1 % (c) 2009-2024 Lehrstuhl fuer Softwaretechnik und Programmiersprachen,
2 % Heinrich Heine Universitaet Duesseldorf
3 % This software is licenced under EPL 1.0 (http://www.eclipse.org/org/documents/epl-v10.html)
4
5
6 :- module(custom_explicit_sets,[is_set_value/2,
7 is_custom_explicit_set/1, is_custom_explicit_set/2, is_custom_explicit_set_nonvar/1,
8 %equal_explicit_sets/2,
9 equal_explicit_sets_wf/3,
10 not_equal_explicit_sets_wf/3,
11 equality_explicit_sets_wf/4, same_texpr_body/2, same_closure/2,
12 is_empty_explicit_set/1, is_empty_explicit_set_wf/2, is_empty_closure_wf/4,
13 is_non_empty_explicit_set/1, is_non_empty_explicit_set_wf/2,
14 is_non_empty_closure_wf/4,
15 test_empty_explicit_set_wf/3, test_empty_closure_wf/5,
16 is_definitely_maximal_set/1,
17 explicit_set_cardinality/2, explicit_set_cardinality_wf/3,
18 explicit_set_cardinality_for_wf/2,
19 card_for_specific_custom_set/3, % only succeeds if we can compute it efficiently
20 card_for_specific_closure/4,
21 efficient_card_for_set/3, % same, but also for lists
22 quick_custom_explicit_set_approximate_size/2,
23 avl_approximate_size/2, avl_approximate_size/3,
24 is_infinite_explicit_set/1, is_infinite_closure/3,
25 is_infinite_global_set/2, is_simple_infinite_set/1,
26 dont_expand_this_explicit_set/1, dont_expand_this_explicit_set/2,
27 dont_expand_symbolic_explicit_set/1,
28 definitely_expand_this_explicit_set/1,
29 is_infinite_or_very_large_explicit_set/1,
30 is_infinite_or_very_large_explicit_set/2,
31 is_cartesian_product_closure/3,
32 expand_custom_set/2, expand_custom_set_wf/4,
33 try_expand_custom_set/2, try_expand_custom_set_with_catch/3,
34 try_expand_custom_set_wf/4,
35 expand_custom_set_to_list/2, expand_custom_set_to_list/4,
36 expand_custom_set_to_list_wf/5,
37 expand_custom_set_to_list_no_dups_wf/5,
38 expand_custom_set_to_list_gg/4,
39 try_expand_custom_set_to_list/4,
40 expand_interval_closure_to_avl/3,
41 expand_custom_set_to_list_now/2,
42 expand_closure_to_avl_or_list/6,
43 expand_only_custom_closure_global/4, %try_expand_only_custom_closure_global/2,
44 expand_and_convert_to_avl_set/4,
45 ord_list_to_avlset_direct/3, sorted_ground_normalised_list_to_avlset/3,
46 try_expand_and_convert_to_avl/2, convert_to_avl/2,
47 should_be_converted_to_avl_from_lists/1, should_be_converted_to_avl/1,
48 try_expand_and_convert_to_avl_with_check/3,
49 try_expand_and_convert_to_avl_with_check/4,
50 try_expand_and_convert_to_avl_unless_large_wf/3,
51 %try_expand_and_convert_to_avl_unless_large_wf/3,
52 try_expand_and_convert_to_avl_if_smaller_than/3,
53 is_small_specific_custom_set/2,
54 quick_propagation_element_information/4,
55 element_of_custom_set/2, element_of_custom_set_wf/3,
56 element_of_closure/5,
57 check_element_of_function_closure/6,
58 not_element_of_custom_set_wf/3,
59 membership_custom_set/3, membership_custom_set_wf/4, membership_avl_set_wf/4,
60 quick_test_avl_membership/3,
61
62 is_efficient_custom_set/1,
63 remove_minimum_element_custom_set/3,
64
65 is_maximal_global_set/1, quick_is_definitely_maximal_set/1,
66 quick_definitely_maximal_set_avl/1,
67 is_one_element_custom_set/2, singleton_set/2, construct_singleton_avl_set/2,
68 is_one_element_avl/2,
69 construct_one_element_custom_set/2,
70 avl_is_interval/3,
71
72 %closure0_for_explicit_set/2,
73 closure1_for_explicit_set/2, closure1_for_explicit_set_from/3,
74 check_in_domain_of_avlset/2, check_unique_in_domain_of_avlset/2,
75 domain_of_explicit_set_wf/3, range_of_explicit_set_wf/3,
76 is_avl_partial_function/1, is_not_avl_partial_function/2,
77 is_avl_total_function_over_domain/2,
78 quick_definitely_maximal_total_function_avl/1,
79 is_avl_relation/1,
80 is_avl_relation_over_domain/3,
81 is_avl_relation_over_range/3,
82 is_not_avl_relation_over_domain_range/4, is_not_avl_relation_over_range/3,
83 is_avl_sequence/1,
84 get_avl_sequence/2,
85 is_injective_avl_relation/2,
86 invert_explicit_set/2, union_of_explicit_set/3,
87 union_generalized_explicit_set/3,
88 difference_of_explicit_set_wf/4,
89 intersection_of_explicit_set_wf/4, intersection_with_interval_closure/3,
90 disjoint_intervals_with_inf/4,
91 image_for_id_closure/3, image_for_explicit_set/4,
92 rel_composition_for_explicit_set/3,
93 element_can_be_added_or_removed_to_avl/1,
94 add_element_to_explicit_set_wf/4, remove_element_from_explicit_set/3,
95 delete_element_from_explicit_set/3,
96 at_most_one_match_possible/3,
97 apply_to_avl_set/5, try_apply_to_avl_set/3,
98 min_of_explicit_set_wf/3, max_of_explicit_set_wf/3,
99 sum_or_mul_of_explicit_set/3,
100 %sum_of_range_custom_explicit_set/2, mul_of_range_custom_explicit_set/2,
101 domain_restriction_explicit_set_wf/4,
102 range_restriction_explicit_set_wf/4,
103 domain_subtraction_explicit_set_wf/4,
104 range_subtraction_explicit_set_wf/4,
105 override_pair_explicit_set/4,
106 direct_product_explicit_set/3,
107 override_custom_explicit_set_wf/4,
108 symbolic_functionality_check_closure/2, symbolic_injectivity_check_closure/2,
109
110 subset_of_explicit_set/4, not_subset_of_explicit_set/4,
111 test_subset_of_explicit_set/5,
112
113 conc_custom_explicit_set/2,
114 prefix_of_custom_explicit_set/4, suffix_of_custom_explicit_set/4,
115 concat_custom_explicit_set/4, prepend_custom_explicit_set/3,
116 append_custom_explicit_set/4,
117 tail_sequence_custom_explicit_set/5,
118 last_sequence_explicit_set/2, %first_sequence_explicit_set/2,
119 front_sequence_custom_explicit_set/3,
120 reverse_custom_explicit_set/2,
121 size_of_custom_explicit_set/3,
122
123 get_first_avl_elements/4,
124 construct_avl_from_lists/2, construct_avl_from_lists_wf/3,
125 equal_avl_tree/2,
126 check_avl_in_interval/3, check_interval_in_custom_set/4,
127 check_avl_subset/2,
128 construct_closure/4, is_closure/4, % from closures
129 construct_member_closure/5, % from closures
130
131 construct_interval_closure/3,
132 is_interval_closure/3, % checks if we have a finite interval closure Low..Up (but bounds can be variables)
133 is_interval_closure/5,
134 is_interval_closure_or_integerset/3,
135 is_interval_with_integer_bounds/3, % checks that bounds are known
136
137 is_powerset_closure/3,
138
139 dom_range_for_specific_closure/5,
140 dom_for_specific_closure/4,
141 dom_for_lambda_closure/2,
142 portray_custom_explicit_set/1,
143 closure_occurs_check/4
144 ]).
145
146 :- meta_predicate call_card_for_relations(-,-,0).
147
148 :- use_module(error_manager).
149 :- use_module(self_check).
150 :- use_module(library(avl)).
151 :- use_module(kernel_waitflags).
152 :- use_module(kernel_tools).
153 :- use_module(delay).
154 :- use_module(tools).
155 :- use_module(avl_tools).
156 :- use_module(library(clpfd)).
157
158 :- use_module(module_information,[module_info/2]).
159 :- module_info(group,kernel).
160 :- module_info(description,'This module provides customised operations for the custom explicit set representations of ProB (closures, avl_sets and global_sets).').
161
162 :- use_module(tools_printing,[print_term_summary/1, print_error/1]).
163 :- use_module(preferences,[preference/2]).
164 :- use_module(kernel_objects,[equal_object/2, equal_object/3]).
165 :- use_module(kernel_freetypes,[enumerate_freetype_wf/4,freetype_cardinality/2,
166 is_infinite_freetype/1, is_empty_freetype/1,
167 is_non_empty_freetype/1, test_empty_freetype/2]).
168
169 :- use_module(clpfd_interface,[try_post_constraint/1, clpfd_reify_inlist/4]).
170 :- use_module(closures).
171 :- use_module(b_compiler).
172
173 :- load_files(library(system), [when(compile_time), imports([environ/2])]).
174
175 /* These meta_predicate declarations do not seem to have the right effect;
176 the predicates below return code, they do not get passed code
177 :- meta_predicate card_for_specific_custom_set(*,*,0).
178 :- meta_predicate card_for_specific_closure(*,*,0).
179 :- meta_predicate is_a_relation(*,*,*,*,*,*,0).
180 :- meta_predicate subset_of_explicit_set(*,*,0,*).
181 :- meta_predicate not_subset_of_explicit_set(*,*,0,*).
182 */
183
184 construct_avl_from_lists(S,Res) :-
185 (convert_to_avl(S,CS) -> true ; print(convert_to_avl_failed(S,CS)),nl,CS=S),
186 Res = CS.
187
188 % version with WF to see call stack in case of virtual time-outs due to expansions
189 construct_avl_from_lists_wf(S,Res,WF) :-
190 (convert_to_avl_wf(S,CS,WF) -> true ; print(convert_to_avl_wf_failed(S,CS)),nl,CS=S),
191 Res = CS.
192
193 :- use_module(tools,[safe_sort/3]).
194 :- block normalised_list_to_avl_when_ground(-,?).
195 normalised_list_to_avl_when_ground(S,R) :- % call if you are not sure that S will be ground; e.g. after closure expansion
196 ground_value_check(S,GS),
197 blocking_normalised_list_to_avl(GS,S,R).
198 :- block blocking_normalised_list_to_avl(-,?,?).
199 blocking_normalised_list_to_avl(_,S,R) :- normalised_list_to_avl(S,R).
200
201 normalised_list_to_avl(S,R) :- safe_sort(normalised_list_to_avl,S,SS),
202 ord_list_to_avlset_direct(SS,AVL,normalised_list_to_avl),
203 equal_object(AVL,R). % due to co-routine, R can now be instantiated
204
205 %set_to_avl(List,R) :- empty_avl(A), add_to_avl(List,A,AR), R=avl_set(AR).
206 add_to_avl([],R,R).
207 add_to_avl([H|T],AVL,AVLOUT) :- avl_store(H,AVL,true,AVL1),
208 add_to_avl(T,AVL1,AVLOUT).
209
210
211 % get only the first x elements of an AVL tree
212 get_first_avl_elements(empty,_,R,all) :- !,R=[].
213 get_first_avl_elements(AVL,X,FirstXEls,CutOff) :-
214 avl_min(AVL,Min), get_first_els(X,Min,AVL,FirstXEls,CutOff).
215
216 get_first_els(X,_,_AVL,R,CutOff) :- X<1,!,R=[], CutOff=not_all.
217 get_first_els(X,Cur,AVL,[Cur|T],CutOff) :-
218 (avl_next(Cur,AVL,Nxt) -> X1 is X-1,get_first_els(X1,Nxt,AVL,T,CutOff)
219 ; T=[],CutOff=all).
220
221 %expand_and_try_convert_to_avl(C,R) :- is_closure(C,_,_,_), expand_custom_set(C,EC), expand_and_convert_to_avl
222 %expand_and_convert_to_avl(C,R) :- convert_to_avl(C,R).
223
224 /* convert all list data-values (with all-sub-values) into avl-form */
225 /* assumption: the value is ground when convert_to_avl is called */
226
227 :- load_files(library(system), [when(compile_time), imports([environ/2])]).
228 :- if(environ(prob_safe_mode,true)).
229 convert_to_avl(X,R) :- \+ ground_value(X), !, add_error(convert_to_avl,'Non-ground argument: ',convert_to_avl(X,R)), R=X.
230 :- endif.
231 convert_to_avl(X,R) :- var(X), !, add_error(convert_to_avl,'Variable argument: ',convert_to_avl(X,R)), R=X.
232 ?convert_to_avl(Term,R) :- no_conversion_necessary(Term),!,
233 R=Term.
234 convert_to_avl(closure(P,T,B),R) :- !,
235 R=closure(P,T,B).
236 convert_to_avl(avl_set(A),R) :- !,(A==empty -> add_warning(convert_to_avl,'Emtpy avl_set'), R=[]
237 ; R=avl_set(A)).
238 convert_to_avl((A,B),(CA,CB)) :- !,convert_to_avl(A,CA), convert_to_avl(B,CB).
239 convert_to_avl(freetype(X),R) :- !, R=freetype(X).
240 convert_to_avl(freeval(ID,Case,Value),R) :- !, R=freeval(ID,Case,CValue),convert_to_avl(Value,CValue).
241 convert_to_avl(rec(Fields),R) :- !, convert_fields(Fields,CFields), R=rec(CFields).
242 convert_to_avl(global_set(GS),R) :- !, R=global_set(GS).
243 convert_to_avl([H|T],R) :- !, convert_cons_to_avl_inside_set_wf(H,T,R,no_wf_available).
244 %convert_to_avl(abort(X),_R) :- print(deprecetated_convert_to_avl(abort(X))),nl,!, fail.
245 convert_to_avl(X,R) :- add_internal_error('Unknown term: ',convert_to_avl(X,R)), R=X.
246
247 % pass WF for call stack in case of expansions TODO: complete
248 convert_to_avl_wf((A,B),(CA,CB),WF) :- !,convert_to_avl_wf(A,CA,WF), convert_to_avl_wf(B,CB,WF).
249 convert_to_avl_wf([H|T],R,WF) :- !, convert_cons_to_avl_inside_set_wf(H,T,R,WF).
250 convert_to_avl_wf(X,R,_) :- convert_to_avl(X,R).
251
252 convert_fields(Var,R) :- var(Var),!,
253 add_internal_error('Var arg: ',convert_fields(Var,R)),fail.
254 convert_fields([],[]).
255 convert_fields([field(FieldName,Value)|T],[field(FieldName,CValue)|CT]) :-
256 convert_to_avl_inside_set(Value,CValue),
257 convert_fields(T,CT).
258
259 l_convert_to_avl_wf(Var,_,WF) :- var(Var),!,
260 add_warning_wf(l_convert_to_avl_wf,'Cannot expand variable to avl: ',Var,unknown,WF),
261 fail.
262 l_convert_to_avl_wf([],[],_).
263 l_convert_to_avl_wf(avl_set(A),R,WF) :-
264 expand_custom_set_wf(avl_set(A),ES,l_convert_to_avl,WF),
265 l_convert_to_avl_wf(ES,R,WF).
266 l_convert_to_avl_wf(closure(P,T,B),R,WF) :-
267 expand_custom_set_wf(closure(P,T,B),ES,l_convert_to_avl,WF),
268 l_convert_to_avl_wf(ES,R,WF).
269 l_convert_to_avl_wf([H|T],[CH-true|CT],WF) :-
270 convert_to_avl_inside_set_wf(H,CH,WF), l_convert_to_avl_wf(T,CT,WF).
271
272 :- assert_must_succeed((X=(fd(1,'Name'),fd(2,'Name')),
273 custom_explicit_sets:convert_to_avl_inside_set(X,R), R==X)).
274
275 convert_to_avl_inside_set(Var,R) :- var(Var),!,
276 add_internal_error('Var arg: ',convert_to_avl_inside_set(Var,R)),fail.
277 :- if(environ(prob_safe_mode,true)).
278 convert_to_avl_inside_set(fd(A,T),R) :- var(A),!,
279 add_error(convert_to_avl,'Non-ground FD-Term: ',convert_to_avl_inside_set(fd(A,T),R)), R=fd(A,T).
280 convert_to_avl_inside_set(int(X),R) :- var(X),!,
281 add_error(convert_to_avl,'Non-ground integer: ',convert_to_avl_inside_set(int(X),R)), R=int(X).
282 convert_to_avl_inside_set(string(X),R) :- var(X),!,
283 add_error(convert_to_avl,'Non-ground string: ',convert_to_avl_inside_set(string(X),R)), R=string(X).
284 convert_to_avl_inside_set(term(X),R) :- (var(X) ; X=floating(F), var(F)), !,
285 add_error(convert_to_avl,'Non-ground term: ',convert_to_avl_inside_set(term(X),R)), R=term(X).
286 :- endif.
287 ?convert_to_avl_inside_set(Term,R) :- no_conversion_necessary(Term),!,R=Term.
288 convert_to_avl_inside_set(closure(P,T,B),R) :- !,
289 % inside a set, closures need to be expanded to check against other elements
290 expand_closure_to_avl_wf(P,T,B,R,no_wf_available).
291 %convert_to_avl_inside_set(closure_x(_P,_T,_B,E),R) :- !, convert_to_avl_inside_set(E,R).
292 convert_to_avl_inside_set(avl_set(A),R) :- !, normalise_avl_set(A,R). %AVL's inside other AVL's need to be normalised !
293 convert_to_avl_inside_set((A,B),(CA,CB)) :- !,convert_to_avl_inside_set(A,CA), convert_to_avl_inside_set(B,CB).
294 convert_to_avl_inside_set(freetype(X),R) :- !,
295 expand_custom_set(freetype(X),EC,check), convert_to_avl_inside_set(EC,R).
296 convert_to_avl_inside_set(freeval(ID,Case,Value),R) :- !,
297 R=freeval(ID,Case,CValue),convert_to_avl_inside_set(Value,CValue).
298 convert_to_avl_inside_set(rec(Fields),R) :- !, convert_fields(Fields,CFields), R=rec(CFields).
299 convert_to_avl_inside_set(global_set(GS),R) :- !,
300 % first check if GS infinite integer set: in this case do not expand; there can be no confusion with finite avl_sets
301 (is_infinite_global_set(GS,_) -> R = global_set(GS)
302 ; expand_only_custom_closure_global(global_set(GS),EC,check,no_wf_available), convert_to_avl_inside_set(EC,R)).
303 convert_to_avl_inside_set([H|T],R) :- !,convert_cons_to_avl_inside_set_wf(H,T,R,no_wf_available).
304 convert_to_avl_inside_set(X,R) :-
305 add_internal_error('Unknown or non-ground argument: ',convert_to_avl_inside_set(X,R)),
306 fail.
307
308 ?convert_to_avl_inside_set_wf(Term,R,_WF) :- no_conversion_necessary(Term),!,R=Term.
309 convert_to_avl_inside_set_wf(closure(P,T,B),R,WF) :- !,
310 expand_closure_to_avl_wf(P,T,B,R,WF). % inside a set, closures need to be expanded to check against other elements
311 convert_to_avl_inside_set_wf((A,B),(CA,CB),WF) :- !,
312 convert_to_avl_inside_set_wf(A,CA,WF), convert_to_avl_inside_set_wf(B,CB,WF).
313 convert_to_avl_inside_set_wf([H|T],R,WF) :- !,convert_cons_to_avl_inside_set_wf(H,T,R,WF).
314 convert_to_avl_inside_set_wf(V,CV,_WF) :- % use version without WF; TO DO: adapt fully
315 convert_to_avl_inside_set(V,CV).
316
317 % true when we have a simple value that does not need to be converted for use within an avl_set:
318 no_conversion_necessary([]).
319 no_conversion_necessary(pred_false). /* bool_false */
320 no_conversion_necessary(pred_true). /* bool_true */
321 no_conversion_necessary(fd(FD,_)) :- nonvar(FD).
322 no_conversion_necessary(int(I)) :- nonvar(I).
323 no_conversion_necessary(string(S)) :- nonvar(S).
324 ?no_conversion_necessary(term(T)) :- nonvar(T), no_conversion_nec_term(T).
325
326 no_conversion_nec_term(floating(T)) :- nonvar(T).
327 no_conversion_nec_term(T) :- atom(T).
328
329 normalise_avl_set(A,R) :- A=node(_,_,0,empty,empty), !,R=avl_set(A).
330 normalise_avl_set(A,R) :-
331 avl_to_list(A,L),
332 ord_list_to_avlset_direct(L,R,convert_to_avl_inside_set). %AVL's inside other AVL's need to be normalised !
333
334 convert_cons_to_avl_inside_set_wf(H,T,R,WF) :- T==[], !,
335 convert_to_avl_inside_set_wf(H,CH,WF),
336 R = avl_set(node(CH,true,0,empty,empty)).
337 convert_cons_to_avl_inside_set_wf(H,T,R,WF) :- l_convert_to_avl_wf([H|T],S,WF),
338 sort(S,SS),
339 ord_list_to_avlset_direct(SS,R,convert_to_avl_inside_set).
340
341 construct_singleton_avl_set(Val,avl_set(node(Val,true,0,empty,empty))).
342
343
344 is_set_value(X,Origin) :- var(X), !,print(is_set_value(Origin)),nl,fail.
345 is_set_value([],_) :- !.
346 is_set_value([_|_],_) :- !.
347 is_set_value(X,_) :- is_custom_explicit_set(X).
348
349 is_custom_explicit_set(X,Origin) :- var(X), !,print(var_is_custom_explicit_set(Origin)),nl,fail.
350 is_custom_explicit_set(X,_) :- is_custom_explicit_set(X).
351
352 is_custom_explicit_set(X) :- var(X), !,print(var_is_custom_explicit_set),nl,fail.
353 is_custom_explicit_set(global_set(_)).
354 is_custom_explicit_set(freetype(_)).
355 %is_custom_explicit_set(integer_global_set(_)).
356 is_custom_explicit_set(avl_set(_)).
357 is_custom_explicit_set(closure(_Parameters,_PT,_Cond)).
358
359 % use if you know the argument to be nonvar
360 is_custom_explicit_set_nonvar(global_set(_)).
361 is_custom_explicit_set_nonvar(freetype(_)).
362 is_custom_explicit_set_nonvar(avl_set(_)).
363 is_custom_explicit_set_nonvar(closure(_Parameters,_PT,_Cond)).
364
365 %:- assert_must_succeed(( custom_explicit_sets:portray_custom_explicit_set(avl_set(empty)) )). % now generates error
366 :- use_module(translate,[translate_bvalue/2]).
367 portray_custom_explicit_set(S) :- translate_bvalue(S,A), format(A,[]),nl.
368
369 /* a predicate to check equality of two custom explicit sets */
370
371 %equal_explicit_sets(A,B) :- equal_explicit_sets_wf(A,B,no_wf_available).
372
373 %equal_explicit_sets(X,Y) :- print_term_summary(equal_explicit_sets(X,Y)),fail.
374 :- block equal_explicit_sets_wf(-,?,?), equal_explicit_sets_wf(?,-,?).
375 ?equal_explicit_sets_wf(A,B,WF) :- equal_explicit_sets4(A,B,allow_expansion,WF).
376
377 equal_explicit_sets4(global_set(X),global_set(Y),_,_WF) :- !,X=Y.
378 equal_explicit_sets4(global_set(B),avl_set(A),E,WF) :- !,equal_explicit_sets4(avl_set(A),global_set(B),E,WF).
379 equal_explicit_sets4(freetype(X),freetype(Y),_,_WF) :- !,X=Y.
380 equal_explicit_sets4(avl_set(A),avl_set(B),_,_WF) :- !,
381 equal_avl_tree(A,B). % alternatively, we could normalise avl_trees and only store normalised versions
382 equal_explicit_sets4(avl_set(A),I2,_,_WF) :-
383 is_interval_closure_or_integerset(I2,L2,U2),!, % also covers I2=global_set(...)
384 avl_equal_to_interval(A,L2,U2).
385 equal_explicit_sets4(avl_set(A),global_set(B),_,WF) :- \+ b_global_sets:b_integer_set(B), !, % integersets dealt with above
386 explicit_set_cardinality_wf(global_set(B),Card,WF),
387 is_finite_card(Card), % Card \= inf as avl_set must be finite
388 explicit_set_cardinality_wf(avl_set(A),Card,WF). /* the sets must be identical as global_set contains all values */
389 equal_explicit_sets4(avl_set(A),CPB,_,WF) :-
390 is_cartesian_product_closure(CPB,B1,B2),!,
391 decompose_avl_set_into_cartesian_product_wf(A,A1,A2,WF),
392 kernel_objects:equal_object_wf(A1,B1,equal_explicit_sets4,WF),
393 kernel_objects:equal_object_wf(A2,B2,equal_explicit_sets4,WF).
394 ?equal_explicit_sets4(closure(P,T,B),avl_set(A),E,WF) :- !, equal_explicit_sets4(avl_set(A),closure(P,T,B),E,WF).
395 equal_explicit_sets4(I1,I2,_,_WF) :- is_interval_closure_or_integerset(I1,L1,U1),
396 is_interval_closure_or_integerset(I2,L2,U2), !,
397 L1=L2, U1=U2.
398 equal_explicit_sets4(CPA,CPB,_,WF) :-
399 ? is_cartesian_product_closure(CPA,A1,A2),
400 is_cartesian_product_closure(CPB,B1,B2),!,
401 equal_cartesian_product_wf(A1,A2,B1,B2,WF).
402 % what if both subset or relations or functions ... closure: TO DO: add support
403 equal_explicit_sets4(S1,S2,_,WF) :-
404 is_not_member_value_closure_or_integerset(S1,TYPE,MS1),
405 is_not_member_value_closure_or_integerset(S2,TYPE,MS2),
406 !,
407 kernel_objects:equal_object_wf(MS1,MS2,equal_explicit_sets4,WF).
408 equal_explicit_sets4(closure(P1,T1,B1),closure(P2,T2,B2),_,_WF) :-
409 same_closure_body(P1,T1,B1,P2,T2,B2),!.
410 %equal_explicit_sets4(X,Y) :- X==Y,!.
411 equal_explicit_sets4(Set1,Set2,allow_expansion,WF) :-
412 %kernel_objects:test_finite_set_wf(Set1,F1,WF), kernel_objects:test_finite_set_wf(Set2,F2,WF), equal_expansions(F1,F2,Set1,Set2)
413 card_for_specific_custom_set(Set1,Card1,Code1), % TO DO: do not throw info away if Set2 cannot be determined
414 card_for_specific_custom_set(Set2,Card2,Code2),
415 !,
416 ? call(Code1), call(Code2),
417 % TO DO: if one of the two sets is infinite, then it would be enough to know that the other is not infinite for failure without expansion
418 equal_expansions(Card1,Card2,Set1,Set2,WF).
419 equal_explicit_sets4(Set1,Set2,allow_expansion,WF) :- equal_expansions(0,0,Set1,Set2,WF).
420
421
422 :- use_module(btypechecker, [unify_types_strict/2]).
423 % detect e.g. when one closure has seq(Type) and the other one set(integer,Type)
424 same_types([],[]).
425 same_types([H1|T1],[H2|T2]) :- unify_types_strict(H1,H2), same_types(T1,T2).
426
427 :- block equal_expansions(-,?,?,?,?).
428 equal_expansions(F1,F2,Set1,Set2,WF) :- (number(F1);number(F2)),!,
429 % NOTE: sometimes we get inf for finite but very large sets
430 F1=F2, % unify; can propagate info back to closure; e.g. prj2(BOOL,NAT) = prj2(BOOL,0..n)
431 equal_expansions2(F1,F2,Set1,Set2,WF).
432 equal_expansions(F1,F2,Set1,Set2,WF) :-
433 equal_expansions2(F1,F2,Set1,Set2,WF).
434
435 :- block equal_expansions2(-,?,?,?,?), equal_expansions2(?,-,?,?,?).
436 %equal_expansions(0,0,avl_set(A),closure(P,T,B)) :- check_subset ?? in both directions ?
437 %equal_expansions2(inf,inf,Set1,Set2,WF) :- WF \= no_wf_available, !, % symbolic treatment
438 equal_expansions2(F,F,Set1,Set2,WF) :-
439 % only expand if both sets have same cardinality
440 % print_term_summary(equal_expansions3(F,Set1,Set2)),nl,
441 equal_expansions3(F,Set1,Set2,WF).
442
443 % TO DO: check if this brings something:
444 %equal_expansions3(avl_set(A),closure(P,T,B),_WF) :- !,
445 % expand_closure_to_avl_or_list(P,T,B,E2,check), % in case E2 is avl_set; we can use equal_avl_tree
446 % ((nonvar(E2),E2=avl_set(B2))
447 % -> print(eql_avl),nl, print_term_summary(equal_avl_tree(A,B2)),nl, equal_avl_tree(A,B2)
448 % ; print(eql_non_avl),nl,equal_object(avl_set(A),E2,equal_expansions3)
449 % ).
450 %:- use_module(library(lists),[perm2/4]).
451 %equal_expansions3(F,Set1,Set2,_WF) :- number(F), F>100, % test with: {{},{TRUE},{FALSE},{TRUE,FALSE}} = /*@symbolic */ {x|x<:BOOL} or
452 % {x|x<:POW(BOOL*BOOL) & (x={} or card(x)>0)} = /*@symbolic */ {x|x<:POW(BOOL*BOOL)} 26 sec -> 14 sec
453 % case does not seem to appear very often
454 % perm2(Set1,Set2,avl_set(_),Set),
455 % is_definitely_maximal_set(Set),
456 %Set2 is maximal and has the same cardinality as F, hence Set1 must be identical to Set2
457 % !,
458 % debug_println(9,equal_to_maximal_closure(F)).
459 equal_expansions3(F,Set1,Set2,WF) :-
460 ? get_identity_as_equivalence(F,Set1,Set2,EQUIV),
461 !,
462 b_test_boolean_expression(EQUIV,[],[],WF).
463 % Alternative could be, if difference were to be fully treated symbolically:
464 % difference_of_explicit_set_wf(Set1,Set2,R12,WF), difference_of_explicit_set_wf(Set2,Set1,R21,WF),
465 % kernel_objects:empty_set_wf(R12,WF), kernel_objects:empty_set_wf(R21,WF).
466 equal_expansions3(_,Set1,Set2,WF) :-
467 expand_custom_set_wf(Set1,E1,equal_expansions1,WF),
468 expand_custom_set_wf(Set2,E2,equal_expansions2,WF),
469 E1=E2. /* ensure that ordering and normalization is same for all representations ! */
470
471
472 get_identity_as_equivalence(F,Set1,Set2,EQUIV) :-
473 (F=inf %; is_infinite_explicit_set(Set1) ; is_infinite_explicit_set(Set2)
474 ; Set1 \= avl_set(_),Set2 \= avl_set(_), % if one of the two sets is an AVL Set: better compute the other set explicitly instead of using this symbolic treatment
475 ? (dont_expand_this_explicit_set(Set1,100000) ;
476 ? dont_expand_this_explicit_set(Set2,100000)
477 )
478 % avl_test check for test 1081; TO DO: instead of test try to expand set and if this leads to enum warning use symbolic check
479 ),
480 get_identity_as_equivalence_aux(Set1,Set2,EQUIV).
481 get_identity_as_equivalence_aux(Set1,Set2,EQUIV) :-
482 kernel_objects:infer_value_type(Set1,SType),
483 is_set_type(SType,Type),
484 % Construct: !x.(x:Set1 <=> x:Set2) ??
485 get_pos_infos_for_explicit_set(Set1,I1),
486 get_pos_infos_for_explicit_set(Set2,I2),
487 I12 = I1, % we could merge position_info; but two sets could be very far apart
488 TID = b(identifier('_equality_sets_'),Type,[]),
489 EQUIV = b(forall([TID],b(truth,pred,[used_ids([])]),
490 b(equivalence(
491 b(member(TID,b(value(Set1),SType,I1)),pred,I1),
492 b(member(TID,b(value(Set2),SType,I2)),pred,I2)
493 ) ,pred,I12)
494 ),pred,[used_ids([]),I12]).
495
496 :- use_module(bsyntaxtree, [get_texpr_pos/2]).
497 get_pos_infos_for_explicit_set(closure(_,_,Body),[Pos]) :- get_texpr_pos(Body,Pos),!.
498 get_pos_infos_for_explicit_set(_,[]).
499
500 :- use_module(kernel_equality,[eq_atomic/4, equality_objects/3,
501 equality_objects_wf_no_enum/4, equality_objects_with_type_wf/5]).
502 /* maybe rewrite equal_explicit_sets and not_... to use this to avoid maintaining multiple versions */
503 equality_explicit_sets_wf(global_set(X),global_set(Y),R,_WF) :- !, eq_atomic(X,Y,set,R).
504 equality_explicit_sets_wf(global_set(B),avl_set(A),R,WF) :- !,equality_explicit_sets_wf(avl_set(A),global_set(B),R,WF).
505 equality_explicit_sets_wf(freetype(X),freetype(Y),R,_) :- !, eq_atomic(X,Y,set,R).
506 equality_explicit_sets_wf(avl_set(A),avl_set(B),R,_) :- !,
507 (equal_avl_tree(A,B) -> R=pred_true ; R=pred_false). % alternatively, we could normalise avl_trees and only store normalised versions
508 equality_explicit_sets_wf(avl_set(A),I2,R,WF) :- is_interval_closure_or_integerset(I2,L2,U2),!, % also covers I2=global_set(...)
509 avl_equality_to_interval(A,L2,U2,R,WF).
510 equality_explicit_sets_wf(avl_set(A),global_set(B),R,WF) :- \+ b_global_sets:b_integer_set(B), !,
511 explicit_set_cardinality_wf(global_set(B),Card,WF),
512 (is_finite_card(Card), % Card \= inf, %as avl_set must be finite
513 explicit_set_cardinality_wf(avl_set(A),Card,WF)
514 -> R=pred_true /* the sets must be identical as global_set contains all values */
515 ; R=pred_false).
516 equality_explicit_sets_wf(avl_set(A),CPB,R,WF) :-
517 is_cartesian_product_closure(CPB,B1,B2),!,
518 if(decompose_avl_set_into_cartesian_product_wf(A,A1,A2,WF), % should not produce pending co-routines
519 equality_cartesian_product_wf(A1,A2,B1,B2,R,WF),
520 R=pred_false % no cartesian product can be equal to this avl_set
521 ).
522 equality_explicit_sets_wf(closure(P,T,B),avl_set(A),R,WF) :- !,
523 equality_explicit_sets_wf(avl_set(A),closure(P,T,B),R,WF).
524 equality_explicit_sets_wf(I1,I2,R,WF) :- is_interval_closure_or_integerset(I1,L1,U1),
525 is_interval_closure_or_integerset(I2,L2,U2), !,
526 equality_objects_wf_no_enum((int(L1),int(U1)),(int(L2),int(U2)),R,WF).
527 equality_explicit_sets_wf(CPA,CPB,R,WF) :-
528 is_cartesian_product_closure(CPA,A1,A2), is_cartesian_product_closure(CPB,B1,B2),!,
529 equality_cartesian_product_wf(A1,A2,B1,B2,R,WF).
530 equality_explicit_sets_wf(S1,S2,R,WF) :-
531 is_not_member_value_closure_or_integerset(S1,TYPE,MS1),
532 is_not_member_value_closure_or_integerset(S2,TYPE,MS2),!,
533 equality_objects_with_type_wf(TYPE,MS1,MS2,R,WF).
534 equality_explicit_sets_wf(closure(P,T,B),closure(P,T,B2),R,_) :-
535 same_texpr_body(B,B2),!,R=pred_true.
536 % TO DO: add complement sets
537
538 /* Cartesian Product Comparison */
539 :- use_module(kernel_equality,[empty_cartesian_product_wf/4]).
540 % A1*A2 = B1*B2 <=> (((A1={} or A2={}) & (B1={} or B2={})) or (A1=B1 & A2=B2))
541 equal_cartesian_product_wf(A1,A2,B1,B2,WF) :-
542 equality_cartesian_product_wf(A1,A2,B1,B2,pred_true,WF).
543 not_equal_cartesian_product_wf(A1,A2,B1,B2,WF) :-
544 equality_cartesian_product_wf(A1,A2,B1,B2,pred_false,WF).
545
546 equality_cartesian_product_wf(A1,A2,B1,B2,R,_WF) :-
547 nonvar(A1), A1=closure(P,T,BdyA1),
548 nonvar(B1), B1=closure(P,T,BdyB1),
549 nonvar(A2), A2=closure(P2,T2,BdyA2),
550 nonvar(B2), B2=closure(P2,T2,BdyB2),
551 % they have the same names; probably we are comparing identical values (e.g., in bvisual2)
552 same_texpr_body(BdyA1,BdyB1),
553 % note: we cannot simply call equality of A2 and B2 as cartesian products can be empty, see test 2072
554 same_texpr_body(BdyA2,BdyB2),
555 !,
556 R=pred_true.
557 equality_cartesian_product_wf(A1,A2,B1,B2,R,WF) :-
558 empty_cartesian_product_wf(A1,A2,EmptyA,WF),
559 equality_cart_product2(EmptyA,A1,A2,B1,B2,R,WF).
560 :- block equality_cart_product2(-, ?,?,?,?,?,?).
561 equality_cart_product2(pred_true,_,_,B1,B2,R,WF) :- empty_cartesian_product_wf(B1,B2,R,WF).
562 equality_cart_product2(pred_false,A1,A2,B1,B2,R,WF) :- equality_objects_wf_no_enum((A1,A2),(B1,B2),R,WF).
563
564 /* COMPARING AVL-SET with INTERVAL */
565
566 % check if an avl tree is equal to an interval range
567 avl_equal_to_interval(_A,L2,U2) :-
568 infinite_interval(L2,U2),!,fail. % otherwise infinite & avl_set is finite
569 % we can now assume L2, U2 are numbers (but could not yet be instantiated)
570 avl_equal_to_interval(A,L2,U2) :-
571 avl_min(A,int(L2)), avl_max(A,int(U2)),
572 Card is 1+U2-L2,
573 explicit_set_cardinality(avl_set(A),Card). % sets are equal: same size + same lower & upper bound
574
575 avl_not_equal_to_interval(A,L2,U2,WF) :- avl_equality_to_interval(A,L2,U2,pred_false,WF).
576
577 avl_equality_to_interval(_A,L2,U2,R,_WF) :-
578 infinite_interval(L2,U2),!,R=pred_false. % interval infinite & avl_set is finite
579 % we can now assume L2, U2 are numbers (but could not yet be instantiated)
580 avl_equality_to_interval(A,L2,U2,R,WF) :-
581 avl_min(A,int(AL)), avl_max(A,int(AU)),
582 Card is 1+AU-AL,
583 explicit_set_cardinality_wf(avl_set(A),ACard,WF),
584 equality_objects_wf_no_enum((int(ACard),(int(AL),int(AU))),
585 (int(Card),(int(L2),int(U2))),R,WF).
586 % sets are equal if same size + same lower & upper bound
587
588 /* COMPARING TWO CLOSURES */
589
590 % a variation of equal_explicit_sets which tries not expand and just compares two closures
591
592 same_closure(I1,I2) :-
593 is_interval_closure_or_integerset(I1,L1,U1),
594 is_interval_closure_or_integerset(I2,L2,U2), !,
595 L1=L2, U1=U2.
596 same_closure(CPA,CPB) :-
597 is_cartesian_product_closure(CPA,A1,A2),
598 is_cartesian_product_closure(CPB,B1,B2),!,
599 equal_cartesian_product_wf(A1,A2,B1,B2,no_wf_available). % could be expensive
600 same_closure(S1,S2) :-
601 is_not_member_value_closure_or_integerset(S1,TYPE,MS1),
602 is_not_member_value_closure_or_integerset(S2,TYPE,MS2),
603 !,
604 kernel_objects:equal_object(MS1,MS2,same_closure). % could be expensive
605 same_closure(closure(P1,T1,B1),closure(P2,T2,B2)) :- same_closure_body_with_parameter_renaming(P1,T1,B1,P2,T2,B2).
606
607 same_closure_body(P,T1, B1, P,T2,B2) :-
608 same_types(T1,T2),
609 same_texpr_body(B1,B2).
610
611 % a version of same_closure_body which allows renaming of the parameters
612 same_closure_body_with_parameter_renaming(P1,T1, B1, P2,T2,B2) :-
613 same_types(T1,T2),
614 create_renaming(P1,P2,Renaming),
615 % TO DO: pass Renaming in AVL tree and rename on the fly
616 rename_bt(B2,Renaming,RenamedB2),
617 same_texpr_body(B1,RenamedB2).
618
619 create_renaming([],[],[]).
620 create_renaming([ID|T1],[ID|T2],TR) :- !, create_renaming(T1,T2,TR).
621 create_renaming([ID1|T1],[ID2|T2],[rename(ID2,ID1)|TR]) :-
622 create_renaming(T1,T2,TR).
623
624
625 % check if two wrapped expressions are equal (modulo associated Info, e.g. source loc info)
626 % and checking inserted values for equality (sometimes storing a closure will convert small inner closures into AVL sets)
627 same_texpr_body(E1,E2) :- empty_avl(E),same_texpr_body(E1,E,E2).
628 same_texpr_body(b(E1,Type1,_),AVL,b(E2,Type2,_)) :-
629 unify_types_strict(Type1,Type2), % check in principle redundant
630 same_texpr2(E1,AVL,E2).
631
632 :- use_module(bsyntaxtree,[safe_syntaxelement_det/5, is_set_type/2,get_texpr_ids/2,
633 get_texpr_expr/2, get_negated_operator_expr/2]).
634 same_texpr2(value(V1),AVL,RHS) :- !,same_texpr_value2(RHS,AVL,V1).
635 same_texpr2(LHS,AVL,value(V2)) :- !,same_texpr_value2(LHS,AVL,V2).
636 same_texpr2(lazy_let_expr(ID,LHS,RHS),AVL,lazy_let_expr(ID2,LHS2,RHS2)) :- !,
637 same_texpr_body(LHS,AVL,LHS2),
638 avl_store(ID,AVL,ID2,NewAVL),
639 same_texpr_body(RHS,NewAVL,RHS2).
640 same_texpr2(lazy_let_pred(ID,LHS,RHS),AVL,lazy_let_pred(ID2,LHS2,RHS2)) :- !,
641 same_texpr_body(LHS,AVL,LHS2),
642 avl_store(ID,AVL,ID2,NewAVL),
643 same_texpr_body(RHS,NewAVL,RHS2).
644 same_texpr2(lazy_lookup(ID1), AVL,lazy_lookup(ID2)) :- !, avl_fetch(ID1,AVL,ID2).
645 same_texpr2(E1,AVL,E2) :- % Should we only enable this for same_closure_body_with_parameter_renaming?
646 quantifier_construct(E1,Functor,TParas1,Body1),
647 quantifier_construct(E2,Functor,TParas2,Body2),
648 !,
649 same_quantified_expression(TParas1,Body1,AVL,TParas2,Body2).
650 same_texpr2(E1,AVL,E2) :-
651 functor(E1,F,Arity),
652 functor(E2,F,Arity),!,
653 safe_syntaxelement_det(E1,Subs1,_Names1,_List1,Constant1),
654 safe_syntaxelement_det(E2,Subs2,_Names2,_List2,Constant2),
655 Constant2==Constant1,
656 same_sub_expressions(Subs1,AVL,Subs2).
657 same_texpr2(E1,AVL,E2) :- same_texpr_with_rewrite(E1,AVL,E2),!.
658 same_texpr2(E1,AVL,E2) :- same_texpr_with_rewrite(E2,AVL,E1).
659 %same_texpr2(E1,_,E2) :-
660 % functor(E1,F1,Arity1),
661 % functor(E2,F2,Arity2), print(not_eq(F1,Arity1,F2,Arity2)),nl, print(E1),nl, print(E2),nl,nl,fail.
662 % some differences: assertion_expression/3 and function/2, ...
663
664 % some rewrite rules from ast_cleanup; but we cannot replicate all rules here
665 same_texpr_with_rewrite(negation(TE1),AVL,E2) :-
666 get_negated_operator_expr(b(E2,pred,[]),NegE2),!,
667 get_texpr_expr(TE1,E1),
668 same_texpr2(E1,AVL,NegE2).
669 same_texpr_with_rewrite(member(X1,b(value(Set1),_,_)),AVL,equal(X2,b(El2,_,_))) :-
670 singleton_set(Set1,El1), !,
671 % X : {El} <===> X = El ; required for JSON trace replay of test 1491
672 same_texpr_body(X1,X2),
673 same_texpr_value2(El2,AVL,El1).
674 same_texpr_with_rewrite(not_member(X1,b(value(Set1),_,_)),AVL,not_equal(X2,b(El2,_,_))) :-
675 singleton_set(Set1,El1), !,
676 % X /: {El} <===> X /= El ; required for JSON trace replay of test 1491
677 same_texpr_body(X1,X2),
678 same_texpr_value2(El2,AVL,El1).
679
680 % constructs with local quantified parameters:
681 quantifier_construct(comprehension_set(TParas,Body),comprehension_set,TParas,Body).
682 quantifier_construct(exists(TParas,Body),exists,TParas,Body).
683 quantifier_construct(forall(TParas,LHS,RHS),forall,TParas,Body) :-
684 Body = b(implication(LHS,RHS),pred,[]).
685 % TODO?: SIGMA, PI, UNION, INTER
686
687 :- use_module(bsyntaxtree,[split_names_and_types/3]).
688 same_quantified_expression(TParas1,Body1,AVL,TParas2,Body2) :-
689 split_names_and_types(TParas1,P1,T1),
690 split_names_and_types(TParas2,P2,T2),
691 same_types(T1,T2),
692 create_renaming(P1,P2,Renaming),
693 rename_bt(Body2,Renaming,RenamedB2), % TODO: store renaming in AVL and lookup on the fly
694 same_texpr_body(Body1,AVL,RenamedB2).
695
696 same_texpr_value2(E2,_,V2) :- var(V2),!,V2==E2.
697 same_texpr_value2(interval(Min,Max),_,avl_set(A)) :- !, % occurs in JSON trace replay for test 268
698 avl_equal_to_interval(A,Min,Max). % TODO: also compare the other way around above; only apply if Card not too large?
