,T)),conjunct(member(couple(E,F),R),member(F,T)),'DEF_IN_RANRES').
215 simp_rule(member(couple(E,F),domain_subtraction(S,R)),conjunct(not_member(E,S),member(couple(E,F),R)),'DEF_IN_DOMSUB').
216 simp_rule(member(couple(E,F),range_subtraction(R,T)),conjunct(member(couple(E,F),R),not_member(F,T)),'DEF_IN_RANSUB').
217 simp_rule(member(F,image(R,W)),exists([X],conjunct(member(X,W),member(couple(X,F),R))),'DEF_IN_RELIMAGE') :-
218 new_identifier(image(R,W),X).
219 simp_rule(M,exists(Ids,Res),'DEF_IN_FCOMP') :-
220 M = member(couple(E,F),Comp),
221 Comp = composition(_,_),
222 op_to_list(Comp,List,composition),
223 length(List,Length),
224 L1 is Length - 1,
225 new_identifiers(M,L1,Ids),
226 member_couples(E,F,List,Ids,ConjList),
227 list_to_op(ConjList,Res,conjunct).
228 simp_rule(image(Comp,S),image(Q,image(P,S)),'DERIV_RELIMAGE_FCOMP') :- split_composition(Comp,P,Q).
229
230 simp_rule(composition(SetEF,SetGH),set_extension([couple(E,H)]),'DERIV_FCOMP_SING') :-
231 singleton_set(SetEF,couple(E,F)),
232 singleton_set(SetGH,couple(G,H)),
233 equal_terms(F,G).
234 simp_rule(overwrite(P,Q),union(domain_subtraction(domain(Q),P),Q),'DEF_OVERL').
235 simp_rule(member(couple(E,F),event_b_identity),equal(E,F),'DEF_IN_ID').
236 simp_rule(member(couple(E,couple(F,G)),direct_product(P,Q)),conjunct(member(couple(E,F),P),member(couple(E,G),Q)),'DEF_IN_DPROD').
237 simp_rule(member(couple(couple(E,G),couple(F,H)),parallel_product(P,Q)),conjunct(member(couple(E,F),P),member(couple(G,H),Q)),'DEF_IN_PPROD').
238 simp_rule(member(R,relations(S,T)),subset(R,cartesian_product(S,T)),'DEF_IN_REL').
239 simp_rule(member(R,total_relation(S,T)),conjunct(member(R,relations(S,T)),equal(domain(R),S)),'DEF_IN_RELDOM').
240 simp_rule(member(R,surjection_relation(S,T)),conjunct(member(R,relations(S,T)),equal(range(R),T)),'DEF_IN_RELRAN').
241 simp_rule(member(R,total_surjection_relation(S,T)),conjunct(conjunct(member(R,relations(S,T)),equal(domain(R),S)),equal(range(R),T)),'DEF_IN_RELDOMRAN').
242 simp_rule(M,conjunct(Conj1,Conj2),'DEF_IN_FCT') :-
243 M = member(F,partial_function(S,T)),
244 Conj1 = member(F,relations(S,T)),
245 new_identifiers(M,3,Ids),
246 Ids = [X,Y,Z],
247 Conj2 = forall(Ids,conjunct(member(couple(X,Y),F),member(couple(X,Z),F)),equal(Y,Z)).
248 simp_rule(member(X,total_function(Dom,Ran)),conjunct(Conj1,Conj2),'DEF_IN_TFCT') :-
249 Conj1 = member(X,partial_function(Dom,Ran)),
250 Conj2 = equal(domain(X),Dom).
251 simp_rule(member(F,partial_injection(S,T)),conjunct(member(F,partial_function(S,T)),member(reverse(F),partial_function(T,S))),'DEF_IN_INJ').
252 simp_rule(member(F,total_injection(S,T)),conjunct(member(F,partial_injection(S,T)),equal(domain(F),S)),'DEF_IN_TINJ').
253 simp_rule(member(F,partial_surjection(S,T)),conjunct(member(F,partial_function(S,T)),equal(range(F),T)),'DEF_IN_SURJ').
254 simp_rule(member(F,total_surjection(S,T)),conjunct(member(F,partial_surjection(S,T)),equal(domain(F),S)),'DEF_IN_TSURJ').
255 simp_rule(member(F,total_bijection(S,T)),conjunct(member(F,total_injection(S,T)),equal(range(F),T)),'DEF_IN_BIJ').
256 simp_rule(C,Res,'DISTRI_DOMSUB_BUNION_L') :- distri_l3(C,Res,domain_subtraction,union,intersection).
257 simp_rule(C,Res,'DISTRI_DOMSUB_BINTER_L') :- distri_l3(C,Res,domain_subtraction,intersection,union).
258
259 simp_rule(C,Res,Rule) :- distri_r2(C,Res,Rule).
260 simp_rule(C,Res,Rule) :- distri_r3(C,Res,Rule).
261 simp_rule(C,Res,Rule) :- distri_l2(C,Res,Rule).
262 simp_rule(reverse(U),Res,'DISTRI_CONVERSE_BUNION') :- U = union(_,_), distri_reverse(U,Res,union).
263 simp_rule(reverse(I),Res,'DISTRI_CONVERSE_BINTER') :- I = intersection(_,_), distri_reverse(I,Res,intersection).
264 simp_rule(reverse(S),Res,'DISTRI_CONVERSE_SETMINUS') :- S = set_subtraction(_,_), distri_reverse(S,Res,set_subtraction).
265 simp_rule(reverse(R),Res,'DISTRI_CONVERSE_BCOMP') :- R = ring(_,_), distri_reverse_reverse(R,Res,ring).
266 simp_rule(reverse(R),Res,'DISTRI_CONVERSE_FCOMP') :- R = composition(_,_), distri_reverse_reverse(R,Res,composition).
267 simp_rule(reverse(parallel_product(S,R)),parallel_product(reverse(S),reverse(R)),'DISTRI_CONVERSE_PPROD').
268 simp_rule(reverse(domain_restriction(S,R)),range_restriction(reverse(R),S),'DISTRI_CONVERSE_DOMRES').
269 simp_rule(reverse(domain_subtraction(S,R)),range_subtraction(reverse(R),S),'DISTRI_CONVERSE_DOMSUB').
270 simp_rule(reverse(range_restriction(R,S)),domain_restriction(S,reverse(R)),'DISTRI_CONVERSE_RANRES').
271 simp_rule(reverse(range_subtraction(R,S)),domain_subtraction(S,reverse(R)),'DISTRI_CONVERSE_RANSUB').
272 simp_rule(domain(U),Res,'DISTRI_DOM_BUNION') :- U = union(_,_), distri_union(U,Res,domain).
273 simp_rule(range(U),Res,'DISTRI_RAN_BUNION') :- U = union(_,_), distri_union(U,Res,range).
274 simp_rule(image(R,U),Res,'DISTRI_RELIMAGE_BUNION_R') :- U = union(_,_), image_union(R,U,Res).
275 simp_rule(image(U,S),Res,'DISTRI_RELIMAGE_BUNION_L') :- U = union(_,_), union_image(U,S,Res).
276 simp_rule(member(LB,interval(LB,UB)),truth,'lower_bound_in_interval') :- number(LB), number(UB), LB =< UB. % own rule: lower bound in interval
277 simp_rule(member(Nr,interval(LB,UB)),truth,'SIMP_IN_UPTO') :- number(LB), number(UB), number(Nr), LB =< Nr, Nr =< UB. % own rule
278 simp_rule(member(Nr,interval(LB,UB)),falsity,'SIMP_IN_UPTO') :- number(LB), number(UB), number(Nr), (Nr =< LB ; UB =< Nr). % own rule
279 simp_rule(member(E,U),Res,'DEF_IN_BUNION') :- U = union(_,_), member_union(E,U,Res).
280 simp_rule(member(E,I),Res,'DEF_IN_BINTER') :- I = intersection(_,_), member_intersection(E,I,Res).
281 simp_rule(member(couple(E,F),cartesian_product(S,T)),conjunct(member(E,S),member(F,T)),'DEF_IN_MAPSTO').
282 simp_rule(member(E,pow_subset(S)),subset(E,S),'DEF_IN_POW').
283 simp_rule(member(E,pow1_subset(S)),conjunct(member(E,pow_subset(S)),not_equal(S,empty_set)),'DEF_IN_POW1').
284 simp_rule(S,forall([X],member(X,A),member(X,B)),'DEF_SUBSETEQ') :- S = subset(A,B), new_identifier(S,X).
285 simp_rule(member(E,set_subtraction(S,T)),conjunct(member(E,S),negation(member(E,T))),'DEF_IN_SETMINUS').
286 simp_rule(member(E,set_extension(L)),D,'DEF_IN_SETENUM') :- L = [A,B|T],
287 or_equal(T,E,disjunct(equal(E,A),equal(E,B)),D).
288 simp_rule(M,exists([X],conjunct(member(X,S),member(E,X))),'DEF_IN_KUNION') :-
289 M = member(E,general_union(S)),
290 new_identifier(M,X).
291 simp_rule(member(E,general_intersection(S)),forall([X],member(X,S),member(E,X)),'DEF_IN_KINTER') :- new_identifier(S,X).
292 simp_rule(member(E,quantified_union(Ids,P,T)),exists(NewIds,conjunct(P1,member(E,T1))),'DEF_IN_QUNION') :-
293 length(Ids,L),
294 new_identifiers(E,L,NewIds),
295 rewrite_pairwise(Ids,NewIds,conjunct(P,T),conjunct(P1,T1)).
296 simp_rule(member(E,quantified_intersection(Ids,P,T)),forall(NewIds,P1,member(E,T1)),'DEF_IN_QINTER') :-
297 length(Ids,L),
298 new_identifiers(E,L,NewIds),
299 rewrite_pairwise(Ids,NewIds,conjunct(P,T),conjunct(P1,T1)).
300 simp_rule(member(E,interval(L,R)),conjunct(less_equal(L,E),less_equal(E,R)),'DEF_IN_UPTO').
301 simp_rule(C,Res,'DISTRI_BUNION_BINTER') :- distri(C,Res,union,intersection).
302 simp_rule(C,Res,'DISTRI_BINTER_BUNION') :- distri(C,Res,intersection,union).
303 simp_rule(C,Res,'DISTRI_BINTER_SETMINUS') :- distri(C,Res,intersection,set_subtraction).
304 simp_rule(set_subtraction(X,Y),Res,'DISTRI_SETMINUS_BUNION') :- distri_setminus(X,Y,Res).
305 simp_rule(C,Res,'DISTRI_CPROD_BINTER') :- distri(C,Res,cartesian_product,intersection).
306 simp_rule(C,Res,'DISTRI_CPROD_BUNION') :- distri(C,Res,cartesian_product,union).
307 simp_rule(C,Res,'DISTRI_CPROD_SETMINUS') :- distri(C,Res,cartesian_product,set_subtraction).
308 simp_rule(subset(set_subtraction(A,B),S),subset(A,union(B,S)),'DERIV_SUBSETEQ_SETMINUS_L').
309 simp_rule(subset(S,set_subtraction(A,B)),conjunct(subset(S,A),equal(intersection(S,B),empty_set)),'DERIV_SUBSETEQ_SETMINUS_R').
310 simp_rule(partition(S,L),Res,'DEF_PARTITION') :-
311 length(L,LL), LL > 1,
312 list_to_op(L,U,union),
313 Eq = equal(S,U),
314 findall(equal(intersection(X,Y),empty_set),(all_pairs(L,Pairs), member([X,Y],Pairs)), Disjoint),
315 list_to_op([Eq|Disjoint],Res,conjunct).
