| 1 | % (c) 2020-2024 Lehrstuhl fuer Softwaretechnik und Programmiersprachen, | |
| 2 | % Heinrich Heine Universitaet Duesseldorf | |
| 3 | % This software is licenced under EPL 1.0 (http://www.eclipse.org/org/documents/epl-v10.html) | |
| 4 | ||
| 5 | :- module(kernel_reals, [construct_real/2, construct_negative_real/2, | |
| 6 | is_real/1, is_real/2, is_real_wf/2, | |
| 7 | is_float/1, is_float_wf/2, | |
| 8 | is_not_real/1, is_not_float/1, | |
| 9 | is_ground_real/1, | |
| 10 | is_largest_positive_float/1, is_smallest_positive_float/1, | |
| 11 | is_next_larger_float/2, is_next_smaller_float/2, | |
| 12 | convert_int_to_real/2, | |
| 13 | real_floor/2, real_ceiling/2, | |
| 14 | real_addition_wf/4, real_subtraction_wf/4, | |
| 15 | real_multiplication_wf/4, real_division_wf/5, | |
| 16 | real_unary_minus_wf/3, | |
| 17 | real_absolute_value_wf/3, | |
| 18 | real_square_root_wf/4, | |
| 19 | real_round_wf/3, | |
| 20 | real_unop_wf/4, real_unop_wf/5, | |
| 21 | real_binop_wf/6, | |
| 22 | real_power_of_wf/5, | |
| 23 | real_less_than_wf/3, real_less_than_equal_wf/3, | |
| 24 | real_comp_wf/5, | |
| 25 | real_maximum_of_set/4, real_minimum_of_set/4 | |
| 26 | ]). | |
| 27 | ||
| 28 | % Reals/Floats in ProB are represented by terms of the form term(floating(Number)) | |
| 29 | % in future a proper wrapper such as real(Number) might be created | |
| 30 | ||
| 31 | :- meta_predicate real_comp_wf(2,-,-,-,-). | |
| 32 | :- meta_predicate real_comp_wf_aux(2,-,-,-,-). | |
| 33 | ||
| 34 | :- use_module(module_information,[module_info/2]). | |
| 35 | :- module_info(group,kernel). | |
| 36 | :- module_info(description,'This module provides (external) functions to manipulate B reals and floats.'). | |
| 37 | ||
| 38 | :- use_module(error_manager). | |
| 39 | :- use_module(self_check). | |
| 40 | :- use_module(library(lists)). | |
| 41 | :- use_module(debug). | |
| 42 | ||
| 43 | :- use_module(kernel_objects,[exhaustive_kernel_check_wf/2,exhaustive_kernel_check_wf/3]). | |
| 44 | :- use_module(extension('counter/counter'), | |
| 45 | [next_smaller_abs_float/2, next_smaller_float/2,next_larger_float/2, next_float_twoards/3, | |
| 46 | smallest_float/1, largest_float/1, smallest_abs_float/1]). | |
| 47 | ||
| 48 | % used to construct a Value from real(Atom) AST node | |
| 49 | construct_real(Atom,term(floating(Float))) :- | |
| 50 | atom_codes(Atom,C), | |
| 51 | number_codes(Nr,C), | |
| 52 | Float is float(Nr). % make sure we store a float; not required for AST literals | |
| 53 | ||
| 54 | construct_negative_real(Atom,term(floating(Float))) :- | |
| 55 | atom_codes(Atom,C), | |
| 56 | number_codes(Nr,C), | |
| 57 | Float is -float(Nr). | |
| 58 | ||
| 59 | is_real_wf(X,_WF) :- is_real(X,_). | |
| 60 | is_real(X) :- is_real(X,_). | |
| 61 | ||
| 62 | is_real(term(floating(Nr)),Nr). | |
| 63 | % TO DO: other formats | |
| 64 | ||
| 65 | is_float_wf(X,_WF) :- is_float(X). | |
| 66 | ||
| 67 | is_float(term(floating(_))). | |
| 68 | ||
| 69 | is_not_real(_) :- fail. | |
| 70 | is_not_float(_) :- fail. | |
| 71 | ||