699 same_texpr_value2(value(V2),_,V1) :- !,
700 same_value_inside_closure(V1,V2).
701 %(same_value_inside_closure(V1,V2) -> true ; print(not_eq_vals(V1,V2)),nl,fail).
702 same_texpr_value2(comprehension_set(Paras,B2),AVL,closure(P,_,B1)) :- !,
703 get_texpr_ids(Paras,P),!,
704 same_texpr_body(B1,AVL,B2).
705 same_texpr_value2(cartesian_product(TB1,TB2),AVL,V1) :-
706 decompose_value_into_cartesian_product(V1,A1,A2), !,
707 %print(cart(A1,A2)),nl,
708 get_texpr_expr(TB1,B1),
709 same_texpr_value2(B1,AVL,A1),
710 get_texpr_expr(TB2,B2),
711 same_texpr_value2(B2,AVL,A2).
712 same_texpr_value2(StaticExpr,_,int(Nr)) :- number(Nr),
713 b_ast_cleanup:pre_compute_static_int_expression(StaticExpr,Nr),!.
714 % TO DO: maybe also check if both sides can be evaluated
715 % TO DO: move pre_compute_static_int_expression to another module
716 same_texpr_value2(E2,AVL,V1) :- rewrite_value(V1,E2,NewE1),!,
717 same_texpr2(NewE1,AVL,E2).
718 %same_texpr_value2(E1,_,E2) :-
719 % functor(E1,F1,Arity1),
720 % functor(E2,F2,Arity2), print(not_eq_val(F1,Arity1,F2,Arity2)),nl, fail,print(E1),nl, print(E2),nl,nl,fail.
721
722 decompose_value_into_cartesian_product(avl_set(A),A1,A2) :- !,
723 decompose_avl_set_into_cartesian_product_wf(A,A1,A2,no_wf_available).
724 decompose_value_into_cartesian_product(Closure,A1,A2) :- is_cartesian_product_closure(Closure,A1,A2).
725
726
727 % rewrite values back to AST nodes
728 rewrite_value(value(V),OtherVal,New) :- nonvar(V),
729 rewrite_value_aux(V,OtherVal,New).
730 %rewrite_value(function(Lambda,Argument),assertion_expression(_,_,_),assertion_expression(Cond,Msg,Expr)) :- b_ast_cleanup:rewrite_function_application(Lambda,Argument,[],assertion_expression(Cond,Msg,Expr)).
731 rewrite_value_aux(closure(P,T,B),_,Set) :-
732 is_member_closure(P,T,B,_,Set). % TO DO: ensure that ast_cleanup does not generate useless member closures ?
733 rewrite_value_aux(global_set(GS),_,AST) :-
734 rewrite_glob_set(GS,AST).
735 rewrite_value_aux(avl_set(A),interval(_,_),interval(TLow,TUp)) :-
736 avl_equal_to_interval(A,Low,Up),
737 TLow = b(integer(Low),integer,[]), TUp = b(integer(Up),integer,[]).
738 rewrite_value_aux(int(A),integer(_),integer(A)) :- number(A).
739 rewrite_value_aux(pred_true,_,boolean_true).
740 rewrite_value_aux(pred_false,_,boolean_false).
741 rewrite_value_aux(string(A),integer(_),string(A)) :- % value(string(A)) rewritten to AST node string(A)
742 atom(A).
743
744
745 rewrite_glob_set('REAL',real_set).
746 rewrite_glob_set('FLOAT',float_set).
747 rewrite_glob_set('STRING',string_set).
748 rewrite_glob_set(I,integer_set(I)) :-
749 kernel_objects:integer_global_set(I).
750
751 allow_expansion(avl_set(_),closure(P,T,B)) :-
752 is_small_specific_custom_set(closure(P,T,B),100).
753 allow_expansion(closure(P,T,B),avl_set(_)) :-
754 is_small_specific_custom_set(closure(P,T,B),100).
755
756 same_sub_expressions([],_,[]).
757 same_sub_expressions([H1|T1],AVL,[H2|T2]) :-
758 same_texpr_body(H1,AVL,H2),
759 same_sub_expressions(T1,AVL,T2).
760
761 same_value_inside_closure(V1,V2) :- var(V1),!, V1==V2.
762 same_value_inside_closure(_,V2) :- var(V2),!,fail.
763 same_value_inside_closure(rec(Fields1),rec(Fields2)) :- !,
764 % sets of records come in this form: struct(b(value(rec(FIELDS)),record(_),_))
765 same_fields_inside_closure(Fields1,Fields2).
766 same_value_inside_closure(V1,V2) :-
767 % we could attempt this only if the outer closure was large/infinite ??
768 is_custom_explicit_set(V1), is_custom_explicit_set(V2),
769 !,
770 (allow_expansion(V1,V2) -> EXP=allow_expansion ; EXP = no_expansion),
771 equal_explicit_sets4(V1,V2,EXP,no_wf_available). % usually only sets compiled differently inside closures
772 same_value_inside_closure([H1|T1],avl_set(A2)) :- !, % relevant for JSON trace replay for test 1263
773 try_convert_to_avl([H1|T1],V1), V1=avl_set(A1),
774 equal_avl_tree(A1,A2).
775 same_value_inside_closure(avl_set(A2),[H1|T1]) :- !,
776 try_convert_to_avl([H1|T1],V1), V1=avl_set(A1),
777 equal_avl_tree(A1,A2).
778 same_value_inside_closure(V1,V2) :- V1==V2.
779
780 same_fields_inside_closure(V1,V2) :- var(V1),!, V1==V2.
781 same_fields_inside_closure(_,V2) :- var(V2),!,fail.
782 same_fields_inside_closure([],[]).
783 same_fields_inside_closure([field(Name,V1)|T1],[field(Name,V2)|T2]) :-
784 same_value_inside_closure(V1,V2),
785 same_fields_inside_closure(T1,T2).
786
787 /*
788 same_texpr_body_debug(H1,H2) :-
789 (same_texpr_body(H1,H2) -> true
790 ; print('FAIL: '),nl,
791 translate:print_bexpr(H1),nl, translate:print_bexpr(H2),nl, print(H1),nl, print(H2),nl, fail). */
792
793 %test(Y2,Z2) :- empty_avl(X), avl_store(1,X,2,Y), avl_store(2,X,3,Z),
794 % avl_store(2,Y,3,Y2), avl_store(1,Z,2,Z2), equal_avl_tree(Y2,Z2).
795
796 %equal_avl_tree(A,B) :- avl_min(A,Min), avl_min(B,Min), cmp(Min,A,B).
797 %cmp(El,A,B) :-
798 % (avl_next(El,A,Nxt) -> (avl_next(El,B,Nxt), cmp(Nxt,A,B))
799 % ; \+ avl_next(El,B,Nxt) ).
800
801 % The following is faster than using avl_next
802 equal_avl_tree(A,B) :-
803 % statistics(walltime,[WT1,_]),if(equal_avl_tree2(A,B),true,(statistics(walltime,[_,W]),print(wall(W)),nl)).
804 %equal_avl_tree2(A,B) :-
805 avl_min(A,Min),
806 !,
807 avl_min(B,Min),
808 avl_max(A,Max), avl_max(B,Max),
809 % maybe also check avl_height +/- factor of 1.4405 (page 460, Knuth 3) ? but it seems this would trigger only extremely rarely
810 %avl_height(A,H1), avl_height(A,H2), log(check(Min,Max,H1,H2)),
811 avl_domain(A,L), avl_domain(B,L).
812 equal_avl_tree(empty,_) :- !, format(user_error,'*** Warning: empty AVL tree in equal_avl_tree~n',[]).
813 equal_avl_tree(A,B) :- add_internal_error('Illegal AVL tree: ',equal_avl_tree(A,B)),fail.
814
815 /* a predicate to check equality of two custom explicit sets */
816
817 % TO DO: deal with second set being a variable with kernel_cardinality_attr attribute
818 :- block not_equal_explicit_sets_wf(-,?,?), not_equal_explicit_sets_wf(?,-,?).
819 not_equal_explicit_sets_wf(global_set(X),global_set(Y),_) :- !,dif(X,Y).
820 not_equal_explicit_sets_wf(global_set(B),avl_set(A),WF) :- !,
821 \+ equal_explicit_sets4(avl_set(A),global_set(B),allow_expansion,WF).
822 not_equal_explicit_sets_wf(freetype(X),freetype(Y),_) :- !,dif(X,Y).
823 not_equal_explicit_sets_wf(avl_set(A),avl_set(B),_) :- !,
824 \+ equal_avl_tree(A,B).
825 %not_equal_explicit_sets_wf(X,Y,_) :- X==Y,!,fail.
826 not_equal_explicit_sets_wf(avl_set(A),I2,WF) :- is_interval_closure_or_integerset(I2,L2,U2),!, % also covers I2=global_set(...)
827 avl_not_equal_to_interval(A,L2,U2,WF).
828 not_equal_explicit_sets_wf(avl_set(A),global_set(B),WF) :- !,
829 \+ equal_explicit_sets4(avl_set(A),global_set(B),allow_expansion,WF).
830 not_equal_explicit_sets_wf(avl_set(A),CPB,WF) :-
831 is_cartesian_product_closure(CPB,B1,B2),!,
832 if(decompose_avl_set_into_cartesian_product_wf(A,A1,A2,WF), % should not produce pending co-routines, but better safe
833 kernel_objects:not_equal_object_wf((A1,A2),(B1,B2),WF),
834 true % no cartesian product can be equal to this avl_set
835 ).
836 not_equal_explicit_sets_wf(closure(P,T,B),avl_set(A),WF) :- !,
837 not_equal_explicit_sets_wf(avl_set(A),closure(P,T,B),WF).
838 not_equal_explicit_sets_wf(I1,I2,_) :- is_interval_closure_or_integerset(I1,L1,U1),
839 is_interval_closure_or_integerset(I2,L2,U2), !,
840 dif((L1,U1),(L2,U2)). % maybe we should call not_equal_objects on integers (not on inf values)?
841 not_equal_explicit_sets_wf(CPA,CPB,WF) :-
842 is_cartesian_product_closure(CPA,A1,A2), is_cartesian_product_closure(CPB,B1,B2),!,
843 not_equal_cartesian_product_wf(A1,A2,B1,B2,WF).
844 not_equal_explicit_sets_wf(S1,S2,WF) :-
845 is_not_member_value_closure_or_integerset(S1,TYPE,MS1),
846 is_not_member_value_closure_or_integerset(S2,TYPE,MS2),!,
847 kernel_objects:not_equal_object_wf(MS1,MS2,WF).
848 not_equal_explicit_sets_wf(closure(P,T,B),closure(P,T,B2),_) :-
849 same_texpr_body(B,B2),!,fail.
850 % TO DO: maybe support interval & avl_set comparison
851 not_equal_explicit_sets_wf(Set1,Set2,WF) :-
852 card_for_specific_custom_set(Set1,Card1,Code1), card_for_specific_custom_set(Set2,Card2,Code2),
853 call(Code1), call(Code2),!,
854 not_equal_expansions(Card1,Card2,Set1,Set2,WF).
855 not_equal_explicit_sets_wf(Set1,Set2,WF) :- not_equal_expansions(0,0,Set1,Set2,WF).
856
857
858 :- block not_equal_expansions(-,?,?,?,?), not_equal_expansions(?,-,?,?,?).
859 not_equal_expansions(F1,F2,_,_,_) :- F1 \= F2,!. % sets guaranteed to be different
860 not_equal_expansions(F,F,Set1,Set2,WF) :-
861 ? get_identity_as_equivalence(F,Set1,Set2,EQUIV),
862 !,
863 b_not_test_boolean_expression(EQUIV,[],[],WF).
864 not_equal_expansions(F,F,Set1,Set2,WF) :-
865 % only expand if both sets have same cardinality
866 expand_custom_set_wf(Set1,E1,not_equal_expansions1,WF),
867 expand_custom_set_wf(Set2,E2,not_equal_expansions2,WF),
868 dif(E1,E2). /* TO DO: ensure that ordering and normalization is same for all representations ! */
869
870
871
872
873 :- use_module(b_global_sets,[b_empty_global_set/1, b_non_empty_global_set/1, b_global_set_cardinality/2]).
874 is_empty_explicit_set_wf(closure(P,T,B),WF) :- !,
875 is_empty_closure_wf(P,T,B,WF).
876 is_empty_explicit_set_wf(S,_WF) :- is_empty_explicit_set(S).
877
878 % with WF we can delay computing Card; see test 1272 / card({x|x:1..10 & x*x<i}) = 0 & i>1
879 % TO DO: ideally we could just write this: is_empty_closure_wf(P,T,B,WF) :- closure_cardinality(P,T,B,0,WF). ; but empty_set / not_exists optimisation not triggered in closure_cardinality (yet); would avoid duplicate code
880 is_empty_closure_wf(P,T,B,WF) :-
881 is_lambda_value_domain_closure(P,T,B, DomainValue,_Expr),!,
882 kernel_objects:empty_set_wf(DomainValue,WF).
883 is_empty_closure_wf(P,T,B,WF) :- is_cartesian_product_closure_aux(P,T,B,A1,A2),!,
884 very_approximate_cardinality(A1,C1,WF),
885 very_approximate_cardinality(A2,C2,WF),
886 blocking_safe_mul(C1,C2,0).
887 is_empty_closure_wf(P,T,B,_WF) :-
888 card_for_specific_closure2(P,T,B,CC,Code),
889 !,
890 call(Code),CC=0.
891 is_empty_closure_wf(P,T,Body,WF) :-
892 WF \== no_wf_available, % only do this if we have a WF store; see comments for closure_cardinality ; code relevant for test 1272; card({x|x:1..10 & x*x<i}) = 0 & i>1
893 \+ ground_bexpr(Body), % otherwise better to use not_test_exists below (e.g., Bosch v6 Codespeed benchmark)
894 b_interpreter_check:reify_closure_with_small_cardinality(P,T,Body, WF, ReifiedList),
895 !,
896 domain(ReifiedList,0,1),
897 sum(ReifiedList,'#=',0).
898 is_empty_closure_wf(P,T,B,WF) :-
899 get_recursive_identifier_of_closure_body(B,TRID),!,
900 def_get_texpr_id(TRID,RID),
901 gen_typed_ids(P,T,TypedParas),
902 % now add Recursive ID's value to local state:
903 b_interpreter:b_not_test_exists(TypedParas,B,[used_ids([RID])],[bind(RID,closure(P,T,B))],[],no_compile,WF).
904 is_empty_closure_wf(P,T,B,WF) :- !, % try and check that not(#(P).(B)); i.e., there is no solution for the Body B; solves tests 1542, detecting that {x|x>100 & x mod 102 = 2} = {} is false
905 gen_typed_ids(P,T,TypedParas),
906 b_interpreter:b_not_test_exists(TypedParas,B,[used_ids([])],[],[],no_compile,WF). % used_ids are empty, as all variables already compiled into values
907
908 % very_approximate_cardinality: only required to return 0 for empty set, and number or inf for non-empty set, tested in 1893
909 :- block very_approximate_cardinality(-,?,?).
910 very_approximate_cardinality(avl_set(A),C,_) :- !, (A=empty -> print(empty_avl),nl,C=0 ; C=1).
911 very_approximate_cardinality([],C,_) :- !, C=0.
912 very_approximate_cardinality([_|_],C,_) :- !, C=1.
913 very_approximate_cardinality(Set,C,WF) :- kernel_objects:cardinality_as_int_wf(Set,int(C),WF).
914 % TO DO: maybe call is_empty_closure or similar for closures
915
916 gen_typed_ids([],[],R) :- !, R=[].
917 gen_typed_ids([ID|IT],[Type|TT],[b(identifier(ID),Type,[])|TTT]) :- !,
918 % TO DO: add Info field from outer set comprehension
919 gen_typed_ids(IT,TT,TTT).
920 gen_typed_ids(I,T,TI) :- add_internal_error('Call failed: ',gen_typed_ids(I,T,TI)),fail.
921
922 % version with WF can also deal with closures via exists !
923 is_empty_explicit_set(global_set(GS)) :- !, b_empty_global_set(GS).
924 is_empty_explicit_set(freetype(ID)) :- !, is_empty_freetype(ID).
925 is_empty_explicit_set(avl_set(A)) :- !,
926 (var(A) -> add_warning(is_empty_explicit_set,'Variable avl_set')
927 ; empty_avl(A), add_warning(is_empty_explicit_set,'Empty avl_set')
928 ).
929 is_empty_explicit_set(C) :- card_for_specific_closure(C,CC,Code),!,call(Code),CC=0.
930 is_empty_explicit_set(ES) :- expand_custom_set(ES,[],is_empty_explicit_set).
931
932
933 is_non_empty_explicit_set(CS) :- is_non_empty_explicit_set_wf(CS,no_wf_available).
934
935 is_non_empty_explicit_set_wf(global_set(GS),_WF) :- !, b_non_empty_global_set(GS).
936 is_non_empty_explicit_set_wf(freetype(ID),_WF) :- !, is_non_empty_freetype(ID).
937 is_non_empty_explicit_set_wf(avl_set(A),_WF) :- !,
938 (empty_avl(A) -> print('### Warning: empty avl_set (2)'),nl,fail
939 ; true).
940 is_non_empty_explicit_set_wf(closure(P,T,B),WF) :- !, is_non_empty_closure_wf(P,T,B,WF).
941 %is_non_empty_explicit_set_wf(ES,_WF) :- expand_custom_set(ES,[_|_],is_non_empty_explicit_set).
942
943
944 % TO DO: this code is a bit redundant with is_empty_closure_wf
945 is_non_empty_closure_wf(P,T,B,WF) :-
946 is_lambda_value_domain_closure(P,T,B, DomainValue,_Expr),!,
947 kernel_objects:not_empty_set_wf(DomainValue,WF).
948 is_non_empty_closure_wf(P,T,B,WF) :- is_cartesian_product_closure_aux(P,T,B,A1,A2),!,
949 very_approximate_cardinality(A1,C1,WF),
950 very_approximate_cardinality(A2,C2,WF),
951 blocking_safe_mul(C1,C2,CC),gt0(CC).
952 is_non_empty_closure_wf(P,T,B,_WF) :-
953 card_for_specific_closure2(P,T,B,CC,Code),!,call(Code),gt0(CC).
954 % TO DO: reify_closure_with_small_cardinality
955 is_non_empty_closure_wf(P,T,B,WF) :- WF \== no_wf_available,
956 ? get_recursive_identifier_of_closure_body(B,TRID),!,
957 def_get_texpr_id(TRID,RID),
958 gen_typed_ids(P,T,TypedParas),
959 % now add Recursive ID's value to local state:
960 b_interpreter:b_test_exists(TypedParas,B,[used_ids([RID])],[bind(RID,closure(P,T,B))],[],WF).
961 is_non_empty_closure_wf(P,T,B,WF) :- WF \== no_wf_available,
962 % otherwise enumeration of test_exists will behave strangely; leading to enumeration warnings,... [TO DO: ensure we always have a WF or fix this below ?]
963 % try and check that not(#(P).(B)); i.e., there is no solution for the Body B; solves tests 1542; test 1146 also triggers this code
964 (debug_mode(off) -> true ; print(non_empty_closure_test(P)),nl, translate:print_bexpr(B),nl),
965 gen_typed_ids(P,T,TypedParas),
966 !,
967 b_interpreter:b_test_exists(TypedParas,B,[used_ids([])],[],[],WF). % used_ids are empty, as all variables already compiled into values
968 % some rules for set_subtraction, ... closures ?? if left part infinite and right part finite it must be infinite
969 is_non_empty_closure_wf(P,T,B,WF) :-
970 expand_custom_set_wf(closure(P,T,B),[_|_],is_non_empty_closure_wf,WF).
971
972
973 % TO DO: expand cart / reify and use for pf_test
974 test_empty_closure_wf(P,T,B,Res,WF) :-
975 is_lambda_value_domain_closure(P,T,B, DomainValue,_Expr),!,
976 kernel_equality:empty_set_test_wf(DomainValue,Res,WF).
977 %test_empty_closure_wf(P,T,B,WF) :- is_cartesian_product_closure_aux(P,T,B,A1,A2),!,
978 test_empty_closure_wf(P,T,B,Res,_WF) :-
979 card_for_specific_closure2(P,T,B,CC,Code),!,call(Code),leq0(CC,Res).
980 test_empty_closure_wf(P,T,B,Res,WF) :-
981 \+ is_memoization_closure(P,T,B,_MemoID),
982 preferences:preference(use_closure_expansion_memoization,false),
983 !,
984 bexpr_variables(B,ClosureWaitVars),
985 % this does not perform a few optimisations of expand_normal closure:
986 % memoization, stored_memo_expansion, is_closure1_value_closure, is_lambda_closure
987 % print(test_empty_closure_wf),nl, translate:print_bexpr(B),nl,
988 when((ground(ClosureWaitVars) ; nonvar(Res)),
989 test_empty_closure_wf2(P,T,B,Res,WF)).
990 test_empty_closure_wf(P,T,B,Res,WF) :- % print(expand_test(P)),nl,
991 % was expand_custom_set_wf(closure(P,T,B),ExpES,test_empty_closure_wf,WF), in turn calls expand_closure_to_list
992 expand_normal_closure(P,T,B,ExpES,_CDone,check(test_empty_closure_wf),WF),
993 kernel_equality:empty_set_test_wf(ExpES,Res,WF).
994 % /*@symbolic */ {x|x:1..100000000 & x mod 22=1} = x & (x={} <=> B=TRUE)
995
996 test_empty_closure_wf2(P,T,B,Res,WF) :-
997 Res == pred_true,!,
998 is_empty_closure_wf(P,T,B,WF).
999 test_empty_closure_wf2(P,T,B,Res,WF) :- Res == pred_false,!,
1000 is_non_empty_closure_wf(P,T,B,WF).
1001 test_empty_closure_wf2(P,T,B,Res,WF) :-
1002 (is_empty_closure_now(P,T,B,WF) % we need to force expansion here to be able to use local cut ->
1003 % expand_normal_closure would now also expand the closure;
1004 -> Res=pred_true
1005 ; Res=pred_false).
1006
1007 % check if closure now; ground everything except WFE
1008 is_empty_closure_now(P,T,B,OuterWF) :-
1009 create_inner_wait_flags(OuterWF,is_empty_closure_now,WF),
1010 debug_opt_push_wait_flag_call_stack_info(WF,
1011 external_call('Check if empty set',[closure(P,T,B)],unknown),WF2),
1012 is_empty_closure_wf(P,T,B,WF2),
1013 ground_inner_wait_flags(WF2). % does not ground WFE in case WD errors are pending
1014
1015 :- block leq0(-,?).
1016 leq0(inf,Res) :- !, Res=pred_false.
1017 leq0(inf_overflow,Res) :- !, Res=pred_false.
1018 leq0(CC,Res) :- (CC>0 -> Res=pred_false ; Res=pred_true).
1019
1020 test_empty_explicit_set_wf(V,Res,_) :- var(V),!,
1021 add_internal_error('Illegal call: ',test_empty_explicit_set(V,Res,_)),fail.
1022 test_empty_explicit_set_wf(global_set(GS),Res,_WF) :- !,
1023 (b_empty_global_set(GS) -> Res=pred_true ; Res=pred_false).
1024 test_empty_explicit_set_wf(freetype(ID),Res,_WF) :- !, test_empty_freetype(ID,Res).
1025 test_empty_explicit_set_wf(avl_set(A),Res,_WF) :- !,
1026 (var(A) -> add_warning(test_empty_explicit_set_wf,'Variable avl_set'), Res=pred_true
1027 ; empty_avl(A), add_warning(test_empty_explicit_set_wf,'Empty avl_set'), Res = pred_true
1028 ; Res=pred_false).
1029 test_empty_explicit_set_wf(closure(P,T,B),Res,WF) :- !,
1030 test_empty_closure_wf(P,T,B,Res,WF).
1031 test_empty_explicit_set_wf(ES,Res,WF) :-
1032 expand_custom_set(ES,ExpES,test_empty_explicit_set),
1033 kernel_equality:empty_set_test_wf(ExpES,Res,WF).
1034
1035 :- block gt0(-).
1036 gt0(CC) :- (CC=inf -> true ; CC=inf_overflow -> true ; CC>0).
1037
1038 % a version to compute cardinality for
1039 explicit_set_cardinality_for_wf(closure(P,T,B),Card) :-
1040 (is_symbolic_closure_or_symbolic_mode(P,T,B) ; \+ ground_bexpr(B)),
1041 !,
1042 Card = inf. % assume card is infinite for WF computation; it may be finite!
1043 %explicit_set_cardinality_for_wf(avl_set(AVL),Size) :- !, quick_avl_approximate_size(AVL,Size).
1044 explicit_set_cardinality_for_wf(CS,Card) :- card_for_specific_custom_set(CS,Card,Code),!,
1045 on_enumeration_warning(call(Code),Card=inf). % see test 1519 for relevance
1046 explicit_set_cardinality_for_wf(_,inf). % assume card is infinite for WF computation; it may be finite!
1047 % TO DO: maybe never expand closures here !? -> closure_cardinality can expand closure !!!!!!
1048 %explicit_set_cardinality_for_wf(CS,Card) :-
1049 % on_enumeration_warning(
1050 % explicit_set_cardinality(CS,Card),
1051 % (debug_println(assuming_inf_card_for_wf), % see test 1519 for relevance
1052 % Card = inf)). % assume card is infinite for WF computation; it may be finite!
1053
1054 explicit_set_cardinality(CS,Card) :-
1055 % init_wait_flags(WF,[explicit_set_cardinality]), % there are a few checks for no_wf_available below
1056 explicit_set_cardinality_wf(CS,Card,no_wf_available).
1057 % ground_wait_flags(WF).
1058
1059 explicit_set_cardinality_wf(global_set(GS),Card,_) :- !,b_global_set_cardinality(GS,Card).
1060 explicit_set_cardinality_wf(freetype(GS),Card,_WF) :- !, freetype_cardinality(GS,Card).
1061 explicit_set_cardinality_wf(avl_set(S),Card,_WF) :- !,avl_size(S,Card).
1062 ?explicit_set_cardinality_wf(closure(P,T,B),Card,WF) :- closure_cardinality(P,T,B,Card,WF).
1063
1064 :- use_module(performance_messages).
1065 closure_cardinality(P,T,B,Card,WF) :-
1066 is_lambda_value_domain_closure(P,T,B, DomainValue,_Expr),!,
1067 kernel_objects:cardinality_as_int_wf(DomainValue,int(Card),WF). % always compute it; card_for_specific_closure will only compute it if it can be done efficiently
1068 closure_cardinality(P,T,B,Card,WF) :- is_cartesian_product_closure_aux(P,T,B,A1,A2),!,
1069 kernel_objects:cardinality_as_int_wf(A1,int(C1),WF),
1070 kernel_objects:cardinality_as_int_wf(A2,int(C2),WF),
1071 blocking_safe_mul(C1,C2,Card).
1072 % TO DO: card_for_specific_closure2 calls is_lambda_value_domain_closure and is_cartesian_product_closure_aux again !
1073 closure_cardinality(P,T,B,Card,_WF) :-
1074 card_for_specific_closure2(P,T,B,CC,Code),
1075 !,
1076 call(Code),Card=CC.
1077 closure_cardinality(P,T,Body,Card,WF) :-
1078 (WF == no_wf_available -> CBody=Body
1079 ? ; b_compiler:b_compile(Body,P,[],[],CBody)
1080 ),
1081 % reify will work better if we used b_compiler:compile so that more sets can be detected as small
1082 closure_cardinality2(P,T,CBody,Card,WF).
1083 closure_cardinality2(P,T,Body,Card,WF) :-
1084 WF \== no_wf_available, % only do this if we have a WF store
1085 ? if(b_interpreter_check:reify_closure_with_small_cardinality(P,T,Body, WF, ReifiedList),
1086 true,
1087 (perfmessagecall(reify,reification_of_closure_for_card_failed(P),translate:print_bexpr(Body),Body),fail)),
1088 !,
1089 domain(ReifiedList,0,1),
1090 sum(ReifiedList,'#=',Card),
1091 % in this case we know card to be finite ! TO DO: ensure that check_finite propagates Card variable
1092 debug_println(9,reified_cardinality_sum(ReifiedList,Card)). % fd_dom(Card,Dom),print(dom(Card,Dom)),nl.
1093 % should we add a special check if Card=0 ? usually Card not instantiated at this point !
1094 %closure_cardinality(P,T,B,Card,WF) :- Card==0, %is_symbolic_closure(P,T,B),
1095 % !, is_empty_closure_wf(P,T,B,WF).
1096 closure_cardinality2(P,T,B,Card,WF) :-
1097 % TO DO: bexpr_variables(ClosureBody,ClosureWaitVars) and wait until those are bound; if Card = 0 -> empty_set; we can try to reifiy again
1098 expand_custom_set_wf(closure(P,T,B),Expansion,closure_cardinality,WF),
1099 my_length(Expansion,0,Card).
1100
1101 :- block my_length(-,?,?).
1102 my_length([],A,A).
1103 my_length([_|T],A,R) :- A1 is A+1, my_length(T,A1,R).
1104
1105 % compute domain and range for specific relations;
1106 % not the closure is total over the domain and surjective over the range
1107 % WARNING: this should never enumerate on its own, it is often called with
1108 % a cut straight after it; if some enumeration happens then only first solution
1109 % will be pursued (e.g., cond_assign_eq_obj)
1110 dom_range_for_specific_closure([],[],[],function(bijection),_WF).
1111 dom_range_for_specific_closure(closure(P,T,Pred),Domain,Range,Functionality,WF) :-
1112 dom_range_for_specific_closure2(P,T,Pred, Domain,Range,Functionality,WF).
1113
1114 dom_range_for_specific_closure2(Par,Typ,Body, Domain,Range,Functionality,_WF) :-
1115 is_member_closure(Par,Typ,Body,TYPE,SET),
1116 dom_range_for_member_closure(SET,TYPE,Domain,Range,Functionality),!.
1117 dom_range_for_specific_closure2(Par,Typ,Body, DOMAIN,RANGE,Functionality,WF) :-
1118 is_cartesian_product_closure_aux(Par,Typ,Body,SET1,SET2),!,
1119 (singleton_set(SET2,_) % checks nonvar
1120 -> Functionality = function(total) % function if card(SET2)=1
1121 ; Functionality=relation),
1122 kernel_equality:empty_set_test_wf(SET1,EqRes1,WF),
1123 cond_assign_eq_obj_wf(EqRes1,RANGE,[],SET2,WF), % if SET1=[] then Range=[]
1124 kernel_equality:empty_set_test_wf(SET2,EqRes2,WF),
1125 cond_assign_eq_obj_wf(EqRes2,DOMAIN,[],SET1,WF). %if SET2=[] then Domain=[]
1126 dom_range_for_specific_closure2(Par,Typ,Body, DomainRange,DomainRange,function(bijection),_WF) :-
1127 is_id_closure_over(Par,Typ,Body,DomainRange,_).
1128
1129
1130 dom_range_for_member_closure(identity(b(value(SET1),ST1,_)),_SEQT,SET1,SET1,function(bijection)) :-
1131 is_set_type(ST1,_). /* _SEQT=id(T1) */
1132 % not sure if we need this: memoized functions are infinite usually and range can never be computed anyway
1133 %dom_range_for_member_closure(Expr,_,Domain,Range,Func) :-
1134 % expand_memoize_stored_function_reference(Expr,ExpandedValue),
1135 % dom_range_for_specific_closure(ExpandedValue,Domain,Range,Func,no_wf_available).
1136
1137 :- block cond_assign_eq_obj_wf(-,?,?,?,?).
1138 %cond_assign_eq_obj_wf(PTF,R,A,B,_) :- var(PTF), add_error(cond_assign_eq_obj,'block declaration bug warning: ',cond_assign_eq_obj(PTF,R,A,B)),fail. % comment in to detect if affected by block declaration bug
1139 cond_assign_eq_obj_wf(pred_true,Res,A,_,WF) :- equal_object_wf(Res,A,cond_assign_eq_obj_wf_1,WF).
1140 cond_assign_eq_obj_wf(pred_false,Res,_,B,WF) :- equal_object_wf(Res,B,cond_assign_eq_obj_wf_2,WF).
1141
1142 is_cartesian_product_closure(closure(Par,Typ,Body),SET1,SET2) :-
1143 ? is_cartesian_product_closure_aux(Par,Typ,Body,SET1,SET2).
1144 is_cartesian_product_closure_aux(Par,Types,b(truth,pred,Info),SET1,SET2) :- Par=[_,_|_],!,
1145 append(LPar,[RParID],Par), append(LTypes,[RType],Types),
1146 construct_closure_if_necessary(LPar,LTypes,b(truth,pred,Info),SET1),
1147 construct_closure_if_necessary([RParID],[RType],b(truth,pred,Info),SET2).
1148 is_cartesian_product_closure_aux(Par,Types,Body,SET1,SET2) :- Par=[_,_|_],!,
1149 append(LPar,[RParID],Par), append(LTypes,[RType],Types),!,
1150 split_conjunct(Body,[RParID], RConjL, LPar, LConjL),
1151 bsyntaxtree:conjunct_predicates(RConjL,RConj), bsyntaxtree:conjunct_predicates(LConjL,LConj),
1152 construct_closure_if_necessary(LPar,LTypes,LConj,SET1),
1153 construct_closure_if_necessary([RParID],[RType],RConj,SET2).
1154 is_cartesian_product_closure_aux(Par,Typ,Body,SET1,SET2) :-
1155 SET = cartesian_product(b(value(SET1),ST1,_), b(value(SET2),ST2,_)),
1156 is_member_closure(Par,Typ,Body,couple(T1m,T2m),SET),
1157 is_set_type(ST1,T1),unify_types_strict(T1,T1m),
1158 is_set_type(ST2,T2),unify_types_strict(T2,T2m),!.
1159 %is_cartesian_product_closure_aux([ID1,ID2],[T1,T2],FBody,SET1,SET2) :- % is this not redundant wrt split ??
1160 % % a closure of the form {ID1,ID2|ID1 : SET1 & ID2 : SET2} ;
1161 % % can get generated when computing domain symbolically of lambda abstraction
1162 % FBody = b(Body,pred,_),
1163 % is_cartesian_product_body(Body,ID1,ID2,T1,T2,SET1,SET2). % ,print(cart_res(SET1,SET2)),nl.
1164
1165 % try and split conjunct into two disjoint parts (for detecting cartesian products)
1166 % on the specified variables
1167 % fails if it cannot be done
1168 split_conjunct(b(PRED,pred,Info),Vars1,C1,Vars2,C2) :-
1169 split_conjunct_aux(PRED,Info,Vars1,C1,Vars2,C2).
1170 split_conjunct_aux(truth,_Info,_Vars1,C1,_Vars2,C2) :- !,C1=[],C2=[].
1171 split_conjunct_aux(conjunct(A,B),_Info,Vars1,C1,Vars2,C2) :- !, % TO DO: use DCG
1172 split_conjunct(B,Vars1,CB1,Vars2,CB2), !, % Note: conjunct_predicates will create inner conjunct in A and atomic Expression in B
1173 split_conjunct(A,Vars1,CA1,Vars2,CA2),!,
1174 append(CA1,CB1,C1), append(CA2,CB2,C2).
1175 split_conjunct_aux(E,Info,Vars1,C1,_Vars2,C2) :- unique_id_comparison(E,ID),!,
1176 (member(ID,Vars1) -> C1=[b(E,pred,Info)], C2=[] ; C1=[], C2=[b(E,pred,Info)]).
1177
1178 unique_id_comparison(less(b(L,_,_),b(R,_,_)), ID) :- unique_id_comparison_aux(L,R,ID).
1179 unique_id_comparison(less_equal(b(L,_,_),b(R,_,_)), ID) :- unique_id_comparison_aux(L,R,ID).
1180 unique_id_comparison(greater(b(L,_,_),b(R,_,_)), ID) :- unique_id_comparison_aux(L,R,ID).
1181 unique_id_comparison(greater_equal(b(L,_,_),b(R,_,_)), ID) :- unique_id_comparison_aux(L,R,ID).
1182 unique_id_comparison(member(b(identifier(ID),_,_),b(V,_,_)), ID) :- explicit_value(V).
1183 unique_id_comparison(subset(b(identifier(ID),_,_),b(V,_,_)), ID) :- explicit_value(V).
1184 unique_id_comparison(equal(b(L,_,_),b(R,_,_)), ID) :- unique_id_comparison_aux(L,R,ID). % means we also detect something like %x.(x : INTEGER|0) as cartesian product
1185 % what about not_equal
1186
1187 unique_id_comparison_aux(identifier(ID),V,ID) :- !,explicit_value(V).
1188 unique_id_comparison_aux(V,identifier(ID),ID) :- explicit_value(V).
1189
1190 explicit_value(value(_)) :- !.
1191 explicit_value(integer(_)) :- !.
1192 explicit_value(unary_minus(TV)) :- !, explicit_tvalue(TV).
1193 explicit_value(interval(TV1,TV2)) :- !,
1194 explicit_tvalue(TV1), explicit_tvalue(TV2).
1195 %explicit_value(seq(B)) :- !, explicit_tvalue(B). % are encoded as values by b_compile
1196 %explicit_value(seq1(B)) :- !, explicit_tvalue(B).
1197 %explicit_value(iseq(B)) :- !, explicit_tvalue(B).
1198 %explicit_value(iseq1(B)) :- !, explicit_tvalue(B).
1199 %explicit_value(struct(B)) :- !, explicit_tvalue(B).
1200 %explicit_value(rec(Fields)) :- !, explicit_tfields(Fields).
1201 explicit_value(total_bijection(A,B)) :- !, explicit_tvalue(A),explicit_tvalue(B). % see test 1897 for cases below
1202 explicit_value(total_injection(A,B)) :- !, explicit_tvalue(A),explicit_tvalue(B).
1203 explicit_value(total_function(A,B)) :- !, explicit_tvalue(A),explicit_tvalue(B).
1204 explicit_value(total_surjection(A,B)) :- !, explicit_tvalue(A),explicit_tvalue(B).
1205 explicit_value(partial_function(A,B)) :- !, explicit_tvalue(A),explicit_tvalue(B).
1206 explicit_value(partial_injection(A,B)) :- !, explicit_tvalue(A),explicit_tvalue(B).
1207 explicit_value(partial_surjection(A,B)) :- !, explicit_tvalue(A),explicit_tvalue(B).
1208 explicit_value(relations(A,B)) :- !, explicit_tvalue(A),explicit_tvalue(B).
1209 explicit_value(total_relation(A,B)) :- !, explicit_tvalue(A),explicit_tvalue(B).
1210 explicit_value(surjection_relation(A,B)) :- !, explicit_tvalue(A),explicit_tvalue(B).
1211 explicit_value(total_surjection_relation(A,B)) :- !, explicit_tvalue(A),explicit_tvalue(B).
1212 explicit_value(real_set) :- !.
1213 explicit_value(string_set) :- !.
1214
1215 explicit_tvalue(b(B,_,_)) :- !, explicit_value(B).
1216
1217 %explicit_tfields(V) :- var(V),!,fail.
1218 %explicit_tfields([]).
1219 %explicit_tfields([field(N,V)|T]) :- ground(N),explicit_tvalue(V),explicit_tfields(T).
1220
1221 % conjunct_predicates([CA1,CB1],C1),
1222 % conjunct_predicates([CA2,CB2],C2).
1223
1224 /* *********
1225 is_cartesian_product_body(conjunct(A,B),ID1,ID2,_T1,_T2,SET1,SET2) :- !,
1226 member_pred_value(A,CID1,CSET1),
1227 member_pred_value(B,CID2,CSET2),
1228 (ID1=CID1,ID2=CID2,SET1=CSET1,SET2=CSET2 ; ID1=CID2,ID2=CID1,SET1=CSET2,SET2=CSET1).
1229 is_cartesian_product_body(A,ID1,ID2,T1,T2,SET1,SET2) :-
1230 member_pred_value2(A,AID,ASET),
1231 ( AID=ID1 -> SET1=ASET, construct_closure_if_necessary([ID2],[T2],b(truth,pred,[]),SET2)
1232 ; AID=ID2 -> SET2=ASET, construct_closure_if_necessary([ID1],[T1],b(truth,pred,[]),SET1)).
1233
1234 member_pred_value(b(B,pred,_), ID,VAL) :- print(member_pred_value2(B,ID,VAL)),nl,
1235 member_pred_value2(B,ID,VAL).
1236 member_pred_value2(member(b(identifier(ID),_CT1,_),b(value(VAL),_SCT1,_)), ID,VAL). %_SCT1 = set(CT1)
1237 */
1238
1239 % check if we have POW(SET1) or SET1<->SET2 (equiv. to POW(SET1*SET2))
1240 is_full_powerset_or_relations_or_struct_closure(closure(Par,Typ,Body),SUBSETS) :-
1241 %TYPE = set(T),
1242 is_member_closure(Par,Typ,Body,TYPE,SET),
1243 is_full_powset_aux(SET,TYPE,SUBSETS).
1244
1245 :- use_module(library(lists),[maplist/3, maplist/4]).
1246 is_full_powset_aux(pow_subset(b(value(SET1),set(T1),_)),set(T1),[SET1]).
1247 is_full_powset_aux(relations(S1,S2),set(couple(T1,T2)),[SET1,SET2]) :-
1248 S1 = b(value(SET1),set(T1),_), S2 = b(value(SET2),set(T2),_).
1249 is_full_powset_aux(struct(b(value(rec(FIELDS)),record(_),_)),record(_),FieldValueSets) :-
1250 maplist(get_field_val,FIELDS,FieldValueSets).
1251
1252 get_field_val(field(_,Val),Val).
1253
1254 %[field(duration,global_set('INTEGER')),field(rhythm,global_set('INTEGER')),field(slot,avl_set(...))]
1255
1256 is_powerset_closure(closure(Par,Typ,Body),PType,Subset) :-
1257 ? is_set_type(TYPE,T),
1258 is_member_closure(Par,Typ,Body,TYPE,SET),
1259 nonvar(SET),
1260 is_powset_aux(SET,PType,b(VS,set(T),_)) ,
1261 nonvar(VS), VS = value(Subset). %,print(powerset(Subset)),nl.
1262 is_powset_aux(pow_subset(A),pow,A).
1263 is_powset_aux(pow1_subset(A),pow1,A).
1264 is_powset_aux(fin_subset(A),fin,A).
1265 is_powset_aux(fin1_subset(A),fin1,A).
1266
1267 % group together closures which can be treated like cartesian products in the sense that:
1268 % Closure is empty if either Set1 or Set2 (could also be empty in other conditions though)
1269 % Closure is subset of other Closure if same Constructor and both sets are subsets
1270 /* is_cartesian_product_like_closure(Closure,Constructor,Set1,Set2) :-
1271 is_cartesian_product_closure(Closure,S11,S12),!,
1272 Constructor = cartesian_product,Set1=S11,Set2=S12.
1273 is_cartesian_product_like_closure(closure(Par,Typ,Body),Constructor,Set1,Set2) :-
1274 is_member_closure(Par,Typ,Body,TYPE,SET),
1275 is_cart_like_relation(SET,Constructor,b(value(Set1),set(_T1),_), b(value(Set1),set(_T2),_)).
1276 is_cart_like_relation(relations(A,B),relations,A,B).
1277 is_cart_like_relation(partial_function(A,B),partial_function,A,B).
1278 is_cart_like_relation(partial_injection(A,B),partial_injection,A,B). */
1279
1280 % (closure([_zzzz_unary],[set(couple(integer,string))],b(member(b(identifier(_zzzz_unary),set(couple(integer,string)),[]),b(relations(b(value(global_set(INTEGER)),set(integer),[]),b(value(global_set(STRING)),set(string),[])),set(set(couple(integer,string))),[])),pred,[])))
1281 % 1 1 Fail: custom_explicit_sets:is_powset_aux(relations(b(value(global_set('INTEGER')),set(integer),[]),b(value(global_set('STRING')),set(string),[])),couple(integer,string),_19584) ?
1282
1283 % card_for_specific_custom_set(+Set,-Cardinality,-CodeToComputeCardinality)
1284 % succeeds if card can be computed efficiently
1285 card_for_specific_custom_set(CS,C,Cd) :- var(CS),!,
1286 add_internal_error('Internal error: var ',card_for_specific_custom_set(CS,C,Cd)),fail.
1287 card_for_specific_custom_set(global_set(GS),Card,true) :- !, b_global_set_cardinality(GS,Card).
1288 card_for_specific_custom_set(freetype(Id),Card,true) :- !, freetype_cardinality(Id,Card).
1289 card_for_specific_custom_set(avl_set(S),Card,true) :- !,avl_size(S,Card).
1290 card_for_specific_custom_set(closure(P,T,B),Card,CodeToComputeCard) :-
1291 card_for_specific_closure3(_,P,T,B,Card,CodeToComputeCard).
1292
1293 card_for_specific_closure(closure(P,T,Pred),Card,CodeToComputeCard) :-
1294 card_for_specific_closure3(_ClosureKind,P,T,Pred,Card,CodeToComputeCard).
1295 card_for_specific_closure(closure(P,T,Pred),ClosureKind,Card,CodeToComputeCard) :-
1296 card_for_specific_closure3(ClosureKind,P,T,Pred,Card,CodeToComputeCard).
1297
1298 :- use_module(btypechecker,[couplise_list/2]).
1299 :- use_module(bsyntaxtree,[is_truth/1]).
1300 card_for_specific_closure2(Par,Typ,Body, Card,Code) :-
1301 card_for_specific_closure3(_ClosureKind,Par,Typ,Body, Card,Code).
1302
1303 % first argument for debugging purposes or filtering
1304 card_for_specific_closure3(special_closure,Par,Typ,Body, Card,Code) :-
1305 is_special_infinite_closure(Par,Typ,Body),!,Card=inf, Code=true.
1306 card_for_specific_closure3(truth_closure,_,Types,Body,Card,Code) :- is_truth(Body),!,
1307 % TO DO: also treat multiple parameters
1308 couplise_list(Types,Type),
1309 Code=kernel_objects:max_cardinality(Type,Card).
1310 card_for_specific_closure3(interval_closure,Par,Typ,Body, Card,Code) :-
1311 ? is_geq_leq_interval_closure(Par,Typ,Body,Low,Up), !,
1312 card_of_interval_inf(Low,Up,Card),
1313 Code=true. % should we return card_of_interval_inf as code ?
1314 % TO DO: deal with non-infinite not_member_closures, prj1, prj2, id, ...