316 simp_rule(partition(S,[]),equal(S,empty_set),'SIMP_EMPTY_PARTITION').
317 simp_rule(partition(S,[T]),equal(S,T),'SIMP_SINGLE_PARTITION').
318 simp_rule(domain(set_extension(L)),set_extension(Res),'SIMP_DOM_SETENUM') :-
319 map_dom(L,Dom),
320 without_duplicates(Dom,Res).
321 simp_rule(range(set_extension(L)),set_extension(Res),'SIMP_RAN_SETENUM') :-
322 map_ran(L,Ran),
323 without_duplicates(Ran,Res).
324 simp_rule(general_union(pow_subset(S)),S,'SIMP_KUNION_POW').
325 simp_rule(general_union(pow1_subset(S)),S,'SIMP_KUNION_POW1').
326 simp_rule(general_union(set_extension([empty_set])),empty_set,'SIMP_SPECIAL_KUNION').
327 simp_rule(quantified_union([_],falsity,_),empty_set,'SIMP_SPECIAL_QUNION').
328 simp_rule(general_intersection(set_extension([empty_set])),empty_set,'SIMP_SPECIAL_KINTER').
329 simp_rule(general_intersection(pow_subset(S)),S,'SIMP_KINTER_POW').
330 simp_rule(pow_subset(empty_set),set_extension([empty_set]),'SIMP_SPECIAL_POW').
331 simp_rule(pow1_subset(empty_set),empty_set,'SIMP_SPECIAL_POW1').
332 simp_rule(event_b_comprehension_set(Ids,X,member(X,S)),S,'SIMP_COMPSET_IN') :-
333 used_identifiers(X,Ids),
334 free_identifiers(S,Free),
335 list_intersection(Ids,Free,[]).
336 simp_rule(event_b_comprehension_set(Ids,X,subset(X,S)),pow_subset(S),'SIMP_COMPSET_SUBSETEQ') :-
337 used_identifiers(X,Ids),
338 free_identifiers(S,Free),
339 list_intersection(Ids,Free,[]).
340 simp_rule(event_b_comprehension_set(_,_,falsity),empty_set,'SIMP_SPECIAL_COMPSET_BFALSE').
341 simp_rule(event_b_comprehension_set(Ids,F,Conj),event_b_comprehension_set(Ids0,F1,Conj0),'SIMP_COMPSET_EQUAL') :-
342 op_to_list(Conj,ConjList,conjunct),
343 select(Eq,ConjList,ConjList0),
344 is_equality(Eq,X,E),
345 list_to_op(ConjList0,Conj0,conjunct),
346 free_identifiers(conjunct(E,Conj0),Free),
347 op_to_list(X,CIds,couple),
348 list_intersection(CIds,Free,[]),
349 list_subset(CIds,Ids),
350 list_difference(Ids,CIds,Ids0),
351 Ids0 \= [],
352 rewrite(X,E,F,F1).
353 simp_rule(member(E,event_b_comprehension_set(BIds,X,P)),Q,'SIMP_IN_COMPSET_ONEPOINT') :-
354 op_to_list(X,IdsX,couple),
355 IdsX = BIds,
356 op_to_list(E,IdsE,couple),
357 length(IdsX,LengthX),
358 length(IdsE,LengthE),
359 LengthE =:= LengthX,
360 rewrite_pairwise(IdsX,IdsE,P,Q).
361 simp_rule(member(F,event_b_comprehension_set(Ids,E,P)),exists(Ids,conjunct(P,equal(E,F))),'SIMP_IN_COMPSET') :-
362 free_identifiers(F,FreeInF),
363 list_intersection(Ids,FreeInF,[]).
364 simp_rule(function(event_b_comprehension_set([X],couple(X,E),_),Y),F,'SIMP_FUNIMAGE_LAMBDA') :- rewrite(X,Y,E,F).
365 simp_rule(Hyp,New,Rule) :-
366 CompSet = event_b_comprehension_set(Ids,couple(E,F),P),
367 NewComp = event_b_comprehension_set(Ids,E,P),
368 (Hyp = finite(CompSet), New = finite(NewComp), Rule = 'SIMP_FINITE_LAMBDA' ;
369 Hyp = card(CompSet), New = card(NewComp), Rule = 'SIMP_CARD_LAMBDA' ),
370 used_identifiers(E,IdsE),
371 list_subset(Ids,IdsE),
372 used_identifiers(F,IdsF),
373 list_intersection(IdsF,Ids,BoundF),
374 list_subset(BoundF,IdsE).
375 simp_rule(R,S,'SIMP_SPECIAL_OVERL') :- R = overwrite(S,empty_set) ; R = overwrite(empty_set,S).
376 simp_rule(domain(reverse(R)),range(R),'SIMP_DOM_CONVERSE').
377 simp_rule(range(reverse(R)),domain(R),'SIMP_RAN_CONVERSE').
378 simp_rule(domain_restriction(empty_set,_),empty_set,'SIMP_SPECIAL_DOMRES_L').
379 simp_rule(domain_restriction(_,empty_set),empty_set,'SIMP_SPECIAL_DOMRES_R').
380 simp_rule(domain_restriction(domain(R),R),R,'SIMP_MULTI_DOMRES_DOM').
381 simp_rule(domain_restriction(range(R),reverse(R)),reverse(R),'SIMP_MULTI_DOMRES_RAN').
382 simp_rule(domain_restriction(S,domain_restriction(T,event_b_identity)),domain_restriction(intersection(S,T),event_b_identity),'SIMP_DOMRES_DOMRES_ID').
383 simp_rule(domain_restriction(S,domain_subtraction(T,event_b_identity)),domain_restriction(set_subtraction(S,T),event_b_identity),'SIMP_DOMRES_DOMSUB_ID').
384 simp_rule(range_restriction(_,empty_set),empty_set,'SIMP_SPECIAL_RANRES_R').
385 simp_rule(range_restriction(empty_set,_),empty_set,'SIMP_SPECIAL_RANRES_L').
386 simp_rule(range_restriction(domain_restriction(S,event_b_identity),T),domain_restriction(intersection(S,T),event_b_identity),'SIMP_RANRES_DOMRES_ID').
387 simp_rule(range_restriction(domain_subtraction(S,event_b_identity),T),domain_restriction(set_subtraction(T,S),event_b_identity),'SIMP_RANRES_DOMSUB_ID').
388 simp_rule(range_restriction(R,range(R)),R,'SIMP_MULTI_RANRES_RAN').
389 simp_rule(range_restriction(reverse(R),domain(R)),reverse(R),'SIMP_MULTI_RANRES_DOM').
390 simp_rule(range_restriction(event_b_identity,S),domain_restriction(S,event_b_identity),'SIMP_RANRES_ID').
391 simp_rule(range_subtraction(event_b_identity,S),domain_subtraction(S,event_b_identity),'SIMP_RANSUB_ID').
392 simp_rule(domain_subtraction(empty_set,R),R,'SIMP_SPECIAL_DOMSUB_L').
393 simp_rule(domain_subtraction(_,empty_set),empty_set,'SIMP_SPECIAL_DOMSUB_R').
394 simp_rule(domain_subtraction(domain(R),R),empty_set,'SIMP_MULTI_DOMSUB_DOM').
395 simp_rule(domain_subtraction(range(R),reverse(R)),empty_set,'SIMP_MULTI_DOMSUB_RAN').
396 simp_rule(domain_subtraction(S,domain_restriction(T,event_b_identity)),domain_restriction(set_subtraction(T,S),event_b_identity),'SIMP_DOMSUB_DOMRES_ID').
397 simp_rule(domain_subtraction(S,domain_subtraction(T,event_b_identity)),domain_subtraction(union(S,T),event_b_identity),'SIMP_DOMSUB_DOMSUB_ID').
398 simp_rule(range_subtraction(R,empty_set),R,'SIMP_SPECIAL_RANSUB_R').
399 simp_rule(range_subtraction(empty_set,_),empty_set,'SIMP_SPECIAL_RANSUB_L').
400 simp_rule(range_subtraction(reverse(R),domain(R)),empty_set,'SIMP_MULTI_RANSUB_DOM').
401 simp_rule(range_subtraction(R,range(R)),empty_set,'SIMP_MULTI_RANSUB_RAN').
402 simp_rule(range_subtraction(domain_restriction(S,event_b_identity),T),domain_restriction(set_subtraction(S,T),event_b_identity),'SIMP_RANSUB_DOMRES_ID').
403 simp_rule(range_subtraction(domain_subtraction(S,event_b_identity),T),domain_subtraction(union(S,T),event_b_identity),'SIMP_RANSUB_DOMSUB_ID').
404 simp_rule(C,R,'SIMP_TYPE_FCOMP_ID') :- C = composition(R,event_b_identity) ; C = composition(event_b_identity,R).
405 simp_rule(C,R,'SIMP_TYPE_BCOMP_ID') :- C = ring(R,event_b_identity) ; C = ring(event_b_identity,R).
406 simp_rule(direct_product(_,empty_set),empty_set,'SIMP_SPECIAL_DPROD_R').
407 simp_rule(direct_product(empty_set,_),empty_set,'SIMP_SPECIAL_DPROD_L').
408 simp_rule(direct_product(cartesian_product(S,T),cartesian_product(U,V)),
409 cartesian_product(intersection(S,U),cartesian_product(T,V)),'SIMP_DPROD_CPROD').
410 simp_rule(PP,empty_set,'SIMP_SPECIAL_PPROD') :- PP = parallel_product(_,empty_set) ; PP = parallel_product(empty_set,_). % SIMP_SPECIAL_PPROD_L / SIMP_SPECIAL_PPROD_R
411 simp_rule(parallel_product(cartesian_product(S,T),cartesian_product(U,V)),
412 cartesian_product(cartesian_product(S,U),cartesian_product(T,V)),'SIMP_PPROD_CPROD').
413 simp_rule(image(_,empty_set),empty_set,'SIMP_SPECIAL_RELIMAGE_R').
414 simp_rule(image(empty_set,_),empty_set,'SIMP_SPECIAL_RELIMAGE_L').
415 simp_rule(image(R,domain(R)),range(R),'SIMP_MULTI_RELIMAGE_DOM').
416 simp_rule(image(event_b_identity,T),T,'SIMP_RELIMAGE_ID').
417 simp_rule(image(domain_restriction(S,event_b_identity),T),intersection(S,T),'SIMP_RELIMAGE_DOMRES_ID').
418 simp_rule(image(domain_subtraction(S,event_b_identity),T),set_subtraction(T,S),'SIMP_RELIMAGE_DOMSUB_ID').
419 simp_rule(image(reverse(range_subtraction(_,S)),S),empty_set,'SIMP_MULTI_RELIMAGE_CONVERSE_RANSUB').
420 simp_rule(image(reverse(range_restriction(R,S)),S),image(reverse(R),S),'SIMP_MULTI_RELIMAGE_CONVERSE_RANRES').
421 simp_rule(image(reverse(domain_subtraction(S,R)),T),
422 set_subtraction(image(reverse(R),T),S),'SIMP_RELIMAGE_CONVERSE_DOMSUB').
423 simp_rule(image(range_subtraction(R,S),T),set_subtraction(image(R,T),S),'DERIV_RELIMAGE_RANSUB').
424 simp_rule(image(range_restriction(R,S),T),intersection(image(R,T),S),'DERIV_RELIMAGE_RANRES').