| 72 | is_ground_real(term(floating(Nr))) :- number(Nr). | |
| 73 | ||
| 74 | is_largest_positive_float(term(floating(Nr))) :- largest_float(Nr). | |
| 75 | is_smallest_positive_float(term(floating(Nr))) :- smallest_abs_float(Nr). | |
| 76 | ||
| 77 | is_next_larger_float(term(floating(Nr)),term(floating(Next))) :- | |
| 78 | block_next_larger_float(Nr,Next). | |
| 79 | :- block block_next_larger_float(-,-). | |
| 80 | block_next_larger_float(Nr,Next) :- nonvar(Nr),!,next_larger_float(Nr,Next). | |
| 81 | block_next_larger_float(Nr,Next) :- next_smaller_float(Next,Nr). | |
| 82 | ||
| 83 | is_next_smaller_float(term(floating(Nr)),term(floating(Next))) :- | |
| 84 | block_next_larger_float(Next,Nr). | |
| 85 | ||
| 86 | ||
| 87 | % convert an integer to a real, corresponds to the real(.) function in Atelier-B; convert_real as AST | |
| 88 | convert_int_to_real(int(X),term(floating(R))) :- | |
| 89 | convert_int_to_real_aux(X,R). | |
| 90 | ||
| 91 | :- block convert_int_to_real_aux(-,-). | |
| 92 | convert_int_to_real_aux(Int,Real) :- number(Int),!, | |
| 93 | Real is float(Int). | |
| 94 | convert_int_to_real_aux(Int,Real) :- Int1 is floor(Real), | |
| 95 | Real is float(Int1), | |
| 96 | Int1=Int. | |
| 97 | ||
| 98 | ||
| 99 | % convert_int_floor as AST, Atelier-B floor(.) | |
| 100 | real_floor(term(floating(R)),int(X)) :- real_floor_aux(R,X). | |
| 101 | :- block real_floor_aux(-,?). | |
| 102 | real_floor_aux(Real,Int) :- Int is floor(Real). | |
| 103 | ||
| 104 | % convert_int_ceiling as AST, Atelier-B ceiling(.) | |
| 105 | real_ceiling(term(floating(R)),int(X)) :- real_ceiling_aux(R,X). | |
| 106 | :- block real_ceiling_aux(-,?). | |
| 107 | real_ceiling_aux(Real,Int) :- Int is ceiling(Real). | |
| 108 | ||
| 109 | :- assert_must_succeed(exhaustive_kernel_check_wf([commutative],kernel_reals:real_addition_wf(term(floating(1.0)),term(floating(2.0)),term(floating(3.0)),WF),WF)). | |
| 110 | :- assert_must_succeed(exhaustive_kernel_check_wf([commutative],kernel_reals:real_addition_wf(term(floating(0.0)),term(floating(2.0)),term(floating(2.0)),WF),WF)). | |
| 111 | :- assert_must_succeed(exhaustive_kernel_check_wf([commutative],kernel_reals:real_addition_wf(term(floating(-1.0)),term(floating(1.0)),term(floating(0.0)),WF),WF)). | |
| 112 | ||
| 113 | real_addition_wf(term(floating(X)),term(floating(Y)),term(floating(R)),WF) :- | |
| 114 | real_add_wf_aux(X,Y,R,WF). | |
| 115 | :- block real_add_wf_aux(-,-,?,?), real_add_wf_aux(?,-,-,?), real_add_wf_aux(-,?,-,?). | |
| 116 | real_add_wf_aux(X,Y,R,WF) :- | |
| 117 | (nonvar(X) | |
| 118 | -> (nonvar(Y) | |
| 119 | -> safe_is(R,X+Y,WF) | |
| 120 | ; allow_constraint_propagation(Kind), | |
| 121 | safe_is(YY,R-X,WF), | |
| 122 | confirm_solution_for_expr(YY,X+SOL,SOL,R,Kind,Solutions,WF) | |
| 123 | -> set_solution_for_expr(Y,Solutions,WF) | |
| 124 | ; real_add_wf_aux2(X,Y,R,WF) % delay until Y is known | |
| 125 | ) | |
| 126 | ; allow_constraint_propagation(Kind), | |
| 127 | safe_is(XX,R-Y,WF), | |
| 128 | confirm_solution_for_expr(XX,SOL+Y,SOL,R,Kind,Solutions,WF) | |