1315 card_for_specific_closure3(lambda_closure,Par,Typ,Body, Card,Code) :-
1316 is_lambda_value_domain_closure(Par,Typ,Body, DomainValue,_Expr),!, nonvar(DomainValue),
1317 efficient_card_for_set(DomainValue,Card,Code).
1318 card_for_specific_closure3(cartesian_product,Par,Typ,Body, Card,Code) :-
1319 is_cartesian_product_closure_aux(Par,Typ,Body,A1,A2),!, nonvar(A1), nonvar(A2),
1320 efficient_card_for_set(A1,Card1,Code1),
1321 efficient_card_for_set(A2,Card2,Code2),
1322 Code = (Code1,Code2, custom_explicit_sets:blocking_safe_mul(Card1,Card2,Card)).
1323 card_for_specific_closure3(member_closure,Par,Typ,Body, Card,Code) :-
1324 is_member_closure(Par,Typ,Body,TYPE,SET),
1325 nonvar(SET),!,
1326 card_for_member_closure(SET,TYPE,Card,Code).
1327 % Note: _ExprInfo could have: contains_wd_condition,
1328 % but if lambda is well-defined we compute the correct card ; if not then card is not well-defined anyway
1329 % maybe we should check contains_wd_condition produce a warning msg ?
1330
1331 % inner values can sometimes be a list, e.g., [pred_true,pred_false] for BOOL
1332 efficient_card_for_set(VAR,_,_) :- var(VAR),!,fail.
1333 efficient_card_for_set([],Card,Code) :- !, Card=0,Code=true.
1334 efficient_card_for_set([_|T],Card,Code) :- known_length(T,1,C), !, Card = C, Code=true.
1335 efficient_card_for_set(CS,Card,Code) :- card_for_specific_custom_set(CS,Card,Code).
1336 known_length(X,_,_) :- var(X),!,fail.
1337 known_length([],A,A).
1338 known_length([_|T],A,R) :- A1 is A+1, known_length(T,A1,R).
1339 known_length(avl_set(S),Acc,Res) :- avl_size(S,Card),
1340 Res is Acc+Card.
1341 % TO DO: also support closures
1342
1343 card_for_member_closure(parallel_product(b(value(A1),ST1,_),b(value(A2),ST1,_)),_T,Card,CodeToComputeCard) :- !,
1344 nonvar(A1), nonvar(A2),
1345 efficient_card_for_set(A1,Card1,Code1),
1346 CodeToComputeCard = (Code1,Code2, custom_explicit_sets:blocking_safe_mul(Card1,Card2,Card)),
1347 % cardinality computed like for cartesian_product.
1348 efficient_card_for_set(A2,Card2,Code2).
1349 card_for_member_closure(seq(b(value(SET1),ST1,_)),_SEQT,Card,CodeToComputeCard) :- !, /* _SEQT=seq(T1) */
1350 is_set_type(ST1,_T1),
1351 CodeToComputeCard = custom_explicit_sets:seq_card(SET1,Card).
1352 card_for_member_closure(seq1(b(value(SET1),ST1,_)),_SEQT,Card,CodeToComputeCard) :- !, /* _SEQT=seq1(T1) */
1353 is_set_type(ST1,_T1),
1354 CodeToComputeCard = custom_explicit_sets:seq1_card(SET1,Card).
1355 card_for_member_closure(perm(b(value(SET1),ST1,_)),_SEQT,Card,CodeToComputeCard) :- !, /* _SEQT=perm(T1) */
1356 is_set_type(ST1,_T1),
1357 CodeToComputeCard = (kernel_objects:cardinality_as_int(SET1,int(SCard)),
1358 custom_explicit_sets:blocking_factorial(SCard,Card)).
1359 card_for_member_closure(iseq(b(value(SET1),ST1,_)),_SEQT,Card,CodeToComputeCard) :- !, /* _SEQT=iseq(T1) */
1360 is_set_type(ST1,_T1),
1361 CodeToComputeCard = (kernel_objects:cardinality_as_int(SET1,int(SCard)),
1362 kernel_card_arithmetic:blocking_nr_iseq(SCard,Card)).
1363 card_for_member_closure(iseq1(b(value(SET1),ST1,_)),_SEQT,Card,CodeToComputeCard) :- !, /* _SEQT=iseq1(T1) */
1364 is_set_type(ST1,_T1),
1365 CodeToComputeCard = (kernel_objects:cardinality_as_int(SET1,int(SCard)),
1366 kernel_card_arithmetic:blocking_nr_iseq1(SCard,Card)).
1367 card_for_member_closure(identity(b(value(SET1),ST1,_)),_SEQT,Card,CodeToComputeCard) :- !, /* _SEQT=id(T1) */
1368 is_set_type(ST1,_T1),
1369 CodeToComputeCard =
1370 kernel_objects:cardinality_as_int(SET1,int(Card)).
1371 card_for_member_closure(struct(b(RecVal,record(_FieldSetTypes),_)), record(_FieldTypes), % set of records
1372 Card,CodeToComputeCard) :-
1373 !,
1374 (RecVal=value(RECF), nonvar(RECF), RECF=rec(FIELDS) % value has been computed:
1375 -> CodeToComputeCard = custom_explicit_sets:get_field_cardinality(FIELDS,Card)
1376 ; RecVal = rec(TypedFields), % we still have a typed AST
1377 maplist(get_field_val_type,TypedFields,Exprs,Types),
1378 l_card_for_member_closure(Exprs,Types,Card, CodeToComputeCard)
1379 ).
1380 % now dealt with separately above: card_for_member_closure(cartesian_product(b(value(SET1),set(T1),_), b(value(SET2),set(T2),_)),
1381 % couple(T1,T2), Card,CodeToComputeCard) :- !,
1382 % CodeToComputeCard =
1383 % (kernel_objects:cardinality_as_int(SET1,int(SCard1)),
1384 % kernel_objects:cardinality_as_int(SET2,int(SCard2)),
1385 % custom_explicit_sets:blocking_safe_mul(SCard1,SCard2,Card) ).
1386 card_for_member_closure(POW,TYPE, Card,CodeToComputeCard) :-
1387 (POW = pow_subset(b(value(SET),TYPE,_)) ;
1388 POW = fin_subset(b(value(SET),TYPE,_))),!,
1389 CodeToComputeCard =
1390 (kernel_objects:cardinality_as_int(SET,int(SCard)),
1391 custom_explicit_sets:blocking_safe_pow2(SCard,Card)
1392 ).
1393 card_for_member_closure(POW,TYPE, Card,CodeToComputeCard) :-
1394 (POW = pow1_subset(b(value(SET),TYPE,_)) ;
1395 POW = fin1_subset(b(value(SET),TYPE,_))),!,
1396 CodeToComputeCard =
1397 (kernel_objects:cardinality_as_int(SET,int(SCard)),
1398 custom_explicit_sets:blocking_safe_pow2(SCard,C1),
1399 custom_explicit_sets:safe_dec(C1,Card)
1400 ).
1401 card_for_member_closure(RELEXPR,SType, Card,CodeToComputeCard) :-
1402 is_set_type(SType,couple(T1,T2)),
1403 is_a_relation(RELEXPR, b(value(DOM),set(T1),_),
1404 b(value(RAN),set(T2),_), DCard,RCard,Card,RELCODE),!,
1405 CodeToComputeCard =
1406 (
1407 kernel_objects:cardinality_as_int(DOM,int(DCard)),
1408 kernel_objects:cardinality_as_int(RAN,int(RCard)),
1409 custom_explicit_sets:call_card_for_relations(DCard,RCard,RELCODE)
1410 ).
1411 card_for_member_closure(BODY, integer, Card,CodeToComputeCard) :-
1412 is_interval_with_integer_bounds(BODY,Low,Up),!,
1413 CodeToComputeCard = custom_explicit_sets:card_of_interval_inf(Low,Up,Card).
1414 card_for_member_closure(value(Value), _Type, Card,CodeToComputeCard) :-
1415 % we have a closure of the type {x|x:S}; equivalent to S
1416 (nonvar(Value),
1417 Value=closure(P,T,B)
1418 -> % cardinality_as_int may expand it ! is bad if e.g. we called this code to check if a closure is infinite
1419 card_for_specific_closure2(P,T,B,Card,CodeToComputeCard) % will not expand, but fail if cannot be computed
1420 % TO DO: provide an argument: precise_or_efficient
1421 ; CodeToComputeCard = kernel_objects:cardinality_as_int(Value,int(Card))
1422 ).
1423 %card_for_member_closure(BODY, Type, Card,CodeToComputeCard) :- print(try_card(BODY,Type)),nl,fail.
1424 % TO DO: add maybe other common closures ? simple value closure
1425 % also: what if subexpressions are not of value() type ?
1426
1427 :- public call_card_for_relations/3.
1428 :- block call_card_for_relations(-,?,?), call_card_for_relations(?,-,?).
1429 call_card_for_relations(_,_,RELCODE) :- call(RELCODE).
1430
1431 get_field_val_type(field(_F1,b(Expr1,Type1,_)),Expr1,Type1).
1432
1433 l_card_for_member_closure([Expr1],[Type1],Card,CodeToComputeCard) :- !,
1434 card_for_member_closure(Expr1,Type1,Card, CodeToComputeCard).
1435 l_card_for_member_closure([Expr1|ET],[Type1|TT],Card,CodeToComputeCard) :-
1436 CodeToComputeCard = (Code1,Code2, custom_explicit_sets:blocking_safe_mul(Card1,Card2,Card)),
1437 card_for_member_closure(Expr1,Type1,Card1, Code1),
1438 l_card_for_member_closure(ET,TT,Card2,Code2).
1439
1440 :- public safe_dec/2. % used in card_for_member_closure
1441 :- block safe_dec(-,?).
1442 safe_dec(inf,R) :- !, R=inf.
1443 safe_dec(inf_overflow,R) :- !, R=inf_overflow.
1444 safe_dec(X,R) :- R is X-1.
1445
1446 :- use_module(kernel_equality,[empty_set_test/2]).
1447 :- public seq_card/2. % used in card_for_member_closure
1448 :- block seq_card(-,?).
1449 seq_card([],R) :- !,R=1.
1450 seq_card([_|_],R) :- !,R=inf.
1451 seq_card(X,Res) :- empty_set_test(X,EqRes),
1452 set_card(EqRes,1,Res).
1453
1454 :- block set_card(-,?,?).
1455 set_card(pred_true,Nr,Nr).
1456 set_card(pred_false,_,inf).
1457 % card(seq({n|n>10 & (n mod 20=3 & n mod 20 = 4) }))
1458
1459 :- public seq1_card/2. % used in card_for_member_closure
1460 :- block seq1_card(-,?).
1461 seq1_card([],R) :- !,R=0.
1462 seq1_card([_|_],R) :- !,R=inf.
1463 seq1_card(X,Res) :- empty_set_test(X,EqRes), set_card(EqRes,0,Res).
1464
1465 :- public get_field_cardinality/2. % used in card_for_member_closure
1466 get_field_cardinality([],1).
1467 get_field_cardinality([field(_Name,Value)|T],ResCard) :-
1468 kernel_objects:cardinality_as_int(Value,int(SCard1)),
1469 get_field_cardinality(T,RestCard), blocking_safe_mul(SCard1,RestCard,ResCard).
1470
1471 :- use_module(kernel_card_arithmetic).
1472
1473 :- block blocking_safe_mul(-,-,?).
1474 blocking_safe_mul(A,B,R) :-
1475 ( A==0 -> R=0
1476 ; B==0 -> R=0
1477 ; A==1 -> R=B
1478 ; B==1 -> R=A
1479 ; blocking_safe_mul2(A,B,R) ).
1480
1481 :- block blocking_safe_mul2(-,?,?), blocking_safe_mul2(?,-,?).
1482 blocking_safe_mul2(A,B,Res) :-
1483 (safe_mul(A,B,AB) -> Res=AB
1484 ; add_warning(blocking_safe_mul2,'Call failed: ',blocking_safe_mul2(A,B,Res)),
1485 % could happen for something like prj2(BOOL,NAT) = prj2(BOOL,0..n)
1486 fail).
1487
1488 :- public blocking_safe_pow2/2. % used in card_for_member_closure above
1489 :- block blocking_safe_pow2(-,?).
1490 blocking_safe_pow2(A,Res) :-
1491 (safe_pow2(A,A2) -> Res=A2
1492 ; add_warning(blocking_safe_pow2,'Call failed: ',safe_pow2(A,Res)),fail).
1493
1494
1495
1496
1497 :- assert_must_succeed((custom_explicit_sets:card_for_specific_closure2(['_zzzz_binary'],[integer],
1498 b(member(b(identifier('_zzzz_binary'),integer,[generated]),
1499 b(interval(b(value(int(1)),integer,[]),b(value(int(10)),integer,[])),set(integer),[])),pred,[]),R,C),
1500 call(C),
1501 R=10)).
1502
1503 %! is_interval_closure_or_integerset(+I,-L,-U)
1504 is_interval_closure_or_integerset(Var,_,_) :- var(Var),!,fail.
1505 is_interval_closure_or_integerset(global_set(X),Low,Up) :- !, get_integer_set_interval(X,Low,Up).
1506 is_interval_closure_or_integerset(Set,El,El) :- singleton_set(Set,ELX),
1507 nonvar(ELX), ELX=int(El),!. % new, useful??
1508 is_interval_closure_or_integerset(closure(P,T,B),Low,Up) :-
1509 ? (is_geq_leq_interval_closure(P,T,B,Low,Up) -> true ; is_interval_closure(P,T,B,Low,Up)).
1510
1511
1512 get_integer_set_interval('NAT',0,MAXINT) :- (preferences:preference(maxint,MAXINT)->true).
1513 get_integer_set_interval('NAT1',1,MAXINT) :- (preferences:preference(maxint,MAXINT)->true).
1514 get_integer_set_interval('INT',MININT,MAXINT) :-
1515 ((preferences:preference(maxint,MAXINT),preferences:preference(minint,MININT))->true).
1516 get_integer_set_interval('NATURAL',0,inf).
1517 get_integer_set_interval('NATURAL1',1,inf).
1518 get_integer_set_interval('INTEGER',minus_inf,inf).
1519 % TO DO: add minus_inf to kernel_objects !
1520
1521 :- block geq_inf(-,?), geq_inf(?,-).
1522 geq_inf(inf,_) :- !.
1523 geq_inf(minus_inf,B) :- !, B=minus_inf.
1524 geq_inf(_,minus_inf) :- !.
1525 geq_inf(A,inf) :- !, A=inf.
1526 geq_inf(inf_overflow,_) :- !.
1527 geq_inf(A,inf_overflow) :- !, A=inf_overflow.
1528 geq_inf(A,B) :- A >= B.
1529
1530 :- block minimum_with_inf(-,-,?).
1531 % in the first three cases we can determine outcome without knowing both args
1532 minimum_with_inf(A,B,R) :- (A==minus_inf ; B==minus_inf),!,R=minus_inf.
1533 minimum_with_inf(A,B,R) :- A==inf,!,R=B.
1534 minimum_with_inf(A,B,R) :- B==inf,!,R=A.
1535 minimum_with_inf(A,B,R) :- minimum_with_inf1(A,B,R), geq_inf(A,R), geq_inf(B,R).
1536 :- block minimum_with_inf1(-,?,?), minimum_with_inf1(?,-,?).
1537 minimum_with_inf1(minus_inf,_,R) :- !, R=minus_inf.
1538 minimum_with_inf1(_,minus_inf,R) :- !, R=minus_inf.
1539 minimum_with_inf1(inf,B,R) :- !, R=B.
1540 minimum_with_inf1(A,inf,R) :- !, R=A.
1541 minimum_with_inf1(inf_overflow,B,R) :- !, R=B.
1542 minimum_with_inf1(A,inf_overflow,R) :- !, R=A.
1543 minimum_with_inf1(A,B,R) :- (A<B -> R=A ; R=B).
1544
1545 :- block maximum_with_inf(-,-,?).
1546 % in the first three cases we can determine outcome without knowing both args
1547 maximum_with_inf(A,B,R) :- (A==inf ; B==inf),!,R=inf.
1548 maximum_with_inf(A,B,R) :- A==minus_inf,!,R=B.
1549 maximum_with_inf(A,B,R) :- B==minus_inf,!,R=A.
1550 maximum_with_inf(A,B,R) :- maximum_with_inf1(A,B,R), geq_inf(R,A), geq_inf(R,B).
1551 :- block maximum_with_inf1(-,?,?), maximum_with_inf1(?,-,?).
1552 maximum_with_inf1(inf,_,R) :- !, R=inf.
1553 maximum_with_inf1(_,inf,R) :- !, R=inf.
1554 maximum_with_inf1(minus_inf,B,R) :- !, R=B.
1555 maximum_with_inf1(A,minus_inf,R) :- !, R=A.
1556 maximum_with_inf1(inf_overflow,_,R) :- !, R=inf_overflow.
1557 maximum_with_inf1(_,inf_overflow,R) :- !, R=inf_overflow.
1558 maximum_with_inf1(A,B,R) :- (A>B -> R=A ; R=B).
1559
1560 /* utilities for detecting interval closures */
1561 construct_interval_closure(Low,Up,Res) :- (Low==inf;Up==minus_inf),!,Res=[].
1562 construct_interval_closure(Low,Up,Res) :- number(Low),number(Up), Low>Up,!,Res=[].
1563 construct_interval_closure(Low,Up,Res) :- Up==inf,!,
1564 ( Low==0 -> Res = global_set('NATURAL')
1565 ; Low==1 -> Res = global_set('NATURAL1')
1566 ; Low==minus_inf -> Res = global_set('INTEGER')
1567 ; Low==inf -> Res = []
1568 ; construct_greater_equal_closure(Low,Res)
1569 ).
1570 construct_interval_closure(Low,Up,Res) :- Low==minus_inf,!,
1571 construct_less_equal_closure(Up,Res).
1572 construct_interval_closure(Low,Up,Res) :- Low==Up,!,
1573 (number(Low) -> construct_one_element_custom_set(int(Low),Res)
1574 ; Res = [int(Low)]).
1575 construct_interval_closure(Low,Up,Res) :-
1576 construct_interval_set(Low,Up,Set),
1577 construct_member_closure('_zzzz_unary',integer,[],Set,Res).
1578
1579 transform_global_sets_into_closure(closure(P,T,B),closure(P,T,B)).
1580 transform_global_sets_into_closure(global_set(X),Res) :-
1581 transform_global_set_into_closure_aux(X,Res).
1582 transform_global_set_into_closure_aux('NATURAL',Res) :-
1583 construct_greater_equal_closure(0,Res).
1584 transform_global_set_into_closure_aux('NATURAL1',Res) :-
1585 construct_greater_equal_closure(1,Res).
1586 % TO DO: add INTEGER
1587
1588
1589
1590 is_geq_leq_interval_closure([Par],[integer],b(Body,pred,Span),Low,Up) :-
1591 (var(Par)
1592 -> add_internal_error('Non-ground closure: ',closure([Par],[integer],b(Body,pred,Span))),fail
1593 ? ; get_geq_leq_bounds(Body,Par,Low,Up)).
1594
1595 infinite_interval(Low,Up) :- (Low==minus_inf -> true ; Up==inf).
1596
1597 :- assert_must_succeed((card_of_interval_inf(1,10,10))).
1598 :- assert_must_succeed((card_of_interval_inf(1,inf,R),R==inf)).
1599 :- assert_must_succeed((card_of_interval_inf(minus_inf,0,R),R==inf)).
1600 :- assert_must_succeed((card_of_interval_inf(2,2,R), R==1)).
1601 :- assert_must_succeed((card_of_interval_inf(12,2,R), R==0)).
1602 :- assert_must_succeed((card_of_interval_inf(2,B,10), B==11)).
1603 :- assert_must_succeed((card_of_interval_inf(A,12,10), A==3)).
1604 :- assert_must_succeed((card_of_interval_inf(A,12,0), A=222)).
1605 :- assert_must_succeed((card_of_interval_inf(12,B,0), B=11)).
1606 :- assert_must_fail((card_of_interval_inf(A,12,0), A=12)).
1607 % compute cardinality of interval; allow bounds to be inf and minus_inf (but if so, they must be bound straightaway)
1608 card_of_interval_inf(A,B,Card) :-
1609 ? at_least_two_vars(A,B,Card), % initially this will usually be true, if only one variable we can compute result
1610 preferences:preference(use_clpfd_solver,true),
1611 !,
1612 clpfd_interface:post_constraint(Card #= max(0,1+B-A),custom_explicit_sets:block_card_of_interval_inf(A,B,Card)).
1613 card_of_interval_inf(A,B,Card) :- block_card_of_interval_inf(A,B,Card).
1614
1615 ?at_least_two_vars(A,B,C) :- var(A),!,(var(B) -> not_infinite_bound(C) ; number(B),var(C)).
1616 at_least_two_vars(A,B,C) :- number(A), var(B),var(C).
1617 not_infinite_bound(A) :- (var(A) ; number(A)). % inf can only appear immediately, not for variables
1618
1619 :- block block_card_of_interval_inf(-,?,-),block_card_of_interval_inf(?,-,-).
1620 block_card_of_interval_inf(A,_,Card) :- A==minus_inf,!, Card=inf.
1621 block_card_of_interval_inf(_,B,Card) :- B==inf,!, Card=inf.
1622 block_card_of_interval_inf(From,To,Card) :- number(From),number(To),!,
1623 (From>To -> Card=0 ; Card is (To-From)+1).
1624 block_card_of_interval_inf(A,B,C) :- number(C),!, number_card_of_interval_inf_aux(C,A,B).
1625 block_card_of_interval_inf(A,B,C) :- C==inf,!,
1626 % probably this should systematically fail; if A and B are not inf/minus_inf now they will never be
1627 print(infinite_interval_requested(A,B,C)),nl,
1628 when((nonvar(A),nonvar(B)), block_card_of_interval_inf(A,B,C)).
1629 block_card_of_interval_inf(A,B,C) :- add_internal_error('Illegal call: ',card_of_interval_inf(A,B,C)).
1630 :- use_module(inf_arith,[block_inf_greater/2]).
1631 number_card_of_interval_inf_aux(0,A,B) :- !, % empty interval
1632 % if A and B are variables then they will not become inf later ??
1633 % inf can only be set directly for sets such as {x|x>4} or NATURAL1
1634 (((var(A);number(A)),(var(B);number(B)))
1635 % hence we can use ordinary comparison (with CLPFD) here
1636 -> kernel_objects:less_than_direct(B,A)
1637 % TO DO: we could do this even if both A and B are variables !! ex : {n,m|n..m = {} & m..100={} & 103..n={}}
1638 ; block_inf_greater(A,B)).
1639 %number_card_of_interval_inf_aux(Card,From,B) :- number(From),!, B is (From+Card)-1.
1640 %number_card_of_interval_inf_aux(Card,A,To) :- number(To),!, A is 1+To-Card.
1641 number_card_of_interval_inf_aux(Card,A,B) :-
1642 Card>0, C1 is Card-1,
1643 kernel_objects:int_minus(int(B),int(A),int(C1)).
1644
1645
1646 get_geq_leq_bounds(conjunct(b(LEFT,pred,_),b(RIGHT,pred,_)), Par,Low,Up) :-
1647 ? get_geq_leq_bounds(LEFT,Par,From1,To1),
1648 ? get_geq_leq_bounds(RIGHT,Par,From2,To2),
1649 intersect_intervals_with_inf(From1,To1,From2,To2,Low,Up).
1650 get_geq_leq_bounds(member(b(identifier(Par),integer,_),
1651 b(Value,set(integer),_)),Par,Low,Up) :-
1652 get_value_bounds(Value,Low,Up).
1653 ?get_geq_leq_bounds(greater_equal(b(A,_,_),b(B,_,_)),Par,Low,Up) :- get_bounds2(greater_equal,A,B,Par,Low,Up).
1654 ?get_geq_leq_bounds( less_equal(b(A,_,_),b(B,_,_)),Par,Low,Up) :- get_bounds2(less_equal,A,B,Par,Low,Up).
1655 ?get_geq_leq_bounds( greater(b(A,_,_),b(B,_,_)),Par,Low,Up) :- get_bounds2(greater,A,B,Par,Low,Up).
1656 get_geq_leq_bounds( less(b(A,_,_),b(B,_,_)),Par,Low,Up) :- get_bounds2(less,A,B,Par,Low,Up).
1657
1658 get_value_bounds(value(GS),Low,Up) :- is_interval_closure_or_integerset(GS,Low,Up). % recursive call
1659 % nonvar(GS), GS=global_set(ISET), get_integer_set_interval(ISET,Low,Up).
1660 get_value_bounds(interval(b(TLow,_,_),b(TUp,_,_)),Low,Up) :-
1661 integer_value(TLow,Low),
1662 integer_value(TUp,Up).
1663
1664 get_bounds2(greater_equal,identifier(Par),V,Par,X,inf) :- integer_value(V,X).
1665 get_bounds2(greater_equal,V,identifier(Par),Par,minus_inf,X) :- integer_value(V,X).
1666 get_bounds2(less_equal,identifier(Par),V,Par,minus_inf,X) :- integer_value(V,X).
1667 get_bounds2(less_equal,V,identifier(Par),Par,X,inf) :- integer_value(V,X).
1668 get_bounds2(greater,identifier(Par),V,Par,X1,inf) :- integer_value(V,X), kernel_objects:int_plus(int(X),int(1),int(X1)). %, X1 is X+1.
1669 get_bounds2(greater,V,identifier(Par),Par,minus_inf,X1) :- integer_value(V,X), kernel_objects:int_minus(int(X),int(1),int(X1)). %X1 is X-1.
1670 get_bounds2(less,V,identifier(Par),Par,X1,inf) :- integer_value(V,X), kernel_objects:int_plus(int(X),int(1),int(X1)). %X1 is X+1.
1671 get_bounds2(less,identifier(Par),V,Par,minus_inf,X1) :- integer_value(V,X),
1672 kernel_objects:int_minus(int(X),int(1),int(X1)). %X1 is X-1.
1673 % to do: add negation thereof ??
1674
1675 integer_value(V,_) :- var(V),!, print(var_integer_value(V)),nl,fail.
1676 integer_value(integer(X),R) :- !, R=X.
1677 integer_value(unary_minus(b(X,_,_)),R) :- !, integer_value(X,RM),
1678 number(RM), % if RM is not a number we could setup CLPFD constraint ?!
1679 R is -(RM).
1680 integer_value(minus(b(X,_,_),b(Y,_,_)),R) :- !, % some AST compilation rules generate X-1, X+1 ...
1681 integer_value(X,RMX),
1682 integer_value(Y,RMY),
1683 kernel_objects:int_minus(int(RMX),int(RMY),int(R)).
1684 integer_value(plus(b(X,_,_),b(Y,_,_)),R) :- !, % some AST compilation rules generate X-1, X+1 ...
1685 integer_value(X,RMX),
1686 integer_value(Y,RMY),
1687 kernel_objects:int_plus(int(RMX),int(RMY),int(R)).
1688 integer_value(value(V),R) :- !, V=int(R).
1689
1690 is_interval_closure(closure(Par,[integer],Pred),Low,Up) :-
1691 is_interval_closure_aux(Par,Pred,Low,Up).
1692 is_interval_closure(Par,[integer],Pred,Low,Up) :-
1693 is_interval_closure_aux(Par,Pred,Low,Up).
1694 is_interval_closure_aux(Par,Pred,Low,Up) :-
1695 is_member_closure(Par,[integer],Pred,integer,Set),
1696 is_interval_with_integer_bounds(Set,Low,Up).
1697 %is_interval_closure(closure_x(Par,[integer],Pred,_),Low,Up) :-
1698 % is_interval_closure(closure(Par,[integer],Pred),Low,Up).
1699
1700 is_interval_closure_body(Body,ID,Low,Up) :-
1701 is_member_closure([ID],[integer],Body,integer,Set),!,
1702 is_interval_with_integer_bounds(Set,Low,Up).
1703 is_interval_closure_body(Body,ID,Low,Up) :-
1704 ? is_geq_leq_interval_closure([ID],[integer],Body,Low,Up),
1705 number(Low), number(Up).
1706
1707 :- use_module(bsyntaxtree,[get_texpr_info/2,get_texpr_id/2]).
1708 % do a single check if we have interval, member or not-member closure, avoiding redundant checking
1709 % TO DO: move this and related predicates to closures module ?
1710 is_special_closure(_Ids,_Types,Pred,Result) :-
1711 get_texpr_info(Pred,Info),memberchk(prob_annotation(recursive(RId)),Info),!,
1712 Result = recursive_special_closure(RId).
1713 is_special_closure(Ids,Types,Pred,Result) :-
1714 ? is_memoization_closure(Ids,Types,Pred,MemoID),!,
1715 Result = memoization_closure(MemoID).
1716 is_special_closure([ID],[TYPE],b(PRED,_,_), Result) :-
1717 ( closures:is_member_closure_aux(PRED, ID,TYPE,SET) ->
1718 ( (TYPE=integer, is_interval_with_integer_bounds(SET,Low,Up)) ->
1719 Result = interval(Low,Up)
1720 ; Result = member_closure(ID,TYPE,SET))
1721 ; closures:is_not_member_closure_aux(PRED,ID,TYPE,SET) ->
1722 Result = not_member_closure(ID,TYPE,SET)
1723 ? ; (TYPE=integer,get_geq_leq_bounds(PRED,ID,Low,Up),number(Low), number(Up)) ->
1724 Result = interval(Low,Up)
1725 ).
1726
1727
1728 construct_interval_set(Low,Up,Res) :-
1729 Res = interval(b(value(int(Low)),integer,[]),
1730 b(value(int(Up)), integer,[])).
1731 is_interval_with_integer_bounds(X,L,U) :- var(X),!,
1732 add_internal_error('var arg: ',is_interval_with_integer_bounds(X,L,U)),fail.
1733 is_interval_with_integer_bounds(interval(b(TLOW,integer,_),b(TUP, integer,_)),Low,Up) :-
1734 integer_value(TLOW,Low), integer_value(TUP,Up).
1735
1736
1737 is_a_relation(relations(Domain,Range),Domain,Range,DCard,RCard,Card,Code) :- %% '<->'
1738 Code = (kernel_card_arithmetic:safe_mul(DCard,RCard,Exp), kernel_card_arithmetic:safe_pow2(Exp,Card)).
1739 is_a_relation(partial_function(Domain,Range),Domain,Range,DCard,RCard,Card,Code) :- %% '+->'
1740 Code = (kernel_card_arithmetic:safe_add_card(RCard,1,R1),kernel_card_arithmetic:safe_pown(R1,DCard,Card)).
1741 is_a_relation(total_function(Domain,Range),Domain,Range,DCard,RCard,Card,Code) :- %% '-->'
1742 Code = (kernel_card_arithmetic:safe_pown(RCard,DCard,Card)).
1743 is_a_relation(partial_bijection(Domain,Range),Domain,Range,DCard,RCard,Card,Code) :- %% '>+>>'
1744 Code = (kernel_card_arithmetic:partial_bijection_card(DCard,RCard,Card)).
1745 is_a_relation(total_bijection(Domain,Range),Domain,Range,DCard,RCard,Card,Code) :- %% '>->>'
1746 Code = (kernel_card_arithmetic:total_bijection_card(DCard,RCard,Card)).
1747 is_a_relation(total_injection(Domain,Range),Domain,Range,DCard,RCard,Card,Code) :- %% '>->'
1748 Code = (kernel_card_arithmetic:blocking_factorial_k(RCard,DCard,Card)).
1749 is_a_relation(partial_injection(Domain,Range),Domain,Range,DCard,RCard,Card,Code) :- %% '>+>'
1750 Code = (kernel_card_arithmetic:partial_injection_card(DCard,RCard,Card)).
1751 is_a_relation(total_surjection(Domain,Range),Domain,Range,DCard,RCard,Card,Code) :- %% '-->>'
1752 Code = (kernel_card_arithmetic:total_surjection_card(DCard,RCard,Card)).
1753 is_a_relation(partial_surjection(Domain,Range),Domain,Range,DCard,RCard,Card,Code) :- %% '+->>'
1754 Code = (kernel_card_arithmetic:partial_surjection_card(DCard,RCard,Card)).
1755 is_a_relation(total_relation(Domain,Range),Domain,Range,DCard,RCard,Card,Code) :- %% '<<->'
1756 Code = (kernel_card_arithmetic:total_relation_card(DCard,RCard,Card)).
1757 is_a_relation(surjection_relation(Domain,Range),Domain,Range,DCard,RCard,Card,Code) :- %% '<->>'
1758 % just swap args: card(A<->>B) = card(B<<->A)
1759 Code = (kernel_card_arithmetic:total_relation_card(RCard,DCard,Card)).
1760 % TO DO: total_surjection_relation <<->>
1761
1762
1763
1764 :- use_module(b_global_sets,[infinite_global_set/1]).
1765
1766 :- block is_infinite_global_set(-,?).
1767 is_infinite_global_set('NATURAL',integer).
1768 is_infinite_global_set('NATURAL1',integer).
1769 is_infinite_global_set('INTEGER',integer).
1770 is_infinite_global_set('FLOAT',real).
1771 is_infinite_global_set('REAL',real).
1772 is_infinite_global_set('STRING',string).
1773 is_infinite_global_set(G,global(G)) :- infinite_global_set(G).
1774
1775 %is_finite_integer_global_set('NAT').
1776 %is_finite_integer_global_set('NAT1').
1777 %is_finite_integer_global_set('INT').
1778
1779 % detects (certain) infinite explict sets
1780 is_infinite_explicit_set(X) :- var(X),!, add_internal_error(is_infinite_explicit_set,var(X)),fail.
1781 ?is_infinite_explicit_set(global_set(X)) :- is_infinite_global_set(X,_).
1782 is_infinite_explicit_set(freetype(X)) :- is_infinite_freetype(X).
1783 is_infinite_explicit_set(closure(Par,T,Body)) :- is_infinite_closure(Par,T,Body).
1784
1785 % detect some closure that we should definitely expand; even in SYMBOLIC mode or for ABSTRACT_CONSTANTS
1786 definitely_expand_this_explicit_set(Var) :- var(Var),!,fail.
1787 definitely_expand_this_explicit_set(closure(P,_T,B)) :-
1788 B = b(Body,_,_), definitely_expand(Body,P).
1789 % some lambda functions have small domain, but are very complicated to compute (test 1078, 1376)
1790 % hence the following is not sufficient:
1791 % ;is_small_specific_custom_set(closure(P,T,B),100), print(exp(T)),nl,translate:print_bexpr(B),nl,fail).
1792
1793 definitely_expand(Body,_) :- avl_mem_construct(Body,_).
1794 definitely_expand(exists(TEIDS,Body),P) :- P = [ID], TEIDS = [TEID], % TO DO: detect multiple ids
1795 % detect {res|#y.(y:AVL & res=Expr(y))} % test 1101
1796 Body = b(conjunct(b(Mem,pred,_),Eq),pred,_),
1797 Eq = b(equal(EqA,EqB),pred,_),
1798 avl_mem_construct(Mem,LHS), get_texpr_id(LHS,EID), get_texpr_id(TEID,EID),
1799 (get_texpr_id(EqA,ID) -> true ; get_texpr_id(EqB,ID)).
1800
1801 avl_mem_construct(member(LHS,RHS),LHS) :- RHS = b(value(V),_,_), nonvar(V), V=avl_set(_).
1802
1803 dont_expand_this_explicit_set(closure(P,T,B)) :- !,
1804 ? dont_expand_this_closure(P,T,B).
1805 dont_expand_this_explicit_set(S) :-
1806 is_infinite_or_very_large_explicit_set(S).
1807
1808 % true if we have a closure / global_set that should not be expanded
1809 % TO DO: we could detect finite (is_lambda_value_domain_closure) closures which contain infinite elements such as %p.(p : BOOL|%t.(t : NATURAL|t .. t + 7))
1810 dont_expand_symbolic_explicit_set(closure(P,T,B)) :- !,
1811 ? dont_expand_this_closure(P,T,B).
1812 dont_expand_symbolic_explicit_set(avl_set(_)) :- !,
1813 fail. % already expanded
1814 dont_expand_symbolic_explicit_set(S) :-
1815 is_infinite_or_very_large_explicit_set(S).
1816
1817
1818 ?dont_expand_this_explicit_set(closure(P,T,B),Limit) :- !, dont_expand_this_closure(P,T,B,Limit).
1819 dont_expand_this_explicit_set(S,_) :- is_infinite_or_very_large_explicit_set(S).
1820
1821 ?dont_expand_this_closure(P,T,B) :- dont_expand_this_closure(P,T,B,20000).
1822
1823 dont_expand_this_closure(P,T,B,_Limit) :-
1824 is_interval_closure_or_integerset(closure(P,T,B),Low,Up), !,
1825 % interval closures are quite efficient for certain manipulations
1826 (number(Low), number(Up)
1827 -> Size is Up+1-Low, Size>100 % another magic constant ; which value to choose ??
1828 ; true % we have a closure with inf/minus_inf or variables as bounds; in both cases keep the closure
1829 ).
1830 dont_expand_this_closure(_P,_T,b(_,_,INFO),_Limit) :-
1831 ? member(prob_annotation('SYMBOLIC'),INFO). % cf is_symbolic_closure in closures
1832 dont_expand_this_closure(P,T,B,Limit) :-
1833 is_infinite_or_very_large_closure(P,T,B,Limit).
1834 %% TODO: also prevent expansion of things like ff = %x.(x:STRING & REGEX_MATCH(x,"[a-z]+")=TRUE|TRUE)
1835
1836 is_converted_lambda_closure(_P,_T,b(_,_,INFO)) :-
1837 ? member(prob_annotation('LAMBDA'),INFO).
1838
1839 is_symbolic_closure_or_symbolic_mode(P,T,B) :-
1840 ? (is_symbolic_closure(P,T,B) -> true
1841 ; preference(convert_comprehension_sets_into_closures,true)
1842 % by default suppose closures should be dealt with symbolically
1843 ).
1844 /*
1845 % check both LAMBDA + not RECURSIVE
1846 is_converted_non_recursive_lambda_closure(_,_,b(_,_,INFO)) :- is_conv_lambda_nonrec(INFO).
1847 is_conv_lambda_nonrec([prob_annotation(A)|T]) :- !,
1848 (A='LAMBDA' -> \+ memberchk(prob_annotation('RECURSIVE'),T)
1849 ; A\='RECURSIVE' -> is_conv_lambda_nonrec(T)).
1850 is_conv_lambda_nonrec([_|T]) :- is_conv_lambda_nonrec(T). */
1851
1852
1853
1854 % a set that is so large that expanding it would probably cause problems
1855 is_infinite_or_very_large_explicit_set(S) :- is_infinite_or_very_large_explicit_set(S,20000).
1856
1857 :- use_module(inf_arith,[infgreater/2]).
1858
1859 is_infinite_or_very_large_explicit_set(X,_) :- var(X),!,print(var_is_infinite_check(X)),nl,fail.
1860 is_infinite_or_very_large_explicit_set(closure(P,T,B),Limit) :- !,
1861 % treat closure separately here; some special rules
1862 is_infinite_or_very_large_closure(P,T,B,Limit).
1863 is_infinite_or_very_large_explicit_set(avl_set(A),Limit) :- !, % we could compute log and use avl_height_less_than
1864 quick_avl_approximate_size(A,Size), Size >= Limit.
1865 is_infinite_or_very_large_explicit_set(X,Limit) :- % closures are checked above
1866 explicit_set_cardinality(X,Card),
1867 nonvar(Card),infgreater(Card,Limit).
1868
1869
1870 is_very_large_or_symbolic_closure(P,T,B,Limit) :-
1871 ? (is_symbolic_closure(P,T,B) -> true ; is_infinite_or_very_large_closure(P,T,B,Limit)).
1872 :- use_module(bsyntaxtree,[is_a_disjunct/3]).
1873 is_infinite_or_very_large_closure(P,T,B,Limit) :-
1874 is_a_disjunct(B,D1,D2), % Assumption: there is no card_for_specific_closure code for disjuncts
1875 !,
1876 (is_infinite_or_very_large_closure(P,T,D1,Limit) -> true
1877 ; is_infinite_or_very_large_closure(P,T,D2,Limit)).
1878 is_infinite_or_very_large_closure(Par,T,Body,Limit) :-
1879 is_closure1_value_closure(Par,T,Body,VAL),!,
1880 nonvar(VAL), % it could still be large or infinite
1881 (Limit>1 -> NLimit is Limit/2 ; NLimit = Limit), % reduce limit as closure1 usually blows up
1882 is_infinite_or_very_large_explicit_set(VAL,NLimit).
1883 is_infinite_or_very_large_closure(P,T,B,Limit) :-
1884 card_for_specific_closure3(Kind,P,T,B,Card,Code),
1885 ? on_enumeration_warning(call(Code),
1886 (debug_println(9,cannot_expand_specific_closure_for_card(Kind,Limit)),
1887 % see test 1519 for relevance
1888 Card=inf)), % assume it is large
1889 !,
1890 nonvar(Card),infgreater(Card,Limit).
1891
1892
1893 is_infinite_or_symbolic_closure(P,T,B) :-
1894 ? (is_symbolic_closure(P,T,B) -> true ; is_infinite_closure(P,T,B)).
1895 is_infinite_closure(P,T,B) :-
1896 is_a_disjunct(B,D1,D2), % Assumption: there is no card_for_specific_closure code for disjuncts
1897 !,
1898 (is_infinite_closure(P,T,D1) -> true ; is_infinite_closure(P,T,D2)).
1899 is_infinite_closure(Par,T,Body) :-
1900 is_closure1_value_closure(Par,T,Body,VAL),!, % TO DO: also check if closure1 is large this way
1901 nonvar(VAL), % if var: it could still be infinite !! TO DO fix
1902 is_infinite_explicit_set(VAL).
1903 is_infinite_closure(Par,T,Body) :-
1904 card_for_specific_closure(closure(Par,T,Body),Card,Code),
1905 ? call(Code), % TO DO: catch enumeration exceptions (see is_infinite_or_very_large_closure above)
1906 Card == inf. % TODO: instantiate inf before to avoid computing huge numbers
1907
1908
1909 :- use_module(memoization,[compute_memo_hash/2, get_stored_memo_expansion/3, store_memo_expansion/3]).
1910 /* transitive closure */
1911 closure1_for_explicit_set(avl_set(A),Res) :-
1912 preferences:preference(use_closure_expansion_memoization,true),!,
1913 compute_memo_hash(closure1_for_explicit_set(A),Hash),
1914 (get_stored_memo_expansion(Hash,closure1_for_explicit_set(A),StoredResult)
1915 -> Res = StoredResult
1916 ; closure1_for_explicit_set_direct(avl_set(A),Result),
1917 store_memo_expansion(Hash,closure1_for_explicit_set(A),Result),
1918 Res = Result
1919 ).
1920 closure1_for_explicit_set(avl_set(A),Res) :- closure1_for_explicit_set_direct(avl_set(A),Res).
1921
1922 % sometimes faster, but can also be considerably slower:
1923 %:- use_module(extrasrc(avl_ugraphs),[avl_transitive_closure/2]).
1924 %closure1_for_explicit_set_direct(avl_set(A),Res) :-
1925 % avl_transitive_closure(A,TC),
1926 % construct_avl_set(TC,Res).
1927 closure1_for_explicit_set_direct(avl_set(A),Res) :-
1928 avl_domain(A,AList),
1929 iterate_closure(AList,A,A,IterationRes),
1930 construct_avl_set(IterationRes,Res).
1931
1932 /* transitive closure starting from some initial set */
1933 /* not sure if we should do this:
1934 closure1_for_explicit_set_from(avl_set(A),StartFrom,Res) :-
1935 preferences:preference(use_closure_expansion_memoization,true),
1936 compute_memo_hash(closure1_for_explicit_set(A),Hash),
1937 stored_expansion(Hash,closure1_for_explicit_set(A),StoredResult),!,
1938 domain_restriction_explicit_set(StartFrom,StoredResult,Res). */
1939 % StartFrom can be avl_set(empty)
1940 closure1_for_explicit_set_from(avl_set(A),StartFrom,Res) :-
1941 avl_domain(A,AList),
1942 filter_start_relation(AList,StartFrom,FAList),
1943 (FAList = [] -> Res=[]
1944 ; convert_to_avl(FAList,avl_set(Start)),
1945 iterate_closure(FAList,A,Start,IterationRes),
1946 construct_avl_set(IterationRes,Res)).
1947 filter_start_relation([],_,[]).
1948 filter_start_relation([(X,Y)|T],StartSet,Res) :-
1949 (element_of_custom_set(X,StartSet) -> Res = [(X,Y)|RT] ; Res=RT),
1950 filter_start_relation(T,StartSet,RT).
1951
1952 iterate_closure([],_,Res,Res).
1953 iterate_closure([(X,Y)|T],InitialRelation,Relation,Res) :-
1954 %(Key = (X,Y) -> true ; add_error_and_fail(iterate_closure,'Not a relation element: ',Key)),
1955 add_tuples(X,Y,InitialRelation,Relation,NewRelation,AddedTuples),
1956 % better: do added tuples straight away ?
1957 iterate_closure(T,InitialRelation,NewRelation,NewRelation2),
1958 iterate_closure(AddedTuples,InitialRelation,NewRelation2,Res).
1959
1960 add_tuples(X,Y,AVL,AVLClosureSoFar,Res,NewTuples) :-
1961 findall((X,Z), (avl_fetch_pair(Y,AVL,Z), %ok instead of safe_avl_member((Y,Z),AVL),; Y in AVL form, Z var
1962 %Y \= Z, % self-loops are already in initial AVLClosure, this will never add a new pair
1963 % if we use AVLClosureSoFar instead of AVL: considerably slower
1964 \+ avl_fetch((X,Z),AVLClosureSoFar)), NewTuples),
1965 add_to_avl(NewTuples,AVLClosureSoFar,Res).
1966
1967 :- use_module(bsyntaxtree,[create_negation/2]).
