| 1 | % (c) 2020-2024 Lehrstuhl fuer Softwaretechnik und Programmiersprachen, | |
| 2 | % Heinrich Heine Universitaet Duesseldorf | |
| 3 | % This software is licenced under EPL 1.0 (http://www.eclipse.org/org/documents/epl-v10.html) | |
| 4 | ||
| 5 | :- module(external_functions_reals,['STRING_TO_REAL'/3, | |
| 6 | 'RADD'/4,'RSUB'/4,'RMUL'/4,'RDIV'/5, 'RINV'/4, | |
| 7 | 'RPI'/1, 'RZERO'/1, 'RONE'/1, 'REULER'/1, | |
| 8 | 'REPSILON'/1, 'RMAXFLOAT'/1, | |
| 9 | 'RSIN'/3, 'RCOS'/3, 'RTAN'/3, 'RCOT'/3, | |
| 10 | 'RSINH'/3, 'RCOSH'/3, 'RTANH'/3, 'RCOTH'/3, | |
| 11 | 'RASIN'/3, 'RACOS'/3, 'RATAN'/3, 'RACOT'/3, | |
| 12 | 'RASINH'/3, 'RACOSH'/3, 'RATANH'/3, 'RACOTH'/3, | |
| 13 | 'RATAN2'/5, 'RHYPOT'/5, | |
| 14 | 'RADIANS'/4, 'DEGREE'/4, | |
| 15 | 'RUMINUS'/3, | |
| 16 | 'REXP'/3, 'RLOGe'/4, 'RSQRT'/4, | |
| 17 | 'RABS'/3, 'ROUND'/3, 'RSIGN'/3, | |
| 18 | 'RINTEGER'/3, 'RFRACTION'/3, | |
| 19 | 'RMAX'/5, 'RMIN'/5, | |
| 20 | 'RPOW'/5, 'RLOG'/5, | |
| 21 | 'RDECIMAL'/5, % scientific notation using integers | |
| 22 | 'RLT'/4, 'REQ'/4, 'RNEQ'/4, 'RLEQ'/4, 'RGT'/4, 'RGEQ'/4, | |
| 23 | 'RMAXIMUM'/4, 'RMINIMUM'/4, | |
| 24 | ||
| 25 | 'RNEXT'/2, 'RPREV'/2, | |
| 26 | ||
| 27 | 'SFADD16'/3, | |
| 28 | 'SFSUB16'/3, | |
| 29 | 'SFMUL16'/3, | |
| 30 | 'SFDIV16'/3, | |
| 31 | 'SFSQRT16'/2, | |
| 32 | 'SFMULADD16'/4, | |
| 33 | ||
| 34 | 'SFADD32'/3, | |
| 35 | 'SFSUB32'/3, | |
| 36 | 'SFMUL32'/3, | |
| 37 | 'SFDIV32'/3, | |
| 38 | 'SFSQRT32'/2, | |
| 39 | 'SFMULADD32'/4, | |
| 40 | ||
| 41 | 'SFADD64'/3, | |
| 42 | 'SFSUB64'/3, | |
| 43 | 'SFMUL64'/3, | |
| 44 | 'SFDIV64'/3, | |
| 45 | 'SFSQRT64'/2, | |
| 46 | 'SFMULADD64'/4, | |
| 47 | ||
| 48 | 'SFADD80'/3, | |
| 49 | 'SFSUB80'/3, | |
| 50 | 'SFMUL80'/3, | |
| 51 | 'SFDIV80'/3, | |
| 52 | 'SFSQRT80'/2, | |
| 53 | ||
| 54 | 'SFADD128'/3, | |
| 55 | 'SFSUB128'/3, | |
| 56 | 'SFMUL128'/3, | |
| 57 | 'SFDIV128'/3, | |
| 58 | 'SFSQRT128'/2, | |
| 59 | 'SFMULADD128'/4 | |
| 60 | ]). | |
| 61 | ||
| 62 | ||
| 63 | % ------------------------------- | |
| 64 | :- use_module(probsrc(kernel_reals),[construct_real/2, | |
| 65 | is_largest_positive_float/1, is_smallest_positive_float/1, | |
| 66 | is_next_larger_float/2, is_next_smaller_float/2]). | |
| 67 | ||
| 68 | %external_fun_type('STRING_TO_REAL',[],[string,real]). | |
| 69 | % allows to call construct_real/2; also works for numbers without decimal point | |
| 70 | ||
| 71 | :- block 'STRING_TO_REAL'(-,?,?). | |
| 72 | 'STRING_TO_REAL'(string(A),Result,_) :- | |