| 129 | -> set_solution_for_expr(X,Solutions,WF) | |
| 130 | ; real_add_wf_aux2(X,Y,R,WF) % delay until X is known | |
| 131 | ). | |
| 132 | ||
| 133 | :- block real_add_wf_aux2(-,?,?,?), real_add_wf_aux2(?,-,?,?). | |
| 134 | real_add_wf_aux2(X,Y,R,WF) :- safe_is(R,X+Y,WF). | |
| 135 | ||
| 136 | ||
| 137 | % confirm_solution_for_expr(XX,ExprX,X,R : check if XX=X is a solution for R = ExprX, where ExprX contains variable X | |
| 138 | % depending on solver setting : compute a list of candidate solutions around XX | |
| 139 | confirm_solution_for_expr(XX,_,_,_,no_checking,Solutions,_) :- !, Solutions=XX. | |
| 140 | confirm_solution_for_expr(XX,ExprX,X,R,simple_checking,Solutions,WF) :- !, | |
| 141 | check_sol_direct(XX,ExprX,X,R,WF), Solutions=XX. % single solution | |
| 142 | confirm_solution_for_expr(XX,ExprX,X,R,check_unique_solution,Solutions,WF) :- !, | |
| 143 | check_sol_direct(XX,ExprX,X,R,WF), Solutions=XX, % single solution | |
| 144 | % Now check if there are other solutions: | |
| 145 | next_larger_float(XX,XN), | |
| 146 | (X=XN,safe_is(R,ExprX,WF) | |
| 147 | -> debug_format(19,'Reject ambiguous larger solution {~w,~w} for ~w = ~w~n',[XX,XN,ExprX,R]),fail | |
| 148 | ; true | |
| 149 | ), | |
| 150 | next_smaller_float(XX,XP), | |
| 151 | (X=XP,safe_is(R,ExprX,WF) | |
| 152 | -> debug_format(19,'Reject ambiguous smaller solution {~w,~w} for ~w = ~w~n',[XX,XP,ExprX,R]),fail | |
| 153 | ; true). | |
| 154 | confirm_solution_for_expr(XX,ExprX,X,R,check_small_interval_solution,Interval,WF) :- | |
| 155 | get_solutions_around(XX,ExprX,X,R,Interval,WF). | |
| 156 | ||
| 157 | :- use_module(kernel_waitflags,[get_wait_flag/4]). | |
| 158 | % set the solution based on result of confirm_solution_for_expr | |
| 159 | set_solution_for_expr(X,XX,_WF) :- number(XX),!,X=XX. % deterministic constraint propagation found precise solution | |
| 160 | set_solution_for_expr(X,[XX],_WF) :- !,X=XX. % ditto | |
| 161 | set_solution_for_expr(_,[],_WF) :- !, fail. % no solutions | |
| 162 | set_solution_for_expr(X,Interval,WF) :- | |
| 163 | length(Interval,Len), % we found an interval list of possible solutions | |
| 164 | get_wait_flag(Len,kernel_reals,WF,LWF), | |
| 165 | set_sol_aux(X,Interval,LWF). | |
| 166 | :- block set_sol_aux(-,?,-). | |
| 167 | set_sol_aux(X,Interval,_) :- | |
| 168 | member(X,Interval). | |
| 169 | ||
| 170 | ||
| 171 | % get a sorted list of solutions around the candidate XX | |
| 172 | get_solutions_around(XX,ExprX,X,R,Interval,WF) :- | |
| 173 | (check_sol_direct(XX,ExprX,X,R,WF) % XX is a solution | |
| 174 | -> get_preference(solver_strength,SS), | |
| 175 | Limit is 10+SS, % number of solutions we are willing to find | |
| 176 | next_larger_float(XX,XN), | |
| 177 | find_larger_bounds(XN,Limit,ExprX,X,R,WF,LargerSols,[]), | |
| 178 | next_smaller_float(XX,XP), | |
| 179 | find_lower_bounds(XP,Limit,ExprX,X,R,WF,Interval,[XX|LargerSols]) | |
| 180 | ; (X='X',debug_format(19,'Reject non-solution ~w for ~w = ~w~n',[XX,ExprX,R]),fail ; true), | |