425 simp_rule(image(domain_subtraction(S,_),S),empty_set,'SIMP_MULTI_RELIMAGE_DOMSUB').
426 simp_rule(image(domain_subtraction(S,R),T),image(R,set_subtraction(T,S)),'DERIV_RELIMAGE_DOMSUB').
427 simp_rule(image(domain_restriction(S,R),T),image(R,intersection(S,T)),'DERIV_RELIMAGE_DOMRES').
428 simp_rule(reverse(empty_set),empty_set,'SIMP_SPECIAL_CONVERSE').
429 simp_rule(reverse(event_b_identity),event_b_identity,'SIMP_CONVERSE_ID').
430 simp_rule(member(couple(E,F),set_subtraction(_,event_b_identity)),falsity,'SIMP_SPECIAL_IN_SETMINUS_ID') :- equal_terms(E,F).
431 simp_rule(member(couple(E,F),domain_restriction(S,event_b_identity)),member(E,S),'SIMP_SPECIAL_IN_DOMRES_ID') :-
432 equal_terms(E,F).
433 simp_rule(member(couple(E,F),set_subtraction(R,domain_restriction(S,event_b_identity))),
434 member(couple(E,F),domain_subtraction(S,R)),'SIMP_SPECIAL_IN_SETMINUS_DOMRES_ID') :- equal_terms(E,F).
435 simp_rule(reverse(cartesian_product(S,T)),cartesian_product(T,S),'SIMP_CONVERSE_CPROD').
436 simp_rule(reverse(set_extension(L)),set_extension(NewL),'SIMP_CONVERSE_SETENUM') :- convert_map_to(L,NewL).
437 simp_rule(reverse(event_b_comprehension_set(Ids,couple(X,Y),P)),
438 event_b_comprehension_set(Ids,couple(Y,X),P),'SIMP_CONVERSE_COMPSET').
439 simp_rule(composition(domain_restriction(S,event_b_identity),R),domain_restriction(S,R),'SIMP_FCOMP_ID_L').
440 simp_rule(composition(R,domain_restriction(S,event_b_identity)),range_restriction(R,S),'SIMP_FCOMP_ID_R').
441 simp_rule(R,set_extension([empty_set]),'SIMP_SPECIAL_REL_R') :- simp_relation_empty_range(R).
442 simp_rule(R,set_extension([empty_set]),'SIMP_SPECIAL_REL_L') :- simp_relation_empty_domain(R).
443 simp_rule(function(event_b_first_projection_v2,couple(E,_)),E,'SIMP_FUNIMAGE_PRJ1').
444 simp_rule(function(event_b_second_projection_v2,couple(_,F)),F,'SIMP_FUNIMAGE_PRJ2').
445 simp_rule(member(couple(E,function(F,E)),F),truth,'SIMP_IN_FUNIMAGE').
446 simp_rule(member(couple(function(reverse(F),E),E),F),truth,'SIMP_IN_FUNIMAGE_CONVERSE_L').
447 simp_rule(member(couple(function(F,E),E),reverse(F)),truth,'SIMP_IN_FUNIMAGE_CONVERSE_R').
448 simp_rule(function(set_extension(L),_),E,'SIMP_MULTI_FUNIMAGE_SETENUM_LL') :- all_map_to(L,E).
449 simp_rule(function(set_extension(L),X),Y,'SIMP_MULTI_FUNIMAGE_SETENUM_LR') :- member(couple(Z,Y),L), equal_terms(X,Z).
450 simp_rule(function(Over,X),Y,'SIMP_MULTI_FUNIMAGE_OVERL_SETENUM') :-
451 Over = overwrite(_,_),
452 last_overwrite(Over,set_extension(L)),
453 member(couple(Z,Y),L),
454 equal_terms(X,Z).
455 simp_rule(function(U,X),Y,'SIMP_MULTI_FUNIMAGE_BUNION_SETENUM') :-
456 member_of(union,set_extension(L),U),
457 member(couple(Z,Y),L),
458 equal_terms(X,Z).
459 simp_rule(function(cartesian_product(_,set_extension([F])),_),F,'SIMP_FUNIMAGE_CPROD').
460 simp_rule(function(F,function(reverse(F),E)),E,'SIMP_FUNIMAGE_FUNIMAGE_CONVERSE').
461 simp_rule(function(reverse(F),function(F,E)),E,'SIMP_FUNIMAGE_CONVERSE_FUNIMAGE').
462 simp_rule(function(set_extension(L),function(set_extension(L2),E)),E,'SIMP_FUNIMAGE_FUNIMAGE_CONVERSE_SETENUM') :-
463 convert_map_to(L,LConverted),
464 equal_terms(LConverted,L2).
465 simp_rule(domain_restriction(SetE,event_b_identity),set_extension([couple(E,E)]),'DERIV_ID_SING') :- singleton_set(SetE,E).
466 simp_rule(domain(empty_set),empty_set,'SIMP_SPECIAL_DOM').
467 simp_rule(range(empty_set),empty_set,'SIMP_SPECIAL_RAN').
468 simp_rule(reverse(reverse(R)),R,'SIMP_CONVERSE_CONVERSE').
469 simp_rule(function(event_b_identity,X),X,'SIMP_FUNIMAGE_ID').
470 simp_rule(member(E,Nat),less_equal(0,E),'DEF_IN_NATURAL') :- is_natural_set(Nat).
471 simp_rule(member(E,Nat),less_equal(1,E),'DEF_IN_NATURAL1') :- is_natural1_set(Nat).
472 simp_rule(div(E,1),E,'SIMP_SPECIAL_DIV_1').
473 simp_rule(div(0,_),0,'SIMP_SPECIAL_DIV_0').
474 simp_rule(power_of(E,1),E,'SIMP_SPECIAL_EXPN_1_R').
475 simp_rule(power_of(1,_),1,'SIMP_SPECIAL_EXPN_1_L').
476 simp_rule(power_of(_,0),1,'SIMP_SPECIAL_EXPN_0').
477 simp_rule(A,S,'SIMP_SPECIAL_PLUS') :- A = add(S,0) ; A = add(0,S).
478 simp_rule(multiplication(A,B),Res,Rule) :-
479 op_to_list(multiplication(A,B),L,multiplication),
480 change_sign(L,NL,Nr),
481 list_to_op(NL,New,multiplication),
482 (Nr mod 2 =:= 0 -> Rule = 'SIMP_SPECIAL_PROD_MINUS_EVEN', Res = New
483 ; Rule = 'SIMP_SPECIAL_PROD_MINUS_ODD', Res = unary_minus(New)).
484 simp_rule(unary_minus(I),J,'SIMP_LIT_MINUS') :- number(I), J is I * (-1).
485 simp_rule(minus(E,0),E,'SIMP_SPECIAL_MINUS_R').
486 simp_rule(minus(0,E),unary_minus(E),'SIMP_SPECIAL_MINUS_L').
487 simp_rule(unary_minus(F),E,'SIMP_MINUS_MINUS') :- is_minus(F,E).
488 simp_rule(minus(E,F),add(E,F2),'SIMP_MINUS_UNMINUS') :- is_minus(F,F2).
489 simp_rule(minus(E,F),0,'SIMP_MULTI_MINUS') :- equal_terms(E,F).
490 simp_rule(minus(S,C),S0,'SIMP_MULTI_MINUS_PLUS_L') :- select_op(C,S,S0,add).
491 simp_rule(minus(C,S),unary_minus(S0),'SIMP_MULTI_MINUS_PLUS_R') :- select_op(C,S,S0,add).
492 simp_rule(minus(S1,S2),minus(S01,S02),'SIMP_MULTI_MINUS_PLUS_PLUS') :-
493 member_of(add,El,S1),
494 select_op(El,S1,S01,add),
495 select_op(El,S2,S02,add),
496 S01 = add(_,_),
497 S02 = add(_,_).
498 simp_rule(S,S1,'SIMP_MULTI_PLUS_MINUS') :-
499 member_of(add,minus(C,D),S),
500 select_op(D,S,S0,add),
501 select_op(minus(C,D),S0,C,S1,add).
502 simp_rule(Ex,Res,Rule) :- simp_multi_arithrel(Ex,Res,Rule).
503 simp_rule(Ex,Res,'SIMP_MULTI_ARITHREL') :- % own rule for cases not covered by SIMP_MULTI_ARITHREL_[...]
504 \+ simp_multi_arithrel(Ex,Res,_),
505 Ex=..[Rel,L,R],
506 comparison(Rel),
507 (select_summand(L,Term,L0),
508 select_summand(R,Term,R0)
509 ; select_subtrahend(L,Term,L0),
510 select_subtrahend(R,Term,R0) ),
511 NewEx=..[Rel,L0,R0],
512 normalize_minus(NewEx,Res).
513 simp_rule(P,E,'SIMP_SPECIAL_PROD_1') :- P = multiplication(E,1) ; P = multiplication(1,E).
514 simp_rule(min(set_extension(L)),min(set_extension(Res)),'SIMP_LIT_MIN') :-
515 min_list(L,I),
516 remove_greater(L,I,Res).
517 simp_rule(max(set_extension(L)),max(set_extension(Res)),'SIMP_LIT_MAX') :-
518 max_list(L,I),
519 remove_smaller(L,I,Res).
520 simp_rule(card(empty_set),0,'SIMP_SPECIAL_CARD').
521 simp_rule(card(set_extension([_])),1,'SIMP_CARD_SING').
522 simp_rule(card(pow_subset(S)),power_of(2,card(S)),'SIMP_CARD_POW').
523 simp_rule(card(union(S,T)),minus(add(card(S),card(T)),card(intersection(S,T))),'SIMP_CARD_BUNION').
524 simp_rule(card(reverse(R)),card(R),'SIMP_CARD_CONVERSE').
525 simp_rule(card(domain_restriction(S,event_b_identity)),S,'SIMP_CARD_ID_DOMRES').
526 simp_rule(card(domain_restriction(E,event_b_first_projection_v2)),E,'SIMP_CARD_PRJ1_DOMRES').
527 simp_rule(card(domain_restriction(E,event_b_second_projection_v2)),E,'SIMP_CARD_PRJ2_DOMRES').
528 simp_rule(P,falsity,'SIMP_MULTI_LT') :- is_less(P,E,F), equal_terms(E,F). % covers SIMP_MULTI_GT too
529 simp_rule(div(NE,NF),div(E,F),'SIMP_DIV_MINUS') :- is_minus(NE,E), is_minus(NF,F).
530 simp_rule(div(E,F),1,'SIMP_MULTI_DIV') :- equal_terms(E,F).
531 simp_rule(modulo(0,_),0,'SIMP_SPECIAL_MOD_0').
532 simp_rule(modulo(_,1),0,'SIMP_SPECIAL_MOD_1').
533 simp_rule(modulo(E,F),1,'SIMP_MULTI_MOD') :- equal_terms(E,F).
534 simp_rule(min(SetE),E,'SIMP_MIN_SING') :- singleton_set(SetE,E).
535 simp_rule(max(SetE),E,'SIMP_MAX_SING') :- singleton_set(SetE,E).
536 simp_rule(div(P1,E2),P0,'SIMP_MULTI_DIV_PROD') :-
537 member_of(multiplication,E1,P1),
538 equal_terms(E1,E2),
539 select_op(E1,P1,P0,multiplication).
540 simp_rule(card(set_extension(L)),LL,'SIMP_TYPE_CARD') :- length(L,LL).