| 73 | block_construct_real(A,Result). | |
| 74 | ||
| 75 | :- block 'block_construct_real'(-,?). | |
| 76 | block_construct_real(A,Result) :- | |
| 77 | construct_real(A,Result). | |
| 78 | ||
| 79 | % ------------------------------- | |
| 80 | ||
| 81 | :- use_module(probsrc(kernel_reals),[real_addition_wf/4, real_subtraction_wf/4, | |
| 82 | real_multiplication_wf/4, real_division_wf/5, real_power_of_wf/5, | |
| 83 | real_unary_minus_wf/3, real_absolute_value_wf/3, real_square_root_wf/4, | |
| 84 | convert_int_to_real/2, | |
| 85 | real_round_wf/3, | |
| 86 | real_unop_wf/4, real_unop_wf/5, real_binop_wf/6, | |
| 87 | real_comp_wf/5, | |
| 88 | real_maximum_of_set/4, real_minimum_of_set/4]). | |
| 89 | ||
| 90 | 'RADD'(RX,RY,RR,WF) :- | |
| 91 | real_addition_wf(RX,RY,RR,WF). | |
| 92 | ||
| 93 | 'RSUB'(RX,RY,RR,WF) :- | |
| 94 | real_subtraction_wf(RX,RY,RR,WF). | |
| 95 | ||
| 96 | 'RMUL'(RX,RY,RR,WF) :- | |
| 97 | real_multiplication_wf(RX,RY,RR,WF). | |
| 98 | ||
| 99 | 'RDIV'(RX,RY,RR,Span,WF) :- | |
| 100 | real_division_wf(RX,RY,RR,Span,WF). | |
| 101 | ||
| 102 | 'RINV'(RY,RR,Span,WF) :- | |
| 103 | 'RONE'(RX), | |
| 104 | real_division_wf(RX,RY,RR,Span,WF). | |
| 105 | ||
| 106 | % ---- constants | |
| 107 | ||
| 108 | 'RPI'(term(floating(R))) :- R is pi. | |
| 109 | ||
| 110 | 'RZERO'(term(floating(R))) :- R = 0.0. | |
| 111 | ||
| 112 | 'RONE'(term(floating(R))) :- R = 1.0. | |
| 113 | ||
| 114 | 'REULER'(term(floating(R))) :- R is exp(1.0). | |
| 115 | ||
| 116 | 'REPSILON'(R) :- is_smallest_positive_float(R). % 5.0E-324 | |
| 117 | ||
| 118 | 'RMAXFLOAT'(R) :- is_largest_positive_float(R). % 1.7976931348623157E+308 | |
| 119 | ||
| 120 | % ---- unary operators | |
| 121 | ||
| 122 | % --- Trigonometric | |
| 123 | ||
| 124 | :- block 'RSIN'(-,?,?). | |
| 125 | 'RSIN'(X,R,WF) :- | |
| 126 | real_unop_wf('sin',X,R,WF). | |
| 127 | ||
| 128 | :- block 'RCOS'(-,?,?). | |
| 129 | 'RCOS'(X,R,WF) :- | |
| 130 | real_unop_wf('cos',X,R,WF). | |
| 131 | ||
| 132 | :- block 'RTAN'(-,?,?). | |
| 133 | 'RTAN'(X,R,WF) :- | |
| 134 | real_unop_wf('tan',X,R,WF). | |
| 135 | ||
| 136 | :- block 'RCOT'(-,?,?). | |
| 137 | 'RCOT'(X,R,WF) :- | |
| 138 | real_unop_wf('cot',X,R,WF). | |
| 139 | ||
| 140 | :- block 'RSINH'(-,?,?). | |
| 141 | 'RSINH'(X,R,WF) :- | |
| 142 | real_unop_wf('sinh',X,R,WF). | |
| 143 | ||
| 144 | :- block 'RCOSH'(-,?,?). | |
| 145 | 'RCOSH'(X,R,WF) :- | |
| 146 | real_unop_wf('cosh',X,R,WF). | |
| 147 | ||