| 181 | %next_smaller_float(XX,XP), (check_sol_direct(XP,ExprX,X,R,WF) -> write(xp(XP)),nl ; write(nxp(XP)),nl), | |
| 182 | %next_larger_float(XX,XN), (check_sol_direct(XN,ExprX,X,R,WF) -> write(xn(XN)),nl ; write(nxp(XN)),nl), | |
| 183 | Interval = [] % no floating point solutions; TODO: do we need to check smaller/larger values?? | |
| 184 | ). | |
| 185 | ||
| 186 | % e.g. for x+1.0 = 3.0 we have 2.0 as solution and the previous float 1.9999999999999998, nothing else | |
| 187 | % e.b. for x+2.0 = 3.0 we have four solutions {0.9999999999999998,0.9999999999999999,1.0,1.0000000000000002} | |
| 188 | % card({x|x + 2.999 = 3.0}) = 2049 | |
| 189 | % card({x|x + 2.9999 = 3.0}) = 32769 | |
| 190 | ||
| 191 | % increment floats until we hit the first non-solution or we reach the limit | |
| 192 | % TODO: try and compute this bound, rather then single-stepping | |
| 193 | % TODO: enumerate the first solution and then generate an enum warning if we reach limit | |
| 194 | find_larger_bounds(XP,Lim,ExprX,X,R,WF,[XP|Sols1],Sols2) :- | |
| 195 | check_sol_direct(XP,ExprX,X,R,WF),!, Lim>0, L1 is Lim-1, | |
| 196 | next_larger_float(XP,XP2), | |
| 197 | find_larger_bounds(XP2,L1,ExprX,X,R,WF,Sols1,Sols2). | |
| 198 | find_larger_bounds(_Bound,_Lim,_ExprX,_X,_R,_WF,Sols,Sols). | |
| 199 | ||
| 200 | % decrement floats until we hit the first non-solution or we reach the limit | |
| 201 | find_lower_bounds(XP,Lim,ExprX,X,R,WF,[XP|Sols1],Sols2) :- | |
| 202 | check_sol_direct(XP,ExprX,X,R,WF),!, Lim>0, L1 is Lim-1, | |
| 203 | next_smaller_float(XP,XP2), | |
| 204 | find_lower_bounds(XP2,L1,ExprX,X,R,WF,Sols1,Sols2). | |
| 205 | find_lower_bounds(_Bound,_Lim,_ExprX,_X,_R,_WF,Sols,Sols). | |
| 206 | ||
| 207 | check_sol_direct(XX,ExprX,X,R,WF) :- !, | |
| 208 | % (x + y = z <=> x = z - y) does not hold for all floats, e.g., when x very small and y very large (x+y)-y = 0 | |
| 209 | (\+((X=XX,safe_is(R,ExprX,WF))) -> fail ; true). | |
| 210 | ||
| 211 | ||
| 212 | :- use_module(probsrc(preferences), [get_preference/2]). | |
| 213 | ||
| 214 | allow_constraint_propagation(Kind) :- | |
| 215 | get_preference(solver_for_reals,Solver), | |
| 216 | get_solver_kind(Solver,Kind). | |
| 217 | ||
| 218 | get_solver_kind(aggressive_float_solver,no_checking). % like CLP(R): do not check propagated solution | |
| 219 | get_solver_kind(float_solver,simple_checking). % check propagated solution, but do not check uniqueness | |
| 220 | %get_solver_kind(precise_float_solver,check_unique_solution). | |
| 221 | get_solver_kind(precise_float_solver,check_small_interval_solution). % perform limited constraint propagation, fail directly if no solution exists | |
| 222 | ||
| 223 | % we could have various other options: | |
| 224 | % aggressive: do it like CLP(R), which can generate non-solutions | |
| 225 | % | ?- {X+10.0e10 = 1.0e-9}, write(sol(X)),nl, {X+10.0e10 = 1.0e-9}. | |
| 226 | % prints sol(-1.0E+11) but then fails | |
| 227 | % conservative: do the precision check and also check that there are no other solutions (not done yet) | |
| 228 | % e.g., X+10000000000.0 = 10000000000.0 & (X=0.000000000001 or X=2.0) is FALSE with the float_solver, but TRUE with none | |