541 simp_rule(card(interval(I,J)),Res,'SIMP_LIT_CARD_UPTO') :- number(I), number(J), I =< J, Res is J - I + 1.
542 simp_rule(card(interval(I,J)),0,'SIMP_LIT_CARD_UPTO') :- number(I), number(J), I > J. % from "Proposal for an extensible rule-based prover for Event-B", pg. 7
543 simp_rule(P,negation(equal(S,empty_set)),'SIMP_LIT_LE_CARD_1') :- is_less_eq(P,1,card(S)).
544 simp_rule(P,negation(equal(S,empty_set)),'SIMP_LIT_LT_CARD_0') :- is_less(P,0,card(S)).
545 simp_rule(member(card(S),Nat),negation(equal(S,empty_set)),'SIMP_CARD_NATURAL1') :- is_natural1_set(Nat).
546 simp_rule(equal(card(S),card(T)),exists([F],member(F,total_bijection(S,T))),'SIMP_EQUAL_CARD') :-
547 new_function(conjunct(S,T),F).
548 simp_rule(member(0,Nat),falsity,'SIMP_SPECIAL_IN_NATURAL1') :- is_natural1_set(Nat).
549 simp_rule(interval(I,J),empty_set,'SIMP_LIT_UPTO') :- number(I), number(J), I > J.
550 simp_rule(member(NI,Nat),falsity,'SIMP_LIT_IN_MINUS_NATURAL') :-
551 is_natural_set(Nat),
552 (NI = unary_minus(I), number(I), I > 0
553 ; number(NI), NI < 0).
554 simp_rule(member(NI,Nat),falsity,'SIMP_LIT_IN_MINUS_NATURAL1') :-
555 is_natural1_set(Nat),
556 (NI = unary_minus(I), number(I), I >= 0
557 ; number(NI), NI < 0).
558 simp_rule(min(Nat),0,'SIMP_MIN_NATURAL') :- is_natural_set(Nat).
559 simp_rule(min(Nat),1,'SIMP_MIN_NATURAL1') :- is_natural1_set(Nat).
560 simp_rule(max(interval(_,F)),F,'SIMP_MAX_UPTO').
561 simp_rule(min(interval(E,_)),E,'SIMP_MIN_UPTO').
562 simp_rule(min(U),min(New),'SIMP_MIN_BUNION_SING') :- U = union(_,_), select_op(set_extension([min(T)]),U,T,New,union).
563 simp_rule(max(U),max(New),'SIMP_MAX_BUNION_SING') :- U = union(_,_), select_op(set_extension([max(T)]),U,T,New,union).
564 simp_rule(negation(P),Q,Rule) :- seperate_negate_rule(Rule,P), negate(P,Q).
565 simp_rule(negation(P),Q,'Propagate negation') :-
566 \+ seperate_negate_rule(_,P),
567 negate(P,Q),
568 Q \= negation(_). % De-Morgan and similar rules to propagate negation
569 simp_rule(P,truth,'Evaluate tautology') :- is_true(P).
570 simp_rule(E,NewE,Rule) :- is_empty(E,EmptyTerm), simp_empty_rule(EmptyTerm,NewE,Rule).
571 simp_rule(E,NewE,Rule) :- is_equality(E,LHS,RHS), simp_equality(LHS,RHS,NewE,Rule).
572
573 new_function(Expr,F) :- used_identifiers(Expr,L), possible_function(X), F = '$'(X), \+ member(F,L), !.
574
575 func_id(f).
576 func_id(g).
577 func_id(h).
578
579 possible_function(Z) :- func_id(Z).
580 possible_function(Z) :- func_id(X), func_id(Y), atom_concat(X,Y,Z).
581
582 seperate_negate_rule('SIMP_NOT_NOT',negation(_)).
583 seperate_negate_rule('DISTRI_NOT_AND',conjunct(_,_)).
584 seperate_negate_rule('DISTRI_NOT_OR',disjunct(_,_)).
585 seperate_negate_rule('DERIV_NOT_IMP',implication(_,_)).
586
587
588 overwrite_type([Ty|R],_,ListOut,Info) :- type_expression(Ty,Info), !, overwrite_type(R,[Ty],ListOut,Info).
589 overwrite_type([S|R],Prev,ListOut,Info) :- append(Prev,[S],ListIn), overwrite_type(R,ListIn,ListOut,Info).
590 overwrite_type([],L,L,_).
591
592 change_sign(L,NL,Nr) :- remove_minus(L,NL,Nr), Nr > 0.
593
594 remove_minus([NE|R],[E|T],NrN) :- is_minus(NE,E), remove_minus(R,T,Nr), NrN is Nr + 1, !.
595 remove_minus([E|R],[E|T],Nr) :- remove_minus(R,T,Nr).
596 remove_minus([],[],0).
597
598 remove_unused_identifier(L,P,Used) :-
599 member(Z,L),
600 used_identifiers(P,Ids),
601 member(Z,Ids),
602 list_intersection(L,Ids,Used).
603
604
605 min_list([H|T], Min) :- number(H) -> min_list(T,H,Min) ; min_list(T,Min).
606
607 min_list([],Min,Min).
608 min_list([H|T],Min0,Min) :-
609 number(H),!,
610 Min1 is min(H,Min0),
611 min_list(T,Min1,Min).
612 min_list([_|T],Min0,Min) :-
613 min_list(T,Min0,Min).
614
615 remove_greater(L,I,Res) :- only_min(L,I,[],Res).
616
617 only_min([],_,List,List).
618 only_min([E|R],I,Filtered, Res) :-
619 \+ number(E),!,
620 append(Filtered,[E],New),
621 only_min(R,I,New,Res).
622 only_min([E|R],I,Filtered,Res) :-
623 E > I,
624 only_min(R,I,Filtered,Res).
625 only_min([E|R],I,Filtered,Res) :-
626 E =:= I,
627 member(E,Filtered),
628 only_min(R,I,Filtered,Res).
629 only_min([E|R],I,Filtered,Res) :-
630 E =:= I,
631 \+ member(E,Filtered),
632 append(Filtered,[E],New),
633 only_min(R,I,New,Res).
634
635 max_list([H|T],Max) :- number(H) -> max_list(T,H,Max) ; max_list(T,Max).
636
637 max_list([],Max,Max).
638 max_list([H|T],Max0,Max) :-
639 number(H),!,
640 Max1 is max(H,Max0),
641 max_list(T,Max1,Max).
642 max_list([_|T],Max0,Max) :-
643 max_list(T,Max0,Max).
644
645 remove_smaller(L,I,Res) :- only_max(L,I,[],Res).
646
647 only_max([],_,List,List).
648 only_max([E|R],I,Filtered, Res) :-
649 \+ number(E),!,
650 append(Filtered,[E],New),
651 only_max(R,I,New,Res).
652 only_max([E|R],I,Filtered,Res) :-
653 E < I,
654 only_max(R,I,Filtered,Res).
655 only_max([E|R],I,Filtered,Res) :-
656 E =:= I,
657 member(E,Filtered),
658 only_max(R,I,Filtered,Res).
659 only_max([E|R],I,Filtered,Res) :-
660 E =:= I,
661 \+ member(E,Filtered),
662 append(Filtered,[E],New),
663 only_max(R,I,New,Res).
664
665 % -----------------
666
667
668 % simplification rules for equality
669 % simp_equality(LHS,RHS,NewPred,'RuleName').
670 simp_equality(interval(_,_),Z,falsity,Rule) :-
671 ( is_integer_set(Z) -> Rule = 'SIMP_UPTO_EQUAL_INTEGER'
672 ; is_natural_set(Z) -> Rule = 'SIMP_UPTO_EQUAL_NATURAL'
673 ; is_natural1_set(Z) -> Rule = 'SIMP_UPTO_EQUAL_NATURAL1').
674 simp_equality(convert_bool(P),boolean_true,P,'SIMP_LIT_EQUAL_KBOOL_TRUE').
675 simp_equality(convert_bool(P),boolean_false,negation(P),'SIMP_LIT_EQUAL_KBOOL_FALSE').
676 simp_equality(T,U,subset(NewU,T),'SIMP_MULTI_EQUAL_BUNION') :-
677 member_of(union,T,U),
678 remove_from_op(T,U,NewU,union).
679 simp_equality(I,T,subset(T,NewI),'SIMP_MULTI_EQUAL_BINTER') :-
680 member_of(intersection,T,I),
681 remove_from_op(T,I,NewI,intersection).
682 simp_equality(function(F,X),Y,member(couple(X,Y),F),'DEF_EQUAL_FUNIMAGE').
683 simp_equality(card(S),0,equal(S,empty_set),'SIMP_SPECIAL_EQUAL_CARD').
684 simp_equality(card(S),1,exists([X],equal(S,set_extension([X]))),'SIMP_LIT_EQUAL_CARD_1') :-
685 new_identifier(S,X).
686 simp_equality(card(S),K,member(F,total_bijection(interval(1,K),S)),'DEF_EQUAL_CARD') :-
687 new_function(conjunct(S,K),F).
688 simp_equality(E,min(S),conjunct(member(E,S),forall([X],member(X,S),less_equal(E,X))),'DEF_EQUAL_MIN') :-
689 new_identifier(member(E,S),X).
690 simp_equality(E,max(S),conjunct(member(E,S),forall([X],member(X,S),greater_equal(E,X))),'DEF_EQUAL_MAX') :-
691 new_identifier(member(E,S),X).
692
693
694 % candidates for SIMP_SPECIAL_REL_R rule rewriting to {{}}
695 simp_relation_empty_range(relations(_,empty_set)).
696 simp_relation_empty_range(surjection_relation(_,empty_set)).
697 simp_relation_empty_range(partial_function(_,empty_set)).
698 simp_relation_empty_range(partial_injection(_,empty_set)).
699 simp_relation_empty_range(partial_surjection(_,empty_set)).
700
701 % candidates for SIMP_SPECIAL_REL_L rule rewriting to {{}}
702 simp_relation_empty_domain(relations(empty_set,_)).
703 simp_relation_empty_domain(total_relation(empty_set,_)).
704 simp_relation_empty_domain(partial_function(empty_set,_)).
705 simp_relation_empty_domain(total_function(empty_set,_)).
706 simp_relation_empty_domain(partial_injection(empty_set,_)).
707 simp_relation_empty_domain(total_injection(empty_set,_)).
708
709 % simplification rules for empty set equalities
710 % simp_empty_rule(TermThatIsEmpty,NewPredicate,RuleName)
711 simp_empty_rule(set_extension(L),Res,'SIMP_SETENUM_EQUAL_EMPTY') :- length(L,LL),
712 (LL > 0 -> Res = falsity ; Res = truth).
713 simp_empty_rule(interval(I,J),greater(I,J),'SIMP_UPTO_EQUAL_EMPTY').
714 simp_empty_rule(relations(_,_),falsity,'SIMP_SPECIAL_EQUAL_REL').
715 simp_empty_rule(total_relation(A,B),conjunct(negation(equal(A,empty_set)),equal(B,empty_set)),'SIMP_SPECIAL_EQUAL_RELDOM').
716 simp_empty_rule(total_function(A,B),conjunct(negation(equal(A,empty_set)),equal(B,empty_set)),'SIMP_SPECIAL_EQUAL_RELDOM').
717 simp_empty_rule(surjection_relation(A,B),conjunct(equal(A,empty_set),negation(equal(B,empty_set))),
718 'SIMP_SREL_EQUAL_EMPTY').