1968 % SUBSET_OF <:
1969 % subset_of_explicit_set: returns code to be executed if this subset check can be done in an optimized way
1970 % TO DO: add strict_subset <<: + more cases, e.g., interval & avl_set, ...
1971 % interval & interval already handled in check_subset_of_global_sets
1972 subset_of_explicit_set(AVL,Closure,Code,_WF) :- nonvar(AVL),AVL=avl_set(A),
1973 is_interval_closure_or_integerset(Closure,Low,Up),!,
1974 Code=custom_explicit_sets:check_avl_in_interval(A,Low,Up).
1975 subset_of_explicit_set(Closure,CS,Code,WF) :- nonvar(CS), is_custom_explicit_set(CS),
1976 is_interval_closure_or_integerset(Closure,Low,Up),!,
1977 Code=custom_explicit_sets:check_interval_in_custom_set(Low,Up,CS,WF).
1978 subset_of_explicit_set(AVL1,AVL2,Code,_WF) :-
1979 nonvar(AVL1),AVL1=avl_set(A1), nonvar(AVL2),AVL2=avl_set(A2),!,
1980 Code = custom_explicit_sets:check_avl_subset(A1,A2).
1981 subset_of_explicit_set(C1,AVL2,Code,_WF) :- nonvar(C1),
1982 simple_finite_set(AVL2),
1983 is_simple_infinite_set(C1),!, % infinite set cannot be subset of finite one
1984 Code = fail.
1985 subset_of_explicit_set(C1,C2,Code,WF) :- nonvar(C1),
1986 is_cartesian_product_closure(C1,S11,S12),!,
1987 ((S11==[] ; S12==[]) -> Code=true /* we always have a subset */
1988 ; is_definitely_not_empty(S11),
1989 is_definitely_not_empty(S12), % only use optimisation if we know S11, S12 to be non-empty
1990 nonvar(C2), is_cartesian_product_closure(C2,S21,S22),
1991 Code = (kernel_objects:check_subset_of_wf(S11,S21,WF),
1992 kernel_objects:check_subset_of_wf(S12,S22,WF) )
1993 ).
1994 subset_of_explicit_set(Set1,Set2,Code,WF) :-
1995 nonvar(Set2),is_cartesian_product_closure(Set2,S21,S22),!,
1996 % TO DO: maybe don't do this if Set1 is avl_set ??
1997 debug_println(9,'Applying C <: S21*S22 <=> C : S21 <-> S22'),
1998 Code = bsets_clp:relation_over_wf(Set1,S21,S22,WF).
1999 subset_of_explicit_set(C1,C2,Code,WF) :- nonvar(C1), nonvar(C2),
2000 ? is_powerset_closure(C1,Constructor1,Set1),
2001 ? is_powerset_closure(C2,Constructor2,Set2),
2002 subset_constructor(Constructor1,Constructor2,R),
2003 !,
2004 Code = (R=pred_true, kernel_objects:check_subset_of_wf(Set1,Set2,WF)).
2005 subset_of_explicit_set(Set1,Set2,Code,WF) :- %print_term_summary(subset(Set1,Set2)),nl,
2006 get_subset_counter_example_closure(Set1,Set2,NewP,NewT,NewB,DefResult), % {x|P1} <: {x|P2} <=> {x|P1 & not(P2)}={}
2007 !,
2008 (DefResult==definitely_non_empty -> Code = fail
2009 ; Code = custom_explicit_sets:is_empty_closure_wf(NewP,NewT,NewB,WF)).
2010
2011 % get closure representing the counter examples to Set1 <: Set2: i.e. elements in Set1 and not in Set2
2012 % used for symbolic treatment of subset, not_subset and test_subset
2013 % note: in case this fails subset_test1 will expand Set1
2014 % DefiniteResultFlag may return the information that the generated closure is definitely not empty
2015 get_subset_counter_example_closure(Set1,Set2,NewP,NewT,NewB,DefiniteResultFlag) :-
2016 get_closure(Set1,P1,T1,B1),
2017 get_subset_counter_aux(P1,T1,B1,Set2,NewP,NewT,NewB,DefiniteResultFlag).
2018
2019 get_subset_counter_aux(P1,T1,B1,Set2,NewP,NewT,NewB,DefRes) :-
2020 nonvar(Set2), is_definitely_finite(Set2), !,
2021 create_couple_term(P1,T1,P1Couple), % can currently still fail for more than 2 args
2022 ? (is_symbolic_closure(P1,T1,B1) -> DefRes=unknown
2023 ; is_infinite_closure(P1,T1,B1) -> DefRes=definitely_non_empty
2024 % return a flag that tells that there are definitely counter examples as Set2 is finite
2025 ),
2026 NewP=P1, NewT=T1,
2027 % {x|P1} <: {a1,...} <=> {x|P1 & x /: {a1,...}}={}
2028 get_texpr_type(P1Couple,CoupleType1),
2029 VSet2 = b(value(Set2),set(CoupleType1),[]),
2030 create_texpr(not_member(P1Couple,VSet2),pred,[],NegPred2),
2031 conjunct_predicates([B1,NegPred2],NewB).
2032 get_subset_counter_aux(P1,T1,B1,Set2,NewP,NewT,NewB,unknown) :-
2033 get_closure(Set2,P2,T2,B2),
2034 (is_infinite_or_symbolic_closure(P1,T1,B1) -> true
2035 ), % should we also allow ?? ; is_symbolic_closure(P2,T2,B2)),
2036 % not necessary maybe as subset_test1 only expands Set1
2037 % {x|P1} <: {x|P2} <=> {x|P1 & not(P2)}={}
2038 unify_closure_predicates(P1,T1,B1, P2,T2,B2 , NewP,NewT, NewB1,NewB2),
2039 create_negation(NewB2,NegNewB2),
2040 bsyntaxtree:conjunct_predicates([NewB1,NegNewB2],NewB).
2041
2042
2043 % get_closure or infinite global set:
2044 get_closure(V,_,_,_) :- var(V),!,fail.
2045 get_closure(closure(P,T,B),P,T,B).
2046 get_closure(global_set(G),P,T,B) :- is_infinite_global_set(G,Type),!,
2047 ID = '_zzzz_unary',
2048 TID = b(identifier(ID),Type,[]),
2049 TSet = b(value(global_set(G)),set(Type),[]),
2050 P = [ID], T=[Type], B= b(member(TID,TSet),pred,[prob_annotation('SYMBOLIC')]).
2051
2052
2053 subset_constructor(X,X,R) :- !,R=pred_true.
2054 subset_constructor(fin1,_,R) :- !,R=pred_true.
2055 subset_constructor(fin,pow,R) :- !,R=pred_true.
2056 subset_constructor(X,Y,R) :- strict_subset_constructor(X,Y),!,R=pred_true.
2057 subset_constructor(X,Y,R) :- strict_subset_constructor(Y,X),!,R=pred_false.
2058 % pow1,fin1 ; pow,fin ; and pow1,fin only ok if type infinite
2059 strict_subset_constructor(pow1,pow).
2060 strict_subset_constructor(fin1,fin).
2061
2062 % more rules for <->, +->, ...
2063 % what if same closure: then we also know it is a subset
2064
2065 % to be completed:
2066 % code that instantiates R to subset or not_subset, may have to delay
2067 test_subset_of_explicit_set(Set1,_,_,_,_) :- var(Set1),!,fail.
2068 test_subset_of_explicit_set(avl_set(A),Closure,R,WF,Code) :-
2069 is_interval_closure_or_integerset(Closure,Low,Up),!,
2070 Code=custom_explicit_sets:test_avl_in_interval(A,Low,Up,R,WF).
2071 test_subset_of_explicit_set(_,Set2,_,_,_) :- var(Set2),!,fail.
2072 test_subset_of_explicit_set(avl_set(A1),avl_set(A2),R,_WF,Code) :-
2073 Code = (custom_explicit_sets:check_avl_subset(A1,A2) -> R=pred_true ; R=pred_false).
2074 test_subset_of_explicit_set(global_set(G),Set2,R,_WF,Code) :-
2075 ? is_infinite_global_set(G,_), % TODO: we could extend this to other infinite sets
2076 is_definitely_finite(Set2), !,
2077 Code =(R=pred_false).
2078 test_subset_of_explicit_set(Set1,Set2,Res,WF,Code) :-
2079 get_subset_counter_example_closure(Set1,Set2,NewP,NewT,NewB,DefResult), % {x|P1} <: {x|P2} <=> {x|P1 & not(P2)}={}
2080 !,
2081 (DefResult==definitely_non_empty -> Code = (Res=pred_false)
2082 ; Code = custom_explicit_sets:test_empty_closure_wf(NewP,NewT,NewB,Res,WF)
2083 ).
2084 % TO DO: add is_cartesian_product_closure case
2085 is_definitely_finite([]).
2086 is_definitely_finite(avl_set(_)).
2087
2088 :- use_module(kernel_equality,[test_interval_subset_wf/6]).
2089
2090 :- public test_avl_in_interval/5. % used in test_subset_of_explicit_set
2091 % see also check_avl_in_interval(A,Low,Up), check_avl_not_in_interval(A,Low,Up).
2092 test_avl_in_interval(A,Low2,Up2,Res,WF) :-
2093 avl_min(A,int(Min)), % not needed if Low2==minus_inf
2094 avl_max(A,int(Max)), % not needed if Up2==inf
2095 test_interval_subset_wf(Min,Max,Low2,Up2,Res,WF).
2096
2097 % ----------------------
2098
2099 is_definitely_not_empty(X) :- nonvar(X),
2100 (X=[_|_] -> true
2101 ; is_custom_explicit_set(X), is_non_empty_explicit_set(X)).
2102
2103 % check if defnitely not empty and provide a witness
2104 is_definitely_not_empty_with_witness(X,El) :- nonvar(X),
2105 get_witness_element(X,El).
2106 get_witness_element([H|_],H).
2107 get_witness_element(avl_set(node(H,_True,_,_,_)),H).
2108 % TO DO: add global_set(GS),...
2109
2110 check_avl_subset(A1,A2) :- avl_max(A1,Max1), avl_max(A2,Max2),
2111 Max1@>Max2,!, % then A1 cannot be subset of A2
2112 fail.
2113 check_avl_subset(A1,A2) :-
2114 avl_min(A1,Cur1), avl_min(A2,Cur2),
2115 check_avl_subset_loop(Cur1,A1,Cur2,A2).
2116 check_avl_subset_loop(Cur1,AVL1,Cur2,AVL2) :-
2117 (Cur1 @> Cur2 -> avl_next(Cur2,AVL2,NC2), check_avl_subset_loop(Cur1,AVL1,NC2,AVL2)
2118 ; Cur1=Cur2 -> (avl_next(Cur1,AVL1,NC1)
2119 -> avl_next(Cur2,AVL2,NC2),
2120 check_avl_subset_loop(NC1,AVL1,NC2,AVL2)
2121 ; true /* all objects of AVL1 inspected */)
2122 ).
2123
2124 % check A <: Low..Up
2125 check_avl_in_interval(A,Low,Up) :- % does not have to delay: if we have minus_inf & inf they will be known straightaway
2126 (Low==minus_inf -> true
2127 ; avl_min(A,Min), kernel_objects:less_than_equal(int(Low),Min)),
2128 (Up==inf -> true
2129 ; avl_max(A,Max), kernel_objects:less_than_equal(Max,int(Up))).
2130
2131 % some experiments:
2132 % 1..x <: {1,2,3,5} & x>1 & !y.(y>x & y<10 => 1..y /<: {1,2,3,5})
2133 % {ss | ss <: 0..0 & ss /= {} & ss=0..max(ss)}
2134 % {ss | ss <: 0..0 & ss /= {} & ss=min(ss)..max(ss)} // does not work yet
2135 % x..x+1 <: {0,2,3,5}
2136 % x..x+2 <: {0,2,3,5} // does not work yet
2137 % r = {x|x:1..400 & x mod 3/=0} & res={v|v:0..1300 & v..v+1 <: r}
2138 % check Low..Up <: Avl
2139
2140 check_interval_in_custom_set(Low,Up,CS,WF) :-
2141 Low \== minus_inf,
2142 Up \== inf,
2143 b_interpreter_check:check_arithmetic_operator('<=',Low,Up,LeqRes),
2144 (var(LeqRes) -> get_binary_choice_wait_flag_exp_backoff(16,check_interval_in_custom_set,WF,WF2) ; true),
2145 check_interval_in_custom_set_aux(LeqRes,Low,Up,CS,WF2).
2146
2147 :- block check_interval_in_custom_set_aux(-,?,?,?,-).
2148 check_interval_in_custom_set_aux(pred_true,Low,Up,CS,_WF2) :-
2149 element_of_custom_set_wf(int(Low),CS,WF),
2150 element_of_custom_set_wf(int(Up),CS,WF),
2151 interval_in_avl_block(Low,Up,CS,WF).
2152 check_interval_in_custom_set_aux(pred_false,_Low,_Up,_CS,_WF2). % Interval is empty; but infinitely many solutions for Low and Up exist in principle
2153
2154 :- block interval_in_avl_block(-,?,?,?), interval_in_avl_block(?,-,?,?).
2155 interval_in_avl_block(Low,Up,CS,WF) :-
2156 Low1 is Low+1, interval_in_avl_loop(Low1,Up,CS,WF).
2157 interval_in_avl_loop(Low,Up,_CS,_WF) :- Low>=Up,!. % Lower bound and upper bound already checked
2158 interval_in_avl_loop(Low,Up,CS,WF) :-
2159 element_of_custom_set_wf(int(Low),CS,WF), L1 is Low+1,
2160 interval_in_avl_loop(L1,Up,CS,WF).
2161
2162
2163 :- public not_check_avl_subset/2. % used in not_subset_of_explicit_set_aux
2164 not_check_avl_subset(A1,A2) :- \+ check_avl_subset(A1,A2).
2165
2166 not_subset_of_explicit_set(S1,S2,Code,WF) :- nonvar(S1),
2167 ? not_subset_of_explicit_set_aux(S1,S2,Code,WF).
2168 not_subset_of_explicit_set_aux(avl_set(A),Closure,Code,_WF) :-
2169 is_interval_closure_or_integerset(Closure,Low,Up),!,
2170 Code=custom_explicit_sets:check_avl_not_in_interval(A,Low,Up).
2171 not_subset_of_explicit_set_aux(avl_set(A1),AVL2,Code,_WF) :-
2172 nonvar(AVL2),AVL2=avl_set(A2),
2173 Code = custom_explicit_sets:not_check_avl_subset(A1,A2).
2174 not_subset_of_explicit_set_aux(CS,AVL,Code,_WF) :-
2175 ? is_simple_infinite_set(CS),
2176 % TO DO: provide code for interval/NAT/INT /<: AVL
2177 simple_finite_set(AVL),
2178 !,
2179 Code = true. % G cannot be subset of finite set
2180 not_subset_of_explicit_set_aux(C1,C2,Code,WF) :- is_cartesian_product_closure(C1,S11,S12),
2181 ((S11==[] ; S12==[]) -> Code=fail /* we always have a subset */
2182 ; is_definitely_not_empty(S11),
2183 is_definitely_not_empty(S12), % only use optimisation if we know S11, S12 to be non-empty
2184 nonvar(C2), is_cartesian_product_closure(C2,S21,S22),
2185 Code = (kernel_objects:not_both_subset_of(S11,S12, S21,S22, WF))
2186 ), !.
2187 not_subset_of_explicit_set_aux(C1,C2,Code,WF) :- nonvar(C2),
2188 ? is_powerset_closure(C1,Constructor1,Set1),
2189 ? is_powerset_closure(C2,Constructor2,Set2),
2190 subset_constructor(Constructor1,Constructor2,R),!,
2191 Code = (R=pred_false -> true ; kernel_objects:not_subset_of_wf(Set1,Set2,WF)).
2192 not_subset_of_explicit_set_aux(Set1,Set2,Code,WF) :-
2193 get_subset_counter_example_closure(Set1,Set2,NewP,NewT,NewB,DefResult), % {x|P1} <: {x|P2} <=> {x|P1 & not(P2)}={}
2194 !,
2195 (DefResult==definitely_non_empty -> Code = true
2196 ; Code = custom_explicit_sets:is_non_empty_closure_wf(NewP,NewT,NewB,WF)
2197 ).
2198
2199
2200 :- public check_avl_not_in_interval/3. % used in not_subset_of_explicit_set_aux
2201 :- block check_avl_not_in_interval(?,-,?). % TO DO: use non-blocking version, minus_inf, and inf set directly
2202 check_avl_not_in_interval(A,Low,Up) :- avl_min(A,int(Min)),
2203 check_avl_not_in_interval4(Low,Up,A,Min).
2204
2205 check_avl_not_in_interval4(Low,_Up,_A,Min) :- Low \== minus_inf, Min < Low,!.
2206 check_avl_not_in_interval4(_Low,Up,A,_Min) :-
2207 Up \== inf, avl_max(A,Max),
2208 kernel_objects:less_than(int(Up),Max). % Up could still be a variable
2209
2210
2211 % checks for simple infinite sets, without Cartesian Product, ... decomposition
2212 ?is_simple_infinite_set(global_set(X)) :- !, is_infinite_global_set(X,_).
2213 is_simple_infinite_set(CS) :- is_interval_closure_or_integerset(CS,Low,Up), infinite_interval(Low,Up).
2214
2215 simple_finite_set(AVL) :- nonvar(AVL), (AVL=avl_set(_) -> true ; AVL = []).
2216
2217 % IMAGE [.]
2218 image_for_id_closure(closure(Par,Types,Body),Set,Res) :-
2219 is_full_id_closure(Par,Types,Body),!,
2220 Res=Set.
2221
2222 image_for_explicit_set(closure(Par,Types,Body),Set,Res,WF) :-
2223 image_for_closure(Par,Types,Body,Set,Res,WF).
2224 image_for_explicit_set(avl_set(A),Set,Res,WF) :- nonvar(Set),
2225 image_for_explicit_avl_set(A,Set,Res,WF).
2226
2227
2228 image_for_closure(Par,Types,Body,Set,Res,_WF) :-
2229 is_id_closure_over(Par,Types,Body,ID_Domain,Full),!,
2230 (Full=true -> Res=Set ; kernel_objects:intersection(ID_Domain,Set,Res)).
2231 % infinite function case dealt with in image1 in bsets_clp
2232 % TO DO: other closure(); Maybe special case if Set is an interval ?
2233 image_for_closure(Par,Types,Body,Set,Res,WF) :-
2234 is_closure1_value_closure(Par,Types,Body,VAL), % TODO: also detect reflexive closure, iteration (iterate(rel,k))
2235 % compute closure1(VAL)[Set]
2236 bsets_clp:image_for_closure1_wf(VAL,Set,Res,WF).
2237
2238 is_closure1_value_closure(Par,Types,Body,VAL) :-
2239 is_member_closure(Par,Types,Body,couple(A,A),MemSET), nonvar(MemSET),
2240 MemSET = closure(V), % this is the closure1 B operator !
2241 nonvar(V), V=b(value(VAL),_,_).
2242
2243 image_for_explicit_avl_set(A,Set,Res,_WF) :- % Set is nonvar
2244 is_interval_closure_or_integerset(Set,From1,To1),!,
2245 % Note: if From1, To1 not yet known we will block and not revert to other image calculation code
2246 % Important e.g. for performance of San Juan (AdaptedBModelPropCheck/acs_as_env_cfg_ipart.mch)
2247 %we used to check for: ground(From1),ground(To1),
2248 interval_image_for_explicit_avl_set(From1,To1,A,Set,Res).
2249 image_for_explicit_avl_set(A,Set,Res,WF) :-
2250 ? \+ bsets_clp:keep_symbolic(Set), % in this case we fall back to treatment in bsets_clp (image1)
2251 expand_custom_set_to_list_gg(Set,ESet,GG,image_for_explicit_avl_set),
2252 empty_avl(Empty),
2253 (GG=guaranteed_ground -> image_explicit_ground(ESet,A,Empty,Res,WF)
2254 ; image_explicit(ESet,A,Empty,Res,WF)).
2255
2256 :- block interval_image_for_explicit_avl_set(-,?,?,?,?),
2257 interval_image_for_explicit_avl_set(?,-,?,?,?).
2258 interval_image_for_explicit_avl_set(From1,To1,_A,_Set,Res) :-
2259 number(From1), number(To1), From1>To1,!,
2260 kernel_objects:empty_set(Res).
2261 interval_image_for_explicit_avl_set(From1,To1,A,_Set,Res) :-
2262 findall(Image-true, avl_image_interval(From1,To1, A,Image),ImageList),
2263 normalised_list_to_avl(ImageList,ImageAvl),
2264 ? equal_object(ImageAvl,Res).
2265
2266
2267 %! singleton_set(+Set,-Element).
2268 singleton_set(X,_) :- var(X),!,fail.
2269 singleton_set([H|T],R) :- T==[], R=H.
2270 singleton_set(avl_set(node(Y,_,_,empty,empty)),Y). % same as is_one_element_custom_set
2271
2272 is_one_element_custom_set(avl_set(node(Y,_,_,empty,empty)),Y).
2273 is_one_element_avl(node(Y,_,_,empty,empty),Y).
2274
2275 % requires El to be ground
2276 construct_one_element_custom_set(El,avl_set(AVL)) :-
2277 empty_avl(E),avl_store(El,E,true,AVL).
2278
2279 construct_avl_set(Avl,Res) :- empty_avl(Avl) -> Res = [] ; Res = avl_set(Avl).
2280
2281 :- block image_explicit(-,?,?,?,?).
2282 image_explicit([],_,Acc,Res,WF) :- !,
2283 construct_avl_set(Acc,AVLS),
2284 ? kernel_objects:equal_object_wf(Res,AVLS,image_explicit,WF).
2285 image_explicit([D1|T],AVLRelation,In,Out,WF) :- !,
2286 ground_value_check(D1,G1),
2287 ((var(T);T==[]) % TO DO: see below, make propagation also interesting in other circumstances
2288 -> must_be_in_domain_check(G1,D1,T,AVLRelation,In,Out,WF)
2289 ; true),
2290 image_explicit_aux(G1,D1,AVLRelation,T,In,Out,WF).
2291 image_explicit(Set,_,_,_,_) :- add_error_and_fail(image_explicit,'Unknown set: ',Set).
2292
2293 % a version of image_explicit where the list is guaranteed to be ground
2294 image_explicit_ground([],_,Acc,Res,WF) :- !,
2295 construct_avl_set(Acc,AVLS),
2296 kernel_objects:equal_object_wf(Res,AVLS,image_explicit,WF).
2297 image_explicit_ground([D1|T],AVLRelation,In,Out,WF) :- !,
2298 image_explicit_aux_ground(D1,AVLRelation,T,In,Out,WF).
2299 image_explicit_ground(Set,_,_,_,_) :- add_error_and_fail(image_explicit_ground,'Unknown set: ',Set).
2300
2301 :- block must_be_in_domain_check(-,?,?,?,?,-,?),
2302 must_be_in_domain_check(-,?,-,?,?,?,?).
2303 % if result requires at least one more element, then D must be in domain of Relation
2304 % ensures that we get a domain for j in x = {1|->2,2|->4, 4|->8} & x[{j}]={8}
2305 % we could even propagate using inverse of AVLRelation ?!
2306 must_be_in_domain_check(GroundD,D,T,AVLRelation,In,Out,WF) :-
2307 T==[], % apart from D, there are no more elements to be added
2308 var(GroundD), % otherwise we already have a value for D
2309 delta_witness(In,Out,Witness), % obtain at least one value that D must map to
2310 !,
2311 quick_propagation_element_information(avl_set(AVLRelation),(D,Witness),WF,_). % Witness avoids pending co-routines
2312 % TO DO: we could check that *all* elements of Out have this value
2313 % TO DO: below we could check that In is a subset of Out; e.g., for x = %i.(i:1..10|i+i) & x[{5,j,k}]={16,11}; we could also check that Out is subset of range of relation
2314 must_be_in_domain_check(_,_D,_T,_,_In,_Out,_). % :- print(must_be(D,T,In,Out)),nl.
2315
2316 % provide, if possible, a witness element in Out not in In
2317 delta_witness(In,Out,_Witness) :- (var(In) ; var(Out)),!,fail.
2318 %delta_witness(empty,Out,Witness) :- is_definitely_not_empty_with_witness(Out,Witness).
2319 delta_witness(In,Out,Witness) :-
2320 is_custom_explicit_set(Out,delta_witness),
2321 difference_of_explicit_set(Out,avl_set(In),Diff), % could be expensive to compute !? delay ? print(delta(Diff)),nl,
2322 is_definitely_not_empty_with_witness(Diff,Witness).
2323
2324
2325 :- block image_explicit_aux(-,?,?, ?,?,?,?). % we know that D1 is ground
2326 image_explicit_aux(_,D1,AVLRelation,T,In,Out,WF) :-
2327 all_images(D1,AVLRelation,NewImages), % compute AVLRelation[{D1}]
2328 add_to_avl(NewImages,In,In2),
2329 ? image_explicit(T,AVLRelation,In2,Out,WF).
2330 image_explicit_aux_ground(D1,AVLRelation,T,In,Out,WF) :-
2331 all_images(D1,AVLRelation,NewImages), % compute AVLRelation[{D1}]
2332 add_to_avl(NewImages,In,In2),
2333 image_explicit_ground(T,AVLRelation,In2,Out,WF).
2334
2335 all_images(From,AVLRelation,Images) :-
2336 findall(AY,avl_member_pair_arg1_ground(From,AY,AVLRelation),Images). % we know From ground and AY free variable
2337 % findall(AY,safe_avl_member_pair(From,AY,AVLRelation),Images). %
2338
2339 % compute relational composition ( ; ) if second arg is an AVL set
2340 % TO DO: add support for infinite closures; avoid expanding them [currently handled by symbolic composition in bsets_clp]
2341 rel_composition_for_explicit_set(Rel1,Rel2,Comp) :- nonvar(Rel2),
2342 Rel2=avl_set(A2), % TO DO: see if we can maybe convert Rel2 to AVL ?
2343 % \+ bsets_clp:keep_symbolic(Rel1), check already done in bsets
2344 expand_custom_set_to_list_gg(Rel1,Relation1,GG,rel_composition_for_explicit_set),
2345 empty_avl(In),
2346 (GG=guaranteed_ground
2347 -> rel_avl_compose2_ground(Relation1,A2,In,Comp)
2348 ; rel_avl_compose2(Relation1,A2,In,Comp)).
2349
2350 :- block rel_avl_compose2(-,?,?,?).
2351 rel_avl_compose2([],_,In,Res) :- construct_avl_set(In,A),
2352 equal_object(Res,A,rel_avl_compose2). % as we delay; we need to use equal_object at the end
2353 rel_avl_compose2([(X,Y)|T],A2,In,Out) :-
2354 when((ground(X),ground(Y)),
2355 (all_image_pairs_ground(X,Y,A2,ImagePairs),
2356 add_to_avl(ImagePairs,In,In2),
2357 rel_avl_compose2(T,A2,In2,Out))).
2358
2359 % a version where argument is guaranteed to be ground; no when-ground checks
2360 rel_avl_compose2_ground([],_,In,Res) :- construct_avl_set(In,A),
2361 equal_object(Res,A,rel_avl_compose2). % as we delay; we need to use equal_object at the end
2362 rel_avl_compose2_ground([(X,Y)|T],A2,In,Out) :-
2363 all_image_pairs_ground(X,Y,A2,ImagePairs),
2364 add_to_avl(ImagePairs,In,In2),
2365 rel_avl_compose2_ground(T,A2,In2,Out).
2366
2367 %all_image_pairs(From,To,AVLRelation,ImagePairs) :-
2368 % findall((From,AY),safe_avl_member_pair(To,AY,AVLRelation),ImagePairs).
2369 all_image_pairs_ground(From,To,AVLRelation,ImagePairs) :-
2370 findall((From,AY),avl_member_pair_arg1_ground(To,AY,AVLRelation),ImagePairs).
2371 % To: already in AVL format; AY is variable -> we could use avl_fetch_pair directly : findall((From,AY),avl_fetch_pair(To,AVLRelation,AY),ImagePairs).
2372
2373 /* succeeds if it can compute domain by some clever way */
2374 domain_of_explicit_set_wf(global_set(GS),_R,_) :- !,
2375 add_error_and_fail(domain_of_explicit_set_wf,'Cannot compute domain of global set: ',GS).
2376 domain_of_explicit_set_wf(freetype(GS),_R,_) :- !,
2377 add_error_and_fail(domain_of_explicit_set_wf,'Cannot compute domain of freetype: ',GS).
2378 domain_of_explicit_set_wf(avl_set(A),Res,_) :- !,
2379 domain_of_avl_set(A,Res).
2380 domain_of_explicit_set_wf(C,R,WF) :- dom_for_specific_closure(C,Dom,_,WF),!,
2381 Dom=R.
2382 domain_of_explicit_set_wf(C,R,_) :-
2383 ? dom_symbolic(C,CC),!,
2384 R=CC.
2385 domain_of_explicit_set_wf(closure(P,T,B),Res,WF) :-
2386 % does not seem to be reached, as dom_symbolic now seems to cover all cases
2387 expand_custom_set_wf(closure(P,T,B),EC,domain_of_explicit_set,WF),
2388 domain_of_list_blocking(EC,R),
2389 normalised_list_to_avl_when_ground(R,Res).
2390
2391 % avl tree is a relation with an integer domain
2392 %avl_integer_domain(node((int(_From),_KeyTo),_True,_,_L,_R)).
2393
2394 % the first clause is in principle faster
2395 % but we don't gain time compared to treatment in second clause; we just avoid building up the domain list
2396 %domain_of_avl_set(A,Res) :- avl_integer_domain(A),
2397 % \+ avl_tools:avl_height_less_than(A,10), % try and detect interval if height >= 10
2398 % avl_is_pf_with_interval_domain(A,First,Last),!,
2399 % construct_interval_closure(First,Last,Res).
2400 domain_of_avl_set(A,Res) :-
2401 avl_domain(A,EC), % -> expand_custom_set(avl_set(A),EC),
2402 domain_of_sorted_list(EC,SizeRes,R), % size of list can be smaller than A if we have a relation
2403 (SizeRes=size_res(Size,int(Last)), R=[int(First)-true|_],
2404 Size>1000,
2405 Size is Last+1-First % we have an interval; quite common that we have functions with intervals as domain
2406 -> debug_println(19,constructing_interval_for_domain(First,Last)),
2407 construct_interval_closure(First,Last,Res)
2408 ; ord_list_to_avlset(R,Res,domain)
2409 ).
2410
2411 % check if an AVL tree represents a function with an interval domain
2412 %avl_is_pf_with_interval_domain(AVL,Min,Max) :-
2413 % avl_min(AVL,(int(Min),_)),avl_max(AVL,(int(Max),_)),
2414 % Size is 1+Max-Min, avl_size_possible(AVL,Size),
2415 % is_avl_partial_function(AVL),
2416 % % now check real size
2417 % avl_size(AVL,Size).
2418
2419 % check if an avl represents a set of integers:
2420 avl_integer_set(node(int(_TOP),_True,_,_L,_R)).
2421
2422 % check if an avl set is an interval:
2423 avl_is_interval(AVL,Min,Max) :-
2424 avl_integer_set(AVL),
2425 avl_min(AVL,int(Min)),avl_max(AVL,int(Max)),
2426 Size is 1+Max-Min,
2427 avl_size_possible(AVL,Size),
2428 avl_size(AVL,Size).
2429
2430
2431
2432 :- use_module(bsyntaxtree,[create_typed_id/3]).
2433 dom_symbolic(closure(Paras,Types,Pred), Res) :-
2434 expand_pair_closure(Paras,Types,Pred,[X,Y],[TX,TY],NewPred),
2435 !, % single argument which is a pair
2436 % simply call code for range ; inverting arguments
2437 bsyntaxtree:check_used_ids_in_ast(Pred),
2438 bsyntaxtree:check_used_ids_in_ast(NewPred),
2439 ran_symbolic_closure(Y,[X],TY,[TX],NewPred,Res).
2440 dom_symbolic(closure(Paras,Types,Pred), Res) :-
2441 append(Xs,[Y],Paras), Xs \= [],
2442 append(TXs,[TY],Types),
2443 % simply call code for range ; inverting arguments
2444 ran_symbolic_closure(Y,Xs,TY,TXs,Pred,Res).
2445 % TO DO: allow computation if Paras is a single argument and more than pair
2446
2447 % just computes domain: it can also be successful for lambda closures
2448 dom_for_specific_closure(closure(P,T,Pred),Domain,Functionality,WF) :-
2449 dom_for_specific_closure_aux(P,T,Pred,Domain,Functionality,WF).
2450 dom_for_specific_closure_aux(P,T,Pred,Domain,Functionality,_WF) :-
2451 is_lambda_value_domain_closure(P,T,Pred, DomainValue,Expr),
2452 (preference(find_abort_values,full) -> bsyntaxtree:always_well_defined_or_disprover_mode(Expr)
2453 ; true),
2454 % Warning: this will lead to dom(%x.(x:1..3|1/0)) = 1..3 to be true; discarding WD condition
2455 % this is not as bad as {1|->2}(0) = 3 to be silently failing though; hence only done if TRY_FIND_ABORT = full
2456 !,
2457 Domain=DomainValue,
2458 Functionality=function(total).
2459 %dom_for_specific_closure_aux([ID],[Type],Pred,Domain,Functionality,_WF) :- Functionality=relation,
2460 % Pred = b(exists(Paras,ClosurePred),pred,Info1),
2461 % % dom({res|#(paras).(.... & res= domVal|->ran)}) = {res|#(paras).(.... & res= domVal)}
2462 % closures:select_equality(ClosurePred,ID,RHSExpr,Type,Info,RestPred),
2463 % RHSExpr = couple(DomValue,_),
2464 % closures:does_not_occur_in(ID,RestPred),
2465 % Type = couple(DomT,_),
2466 % TID = b(identifier(ID),DomT,[]),
2467 % % safe_create_texpr
2468 % conjunct_predicates([RestPred,b(equal(TID,DomValue),pred,[])],NewClosurePred),
2469 % NewPred = b(exists(Paras,NewClosurePred),pred,Info1),
2470 % Domain = closure([ID],[DomT],NewPred).
2471 dom_for_specific_closure_aux(P,T,Pred,Domain,Functionality,WF) :-
2472 dom_range_for_specific_closure2(P,T,Pred, Domain,_Range,Functionality,WF).
2473 %TO DO treat overwrite closure dom(F1<+F2) = dom(F1) \/ dom(F2)
2474
2475 dom_for_lambda_closure(closure(P,T,Pred),Domain) :-
2476 is_lambda_value_domain_closure(P,T,Pred, DomainValue,_Expr),
2477 Domain=DomainValue.
2478
2479 % TO DO: add total functions
2480 %dom_for_specific_closure2([F],[T],
2481 % b(member(b(identifier(F),T,_), b(total_function(value(A),B),set(couple(DOM,RAN)),_)), pred,_) ,
2482 % A).
2483
2484 :- block domain_of_list_blocking(-,?).
2485 % the list will be sorted according to the term ordering for (_,_); hence it will
2486 % already be sorted for the projection onto the first element
2487 % maybe the speed difference is not worth it ??
2488 domain_of_list_blocking([],[]).
2489 domain_of_list_blocking([(A,_B)|T],[A-true|DT]) :- domain_blocking_aux(T,A,DT).
2490 :- block domain_blocking_aux(-,?,?).
2491 domain_blocking_aux([],_,[]).
2492 domain_blocking_aux([(A,_B)|T],Prev,Res) :-
2493 compare(Comp,A,Prev),
2494 (Comp = '='
2495 -> domain_blocking_aux(T,Prev,Res)
2496 ; Res = [A-true|DT],
2497 (Comp = '<' -> add_error_fail(custom_explicit_sets,'Domain list not_sorted: ',(A,Prev)) ; true),
2498 domain_blocking_aux(T,A,DT) ).
2499
2500 % and now a non-blocking version:
2501 domain_of_sorted_list([],size_res(0,'$none'),[]).
2502 domain_of_sorted_list([(A,_B)|T],Size,[A-true|DT]) :- domain_aux(T,A,DT,1,Size).
2503
2504 % TO DO: count length and determine when we have an interval
2505 domain_aux([],Prev,[],Acc,size_res(Acc,Prev)).
2506 domain_aux([(A,_B)|T],Prev,Res,SizeAcc,Size) :- SA1 is SizeAcc+1,
2507 compare(Comp,A,Prev),
2508 (Comp = '='
2509 -> domain_aux(T,Prev,Res,SA1,Size)
2510 ; Res = [A-true|DT],
2511 (Comp = '<' -> add_error_fail(custom_explicit_sets,'Domain list not_sorted: ',(A,Prev)) ; true),
2512 domain_aux(T,A,DT,SA1,Size) ).
2513
2514 /* succeeds if it can compute domain by some clever way */
2515 range_of_explicit_set_wf(global_set(GS),_R,_) :- !,
2516 add_error_and_fail(range_of_explicit_set_wf,'Cannot compute domain of global set: ',GS).
2517 range_of_explicit_set_wf(freetype(GS),_R,_) :- !,
2518 add_error_and_fail(range_of_explicit_set_wf,'Cannot compute domain of freetype: ',GS).
2519 range_of_explicit_set_wf(avl_set(A),Res,_) :- !,
2520 avl_domain(A,EC), % -> expand_custom_set(avl_set(A),EC),
2521 range(EC,R),
2522 normalised_list_to_avl(R,Res).
2523 range_of_explicit_set_wf(C,R,WF) :-
2524 ran_for_specific_closure(C,Ran,WF),!,
2525 Ran=R.
2526 range_of_explicit_set_wf(C,R,_) :-
2527 ran_symbolic(C,CC),!,
2528 R=CC.
2529 range_of_explicit_set_wf(closure(P,T,B),Res,WF) :-
2530 expand_custom_set_wf(closure(P,T,B),EC,range_of_explicit_set_wf,WF),
2531 % TO DO: it would be more useful here to directly just expand the projection onto the last component of P
2532 range_blocking(EC,R),
2533 normalised_list_to_avl_when_ground(R,Res).
2534
2535 % TO DO: in future it is maybe better to add an in_range_wf kernel predicate
2536 ran_symbolic(closure(Paras,Types,Pred), Res) :-
2537 ? (is_memoization_closure(Paras,Types,Pred,_)
2538 -> !,fail % memoization closures can never be dealt with symbolically; we need expansion
2539 ; true),
2540 expand_pair_closure(Paras,Types,Pred,[Y,X],[TY,TX],NewPred),!,
2541 % following test (1541) works with this: 2 : ran({y|#(x).(y = x |-> x + 2 & x : NATURAL)})
2542 ran_symbolic_closure(Y,[X],TY,[TX],NewPred,Res). %, print('res: '),translate:print_bvalue(Res),nl.
2543 ran_symbolic(closure([Y,X],[TY,TX],Pred), Res) :-
2544 ran_symbolic_closure(Y,[X],TY,[TX],Pred,Res).
2545 % TO DO: treat closures with more arguments: we need to quantify Y1,...Yn [Y1,...,Yn,X]
2546
2547 % Replace single Identifier YX of type pair by pair (Y,X) where Y,X are (fresh) variables not occuring in Pred
2548 % example: {y| #(x).(y = x |-> x + 2 & x : NATURAL)} --> {y__1,y__2|#(x).(y__1 |-> y__2 = x |-> x + 2 & x : NATURAL)}
2549 expand_pair_closure([YX],[TYX],Pred,[Y,X],[TY,TX],NewPred) :- TYX = couple(TY,TX),
2550 % Replace single ID YX of type pair by pair (Y,X) where Y,X are (fresh) variables not occuring in Pred
2551 % example: {y| #(x).(y = x |-> x + 2 & x : NATURAL)} --> {y__1,y__2|#(x).(y__1 |-> y__2 = x |-> x + 2 & x : NATURAL)}
2552 % following test (1541) works with this: 2 : ran({y|#(x).(y = x |-> x + 2 & x : NATURAL)})
2553 gensym:gensym(YX,Y),gensym:gensym(YX,X),
2554 create_typed_id(Y,TY,YTID), create_typed_id(X,TX,XTID),
2555 Pair = b(couple(YTID,XTID),TYX,[]),
2556 bsyntaxtree:replace_id_by_expr(Pred,YX,Pair,NewPred).
2557
2558 :- use_module(bsyntaxtree,[create_exists_opt_liftable/3]).
2559 %:- use_module(bsyntaxtree,[add_texpr_info_if_new/3]).
2560 ran_symbolic_closure(Y,Xs,TY,TXs,Pred,Res) :-
2561 % create closure for {Xs | #Y.(Pred)} where Pred uses Y|->Xs
2562 rename_ran_ids(Xs,Pred,[],XIDs,Pred2),
2563 create_typed_id(Y,TY,YTID),
2564 create_exists_opt_liftable([YTID],Pred2,Exists), % Y is liftable as the source is a closure with all ids
2565 %bsyntaxtree:check_used_ids_in_ast(Exists),
2566 %bsyntaxtree:create_exists_opt([YTID],[Pred2],Exists), %or
2567 %b_interpreter_components:create_and_simplify_exists([YTID],Pred2,Exists),
2568 %bsyntaxtree:add_texpr_info_if_new(Exists,allow_to_lift_exists,Exists2), % leads to pending co-routines in self_checks for bsets for apply_to;
2569 % Reason: the tests ground only det WF; without lifting the exists is fully evaluated (and its waitflags with prio 2 and higher grounded) as the wait arguments are ground; with lifting only the det WF is grounded leading to pending coroutines
2570 Res = closure(XIDs,TXs,Exists).
2571
2572
2573
2574 :- use_module(library(lists),[select/3]).
2575
2576 % rename lambda_results :
2577 rename_ran_ids([],Pred,_,[],Pred).
2578 rename_ran_ids([X|TX],Pred,Acc,[XID|TTX],Pred2) :-
2579 % in case X is _lambda_result_ we need to rename it as it then would not get enumerated !
2580 (X == '_lambda_result_'
2581 -> get_fresh_id('_was_lambda_result_',TX,Acc,XID),
2582 % we could remove lambda_result info field, but it will no longer match new id anyway
2583 rename_bt(Pred,[rename(X,XID)],Pred2),
2584 TTX=TX
2585 % TODO: maybe we should also remove the prob_annotation('LAMBDA-EQUALITY') info inside Pred for the ids and equality !?
2586 ; XID = X, rename_ran_ids(TX,Pred,[X|Acc],TTX,Pred2)
2587 ).
2588
2589 :- use_module(b_ast_cleanup,[get_unique_id/2]).
2590 get_fresh_id(ID,List1,List2,Res) :- nonmember(ID,List1), nonmember(ID,List2),!, Res=ID.
2591 get_fresh_id(ID,_,_,FRESHID) :- nl,print('*** VARIABLE_CLASH PREVENTED: '), print(ID),nl,
2592 get_unique_id(ID,FRESHID).
2593
2594 :- block range_blocking(-,?).
2595 range_blocking([],[]).
2596 range_blocking([(_A,B)|T],[B-true|DT]) :- range_blocking(T,DT).
2597 % and a non-blocking version:
2598 range([],[]).
2599 range([(_A,B)|T],[B-true|DT]) :- range(T,DT).
2600
2601 ran_for_specific_closure(closure(P,T,Pred),Range,WF) :-
2602 dom_range_for_specific_closure2(P,T,Pred, _Domain,Range,_Functionality,WF).
2603 %ran_for_specific_closure(closure_x(P,T,Pred,_Exp),Card,_) :- ran_for_specific_closure2(P,T,Pred,Card).
2604
2605 :- use_module(bsyntaxtree,[conjunct_predicates/2, disjunct_predicates/2, create_typed_id/3, get_texpr_type/2]).
2606 override_custom_explicit_set_wf(R,S,Res,WF) :- /* R <+ S */
2607 nonvar(R),override_custom_explicit_set_aux(R,S,Res,WF).
2608 override_custom_explicit_set_aux(CL,Rel2,Res,_WF) :-
2609 CL=closure(P0,T,B0),
2610 % TO DO: maybe call keep_symbolic in bsets_clp ??
2611 ( preferences:get_preference(convert_comprehension_sets_into_closures,true),
2612 (var(Rel2) -> true ; Rel2 \= avl_set(_)) % if Rel2 is avl_set then maybe better to compute explicitly; unless infinite
2613 ; quick_size_check_larger_than(Rel2,Size2,133) ->
2614 % if we have a large AVL set anyway; then allow expansion up to a larger limit; cf machine 670_002.mch
2615 % a lot of machines use A*B*C <+ {....} to more compactly define large explicit sets
2616 (Size2=inf -> Limit = 200000
2617 ; Limit is min(200000,Size2*150)), dont_expand_this_closure(P0,T,B0,Limit)
2618 ? ; dont_expand_this_closure(P0,T,B0) % use default limit
2619 ),
2620 !,
2621 rename_ran_ids(P0,B0,[],P,B), % any '_lambda_result_' id is no longer guaranteed to be assigned a value in all cases
2622 NewClosure=closure(P,T,NewBody),
2623 % B <+ Rel2 ---> NewBody = P:Rel2 or (prj1(P) /: dom(Rel2) & B)
2624 % TODO better? : %x.(x:Domain|IF x:dom(SFF) THEN SFF(x) ELSE DEFAULT)?
2625 generate_typed_id_pairs(P,T,NestedPairs),
2626 get_texpr_type(NestedPairs,PairsType),
2627 RelPairsType = set(PairsType),
2628 ValS = b(value(Rel2),RelPairsType,[]),
2629 MemS = b(member(NestedPairs,ValS),pred,[]), % P:Rel2
2630 get_prj1(NestedPairs,DomExpr),
2631 get_texpr_type(DomExpr,DomType),
2632 Domain = b(domain(ValS),set(DomType),[]), % TO DO: perform some optimisations like dom(%x.(P|E)) --> {x|P}
2633 %bsets_clp:domain_wf(Rel2,DomainOfRel2,WF), Domain = b(value(DomainOfRel2),DomType,[]), % this DOES NOT work for 1619, 1706 where override is used for infinite functions
2634 NotMemDomS = b(not_member(DomExpr,Domain),pred,[]), % prj1(P) /: dom(Rel2)
2635 conjunct_predicates([NotMemDomS,B],RHS),
2636 disjunct_predicates([MemS,RHS],NewBody),
2637 %print(override),nl, bsyntaxtree:check_used_ids_in_ast(NewBody),
2638 mark_closure_as_symbolic(NewClosure,Res).