| 148 | :- block 'RTANH'(-,?,?). | |
| 149 | 'RTANH'(X,R,WF) :- | |
| 150 | real_unop_wf('tanh',X,R,WF). | |
| 151 | ||
| 152 | :- block 'RCOTH'(-,?,?). | |
| 153 | 'RCOTH'(X,R,WF) :- | |
| 154 | real_unop_wf('coth',X,R,WF). | |
| 155 | ||
| 156 | :- block 'RASIN'(-,?,?). | |
| 157 | 'RASIN'(X,R,WF) :- | |
| 158 | real_unop_wf('asin',X,R,WF). | |
| 159 | ||
| 160 | :- block 'RACOS'(-,?,?). | |
| 161 | 'RACOS'(X,R,WF) :- | |
| 162 | real_unop_wf('acos',X,R,WF). | |
| 163 | ||
| 164 | :- block 'RATAN'(-,?,?). | |
| 165 | 'RATAN'(X,R,WF) :- | |
| 166 | real_unop_wf('atan',X,R,WF). | |
| 167 | ||
| 168 | :- block 'RACOT'(-,?,?). | |
| 169 | 'RACOT'(X,R,WF) :- | |
| 170 | real_unop_wf('acot',X,R,WF). | |
| 171 | ||
| 172 | :- block 'RASINH'(-,?,?). | |
| 173 | 'RASINH'(X,R,WF) :- | |
| 174 | real_unop_wf('asinh',X,R,WF). | |
| 175 | ||
| 176 | :- block 'RACOSH'(-,?,?). | |
| 177 | 'RACOSH'(X,R,WF) :- | |
| 178 | real_unop_wf('acosh',X,R,WF). | |
| 179 | ||
| 180 | :- block 'RATANH'(-,?,?). | |
| 181 | 'RATANH'(X,R,WF) :- | |
| 182 | real_unop_wf('atanh',X,R,WF). | |
| 183 | ||
| 184 | :- block 'RACOTH'(-,?,?). | |
| 185 | 'RACOTH'(X,R,WF) :- | |
| 186 | real_unop_wf('acoth',X,R,WF). | |
| 187 | ||
| 188 | :- block 'RATAN2'(-,?,?,?,?), 'RATAN2'(?,-,?,?,?). | |
| 189 | 'RATAN2'(RX,RY,RR,Span,WF) :- | |
| 190 | real_binop_wf(atan2,RX,RY,RR,Span,WF). | |
| 191 | % is useful for computing angle in radians from deltax, deltay, avoiding division by 0 | |
| 192 | % e.g. converting Cartesian coordinates x,y to Polar can be done with: | |
| 193 | % angle phi = RATAN2(y,x) | |
| 194 | % r = RHYPOT(x,y) | |
| 195 | % Note: conversion from Polar to Cartesian is x = r*RCOS(phi) and y=r*RSIN(phi) | |
| 196 | ||
| 197 | :- block 'RHYPOT'(-,?,?,?,?), 'RHYPOT'(?,-,?,?,?). | |
| 198 | 'RHYPOT'(X,Y,Res,Span,WF) :- | |
| 199 | 'RMUL'(X,X,X2,WF), | |
| 200 | 'RMUL'(Y,Y,Y2,WF), | |
| 201 | 'RADD'(X2,Y2,X2Y2,WF), | |
| 202 | 'RSQRT'(X2Y2,Res,Span,WF). | |
| 203 | ||
| 204 | :- block 'RADIANS'(-,?,?,?). | |
| 205 | 'RADIANS'(Degree,Res,Span,WF) :- | |
| 206 | D180 = term(floating(180.0)), | |
| 207 | 'RDIV'(Degree,D180,Deg2,Span,WF), | |
| 208 | 'RPI'(PI), | |
| 209 | 'RMUL'(PI,Deg2,Res,WF). | |
| 210 | ||
| 211 | :- block 'DEGREE'(-,?,?,?). | |
| 212 | 'DEGREE'(Radians,Res,Span,WF) :- | |
| 213 | D180 = term(floating(180.0)), | |
| 214 | 'RPI'(PI), | |
| 215 | 'RDIV'(Radians,PI,Deg2,Span,WF), | |
| 216 | 'RMUL'(D180,Deg2,Res,WF). | |
| 217 | ||
| 218 | ||
| 219 | % ----------------------- | |