| 229 | ||
| 230 | ||
| 231 | :- assert_must_succeed(exhaustive_kernel_check_wf(kernel_reals:real_subtraction_wf(term(floating(3.0)),term(floating(2.0)),term(floating(1.0)),WF),WF)). | |
| 232 | real_subtraction_wf(term(floating(X)),term(floating(Y)),term(floating(R)),WF) :- | |
| 233 | real_sub_wf_aux(X,Y,R,WF). | |
| 234 | :- block real_sub_wf_aux(-,-,?,?), real_sub_wf_aux(?,-,-,?), real_sub_wf_aux(-,?,-,?). | |
| 235 | real_sub_wf_aux(X,Y,R,WF) :- | |
| 236 | (nonvar(X) | |
| 237 | -> (nonvar(Y) | |
| 238 | -> safe_is(R,X-Y,WF) | |
| 239 | ; allow_constraint_propagation(Kind), | |
| 240 | safe_is(YY,X-R,WF), | |
| 241 | confirm_solution_for_expr(YY,X-SOL,SOL,R,Kind,Solutions,WF) | |
| 242 | -> set_solution_for_expr(Y,Solutions,WF) % deterministic constraint propagation found precise solution | |
| 243 | ; real_sub_wf_aux2(X,Y,R,WF) % delay until Y is known | |
| 244 | ) | |
| 245 | ; allow_constraint_propagation(Kind), | |
| 246 | safe_is(XX,R+Y,WF), | |
| 247 | confirm_solution_for_expr(XX,SOL-Y,SOL,R,Kind,Solutions,WF) | |
| 248 | -> set_solution_for_expr(X,Solutions,WF) % deterministic constraint propagation found precise solution | |
| 249 | ; real_sub_wf_aux2(X,Y,R,WF) % delay until X is known | |
| 250 | ). | |
| 251 | ||
| 252 | :- block real_sub_wf_aux2(-,?,?,?), real_sub_wf_aux2(?,-,?,?). | |
| 253 | real_sub_wf_aux2(X,Y,R,WF) :- safe_is(R,X-Y,WF). | |
| 254 | ||
| 255 | ||
| 256 | :- assert_must_succeed(exhaustive_kernel_check_wf([commutative],kernel_reals:real_multiplication_wf(term(floating(3.0)),term(floating(2.0)),term(floating(6.0)),WF),WF)). | |
| 257 | real_multiplication_wf(term(floating(X)),term(floating(Y)),term(floating(R)),WF) :- | |
| 258 | real_mul_wf_aux0(X,Y,R,WF). | |
| 259 | ||
| 260 | :- block real_mul_wf_aux0(-,-,-,?). | |
| 261 | real_mul_wf_aux0(X,Y,R,_WF) :- (X==0.0 ; Y==0.0), !, R=0.0. | |
| 262 | real_mul_wf_aux0(X,Y,R,WF) :- var(X),X==Y, !, % X*X = R -> compute sqrt | |
| 263 | kernel_square_inverse(X,R,WF). | |
| 264 | real_mul_wf_aux0(X,Y,R,WF) :- real_mul_wf_aux(X,Y,R,WF). | |
| 265 | ||
| 266 | :- block real_mul_wf_aux(-,-,?,?), real_mul_wf_aux(?,-,-,?), real_mul_wf_aux(-,?,-,?). | |
| 267 | real_mul_wf_aux(X,Y,R,_WF) :- (X==0.0 ; Y==0.0), !, R=0.0. | |
| 268 | real_mul_wf_aux(X,Y,R,WF) :- | |
| 269 | (nonvar(X) | |
| 270 | -> (nonvar(Y) | |
| 271 | -> safe_is(R,X*Y,WF) | |
| 272 | ; allow_constraint_propagation(Kind), | |
| 273 | safe_is(YY,R/X,WF), | |
| 274 | confirm_solution_for_expr(YY,X*SOL,SOL,R,Kind,Solutions,WF) | |
| 275 | -> set_solution_for_expr(Y,Solutions,WF) | |
| 276 | ; real_mul_wf_aux2(X,Y,R,WF) % delay until Y is known | |
| 277 | ) | |
| 278 | ; allow_constraint_propagation(Kind), | |
| 279 | safe_is(XX,R/Y,WF), | |
| 280 | confirm_solution_for_expr(XX,SOL*Y,SOL,R,Kind,Solutions,WF) | |
| 281 | -> set_solution_for_expr(X,Solutions,WF) | |
| 282 | ; real_mul_wf_aux2(X,Y,R,WF) % delay until X is known | |
| 283 | ). | |
| 284 | ||
| 285 | :- block real_mul_wf_aux2(-,?,?,?), real_mul_wf_aux2(?,-,?,?). | |