2639 % TO DO: add a case where for second set we have: dont_expand_this_closure
2640 override_custom_explicit_set_aux(R,S,Res,WF) :-
2641 is_custom_explicit_set(R,override_custom_explicit_set),
2642 nonvar(S), is_custom_explicit_set(S,override_custom_explicit_set),
2643 %% hit_profiler:add_profile_hit(override(R,S),3), %%
2644 override_custom_explicit_set2(R,S,Res,WF).
2645
2646 override_custom_explicit_set2(R,S,Res,_WF) :- is_one_element_custom_set(S,(X,Y)),
2647 override_pair_explicit_set(R,X,Y,NewR),!,
2648 Res=NewR.
2649 % TO DO: if R is very large and S relatively small : iterate by calling override_pair_explicit_set
2650 override_custom_explicit_set2(R,S,Res,WF) :-
2651 expand_custom_set_wf(R,ER,override_custom_explicit_set_aux1,WF),
2652 expand_custom_set_wf(S,ES,override_custom_explicit_set_aux2,WF),
2653 override_list(ER,ES,LRes,Done),
2654 finish_restriction(Done,LRes,Res).
2655
2656 quick_size_check_larger_than(Set,Size,Limit) :-
2657 quick_custom_explicit_set_approximate_size(Set,Size),
2658 (is_inf_or_overflow_card(Size) -> true ; Size > Limit).
2659 get_prj1(b(couple(DomExpr,_),_,_),Prj1) :- !, Prj1 = DomExpr.
2660 get_prj1(BE,b(first_of_pair(BE),DT,[])) :- % some closures have a single identifier; we need to apply prj1
2661 BE = b(_E,couple(DT,_RT),_I).
2662
2663 % translate a parameter name and type list into a nested-pair value
2664 generate_typed_id_pairs([ID|IT],[Type|TT],Res) :- create_typed_id(ID,Type,TypedID),
2665 conv2(IT,TT,TypedID,Res).
2666 conv2([],[],X,X).
2667 conv2([ID|IT],[Type|TT],Acc,Res) :- create_typed_id(ID,Type,TypedID),
2668 get_texpr_type(Acc,AccType),
2669 Couple = b(couple(Acc,TypedID),couple(AccType,Type),[]),
2670 conv2(IT,TT,Couple,Res).
2671
2672 :- block override_list(-,?,?,?), override_list(?,-,?,?).
2673 override_list([],S,Res,Done) :- !, copy_to_true_list(S,Res,Done).
2674 override_list(R,[],Res,Done) :- !, copy_to_true_list(R,Res,Done).
2675 override_list([(From1,To1)|T1],[(From2,To2)|T2],Res,Done) :-
2676 (From1 @< From2
2677 -> Res = [(From1,To1)-true|TR], override_list(T1,[(From2,To2)|T2],TR,Done)
2678 ; From2 @< From1
2679 -> Res = [(From2,To2)-true|TR], override_list([(From1,To1)|T1],T2,TR,Done)
2680 ; override_list(T1,[(From2,To2)|T2],Res,Done)).
2681
2682 :- block copy_to_true_list(-,?,?).
2683 % add -true to get lists that can be converted to avl
2684 copy_to_true_list([],[],true).
2685 copy_to_true_list([H|T],[H-true|CT],Done) :- copy_to_true_list(T,CT,Done).
2686
2687 :- use_module(closures,[get_domain_range_for_closure_types/3]).
2688 % compute a closure with the functionality violations of a closure
2689 symbolic_functionality_check_closure(closure(P,T,B),closure([DID,ID1,ID2],[DomType,RanType,RanType],Body)) :-
2690 % construct {d,z_,z__| (d,z_):R & (d,z__):R & z_\= z__}
2691 generate_typed_id_pairs(P,T,NestedPairs),
2692 get_texpr_type(NestedPairs,PairsType),
2693 RelPairsType = set(PairsType),
2694 TRel = b(value(closure(P,T,B)),RelPairsType,[]),
2695 DID = '_domain', ID1 = '_zzzz_unary', ID2 = '_zzzz_binary',
2696 TDID = b(identifier(DID),DomType,[]),
2697 TID1 = b(identifier(ID1),RanType,[]),
2698 TID2 = b(identifier(ID2),RanType,[]),
2699 Mem1 = b(member( b(couple(TDID,TID1),PairsType,[]),TRel),pred,[]),
2700 Mem2 = b(member( b(couple(TDID,TID2),PairsType,[]),TRel),pred,[]),
2701 get_domain_range_for_closure_types(T,DomType,RanType),
2702 NeqRan = b(not_equal(TID1,TID2), pred, []),
2703 conjunct_predicates([Mem1,Mem2,NeqRan],Body),
2704 bsyntaxtree:check_used_ids_in_ast(Body).
2705 %bsyntaxtree:check_ast(Body).
2706
2707 % compute a closure with the injectivity violations of a closure
2708 symbolic_injectivity_check_closure(closure(P,T,B),closure([RID,ID1,ID2],[RanType,DomType,DomType],Body)) :-
2709 % construct {r,z_,z__| (z_,r):R & (z__,r):R & z_\= z__}
2710 generate_typed_id_pairs(P,T,NestedPairs),
2711 get_texpr_type(NestedPairs,PairsType),
2712 RelPairsType = set(PairsType),
2713 TRel = b(value(closure(P,T,B)),RelPairsType,[]), % what if closure body B has WD condition?
2714 RID = '_range', ID1 = '_zzzz_unary', ID2 = '_zzzz_binary',
2715 TRID = b(identifier(RID),RanType,[]),
2716 TID1 = b(identifier(ID1),DomType,[]),
2717 TID2 = b(identifier(ID2),DomType,[]),
2718 Mem1 = b(member( b(couple(TID1,TRID),PairsType,[]),TRel),pred,[]),
2719 Mem2 = b(member( b(couple(TID2,TRID),PairsType,[]),TRel),pred,[]),
2720 get_domain_range_for_closure_types(T,DomType,RanType),
2721 NeqRan = b(not_equal(TID1,TID2), pred, []),
2722 conjunct_predicates([Mem1,Mem2,NeqRan],Body),
2723 bsyntaxtree:check_used_ids_in_ast(Body).
2724 %bsyntaxtree:check_ast(Body).
2725
2726 % -------------------------
2727
2728
2729 % check whether we have a partial function
2730 is_avl_partial_function(empty) :- !.
2731 is_avl_partial_function(node((KeyFrom,_KeyTo),_True,_,L,R)) :- !,
2732 is_avl_partial_function2(L,'$$MIN$$',KeyFrom),
2733 is_avl_partial_function2(R,KeyFrom,'$$MAX$$').
2734 is_avl_partial_function(X) :- add_internal_error('Not avl_set or relation: ',is_avl_partial_function(X)),fail.
2735
2736 % we traverse the tree from top to bottom, keeping track of possible upper- and lower-bounds
2737 % if any value matches the upper or lower bound, the we do not have a partial function
2738 is_avl_partial_function2(empty,_,_).
2739 is_avl_partial_function2(node((KeyFrom,_KeyTo),_True,_,L,R),ParentFrom,ParentTo) :-
2740 KeyFrom \= ParentFrom, KeyFrom \= ParentTo,
2741 is_avl_partial_function2(L,ParentFrom,KeyFrom),
2742 is_avl_partial_function2(R,KeyFrom,ParentTo).
2743
2744 % the dual of the above, returning a counter example
2745 is_not_avl_partial_function(node((KeyFrom,_KeyTo),_True,_,L,R),DuplicateKey) :- !,
2746 (is_not_avl_partial_function2(L,'$$MIN$$',KeyFrom,DuplicateKey) -> true
2747 ; is_not_avl_partial_function2(R,KeyFrom,'$$MAX$$',DuplicateKey)).
2748 is_not_avl_partial_function2(node((KeyFrom,_KeyTo),_True,_,L,R),ParentFrom,ParentTo,DuplicateKey) :-
2749 ( KeyFrom = ParentFrom -> DuplicateKey=KeyFrom
2750 ; KeyFrom = ParentTo -> DuplicateKey=KeyFrom
2751 ; is_not_avl_partial_function2(L,ParentFrom,KeyFrom,DuplicateKey) -> true
2752 ; is_not_avl_partial_function2(R,KeyFrom,ParentTo,DuplicateKey) -> true).
2753
2754
2755 % check whether we have a function which is total over a given domain; both as AVL sets
2756 is_avl_total_function_over_domain(empty,empty) :- !.
2757 is_avl_total_function_over_domain(AVLFun,AVLDom) :-
2758 avl_domain(AVLFun,FunList),
2759 avl_domain(AVLDom,DomList),
2760 is_avl_total_fun2(FunList,DomList).
2761
2762 is_avl_total_fun2([],[]).
2763 is_avl_total_fun2([(From,_To)|FT],[From|DomT]) :- is_avl_total_fun2(FT,DomT).
2764
2765
2766 %not_is_avl_partial_function(AVLF) :- \+ is_avl_partial_function(AVLF).
2767
2768 :- use_module(kernel_equality,[membership_test_wf/4]).
2769 % check whether an AVL Relation is not over a specific domain & range
2770 is_not_avl_relation_over_domain_range(AVLRel,Domain,Range,WF) :- AVLRel \= empty,
2771 avl_min_pair(AVLRel,RFrom,RTo),
2772 membership_test_wf(Domain,RFrom,MemRes,WF),
2773 is_not_avl_rel_dom1(MemRes,RFrom,RTo,AVLRel,Domain,Range,WF).
2774
2775 :- block is_not_avl_rel_dom1(-, ?,?,?,?,?,?).
2776 is_not_avl_rel_dom1(pred_false,_,_,_,_,_,_WF).
2777 is_not_avl_rel_dom1(pred_true,RFrom,RTo,AVLRel,Domain,Range,WF) :-
2778 membership_test_wf(Range,RTo,MemRes,WF),
2779 is_not_avl_rel_dom2(MemRes,RFrom,RTo,AVLRel,Domain,Range,WF).
2780
2781 :- block is_not_avl_rel_dom2(-, ?,?,?,?,?,?).
2782 is_not_avl_rel_dom2(pred_false,_,_,_,_,_,_WF).
2783 is_not_avl_rel_dom2(pred_true,RFrom,RTo,AVLRel,Domain,Range,WF) :-
2784 avl_next((RFrom,RTo),AVLRel,(RFrom2,RTo2)),
2785 membership_test_wf(Domain,RFrom2,MemRes,WF),
2786 is_not_avl_rel_dom1(MemRes,RFrom2,RTo2,AVLRel,Domain,Range,WF).
2787
2788 % check whether an AVL Relation is not over a specific range
2789 is_not_avl_relation_over_range(AVLRel,Range,WF) :- AVLRel \= empty,
2790 avl_min_pair(AVLRel,RFrom,RTo),
2791 membership_test_wf(Range,RTo,MemRes,WF),
2792 is_not_avl_rel_ran2(MemRes,RFrom,RTo,AVLRel,Range,WF).
2793
2794 :- block is_not_avl_rel_ran2(-, ?,?,?,?,?).
2795 is_not_avl_rel_ran2(pred_false,_,_,_,_,_WF).
2796 is_not_avl_rel_ran2(pred_true,RFrom,RTo,AVLRel,Range,WF) :-
2797 avl_next((RFrom,RTo),AVLRel,(RFrom2,RTo2)),
2798 kernel_equality:membership_test_wf(Range,RTo2,MemRes,WF),
2799 is_not_avl_rel_ran2(MemRes,RFrom2,RTo2,AVLRel,Range,WF).
2800
2801 % check whether we have a relation
2802 is_avl_relation(node((_KeyFrom,_KeyTo),_True,_,_,_)).
2803
2804 % check whether a Relation has all its range elments in a certain Range (not necessarily AVL)
2805 % TO DO: if Domain is an interval: we could take avl_min and avl_max and rely on lexicographic ordering
2806 is_avl_relation_over_domain(AVL,IntervalClosure,_WF) :-
2807 is_interval_closure_or_integerset(IntervalClosure,Low,Up),!,
2808 ((avl_min(AVL,(int(ALow),_)), avl_max(AVL,(int(AUp),_)))
2809 -> cs_greater_than_equal(ALow,Low), cs_greater_than_equal(Up,AUp) %,print(ok),nl
2810 ; (AVL=empty -> true ; add_error_and_fail(is_avl_relation_over_domain,'Not a relation with integer domain: ',AVL))).
2811 is_avl_relation_over_domain(_,Domain,_) :-
2812 quick_is_definitely_maximal_set(Domain),!.
2813 %is_definitely_maximal_set(Domain),!.
2814 is_avl_relation_over_domain(AVL,Domain,WF) :- is_avl_relation_over_domain2(AVL,Domain,WF).
2815 is_avl_relation_over_domain2(empty,_,_).
2816 is_avl_relation_over_domain2(node((KeyFrom,_KeyTo),_,_,L,R), Domain,WF) :-
2817 is_avl_relation_over_domain2(L, Domain,WF),
2818 is_avl_relation_over_domain2(R, Domain,WF),
2819 kernel_objects:check_element_of_wf(KeyFrom,Domain,WF).
2820
2821 % : faster to check than is_definitely_maximal_set
2822 quick_is_definitely_maximal_set(X) :- nonvar(X),
2823 quick_is_definitely_maximal_set_aux(X).
2824 quick_is_definitely_maximal_set_aux(global_set(GS)) :-
2825 nonvar(GS),is_maximal_global_set(GS).
2826 quick_is_definitely_maximal_set_aux(avl_set(AVL)) :-
2827 quick_definitely_maximal_set_avl(AVL).
2828
2829 % check whether a Relation has all its range elments in a certain Range (not necessarily AVL)
2830
2831
2832
2833 is_avl_relation_over_range(empty,_,_) :- !.
2834 is_avl_relation_over_range(_,Range,_) :-
2835 %quick_is_definitely_maximal_set(Range),
2836 is_definitely_maximal_set(Range),
2837 !.
2838 is_avl_relation_over_range(AVL,Range,WF) :- is_avl_relation_over_range2(AVL,Range,WF).
2839
2840 is_avl_relation_over_range2(empty,_,_).
2841 is_avl_relation_over_range2(node((_KeyFrom,KeyTo),_,_,L,R), Range,WF) :-
2842 is_avl_relation_over_range(L, Range,WF),
2843 kernel_objects:check_element_of_wf(KeyTo,Range,WF),
2844 is_avl_relation_over_range2(R, Range,WF).
2845
2846
2847 is_avl_sequence(empty) :- !.
2848 is_avl_sequence(node((int(KeyFrom),_KeyTo),_True,_,L,R)) :- !,
2849 is_avl_sequence2(L,0,KeyFrom),
2850 is_avl_sequence2(R,KeyFrom,'$$MAX$$').
2851 is_avl_sequence(X) :- add_error_and_fail(is_avl_sequence,'Not avl_set or sequence: ',X).
2852
2853 % we traverse the tree from top to bottom, keeping track of possible upper- and lower-bounds
2854 % if any value matches the upper or lower bound, the we do not have a partial function
2855 is_avl_sequence2(empty,X,Y) :-
2856 (Y=='$$MAX$$' -> true ; Y is X+1). % otherwise there is a gap in the sequence
2857 is_avl_sequence2(node((int(KeyFrom),_KeyTo),_,_,L,R),ParentFrom,ParentTo) :-
2858 KeyFrom > ParentFrom, KeyFrom \= ParentTo,
2859 is_avl_sequence2(L,ParentFrom,KeyFrom),
2860 is_avl_sequence2(R,KeyFrom,ParentTo).
2861
2862 % for performance: it is not worthwhile to make a version that checks that
2863 % we have a sequence over a range using a single traversal
2864
2865
2866 % get avl_sequence elements as sorted list (without indices)
2867 % used by external function REPLACE
2868 get_avl_sequence(AVL,SeqList) :-
2869 get_avl_sequence_dcg(AVL,SeqList,[]).
2870
2871 get_avl_sequence_dcg(empty) --> [].
2872 get_avl_sequence_dcg(node((int(_),SeqEl),_True,_,L,R)) -->
2873 get_avl_sequence_dcg(L),
2874 [SeqEl],
2875 get_avl_sequence_dcg(R).
2876
2877
2878 % ---------------------------
2879 prefix_of_custom_explicit_set(avl_set(A),MinIndex,Result,WF) :-
2880 size_of_avl_sequence(A,Size,WF),
2881 (MinIndex > Size
2882 -> add_wd_error('index larger than size of sequence in prefix_sequence (/|\\)! ', '>'(MinIndex,Size),WF)
2883 % ; MinIndex = 0 -> Result = [] % case already treated in bsets_clp
2884 ; MinIndex = Size -> Result=avl_set(A)
2885 ; prefix_of_custom_explicit_set2(A,MinIndex,OrdList,[]),
2886 ord_list_to_avlset(OrdList,Result,prefix_of_custom_explicit_set)
2887 ).
2888 prefix_of_custom_explicit_set2(empty,_MaxIndex) --> {true}.
2889 prefix_of_custom_explicit_set2(node((int(KeyFrom),KeyTo),_True,_,L,R),MaxIndex) -->
2890 ({KeyFrom = MaxIndex}
2891 -> prefix_of_custom_explicit_set2(L,MaxIndex), [((int(KeyFrom),KeyTo)-true)]
2892 ; {KeyFrom > MaxIndex} -> prefix_of_custom_explicit_set2(L,MaxIndex)
2893 ; prefix_of_custom_explicit_set2(L,MaxIndex), [((int(KeyFrom),KeyTo)-true)],
2894 prefix_of_custom_explicit_set2(R,MaxIndex)
2895 ).
2896
2897 % size is only well-defined for sequences:
2898 size_of_custom_explicit_set(avl_set(AVL),int(Size),WF) :- size_of_avl_sequence(AVL,Size,WF).
2899 size_of_custom_explicit_set(closure(P,T,B),Res,WF) :-
2900 is_lambda_value_domain_closure(P,T,B, DomainValue,_Expr),
2901 kernel_cardinality_attr:finite_cardinality_as_int_wf(DomainValue,Res,WF).
2902 size_of_avl_sequence(AVL,Size,WF) :-
2903 preference(find_abort_values,true),
2904 \+ is_avl_sequence(AVL),!,
2905 avl_max_pair(AVL,int(Sz),_),
2906 add_wd_error('Applying size to a value which is not a sequence',b(value(avl_set(AVL)),seq(any),[]),WF),
2907 Size=Sz. % other calls to size_of_avl_sequence currently expect a value
2908 size_of_avl_sequence(AVL,Size,WF) :-
2909 % TO DO: checking minimum is 1?
2910 avl_max_pair(AVL,int(Sz),_),
2911 avl_height(AVL,H), % we cannot compute the height together with max; we need the longest path!
2912 get_min_max_card(H,MinSize,MaxSize),
2913 %avl_size(AVL,Real),format('AVL SeqSize: ~w, height: ~w, real size:~w, min: ~w, max: ~w~n',[Sz,H,Real,MinSize,MaxSize]),
2914 (Sz > MaxSize
2915 -> add_wd_error('Applying size to a value which is not a sequence (maximum index too large)',b(value(avl_set(AVL)),seq(any),[]),WF),
2916 avl_size(AVL,Size)
2917 % triggered by e.g. size({0|->1,0|->2,1|->3}) or size({0|->1,1|->2,3|->3,1|->22,1|->23,1|->24,1|->25,1|->26})
2918 ; Sz < MinSize
2919 -> add_wd_error('Applying size to a value which is not a sequence (maximum index too small)',b(value(avl_set(AVL)),seq(any),[]),WF),
2920 avl_size(AVL,Size)
2921 % triggered by e.g. size([0,2,2,2] |> {2})
2922 ; Size=Sz).
2923
2924 get_min_max_card(Height,MinCard,MaxCard) :-
2925 % page 460, Knuth 3: The height of a balanced tree with N internal nodes always lies between lg(N+1) and 1.4405 lg(N+2) - 0.3277
2926 MaxCard is 2^Height - 1,
2927 % 1.618034 is golden ration phi 0.5(1+sqrt(5)) , 2.236068 is sqrt(5)
2928 % proof in Knuth uses fact: N > phi^(h+2)/sqrt(5) - 2
2929 MinCard is ceiling((1.61803398875**(Height+2)) / 2.2360679775 - 2).
2930
2931 % check if a candidate size is possible given height:
2932 avl_size_possible(AVL,SizeCandidate) :-
2933 avl_height(AVL,Height), % TO DO: restrict to something like log2 of Height
2934 get_min_max_card(Height,MinCard,MaxCard),
2935 MinCard =< SizeCandidate,
2936 SizeCandidate =< MaxCard.
2937
2938
2939 suffix_of_custom_explicit_set(avl_set(A),MinIndex,Result,WF) :-
2940 size_of_avl_sequence(A,Size,WF),
2941 (MinIndex > Size
2942 -> add_wd_error('index larger than size of sequence in suffix_sequence (\\|/)! ', '>'(MinIndex,Size),WF)
2943 % ; MinIndex = 0 -> Result = avl_set(A) % case already treated in bsets_clp
2944 ; MinIndex = Size -> Result=[]
2945 ; suffix_of_custom_explicit_set2(A,MinIndex,OrdList,[]),
2946 ord_list_to_avlset(OrdList,Result,suffix_of_custom_explicit_set)
2947 ).
2948 suffix_of_custom_explicit_set2(empty,_MinIndex) --> {true}.
2949 suffix_of_custom_explicit_set2(node((int(KeyFrom),KeyTo),_True,_,L,R),MinIndex) -->
2950 ({KeyFrom =< MinIndex} -> suffix_of_custom_explicit_set2(R,MinIndex)
2951 ; {ShiftedKeyFrom is KeyFrom-MinIndex},
2952 ({KeyFrom =:= MinIndex+1}
2953 -> {true} ; suffix_of_custom_explicit_set2(L,MinIndex)),
2954 [((int(ShiftedKeyFrom),KeyTo)-true)],
2955 suffix_of_custom_explicit_set2(R,MinIndex)
2956 ).
2957
2958 shift_avl_sequence_to_ord_list(AVL,Offset,ShiftedOrdList) :-
2959 avl_to_list(AVL,List),shift_seq(List,Offset,ShiftedOrdList).
2960 % it does not seem to be worth to use avl_to_list_dcg_offset or a variation thereof
2961 % it is not really slower to do two traversals (avl_to_list and shift_seq)
2962
2963 shift_seq([],_,[]).
2964 shift_seq([(int(I),Val)-true|T],Offset,[(int(NI),Val)-true|ST]) :- NI is I+Offset,
2965 shift_seq(T,Offset,ST).
2966
2967 :- use_module(debug).
2968 concat_custom_explicit_set(avl_set(S1),Seq2,Res,WF) :- nonvar(Seq2), Seq2=avl_set(S2),
2969 size_of_avl_sequence(S1,Size1,WF),
2970 shift_avl_sequence_to_ord_list(S2,Size1,OL2),
2971 % if OL2 is small we could use avl_store like in append_custom_explicit_set
2972 %avl_to_list(S1,OL1),
2973 avl_to_list_dcg(S1,NewOrdList,OL2), % use OL2 rather than [] as tail
2974 %append(OL1,OL2,NewOrdList), % we could avoid traversing OL1 again by doing a custom avl_to_list/3 which specifies tail
2975 ord_list_to_avlset(NewOrdList,Res,concat). % , print_term_summary(res_concat(Res)).
2976
2977 % a DCG version of avl_to_list; allows to call it with something else than [] as tail
2978 avl_to_list_dcg(empty) --> [].
2979 avl_to_list_dcg(node(Key,Val,_,L,R)) -->
2980 avl_to_list_dcg(L), [(Key-Val)],
2981 avl_to_list_dcg(R).
2982
2983 /* conc: concatenation of sequence of sequences (general_concat) */
2984 conc_custom_explicit_set(avl_set(AVL),Res) :-
2985 avl_min_pair(AVL,int(ONE),First),
2986 conc2_cs(First,ONE,AVL,0,NewOrdList),
2987 ord_list_to_avlset(NewOrdList,Res,conc).
2988
2989 conc2_cs(Seq,NrSeq,AVL,Offset,OrdList) :-
2990 add_seq(Seq,Offset,OrdList,NewOffset,TailOrd),
2991 (avl_next((int(NrSeq),Seq),AVL,(int(N2),Seq2))
2992 -> conc2_cs(Seq2,N2,AVL,NewOffset,TailOrd)
2993 ; TailOrd=[]).
2994
2995 add_seq([],Offset,OrdRes,NewOffset,TailOrdRes) :- NewOffset=Offset, TailOrdRes=OrdRes.
2996 add_seq(avl_set(ASeq),Offset,OrdRes,NewOffset,TailOrd) :-
2997 avl_to_list_dcg_offset(ASeq,Offset,NrEls,OrdRes,TailOrd), NewOffset is Offset+NrEls.
2998
2999 % a version of avl_to_list for sequences which autmatically adds an offset
3000 avl_to_list_dcg_offset(empty,_,0) --> [].
3001 avl_to_list_dcg_offset(node((int(Idx),El),Val,_,L,R),Offset,NrEls) -->
3002 {NIdx is Idx+Offset},
3003 avl_to_list_dcg_offset(L,Offset,N1),
3004 [((int(NIdx),El)-Val)],
3005 avl_to_list_dcg_offset(R,Offset,N2), {NrEls is N1+N2+1}.
3006
3007 prepend_custom_explicit_set(avl_set(S1),ObjectToPrepend,Res) :-
3008 %hit_profiler:add_profile_hit(prepend_custom_explicit_set(avl_set(S1),ObjectToPrepend,Res)),
3009 element_can_be_added_or_removed_to_avl(ObjectToPrepend),
3010 shift_avl_sequence_to_ord_list(S1,1,OL1),
3011 ord_list_to_avlset([(int(1),ObjectToPrepend)-true|OL1],Res).
3012
3013 append_custom_explicit_set(avl_set(S1),ObjectToAppend,Res,WF) :-
3014 element_can_be_added_or_removed_to_avl(ObjectToAppend), % implies that ObjectToAppend is ground
3015 size_of_avl_sequence(S1,Size1,WF), NewSize is Size1+1,
3016 add_ground_element_to_explicit_set_wf(avl_set(S1),(int(NewSize),ObjectToAppend),Res,WF).
3017
3018 % compute tail of a sequence and also return first element
3019 tail_sequence_custom_explicit_set(avl_set(S1),First,Res,Span,WF) :-
3020 shift_avl_sequence_to_ord_list(S1,-1,NewOrdList),
3021 (NewOrdList = [(int(0),First)-true|TailOL] -> ord_list_to_avlset(TailOL,Res)
3022 ; add_wd_error_span('tail argument is not a sequence!', avl_set(S1),Span,WF)
3023 % add_error_fail(tail_sequence,'tail applied to ', NewOrdList))
3024 ).
3025 last_sequence_explicit_set(avl_set(AVL),Last) :-
3026 avl_max_pair(AVL,int(_Sz),Last).
3027 % TO DO: we could compute height of the path to max H, then check that Sz is in 2**(H-1)+1 .. 2**(H+1)-1 ?
3028 %first_sequence_explicit_set(avl_set(AVL),First) :- % not used anymore; apply_to used instead
3029 % avl_min_pair(AVL,int(_One),First).
3030
3031 % compute front and return last element at the same time
3032 front_sequence_custom_explicit_set(avl_set(AVL),Last,Res) :-
3033 avl_max_pair(AVL,int(Size),Last),
3034 direct_remove_element_from_avl(AVL, (int(Size),Last), Res). % we know Last is already in AVL-converted format
3035
3036
3037 reverse_custom_explicit_set(avl_set(AVL),Res) :-
3038 avl_to_list_dcg_offset(AVL,0,Size,List,[]),
3039 S1 is Size+1,
3040 reverse_list(List,S1,[],RevList),
3041 ord_list_to_avl(RevList,RevAVL),
3042 Res=avl_set(RevAVL).
3043
3044 reverse_list([],_,Acc,Acc).
3045 reverse_list([(int(Idx),El)-V|T],S1,Acc,Res) :-
3046 NewIdx is S1 - Idx,
3047 reverse_list(T,S1,[(int(NewIdx),El)-V|Acc],Res).
3048
3049 % check if a relation is injective ; compute range at the same time; note AVL can be empty
3050 is_injective_avl_relation(AVL,RangeRes) :-
3051 avl_domain(AVL,ElList),
3052 empty_avl(EmptyAcc),
3053 is_avl_inj_list(ElList,EmptyAcc,Range),
3054 construct_avl_set(Range,RangeRes).
3055
3056 is_avl_inj_list([],Range,Range).
3057 is_avl_inj_list([(_From,To)|T],InRange,OutRange) :-
3058 (avl_fetch(To,InRange) -> fail /* this is not an injection; a range element is repeated */
3059 ; avl_store(To,InRange,true,InRange1),
3060 is_avl_inj_list(T,InRange1,OutRange)
3061 ).
3062
3063 % Example predicates that work with code below:
3064 % card(id((1..1000)*(1..1000))~)=1000*1000
3065 % card(((1..1000)*(1..1000))~)=1000*1000
3066 invert_explicit_set(global_set(GS),_R) :- !,
3067 add_error_and_fail(invert_explicit_set,'Cannot compute inverse of global set: ',GS).
3068 invert_explicit_set(freetype(GS),_R) :- !,
3069 add_error_and_fail(invert_explicit_set,'Cannot compute inverse of freetype: ',GS).
3070 invert_explicit_set(closure([P1,P2],[T1,T2],Clo),R) :- !,
3071 % TODO: also invert closures with single argument or more arguments
3072 % e.g., {a,b,c|a=1 & b=1 &c:1..10}~ = {c,ab|ab=(1,1) & c:1..10}
3073 R = closure([P2,P1],[T2,T1],Clo).
3074 invert_explicit_set(closure([P1],[T1],Clo),R) :-
3075 is_member_closure_with_info([P1],[T1],Clo,_Type,Info,MEM),
3076 invert_member_predicate(MEM,T1,InvMEM,InvT1),!,
3077 construct_member_closure(P1,InvT1,Info,InvMEM,R).
3078 invert_explicit_set(C,AVL) :- expand_custom_set(C,EC,invert_explicit_set), %% convert to AVL ?
3079 inv_and_norm(EC,AVL).
3080
3081 invert_member_predicate(cartesian_product(A,B),couple(TA,TB),
3082 cartesian_product(B,A),couple(TB,TA)).
3083 invert_member_predicate(identity(A),TA,identity(A),TA).
3084
3085
3086 :- block inv_and_norm(-,?).
3087 inv_and_norm(EC,AVL) :- inv(EC,R,Done), norm(Done,R,AVL).
3088
3089 :- block norm(-,?,?).
3090 norm(_,R,AVL) :- normalised_list_to_avl(R,AVL).
3091
3092 :- block inv(-,?,?).
3093 inv([],[],done).
3094 inv([(A,B)|T],[(B,A)-true|DT],Done) :- inv(T,DT,Done).
3095
3096
3097
3098 % checks whether a ground value is in the domain of an AVL relation
3099 check_in_domain_of_avlset(X,AVL) :- convert_to_avl_inside_set(X,AX),!,
3100 ? (avl_fetch_pair(AX,AVL,_) -> true ; fail).
3101 check_in_domain_of_avlset(X,AVL) :-
3102 print('### could not convert arg for check_in_domain_of_avlset'),nl,
3103 print(X),nl,
3104 safe_avl_member_pair(X,_,AVL).
3105
3106 % checks whether a ground value is in the domain of an AVL relation and has only one solution
3107 check_unique_in_domain_of_avlset(X,AVL) :- convert_to_avl_inside_set(X,AX),!,
3108 avl_fetch_pair(AX,AVL,AY1),!,
3109 (avl_fetch_pair(AX,AVL,AY2), AY1 \= AY2 -> fail
3110 ; true).
3111
3112
3113 % utility to check if for a value there is at most one matching element in an AVL set
3114 % optimized for function application
3115 at_most_one_match_possible(Element,AVL,Matches) :- nonvar(Element),
3116 Element=(Index,_Rest), % Function Application; TO DO: does this cover all func. appl ?
3117 element_can_be_added_or_removed_to_avl(Index),
3118 convert_to_avl_inside_set(Index,AX), % is ground and normalised ?
3119 % TO DO: check AVL size ? Check other patterns ?
3120 findall((AX,Match),avl_tools:avl_fetch_pair(AX,AVL,Match),Matches),
3121 Matches \= [_,_|_].
3122
3123
3124
3125 apply_to_avl_set(A,X,Y,Span,WF) :-
3126 ground_value_check(X,GroundX),
3127 apply_to_avl_set_aux(A,X,Y,GroundX,Span,WF).
3128
3129 apply_to_avl_set_aux(A,X,Y,GroundX,Span,WF) :- nonvar(GroundX),!,
3130 apply_check_tuple(X,Y,A,Span,WF). % we could call apply_check_tuple_ground to avoid one ground test
3131 % We know that A is a function: we can deterministically apply if X is ground;
3132 % if Y is ground this is only the cases for injective functions
3133 apply_to_avl_set_aux(A,X,Y,GroundX,Span,WF) :-
3134 %(preference(data_validation_mode,true); % we now reduce priority of backpropagation below
3135 preference(find_abort_values,true),
3136 % do not try inverse propagation onto argument X of function application A(X) = Y
3137 !,
3138 avl_approximate_size(A,3,ApproxSizeA),
3139 apply_check_tuple_delay(X,Y,A,ApproxSizeA,Span,WF,GroundX,_,_).
3140 apply_to_avl_set_aux(A,X,Y,GroundX,Span,WF) :-
3141 ground_value_check(Y,GroundY),
3142 avl_approximate_size(A,3,ApproxSizeA), % exact size for height <= 3; approximate size above
3143 (ApproxSizeA < 4 -> SPrio=ApproxSizeA ; SPrio is ApproxSizeA * 10), % magic number; ideally we want X or Y to be known beforehand; if none are known we may miss WD errors and may enumerate useless intermediate variables
3144 get_bounded_wait_flag(SPrio,apply_to_explicit(X,Y),WF,WF1), % this only makes sense if X is a domain variable to be enumerated
3145 %propagate_avl_element_information((X,Y),A,ApproxSizeA,WF), % could be done; but would prevent WD problems from being detected
3146 % this waitflag is used when neither X nor Y are ground;
3147 % quite often not much is gained by enumerating possible values; unless X or Y are constrained or trigger other computations
3148 % WSz is 10*ApproxSizeA, % magic value
3149 %(ApproxSizeA > 100 -> InversePrioSize = 4
3150 % ; avl_range_size_and_propagate_element_info(A,X,Y,RSize), InversePrioSize is ApproxSizeA // RSize), % we could probably compute the exact worst case with the same complexity
3151 % delay_get_wait_flag(GroundY,GroundX,WF1,InversePrioSize,apply_to_explicit_inverse(X,Y),WF,WF2),
3152 %(ApproxSizeA<4000 -> propagate_apply(X,Y,A,ApproxSizeA,WF,GroundX,GroundY) ; true),
3153 apply_check_tuple_delay(X,Y,A,ApproxSizeA,Span,WF,GroundX,WF1,GroundY),
3154 (preference(use_clpfd_solver,false) -> true
3155 % should we also check: preference(find_abort_values,true)?
3156 ; get_wait_flag0(WF,WF0),
3157 propagate_apply(X,Y,A,ApproxSizeA,WF,WF0,GroundX,WF1,GroundY)).
3158
3159 :- block propagate_apply(?,?,?,?,?,-,?,?,?).
3160 propagate_apply(X,Y,AVL,ApproxSizeA,WF,_,GroundX,WF1,GroundY) :-
3161 var(GroundX), var(WF1), var(GroundY),
3162 (preference(disprover_mode,true)
3163 -> XX=X % this will also instantiate X and prevent finding WD errors
3164 ; (ApproxSizeA<128 -> true
3165 ; preference(solver_strength,SS), ApproxSizeA < 128+SS*100), % up until 4000 it may make sense to constrain Y
3166 preference(data_validation_mode,false), % note: this can slow down ProB, e.g., test 1105; hence allow disabling it
3167 preference(find_abort_values,false), % TO DO: v = %x.(x:1..20|x+x) & {y,z|y<4 & z=v(y) & (y:{-1,2})} =res: no WD ERROR found
3168 propagate_value(X,XX) % only instantiate X, propagation only makes sense for propagate_avl_element_information_small, as otherwise only X will be bounded
3169 ),
3170 !,
3171 propagate_avl_element_information_direct((XX,Y),AVL,ApproxSizeA,WF).
3172 propagate_apply(_,_,_,_,_,_,_,_,_).
3173
3174 % only propagate in one direction to allow to find WD errors but also prevent pending co-routines/constraints
3175 :- block propagate_value(-,?).
3176 propagate_value(int(X),R) :- !,
3177 (
3178 %%integer(X) -> R=int(X) ; % relevant for SWI 8.5.10 and older where fd_set fails for integers, see test 788; should be fixed in next release
3179 propagate_fd_dom(X,RX), R=int(RX), propagate_atomic_value(X,RX)
3180 ).
3181 propagate_value(fd(X,T),R) :- !,
3182 (
3183 %%integer(X) -> R=fd(X,T) ; % for SWI 8.5.10 and older, see above
3184 propagate_fd_dom(X,RX), R=fd(RX,T), propagate_atomic_value(X,RX)
3185 ).
3186 propagate_value((X1,X2),R) :- !, R=(RX1,RX2), propagate_value(X1,RX1), propagate_value(X2,RX2).
3187 propagate_value(pred_true,R) :- !, if(R=pred_true,true,debug_println(9,function_arg_outside_domain(pred_true))).
3188 propagate_value(pred_false,R) :- !, if(R=pred_false,true,debug_println(9,function_arg_outside_domain(pred_false))).
3189 propagate_value(string(X),R) :- !, R=string(RX),propagate_atomic_value(X,RX).
3190 propagate_value(X,RX) :- equal_object(X,RX). % TO DO: get rid of this: this propagates and prevents finding WD errors
3191 :- block propagate_atomic_value(-,?).
3192 propagate_atomic_value(X,Y) :-
3193 if(X=Y,true,debug_println(9,function_arg_outside_domain(X))).
3194
3195 %propagate_fd_dom(X,RX) :- integer(X),!,RX=X. % relevant for SWI 8.5.10 and older where fd_set fails for integers
3196 propagate_fd_dom(X,RX) :- fd_set(X,Dom),in_set(RX,Dom).
3197
3198
3199 /*
3200 :- block propagate_apply(-,?,?,?,?,-,-).
3201 % call propagate as soon as we know something about the function argument and we do not propgagate completely using GroundX/Y anyway
3202 propagate_apply(X,Y,AVL,Size,WF,GroundX,GroundY) :- print(prop_apply(Size,GroundX,GroundY,X,Y)),nl,
3203 (nonvar(GroundX) -> true ; nonvar(GroundY) -> true
3204 ; propagate_avl_element_information((X,Y),AVL,Size,WF)).
3205
3206 % get the waitflag when first WF set and other two not
3207 :- block delay_get_wait_flag(-,-,-,?,?,?,?).
3208 delay_get_wait_flag(_,WF1,WF2, _,_,_,_) :- (nonvar(WF1);nonvar(WF2)),!. % DO NOTHING
3209 delay_get_wait_flag(_,_,_,Prio,Info,WF,WF2) :- get_wait_flag(Prio,Info,WF,WF2).
3210 */
3211
3212 :- block apply_check_tuple_delay(?,?,?, ?,?,?, -,-,-).
3213 apply_check_tuple_delay(X,Y,AVL,_ApproxSizeA,Span,WF,GroundX,WF1,_) :-
3214 (nonvar(GroundX);nonvar(WF1)),!,
3215 apply_check_tuple(X,Y,AVL,Span,WF).
3216 apply_check_tuple_delay(X,Y,AVL,ApproxSizeA,Span,WF,_GroundX,_WF1,_GroundY) :-
3217 % Y is ground; try to do an inverse function lookup
3218 inverse_apply_ok(Y,X,AVL,ApproxSizeA),
3219 !,
3220 % print(inverse_apply(Y,X,ApproxSizeA,_GroundX)),nl,
3221 inverse_get_possible_values(X,Y,AVL,Res),
3222 Res=avl_set(InvAVL), % if empty set : we fail
3223 (preference(data_validation_mode,true),
3224 avl_approximate_size(InvAVL,10,ApproxSize),
3225 ApproxSize>1
3226 -> A2 is (ApproxSize*15*ApproxSize)//ApproxSizeA, % used to be A2 is ApproxSize*100,
3227 A22 is max(A2,ApproxSize),
3228 (get_inversion_penalty(Span)
3229 -> A23 is A22 * 100 %, add_message(f,'Inversion Penalty: ',Y:A22,Span)
3230 ; A23=A22),
3231 % give lower priority for backwards propagation, upto 15 times if no reduction from backwards propagation
3232 % but also take into account how much we reduce the size by inverting
3233 % relevant for, e.g., Machines_perf_0111/Thales_All/rule_OPS_SDS_3940.mch
3234 % or rule_OPS_SDS_6496 -> 15 instead of 150 improves performance
3235 get_bounded_wait_flag(A23,element_of_avl_inverse_apply_ok(X),WF,WF2),
3236 % does not call propagate_avl_element_information(X,InvAVL,ApproxSize,WF) or avl_to_table
3237 element_of_avl_set_wf3(X,InvAVL,ApproxSize,WF2,WF) % TODO: pass GroundX
3238 %apply_check_tuple_delay(X,Y,AVL,ApproxSizeA,Span,WF,GroundX,WF1,_) % now wait on WF1 or GroundX
3239 ; element_of_avl_set_wf(InvAVL,X,WF)
3240 ).
3241 apply_check_tuple_delay(X,Y,AVL,ApproxSizeA,Span,WF,GroundX,WF1,_GroundY) :-
3242 apply_check_tuple_delay(X,Y,AVL,ApproxSizeA,Span,WF,GroundX,WF1,_). % now wait on WF1 or GroundX
3243
3244 % check if the function call was annotated as not suitable for backwards inverse function lookup propagation
3245 get_inversion_penalty(span_predicate(b(_Function,_,Info),_LS,_S)) :- !,
3246 get_inversion_penalty(Info).
3247 get_inversion_penalty(Info) :-
3248 member(prob_annotation('INVERSION_PENALTY'),Info).
3249
3250 inverse_get_possible_values(X,Y,AVL,Res) :-
3251 get_template(X,XX,_),
3252 copy_term(XX,XX_Copy), % avoid that findall instantiates X
3253 % TODO: copy_value_term similar to ground_value to avoid traversing avl_sets; but usually X is not a set
3254 findall(XX_Copy, safe_avl_member_default((XX_Copy,Y),AVL), PossibleValues),
3255 PossibleValues \= [], % fail straightaway
3256 sort(PossibleValues,SPV),
3257 % length(SPV,Len),print(inverse_image(Y,Len)),nl, print_term_summary(apply_check_tuple_delay(X,Y,AVL)),nl,
3258 convert_to_avl(SPV,Res).
3259
3260 % is it ok to compute inverse ? only makes sense if AVL tree not too big and quite functional
3261 inverse_apply_ok(pred_true,_,_AVL,ApproxSizeA) :- !, % only two values possible, probably half of AVL will be returned
3262 ApproxSizeA < 1023. % corresponds to avl_height < 10
3263 inverse_apply_ok(pred_false,_,_AVL,ApproxSizeA) :- !,ApproxSizeA < 1023.
3264 % TO DO: other small types, such as fd(_,_)
3265 inverse_apply_ok(_,_,_AVL,ApproxSizeA) :- ApproxSizeA < 255,!.
3266 inverse_apply_ok(_,X,_AVL,ApproxSizeA) :- ApproxSizeA < 65535, % corresponds Height < 16
3267 (preference(data_validation_mode,true) ->
3268 (preference(solver_strength,SS), ApproxSizeA < 16383+SS -> true
3269 ; perfmessage(inverse,function_call_not_inverted(ApproxSizeA)),fail
3270 )
3271 ; true),
3272 quick_non_ground_check(X).
3273 %inverse_apply_ok(_,_,_,_).
3274
3275 % sometimes the ground_value_check co-routine hasn't grounded GroundX yet ! so do a quick check
3276 quick_non_ground_check(X) :- var(X),!.
3277 quick_non_ground_check([]) :- !,fail.
3278 quick_non_ground_check(avl_set(_)) :- !,fail.
3279 quick_non_ground_check(pred_true) :- !,fail.
3280 quick_non_ground_check(pred_false) :- !,fail.
3281 quick_non_ground_check(int(X)) :- !,var(X).
3282 quick_non_ground_check(string(X)) :- !,var(X).
3283 quick_non_ground_check(fd(X,T)) :- !,(var(X) ; var(T)).
3284 quick_non_ground_check((A,B)) :- !, (quick_non_ground_check(A) -> true ; quick_non_ground_check(B)).
3285 quick_non_ground_check(_). % assume it is non ground
3286
3287
3288
3289 % apply_check_tuple is allowed to enumerate: either X is ground or Y is ground
3290 apply_check_tuple(X,Y,A,Span,WF) :-
3291 ground_value(X),
3292 convert_to_avl_inside_set_wf(X,AX,WF),!, % we can do optimized lookup + checking in one go (but avl_apply only does partial check)
3293 avl_apply(AX,A,XY,Span,WF),
3294 kernel_objects:equal_object_wf(XY,Y,apply_check_tuple,WF).
3295 :- if(environ(no_wd_checking, true)).
3296 apply_check_tuple(X,Y,A,_Span,WF) :- safe_avl_member_default_wf((X,Y),A,WF).
3297 :- else.
3298 apply_check_tuple(X,Y,A,_Span,WF) :- preferences:preference(find_abort_values,false), !,
3299 safe_avl_member_default_wf((X,Y),A,WF).
3300 apply_check_tuple(X,Y,A,Span,WF) :- !,
3301 if(safe_avl_member_default_wf((X,XY),A,WF), % does not detect abort errors if X unbound
3302 kernel_objects:equal_object_wf(XY,Y,apply_check_tuple_avl,WF),
3303 add_wd_error_span('function applied outside of domain (#4): ','@fun'(X,avl_set(A)),Span,WF)).
3304 :- endif.