| 220 | ||
| 221 | ||
| 222 | 'RUMINUS'(RX,RR,WF) :- % unary minus | |
| 223 | real_unary_minus_wf(RX,RR,WF). | |
| 224 | ||
| 225 | :- block 'REXP'(-,?,?). | |
| 226 | 'REXP'(X,R,WF) :- | |
| 227 | real_unop_wf('exp',X,R,WF). | |
| 228 | ||
| 229 | :- block 'RLOGe'(-,?,?,?). | |
| 230 | 'RLOGe'(X,R,Span,WF) :- | |
| 231 | real_unop_wf('log',X,R,Span,WF). | |
| 232 | ||
| 233 | 'RSQRT'(X,R,Span,WF) :- | |
| 234 | real_square_root_wf(X,R,Span,WF). | |
| 235 | ||
| 236 | 'RABS'(X,R,WF) :- | |
| 237 | real_absolute_value_wf(X,R,WF). | |
| 238 | ||
| 239 | :- block 'ROUND'(-,?,?). | |
| 240 | 'ROUND'(X,R,WF) :- | |
| 241 | real_round_wf(X,R,WF). | |
| 242 | ||
| 243 | :- block 'RSIGN'(-,?,?). | |
| 244 | 'RSIGN'(X,R,WF) :- | |
| 245 | real_unop_wf('sign',X,R,WF). | |
| 246 | ||
| 247 | :- block 'RINTEGER'(-,?,?). | |
| 248 | 'RINTEGER'(X,R,WF) :- | |
| 249 | real_unop_wf('float_integer_part',X,R,WF). | |
| 250 | ||
| 251 | :- block 'RFRACTION'(-,?,?). | |
| 252 | 'RFRACTION'(X,R,WF) :- | |
| 253 | real_unop_wf('float_fractional_part',X,R,WF). | |
| 254 | ||
| 255 | % ---- other binary operators | |
| 256 | 'RMAX'(RX,RY,RR,Span,WF) :- | |
| 257 | real_binop_wf(max,RX,RY,RR,Span,WF). | |
| 258 | ||
| 259 | 'RMIN'(RX,RY,RR,Span,WF) :- | |
| 260 | real_binop_wf(min,RX,RY,RR,Span,WF). | |
| 261 | ||
| 262 | 'RPOW'(RX,RY,RR,Span,WF) :- | |
| 263 | real_power_of_wf(RX,RY,RR,Span,WF). | |
| 264 | ||
| 265 | % convert integers x,y to reak x*10^y | |
| 266 | 'RDECIMAL'(IntX,IntY,RR,Span,WF) :- | |
| 267 | convert_int_to_real(int(10),R10), | |
| 268 | convert_int_to_real(IntY,RY), | |
| 269 | real_power_of_wf(R10,RY,RR10,Span,WF), | |
| 270 | convert_int_to_real(IntX,RX), | |
| 271 | 'RMUL'(RX,RR10,RR,WF). | |
| 272 | ||
| 273 | 'RLOG'(RX,RY,RR,Span,WF) :- | |
| 274 | real_binop_wf(log,RX,RY,RR,Span,WF). | |
| 275 | ||
| 276 | % ---- other binary predicates | |
| 277 | ||
| 278 | 'RLT'(RX,RY,RR,WF) :- | |
| 279 | real_comp_wf('<',RX,RY,RR,WF). | |
| 280 | ||
| 281 | 'REQ'(RX,RY,RR,WF) :- | |
| 282 | real_comp_wf('=:=',RX,RY,RR,WF). | |
| 283 | ||
| 284 | 'RNEQ'(RX,RY,RR,WF) :- | |
| 285 | real_comp_wf('=\\=',RX,RY,RR,WF). % =\= | |
| 286 | ||
| 287 | 'RLEQ'(RX,RY,RR,WF) :- | |
| 288 | real_comp_wf('=<',RX,RY,RR,WF). | |
| 289 | ||
| 290 | 'RGT'(RY,RX,RR,WF) :-'RLT'(RX,RY,RR,WF). | |
| 291 | ||
| 292 | 'RGEQ'(RY,RX,RR,WF) :-'RLEQ'(RX,RY,RR,WF). | |
| 293 | ||
| 294 | % set operators | |
| 295 | ||
| 296 | 'RMAXIMUM'(Set,Res,Span,WF) :- | |