| 286 | real_mul_wf_aux2(X,Y,R,WF) :- safe_is(R,X*Y,WF). | |
| 287 | ||
| 288 | % compute sqrt, R is known | |
| 289 | kernel_square_inverse(X,R,WF) :- | |
| 290 | (R < 0.0 -> fail | |
| 291 | ; allow_constraint_propagation(Kind), | |
| 292 | safe_is(XX,sqrt(R),WF), | |
| 293 | confirm_solution_for_expr(XX,SOL*SOL,SOL,R,Kind,SolutionsPos,WF), | |
| 294 | (XX=0.0 -> Solutions = SolutionsPos | |
| 295 | ; NX is -XX, | |
| 296 | confirm_solution_for_expr(NX,SOL*SOL,SOL,R,Kind,SolutionsNeg,WF), | |
| 297 | append(SolutionsPos,SolutionsNeg,Solutions) | |
| 298 | ) | |
| 299 | -> set_solution_for_expr(X,Solutions,WF) | |
| 300 | ; real_mul_wf_aux(X,X,R,WF)). | |
| 301 | ||
| 302 | ||
| 303 | :- block 'real_square_root_wf'(-,-,?,?). | |
| 304 | real_square_root_wf(term(floating(X)),term(floating(R)),Span,WF) :- | |
| 305 | real_sqrt_wf_aux(X,R,Span,WF). | |
| 306 | :- block real_sqrt_wf_aux(-,-,?,?). | |
| 307 | real_sqrt_wf_aux(X,R,_Span,WF) :- var(X), | |
| 308 | allow_constraint_propagation(Kind), | |
| 309 | get_preference(find_abort_values,false), | |
| 310 | (R >= 0.0 | |
| 311 | -> safe_is(XX,R*R,WF), | |
| 312 | confirm_solution_for_expr(XX,sqrt(SOL),SOL,R,Kind,Solutions,WF) | |
| 313 | ; Solutions = []), % RSQRT always returns a positive number | |
| 314 | !, | |
| 315 | set_solution_for_expr(X,Solutions,WF). | |
| 316 | real_sqrt_wf_aux(X,R,Span,WF) :- | |
| 317 | real_unop_wf_aux('sqrt',X,R,Span,WF). | |
| 318 | ||
| 319 | :- assert_must_succeed(exhaustive_kernel_check_wf(kernel_reals:real_division_wf(term(floating(6.0)),term(floating(2.0)),term(floating(3.0)),unknown,WF),WF)). | |
| 320 | real_division_wf(term(floating(X)),term(floating(Y)),term(floating(R)),Span,WF) :- | |
| 321 | real_div_wf_aux(X,Y,R,Span,WF). | |
| 322 | :- block real_div_wf_aux(-,?,-,?,?), real_div_wf_aux(?,-,?,?,?). | |
| 323 | real_div_wf_aux(X,Y,R,Span,WF) :- nonvar(X),!,safe_is(R,X/Y,Span,WF). | |
| 324 | real_div_wf_aux(X,Y,R,Span,WF) :- Y \= 0.0, allow_constraint_propagation(Kind), | |
| 325 | safe_is(XX,R*Y,Span,WF), | |
| 326 | confirm_solution_for_expr(XX,SOL/Y,SOL,R,Kind,Solutions,WF), | |
| 327 | !, | |
| 328 | set_solution_for_expr(X,Solutions,WF). | |
| 329 | real_div_wf_aux(X,Y,R,Span,WF) :- when(nonvar(X),safe_is(R,X/Y,Span,WF)). | |
| 330 | ||
| 331 | :- block 'real_unary_minus_wf'(-,-,?). | |
| 332 | real_unary_minus_wf(term(floating(X)),term(floating(R)),WF) :- | |
| 333 | real_um_wf_aux(X,R,WF). | |
| 334 | :- block real_um_wf_aux(-,-,?). | |
| 335 | real_um_wf_aux(X,R,_) :- nonvar(X),!,R is -X. | |
| 336 | real_um_wf_aux(X,R,_) :- X is -R. | |
| 337 | ||
| 338 | :- block 'real_absolute_value_wf'(-,-,?). | |
| 339 | real_absolute_value_wf(term(floating(X)),term(floating(R)),WF) :- | |
| 340 | real_abs_wf_aux(X,R,WF). | |
| 341 | :- block real_abs_wf_aux(-,-,?). | |
| 342 | real_abs_wf_aux(X,R,_) :- nonvar(X),!, R is abs(X). | |
| 343 | real_abs_wf_aux(X,R,_) :- R = 0.0, !, X=0.0. | |
| 344 | real_abs_wf_aux(_,R,_) :- R < 0.0, !, fail. | |
| 345 | real_abs_wf_aux(X,R,WF) :- MR is -R, | |
| 346 | Solutions = [R,MR], | |