3305
3306
3307 % ------------------------------------------
3308
3309
3310 :- use_module(b_global_sets,[b_type2_set/2]).
3311 :- use_module(bsyntaxtree,[rename_bt/3]).
3312 union_of_explicit_set(global_set(GS),_,R) :- is_maximal_global_set(GS), !,
3313 R= global_set(GS). /* global_set is already maximal */
3314 union_of_explicit_set(freetype(GS),_,R) :- !, R= freetype(GS). /* freetype is already maximal */
3315 union_of_explicit_set(closure(P,T,B),_,R) :- is_definitely_maximal_closure(P,T,B), !,
3316 R= closure(P,T,B). /* global_set is already maximal */
3317 union_of_explicit_set(_,S2,R) :- is_definitely_maximal_set(S2),!, % will also look at AVL set
3318 R=S2.
3319 union_of_explicit_set(S1,S2,R) :- nonvar(S2), S2 = [], !, R=S1.
3320 union_of_explicit_set(S1,S2,_) :- (var(S1);var(S2)),!,fail. % then we cannot compute it here
3321 union_of_explicit_set(S2,S1,R) :-
3322 is_not_member_value_closure(S1,TYPE,MS1), nonvar(MS1), is_efficient_custom_set(MS1),
3323 % also works if S2 is complement closure
3324 difference_of_explicit_set(MS1,S2,Diff),!,
3325 construct_complement_closure_if_necessary(Diff,TYPE,R).
3326 union_of_explicit_set(avl_set(A1),S2,R) :- !, union_of_avl_set(S2,A1,R).
3327 union_of_explicit_set(S1,S2,R) :-
3328 is_not_member_value_closure(S1,TYPE,MS1), nonvar(MS1), is_efficient_custom_set(MS1),
3329 difference_of_explicit_set(MS1,S2,Diff),!,
3330 construct_complement_closure_if_necessary(Diff,TYPE,R).
3331 union_of_explicit_set(S1,avl_set(A2),R) :- !, union_of_avl_set(S1,A2,R).
3332 union_of_explicit_set(I1,I2,R) :- is_interval_closure_or_integerset(I1,From1,To1), ground(From1), ground(To1),
3333 is_interval_closure_or_integerset(I2,From2,To2), ground(From2), ground(To2),
3334 !,
3335 (union_of_interval(From1,To1,From2,To2,FromRes,ToRes)
3336 -> construct_interval_closure(FromRes,ToRes,R)
3337 ; small_enough_for_expansion(From1,To1),small_enough_for_expansion(From2,To2) ->
3338 % do not attempt union_of_closure below
3339 expand_interval_closure_to_avl(From1,To1,R1), R1=avl_set(A1), % empty interval already dealt with above !?
3340 expand_interval_closure_to_avl(From2,To2,R2), R2=avl_set(A2), % Note: unification after call as expand_interval calls equal_object (which gets confused by partially instantiated avl_set(_))
3341 union_of_avl(A1,A2,ARes),R=avl_set(ARes) /* AVL not normalised */
3342 ; transform_global_sets_into_closure(I1,closure(Par,T,Body)),
3343 union_of_closure(I2,Par,T,Body,R)
3344 ).
3345 union_of_explicit_set(closure(P,T,B),C2,Res) :-
3346 union_of_closure(C2,P,T,B,Res).
3347
3348 small_enough_for_expansion(From1,To1) :- number(To1), number(From1), To1-From1<250.
3349
3350 :- use_module(bsyntaxtree,[extract_info/2, extract_info_wo_used_ids/2, extract_info/3, rename_bt/3, replace_id_by_expr/4]).
3351
3352 union_of_closure(global_set(X),P,T,B,Res) :- !, transform_global_sets_into_closure(global_set(X),C),
3353 union_of_closure(C,P,T,B,Res).
3354 union_of_closure(closure(P2,T2,B2),P,T,B,Res) :- !,
3355 % T2 should be equal to T, module seq(_) <-> set(couple(integer,_))
3356 unify_closure_predicates(P,T,B, P2,T2,B2 , NewP,NewT, NewB1,NewB2),
3357 debug:debug_println(9,union_of_two_closures(P,P2,NewP,NewT)),
3358 extract_info(B,B2,NewInfo),
3359 construct_disjunct(NewB1,NewB2,Disj),
3360 Res = closure(NewP,NewT,b(Disj,pred,NewInfo)).
3361
3362 % rename predicates of two closures so that they work on common closure parameter ids
3363 % and can then be either joined by conjunction or disjunction
3364 unify_closure_predicates(P,T,B, P2,T2,B2 , NewP,NewT, NewB1,NewB2) :-
3365 length(P,Len1), length(P2,Len2),
3366 (Len1=Len2
3367 -> generate_renaming_list(P,P2,RL),
3368 rename_bt(B2,RL,NewB2),
3369 NewP=P, NewT=T, NewB1 = B
3370 ; Len1 < Len2 -> unify_clos_lt(P,T,B, P2,T2,B2 , NewP,NewT, NewB1,NewB2)
3371 ; unify_clos_lt(P2,T2,B2, P,T,B , NewP,NewT, NewB2,NewB1) % inverted the predicate
3372 ).
3373
3374 % TO DO: generalize: currently only works for single identifier on left
3375 % but works for id(NATURAL) \/ %x.(x<0|-x) or abs = id(NATURAL) \/ %x.(x<0|-x) & abs(2)=a2 & abs(-2)=am2
3376 unify_clos_lt([ID1],[couple(_,_)],B, P2,T2,B2 , NewP,NewT, NewB1,NewB2) :-
3377 rename_lambda_result_id(P2,B2,P3,B3),
3378 create_couple_term(P3,T2,Pair),
3379 replace_id_by_expr(B,ID1,Pair,NewB1),
3380 NewP=P3, NewT=T2, NewB2=B3.
3381
3382 % _lambda_result_ id is not enumerated, hence we have to avoid inserting such ids into NewB1 as part of the pPair
3383 rename_lambda_result_id(['_lambda_result_',ID2],B2,[FRESHID,ID2],B3) :- !,get_unique_id('_RANGE_',FRESHID),
3384 rename_bt(B2,[rename('_lambda_result_',FRESHID)],B3).
3385 rename_lambda_result_id([ID1,'_lambda_result_'],B2,[ID1,FRESHID],B3) :- !,get_unique_id('_RANGE_',FRESHID),
3386 rename_bt(B2,[rename('_lambda_result_',FRESHID)],B3).
3387 rename_lambda_result_id(P2,B2,P2,B2).
3388
3389 % translate a list of atomic ids and a list of types into a couple-term
3390 create_couple_term([ID1],[T1],Res) :- !,
3391 create_texpr(identifier(ID1),T1,[],Res).
3392 create_couple_term([ID1,ID2],[T1,T2],Res) :-
3393 bsyntaxtree:create_couple(b(identifier(ID1),T1,[]),b(identifier(ID2),T2,[]),Res).
3394 % TODO: extend for more than two args
3395
3396 generate_renaming_list([],[],[]).
3397 generate_renaming_list([ID|T],[ID2|T2],RL) :-
3398 (ID==ID2 -> generate_renaming_list(T,T2,RL)
3399 ; RL = [rename(ID2,ID)|RL2],
3400 generate_renaming_list(T,T2,RL2)).
3401
3402
3403 % a more clever way of constructing a disjunct; factor out common prefixes
3404 % (A & B1) or (A1 & B2) <=> A1 & (B1 or B2)
3405 % TO DO: we should try and get the leftmost basic conjunct !
3406 /* construct_disjunct(b(conjunct(A1,A2),pred,IA), b(conjunct(B1,B2),pred,_IB), Res) :-
3407
3408 print('TRY DISJUNCT FACTOR: '), translate:print_bexpr(A1),nl,
3409 translate:print_bexpr(B1),nl,
3410 same_texpr_body(A1,B1),!,
3411 print('DISJUNCT FACTOR: '), translate:print_bexpr(A1),nl,
3412 Res = conjunct(A1,b(Disj,pred,IA)),
3413 construct_disjunct(A2,B2,Disj).
3414 */
3415 construct_disjunct(A,B,disjunct(A,B)).
3416
3417 :- use_module(btypechecker,[couplise_list/2]).
3418 % TO DO: quick_check if AVL A1 is maximal ?
3419 union_of_avl_set(avl_set(A2),A1,R) :- !, union_of_avl(A1,A2,ARes), R=avl_set(ARes). /* AVL not normalised */
3420 union_of_avl_set(I2,A1,R) :- is_interval_closure_or_integerset(I2,From2,To2), !,
3421 ground(From2), ground(To2), % we can only compute it if bounds known
3422 (avl_min(A1,int(Min)), low_border(From2,Min,FromRes), avl_max(A1,int(Max)), up_border(To2,Max,ToRes)
3423 -> /* AVL contained (almost) in Interval */
3424 construct_interval_closure(FromRes,ToRes,R)
3425 ; \+ small_interval(From2,To2) ->
3426 transform_global_sets_into_closure(I2,closure(Par,T,Body)), % we may have something like NATURAL1,...
3427 union_of_avl_set_with_closure(Par,T,Body,A1,R)
3428 ; expand_and_convert_to_avl_set(I2,A2,union_of_avl_set,'? \\/ ARG'), % can generate ARel=empty; will fail if not possible to convert
3429 union_of_avl(A1,A2,ARes), R=avl_set(ARes)
3430 ).
3431 union_of_avl_set(closure(Par,T,Body),A1,Res) :- is_infinite_or_symbolic_closure(Par,T,Body),!,
3432 % TO DO: what if we are in SYMBOLIC mode and the type of T is infinite; maybe we should also keep the union symbolic ?? (cf Ticket/Georghe1)
3433 union_of_avl_set_with_closure(Par,T,Body,A1,Res).
3434 union_of_avl_set(S2,A1,Res) :-
3435 S2 \= freetype(_),
3436 ground_value(S2), % could be a closure
3437 !,
3438 (try_expand_and_convert_to_avl_set(S2,A2,union)
3439 -> union_of_avl(A1,A2,ARes), Res=avl_set(ARes) /* AVL not normalised */
3440 ; S2=closure(Par,T,Body),
3441 union_of_avl_set_with_closure(Par,T,Body,A1,Res)).
3442
3443 try_expand_and_convert_to_avl_set(S2,A2,Source) :-
3444 % false: do not add enumeration warning events as errors
3445 catch_enumeration_warning_exceptions(expand_and_convert_to_avl_set(S2,A2,Source,''),fail,false,ignore(Source)).
3446
3447 % try expanding to list, but catch enumeration warnings and fail if they do occur
3448 % used by override(...)
3449 %try_expand_custom_set_to_list(CS,_,_,_) :- nonvar(CS),CS=global_set(GS),is_infinite_global_set(GS,_),
3450 % !,
3451 % fail.
3452 try_expand_custom_set_to_list(CS,_,_,_) :- nonvar(CS),
3453 (is_symbolic_closure(CS) ; is_infinite_explicit_set(CS)),
3454 !, % we could also check is_symbolic_closure
3455 fail.
3456 try_expand_custom_set_to_list(CS,List,Done,Source) :-
3457 % false: do not add enumeration warning events as errors
3458 catch_enumeration_warning_exceptions(expand_custom_set_to_list(CS,List,Done,Source),fail,false,ignore(Source)).
3459
3460
3461 small_interval(From,To) :- number(From), number(To), To-From < 10000.
3462
3463 union_of_avl_set_with_closure(Par,T,Body,A1,Res) :-
3464 Body = b(_,BodyT,_),
3465 setup_typed_ids(Par,T,TypedPar),
3466 btypechecker:couplise_list(TypedPar,TypedCPar),
3467 generate_couple_types(TypedCPar,ParExpr,ParType),
3468 debug:debug_println(9,union_of_avl_and_infinite_closure(Par,T,BodyT)),
3469 BodyAvl = b(member(ParExpr,b(value(avl_set(A1)),set(ParType),[])),pred,[]),
3470 extract_info_wo_used_ids(Body,NewInfo),
3471 Res = closure(Par,T,b(disjunct(BodyAvl,Body),pred,NewInfo)).
3472 % mark_closure_as_symbolic(closure(Par,T,b(disjunct(BodyAvl,Body),pred,NewInfo)),Res).
3473
3474 low_border(Low,AVLMin,R) :- geq_inf(AVLMin,Low),!,R=Low.
3475 low_border(Low,AVLMin,R) :- number(Low),AVLMin is Low-1,R=AVLMin. % extend lower border by one
3476 up_border(Up,AVLMax,R) :- geq_inf(Up,AVLMax),!,R=Up.
3477 up_border(Up,AVLMax,R) :- number(Up),AVLMax is Up+1,R=AVLMax. % extend upper border by one
3478
3479
3480 setup_typed_ids([],[],[]).
3481 setup_typed_ids([ID|TI],[Type|TT],[b(identifier(ID),Type,[])|BT]) :- setup_typed_ids(TI,TT,BT).
3482
3483 generate_couple_types(couple(A,B),b(couple(TA,TB),Type,[]),Type) :- !, Type = couple(TTA,TTB),
3484 generate_couple_types(A,TA,TTA),
3485 generate_couple_types(B,TB,TTB).
3486 generate_couple_types(b(X,T,I),b(X,T,I),T).
3487
3488
3489 % try to see if two intervals can be unioned into a new interval
3490 union_of_interval(F1,T1,F2,T2,FR,TR) :-
3491 geq_inf(F2,F1), geq_inf(T1,T2),!,FR=F1,TR=T1. % interval [F2,T2] contained in [F1,T1]
3492 union_of_interval(F2,T2,F1,T1,FR,TR) :- geq_inf(F2,F1), geq_inf(T1,T2),!,FR=F1,TR=T1. % see above
3493 union_of_interval(F1,T1,F2,T2,FR,TR) :- number(F2),
3494 geq_inf(F2,F1), number(T1),T11 is T1+1,geq_inf(T11,F2), geq_inf(T2,F2),!,FR=F1,TR=T2. % intervals can be joined
3495 union_of_interval(F2,T2,F1,T1,FR,TR) :- number(F2),
3496 geq_inf(F2,F1), number(T1),T11 is T1+1,geq_inf(T11,F2), geq_inf(T2,F2),!,FR=F1,TR=T2. % see above
3497
3498 :- use_module(library(ordsets),[ord_union/3]).
3499 union_of_avl(A1,A2,ARes) :-
3500 avl_height(A2,Sz2),
3501 (Sz2 < 2 % we have something like Set := Set \/ {x}; no need to compute height of A1
3502 -> union_of_avl1(A1,99999,A2,Sz2,ARes)
3503 ; avl_height(A1,Sz1), % TODO: we could call avl_height_less_than or avl_height_compare
3504 (Sz1<Sz2 -> union_of_avl1(A2,Sz2,A1,Sz1,ARes) ; union_of_avl1(A1,Sz1,A2,Sz2,ARes))
3505 ).
3506 union_of_avl1(A1,Sz1,A2,Sz2,ARes) :- Sz2>2, Sz1 =< Sz2+3, % difference not too big; Sz2 at least a certain size
3507 !,
3508 avl_to_list(A2,List2), % get all members
3509 avl_to_list(A1,List1),
3510 ord_union(List1,List2,L12),
3511 ord_list_to_avl(L12,ARes).
3512 union_of_avl1(A1,_Sz1,A2,_Sz2,ARes) :- % this version is better when A2 is small compared to A1
3513 avl_domain(A2,List2), % get all members
3514 add_to_avl(List2,A1,ARes).
3515
3516 :- use_module(library(lists),[reverse/2]).
3517 % a custom version for union(A) where A is AVL set; avoid converting/expanding accumulators and computing avl_height
3518 % runtime of e.g., UNION(x).(x:1000..1514|0..x) 0.65 sec or UNION(n).(n:10000..10010|UNION(x).(x:n..n+1000|n..x)) 4.8 sec is considerably smaller with this version
3519 union_generalized_explicit_set(avl_set(SetsOfSets),Res,WF) :-
3520 expand_custom_set_to_list_wf(avl_set(SetsOfSets),ESetsOfSets,_,union_generalized_wf,WF),
3521 % length(ESetsOfSets,Len),print(union_gen(Len)),nl,
3522 (ESetsOfSets=[OneSet]
3523 -> Res=OneSet % avoid converting to list and back to Avl
3524 ; reverse(ESetsOfSets,RESetsOfSets), % be sure to insert larger values first, so that ord_union has less work to do below; useful if you have many small singleton sets, for example union(ran(%x.(x : 1 .. 10000|{x * x}))) 2.37 secs --> 0.15 secs
3525 % note: dom({r,x|x:1..50000 & r:{x*x}}) is still 3 times faster
3526 union_of_avls(RESetsOfSets,[],Res)).
3527
3528 % take the union of a list of avl_sets
3529 union_of_avls([],Acc,Res) :- ord_list_to_avl(Acc,ARes), construct_avl_set(ARes,Res).
3530 union_of_avls([H|T],Acc,Res) :-
3531 union_of_avl_with_acc(H,Acc,NewAcc),
3532 union_of_avls(T,NewAcc,Res).
3533
3534 union_of_avl_with_acc(avl_set(H),Acc,NewAcc) :- !,
3535 avl_to_list(H,HList),
3536 ord_union(Acc,HList,NewAcc).
3537 union_of_avl_with_acc([],Acc,Res) :- !,Res=Acc.
3538 % other custom sets should normally not appear, we obtain the list as elements stored in an avl_set
3539 union_of_avl_with_acc(G,_,_) :- add_internal_error('Uncovered element: ',union_of_avl_with_acc(G,_,_)),fail.
3540
3541
3542
3543 % TO DO: there are no rules for is_not_member_value_closure for intersection below
3544 intersection_of_explicit_set_wf(global_set(GS),S2,R,_WF) :- is_maximal_global_set(GS), !, R=S2.
3545 intersection_of_explicit_set_wf(freetype(_GS),S2,R,_WF) :- !, R=S2.
3546 intersection_of_explicit_set_wf(_,S2,_,_WF) :- var(S2),!,fail. % code below may instantiate S2
3547 intersection_of_explicit_set_wf(S1,S2,R,_WF) :- is_definitely_maximal_set(S2), !, R=S1.
3548 intersection_of_explicit_set_wf(_S1,[],R,_WF) :-!, R=[].
3549 intersection_of_explicit_set_wf(avl_set(A1),I2,R,_WF) :-
3550 is_interval_closure_or_integerset(I2,From1,To1),
3551 !,
3552 intersect_avl_interval(A1,From1,To1,R).
3553 intersection_of_explicit_set_wf(I1,I2,R,_WF) :-
3554 intersection_with_interval_closure(I1,I2,R),!.
3555 intersection_of_explicit_set_wf(S1,S2,R,_WF) :-
3556 get_avl_sets(S1,S2,A1,A2),
3557 !, % if too large: better to apply normal intersection code ?
3558 % if one of the args is an interval this is already caught in kernel_objects calling intersection_with_interval_closure; see SetIntersectionBig.mch
3559 avl_domain(A1,ES), % A1 has the smaller height; important for e.g. SetIntersectionBig2.mch
3560 inter2(ES,A2,IRes),
3561 ord_list_to_avlset(IRes,R,intersection). % we have generated the elements in the right order already
3562 intersection_of_explicit_set_wf(Set1,Set2,R,WF) :-
3563 transform_global_sets_into_closure(Set1,closure(P1,T1,B1)),
3564 transform_global_sets_into_closure(Set2,closure(P2,T2,B2)),
3565 % gets called, e.g., for {x|x /: NATURAL1} /\ NATURAL1
3566 unify_closure_predicates(P1,T1,B1, P2,T2,B2 , NewP,NewT, NewB1,NewB2),
3567 debug:debug_println(9,intersection_of_two_closures(P1,P2,NewP,NewT)),
3568 conjunct_predicates([NewB1,NewB2],BI),
3569 % create a conjunction: can be much more efficient than seperately expanding;
3570 % also works well if one of the closures is infinite
3571 C = closure(NewP,NewT,BI),
3572 expand_custom_set_wf(C,R,intersection_of_explicit_set_wf,WF). % we could keep it symbolic; maybe use SYMBOLIC pref
3573 % to do: also use above for closure and AVL set with member(P,value(avl_set(A)))
3574 % we could also apply the same principle to difference_of_explicit_set
3575 % currently we enable intersection to be treated symbolically (not_symbolic_binary(intersection) commented out)
3576 % This means the above clause for intersection_of_explicit_set_wf is less useful
3577 % a special case; just for interval closures
3578 intersection_with_interval_closure(I1,I2,R) :-
3579 is_interval_closure_or_integerset(I1,From1,To1), nonvar(I2),
3580 intersection_with_interval_closure_aux(I2,From1,To1,R).
3581 intersection_with_interval_closure(avl_set(A1),I2,R) :-
3582 is_interval_closure_or_integerset(I2,From1,To1),
3583 !,
3584 intersect_avl_interval(A1,From1,To1,R).
3585
3586 % try and get AVL sets from two args; first AVL set is smaller one according to height
3587 get_avl_sets(avl_set(A1),S2,AA1,AA2) :- nonvar(S2), S2=avl_set(A2),
3588 ? (avl_height_compare(A1,A2,R), R=lt
3589 -> (AA1,AA2)=(A1,A2)
3590 ; (AA1,AA2)=(A2,A1)).
3591 %get_avl_sets(S1,S2,AA1,AA2) :- nonvar(S2),S2=avl_set(A2), get_avl_set_arg(S1,A1),
3592 % (avl_height_compare(A1,A2,R),R=gt -> (AA1,AA2)=(A2,A1) ; (AA1,AA2)=(A1,A2)).
3593
3594
3595 %intersection_with_interval_closure_aux(avl_set(A),...
3596 intersection_with_interval_closure_aux(I2,From1,To1,R) :-
3597 is_interval_closure_or_integerset(I2,From2,To2),!,
3598 intersect_intervals_with_inf(From1,To1,From2,To2,FromRes,ToRes),
3599 construct_interval_closure(FromRes,ToRes,R).
3600 % (is_interval_closure_or_integerset(R,F,T) -> print(ok(F,T)),nl ; print(ko),nl).
3601 intersection_with_interval_closure_aux(avl_set(A2),From1,To1,R) :-
3602 intersect_avl_interval(A2,From1,To1,R).
3603
3604 % intersect avl with interval
3605 % TO DO: expand interval if small (or small intersection with AVL) and use avl intersection
3606 intersect_avl_interval(_,From2,To2,_) :- (var(From2) ; var(To2)),!,fail.
3607 intersect_avl_interval(A1,From2,To2,R) :- avl_min(A1,int(Min)),
3608 geq_inf(Min,From2),
3609 geq_inf(To2,Min), avl_max(A1,int(Max)),
3610 geq_inf(To2,Max),
3611 % AVL fully contained in interval; no need to expand to list and back again
3612 !,
3613 construct_avl_set(A1,R).
3614 intersect_avl_interval(A1,From2,To2,R) :-
3615 avl_domain(A1,ES),
3616 inter_interval(ES,From2,To2,IRes),
3617 ord_list_to_avlset(IRes,R,intersect_avl_interval).
3618
3619 inter_interval([],_,_, []).
3620 inter_interval([IH|T],From2,To2, Res) :- IH = int(H),
3621 (geq_inf(To2,H) ->
3622 (geq_inf(H,From2) -> Res = [IH-true|Res2] ; Res = Res2),
3623 inter_interval(T,From2,To2,Res2)
3624 ; Res = [] % we have exceeded the upper limit of the interval
3625 ).
3626
3627 intersect_intervals_with_inf(From1,To1,From2,To2,FromRes,ToRes) :-
3628 minimum_with_inf(To1,To2,ToRes),
3629 maximum_with_inf(From1,From2,FromRes).
3630
3631 % check if two intervals are disjoint
3632 disjoint_intervals_with_inf(From1,To1,From2,To2) :-
3633 intersect_intervals_with_inf(From1,To1,From2,To2,Low,Up),
3634 number(Up), number(Low), Low > Up.
3635
3636 inter2([],_, []).
3637 inter2([H|T],A1, Res) :-
3638 (avl_fetch(H,A1) -> Res = [H-true|Res2] ; Res = Res2), inter2(T,A1,Res2).
3639
3640 ord_list_to_avlset(OL,R) :- ord_list_to_avlset(OL,R,unknown).
3641 ord_list_to_avlset(OrdList,Res,Origin) :-
3642 % assumes that we have generated the elements in the right order already
3643 (OrdList=[] -> Res=[]
3644 ; check_sorted(OrdList,Origin),
3645 ord_list_to_avl(OrdList,ARes), Res=avl_set(ARes)).
3646
3647 % a version which accepts a list of values without -true
3648 % values have to be ground and already converted for use in avl_set
3649 sorted_ground_normalised_list_to_avlset(List,Res,PP) :-
3650 add_true_to_list(List,LT),
3651 ord_list_to_avlset_direct(LT,Res,PP).
3652
3653 add_true_to_list([],[]).
3654 add_true_to_list([H|T],[H-true|TT]) :- add_true_to_list(T,TT).
3655
3656 % the same, but without checking sorted (only use if you are really sure the list is sorted)
3657 ord_list_to_avlset_direct([],[],_).
3658 ord_list_to_avlset_direct([H|T],Res,_):-
3659 (T==[] -> H=Key-Val, Res = avl_set(node(Key,Val,0,empty,empty)) % slightly faster than calling ord_list_to_avl
3660 ; ord_list_to_avl([H|T],ARes), Res = avl_set(ARes)).
3661
3662 check_sorted([],_) :- !.
3663 check_sorted([H-_|T],Origin) :- !, check_sorted2(T,H,Origin).
3664 check_sorted(X,Origin) :- add_error_and_fail(ord_list_to_avlset,'Not a list of -/2 pairs: ',Origin:X).
3665
3666 check_sorted2([],_,_) :- !.
3667 check_sorted2([H-_|T],PH,Origin) :- PH @< H,!, check_sorted2(T,H,Origin).
3668 check_sorted2(X,Prev,Origin) :-
3669 add_error_and_fail(ord_list_to_avlset,'Not a sorted list of -/2 pairs: ',Origin:(X,Prev)).
3670
3671 % ------------------
3672
3673 :- use_module(kernel_freetypes,[is_maximal_freetype/1]).
3674 is_definitely_maximal_set(S) :- nonvar(S),
3675 is_definitely_maximal_set2(S).
3676 is_definitely_maximal_set2(freetype(ID)) :- is_maximal_freetype(ID).
3677 is_definitely_maximal_set2(global_set(GS)) :- is_maximal_global_set(GS).
3678 is_definitely_maximal_set2(closure(P,T,B)) :- is_definitely_maximal_closure(P,T,B).
3679 is_definitely_maximal_set2(avl_set(S)) :- quick_definitely_maximal_set_avl(S).
3680 is_definitely_maximal_set2([H|T]) :- nonvar(H), is_definitely_maximal_list(H,T). %, nl,print(maximal(H,T)),nl,nl.
3681 %H==pred_true, T == [pred_false]. % for some reason BOOL is sometimes presented this way
3682 is_definitely_maximal_set2(empty) :- % detect unwrapped AVL sets
3683 add_internal_error('Not a set: ',is_definitely_maximal_set2(empty)),fail.
3684 is_definitely_maximal_set2(node(A,B,C,D,E)) :-
3685 add_internal_error('Not a set: ',is_definitely_maximal_set2(node(A,B,C,D,E))),fail.
3686
3687 is_definitely_maximal_list(pred_true,T) :- nonvar(T), T=[_|_]. %
3688 is_definitely_maximal_list(pred_false,T) :- nonvar(T), T=[_|_].%
3689 is_definitely_maximal_list(fd(_,Type),T) :- nonvar(T),b_global_set_cardinality(Type,Card),
3690 % check if we have the same number of elements as the type: then the set must me maximal
3691 length_at_least(T,Card).
3692 % We could try and and also treat pairs
3693
3694 length_at_least(1,_) :- !. % we have already removed 1 element; T can be nil
3695 length_at_least(N,T) :- nonvar(T), T=[_|TT], N1 is N-1, length_at_least(N1,TT).
3696
3697 is_definitely_maximal_closure(_,_,b(truth,_Pred,_)) :- !.
3698 is_definitely_maximal_closure(P,T,B) :- is_cartesian_product_closure_aux(P,T,B,S1,S2),!,
3699 is_definitely_maximal_set(S1),is_definitely_maximal_set(S2).
3700 is_definitely_maximal_closure(P,T,B) :-
3701 is_full_powerset_or_relations_or_struct_closure(closure(P,T,B),Sets),
3702 l_is_definitely_maximal_set(Sets).
3703
3704 l_is_definitely_maximal_set([]).
3705 l_is_definitely_maximal_set([H|T]) :- is_definitely_maximal_set(H), l_is_definitely_maximal_set(T).
3706
3707 % check if we have an AVL tree covering all elements of the underlying type
3708 quick_definitely_maximal_set_avl(AVL) :-
3709 AVL=node(El,_True,_,_Left,_Right),
3710 quick_definitely_maximal_set_avl_aux(El,AVL).
3711 quick_definitely_maximal_set_avl_aux(El,AVL) :-
3712 try_get_finite_max_card_from_ground_value(El,Card),
3713 % this could fail if El contains empty sets !
3714 % also: it must fail if Card is infinite (no avl_set can be maximal)
3715 (Card < 1000 -> true
3716 ; preferences:preference(solver_strength,SS), Card < 1000+SS*100
3717 ), % otherwise too expensive a check avl_size
3718 quick_avl_approximate_size(AVL,MaxSize),
3719 MaxSize >= Card, % otherwise no sense in computing avl_size, which is linear in size of AVL
3720 avl_size(AVL,Size),
3721 %(MaxSize>=Size -> print(ok(Size,all(Card))),nl ; print('**** ERROR: '), print(Size),nl,trace),
3722 Size=Card.
3723
3724 % check if we have an AVL function with domain covering all elements of the underlying type
3725 quick_definitely_maximal_total_function_avl(AVL) :-
3726 AVL=node(El,_True,_,_Left,_Right),
3727 El=(DomEl,_),
3728 quick_definitely_maximal_set_avl_aux(DomEl,AVL), % the size is exactly the size of the domain
3729 is_avl_partial_function(AVL).
3730
3731 % ----------------------
3732 % set_subtraction /
3733 difference_of_explicit_set(S1,S2,R) :-
3734 difference_of_explicit_set_wf(S1,S2,R,no_wf_available).
3735 % this is called with first argument nonvar (for set_subtraction operator):
3736 difference_of_explicit_set_wf(_S1,S2,R,_) :-
3737 is_definitely_maximal_set(S2), !, R=[].
3738 difference_of_explicit_set_wf(S1,S2,R,_) :- nonvar(S2), S2=[],!, R=S1.
3739 difference_of_explicit_set_wf(S1,S2,R,_) :-
3740 %nonvar(S1),
3741 ? is_very_large_maximal_global_set(S1,Type), !, % TO DO: also for freetype ? cartesian products,...
3742 /* we have a complement-set */
3743 complement_set(S2,Type,R).
3744 difference_of_explicit_set_wf(S1,S2,Result,_) :-
3745 is_not_member_value_closure(S1,Type,MS1),
3746 nonvar(MS1), is_custom_explicit_set(MS1,difference_of_explicit_set_wf),!,
3747 union_complement_set(MS1,S2,Type,Result).
3748 difference_of_explicit_set_wf(_,S2,_,_) :- var(S2), !, fail. % then we cannot do anything below
3749 difference_of_explicit_set_wf(S1,S2,R,WF) :-
3750 is_not_member_value_closure(S2,_Type,MS2), nonvar(MS2),
3751 intersection_of_explicit_set_wf(MS2,S1,R,WF),!.
3752 difference_of_explicit_set_wf(I1,I2,R,_) :-
3753 is_interval_closure_or_integerset(I1,From1,To1),
3754 is_interval_closure_or_integerset(I2,From2,To2),
3755 difference_interval(From1,To1,From2,To2,FromRes,ToRes),
3756 % TO DO: also treat case when difference yields two disjoint intervals
3757 % i.e., do not fail and forget info about interval bounds in case we cannot compute difference as a an interval, e.g., INT - {0}
3758 !,
3759 construct_interval_closure(FromRes,ToRes,R).
3760 difference_of_explicit_set_wf(avl_set(A1),S2,R,WF) :-
3761 (S2=avl_set(A2) ;
3762 ground_value(S2), expand_and_convert_to_avl_set_unless_very_large(S2,A2,WF)),!,
3763 avl_height(A2,H2),
3764 %avl_min(A1,Min1),avl_max(A1,Max1), avl_min(A2,Min2),avl_max(A2,Max2), avl_height(A1,H1),nl,print(diff(avl(H1,Min1,Max1),avl(H2,Min2,Max2))),nl,
3765 avl_height(A1,H1),
3766 ((H2<2 -> true ; H1 > H2+1) % then it is more efficient to expand A2 and remove the A2 elements from A1;
3767 % note that difference_of_explicit_set2 now also sometimes expands both:
3768 % exact threshold when it is beneficial: difference_of_explicit_set2/3
3769 % for {x|x:1..200000 & x mod 2 = 0} - {y|y:2500..29010 & y mod 2 = 0} -> 150 ms vs 80 ms avl(17,int(2),int(200000)),avl(14,int(2500),int(29010)
3770 % {x|x:1..200000 & x mod 2 = 0} - {y|y:2500..59010 & y mod 2 = 0} -> 180 ms vs 80 ms avl(17,int(2),int(200000)),avl(15,int(2500),int(59010))
3771 % {x|x:1..200000 & x mod 2 = 0} - {y|y:500..159010 & y mod 2 = 0} -> 180 ms vs 250 ms avl(17,int(2),int(200000)),avl(17,int(500),int(159010))
3772 -> expand_custom_set_to_sorted_list(S2,ES,_,difference_of_explicit_set1,WF),
3773 difference_of_explicit_set3(ES,A1,R)
3774 ; expand_custom_set_to_sorted_list(avl_set(A1),ES,Done,difference_of_explicit_set2,WF),
3775 difference_of_explicit_set2(ES,H1,A2,H2,R,Done)).
3776 difference_of_explicit_set_wf(S1,S2,R,WF) :-
3777 (S2=avl_set(A2) ;
3778 ground_value(S2), expand_and_convert_to_avl_set_unless_very_large(S2,A2,WF)),!,
3779 avl_height(A2,A2Height),
3780 difference_with_avl(S1,A2,A2Height,R,WF).
3781 % to do: we could detect same_texpr_body for two closures and return R=[]
3782
3783 :- use_module(avl_tools,[avl_approximate_size_from_height/2]).
3784 :- use_module(bsyntaxtree,[create_texpr/4, conjunct_predicates/2, mark_bexpr_as_symbolic/2]).
3785 difference_with_avl(S1,A2,A2Height,R,_) :-
3786 is_closure_or_integer_set(S1,[ID],[T],B),
3787 % check if the first argument is infinite; then do the difference set symbolically
3788 % this could supersed the complement set construction and be generalised to other sets apart from avl_sets as A2
3789 avl_approximate_size_from_height(A2Height,A2Size),
3790 Limit is max(A2Size*10,1000000), % if A2 is more than 10% size of S1, probably better to compute difference explicitly
3791 is_very_large_or_symbolic_closure([ID],[T],B,Limit),
3792 !, % TO DO: also allow multiple identifiers
3793 create_texpr(identifier(ID),T,[],TID),
3794 create_texpr(value(avl_set(A2)),set(T),[],A2Value),
3795 create_texpr(not_member(TID,A2Value),pred,[],NotMemA2),
3796 conjunct_predicates([B,NotMemA2],NewBody),
3797 mark_bexpr_as_symbolic(NewBody,NewBodyS),
3798 R = closure([ID],[T],NewBodyS).
3799 difference_with_avl(S1,A2,A2Height,R,WF) :-
3800 (nonvar(S1),S1=avl_set(A1) -> avl_height(A1,H1) ; H1=unknown),
3801 expand_custom_set_to_sorted_list(S1,ES,Done,difference_of_explicit_set3,WF),
3802 difference_of_explicit_set2(ES,H1,A2,A2Height,R,Done).
3803
3804
3805 % construct complement of a set
3806 union_complement_set(S1,S2,Type,Result) :-
3807 ground_value_check(S2,G2),
3808 when(nonvar(G2),union_complement_set2(S1,S2,Type,Result)).
3809 union_complement_set2(S1,S2,Type,Result) :-
3810 union_of_explicit_set(S1,S2,S12),
3811 construct_complement_closure_if_necessary(S12,Type,R),
3812 kernel_objects:equal_object(R,Result,union_complement_set2).
3813
3814 % construct complement of a set
3815 complement_set(S2,Type,Result) :-
3816 ground_value_check(S2,G2),
3817 when(nonvar(G2),complement_set2(S2,Type,Result)).
3818 complement_set2(S2,Type,Result) :-
3819 is_not_member_value_closure(S2,Type,MS2),!, % complement of complement
3820 kernel_objects:equal_object(MS2,Result,complement_set2).
3821 complement_set2(S2,Type,Result) :-
3822 try_expand_and_convert_to_avl_with_check(S2,ExpandedS2,difference_complement_set),
3823 construct_complement_closure_if_necessary(ExpandedS2,Type,R),
3824 kernel_objects:equal_object(R,Result,complement_set2).
3825
3826 :- block construct_complement_closure_if_necessary(-,?,?).
3827 construct_complement_closure_if_necessary(Set,TYPE,R) :-
3828 (Set=[] -> b_type2_set(TYPE,R)
3829 ; is_not_member_value_closure(Set,TYPE,MS) -> R=MS % complement of complement
3830 ; construct_complement_closure(Set,TYPE,R)).
3831
3832 % succeeds if difference of two intervals is also an interval
3833 difference_interval(SourceLow,SourceUp,DiffLow,DiffUp,ResLow,ResUp) :-
3834 (ground(SourceLow),ground(DiffLow),geq_inf(SourceLow,DiffLow)
3835 -> inc(DiffUp,D1),maximum_with_inf(D1,SourceLow,ResLow), ResUp=SourceUp
3836 ; ground(DiffUp),ground(SourceUp),geq_inf(DiffUp,SourceUp)
3837 -> ResLow=SourceLow, dec(DiffLow,D1),minimum_with_inf(SourceUp,D1,ResUp)).
3838
3839 inc(N,R) :- N==inf,!,R=inf.
3840 inc(N,N1) :- N1 is N+1.
3841 dec(N,R) :- N==inf,!,R=inf.
3842 dec(N,N1) :- N1 is N-1.
3843
3844 :- use_module(library(ordsets), [ord_subtract/3]).
3845 :- block difference_of_explicit_set2(?,?,?,?,?,-).
3846 difference_of_explicit_set2(ES,A1Height,A2,A2Height,R,_) :-
3847 (number(A1Height), A1Height+4 >= A2Height -> true
3848 ; A2Height < 5
3849 ; Limit is 2**(A2Height-4),
3850 length_larger_than(ES,Limit)
3851 % TO DO: we could try and pass sizes from specific closures to this predicate
3852 ),
3853 % A1 is not much larger than A2, then it is probably faster to use ord_subtract on expanded A2
3854 % {x|x mod 2 =0 & x:1..10000} - {y|y mod 3 =0 & y : 1..200000} : still more efficient with ord_subtract
3855 !,
3856 avl_domain(A2,A2Expanded),
3857 ord_subtract(ES,A2Expanded,OrdRes),
3858 sorted_ground_normalised_list_to_avlset(OrdRes,AVL,difference_of_explicit_set2),
3859 equal_object(AVL,R).
3860 difference_of_explicit_set2(ES,_A1Height,A2,_A2Height,R,_) :-
3861 avl_min(A2,Min),
3862 diff1(ES,Min,A2,IRes),
3863 ord_list_to_avlset(IRes,AVL,difference), % we have generated the elements in the right order already
3864 equal_object(AVL,R). % due to delays in expansion the result could be instantiated
3865
3866
3867 length_larger_than([_|T],Limit) :-
3868 (Limit<1 -> true
3869 ; L1 is Limit-1, length_larger_than(T,L1)).
3870
3871 diff1([],_, _,[]).
3872 diff1([H|T],Min,A1, Res) :-
3873 (H @< Min -> Res = [H-true|Res2],diff1(T,Min,A1,Res2)
3874 ; diff2([H|T],A1,Res)).% TO DO: compute avl_max
3875
3876 diff2([],_, []).
3877 diff2([H|T],A1, Res) :-
3878 (avl_fetch(H,A1) -> Res = Res2 ; Res = [H-true|Res2]), diff2(T,A1,Res2).
3879
3880 % another version to be used when second set small in comparison to first set
3881 difference_of_explicit_set3([],A1,Res) :- construct_avl_set(A1,AVL),
3882 equal_object(AVL,Res). % due to delay in expansion, Res could now be instantiated
3883 difference_of_explicit_set3([H|T],A1,ARes) :-
3884 (avl_delete(H,A1,_True,A2) -> true ; A2=A1),
3885 difference_of_explicit_set3(T,A2,ARes).
3886
3887 % -------------------------
3888
3889 % a version of add_element_to_explicit_set where we have already done the groundness check
3890 add_ground_element_to_explicit_set_wf(avl_set(A),Element,R,WF) :- !,
3891 convert_to_avl_inside_set_wf(Element,AEl,WF),
3892 avl_store(AEl,A,true,A2),!,R=avl_set(A2).
3893 add_ground_element_to_explicit_set_wf(Set,Element,R,WF) :-
3894 add_element_to_explicit_set_wf(Set,Element,R,WF).
3895
3896 add_element_to_explicit_set_wf(global_set(GS),_,R,_) :- is_maximal_global_set(GS), !, R=global_set(GS).
3897 add_element_to_explicit_set_wf(freetype(ID),_,R,_) :- is_maximal_freetype(ID),!, R=freetype(ID).
3898 add_element_to_explicit_set_wf(avl_set(A),Element,R,WF) :-
3899 ground_value(Element), %% was element_can_be_added_or_removed_to_avl(Element),
3900 convert_to_avl_inside_set_wf(Element,AEl,WF),
3901 avl_store(AEl,A,true,A2),!,R=avl_set(A2). /* AVL not normalised */
3902 /* do we need to add support for (special) closures ??
3903 add_element_to_explicit_set_wf(Clos,Element,R,_) :- nonvar(Element),Element=int(X), nonvar(X),
3904 is_interval_closure_or_integerset(Clos,Low,Up), ground(Low), ground(Up),
3905 union_of_interval(X,X,Low,Up,FromRes,ToRes),
3906 !,
3907 construct_interval_closure(FromRes,ToRes,R).
3908 % not-member closure not dealt with here
3909 */
3910
3911 element_can_be_added_or_removed_to_avl(Element) :-
3912 ground_value(Element),
3913 does_not_contain_closure(Element).
3914 ground_element_can_be_added_or_removed_to_avl(Element) :- /* use if you know the element to be ground */
3915 does_not_contain_closure(Element).
3916
3917 % does not contain closure or infinite other sets
3918 does_not_contain_closure([]).
3919 does_not_contain_closure([H|T]) :-
3920 (simple_value(H) -> true /* TO DO: check if we could have a closure at the end ?? */
3921 ; does_not_contain_closure(H),list_does_not_contain_closure(T)).
3922 does_not_contain_closure(fd(_,_)).
3923 does_not_contain_closure(pred_true /* bool_true */).
3924 does_not_contain_closure(pred_false /* bool_false */).
3925 does_not_contain_closure(int(_)).
3926 does_not_contain_closure(string(_)).
3927 does_not_contain_closure(term(_)). % real/floating number
3928 does_not_contain_closure((X,Y)) :- does_not_contain_closure(X), does_not_contain_closure(Y).
3929 does_not_contain_closure(avl_set(_)).
3930 does_not_contain_closure(global_set(G)) :- \+ is_infinite_global_set(G,_).
3931 %does_not_contain_closure(freetype(_)).
3932 does_not_contain_closure(freeval(_,_,Value)) :- does_not_contain_closure(Value).
3933 does_not_contain_closure(rec(Fields)) :- does_not_contain_closure_fields(Fields).
3934
3935 does_not_contain_closure_fields([]).
3936 does_not_contain_closure_fields([field(_,Val)|T]) :- does_not_contain_closure(Val),
3937 does_not_contain_closure_fields(T).
3938
3939 list_does_not_contain_closure([]).
3940 list_does_not_contain_closure([H|T]) :-
3941 does_not_contain_closure(H),list_does_not_contain_closure(T).
3942 list_does_not_contain_closure(avl_set(_)).
3943 list_does_not_contain_closure(global_set(G)) :- \+ is_infinite_global_set(G,_).
3944
3945 simple_value(fd(_,_)).
3946 simple_value(pred_true /* bool_true */).
3947 simple_value(pred_false /* bool_false */).
3948 simple_value(int(_)).
3949 simple_value((A,B)) :- simple_value(A), simple_value(B).
3950 simple_value(string(_)).
3951
3952
3953 % a version of the above which throws error if element cannot be added
3954 % assumes element_can_be_added_or_removed_to_avl has been checked
3955 remove_element_from_explicit_set(avl_set(A),Element,R) :-
3956 element_can_be_added_or_removed_to_avl(Element), % remove check?
3957 convert_to_avl_inside_set(Element,AEl), !,
3958 direct_remove_element_from_avl(A,AEl,R).
3959 remove_element_from_explicit_set(ES,Element,R) :-
3960 add_internal_error('Cannot remove element from explicit set:',remove_element_from_explicit_set(ES,Element,R)).
3961
3962 direct_remove_element_from_avl(A,AEl,R) :-
3963 avl_delete(AEl,A,_True,A2),
3964 construct_avl_set(A2,R). /* AVL not normalised */
3965
3966 /* same as remove but element can be absent */
3967 delete_element_from_explicit_set(avl_set(A),Element,R) :-
3968 element_can_be_added_or_removed_to_avl(Element),
3969 convert_to_avl_inside_set(Element,AEl), !,
3970 (avl_delete(AEl,A,_True,A2)
3971 -> construct_avl_set(A2,R)
3972 ; R = avl_set(A)
3973 ). /* AVL not normalised */
3974
3975 is_maximal_global_set(GS) :- is_maximal_global_set(GS,_Type).
3976 is_maximal_global_set(GS,_) :- var(GS),!,fail.
3977 is_maximal_global_set('INTEGER',Type) :- !, Type=integer.
3978 is_maximal_global_set('REAL',Type) :- !, Type=real.