| 297 | real_maximum_of_set(Set,Res,Span,WF). | |
| 298 | 'RMINIMUM'(Set,Res,Span,WF) :- | |
| 299 | real_minimum_of_set(Set,Res,Span,WF). | |
| 300 | ||
| 301 | % ---- Float operators | |
| 302 | ||
| 303 | 'RNEXT'(Nr,NextNr) :- | |
| 304 | is_next_larger_float(Nr,NextNr). | |
| 305 | 'RPREV'(Nr,NextNr) :- | |
| 306 | is_next_smaller_float(Nr,NextNr). | |
| 307 | ||
| 308 | % softfloat functions. | |
| 309 | ||
| 310 | :- use_module(extension('softfloat/softfloat')). | |
| 311 | ||
| 312 | 'SFADD16'(term(floating(X)),term(floating(Y)),term(floating(R))) :- | |
| 313 | init_softfloat, | |
| 314 | add16(X,Y,R). | |
| 315 | ||
| 316 | 'SFSUB16'(term(floating(X)),term(floating(Y)),term(floating(R))) :- | |
| 317 | init_softfloat, | |
| 318 | sub16(X,Y,R). | |
| 319 | ||
| 320 | 'SFMUL16'(term(floating(X)),term(floating(Y)),term(floating(R))) :- | |
| 321 | init_softfloat, | |
| 322 | mul16(X,Y,R). | |
| 323 | ||
| 324 | 'SFDIV16'(term(floating(X)),term(floating(Y)),term(floating(R))) :- | |
| 325 | init_softfloat, | |
| 326 | div16(X,Y,R). | |
| 327 | ||
| 328 | 'SFSQRT16'(term(floating(X)),term(floating(R))) :- | |
| 329 | init_softfloat, | |
| 330 | sqrt16(X,R). | |
| 331 | ||
| 332 | 'SFMULADD16'(term(floating(X)),term(floating(Y)),term(floating(Z)),term(floating(R))) :- | |
| 333 | init_softfloat, | |
| 334 | muladd16(X,Y,Z,R). | |
| 335 | %32bit | |
| 336 | ||
| 337 | 'SFADD32'(term(floating(X)),term(floating(Y)),term(floating(R))) :- | |
| 338 | init_softfloat, | |
| 339 | add32(X,Y,R). | |
| 340 | ||
| 341 | 'SFSUB32'(term(floating(X)),term(floating(Y)),term(floating(R))) :- | |
| 342 | init_softfloat, | |
| 343 | sub32(X,Y,R). | |
| 344 | ||
| 345 | 'SFMUL32'(term(floating(X)),term(floating(Y)),term(floating(R))) :- | |
| 346 | init_softfloat, | |
| 347 | mul32(X,Y,R). | |
| 348 | ||
| 349 | 'SFDIV32'(term(floating(X)),term(floating(Y)),term(floating(R))) :- | |
| 350 | init_softfloat, | |
| 351 | div32(X,Y,R). | |
| 352 | ||
| 353 | 'SFSQRT32'(term(floating(X)),term(floating(R))) :- | |
| 354 | init_softfloat, | |
| 355 | sqrt32(X,R). | |
| 356 | ||
| 357 | 'SFMULADD32'(term(floating(X)),term(floating(Y)),term(floating(Z)),term(floating(R))) :- | |
| 358 | init_softfloat, | |
| 359 | muladd32(X,Y,Z,R). | |
| 360 | ||
| 361 | %32bit | |
| 362 | %64bit | |
| 363 | ||
| 364 | 'SFADD64'(term(floating(X)),term(floating(Y)),term(floating(R))) :- | |
| 365 | init_softfloat, | |
| 366 | add64(X,Y,R). | |
| 367 | ||