| 347 | set_solution_for_expr(X,Solutions,WF). | |
| 348 | ||
| 349 | real_round_wf(term(floating(X)),int(R),_WF) :- | |
| 350 | when(nonvar(X), R is round(X)). | |
| 351 | ||
| 352 | :- use_module(kernel_waitflags,[add_wd_error/3, add_wd_error_span/4]). | |
| 353 | % a version of is/2 which catches overflows | |
| 354 | safe_is(R,Expr,WF) :- | |
| 355 | safe_is(R,Expr,unknown,WF). | |
| 356 | safe_is(R,Expr,Span,WF) :- | |
| 357 | catch(R is Expr, | |
| 358 | error(evaluation_error(ERR),_), | |
| 359 | process_evaluation_error(ERR,Expr,Span,WF)). | |
| 360 | ||
| 361 | process_evaluation_error(float_overflow,Expr,Span,WF) :- !, | |
| 362 | add_wd_error_span('Float Overflow while computing:',Expr,Span,WF). | |
| 363 | process_evaluation_error(zero_divisor,Expr,Span,WF) :- !, | |
| 364 | add_wd_error_span('Division by zero while computing:',Expr,Span,WF). | |
| 365 | process_evaluation_error(undefined,Expr,Span,WF) :- !, | |
| 366 | add_wd_error_span('Arithmetic operator undefined while computing:',Expr,Span,WF). | |
| 367 | process_evaluation_error(_,Expr,Span,WF) :- | |
| 368 | add_wd_error_span('Unknown evaluation error while computing:',Expr,Span,WF). | |
| 369 | ||
| 370 | ||
| 371 | % call a Prolog unary artihmetic operator | |
| 372 | real_unop_wf(OP,X,R,WF) :- | |
| 373 | real_unop_wf(OP,X,R,unknown,WF). | |
| 374 | ||
| 375 | real_unop_wf(OP,RX,RR,Span,WF) :- | |
| 376 | get_real(RX,X,OP,Span,WF), get_real(RR,R,OP,Span,WF), | |
| 377 | real_unop_wf_aux(OP,X,R,Span,WF). | |
| 378 | :- block real_unop_wf_aux(-,?,?,?,?), real_unop_wf_aux(?,-,?,?,?). | |
| 379 | real_unop_wf_aux(OP,X,R,Span,WF) :- | |
| 380 | Expr =.. [OP,X], | |
| 381 | safe_is(R,Expr,Span,WF). | |
| 382 | ||
| 383 | :- use_module(probsrc(tools_strings),[ajoin/2]). | |
| 384 | :- use_module(kernel_waitflags,[add_error_wf/5]). | |
| 385 | get_real(Var,Real,_,_,_) :- var(Var),!, Var=term(floating(Real)). | |
| 386 | get_real(term(F),Real,_,_,_) :- !, F=floating(Real). | |
| 387 | get_real(Other,_,OP,Span,WF) :- | |
| 388 | ajoin(['Argument for ',OP,' is not a real number:'],Msg), | |
| 389 | add_error_wf(kernel_reals,Msg,Other,Span,WF). | |
| 390 | ||
| 391 | % when called for ** operator the exponent Y is a natural number represented as a float; for RPOW Y can be any float | |
| 392 | real_power_of_wf(RX,RY,RR,Span,WF) :- | |
| 393 | get_real(RX,X,'exp',Span,WF), get_real(RY,Y,'exp',Span,WF), get_real(RR,R,'exp',Span,WF), | |
| 394 | real_power_of_aux(X,Y,R,Span,WF). | |
| 395 | ||
| 396 | :- block real_power_of_aux(-,-,?,?,?), real_power_of_aux(?,-,-,?,?), real_power_of_aux(-,?,-,?,?). | |
| 397 | % we currently require to know at least the exponent, TODO: in future we could also compute the log | |
| 398 | real_power_of_aux(X,Y,R,Span,WF) :- | |
| 399 | var(X),!, | |
| 400 | real_power_inverse(X,Y,R,Span,WF). | |
| 401 | real_power_of_aux(X,Y,Res,Span,WF) :- | |
| 402 | real_power_direct(X,Y,Res,Span,WF). | |
| 403 | ||
| 404 | % X is variable, Y and R are known | |
| 405 | real_power_inverse(X,Y,R,_Span,WF) :- Y=2.0,!, | |