719 simp_empty_rule(total_surjection_relation(A,B),equivalence(equal(A,empty_set),negation(equal(B,empty_set))),
720 'SIMP_STREL_EQUAL_EMPTY').
721 simp_empty_rule(domain(R),equal(R,empty_set),'SIMP_DOM_EQUAL_EMPTY').
722 simp_empty_rule(range(R),equal(R,empty_set),'SIMP_RAN_EQUAL_EMPTY').
723 simp_empty_rule(composition(P,Q),equal(intersection(range(P),domain(Q)),empty_set),'SIMP_FCOMP_EQUAL_EMPTY').
724 simp_empty_rule(ring(P,Q),equal(intersection(range(Q),domain(P)),empty_set),'SIMP_BCOMP_EQUAL_EMPTY').
725 simp_empty_rule(domain_restriction(S,R),equal(intersection(domain(R),S),empty_set),'SIMP_DOMRES_EQUAL_EMPTY').
726 simp_empty_rule(domain_subtraction(S,R),subset(domain(R),S),'SIMP_DOMSUB_EQUAL_EMPTY').
727 simp_empty_rule(range_restriction(R,S),equal(intersection(range(R),S),empty_set),'SIMP_RANRES_EQUAL_EMPTY').
728 simp_empty_rule(range_subtraction(R,S),subset(range(R),S),'SIMP_RANSUB_EQUAL_EMPTY').
729 simp_empty_rule(reverse(R),equal(R,empty_set),'SIMP_CONVERSE_EQUAL_EMPTY').
730 simp_empty_rule(image(R,S),equal(domain_restriction(S,R),empty_set),'SIMP_RELIMAGE_EQUAL_EMPTY').
731 simp_empty_rule(overwrite(P,Q),Res,'SIMP_OVERL_EQUAL_EMPTY') :-
732 and_empty(overwrite(P,Q),Res,overwrite).
733 simp_empty_rule(direct_product(P,Q),equal(intersection(domain(P),domain(Q)),empty_set),'SIMP_DPROD_EQUAL_EMPTY').
734 simp_empty_rule(parallel_product(P,Q),disjunct(equal(P,empty_set),equal(Q,empty_set)),'SIMP_PPROD_EQUAL_EMPTY').
735 simp_empty_rule(event_b_identity,falsity,'SIMP_ID_EQUAL_EMPTY').
736 simp_empty_rule(event_b_first_projection_v2,falsity,'SIMP_PRJ1_EQUAL_EMPTY').
737 simp_empty_rule(event_b_second_projection_v2,falsity,'SIMP_PRJ2_EQUAL_EMPTY').
738 simp_empty_rule(cartesian_product(S,T),disjunct(equal(S,empty_set),equal(T,empty_set)),'SIMP_CPROD_EQUAL_EMPTY').
739 simp_empty_rule(quantified_union([X],P,E),forall([X],P,equal(E,empty_set)),'SIMP_QUNION_EQUAL_EMPTY').
740 simp_empty_rule(union(A,B),Res,'SIMP_BUNION_EQUAL_EMPTY') :- and_empty(union(A,B),Res,union).
741 simp_empty_rule(set_subtraction(A,B),subset(A,B),'SIMP_SETMINUS_EQUAL_EMPTY').
742 simp_empty_rule(event_b_comprehension_set(Ids,_,P),forall(Ids,truth,negation(P)),'SIMP_SPECIAL_EQUAL_COMPSET').
743 simp_empty_rule(pow_subset(_),falsity,'SIMP_POW_EQUAL_EMPTY').
744 simp_empty_rule(pow1_subset(S),equal(S,empty_set),'SIMP_POW1_EQUAL_EMPTY'). % TODO: similar rules for FIN/FIN1 ?
745 simp_empty_rule(general_union(S),subset(S,set_extension([empty_set])),'SIMP_KUNION_EQUAL_EMPTY').
746 simp_empty_rule(I,equal(set_subtraction(I0,C),empty_set),'SIMP_BINTER_SETMINUS_EQUAL_EMPTY') :-
747 member_of(intersection,set_subtraction(B,C),I),
748 select_op(minus(B,C),I,B,I0,intersection).
749 simp_empty_rule(Nat,falsity,'SIMP_NATURAL_EQUAL_EMPTY') :- is_natural_set(Nat).
750 simp_empty_rule(Nat,falsity,'SIMP_NATURAL1_EQUAL_EMPTY') :- is_natural1_set(Nat).
751 %simp_empty_rule(TermThatIsEmpty,NewPred,RuleName).
752
753 simp_multi_arithrel(Ex,Res,'SIMP_MULTI_ARITHREL_PLUS_PLUS') :-
754 Ex=..[Rel,L,R],
755 comparison(Rel),
756 R = add(_,_),
757 member_of(add,El,L),
758 select_op(El,L,L0,add),
759 select_op(El,R,R0,add),
760 Res=..[Rel,L0,R0].
761 simp_multi_arithrel(Ex,Res,'SIMP_MULTI_ARITHREL_PLUS_R') :-
762 Ex=..[Rel,C,R],
763 comparison(Rel),
764 R = add(_,_),
765 select_op(C,R,R0,add),
766 Res=..[Rel,0,R0].
767 simp_multi_arithrel(Ex,Res,'SIMP_MULTI_ARITHREL_PLUS_L') :-
768 Ex=..[Rel,L,C],
769 comparison(Rel),
770 L = add(_,_),
771 select_op(C,L,L0,add),
772 Res=..[Rel,L0,0].
773 simp_multi_arithrel(Ex,Res,'SIMP_MULTI_ARITHREL_MINUS_MINUS_R') :-
774 Ex=..[Rel,L,R],
775 comparison(Rel),
776 L = minus(A,C1),
777 R = minus(B,C2),
778 equal_terms(C1,C2),
779 Res=..[Rel,A,B].
780 simp_multi_arithrel(Ex,Res,'SIMP_MULTI_ARITHREL_MINUS_MINUS_L') :-
781 Ex=..[Rel,L,R],
782 comparison(Rel),
783 L = minus(C1,A),
784 R = minus(C2,B),
785 equal_terms(C1,C2),
786 Res=..[Rel,B,A].
787
788 select_summand(X,Y,0) :- equal_terms(X,Y).
789 select_summand(add(L,R),X,ResTerm) :- select_summand(L,X,NewL), if_zero(NewL,R,add(NewL,R),ResTerm).
790 select_summand(add(L,R),X,ResTerm) :- select_summand(R,X,NewR), if_zero(NewR,L,add(L,NewR),ResTerm).
791 select_summand(minus(L,R),X,ResTerm) :- select_summand(L,X,NewL), if_zero(NewL,unary_minus(R),minus(NewL,R),ResTerm).
792
793 select_subtrahend(MinusY,X,0) :- is_minus(MinusY,Y), equal_terms(X,Y).
794 select_subtrahend(minus(Y,X),X,Y).
795 select_subtrahend(add(MinusX,Y),X,Res) :- select_subtrahend(MinusX,X,NewR), if_zero(NewR,Y,add(NewR,Y),Res).
796 select_subtrahend(add(Y,MinusX),X,Res) :- select_subtrahend(MinusX,X,NewR), if_zero(NewR,Y,add(Y,NewR),Res).
797 select_subtrahend(minus(L,Y),X,Res) :- select_subtrahend(L,X,NewL), if_zero(NewL,unary_minus(Y),minus(NewL,Y),Res).
798
799 if_zero(Term,Then,Else,Res) :-
800 (Term = 0
801 -> Res = Then
802 ; Res = Else).
803
804
805 all_pairs(L,Pairs) :- findall([X,Y], (combination(L,[X,Y])), Pairs).
806
807 combination(_,[]).
808 combination([X|T],[X|C]) :- combination(T,C).
809 combination([_|T],[X|C]) :- combination(T,[X|C]).
810
811
812 all_in_set([E],S,Hyps) :- member_hyps(member(E,S),Hyps).
813 all_in_set([E|R],S,Hyps) :- member_hyps(member(E,S),Hyps), all_in_set(R,S,Hyps).
814
815 map_dom([couple(X,_)],[X]) :- !.
816 map_dom([couple(X,_)|T],[X|R]) :- map_dom(T,R).
817
818 map_ran([couple(_,A)],[A]) :- !.
819 map_ran([couple(_,B)|T],[B|R]) :- map_ran(T,R).
820
821 all_map_to([couple(_,F)],E) :- equal_terms(E,F), !.
822 all_map_to([couple(_,F)|T],E) :- equal_terms(E,F), all_map_to(T,E).
823
824 convert_map_to([couple(X,Y)],[couple(Y,X)]) :- !.
825 convert_map_to([couple(X,Y)|T],[couple(Y,X)|R]) :- convert_map_to(T,R).
826
827 list_subset([],_).
828 list_subset([E|T],L) :- memberchk(E,L), list_subset(T,L).
829
830
831
832 % -----------------
833
834
835 distri(C,Res,Op1,Op2) :-
836 C=..[Op1,A,B],
837 (X = A ; X = B),
838 functor(X,Op2,2),
839 distribute_op(C,X,Op1,Op2,Res).
840
841 distri_r2(C,Res,Rule) :-
842 C=..[Op1,_,X],
843 functor(X,Op2,2),
844 distri_r2_name(Op1,Op2,Rule),
845 distribute_op(C,X,Op1,Op2,Res).
846 distri_r2_name(ring,union,'DISTRI_BCOMP_BUNION').
847 distri_r2_name(direct_product,union,'DISTRI_DPROD_BUNION').
848 distri_r2_name(direct_product,set_subtraction,'DISTRI_DPROD_SETMINUS').
849 distri_r2_name(direct_product,intersection,'DISTRI_DPROD_BINTER').
850 distri_r2_name(direct_product,overwrite,'DISTRI_DPROD_OVERL').
851 distri_r2_name(parallel_product,union,'DISTRI_PPROD_BUNION').
852 distri_r2_name(parallel_product,intersection,'DISTRI_PPROD_BINTER').
853 distri_r2_name(parallel_product,set_subtraction,'DISTRI_PPROD_SETMINUS').
854 distri_r2_name(parallel_product,overwrite,'DISTRI_PPROD_OVERL').
855 distri_r2_name(domain_restriction,union,'DISTRI_DOMRES_BUNION_R').
856 distri_r2_name(domain_restriction,intersection,'DISTRI_DOMRES_BINTER_R').
857 distri_r2_name(domain_restriction,set_subtraction,'DISTRI_DOMRES_SETMINUS_R').
858 distri_r2_name(domain_restriction,direct_product,'DISTRI_DOMRES_DPROD').
859 distri_r2_name(domain_restriction,overwrite,'DISTRI_DOMRES_OVERL').
860 distri_r2_name(domain_subtraction,union,'DISTRI_DOMSUB_BUNION_R').
861 distri_r2_name(domain_subtraction,intersection,'DISTRI_DOMSUB_BINTER_R').
862 distri_r2_name(domain_subtraction,direct_product,'DISTRI_DOMSUB_DPROD').
863 distri_r2_name(domain_subtraction,overwrite,'DISTRI_DOMSUB_OVERL').
864 distri_r2_name(composition,union,'DISTRI_FCOMP_BUNION_R').
865 distri_r2_name(range_restriction,union,'DISTRI_RANRES_BUNION_R').
866 distri_r2_name(range_restriction,intersection,'DISTRI_RANRES_BINTER_R').
867 distri_r2_name(range_restriction,set_subtraction,'DISTRI_RANRES_SETMINUS_R').