| 368 | 'SFSUB64'(term(floating(X)),term(floating(Y)),term(floating(R))) :- | |
| 369 | init_softfloat, | |
| 370 | sub64(X,Y,R). | |
| 371 | ||
| 372 | 'SFMUL64'(term(floating(X)),term(floating(Y)),term(floating(R))) :- | |
| 373 | init_softfloat, | |
| 374 | mul64(X,Y,R). | |
| 375 | ||
| 376 | 'SFDIV64'(term(floating(X)),term(floating(Y)),term(floating(R))) :- | |
| 377 | init_softfloat, | |
| 378 | div64(X,Y,R). | |
| 379 | ||
| 380 | 'SFSQRT64'(term(floating(X)),term(floating(R))) :- | |
| 381 | init_softfloat, | |
| 382 | sqrt64(X,R). | |
| 383 | ||
| 384 | 'SFMULADD64'(term(floating(X)),term(floating(Y)),term(floating(Z)),term(floating(R))) :- | |
| 385 | init_softfloat, | |
| 386 | muladd64(X,Y,Z,R). | |
| 387 | %64bit | |
| 388 | %80bit | |
| 389 | 'SFADD80'((int(X1),int(X2)),(int(Y1),int(Y2)),(int(R1),int(R2))) :- | |
| 390 | init_softfloat, | |
| 391 | add80(X1,X2,Y1,Y2,R1,R2). | |
| 392 | ||
| 393 | 'SFSUB80'((int(X1),int(X2)),(int(Y1),int(Y2)),(int(R1),int(R2))) :- | |
| 394 | init_softfloat, | |
| 395 | sub80(X1,X2,Y1,Y2,R1,R2). | |
| 396 | ||
| 397 | 'SFMUL80'((int(X1),int(X2)),(int(Y1),int(Y2)),(int(R1),int(R2))) :- | |
| 398 | init_softfloat, | |
| 399 | mul80(X1,X2,Y1,Y2,R1,R2). | |
| 400 | ||
| 401 | 'SFDIV80'((int(X1),int(X2)),(int(Y1),int(Y2)),(int(R1),int(R2))) :- | |
| 402 | init_softfloat, | |
| 403 | div80(X1,X2,Y1,Y2,R1,R2). | |
| 404 | ||
| 405 | 'SFSQRT80'( (int(X1),int(X2)),(int(R1),int(R2)) ) :- | |
| 406 | init_softfloat, | |
| 407 | sqrt80(X1,X2,R1,R2). | |
| 408 | %80bit | |
| 409 | %128bit | |
| 410 | 'SFADD128'((int(X1),int(X2)),(int(Y1),int(Y2)),(int(R1),int(R2))) :- | |
| 411 | init_softfloat, | |
| 412 | add128(X1,X2,Y1,Y2,R1,R2). | |
| 413 | ||
| 414 | 'SFSUB128'((int(X1),int(X2)),(int(Y1),int(Y2)),(int(R1),int(R2))) :- | |
| 415 | init_softfloat, | |
| 416 | sub128(X1,X2,Y1,Y2,R1,R2). | |
| 417 | ||
| 418 | 'SFMUL128'((int(X1),int(X2)),(int(Y1),int(Y2)),(int(R1),int(R2))) :- | |
| 419 | init_softfloat, | |
| 420 | mul128(X1,X2,Y1,Y2,R1,R2). | |
| 421 | ||
| 422 | 'SFDIV128'((int(X1),int(X2)),(int(Y1),int(Y2)),(int(R1),int(R2))) :- | |
| 423 | init_softfloat, | |
| 424 | div128(X1,X2,Y1,Y2,R1,R2). | |
| 425 | ||
| 426 | 'SFSQRT128'((int(X1),int(X2)),(int(R1),int(R2))) :- | |
| 427 | init_softfloat, | |
| 428 | sqrt128(X1,X2,R1,R2). | |
| 429 | ||
| 430 | 'SFMULADD128'((int(X1),int(X2)),(int(Y1),int(Y2)),(int(Z1),int(Z2)),(int(R1),int(R2))) :- | |
| 431 | init_softfloat, | |
| 432 | muladd128(X1,X2,Y1,Y2,Z1,Z2,R1,R2). | |
| 433 | %128bit |