3979 is_maximal_global_set('FLOAT',_) :- !, fail.
3980 is_maximal_global_set('STRING',Type) :- !, Type=string.
3981 is_maximal_global_set(GS,global(GS)) :-
3982 \+ kernel_objects:integer_global_set(GS).
3983
3984 % To do: maybe get rid of all complement set code; add in_difference_set as symbolic binary operator
3985 %is_very_large_maximal_global_set(X,_) :- print(very(X)),nl,fail.
3986 is_very_large_maximal_global_set(closure(P,T,B),Type) :- is_definitely_maximal_closure(P,T,B),
3987 couplise_list(T,Type).
3988 is_very_large_maximal_global_set(global_set('INTEGER'),integer).
3989 is_very_large_maximal_global_set(global_set('STRING'),string).
3990 is_very_large_maximal_global_set(global_set('REAL'),string).
3991 is_very_large_maximal_global_set(freetype(ID),freetype(ID)) :- is_infinite_freetype(ID).
3992
3993
3994
3995 remove_minimum_element_custom_set(avl_set(S),X,RES) :- !,
3996 avl_del_min(S,X,_True,Res0),
3997 (empty_avl(Res0) -> RES=[] ; RES = avl_set(Res0)).
3998 %remove_minimum_element_custom_set(closure(P,T,B),X,RES) :-
3999 % is_interval_closure_or_integerset(Clos,Low,Up),!,
4000 % X = Low, TO DO: construct new interval closure
4001 remove_minimum_element_custom_set(CS,X,RES) :-
4002 expand_custom_set_to_list(CS,ECS,Done,remove_minimum_element_custom_set),
4003 remove_minimum_element_custom_set2(ECS,X,RES,Done).
4004
4005 :- block remove_minimum_element_custom_set2(?,?,?,-).
4006 % wait until Done: otherwise the Tail of the list could be instantiated by somebody else; interfering with expand_custom_set_to_list
4007 remove_minimum_element_custom_set2([H|T],X,RES,_) :- equal_object((H,T),(X,RES)).
4008
4009
4010 min_of_explicit_set_wf(avl_set(S),Min,_) :- !, avl_min(S,Min).
4011 min_of_explicit_set_wf(Clos,Min,WF) :-
4012 is_interval_closure_or_integerset(Clos,Low,Up),
4013 (Low == minus_inf
4014 -> add_wd_error('minimum of unbounded infinite set not defined:',Clos,WF)
4015 ; cs_greater_than_equal(Up,Low),
4016 Min=int(Low)).
4017
4018 cs_greater_than_equal(X,Y) :-
4019 ((X==inf;Y==minus_inf) -> true ; kernel_objects:less_than_equal_direct(Y,X)).
4020
4021
4022 max_of_explicit_set_wf(avl_set(S),Max,_) :- !,avl_max(S,Max).
4023 max_of_explicit_set_wf(Clos,Max,WF) :-
4024 is_interval_closure_or_integerset(Clos,Low,Up),
4025 (Up==inf
4026 -> add_wd_error('maximum of unbounded infinite set not defined:',Clos,WF)
4027 ; cs_greater_than_equal(Up,Low),
4028 Max=int(Up)).
4029
4030 % ------------- SIGMA/PI --------------
4031
4032 % compute sum or product of an integer set:
4033 sum_or_mul_of_explicit_set(avl_set(S),SUMorMUL,Result) :-
4034 avl_domain(S,Dom),
4035 (SUMorMUL=sum -> simple_sum_list(Dom,0,R) ; simple_mul_list(Dom,1,R)),
4036 Result = int(R).
4037 sum_or_mul_of_explicit_set(CS,SUMorMUL,Result) :- SUMorMUL == sum,
4038 is_interval_closure(CS,Low,Up),
4039 sum_interval(Low,Up,Result),
4040 sum_interval_clpfd_prop(Low,Up,Result).
4041
4042 :- block sum_interval(-,?,?), sum_interval(?,-,?).
4043 sum_interval(Low,Up,_) :- (\+ number(Low) ; \+ number(Up)),!,
4044 add_error(sum_interval,'Cannot compute sum of interval: ',Low:Up),fail.
4045 sum_interval(Low,Up,Result) :- Low>Up,!, Result=int(0).
4046 sum_interval(Low,Up,Result) :-
4047 R is ((1+Up-Low)*(Low+Up)) // 2, % generalisation of Gauss formula k*(k+1)//2
4048 Result = int(R).
4049
4050 sum_interval_clpfd_prop(Low,Up,Result) :-
4051 preferences:preference(use_clpfd_solver,true), Result=int(R),
4052 var(R), % we haven't computed the result yet; the bounds are not known; set up constraint propagation rules
4053 !,
4054 try_post_constraint((Low #>= 0) #=> (R #> 0)), % we could provide better bounds here for negative numbers
4055 try_post_constraint(((Low #=< Up) #\/ (R #\= 0)) #=> (R #= ((1+Up-Low)*(Low+Up))//2)),
4056 try_post_constraint((Low #> Up) #=> (R #= 0)).
4057 % not working yet: x = SIGMA(i).(i:-3..n|i) & x=0 & n< -1
4058 sum_interval_clpfd_prop(_,_,_).
4059
4060 simple_sum_list([],A,A).
4061 simple_sum_list([int(H)|T],Acc,R) :- NA is Acc+H, simple_sum_list(T,NA,R).
4062 simple_mul_list([],A,A).
4063 simple_mul_list([int(H)|T],Acc,R) :- NA is Acc*H, simple_mul_list(T,NA,R).
4064
4065
4066 /*
4067 direct_product_symbolic(S,R,Res) :- % NOT YET FINISHED
4068 nonvar(S), S=closure(PS,[T1,TS2],RS),
4069 nonvar(R), R=closure(PR,[T1,TR1],RR),
4070 is_lambda_value_domain_closure(PS,TS,RS, SDomainValue,SExpr),
4071 is_lambda_value_domain_closure(PR,TR,RR, RDomainValue,RExpr),
4072 construct_closure(['zzz','_lambda_result_'],[T1,couple(TR1,TR2)],
4073 member(zzz,SDomainValue) , member(zzz,RDomainValue), eq(lambda,pair(SExpr,RExpr))).
4074 */
4075
4076 % we assume that try_expand_and_convert_to_avl_unless_very_large already called on arguments
4077 direct_product_explicit_set(S,R,Res) :-
4078 nonvar(R), %is_custom_explicit_set(R,direct_product),
4079 nonvar(S), %is_custom_explicit_set(S,direct_product),
4080 direct_product_explicit_set_aux(S,R,Res).
4081 %direct_product_explicit_set_aux(S,R,Res) :- (S = closure(_,_,_) ; R = closure(_,_,_)),
4082 % print_term_summary(direct_product_explicit_set_aux(S,R,Res)),nl,
4083 % % TO DO: generate closure
4084 % fail.
4085 direct_product_explicit_set_aux(avl_set(AS),avl_set(AR),Res) :-
4086 % the expansion guarantees that we have the lists ES and ER then in sorted order
4087 avl_domain(AS,ES), % -> expand_custom_set(avl_set(AS),ES),
4088 avl_domain(AR,ER), % -> expand_custom_set(avl_set(AR),ER),
4089 direct_product3(ES,ER,DPList),
4090 ord_list_to_avlset(DPList,DPAVL,direct_product), % is it really ordered ? findall must also return things ordered!
4091 equal_object(DPAVL,Res,direct_product_explicit_set).
4092
4093 direct_product3([],_Rel2,[]).
4094 direct_product3([(From,To1)|T1],Rel2,Res) :-
4095 get_next_mapped_to_eq(T1,From,TTo,Tail1), ToList1 = [To1|TTo],
4096 get_next_mapped_to(Rel2,From,ToList2,Tail2),
4097 calc_direct_product(ToList1,From,ToList2,Res,Rest),
4098 (Tail2=[] -> Rest=[] ; direct_product3(Tail1,Tail2,Rest)).
4099
4100 % get all elements which map to From, supposing that the list is sorted & we have already had a match
4101 get_next_mapped_to_eq([],_,[],[]).
4102 get_next_mapped_to_eq([(From2,To2)|T],From,Result,Tail) :-
4103 (From=From2 -> Result = [To2|RR], get_next_mapped_to_eq(T,From,RR,Tail)
4104 ; Result = [], Tail = [(From2,To2)|T]
4105 ).
4106
4107 % get all elements which map to From, supposing the list is sorted
4108 get_next_mapped_to([],_,[],[]).
4109 get_next_mapped_to([(From2,To2)|T],From,Result,Tail) :-
4110 (From=From2 -> Result = [To2|RR], get_next_mapped_to_eq(T,From,RR,Tail)
4111 ; From2 @> From -> Result = [], Tail = [(From2,To2)|T]
4112 ; get_next_mapped_to(T,From,Result,Tail)
4113 ).
4114
4115 calc_direct_product([],_From,_,Tail,Tail).
4116 calc_direct_product([To1|T1],From,To2List,Result,Tail) :-
4117 findall((From,(To1,To2))-true,member(To2,To2List),Result,ResResult),
4118 calc_direct_product(T1,From,To2List,ResResult,Tail).
4119
4120 % TO DO: maybe also add a special rule for infinite R such as event_b_identity ?
4121 domain_restriction_explicit_set_wf(S,R,Res,WF) :- /* S <| R */
4122 nonvar(R),
4123 (nonvar(S),is_one_element_custom_set(S,El),R \= closure(_,_,_) ->
4124 domain_restrict_singleton_element(El,R,Res)
4125 ; restriction_explicit_set_wf(S,R,Res,domain,pred_true,WF)).
4126 domain_subtraction_explicit_set_wf(S,R,Res,WF) :- /* S <<| R */
4127 (nonvar(S),is_one_element_custom_set(S,El), nonvar(R), R=avl_set(AVL) ->
4128 avl_domain_subtraction_singleton(AVL,El,ARes),
4129 construct_avl_set(ARes,Res) % TO DO: use this also when S is small and R large
4130 ; restriction_explicit_set_wf(S,R,Res,domain,pred_false,WF)).
4131 range_restriction_explicit_set_wf(R,S,Res,WF) :- /* R |> S */
4132 restriction_explicit_set_wf(S,R,Res,range,pred_true,WF).
4133 range_subtraction_explicit_set_wf(R,S,Res,WF) :- /* R |>> S */
4134 restriction_explicit_set_wf(S,R,Res,range,pred_false,WF).
4135
4136
4137 domain_restrict_singleton_element(El,R,Res) :- /* {El} <| R ; TO DO maybe apply this technique for "small" sets as well */
4138 nonvar(R), is_custom_explicit_set(R,domain_restrict_singleton_element),
4139 expand_and_convert_to_avl_set(R,AR,domain_restrict_singleton_element,''), % can generate ARel=empty; will fail if not possible to convert
4140 findall((El,Z)-true, avl_fetch_pair(El,AR,Z), RTuples),
4141 ord_list_to_avlset(RTuples,Res,domain_restrict_singleton_element).
4142
4143 restriction_explicit_set_wf(Set,Rel,Res,_RanOrDom,AddWhen,WF) :- Set==[],!,
4144 (AddWhen=pred_false
4145 -> equal_object_wf(Rel,Res,restriction_explicit_set_wf,WF) % {} <<| Rel = Rel |>> {} = Rel
4146 ; kernel_objects:empty_set_wf(Res,WF)
4147 ).
4148 restriction_explicit_set_wf(Set,Rel,Res,_RanOrDom,AddWhen,WF) :- is_definitely_maximal_set(Set),!,
4149 (AddWhen=pred_true
4150 -> equal_object_wf(Rel,Res,restriction_explicit_set_wf,WF) % TYPE <| Rel = Rel |> TYPE = Rel
4151 ; kernel_objects:empty_set_wf(Res,WF)
4152 ).
4153 restriction_explicit_set_wf(_,Rel,_,_,_,_) :- var(Rel),!,fail.
4154 restriction_explicit_set_wf(Set,closure(Paras,Types,Body),Res,RanOrDom,AddWhen,WF) :-
4155 % perform symbolic treatment by adding restriction predicate to Body
4156 !,
4157 (RanOrDom=domain
4158 -> get_domain_id_or_expr(Paras,Types,TID,TT)
4159 ; get_range_id_or_expr(Paras,Types,TID,TT)
4160 ),
4161 TSet=b(value(Set),set(TT),[]),
4162 (AddWhen = pred_true
4163 -> PRED = member(TID,TSet)
4164 ; PRED = not_member(TID,TSet) ),
4165 conjunct_predicates([b(PRED,pred,[]),Body],NewBody),
4166 % translate:print_bexpr(NewBody),nl,
4167 try_expand_and_convert_to_avl_with_catch_wf(closure(Paras,Types,NewBody),Res,restriction_explicit_set_wf,WF).
4168 restriction_explicit_set_wf(Set,Rel,Res,RanOrDom,AddWhen,WF) :-
4169 is_custom_explicit_set(Rel,restriction_explicit_set_wf),
4170 expand_and_convert_to_avl_set(Rel,ARel,restriction_explicit_set_wf,''), % can generate ARel=empty; will fail if not possible to convert
4171 avl_domain(ARel,ERel), % -> expand_custom_set(avl_set(ARel),ERel),
4172 %try_expand_and_convert_to_avl_unless_large_wf(Set,ES,WF),
4173 (nonvar(Set),Set=avl_set(AVLS)
4174 -> restrict2_avl(ERel,AVLS,DRes,RanOrDom,AddWhen,Done)
4175 ; restrict2(ERel,Set,DRes,RanOrDom,AddWhen,Done,WF)
4176 ),
4177 finish_restriction(Done,DRes,Res).
4178
4179 % extract domain expression for domain restriction/subtraction predicate:
4180 get_domain_id_or_expr([DR],[couple(TD,TR)], PRJ1, TD) :- !, % special case: just one parameter in closure
4181 TID = b(identifier(DR),couple(TD,TR),[]),
4182 PRJ1 = b(first_of_pair(TID),TD,[]).
4183 get_domain_id_or_expr([D1|Paras],[TD1|Types],Expr,Type) :-
4184 get_dom_couple_aux(Paras,Types, b(identifier(D1),TD1,[]), TD1, Expr,Type).
4185
4186 get_dom_couple_aux([_RangeID],[_], AccExpr, AccType, Expr, Type) :- !, Expr=AccExpr, Type=AccType.
4187 get_dom_couple_aux([D2|TParas],[TD2|Types], AccExpr, AccType, Expr, Type) :-
4188 TID2 = b(identifier(D2),TD2,[]),
4189 NewAccType = couple(AccType,TD2),
4190 NewAcc = b(couple(AccExpr,TID2),NewAccType,[]),
4191 get_dom_couple_aux(TParas,Types,NewAcc,NewAccType,Expr,Type).
4192
4193 :- use_module(library(lists),[last/2]).
4194 % extract range expression for range restriction/subtraction predicate:
4195 get_range_id_or_expr( [DR],[CType], PRJ2, TR) :- !, % special case: just one parameter in closure
4196 CType = couple(TD,TR),
4197 TID = b(identifier(DR),CType,[]),
4198 PRJ2 = b(second_of_pair(TID),TD,[]).
4199 get_range_id_or_expr( [_|Paras],[_|Types], b(identifier(R),TR,[]), TR) :-
4200 last(Paras,R), last(Types,TR).
4201
4202 :- block finish_restriction(-,?,?).
4203 finish_restriction(_,DRes,Res) :-
4204 ord_list_to_avlset(DRes,Restriction,restriction),
4205 equal_object(Restriction,Res,finish_restriction). % as we may block below: we need to use equal_object
4206
4207 restrict2([],_,[],_,_,done,_WF).
4208 restrict2([(From,To)|T],S,Res,RanOrDom,AddWhen,Done,WF) :-
4209 (RanOrDom==domain -> El=From ; El=To),
4210 kernel_equality:membership_test_wf(S,El,MemRes,WF), % TO DO: WF Version !!
4211 /* this only makes sense once we have the full result as argument:
4212 (nonvar(MemRes) -> true % it is already decided
4213 ; AddWhen=pred_true -> kernel_equality:membership_test_wf(Res,(From,To),MemRes,WF)
4214 ; kernel_equality:membership_test_wf(Res,(From,To),InResult,WF), bool_pred:negate(InResult,MemRes)
4215 ), */
4216 restrict3(MemRes,From,To,T,S,Res,RanOrDom,AddWhen,Done,WF).
4217 :- block restrict3(-, ?,?, ?,?,?, ?,?,?,?).
4218 restrict3(MemRes, From,To, T,S,Res, RanOrDom,AddWhen,Done,WF) :-
4219 (AddWhen=MemRes -> Res = [(From,To)-true|TRes]
4220 ; Res=TRes),
4221 restrict2(T,S,TRes,RanOrDom,AddWhen,Done,WF).
4222
4223 % optimised version when second set is also an AVL tree: less blocking,...
4224 restrict2_avl([],_,[],_,_,done).
4225 restrict2_avl([(From,To)|T],AVLS,Res,RanOrDom,AddWhen,Done) :-
4226 fetch(RanOrDom,From,To,AVLS,MemRes),
4227 (AddWhen=MemRes -> Res = [(From,To)-true|TRes]
4228 ; Res=TRes),
4229 restrict2_avl(T,AVLS,TRes,RanOrDom,AddWhen,Done).
4230
4231 fetch(domain,El,_,AVLS,MemRes) :- (avl_fetch(El,AVLS) -> MemRes=pred_true ; MemRes = pred_false).
4232 fetch(range,_,El,AVLS,MemRes) :- (avl_fetch(El,AVLS) -> MemRes=pred_true ; MemRes = pred_false).
4233
4234 % override R(X) := Y
4235 override_pair_explicit_set(avl_set(S),X,Y,avl_set(NewAVL)) :- element_can_be_added_or_removed_to_avl(X),
4236 element_can_be_added_or_removed_to_avl(Y),
4237 convert_to_avl_inside_set(X,AX),
4238 convert_to_avl_inside_set(Y,AY),
4239 avl_domain_subtraction_singleton(S,AX,AVL2),
4240 avl_store((AX,AY), AVL2, true, NewAVL).
4241
4242 avl_domain_subtraction_singleton(AVL,AX,NewAVL) :-
4243 avl_delete_pair(AX,AVL,_True,AVL2),
4244 !, % recurse, in case we have multiple entries
4245 % this recursion could be avoided if we know AVL to be a function
4246 avl_domain_subtraction_singleton(AVL2,AX,NewAVL).
4247 avl_domain_subtraction_singleton(AVL,_,AVL).
4248
4249 % try and decompose an AVL set into a cartesian product
4250 % AVL = Set1 * Set2
4251 % much faster e.g. for let xx = ((1..10)*(3..1000)\/ {0}*(3..1000)) and then xx = AA*BB
4252 % should not produce pending co-routines
4253 decompose_avl_set_into_cartesian_product_wf(AVL,DomainSet,RangeSet,WF) :-
4254 avl_domain(AVL,Expansion),
4255 decompose_cart(Expansion,'$none',DomainList,[],RangeList),
4256 construct_avl_from_lists_wf(DomainList,DomainSet,WF),
4257 construct_avl_from_lists_wf(RangeList,RangeSet,WF).
4258
4259 decompose_cart([],_,[],[],_).
4260 decompose_cart([(A,B)|T],Prev,Domain,Range,FullRange) :-
4261 (A=Prev
4262 -> Range = [B|TRange],
4263 decompose_cart(T,Prev,Domain,TRange,FullRange)
4264 ; Domain = [A|TDom], Range=[],
4265 FullRange = [B|TRange],
4266 decompose_cart(T,A,TDom,TRange,FullRange)
4267 ).
4268
4269 /* --------- */
4270 /* EXPANSION */
4271 /* --------- */
4272
4273 :- use_module(b_global_sets,[all_elements_of_type_wf/3, all_elements_of_type_rand_wf/3]).
4274 :- use_module(kernel_freetypes,[expand_freetype/3]).
4275
4276 expand_custom_set(X,R) :- expand_custom_set_wf(X,R,expand_custom_set,no_wf_available).
4277 expand_custom_set(X,R,Src) :- expand_custom_set_wf(X,R,Src,no_wf_available).
4278 expand_custom_set_wf(X,R,Source,WF) :- var(X), !,
4279 add_error_and_fail(expand_custom_set_wf, 'Variable as argument: ',expand_custom_set_wf(X,R,Source,WF)).
4280 expand_custom_set_wf(global_set(GS),ExpandedSet,_,WF) :- !,
4281 all_elements_of_type_wf(GS,ExpandedSet,WF). % they are generated in order
4282 expand_custom_set_wf(freetype(GS),ValueList,_,WF) :- !,
4283 expand_freetype(GS,ValueList,WF).
4284 expand_custom_set_wf(avl_set(AVL),ExpandedSet,_,_) :- !,
4285 avl_domain(AVL,ExpandedSet).
4286 expand_custom_set_wf(closure(Parameters,PTypes,Cond),Res,Source,WF) :- !,
4287 expand_closure_to_list(Parameters,PTypes,Cond,Res,_Done,Source,WF).
4288 %wait_try_expand_custom_set(Res1,Res). % could be in AVL form; no longer the case !
4289 expand_custom_set_wf(Set,_,Source,_) :-
4290 add_error_and_fail(expand_custom_set(Source),'Cannot expand custom set: ',Set).
4291
4292
4293
4294 %try_expand_only_custom_closure_global(X,Y) :-
4295 % (var(X) -> X=Y ; expand_only_custom_closure_global(X,Y,check)).
4296
4297 expand_only_custom_closure_global(X,R,C,_WF) :- var(X), !,
4298 add_error_and_fail(expand_only_custom_closure_global, 'Variable as argument: ',expand_only_custom_closure_global(X,R,C)).
4299 expand_only_custom_closure_global(global_set(GS),ExpandedSet,_,WF) :- !,all_elements_of_type_wf(GS,ExpandedSet,WF).
4300 expand_only_custom_closure_global(freetype(GS),ExpandedSet,_,_WF) :- !,ExpandedSet=freetype(GS).
4301 expand_only_custom_closure_global(avl_set(AVL),ExpandedSet,_,_WF) :- !, ExpandedSet=avl_set(AVL).
4302 expand_only_custom_closure_global(closure(Parameters,PTypes,Cond),Res,CheckTimeOuts,WF) :- !,
4303 (Res==[] -> is_empty_explicit_set(closure(Parameters,PTypes,Cond)) % TO DO: think about other special cases
4304 ; expand_closure_to_avl_or_list(Parameters,PTypes,Cond,Res,CheckTimeOuts,WF)).
4305 expand_only_custom_closure_global(Set,Set,_CheckTimeOuts,_WF).
4306 %:- add_error_and_fail(expand_only_custom_closure_global,'Cannot expand custom set: ',Set).
4307
4308
4309 try_expand_custom_set_with_catch(CS,Expansion,PP) :-
4310 on_enumeration_warning(try_expand_custom_set_wf(CS,Expansion,PP,no_wf_available),
4311 Expansion=CS).
4312
4313 try_expand_custom_set(CS,Expansion) :-
4314 try_expand_custom_set_wf(CS,Expansion,try_expand_custom_set,no_wf_available).
4315
4316
4317 try_expand_custom_set_wf(CS,Res,_,_) :- var(CS),!,Res=CS.
4318 try_expand_custom_set_wf([],Res,_,_) :- !, Res=[].
4319 try_expand_custom_set_wf([H|T],Res,_,_) :- !, Res=[H|T].
4320 try_expand_custom_set_wf(CS,Res,Src,WF) :-
4321 expand_custom_set_wf(CS,Res,Src,WF). % will generate error message for illegal sets
4322
4323
4324 :- assert_must_succeed((expand_custom_set_to_list(closure(['_zzzz_unit_tests'],
4325 [couple(integer,integer)],
4326 b(member(b(identifier('_zzzz_unit_tests'),couple(integer,integer),[generated]),
4327 b(value([(int(1),int(22))]),set(couple(integer,integer)),[])),pred,[])),R),R==[(int(1),int(22))])).
4328
4329 expand_custom_set_to_list(CS,List) :- expand_custom_set_to_list(CS,List,_Done,unknown).
4330
4331 % a version of expansion which returns guaranteed_ground if the List is guaranteed to be ground
4332 expand_custom_set_to_list_gg(CS,List,GuaranteedGround,_PP) :-
4333 nonvar(CS), CS=avl_set(AVL), var(List),
4334 !,
4335 GuaranteedGround = guaranteed_ground,
4336 avl_domain(AVL,List).
4337 expand_custom_set_to_list_gg(CS,List,not_guaranteed_ground,PP) :-
4338 expand_custom_set_to_list(CS,List,_Done,PP).
4339
4340 % a version where the expansion should happen straightaway and should not block:
4341 expand_custom_set_to_list_now(CS,List) :- expand_custom_set_to_list(CS,List,Done,unknown),
4342 (Done==true -> true ; print_error(expand_custom_set_to_list_not_done(CS,List))).
4343
4344 :- block expand_custom_set_to_sorted_list(-,-,?,?,?).
4345 % sorts the resulting list if needed
4346 % due to random enumeration
4347 expand_custom_set_to_sorted_list(From,To,Done,Source,WF) :-
4348 expand_custom_set_to_list(From,UnsortedTo,Done,Source),
4349 (preferences:get_preference(randomise_enumeration_order,true)
4350 -> sort_when_done(Done,UnsortedTo,To,WF) ; UnsortedTo = To).
4351
4352 :- block sort_when_done(-,?,?,?).
4353 sort_when_done(_,Unsorted,Res,WF) :- sort(Unsorted,Sorted),
4354 equal_object_wf(Sorted,Res,sort_when_done,WF).
4355
4356 expand_custom_set_to_list(From,To,Done,Source) :-
4357 expand_custom_set_to_list_wf(From,To,Done,Source,no_wf_available).
4358
4359 :- use_module(kernel_objects,[equal_object_wf/4]).
4360
4361 expand_custom_set_to_list_wf(From,To,Done,Source,WF) :-
4362 expand_custom_set_to_list_k_wf(From,To,Done,_Kind,Source,WF).
4363
4364 % a variation of expand_custom_set_to_list which also checks that there are no duplicates in the list
4365 expand_custom_set_to_list_no_dups_wf(From,To,Done,Source,WF) :-
4366 expand_custom_set_to_list_k_wf(From,To,Done,Kind,Source,WF),
4367 check_dups(Kind,To,WF).
4368
4369 :- block check_dups(-,?,?).
4370 check_dups(unsorted_list,List,WF) :- !,
4371 kernel_objects:check_no_duplicates_in_list(List,[],WF).
4372 check_dups(_,_,_).
4373
4374 % warn if duplicates in list; to do: use in prob_safe mode
4375 %:- block warn_dups(-,?,?,?).
4376 %warn_dups(unsorted_list,List,Src,WF) :- !,
4377 % kernel_objects:warn_if_duplicates_in_list(List,Src,WF).
4378 %warn_dups(_,_,_,_).
4379
4380
4381
4382 :- block expand_custom_set_to_list_k_wf(-,-,?,?,?,?).
4383 % ensures that the output is a pure list; the list skeleton should not be instantiated by anybody else
4384 expand_custom_set_to_list_k_wf(From,To,Done,Kind,Source,WF) :-
4385 (var(From) ->
4386 (is_list_skeleton(To)
4387 -> equal_object_wf(To,From,Source,WF), Done=true, Kind=unsorted_list
4388 ? ; expand_custom_set_to_list2(To,From,Done,Kind,Source,WF))
4389 ; var(To),is_list_skeleton(From)
4390 -> To=From, Done=true, Kind=unsorted_list % equal_object_wf will also to a Prolog unification
4391 ; expand_custom_set_to_list2(From,To,Done,Kind,Source,WF)).
4392
4393 expand_custom_set_to_list2([],ExpandedSet,Done,Kind,_Source,WF) :- !,
4394 ? equal_object_wf([],ExpandedSet,expand_custom_set_to_list2,WF),Done=true,Kind=empty_set.
4395 expand_custom_set_to_list2([H|T],ExpandedSet,Done,Kind,Source,WF) :- !, Kind=unsorted_list,
4396 ? equal_object_wf([H|ET],ExpandedSet,expand_custom_set_to_list2,WF),
4397 ? expand_custom_set_to_list3(T,ET,Done,Source,WF).
4398 expand_custom_set_to_list2(global_set(GS),ExpandedSet,Done,Kind,_Source,WF) :- !,
4399 all_elements_of_type_rand_wf(GS,R,WF),
4400 check_list(R,expand_custom_set_to_list2),
4401 equal_object_wf(R,ExpandedSet,expand_custom_set_to_list2,WF),Done=true,Kind=sorted_list.
4402 expand_custom_set_to_list2(avl_set(AVL),ExpandedSet,Done,Kind,_Source,WF) :- !,
4403 avl_domain(AVL,R),
4404 ? equal_object_wf(R,ExpandedSet,expand_custom_set_to_list2,WF), Done=true,Kind=sorted_list.
4405 expand_custom_set_to_list2(closure(Parameters,PTypes,Cond),ExpandedSet,Done,Kind,Source,WF) :- !,
4406 expand_closure_to_list(Parameters,PTypes,Cond,ExpandedSet,Done,Source,WF),
4407 Kind=sorted_list.
4408 %assign_expand_result(CDone,Res,ExpandedSet,Done).
4409 expand_custom_set_to_list2(freetype(ID),ExpandedSet,Done,Kind,_Source,WF) :- !,
4410 expand_freetype(ID,R,WF),
4411 equal_object_wf(R,ExpandedSet,expand_custom_set_to_list2,WF),
4412 Done=true,Kind=sorted_list.
4413 % missing avl_set wrapper:
4414 expand_custom_set_to_list2(node(A,B,C,D,E),ExpandedSet,Done,Kind,Source,WF) :- !,
4415 add_internal_error('Illegal argument: ',expand_custom_set_to_list2(node(A,B,C,D,E),ExpandedSet,Done,Source)),
4416 expand_custom_set_to_list2(avl_set(node(A,B,C,D,E)),ExpandedSet,Done,Kind,Source,WF).
4417 expand_custom_set_to_list2(E,ES,Done,Kind,Source,WF) :-
4418 add_internal_error('Illegal argument: ',expand_custom_set_to_list2(E,ES,Done,Kind,Source,WF)),fail.
4419
4420 :- block expand_custom_set_to_list3(-,-,?,?,?). % we are no longer sure which was From and which is To
4421 expand_custom_set_to_list3(From,To,Done,Source,WF) :-
4422 ? (var(From) -> expand_custom_set_to_list2(To,From,Done,_,Source,WF) ;
4423 ? expand_custom_set_to_list2(From,To,Done,_,Source,WF)).
4424
4425
4426 is_list_skeleton(X) :- var(X),!,fail.
4427 is_list_skeleton([]).
4428 is_list_skeleton([_|T]) :- is_list_skeleton(T).
4429
4430 % true if it is more efficient to keep this, rather than expand into list
4431 is_efficient_custom_set(avl_set(_)).
4432 is_efficient_custom_set(closure(P,T,B)) :-
4433 (is_interval_closure(closure(P,T,B),_,_) -> true ; is_infinite_or_symbolic_closure(P,T,B)).
4434 is_efficient_custom_set(global_set(X)) :- is_infinite_global_set(X,_).
4435 is_efficient_custom_set(freetype(_)).
4436
4437 % tries to expand & convert to avl_set; fails if not possible: NOTE: also generates empty AVL
4438 expand_and_convert_to_avl_set(R,AER,Origin,Source) :-
4439 try_expand_and_convert_to_avl(R,ER,Origin,Source),
4440 nonvar(ER),(ER==[] -> AER=empty ; ER=avl_set(AER)).
4441
4442
4443 expand_and_convert_to_avl_set_unless_very_large(R,AER,WF) :-
4444 try_expand_and_convert_to_avl_unless_very_large_wf(R,ER,WF),
4445 nonvar(ER),(ER==[] -> AER=empty ; ER=avl_set(AER)).
4446
4447
4448 % similar to unless_large version, but will only expand if it is guaranteed to be small
4449
4450 try_expand_and_convert_to_avl_if_smaller_than(freetype(GS),Res,_) :- !, Res = freetype(GS).
4451 try_expand_and_convert_to_avl_if_smaller_than([H|T],Res,_) :- !, try_expand_and_convert_to_avl([H|T],Res).
4452 try_expand_and_convert_to_avl_if_smaller_than(avl_set(A),Res,_) :- !, Res=avl_set(A).
4453 try_expand_and_convert_to_avl_if_smaller_than(CS,Res,Limit) :-
4454 (is_small_specific_custom_set(CS,Limit)
4455 -> try_expand_and_convert_to_avl(CS,Res,try_expand_and_convert_to_avl_if_smaller_than,'')
4456 ; Res = CS % TO DO: maybe look at cardinality of types and determine max. cardinality
4457 ).
4458 is_small_specific_custom_set(CS,Limit) :- card_for_specific_custom_set(CS,Card,Code),
4459 call(Code), is_finite_card(Card), Card<Limit.
4460 get_card_for_specific_custom_set(CS,Card) :-
4461 card_for_specific_custom_set(CS,Card,Code),
4462 ? call(Code), ground(Card).
4463
4464 try_expand_and_convert_to_avl_unless_very_large_wf(CS,Res,WF) :-
4465 try_expand_and_convert_to_avl_unless_large_wf(CS,Res,10000,WF).
4466
4467 try_expand_and_convert_to_avl_unless_large_wf(CS,Res,WF) :-
4468 try_expand_and_convert_to_avl_unless_large_wf(CS,Res,2000,WF).
4469
4470 try_expand_and_convert_to_avl_unless_large_wf(CS,Res,_,_WF) :- var(CS), !, CS=Res.
4471 try_expand_and_convert_to_avl_unless_large_wf(global_set(GS),Res,_,_WF) :- !, Res = global_set(GS).
4472 try_expand_and_convert_to_avl_unless_large_wf(freetype(GS),Res,_,_WF) :- !, Res = freetype(GS).
4473 %try_expand_and_convert_to_avl_unless_large_wf(CS,Res,_WF) :- is_interval_closure(CS,Low,Up),!,
4474 % ((ground(Low),ground(Up),Size is 1+Up-Low, Size<2000)
4475 %% -> try_expand_and_convert_to_avl(CS,Res)
4476 % ; Res = CS
4477 % ).
4478 try_expand_and_convert_to_avl_unless_large_wf(closure(P,T,B),Res,Limit,_WF) :-
4479 is_very_large_or_symbolic_closure(P,T,B,Limit),!, % is explicitly marked as SYMBOLIC
4480 Res=closure(P,T,B).
4481 try_expand_and_convert_to_avl_unless_large_wf(CS,Res,_Limit,WF) :-
4482 % TO DO: check if maybe we cannot determine card explicitly, but have a large lower-bound
4483 try_expand_and_convert_to_avl_wf(CS,Res,try_expand_and_convert_to_avl_unless_large,'',WF).
4484
4485
4486
4487 % calls try_expand_and_convert_to_avl and returns original value if enumeration warning occured
4488 try_expand_and_convert_to_avl_with_catch_wf(CS,Res,Origin,WF) :-
4489 on_enumeration_warning(try_expand_and_convert_to_avl_wf(CS,Res,Origin,'',WF),
4490 Res=CS).
4491
4492 /* tries to generate an avl-structure, if possible */
4493 try_expand_and_convert_to_avl(CS,Res) :-
4494 try_expand_and_convert_to_avl_wf(CS,Res,try_expand_and_convert_to_avl,'',no_wf_available).
4495
4496 try_expand_and_convert_to_avl(CS,Res,Origin,Source) :-
4497 try_expand_and_convert_to_avl_wf(CS,Res,Origin,Source,no_wf_available).
4498
4499 try_expand_and_convert_to_avl_wf(CS,Res,_,_,_WF) :- var(CS), !, CS=Res.
4500 try_expand_and_convert_to_avl_wf(avl_set(A),R,_,_,_WF) :- !, R=avl_set(A).
4501 try_expand_and_convert_to_avl_wf([],R,_,_,_WF) :- !, R=[].
4502 try_expand_and_convert_to_avl_wf([H|T],R,_,_,WF) :- !, try_convert_to_avl_wf([H|T],R,WF).
4503 try_expand_and_convert_to_avl_wf(closure(P,T,B),Res,Origin,_Source,WF) :- !,
4504 debug_opt_push_wait_flag_call_stack_info(WF,
4505 external_call('TRY EXPANDING',[closure(P,T,B)],unknown),WF2),
4506 expand_only_custom_closure_global(closure(P,T,B),Expansion,check(Origin),WF2),
4507 try_convert_to_avl_wf(Expansion,Res,WF).
4508 try_expand_and_convert_to_avl_wf(CS,Res,Origin,_Source,WF) :-
4509 (\+ is_custom_explicit_set(CS,try_expand_and_convert_to_avl_wf)
4510 -> Expansion = CS
4511 ; expand_only_custom_closure_global(CS,Expansion,check(Origin),WF)
4512 ),
4513 try_convert_to_avl_wf(Expansion,Res,WF).
4514
4515 try_convert_to_avl(Expansion,Res) :-
4516 (should_be_converted_to_avl_from_lists(Expansion) -> construct_avl_from_lists(Expansion,Res) ; Res=Expansion).
4517 try_convert_to_avl_wf(Expansion,Res,WF) :-
4518 (should_be_converted_to_avl_from_lists(Expansion) -> construct_avl_from_lists_wf(Expansion,Res,WF) ; Res=Expansion).
4519
4520 should_be_converted_to_avl_from_lists(Value) :- var(Value),!,fail.
4521 should_be_converted_to_avl_from_lists(Value) :-
4522 \+ is_custom_explicit_set(Value,should_be_converted_to_avl_from_lists), % already avl_set, global_set or closure
4523 ? \+ do_not_convert_aux(Value),
4524 ground_value(Value).
4525
4526 do_not_convert_aux(V) :- var(V),!.
4527 do_not_convert_aux((A,B)) :- !,
4528 (do_not_convert_aux(A) -> true ; do_not_convert_aux(B)).
4529 do_not_convert_aux([H|T]) :- !, % do not convert a set containing a symbolic closure
4530 ? (var(T) -> true ; do_not_convert_aux(H)).
4531 do_not_convert_aux(rec(Fields)) :- !,
4532 (var(Fields) -> true
4533 ? ; member(field(_,V),Fields), do_not_convert_aux(V) -> true).
4534 do_not_convert_aux(H) :-
4535 ? is_symbolic_closure(H).
4536
4537 should_be_converted_to_avl(Value) :- %preference(use_avl_trees_for_sets,true),
4538 ground_value(Value).
4539
4540 try_expand_and_convert_to_avl_with_check(CS,Res,Origin) :-
4541 try_expand_and_convert_to_avl_with_check(CS,Res,do_not_keep_intervals,Origin).
4542
4543 try_expand_and_convert_to_avl_with_check(CS,Res,_,_Origin) :- var(CS),!, Res = CS.
4544 try_expand_and_convert_to_avl_with_check([],Res,_,_Origin) :- !, Res=[].
4545 try_expand_and_convert_to_avl_with_check(avl_set(A),Res,_,_Origin) :- !, Res=avl_set(A).
4546 try_expand_and_convert_to_avl_with_check([H|T],Res,_,Origin) :- !, try_expand_and_convert_to_avl([H|T],Res,Origin,'').
4547 %try_expand_and_convert_to_avl_with_check(CS,Res,_Origin) :-
4548 % \+ is_custom_explicit_set(CS,try_expand_and_convert_to_avl),!, Res = CS.
4549 try_expand_and_convert_to_avl_with_check(CS,Res,KeepIntervals,_Origin) :-
4550 is_interval_closure(CS,Low,Up),
4551 (var(Low) -> true ; var(Up) -> true % better keep this symbolic as we may be able to do constraint propagation
4552 ; KeepIntervals=keep_intervals(Size) -> Up-Low >= Size
4553 ),
4554 !, % TO DO: see if we should do this check in try_expand_and_convert_to_avl above instead
4555 Res=CS.
4556 try_expand_and_convert_to_avl_with_check(CS,Res,_,Origin) :-
4557 ? get_card_for_specific_custom_set(CS,Size), % TO DO: avoid checking for special closures twice (below in try_expand_and_convert_to_avl ?)
4558 !,
4559 try_expconv_to_avl_with_size(Size,CS,Res,Origin).
4560 try_expand_and_convert_to_avl_with_check(CS,Res,_,Origin) :-
4561 try_expand_and_convert_to_avl(CS,Res,Origin,'').
4562
4563 try_expconv_to_avl_with_size(inf,CS,Res,Origin) :- !,
4564 debug_format(9,'### Not expanding infinite set~n### ORIGIN: ~w~n',[Origin]),
4565 Res=CS.
4566 try_expconv_to_avl_with_size(inf_overflow,CS,Res,Origin) :- !,
4567 debug_format(9,'### Not expanding very large set~n### ORIGIN: ~w~n',[Origin]),
4568 Res=CS.
4569 try_expconv_to_avl_with_size(Size,CS,Res,Origin) :- Size>=10000000, !,
4570 /* will probably never terminate */
4571 debug_format(9,'### Not expanding very large set with cardinality ~w~n### ORIGIN: ~w~n',[Size,Origin]),
4572 Res=CS.
4573 try_expconv_to_avl_with_size(Size,CS,Res,Origin) :- Size>=50000, !,
4574 print('### WARNING: expanding very large comprehension set, size = '), print(Size),nl,
4575 print('### ORIGIN: '), print(Origin),nl,
4576 try_expand_and_convert_to_avl(CS,Res,Origin,'').
4577 try_expconv_to_avl_with_size(_Size,CS,Res,Origin) :-
4578 try_expand_and_convert_to_avl(CS,Res,Origin,'').
4579
4580 /* underlying assumption for var case: if G is a global set: we get back the
4581 global_set tag immediately: no need to use when to wait;
4582 better: ensure that b_compute_expression always returns a nonvar term */
4583
4584
4585 :- assert_must_succeed((custom_explicit_sets:try_expand_custom_set(closure([xx],[integer],b(falsity,pred,[])),R),R = [])).
4586 :- assert_must_succeed((custom_explicit_sets:test_closure(X),custom_explicit_sets:expand_custom_set(X,EX),
4587 EX = [(fd(1,'Name'),_),(fd(3,'Name'),_)])).
4588
4589 test_closure(X) :- X = closure(['_zzzz_binary'],[couple(global('Name'),set(global('Name')))],
4590 b(member(b(identifier('_zzzz_binary'),couple(global('Name'),set(global('Name'))),[generated]),
4591 b(cartesian_product(b(value([fd(1,'Name'),fd(3,'Name')]),set(global('Name')),[]),
4592 b(value([[fd(2,'Name'),fd(3,'Name')]]),set(set(global('Name'))),[])),
4593 set(couple(global('Name'),set(global('Name')))),[])),pred,[])).
4594
4595
4596 /* --------- */
4597 /* ELEMENT_OF */
4598 /* --------- */
4599
4600
4601 /* A function that instantiates last argument when membership test can be decided */
4602
4603 membership_custom_set(CS,X,R) :- print(warning_deprecated_non_wf_version(CS,X,R)),nl,
4604 membership_custom_set_wf(CS,X,R,_WF).
4605
4606 membership_custom_set_wf(avl_set(A),X,R,WF) :- !, membership_avl_set_wf(A,X,R,WF).
4607 membership_custom_set_wf(freetype(_GS),_X,R,_WF) :- !, R=pred_true. % should be covered by clause above
4608 membership_custom_set_wf(CS,X,R,WF) :- R==pred_true,!, element_of_custom_set_wf(X,CS,WF).
4609 membership_custom_set_wf(CS,X,R,WF) :- R==pred_false,!, not_element_of_custom_set_wf(X,CS,WF).
4610 membership_custom_set_wf(CS,_X,R,_WF) :-
4611 is_definitely_maximal_set(CS),!,
4612 R=pred_true.
4613 membership_custom_set_wf(closure(Par,Types,Body),X,R,WF) :- !,
4614 closure_membership_wf(X,Par,Types,Body,R,WF).
4615 %membership_custom_set_wf(CS,X,R,WF) :- is_one_element_custom_set(CS,Y),!, % only succeeds for AVL
4616 % kernel_equality:equality_objects_wf_no_enumr(X,Y,R,WF).
4617 membership_custom_set_wf(global_set(GS),X,R,WF) :- !,
4618 membership_global_set(GS,X,R,WF).
4619 membership_custom_set_wf(CS,X,R,WF) :-
4620 add_internal_error('Illegal custom set: ',membership_custom_set_wf(CS,X,R,WF)),fail.
4621
4622 membership_avl_set_wf(A,X,R,WF) :- R==pred_true,!, element_of_avl_set_wf(A,X,WF).
4623 membership_avl_set_wf(A,X,R,WF) :- R==pred_false,!, not_element_of_custom_set_wf(X,avl_set(A),WF).
4624 membership_avl_set_wf(A,X,R,WF) :- is_one_element_avl(A,Y),!,
4625 kernel_equality:equality_objects_wf_no_enum(X,Y,R,WF).
4626 membership_avl_set_wf(A,_X,R,_WF) :-
4627 quick_definitely_maximal_set_avl(A),!,
4628 R=pred_true.
4629 membership_avl_set_wf(A,X,R,WF) :- reify_avl_membership(A,X,R,FullReification),
4630 (FullReification==true
4631 -> true %print_term_summary(full_reification(A,X,R)),nl,nl %% did slow down e.g. Bosch Deadlock v9, seems no longer the case
4632 ; when((ground(X);nonvar(R)),membership_avl_set_wf2(A,X,R,WF))).
4633
4634 ?membership_avl_set_wf2(A,X,R,WF) :- R==pred_true,!, element_of_avl_set_wf(A,X,WF).
4635 membership_avl_set_wf2(A,X,R,WF) :- R==pred_false,!, not_element_of_custom_set_wf(X,avl_set(A),WF).
4636 membership_avl_set_wf2(AVL,X,R,_WF) :-
4637 ground_element_can_be_added_or_removed_to_avl(X), !,
4638 (safe_avl_member(X,AVL) %safe_avl_member_ground(X,AVL)
4639 -> R=pred_true ; R=pred_false).