868
869 distri_l2(C,Res,RuleName) :-
870 distri_l2_arg1(C,Op1,X),
871 functor(X,Op2,2),
872 distri_l2_name(Op1,Op2,RuleName),
873 distribute_op(C,X,Op1,Op2,Res).
874 distri_l2_arg1(overwrite(X,_),overwrite,X).
875 distri_l2_arg1(composition(X,_),composition,X).
876 distri_l2_arg1(domain_restriction(X,_),domain_restriction,X).
877 distri_l2_arg1(range_restriction(X,_),range_restriction,X).
878 distri_l2_arg1(range_subtraction(X,_),range_subtraction,X).
879 distri_l2_name(overwrite,union,'DISTRI_OVERL_BUNION_L').
880 distri_l2_name(overwrite,intersection,'DISTRI_OVERL_BINTER_L').
881 distri_l2_name(composition,union,'DISTRI_FCOMP_BUNION_L').
882 distri_l2_name(domain_restriction,union,'DISTRI_DOMRES_BUNION_L').
883 distri_l2_name(domain_restriction,intersection,'DISTRI_DOMRES_BINTER_L').
884 distri_l2_name(domain_restriction,set_subtraction,'DISTRI_DOMRES_SETMINUS_L').
885 distri_l2_name(range_restriction,union,'DISTRI_RANRES_BUNION_L').
886 distri_l2_name(range_restriction,intersection,'DISTRI_RANRES_BINTER_L').
887 distri_l2_name(range_restriction,set_subtraction,'DISTRI_RANRES_SETMINUS_L').
888 distri_l2_name(range_subtraction,union,'DISTRI_RANSUB_BUNION_L').
889 distri_l2_name(range_subtraction,intersection,'DISTRI_RANSUB_BINTER_L').
890
891 distribute_op(C,X,Op1,Op2,Res) :-
892 op_to_list(X,L,Op2),
893 distribute(C,X,L,CN,Op1),
894 list_to_op(CN,Res,Op2).
895
896 distribute(_,_,[],[],_).
897 distribute(C,X,[D|T],[N|R],Op) :- select_op(X,C,D,N,Op), distribute(C,X,T,R,Op).
898
899 distri_r3(C,Res,Rule) :-
900 C = range_subtraction(_,X), Op1=range_subtraction, %C=..[Op1,_,X],
901 distri_r3_name_ransub(Op2,Op3,Rule),
902 distri_and_change(C,X,Op1,Op2,Op3,Res).
903 distri_r3_name_ransub(union,intersection,'DISTRI_RANSUB_BUNION_R').
904 distri_r3_name_ransub(intersection,union,'DISTRI_RANSUB_BINTER_R').
905
906 distri_r3_info(C,Res,Rule,Info) :-
907 C = set_subtraction(Ty,X), Op1=set_subtraction,
908 type_expression(Ty,Info),
909 distri_r3_name_setsub(Op2,Op3,Rule),
910 distri_and_change(C,X,Op1,Op2,Op3,Res).
911 distri_r3_name_setsub(intersection,union,'DERIV_TYPE_SETMINUS_BINTER'). % Ty \ (S /\ T) == (Ty \ S) \/ (Ty \ T)
912 distri_r3_name_setsub(union,intersection,'DERIV_TYPE_SETMINUS_BUNION').
913
914 distri_l3(C,Res,Op1,Op2,Op3) :-
915 C=..[Op1,X,_],
916 distri_and_change(C,X,Op1,Op2,Op3,Res).
917
918 % Op2 changes to Op3
919 distri_and_change(C,X,Op1,Op2,Op3,Res) :-
920 functor(X,Op2,2),
921 op_to_list(X,L,Op2),
922 distribute(C,X,L,CN,Op1),
923 list_to_op(CN,Res,Op3).
924
925 distri_setminus(U,X,Res) :-
926 C = set_subtraction(U,X), X = union(_,_),
927 select_op(X,C,NewC,set_subtraction),
928 op_to_list(NewC,CL,set_subtraction),
929 op_to_list(X,L,union),
930 append(CL,L,L2),
931 list_to_op(L2,Res,set_subtraction).
932
933
934 % -----------------
935
936 %simp_rule(X,X,'EQ'(F,N,X)) :- functor(X,F,N).
937
938 % simp_rule/4
939 simp_rule(D,implication(negation(P),D0),'DEF_OR',OuterOp) :- OuterOp \= disjunct, D = disjunct(_,_), select_op(P,D,D0,disjunct).
940 simp_rule(C,falsity,'SIMP_SPECIAL_AND_BFALSE',OuterOp) :- OuterOp \= conjunct,
941 member_of_bin_op(conjunct,falsity,C).
942 simp_rule(D,truth,'SIMP_SPECIAL_OR_BTRUE',OuterOp) :- OuterOp \= disjunct,
943 member_of_bin_op(disjunct,truth,D).
944 simp_rule(C,Res,'SIMP_MULTI_AND',OuterOp) :- OuterOp \= conjunct, remove_duplicates_for_op(C,Res,conjunct).
945 simp_rule(D,Res,'SIMP_MULTI_OR',OuterOp) :- OuterOp \= disjunct, remove_duplicates_for_op(D,Res,disjunct).
946 simp_rule(C,falsity,'SIMP_MULTI_AND_NOT',OuterOp) :-
947 OuterOp \= conjunct,
948 member_of(conjunct,Q,C),
949 member_of(conjunct,NotQ,C),
950 is_negation(Q,NotQ).
951 simp_rule(D,truth,'SIMP_MULTI_OR_NOT',OuterOp) :-
952 OuterOp \= disjunct,
953 member_of(disjunct,Q,D),
954 member_of(disjunct,NotQ,D),
955 is_negation(Q,NotQ).
956 simp_rule(I,empty_set,'SIMP_SPECIAL_BINTER',OuterOp) :- OuterOp \= intersection,
957 member_of_bin_op(intersection,empty_set,I).
958 simp_rule(I,Res,'SIMP_MULTI_BINTER',OuterOp) :- OuterOp \= intersection, remove_duplicates_for_op(I,Res,intersection).
959 simp_rule(U,Res,'SIMP_MULTI_BUNION',OuterOp) :- OuterOp \= union, remove_duplicates_for_op(U,Res,union).
960 simp_rule(C,empty_set,'SIMP_SPECIAL_CPROD',OuterOp) :- OuterOp \= cartesian_product, % SIMP_SPECIAL_CPROD_L / SIMP_SPECIAL_CPROD_R
961 member_of_bin_op(cartesian_product,empty_set,C).
962 simp_rule(C,empty_set,'SIMP_SPECIAL_FCOMP',OuterOp) :- OuterOp \= composition,
963 member_of_bin_op(composition,empty_set,C).
964 simp_rule(Comp,empty_set,'SIMP_SPECIAL_BCOMP',OuterOp) :- OuterOp \= ring,
965 member_of_bin_op(ring,empty_set,Comp).
966 simp_rule(C,Res,'DEF_BCOMP',OuterOp) :- OuterOp \= ring, C = ring(_,_),
967 bwd_to_fwd_comp(C,Comp), reorder(Comp,Res,composition).
968 simp_rule(P,0,'SIMP_SPECIAL_PROD_0',OuterOp) :- OuterOp \= multiplication, member_of(multiplication,0,P).
969 simp_rule(ring(P,Q),Res,'SIMP_BCOMP_ID',OuterOp) :- OuterOp \= ring,
970 op_to_list(ring(P,Q),List,ring),
971 rewrite_comp_id(List,List2),
972 list_to_op(List2,Res,ring).
973 simp_rule(composition(P,Q),Res,'SIMP_FCOMP_ID',OuterOp) :- OuterOp \= composition,
974 op_to_list(composition(P,Q),List,composition),
975 rewrite_comp_id(List,List2),
976 list_to_op(List2,Res,composition).
977 simp_rule(Comp,Res,'DERIV_FCOMP_DOMRES',OuterOp) :- OuterOp \= composition, deriv_fcomp_dom(Comp,domain_restriction,Res).
978 simp_rule(Comp,Res,'DERIV_FCOMP_DOMSUB',OuterOp) :- OuterOp \= composition, deriv_fcomp_dom(Comp,domain_subtraction,Res).
979 simp_rule(Comp,Res,'DERIV_FCOMP_RANRES',OuterOp) :- OuterOp \= composition, deriv_fcomp_ran(Comp,range_restriction,Res).
980 simp_rule(Comp,Res,'DERIV_FCOMP_RANSUB',OuterOp) :- OuterOp \= composition, deriv_fcomp_ran(Comp,range_subtraction,Res).
981
982
983 deriv_fcomp_dom(Comp,Functor,Res) :-
984 Comp = composition(_,_),
985 op_to_list(Comp,List,composition),
986 append(L,[At|R],List),
987 At=..[Functor,P,Q],
988 list_to_op([Q|R],RComp,composition),
989 New=..[Functor,P,RComp],
990 append(L,[New],ResList),
991 list_to_op(ResList,Res,composition).
992
993 deriv_fcomp_ran(Comp,Functor,Res) :-
994 Comp = composition(_,_),
995 op_to_list(Comp,List,composition),
996 append(L,[At|R],List),
997 At=..[Functor,P,Q],
998 append(L,[P],NewL),
999 list_to_op(NewL,LComp,composition),
1000 New=..[Functor,LComp,Q],
1001 list_to_op([New|R],Res,composition).
1002
1003 rewrite_comp_id([X],[X]).
1004 rewrite_comp_id([domain_restriction(S,event_b_identity),domain_restriction(T,event_b_identity)|R],Res) :- !,
1005 rewrite_comp_id([domain_restriction(intersection(S,T),event_b_identity)|R],Res).
1006 rewrite_comp_id([domain_restriction(S,event_b_identity),domain_subtraction(T,event_b_identity)|R],Res) :- !,
1007 rewrite_comp_id([domain_restriction(set_subtraction(S,T),event_b_identity)|R],Res).
1008 rewrite_comp_id([domain_subtraction(S,event_b_identity),domain_subtraction(T,event_b_identity)|R],Res) :- !,
1009 rewrite_comp_id([domain_subtraction(union(S,T),event_b_identity)|R],Res).
1010 rewrite_comp_id([E,F|R], [E|Res]) :- rewrite_comp_id([F|R],Res).
1011
1012
1013 % simp_rule_with_info/4
1014 simp_rule_with_info(Eq,conjunct(equal(S,empty_set),equal(R,Ty)),'SIMP_DOMSUB_EQUAL_TYPE',Info) :-
1015 is_equality(Eq,domain_subtraction(S,R),Ty),
1016 type_expression(Ty,Info).
1017 simp_rule_with_info(Eq,conjunct(equal(S,empty_set),equal(R,Ty)),'SIMP_RANSUB_EQUAL_TYPE',Info) :-
1018 is_equality(Eq,range_subtraction(R,S),Ty),
1019 type_expression(Ty,Info).
1020 simp_rule_with_info(Eq,equal(R,reverse(Ty)),'SIMP_CONVERSE_EQUAL_TYPE',Info) :-
1021 is_equality(Eq,reverse(R),Ty),
1022 type_expression(Ty,Info).
1023 simp_rule_with_info(subset(_,Ty),truth,'SIMP_TYPE_SUBSETEQ',Info) :- type_expression(Ty,Info).
1024 simp_rule_with_info(set_subtraction(_,Ty),empty_set,'SIMP_TYPE_SETMINUS',Info) :- type_expression(Ty,Info).