| 406 | kernel_square_inverse(X,R,WF). | |
| 407 | real_power_inverse(X,Y,R,_Span,_WF) :- Y=1.0,!, X=R. | |
| 408 | real_power_inverse(X,Y,R,Span,WF) :- | |
| 409 | real_power_direct(X,Y,R,Span,WF). | |
| 410 | % TODO: add more exponents and compute root | |
| 411 | ||
| 412 | :- block real_power_direct(-,?,?,?,?), real_power_direct(?,-,?,?,?). | |
| 413 | real_power_direct(X,Y,R,Span,WF) :- | |
| 414 | safe_is(R,exp(X,Y),Span,WF). | |
| 415 | ||
| 416 | % call a Prolog binary artihmetic operator | |
| 417 | real_binop_wf(OP,RX,RY,RR,Span,WF) :- | |
| 418 | get_real(RX,X,OP,Span,WF), get_real(RY,Y,OP,Span,WF), get_real(RR,R,OP,Span,WF), | |
| 419 | real_binop_wf_aux(OP,X,Y,R,Span,WF). | |
| 420 | :- block real_binop_wf_aux(-,?,?,?,?,?), real_binop_wf_aux(?,-,?,?,?,?), real_binop_wf_aux(?,?,-,?,?,?). | |
| 421 | real_binop_wf_aux(OP,X,Y,R,Span,WF) :- | |
| 422 | Expr =.. [OP,X,Y], | |
| 423 | safe_is(R,Expr,Span,WF). | |
| 424 | ||
| 425 | real_less_than_wf(X,Y,WF) :- real_comp_wf('<',X,Y,pred_true,WF). | |
| 426 | real_less_than_equal_wf(X,Y,WF) :- real_comp_wf('=<',X,Y,pred_true,WF). | |
| 427 | ||
| 428 | ||
| 429 | % call a Prolog bianry artihmetic operator | |
| 430 | real_comp_wf(OP,term(floating(X)),term(floating(Y)),R,WF) :- | |
| 431 | real_comp_wf_aux(OP,X,Y,R,WF). | |
| 432 | :- block real_comp_wf_aux(-,?,?,?,?), real_comp_wf_aux(?,-,?,?,?), real_comp_wf_aux(?,?,-,?,?). | |
| 433 | real_comp_wf_aux(OP,X,Y,R,_) :- | |
| 434 | (call(OP,X,Y) -> R=pred_true ; R=pred_false). | |
| 435 | ||
| 436 | % ----------------- | |
| 437 | ||
| 438 | :- use_module(probsrc(kernel_tools),[ground_value_check/2]). | |
| 439 | real_maximum_of_set(Set,Res,Span,WF) :- | |
| 440 | ground_value_check(Set,Gr), | |
| 441 | rmax_set(Gr,Set,Res,Span,WF). | |
| 442 | ||
| 443 | :- block rmax_set(-,?,?,?,?). | |
| 444 | rmax_set(_,Set,Res,Span,WF) :- | |
| 445 | custom_explicit_sets:expand_and_convert_to_avl_set(Set,ESet,'RMAXIMUM','RMAXIMUM'), | |
| 446 | (ESet=empty | |
| 447 | -> add_wd_error_span('max applied to empty set of reals:',Set,Span,WF) | |
| 448 | ; custom_explicit_sets:max_of_explicit_set_wf(avl_set(ESet),Res,WF) | |
| 449 | ). | |
| 450 | ||
| 451 | real_minimum_of_set(Set,Res,Span,WF) :- | |
| 452 | ground_value_check(Set,Gr), | |
| 453 | rmin_set(Gr,Set,Res,Span,WF). | |
| 454 | ||
| 455 | :- block rmin_set(-,?,?,?,?). | |
| 456 | rmin_set(_,Set,Res,Span,WF) :- | |
| 457 | custom_explicit_sets:expand_and_convert_to_avl_set(Set,ESet,'RMINIMUM','RMINIMUM'), | |
| 458 | (ESet=empty | |
| 459 | -> add_wd_error_span('min applied to empty set of reals:',Set,Span,WF) | |
| 460 | ; custom_explicit_sets:min_of_explicit_set_wf(avl_set(ESet),Res,WF) | |
| 461 | ). | |
| 462 | ||
| 463 | ||
| 464 | % not used yet: useful for kernel_strings ? | |
| 465 | %:- block real_to_string(-,?). | |
| 466 | %real_to_string(term(floating(I)),S) :- real_to_string2(I,S). | |
| 467 | % | |
| 468 | %:- block real_to_string2(-,?). | |
| 469 | %real_to_string2(Num,Res) :- | |
| 470 | % number_codes(Num,C), | |
| 471 | % atom_codes(S,C), Res=string(S). | |
| 472 |