1025 simp_rule_with_info(set_subtraction(Ty,set_subtraction(Ty,S)),S,'SIMP_TYPE_SETMINUS_SETMINUS',Info) :- type_expression(Ty,Info).
1026 simp_rule_with_info(member(_,Ty),truth,'SIMP_TYPE_IN',Info) :- type_expression(Ty,Info).
1027 simp_rule_with_info(subset_strict(S,Ty),not_equal(S,Ty),'SIMP_TYPE_SUBSET_L',Info) :- type_expression(Ty,Info).
1028 simp_rule_with_info(Eq,conjunct(equal(A,Ty),equal(B,empty_set)),'SIMP_SETMINUS_EQUAL_TYPE',Info) :-
1029 is_equality(Eq,set_subtraction(A,B),Ty),
1030 type_expression(Ty,Info).
1031 simp_rule_with_info(Eq,Res,'SIMP_BINTER_EQUAL_TYPE',Info) :-
1032 is_equality(Eq,I,Ty),
1033 I = intersection(_,_),
1034 type_expression(Ty,Info),
1035 and_equal_type(I,Ty,Res).
1036 simp_rule_with_info(Eq,equal(S,set_extension([Ty])),'SIMP_KINTER_EQUAL_TYPE',Info) :-
1037 is_equality(Eq,general_intersection(S),Ty),
1038 type_expression(Ty,Info).
1039 simp_rule_with_info(Expr,falsity,'SIMP_TYPE_EQUAL_EMPTY',Info) :- is_empty(Expr,Ty), type_expression(Ty,Info).
1040 simp_rule_with_info(Eq,forall([X],P,equal(E,Ty)),'SIMP_QINTER_EQUAL_TYPE',Info) :-
1041 is_equality(Eq,quantified_intersection([X],P,E),Ty),
1042 type_expression(Ty,Info).
1043 simp_rule_with_info(I,S,'SIMP_TYPE_BINTER',Info) :- (I = intersection(S,Ty) ; I = intersection(Ty,S)), type_expression(Ty,Info).
1044 simp_rule_with_info(Eq,falsity,'SIMP_TYPE_EQUAL_RELDOMRAN',Info) :-
1045 is_equality(Eq,R,Ty),
1046 type_expression(Ty,Info),
1047 is_rel(R,_,_,_),
1048 functor(R,Op,2),
1049 \+ member(Op,[relations,partial_function,partial_injection]). % TODO: use facts without functor
1050 simp_rule_with_info(member(Prj,RT),truth,Rule,Info) :-
1051 (Prj = event_b_first_projection_v2, Rule = 'DERIV_PRJ1_SURJ'
1052 ; Prj = event_b_second_projection_v2, Rule = 'DERIV_PRJ2_SURJ'),
1053 is_rel(RT,_,Ty1,Ty2),
1054 \+ is_inj(RT,Ty1,Ty2),
1055 type_expression(Ty1,Info),
1056 type_expression(Ty2,Info).
1057 simp_rule_with_info(member(event_b_identity,RT),truth,'DERIV_ID_BIJ',Info) :- is_rel(RT,_,Ty,Ty), type_expression(Ty,Info).
1058 simp_rule_with_info(domain_restriction(Ty,R),R,'SIMP_TYPE_DOMRES',Info) :- type_expression(Ty,Info).
1059 simp_rule_with_info(range_restriction(R,Ty),R,'SIMP_TYPE_RANRES',Info) :- type_expression(Ty,Info).
1060 simp_rule_with_info(domain_subtraction(Ty,R),R,'SIMP_TYPE_DOMSUB',Info) :- type_expression(Ty,Info).
1061 simp_rule_with_info(range_subtraction(R,Ty),R,'SIMP_TYPE_RANSUB',Info) :- type_expression(Ty,Info).
1062 simp_rule_with_info(image(R,Ty),range(R),'SIMP_TYPE_RELIMAGE',Info) :- type_expression(Ty,Info).
1063 simp_rule_with_info(composition(R,Ty),cartesian_product(domain(R),Tb),'SIMP_TYPE_FCOMP_R',Info) :-
1064 type_expression(Ty,Info),
1065 Ty = cartesian_product(_,Tb).
1066 simp_rule_with_info(composition(Ty,R),cartesian_product(Ta,range(R)),'SIMP_TYPE_FCOMP_L',Info) :-
1067 type_expression(Ty,Info),
1068 Ty = cartesian_product(Ta,_).
1069 simp_rule_with_info(ring(Ty,R),cartesian_product(domain(R),Tb),'SIMP_TYPE_BCOMP_L',Info) :-
1070 type_expression(Ty,Info),
1071 Ty = cartesian_product(_,Tb).
1072 simp_rule_with_info(ring(R,Ty),cartesian_product(Ta,range(R)),'SIMP_TYPE_BCOMP_R',Info) :-
1073 type_expression(Ty,Info),
1074 Ty = cartesian_product(Ta,_).
1075 simp_rule_with_info(domain(Ty),Ta,'SIMP_TYPE_DOM',Info) :- Ty = cartesian_product(Ta,_), type_expression(Ty,Info).
1076 simp_rule_with_info(range(Ty),Tb,'SIMP_TYPE_RAN',Info) :- Ty = cartesian_product(_,Tb), type_expression(Ty,Info).
1077 simp_rule_with_info(Eq,conjunct(equal(S,Ta),equal(T,Tb)),'SIMP_CPROD_EQUAL_TYPE',Info) :-
1078 is_equality(Eq,cartesian_product(S,T),Ty),
1079 Ty = cartesian_product(Ta,Tb),
1080 type_expression(Ty,Info).
1081 simp_rule_with_info(Eq,conjunct(equal(S,Ta),equal(T,Tb)),'SIMP_TYPE_EQUAL_REL',Info) :-
1082 is_equality(Eq,relations(S,T),Ty),
1083 Ty = cartesian_product(Ta,Tb),
1084 type_expression(Ty,Info).
1085 simp_rule_with_info(Eq,conjunct(equal(S,Ta),equal(R,Ty)),'SIMP_DOMRES_EQUAL_TYPE',Info) :-
1086 is_equality(Eq,domain_restriction(S,R),Ty),
1087 Ty = cartesian_product(Ta,_),
1088 type_expression(Ty,Info).
1089 simp_rule_with_info(Eq,conjunct(equal(S,Tb),equal(R,Ty)),'SIMP_RANRES_EQUAL_TYPE',Info) :-
1090 is_equality(Eq,range_restriction(R,S),Ty),
1091 Ty = cartesian_product(_,Tb),
1092 type_expression(Ty,Info).
1093 simp_rule_with_info(Eq,conjunct(equal(P,cartesian_product(Ta,Tb)),equal(Q,cartesian_product(Ta,Tc))),'SIMP_DPROD_EQUAL_TYPE',Info) :-
1094 is_equality(Eq,direct_product(P,Q),Ty),
1095 Ty = cartesian_product(Ta,cartesian_product(Tb,Tc)),
1096 type_expression(Ty,Info).
1097 simp_rule_with_info(Eq,conjunct(equal(P,cartesian_product(Ta,Tc)),equal(Q,cartesian_product(Tb,Td))),'SIMP_PPROD_EQUAL_TYPE',Info) :-
1098 is_equality(Eq,parallel_product(P,Q),Ty),
1099 Ty = cartesian_product(cartesian_product(Ta,Tb),cartesian_product(Tc,Td)),
1100 type_expression(Ty,Info).
1101 simp_rule_with_info(set_subtraction(Ty,set_subtraction(S,T)),union(set_subtraction(Ty,S),T),'DERIV_TYPE_SETMINUS_SETMINUS',Info) :-
1102 type_expression(Ty,Info).
1103 simp_rule_with_info(Ex,disjunct(less(E,F),greater(E,F)),'DERIV_NOT_EQUAL',Info) :-
1104 (Ex = negation(equal(E,F)) ; Ex = not_equal(E,F)),
1105 get_meta_info(ids_types,Info,IdsTypes),
1106 check_type(E,F,IdsTypes,integer).
1107 simp_rule_with_info(equal(S,T),conjunct(subset(S,T),subset(T,S)),'DERIV_EQUAL',Info) :-
1108 get_meta_info(ids_types,Info,IdsTypes),
1109 check_type(S,T,IdsTypes,set(_)).
1110 simp_rule_with_info(subset(S,T),subset(set_subtraction(Ty,T),set_subtraction(Ty,S)),'DERIV_SUBSETEQ',Info) :-
1111 get_meta_info(ids_types,Info,IdsTypes),
1112 check_type(S,T,IdsTypes,Type),
1113 get_type_expression(Type,pow_subset(Ty)).
1114 /* simp_rule_with_info(event_b_comprehension_set(Ids,E,truth),Ty,'SIMP_SPECIAL_COMPSET_BTRUE',Info) :-
1115 get_meta_info(ids_types,Info,IdsTypes), % IdsTypes does not contain bound identifiers
1116 pairwise_distict(E,Ids),
1117 check_type(E,IdsTypes,Type),
1118 get_type_expression(Type,Ty). */
1119 simp_rule_with_info(C,Res,Rule,Info) :- distri_r3_info(C,Res,Rule,Info).
1120
1121
1122 %pairwise_distict(E,Ids) :- pairwise_distict(E,Ids,_).
1123 %
1124 %pairwise_distict(couple(E,F),Ids,Ids1) :- pairwise_distict(E,Ids,Ids0), pairwise_distict(F,Ids0,Ids1).
1125 %pairwise_distict(E,Ids,Ids0) :- E = '$'(X), atomic(X), select(E,Ids,Ids0).
1126
1127 check_type('$'(S),_,IdsTypes,Type) :- !, member(b(identifier(S),Type,_),IdsTypes).
1128 check_type(_,'$'(T),IdsTypes,Type) :- !, member(b(identifier(T),Type,_),IdsTypes).
1129 check_type(S,_,IdsTypes,Type) :- check_type(S,IdsTypes,Type).
1130 check_type(S,IdsTypes,Type) :-
1131 new_aux_identifier(IdsTypes,X),
1132 get_typed_identifiers(equal('$'(X),S),[identifier(IdsTypes)],L),
1133 member(b(identifier(X),Type,_),L).
1134
1135
1136 % simp_rule_with_descr/4
1137 simp_rule_with_descr(couple(function(event_b_first_projection_v2,E),function(event_b_second_projection_v2,F)),E,Rule,Rule) :-
1138 Rule = 'SIMP_MAPSTO_PRJ1_PRJ2',
1139 equal_terms(E,F).
1140 simp_rule_with_descr(domain(successor),Z,Rule,Rule) :- Rule = 'SIMP_DOM_SUCC', is_integer_set(Z).
1141 simp_rule_with_descr(range(successor),Z,Rule,Rule) :- Rule = 'SIMP_RAN_SUCC', is_integer_set(Z).
1142 simp_rule_with_descr(predecessor,reverse(successor),Rule,Rule) :- Rule = 'DEF_PRED'.
1143 simp_rule_with_descr(Expr,negation(member(A,SetB)),'SIMP_BINTER_SING_EQUAL_EMPTY'(A),Descr) :-
1144 is_empty(Expr,Inter),
1145 is_inter(Inter,SetA,SetB),
1146 singleton_set(SetA,A),
1147 create_descr('SIMP_BINTER_SING_EQUAL_EMPTY',A,Descr).
1148
1149
1150
1151 % simp_rule_with_hyps/4 without info
1152 simp_rule_with_hyps(domain(R),E,'DERIV_DOM_TOTALREL',Hyps) :- % derive domain of a total relation
1153 member_hyps(member(R,FT),Hyps), is_rel(FT,total,E,_).
1154 simp_rule_with_hyps(range(R),F,'DERIV_RAN_SURJREL',Hyps) :- % derive range of a surjective relation
1155 member_hyps(member(R,FT),Hyps), is_surj(FT,_,F).
1156 simp_rule_with_hyps(function(domain_restriction(_,F),G),function(F,G),'SIMP_FUNIMAGE_DOMRES',Hyps) :-
1157 member_hyps(member(F,FT),Hyps), is_fun(FT,_,_,_).
1158 simp_rule_with_hyps(function(domain_subtraction(_,F),G),function(F,G),'SIMP_FUNIMAGE_DOMSUB',Hyps) :-
1159 member_hyps(member(F,FT),Hyps), is_fun(FT,_,_,_).
1160 simp_rule_with_hyps(function(range_restriction(F,_),G),function(F,G),'SIMP_FUNIMAGE_RANRES',Hyps) :-
1161 member_hyps(member(F,FT),Hyps), is_fun(FT,_,_,_).
1162 simp_rule_with_hyps(function(range_subtraction(F,_),G),function(F,G),'SIMP_FUNIMAGE_RANSUB',Hyps) :-
1163 member_hyps(member(F,FT),Hyps), is_fun(FT,_,_,_).
1164 simp_rule_with_hyps(function(set_subtraction(F,_),G),function(F,G),'SIMP_FUNIMAGE_SETMINUS',Hyps) :-
1165 member_hyps(member(F,FT),Hyps), is_fun(FT,_,_,_).
1166 simp_rule_with_hyps(card(set_subtraction(S,T)),minus(card(S),card(T)),'SIMP_CARD_SETMINUS',Hyps) :-
1167 member_hyps(subset(T,S),Hyps),
1168 (member_hyps(finite(T),Hyps)
1169 ; member_hyps(finite(S),Hyps)).
1170 simp_rule_with_hyps(card(set_subtraction(S,set_extension(L))),minus(card(S),card(set_extension(L))),Rule,Hyps) :-
1171 Rule = 'SIMP_CARD_SETMINUS_SETENUM',
1172 all_in_set(L,S,Hyps).
1173 simp_rule_with_hyps(L,less(A,B),'DERIV_LESS',Hyps) :- % A<=B & A/=B => A<B, own rule (not in Rodin Event-B Wiki)
1174 is_less_eq(L,A,B), is_inequality(Ex,A,B), member(Ex,Hyps).
1175 % allow simplifications deeper inside the term:
1176 simp_rule_with_hyps(C,NewC,Rule,Hyps) :- C=..[F,P], simp_rule_with_hyps(P,Q,Rule,Hyps), NewC=..[F,Q].
1177 simp_rule_with_hyps(C,NewC,Rule,Hyps) :- C=..[F,P,R], simp_rule_with_hyps(P,Q,Rule,Hyps), NewC=..[F,Q,R].
1178 simp_rule_with_hyps(C,NewC,Rule,Hyps) :- C=..[F,R,P], simp_rule_with_hyps(P,Q,Rule,Hyps), NewC=..[F,R,Q].
1179
1180
1181 % -----------------------
1182
1183 or_equal([],_,D,D).
1184 or_equal([A|L],E,D,Res) :- or_equal(L,E,disjunct(D,equal(E,A)),Res).
1185
1186 and_empty(C,Conj,Op) :- C=..[Op,A,B], and_empty(A,ConjA,Op), and_empty(B,ConjB,Op), !, Conj = conjunct(ConjA,ConjB).
1187 and_empty(A,equal(A,empty_set),_).
1188
1189 and_imp(C,R,Conj,Op) :- C=..[Op,A,B], and_imp(A,R,ConjA,Op), and_imp(B,R,ConjB,Op), !, Conj = conjunct(ConjA,ConjB).
1190 and_imp(A,R,implication(R,A),conjunct).
1191 and_imp(A,R,implication(A,R),disjunct).
1192
1193 union_subset(S,union(A,B),Conj) :- union_subset(S,A,ConjA), union_subset(S,B,ConjB), !, Conj = conjunct(ConjA,ConjB).
1194 union_subset(S,A,subset(A,S)).
1195
1196 union_subset_member(T,union(A,B),Conj) :-
1197 union_subset_member(T,A,ConjA),
1198 union_subset_member(T,B,ConjB),!,
1199 Conj = conjunct(ConjA,ConjB).
1200 union_subset_member(T,SetF,member(F,T)) :- singleton_set(SetF,F), !.
1201 union_subset_member(T,A,subset(A,T)).
1202
1203
1204 member_union(E,union(A,B),Disj) :- member_union(E,A,DisjA), member_union(E,B,DisjB), !, Disj = disjunct(DisjA,DisjB).
1205 member_union(E,A,member(E,A)).
1206
1207 subset_inter(S,intersection(A,B),Conj) :- subset_inter(S,A,ConjA), subset_inter(S,B,ConjB), Conj = conjunct(ConjA,ConjB), !.
1208 subset_inter(S,A,subset(S,A)).
1209
1210 member_intersection(E,intersection(A,B),Conj) :-
1211 member_intersection(E,A,ConjA),
1212 member_intersection(E,B,ConjB),!,
1213 Conj = conjunct(ConjA,ConjB).
1214 member_intersection(E,A,member(E,A)).
1215
1216 distribute_exists(X,disjunct(A,B),Disj) :- distribute_exists(X,A,DisjA), distribute_exists(X,B,DisjB), !, Disj = disjunct(DisjA,DisjB).
1217 distribute_exists(X,P,exists(X,P)).
1218
1219 distribute_forall(X,P,conjunct(A,B),Conj) :-
1220 distribute_forall(X,P,A,ConjA),
1221 distribute_forall(X,P,B,ConjB),!,
1222 Conj = conjunct(ConjA,ConjB).
1223 distribute_forall(X,P,A,forall(X,P,A)).
1224
1225 distribute_binary_minus(minus(X,Y),add(X,YY)) :- distribute_unary_minus(Y,YY).
1226
1227 distribute_unary_minus(add(Y,Z),minus(YY,Z)) :- !, distribute_unary_minus(Y,YY).
1228 distribute_unary_minus(minus(Y,Z),add(YY,Z)) :- !, distribute_unary_minus(Y,YY).
1229 distribute_unary_minus(add(unary_minus(Y),Z),minus(YY,Z)) :- !, distribute_unary_minus(unary_minus(Y),YY).
1230 distribute_unary_minus(minus(unary_minus(Y),Z),add(YY,Z)) :- !, distribute_unary_minus(unary_minus(Y),YY).
1231 distribute_unary_minus(unary_minus(Y),Y) :- !.
1232 distribute_unary_minus(Y,unary_minus(Y)).
1233
1234
1235 left_associate_additions(add(X,Expr),Res) :-
1236 \+ leftmost_term(Expr,_,_), !,
1237 normalize_minus(add(X,Expr),Res).
1238 left_associate_additions(add(X,Expr),Res) :-
1239 leftmost_term(Expr,Term,Rest), !,
1240 normalize_minus(add(add(X,Term),Rest),NewTerm),
1241 left_associate_additions(NewTerm,Res).
1242 left_associate_additions(X,X).
1243
1244 leftmost_term(C,Term,Res) :-
1245 C=..[Op,A,B], (Op = add ; Op = minus),
1246 functor(A,OpA,2), (OpA = add ; OpA = minus),!,
1247 leftmost_term(A,Term,Rest),
1248 Res=..[Op,Rest,B].
1249 leftmost_term(add(X,Y),X,Y).
1250 leftmost_term(minus(X,Y),X,unary_minus(Y)).
1251
1252 normalize_minus(add(X,unary_minus(Y)),minus(XX,Y)) :- !,
1253 normalize_minus(X,XX).
1254 normalize_minus(Term,Result) :-
1255 Term=..[F|Args], !,
1256 maplist(normalize_minus,Args,NewArgs),
1257 Result=..[F|NewArgs].
1258 normalize_minus(X,X).
1259
1260 member_couples(E,F,[Q],_,[member(couple(E,F),Q)]).
1261 member_couples(E,F,[P|Q],[X|T],[member(couple(E,X),P)|R]) :- member_couples(X,F,Q,T,R).
1262
1263 distri_reverse(C,U,Op) :- C=..[Op,A,B], distri_reverse(A,UA,Op), distri_reverse(B,UB,Op), !, U=..[Op,UA,UB].
1264 distri_reverse(A,reverse(A),_).
1265
1266 distri_reverse_reverse(C,U,Op) :- C=..[Op,A,B], distri_reverse_reverse(A,UA,Op), distri_reverse_reverse(B,UB,Op), !, U=..[Op,UB,UA].
1267 distri_reverse_reverse(A,reverse(A),_).
1268
1269 distri_union(union(A,B),Union,Op) :- distri_union(A,L,Op), distri_union(B,R,Op), !, Union = union(L,R).
1270 distri_union(A,C,Op) :- C=..[Op,A].
1271
1272 image_union(F,union(A,B),Union) :- image_union(F,A,L), image_union(F,B,R), !, Union = union(L,R).
1273 image_union(F,A,image(F,A)).
1274
1275 union_image(union(A,B),S,Union) :- union_image(A,S,L), union_image(B,S,R), !, Union = union(L,R).
1276 union_image(A,S,image(A,S)).
1277
1278 finite_union(union(A,B),Conj) :- finite_union(A,ConjA), finite_union(B,ConjB), !, Conj = conjunct(ConjA,ConjB).
1279 finite_union(S,finite(S)).
1280
1281
1282 last_overwrite(overwrite(_,B),Res) :- !, last_overwrite(B,Res).
1283 last_overwrite(B,B).
1284
1285 and_equal_type(intersection(A,B),Ty,Conj) :- and_equal_type(A,Ty,L), and_equal_type(B,Ty,R), !, Conj = conjunct(L,R).
1286 and_equal_type(A,Ty,equal(A,Ty)).
1287
1288 bwd_to_fwd_comp(ring(R,S),Res) :-
1289 bwd_to_fwd_comp(R,R2),
1290 bwd_to_fwd_comp(S,S2),
1291 Res = composition(S2,R2).
1292 bwd_to_fwd_comp(X,X) :- X \= ring(_,_).
1293
1294 % ------------------
1295
1296 % change order of operation if Op is associative
1297 reorder(C,Res,Op) :-
1298 C=..[Op,A,B],
1299 B=..[Op,L,Rest],!,
1300 R=..[Op,A,L],
1301 append_to_op(Rest,R,Res,Op).
1302 reorder(C,C,Op) :- functor(C,Op,2).
1303
1304 append_to_op(C,R,Res,Op) :-
1305 C=..[Op,A,B],
1306 Inner=..[Op,R,A],!,
1307 append_to_op(B,Inner,Res,Op).
1308 append_to_op(B,R,C,Op) :- C=..[Op,R,B].
1309
1310 % ------------------
1311
1312 remove_from_op(El,Term,NewTerm,Op) :-
1313 op_to_list(Term,List,Op),
1314 remove_from_list(El,List,List0),
1315 list_to_op(List0,NewTerm,Op).
1316
1317 remove_from_list(_,[],[]).
1318 remove_from_list(E,[E|T],T2) :- remove_from_list(E,T,T2).
1319 remove_from_list(E,[X|T],[X|T2]) :- X \= E, remove_from_list(E,T,T2).
1320
1321