4640 membership_avl_set_wf2(AVL,X,Res,WF) :- % X is ground but cannot be added
4641 (Res \== pred_false, element_of_avl_set_wf(AVL,X,WF), Res=pred_true
4642 ;
4643 Res \== pred_true, not_element_of_custom_set_wf(X,avl_set(AVL),WF), Res=pred_false).
4644
4645 membership_global_set(GS,_X,R,_WF) :- is_maximal_global_set(GS),!,
4646 R=pred_true.
4647 membership_global_set(GS,X,R,WF) :- ground(X),!,
4648 (element_of_global_set_wf(X,GS,WF) -> R=pred_true ; R=pred_false).
4649 membership_global_set(GS,X,R,_WF) :- get_integer_set_interval(GS,Low,Up),!,
4650 membership_interval(X,Low,Up,R).
4651 membership_global_set(GS,X,R,WF) :- % this case should probably never apply
4652 (GS=='FLOAT' -> true % currently it actually is also treated like REAL
4653 ; print(uncovered_membership(GS,X,R,WF)),nl),
4654 when(ground(X), (element_of_global_set_wf(X,GS,WF) -> R=pred_true ; R=pred_false)).
4655
4656 membership_interval(X,Low,Up,Res) :- nonvar(Up),Up=inf,!,X=int(IX),
4657 b_interpreter_check:check_arithmetic_operator('<=',Low,IX,Res).
4658 membership_interval(X,Low,Up,Res) :- kernel_equality:in_nat_range_test(X,int(Low),int(Up),Res).
4659
4660 :- use_module(bool_pred).
4661 closure_membership_wf(X,[ZZZZ],[integer],CondClosure,Res,_WF) :-
4662 ? is_interval_closure_body(CondClosure,ZZZZ,LOW,UP),!,
4663 kernel_equality:in_nat_range_test(X,int(LOW),int(UP),Res).
4664 % TO DO: deal with open intervals 0..inf ...
4665 closure_membership_wf(X,Par,Types,Body,Res,WF) :-
4666 is_member_closure(Par,Types,Body,_Type,VAL),
4667 (VAL=value(_) ; VAL = cartesian_product(b(value(A),_,_),b(value(B),_,_))),!,
4668 (VAL=value(Set)
4669 -> kernel_objects:membership_test_wf(Set,X,Res,WF)
4670 ; kernel_equality:cartesian_pair_test_wf(X,A,B,Res,WF)).
4671 closure_membership_wf(X,Par,Typ,Body,Res,WF) :-
4672 is_not_member_closure(Par,Typ,Body,_Type,value(Set)),!,
4673 bool_pred:negate(ResXSet,Res), % was kernel_equality:inv_mem_obj(ResXSet,Res),
4674 kernel_objects:membership_test_wf(Set,X,ResXSet,WF).
4675 % TO DO: if closure = POW closure -> translate into subset_test pow_subset
4676 % TO DO: support a few other closures related to symbolic unary/binary operators: closure1, POW(..), ... ?
4677 % TO DO: expand if set is small
4678 closure_membership_wf(X,Par,Types,Body,Res,WF) :- ground_value(X),!,
4679 closure_membership_ground_wf(X,closure(Par,Types,Body),Res,WF).
4680 closure_membership_wf(X,Par,Types,Body,Res,WF) :-
4681 CS = closure(Par,Types,Body),
4682 is_small_specific_custom_set(CS,100),
4683 try_expand_and_convert_to_avl_wf(CS,Expanded,closure_membership_wf,'',WF),
4684 nonvar(Expanded), Expanded=avl_set(_),
4685 !,
4686 membership_custom_set_wf(Expanded,X,Res,WF).
4687 closure_membership_wf(X,Par,Types,Body,Res,WF) :-
4688 Body \= b(member(_,_),_,_), % otherwise we may have an infinite loop; b_check_boolean_expression will generate a closure which will call closure_membership_wf again; TO DO: refine to allow certain memberships to go through
4689 get_texpr_info(Body,BodyInfo),
4690 \+ member(prob_annotation(recursive(_RID)),BodyInfo), % otherwise we can get errors as recursive identifier _RID needs to be added to local state ! (test 1151 fails otherwise)
4691 % TO DO: add recursive parameter below in set_up_typed_localstate2; + in which other circumstances do we need to set up recursion identifier !
4692 % Try reifiyng the body
4693 NegationContext=positive,
4694 copy_wf_start(WF,closure_membership_wf,CWF),
4695 b_interpreter:set_up_typed_localstate2(Par,Types,BodyInfo,ParValues,TypedVals,[],State,NegationContext),
4696 %couplise_list(Types,XType),
4697 convert_list_into_pairs(ParValues,SingleParValue),
4698 kernel_objects:equal_object(X,SingleParValue,closure_membership_wf),
4699 b_interpreter_check:b_check_boolean_expression(Body,[],State,CWF,PredRes),
4700 !,
4701 (debug_mode(on) -> print('REIFICATION of closure: '), translate:print_bexpr(Body),nl, print(pred_res(X,PredRes)),nl ; true),
4702 b_enumerate:b_tighter_enumerate_all_values(TypedVals,WF), % not necessary ?? as X should get enumerated
4703 Res=PredRes,
4704 copy_wf_finish(WF,CWF).
4705 closure_membership_wf(X,Par,Types,Body,Res,WF) :-
4706 when( (ground(X);nonvar(Res)), %%
4707 % used to be ground(X), % with (ground(X);nonvar(Res)), test 292 failed {x,t|t : BOOL & (x : POW(1024 .. 1025) & bool(x : POW(NATURAL1)) = t)} = {{} |-> TRUE,{1024} |-> TRUE,{1024,1025} |-> TRUE,{1025} |-> TRUE} and test 1088 failed
4708 closure_membership_ground_wf(X,closure(Par,Types,Body),Res,WF)).
4709
4710 closure_membership_ground_wf(X,CS,Res,WF) :- nonvar(Res),!,
4711 % this optimization is checked in test 1452
4712 (Res==pred_true -> element_of_custom_set_wf(X,CS,WF) ; not_element_of_custom_set_wf(X,CS,WF)).
4713 closure_membership_ground_wf(X,CS,Res,WF) :-
4714 % to ensure that we leave no choice point behind we have to force full evaluation of element/not_element calls:
4715 % hence we do not call element_of_custom_set_wf or not_element_of_custom_set_wf below !!
4716 kernel_waitflags:get_idle_wait_flag(closure_membership_ground_wf,WF,LWF), % enable other triggered co-routines to fire first; some maybe much more efficient to deal with than closure expansion;
4717 % used to be important for test 1146, but this is no longer the case
4718 %term_variables(CS,Vars),print(closure_membership_ground_wf_aux(LWF,vars(Vars),CS)),nl,
4719 ground_value_check(CS,CSGr),
4720 %when((nonvar(LWF),(nonvar(CSGr);nonvar(Res))),closure_membership_ground_wf_aux(X,CS,Res)).
4721 block_closure_membership_ground_wf_aux(X,CS,Res,CSGr,LWF,WF). % Note: wrong block in commit 332cb17487017d819e9140427b1017a3045b3685 caused problem for test 1162
4722
4723 :- block block_closure_membership_ground_wf_aux(?,?,?,?,-,?),
4724 block_closure_membership_ground_wf_aux(?,?,-,-,?,?).
4725 block_closure_membership_ground_wf_aux(X,CS,Res, _,_,WF) :-
4726 ? closure_membership_ground_wf_aux(X,CS,Res,WF).
4727
4728 % X & CS are ground or Res is known
4729 closure_membership_ground_wf_aux(X,CS,Res,WF) :- Res==pred_true,!,
4730 element_of_custom_set_wf(X,CS,WF).
4731 closure_membership_ground_wf_aux(X,CS,Res,WF) :- Res==pred_false,!,
4732 ? not_element_of_custom_set_wf(X,CS,WF).
4733 closure_membership_ground_wf_aux(X,CS,Res,_WF) :-
4734 % we know that X is a ground value and CS is ground: we can determine completely whether X is element of CS or not
4735 if(element_of_custom_set(X,CS),Res=pred_true, Res=pred_false).
4736 /* used to be: (Res \== pred_false, element_of_custom_set(X,CS), Res=pred_true
4737 ; Res \== pred_true, not_element_of_custom_set(X,CS), Res=pred_false)).
4738 */
4739
4740
4741
4742 :- use_module(kernel_objects,[element_of_global_set/2,element_of_global_set_wf/3]).
4743 element_of_custom_set_wf(X,CS,WF) :-
4744 ? element_of_custom_set_wf2(CS,X,WF). %, print(check_ok(X)),nl.
4745
4746 element_of_custom_set_wf2(node(A,B,C,D,E),X,WF) :-
4747 add_internal_error('Unwrapped avl_set: ',element_of_custom_set_wf2(node(A,B,C,D,E),X,WF)),fail.
4748 element_of_custom_set_wf2(global_set(GS),X,WF) :- element_of_global_set_wf(X,GS,WF).
4749 element_of_custom_set_wf2(freetype(ID),X,WF) :-
4750 (is_maximal_freetype(ID) -> true
4751 ; add_internal_error('Uncovered case: ',element_of_custom_set_wf2(freetype(ID),X,WF))
4752 ). % we assume freetypes to be maximal !
4753 ?element_of_custom_set_wf2(avl_set(AVL),X,WF) :- element_of_avl_set_wf(AVL,X,WF).
4754 element_of_custom_set_wf2(closure(Parameters,PT,Cond),X,WF) :-
4755 ? element_of_closure(X,Parameters,PT,Cond,WF).
4756
4757 element_of_avl_set_wf(node(Y,_,_,empty,empty),X,WF) :- !,
4758 ? kernel_objects:equal_object_wf(X,Y,element_of_custom_set_wf2,WF).
4759 element_of_avl_set_wf(AVL,X,_WF) :- ground_value(X),!, safe_avl_member(X,AVL). %safe_avl_member_ground(X,AVL).
4760 element_of_avl_set_wf(AVL,X,WF) :-
4761 avl_approximate_size(AVL,10,ApproxSize),
4762 ? element_of_avl_set_wf(AVL,ApproxSize,X,WF).
4763
4764 :- use_module(clpfd_tables).
4765
4766 element_of_avl_set_wf(AVL,ApproxSize,X,WF) :-
4767 % first check if worthwhile to attempt table treatment
4768 % after fixing table/2 bug runtimes have slowed down and test 1753 became much slower
4769 % for test 1753 a threshold of < 63 would be ideal; but test 1716 requires size 91
4770 % TODO: re-evaluate when SICStus 4.8 available
4771 preferences:preference(use_clpfd_solver,true),
4772 preferences:preference(solver_strength,SS),
4773 ApproxSize < 100+SS,
4774 (var(X) -> true
4775 ; X = (X1,_X2) -> (ground_value(X1) -> ApproxSize < 10+SS ; true)
4776 ; X=rec(_) -> true
4777 %; X=int(_) -> true ; X=fd(_,_) -> true % for scalar values we already use in_fd_value_list_wf via avl_fd_value_check
4778 ),
4779 can_translate_avl_to_table(AVL,SkeletonType),
4780 !,
4781 ? check_element_of_avl_with_table(X,SkeletonType,AVL,WF).
4782 element_of_avl_set_wf(AVL,ApproxSize,X,WF) :-
4783 ? propagate_avl_element_information(X,AVL,ApproxSize,WF), %translate:translate_bvalue(avl_set(AVL),SS),
4784 get_bounded_wait_flag(ApproxSize,element_of_avl(X),WF,WF1),
4785 element_of_avl_set_wf3(X,AVL,ApproxSize,WF1,WF).
4786
4787
4788 % compute an approximate size (small sets are computed exactly)
4789 avl_approximate_size(AVL,Size) :- avl_approximate_size(AVL,10,Size).
4790
4791 avl_approximate_size(AVL,HeightBound,Size) :- var(AVL),!,
4792 add_internal_error('AVL Set is variable: ', avl_approximate_size(AVL,HeightBound,Size)),
4793 Size=1000000.
4794 avl_approximate_size(AVL,HeightBound,Size) :- % when the AVL gets too large; not so important that we have a precise estimation anyway
4795 % so: save some time and just compute height
4796 avl_height(AVL,Height),
4797 (Height>HeightBound
4798 -> Size is floor(2**Height-1)
4799 ; avl_size(AVL,Size)).
4800
4801 :- block element_of_avl_set_wf3(-,?,?,-,?).
4802 ?element_of_avl_set_wf3(X,AVL,_ApproxSize,_WF1,_WF) :- var(X), !, safe_avl_member(X,AVL).
4803 % TO DO: if randomise_enumeration_order is true then choose elements in random order
4804 :- if(environ(prob_data_validation_mode,xxxtrue)). % currently disabled due to bug related to 14082013/435_002.mch TO DO: investigate
4805 element_of_avl_set_wf3((X,Y),AVL,ApproxSize,WF1,WF) :- !,
4806 %% ((var(WF1), \+ ground(X)) -> print(avl_relation_check(X,Y)),nl, %%
4807 %% copy_term((X,Y),Copy), findall(Copy,safe_avl_member(Copy,AVL),Cs), print(Cs),nl, Cs \=[] %% check that at least one element exists
4808 %% ; true),
4809 couple_element_of_avl_set_wf(X,Y,AVL,ApproxSize,WF1,WF).
4810 :- else.
4811 element_of_avl_set_wf3((X,Y),AVL,ApproxSize,WF1,WF) :- !,
4812 ground_value_check(X,GrX),
4813 block_couple_element_of_avl_set_grX_wf1(X,Y,AVL,ApproxSize,GrX,WF1,WF).
4814 %when((nonvar(WF1) ; ground(X)), couple_element_of_avl_set(X,Y,AVL,GrX,WF1,WF)).
4815 :- endif.
4816 element_of_avl_set_wf3(X,AVL,_ApproxSize,WF1,_WF) :-
4817 ground_value_check(X,GrX),
4818 safe_avl_member_block(X,AVL,GrX,WF1).
4819
4820 :- block safe_avl_member_block(?,?,-,-).
4821 safe_avl_member_block(X,AVL,_,_) :-
4822 ? safe_avl_member(X,AVL).
4823
4824 :- if(environ(prob_data_validation_mode,true)).
4825 :- public couple_element_of_avl_set_wf/6. % used in conditional if above
4826 :- block couple_element_of_avl_set_wf(-,?,?,?,-,?).
4827 couple_element_of_avl_set_wf(X,Y,AVL,ApproxSize,WF1,WF) :-
4828 ground_value_check(X,GrX),
4829 ((nonvar(WF1);nonvar(GrX)) -> couple_element_of_avl_set(X,Y,AVL,GrX,WF1,WF)
4830 %; true -> when((nonvar(WF1) ; ground(X)), couple_element_of_avl_set(X,Y,AVL,WF1,WF))
4831 ; nonvar(X),X=(X1,X2),ground(X1) -> triple_element_of_avl_set(X1,X2,Y,AVL,WF)
4832 ; nonvar(X),X=(X1,X2) ->
4833 avl_member_blocking((X,Y),AVL),
4834 (ground(Y),ground(X1) -> safe_avl_member_pair_wf(X,Y,AVL,WF)
4835 ; when(ground(X1),(\+ ground(X2) -> triple_element_of_avl_set(X1,X2,Y,AVL,WF) ; true % avl_member_blocking will have done its work
4836 )),
4837 block_couple_element_of_avl_set(X,Y,AVL,WF1,WF)
4838 )
4839 ; %when((nonvar(WF1) ; ground(X)), couple_element_of_avl_set(X,Y,AVL,WF1,WF))
4840 block_couple_element_of_avl_set_grX_wf1(X,Y,AVL,ApproxSize,GrX,WF1,WF)
4841 /* ; (simple_avl_type(AVL)
4842 -> avl_member_blocking((X,Y),AVL) % TO DO: don't call couple_element_of_avl_set ! avoid double traversal !!
4843 ; true),
4844 block_couple_element_of_avl_set_grX_wf1(X,Y,AVL,GrX,WF1,WF) */
4845 ).
4846
4847 :- block block_couple_element_of_avl_set(?,?,?,-,?).
4848 block_couple_element_of_avl_set(X,Y,_AVL,_WF1,_WF) :- ground(X),ground(Y),!.
4849 block_couple_element_of_avl_set(X,Y,AVL,_WF1,WF) :- safe_avl_member_pair_wf(X,Y,AVL,WF).
4850
4851 triple_element_of_avl_set(X1,X2,Y,AVLRelation,WF) :- % X1 must be ground
4852 copy_term((X2,Y),(CX2,CY)),
4853 findall((CX2,CY),safe_avl_member_pair((X1,CX2),CY,AVLRelation),Images),
4854 % we pass no WF to safe_avl_member_pair; we need to fully evaluate all unifications due to findall
4855 Images \= [],
4856 construct_avl_from_lists_wf(Images,AVL,WF),
4857 element_of_custom_set_wf2(AVL,(X2,Y),WF). % will set up waitflag if necessary
4858 :- endif.
4859
4860 % ---------------------------------------------------
4861
4862 test_avl_set(node(((int(2),int(3)),int(6)),true,0,node(((int(1),int(2)),int(2)),true,0,empty,empty),node(((int(3),int(4)),int(12)),true,0,empty,empty))).
4863
4864 %simple_avl_type(node(K,_,_,_,_)) :- simple_value(K). % we can index directly on AVL, without having to normalise inner values
4865 % in particular, we can apply avl_member_blocking
4866
4867 :- assert_must_succeed(( custom_explicit_sets:test_avl_set(A), custom_explicit_sets:avl_member_blocking(((X,Y),Z),A), X=int(2), Y==int(3),Z==int(6) )).
4868 :- assert_must_succeed(( custom_explicit_sets:test_avl_set(A), custom_explicit_sets:avl_member_blocking(((X,Y),Z),A), X=int(3), Y==int(4),Z==int(12) )).
4869 :- assert_must_succeed(( custom_explicit_sets:test_avl_set(A), custom_explicit_sets:avl_member_blocking(((X,Y),Z),A), X=int(1), Y==int(2),Z==int(2) )).
4870 :- assert_must_fail(( custom_explicit_sets:test_avl_set(A), custom_explicit_sets:avl_member_blocking(((X,_Y),_Z),A), X=int(5) )).
4871 % a blocking version of avl_member; will not instantiate the element; just prune
4872
4873 avl_member_blocking(Key, AVL) :- AVL=node(K,_,_,L,R),
4874 %avl_height(AVL,Height),
4875 avl_member_blocking4(Key,K,L,R).
4876
4877 avl_member_blocking4(Key,Kavl,L,R) :- L=empty,R=empty,!,
4878 Key=Kavl. % we could do equal_object
4879 avl_member_blocking4(Key,Kavl,L,R) :-
4880 match_possible(Key,Kavl,MatchPossible), % check if in principle a match could occur
4881 (Kavl=(_,_) ->
4882 (avl_min(R,Knext) -> true ; dif(O,>), Knext=no_match,
4883 force_comp(MatchPossible,O,'<')),
4884 (avl_max(L,Kprev) -> true ; dif(O,<), Kprev=no_match,
4885 force_comp(MatchPossible,O,'>'))
4886 ; Knext = no_match, Kprev = no_match
4887 ),
4888 (nonvar(O) -> true
4889 /* ; (MatchPossible==pred_false, avl_height(L,Height), Height < 8,
4890 copy_term(Key,CKey), \+ safe_avl_member(CKey,L), \+ safe_avl_member(CKey,R))
4891 -> print(cannot_match(Key)),nl,fail */
4892 ; compare_blocking(O, Key, Kavl, Kprev,Knext)),
4893 avl_member_blocking_aux(O, Key, Kavl, L, R).
4894
4895 %force_comp(V,_,_) :- var(V),!.
4896 :- block force_comp(-,?,?).
4897 force_comp(pred_true,_,_).
4898 force_comp(pred_false,R,R).
4899
4900 :- block avl_member_blocking_aux(-,?,?,?,?).
4901 avl_member_blocking_aux(<, Key, _K, AVL, _) :- avl_member_blocking(Key, AVL).
4902 avl_member_blocking_aux(=, Key, Key, _L, _R). % we could use equal_object
4903 avl_member_blocking_aux(>, Key, _K, _, AVL) :- avl_member_blocking(Key, AVL).
4904
4905 % a blocking version of compare
4906 compare_blocking(Res,A,Kavl, Kprev, Knext) :- block_compare(A,Kavl,Res, Kprev, Knext).
4907
4908 :- block block_compare(-,?,?,?,?), block_compare(?,-,?,?,?).
4909 block_compare((A,B),Kavl,Res, Kprev, Knext) :- !,
4910 (Kavl=(RA,RB) ->
4911 match_key(Kprev,RA,PA,PB),
4912 match_key(Knext,RA,NA,NB),
4913 block_compare(A,RA,ACRes,PA,NA),
4914 block_compare_aux(ACRes,B,RB,Res,PB,NB)
4915 ; add_internal_error('Illegal type: ',block_compare((A,B),Kavl,Res, Kprev, Knext)),fail).
4916 % TO DO: same for records; but currently not used anyway
4917 block_compare(int(A),int(B),Res,_,_) :- !, block_compare_atomic(A,B,Res).
4918 block_compare(pred_false,B,Res,_,_) :- !, block_compare_atomic(pred_false,B,Res).
4919 block_compare(pred_true,B,Res,_,_) :- !, block_compare_atomic(pred_true,B,Res).
4920 block_compare(string(A),string(B),Res,_,_) :- !, block_compare_atomic(A,B,Res).
4921 block_compare(fd(A,T),fd(B,T),Res,_,_) :- !, block_compare_atomic(A,B,Res).
4922 block_compare(avl_set(A),Kavl,Res,_,_) :- !,
4923 convert_to_avl_inside_set(avl_set(A),ConvertedA),compare(Res,ConvertedA,Kavl).
4924 block_compare([],[],Res,_,_) :- !, Res = '='.
4925 block_compare([],_,Res,_,_) :- !, Res = '<'.
4926 block_compare(A,Kavl,Res,_,_) :-
4927 % does deal with various representations of sets !! closure/global_set/...
4928 when(ground(A),
4929 (convert_to_avl_inside_set(A,ConvertedA),compare(Res,ConvertedA,Kavl))).
4930
4931 match_key((KeyA,KeyB),Key,ResA,ResB) :- !, ResA=KeyA,
4932 (Key==KeyA -> ResB=KeyB ; ResB = no_match).
4933 match_key(_,_,no_match,no_match).
4934
4935 :- block block_compare_atomic(-,?,?), block_compare_atomic(?,-,?).
4936 block_compare_atomic(A,B,Res) :- compare(Res,A,B).
4937
4938 :- block block_compare_aux(-,?,?,?, ?,?).
4939 block_compare_aux(ACRes,B,D,Res, Kprev,Knext) :-
4940 (ACRes='<' -> Res = '<'
4941 ; ACRes = '>' -> Res = '>'
4942 ; Kprev=no_match, Knext=no_match ->
4943 Res = '=' % we cannot match neither previous nor next key: force match
4944 ; block_compare(B,D,Res,Kprev,Knext)). % TO DO: check with prev & next value: if no match possible force Res='='
4945
4946 % check if a match is possible between two terms
4947 :- block match_possible(-,?,?), match_possible(?,-,?).
4948 match_possible([],[],Possible) :- !, Possible=pred_true.
4949 match_possible([],avl_set(_),Possible) :- !, Possible=pred_false.
4950 match_possible(avl_set(_),[],Possible) :- !, Possible=pred_false.
4951 match_possible(int(A),int(B),Possible) :- !, match_possible_atomic(A,B,Possible).
4952 match_possible(fd(A,T),fd(B,T),Possible) :- !, match_possible_atomic(A,B,Possible).
4953 match_possible(string(A),string(B),Possible) :- !, match_possible_atomic(A,B,Possible).
4954 match_possible((A1,A2),(B1,B2),Possible) :- !, match_possible(A1,B1,P1),
4955 match_possible(A2,B2,P2), kernel_equality:conjoin_test(P1,P2,Possible,_WF). %% WF <--- TO DO
4956 match_possible(_,_,pred_true).
4957
4958 :- block match_possible_atomic(-,?,?), match_possible_atomic(?,-,?).
4959 match_possible_atomic(A,B,Res) :- (A==B -> Res=pred_true ; Res=pred_false).
4960
4961 % --------------------------------------------
4962
4963 :- block block_couple_element_of_avl_set_grX_wf1(?, - ,?,?,-,-,?).
4964 block_couple_element_of_avl_set_grX_wf1(X,Y,AVL,ApproxSize,GrX,WF1,WF) :-
4965 var(GrX), var(WF1),
4966 !,
4967 % we know the result Y but not yet fully the input value X
4968 (ApproxSize < 129 % TO DO: improve this; unify with inverse_apply_ok(Y,X,AVL,ApproxSize) ?
4969 -> ground_value_check(Y,GrY) % wait until Y is fully known
4970 ; (preference(solver_strength,SS), ApproxSize < 129+SS)
4971 -> ground_value_check(Y,GrY)
4972 % TO DO: we could look at avl_min and avl_max and estimate spread of range keys
4973 ; cond_perfmessage([data_validation_mode/false],no_inverse_avl_lookup(ApproxSize,Y)) % do not bind GrY; we wait until GrX or WF1 is bound
4974 ),
4975 block_couple_element_of_avl_set_grX_grY_wf1(X,Y,AVL,ApproxSize,GrX,GrY,WF1,WF).
4976 block_couple_element_of_avl_set_grX_wf1(X,Y,AVL,_ApproxSize,GrX,WF1,WF) :-
4977 ? couple_element_of_avl_set(X,Y,AVL,GrX,WF1,WF).
4978
4979 :- block block_couple_element_of_avl_set_grX_grY_wf1(?,?,?,?, -,-,-,?).
4980 block_couple_element_of_avl_set_grX_grY_wf1(X,Y,AVL,_ApproxSize, GrX,_GrY,WF1,WF) :-
4981 var(GrX), var(WF1), % i.e., Y is known
4982 % we know the result Y but not yet fully the input value X
4983 %inverse_apply_ok(Y,X,AVL,ApproxSize),
4984 !,
4985 inverse_get_possible_values(X,Y,AVL,Res),
4986 Res = avl_set(InvAVL),
4987 element_of_avl_set_wf(InvAVL,X,WF).
4988 %couple_element_of_avl_set(X,Y,AVL,GrX,1,WF).
4989 block_couple_element_of_avl_set_grX_grY_wf1(X,Y,AVL,_ApproxSize,GrX,_GrY,WF1,WF) :-
4990 ? couple_element_of_avl_set(X,Y,AVL,GrX,WF1,WF).
4991
4992
4993 % special treatment for relations: if the first component is known: then we can check how many images there are
4994 couple_element_of_avl_set(X,Y,AVL,GrX,WF1,WF) :-
4995 nonvar(WF1), var(GrX), %\+ground(X),
4996 !,
4997 ? safe_avl_member_default_wf((X,Y),AVL,WF).
4998 couple_element_of_avl_set(X,Y,AVLRelation,_GrX,_,WF) :- % X must be ground
4999 get_template(Y,TY,_ToUnifyAfter), % was copy_term(Y,CY) but could cause issues with closures with variables
5000 copy_term(TY,CY), % avoid that we instantiate Y and trigger co-routines
5001 findall(CY,avl_member_pair_arg1_ground(X,CY,AVLRelation),Images), % should we use Y instead of CY
5002 Images \= [],
5003 construct_avl_from_lists_wf(Images,AVL,WF),
5004 element_of_custom_set_wf2(AVL,Y,WF). % will set up waitflag if necessary
5005
5006
5007 % set Res -> pred_true or pred_false if membership can be decided early
5008 % interval closures already dealt with by closure_membership
5009 % maximal sets are also already dealt with by membership_custom_set
5010 reify_avl_membership(AVL,Element,Res,FullReification) :-
5011 is_avl_simple_set(AVL,Type),
5012 preferences:preference(use_clpfd_solver,true), % to do: require maybe only for integer type !?
5013 \+ ground_value(Element),
5014 !,
5015 reify_avl_mem2(Type,Element,AVL,Res,FullReification).
5016 reify_avl_membership(_,_,_,false).
5017
5018
5019 is_avl_simple_set(node(El,_True,_,_,_),Type) :- simple_type(El,Type).
5020 simple_type(int(_),integer).
5021 simple_type(fd(_,GS),global(GS)).
5022
5023
5024 reify_avl_mem2(integer,int(El),AVL,Res,FullReification) :-
5025 avl_min(AVL,int(Min)), avl_max(AVL,int(Max)),
5026 (reify_integer_avl_mem(AVL,Min,Max) % reify if AVL small enough
5027 -> avl_domain(AVL,R),project_avl_domain_on_fd(R,FDList),
5028 clpfd_reify_inlist(El,FDList,FDRes,Posted),
5029 propagate_fd_membership(FDRes,Res,inlist(El,FDList)),
5030 FullReification=Posted
5031 ; clpfd_interface:try_post_constraint((El in Min..Max) #<=> FDRes),
5032 propagate_not_membership(FDRes,Res,int(El,Min,Max)),
5033 FullReification=false
5034 ).
5035 % this could also be enabled with CLPFD = FALSE ?? no overflows are possible
5036 reify_avl_mem2(global(GS),fd(El,GS),AVL,Res,FullReification) :-
5037 avl_domain(AVL,R),project_avl_domain_on_fd(R,FDList),
5038 b_global_sets:b_get_fd_type_bounds(GS,Low,Up),
5039 (is_full_fdlist(FDList,Low,Up)
5040 -> Res=pred_true, % all the values are in the list; it must be a member
5041 % normally this should also be detected by clpfd_reify_inlist, unless no constraint was set up for El
5042 % it seems to have an effect for test 426: probcli examples/EventBPrologPackages/SSF/Bepi_Soton/M1_mch.eventb -cbc all -strict -p CLPFD TRUE -p SMT TRUE -strict -p STRICT_RAISE_WARNINGS TRUE
5043 FullReification=true
5044 ; clpfd_reify_inlist(El,FDList,FDRes,Posted),
5045 propagate_fd_membership(FDRes,Res,inlist(El,FDList)),
5046 FullReification=Posted
5047 ).
5048 %reify_avl_mem2(global(GS),fd(El,GS),AVL,Res) :-
5049 % avl_min(AVL,fd(Min,GS)), avl_max(AVL,fd(Max,GS)),
5050 % clpfd_interface:try_post_constraint((El in Min..Max) #<=> FDRes),
5051 % propagate_not_membership(FDRes,Res,fd(El,GS,Min,Max)).
5052
5053 % assumes list is sorted
5054 is_full_fdlist(List,Low,Up) :- integer(Up), is_full_fdlist2(List,Low,Up).
5055 is_full_fdlist2([],Low,Up) :- Low>Up.
5056 is_full_fdlist2([Low|T],Low,Up) :- L1 is Low+1, is_full_fdlist2(T,L1,Up).
5057
5058 % check if avl small enough to call clpfd_reify_inlist
5059 reify_integer_avl_mem(_AVL,Min,Max) :- MaxSizeM1 is Max-Min, MaxSizeM1 =< 20,!.
5060 reify_integer_avl_mem(AVL,_Min,_Max) :- avl_height_less_than_with_solver_strength(AVL,5).
5061
5062
5063
5064 project_avl_domain_on_fd([],[]).
5065 project_avl_domain_on_fd([H|T],[PH|PT]) :- project_avl_domain(H,PH), project_avl_domain_on_fd(T,PT).
5066 project_avl_domain(int(X),X).
5067 project_avl_domain(fd(X,_),X).
5068
5069
5070 :- block propagate_fd_membership(-,-,?).
5071 % if we make it propagate_fd_membership(-,-?) Bosch examples becomes much slower ?
5072 % Indeed: membership_custom_set will already force membership or non-membership !
5073 %propagate_fd_membership(X,M,Info) :- var(X),!, print(propagate_fd(X,M,Info)),nl, (M=pred_true ->X=1 ; X=0).
5074 propagate_fd_membership(1,pred_true,_Info).
5075 propagate_fd_membership(0,pred_false,_Info).
5076
5077 :- block propagate_not_membership(-,?,?).
5078 propagate_not_membership(1,_,_). % there could be elements in the interval which are not in the set
5079 propagate_not_membership(0,Res,_Info) :-
5080 Res=pred_false.
5081
5082 % -----------------
5083
5084 % fails if not possible to quickly compute approximate size
5085 quick_custom_explicit_set_approximate_size(V,_) :- var(V),!,fail.
5086 quick_custom_explicit_set_approximate_size(avl_set(AVL),Size) :- !,
5087 quick_avl_approximate_size(AVL,Size).
5088 quick_custom_explicit_set_approximate_size(CS,Size) :-
5089 card_for_specific_custom_set(CS,Size,Code),
5090 on_enumeration_warning(call(Code),fail),
5091 atomic(Size). % inf or number; sometimes card_for_specific_custom_set can return a variable
5092
5093 :- use_module(clpfd_lists,[try_get_fd_value_list/4, get_fd_value/3, in_fd_value_list_wf/4]).
5094 % a membership propagation, but only done if it can be done quickly
5095
5096
5097 % quick_propagation_element_information(Set, Element, WF, PossiblyCompiledSet)
5098 % use last element for next iteration if you call quick_propagation_element_information in a loop
5099 :- block quick_propagation_element_information(-,?,?,?).
5100 quick_propagation_element_information(Set,_El,_,R) :-
5101 preferences:preference(use_clpfd_solver,false),
5102 !, R=Set.
5103 quick_propagation_element_information(avl_set(AVL),Element,WF,NewSet) :- !,
5104 quick_avl_approximate_size(AVL,Size),
5105 NewSet=avl_set_with_size(AVL,Size),
5106 propagate_avl_element_information_direct(Element,AVL,Size,WF).
5107 quick_propagation_element_information(avl_set_with_size(AVL,Size),Element,WF,NewSet) :- !,
5108 NewSet = avl_set_with_size(AVL,Size),
5109 propagate_avl_element_information_direct(Element,AVL,Size,WF).
5110 quick_propagation_element_information(closure(P,T,B),Element,WF,NewSet) :- !,
5111 NewSet = closure(P,T,B),
5112 element_of_closure(Element,P,T,B,WF).
5113 quick_propagation_element_information(fd_value_list(FDList,GroundList,Type),El,WF,NewSet) :- !,
5114 NewSet = fd_value_list(FDList,GroundList,Type),
5115 get_fd_value(Type,El,ElFD),
5116 in_fd_value_list_wf(GroundList,ElFD,FDList,WF).
5117 quick_propagation_element_information(Set,El,WF,NewSet) :-
5118 ? try_get_fd_value_list(Set,Type,FDList,GroundList),!,
5119 FDList \= [], % if list is empty membership fails
5120 NewSet = fd_value_list(FDList,GroundList,Type),
5121 % clpfd_inlist requires list of integers as second argument
5122 ? get_fd_value(Type,El,ElFD),
5123 % We could apply filter_non_matching_elements here
5124 in_fd_value_list_wf(GroundList,ElFD,FDList,WF).
5125 quick_propagation_element_information(Set,_,_,Set).
5126
5127 % -----------------
5128
5129 % infer information about an element of an AVL set
5130 propagate_avl_element_information(Element,AVL,Size,WF) :-
5131 (preferences:preference(use_clpfd_solver,true)
5132 ? -> propagate_avl_element_information_direct(Element,AVL,Size,WF)
5133 ; true).
5134
5135 propagate_avl_element_information_direct(Element,AVL,Size,WF) :-
5136 (Size<100 -> %30 which magic constant to use here; use larger value in SMT mode ?
5137 ? propagate_avl_element_information_small(Element,AVL,WF)
5138 ; is_avl_fd_index_set(AVL,Type) ->
5139 propagate_avl_element_information_large(Type,Element,AVL),
5140 (Size < 4000, nonvar(Element), Element = (_,_) % another magic constant
5141 -> Prio is Size // 60,
5142 get_wait_flag(Prio,propagate_avl_element_information(Element),WF,LWF),
5143 propagate_avl_el_large_block(Element,AVL,WF,LWF) % will do precise propagation
5144 ; true)
5145 ; true).
5146 % TO DO: we could call in_nat_range_wf; this way it would also work in non-CLPFD mode
5147
5148 :- block propagate_avl_el_large_block(?,?,?,-).
5149 propagate_avl_el_large_block((A,B),_,_,_) :-
5150 (ground(A); ground_value(B)), % in first: case we will apply AVL set ; in second case probably no benefit as propagate_avl_element_information_large already propagated first element
5151 !.
5152 propagate_avl_el_large_block(Element,AVL,WF,_LWF) :-
5153 % TO DO: maybe look if we should not use clpfd_list, but only upper & lower bound
5154 propagate_avl_element_information_small(Element,AVL,WF). % will do precise propagation.
5155
5156 :- use_module(clpfd_lists,[avl_fd_value_check/4]).
5157 :- use_module(clpfd_interface,[catch_and_ignore_clpfd_overflow/2]).
5158 propagate_avl_element_information_small(Element,AVL,WF) :-
5159 ? catch_and_ignore_clpfd_overflow(propagate_avl_element_information_small, % relevant test e.g. 1708 (with used_ids_defined_by_equality)
5160 avl_fd_value_check(AVL,Element,WF,_FullyChecked)).
5161
5162 propagate_avl_element_information_large(Type,El,AVL) :-
5163 avl_min(AVL,Min), avl_max(AVL,Max),
5164 % if Size small enough and smaller than Max-Min we call clpfd_inlist on domain
5165 % Note: overflows should be caught below; we could check that Min/Max are within CLPFD range
5166 couple_prj1_in_range(Type,El,Min,Max).
5167
5168 couple_prj1_in_range(integer,int(El),int(Min),int(Max)) :- clpfd_interface:clpfd_inrange(El,Min,Max).
5169 couple_prj1_in_range(global(GS),fd(El,GS),fd(Min,GS),fd(Max,GS)) :- clpfd_interface:clpfd_inrange(El,Min,Max).
5170 couple_prj1_in_range(couple_prj1(T),(El,_),(Min,_),(Max,_)) :- couple_prj1_in_range(T,El,Min,Max).
5171 couple_prj1_in_range(rec_first_field(Name,T),rec([field(Name,El)|TF]),
5172 rec([field(Name,Min)|TMin]),rec([field(Name,Max)|_])) :-
5173 (var(TF)
5174 -> copy_field_names(TMin,TF) % if Fields not yet instantiated: copy over all fields
5175 ; true),
5176 couple_prj1_in_range(T,El,Min,Max).
5177
5178 copy_field_names([],[]).
5179 copy_field_names([field(N,_)|T],[field(N,_)|CT]) :- copy_field_names(T,CT).
5180
5181 % check if the first component of the AVL elements of a type such that we can propagate FD information
5182 is_avl_fd_index_set(node(El,_True,_,_,_),Type) :-
5183 simple_index_type(El,Type).
5184 simple_index_type((El,_),couple_prj1(T)) :- simple_index_type(El,T).
5185 simple_index_type(int(_),integer).
5186 simple_index_type(fd(_,GS),global(GS)).
5187 simple_index_type(rec(Fields),rec_first_field(Name,T)) :- nonvar(Fields),
5188 Fields = [field(Name,El)|_],
5189 simple_index_type(El,T).
5190 %simple_index_type((int(_),_),couple_integer).
5191 %simple_index_type(((int(_),_),_),couple_couple_integer).
5192 %simple_index_type((fd(_,GS),_),couple_global(GS)).
5193
5194
5195 /* avoid instantiating non-normalised with normalised values leading to failure */
5196 :- assert_must_succeed((X=(fd(1,'Name'),fd(2,'Name')), A=node(X,true,0,empty,empty),
5197 custom_explicit_sets:safe_avl_member(X,A) )).
5198
5199 ?safe_avl_member(X,AVL) :- var(X), !, my_avl_member(X,AVL).
5200 %safe_avl_member((X,Y),AVL) :- !, safe_avl_member_pair(X,Y,AVL).
5201 safe_avl_member(Value,AVL) :- decompose_index(Value,Key,RestVal), !,
5202 ? avl_fetch_indexed(Value,Key,RestVal,AVL).
5203 safe_avl_member(X,AVL) :- ground_value(X), convert_to_avl_inside_set(X,AX), !, avl_fetch(AX,AVL).
5204 ?safe_avl_member(X,AVL) :- safe_avl_member_default_wf(X,AVL,no_wf_available).
5205
5206
5207 % this is a generalisation of safe_avl_member_pair
5208 % check if a value can be decomposed into an index and the rest of a value and the key is ground
5209 % it also works for records indexing on first field
5210 avl_fetch_indexed(Value,Key,RestVal,AVL) :-
5211 ground_value_or_field(Key),
5212 convert_value_or_field(Key,NormKey),
5213 !,
5214 (ground_value_or_field(RestVal),
5215 convert_to_avl_inside_set(Value,NormValue)
5216 -> avl_fetch(NormValue,AVL)
5217 ? ; avl_fetch_with_index(NormKey,AVL,RestValLookup),
5218 kernel_objects:equal_object(RestValLookup,RestVal,avl_fetch_indexed)
5219 ).
5220 avl_fetch_indexed(Value,_,_,AVL) :-
5221 ? safe_avl_member_default_wf(Value,AVL,no_wf_available).
5222
5223 convert_value_or_field(field(Name,Val),field(Name,NVal)) :- !,
5224 convert_to_avl_inside_set(Val,NVal).
5225 convert_value_or_field(Key,NormKey) :-
5226 convert_to_avl_inside_set(Key,NormKey).
5227
5228 % a version of safe_avl_member where the first argument is guaranteed to be ground
5229 % somehow using this seems to slow-down evaluation for vesg_Dec12; Caching ??
5230 %safe_avl_member_ground(X,AVL) :-
5231 % convert_to_avl_inside_set(X,AX), !, avl_fetch(AX,AVL).
5232 %safe_avl_member_ground((X,Y),AVL) :- !, avl_member_pair_arg1_ground(X,Y,AVL).
5233 %safe_avl_member_ground(X,AVL) :- safe_avl_member_default_wf(X,AVL,no_wf_available).
5234
5235
5236 safe_avl_member_pair(X,Y,AVL) :- safe_avl_member_pair_wf(X,Y,AVL,no_wf_available).
5237
5238 safe_avl_member_pair_wf(X,Y,AVL,_WF) :- ground_value(X),!,
5239 ( ground_value(Y),
5240 convert_to_avl_inside_set((X,Y),AX)
5241 -> avl_fetch(AX,AVL)
5242 ; avl_member_pair_arg1_ground(X,Y,AVL)). % TODO: pass WF
5243 safe_avl_member_pair_wf(X,Y,AVL,WF) :- safe_avl_member_default_wf((X,Y),AVL,WF).
5244
5245 % can be used to try and lookup a function value without creating WD errors, ...
5246 % used in b_compiler to compile function applications
5247 try_apply_to_avl_set(X,Y,AVL) :- ground_value(X),
5248 ? avl_member_pair_arg1_ground(X,Y,AVL).
5249
5250 %safe_avl_member_pair_ground(X,Y,AVL) :- convert_to_avl_inside_set((X,Y),AX),!, avl_fetch(AX,AVL).
5251 %safe_avl_member_pair_ground(X,Y,AVL) :- avl_member_pair_arg1_ground(X,Y,AVL).
5252
5253 avl_member_pair_arg1_ground(X,Y,AVL) :- convert_to_avl_inside_set(X,AX), !,
5254 get_template(Y,RY,ToUnifyAfter),
5255 ? avl_fetch_pair(AX,AVL,RY),
5256 unify_after_wf(ToUnifyAfter,no_wf_available). %kernel_objects:equal_object(RY,Y).
5257 avl_member_pair_arg1_ground(X,Y,AVL) :-
5258 safe_avl_member_default((X,Y),AVL).
5259
5260 ?safe_avl_member_default(X,AVL) :- safe_avl_member_default_wf(X,AVL,no_wf_available).
5261 %safe_avl_member_default(PP,X,AVL) :-
5262 % debug:timer_call(safe_avl_member_default(PP),custom_explicit_sets:safe_avl_member_default1(X,AVL)).
5263 safe_avl_member_default_wf(X,AVL,WF) :- %statistics(runtime,_),
5264 get_template(X,Template,ToUnifyAfter),
5265 ? my_avl_member(Template,AVL),
5266 % statistics(runtime,[_,T2]), print(avl_member(Template,T2)),nl,
5267 unify_after_wf(ToUnifyAfter,WF). % kernel_objects:equal_object(Template,X)).
5268
5269 unify_after_wf([],_).
5270 unify_after_wf([A/B|T],WF) :- kernel_objects:equal_object_wf(A,B,unify_after,WF),
5271 unify_after_wf(T,WF).
5272
5273
5274
5275 get_template(A,R,ToUnifyAfter) :-
5276 (var(A) -> ToUnifyAfter=[A/R]
5277 ; get_template2(A,R,ToUnifyAfter) -> true
5278 ; add_internal_error('Could_not_get_template: ',get_template(A,R,_))).
5279
5280 get_template2((A,B),(TA,TB),ToUnifyAfter) :- get_template(A,TA,ToUnifyAfter1), get_template(B,TB,ToUnifyAfter2),
5281 append(ToUnifyAfter1,ToUnifyAfter2,ToUnifyAfter). % TO DO: use DifferenceLists / DCG
5282 get_template2(int(X),int(X),[]).
5283 get_template2(fd(A,B),fd(A,B),[]).
5284 get_template2([],[],[]).
5285 get_template2(pred_false /* bool_false */,pred_false /* bool_false */,[]).
5286 get_template2(pred_true /* bool_true */,pred_true /* bool_true */,[]).
5287 get_template2([H|T],R,ToUnifyAfter) :-
5288 (ground_value(H),ground_value(T)
5289 -> convert_to_avl_inside_set([H|T],R),ToUnifyAfter=[]
5290 ; ToUnifyAfter=[[H|T]/R]).
5291 % ; R=avl_set(A), ToUnifyAfter=[[H|T]/avl_set(A)]).
5292 get_template2(closure(P,T,B),R,[]) :- ground_value(closure(P,T,B)),
5293 expand_closure_to_avl_wf(P,T,B,R,no_wf_available),!.
5294 get_template2(closure(P,T,B),AVL_OR_EMPTY_OR_GS,[closure(P,T,B)/AVL_OR_EMPTY_OR_GS]). % closure could be empty or an infinite global set ?
5295 %get_template2(closure_x(_,_,_),_AVL_OR_EMPTY).
5296 get_template2(avl_set(A),avl_set(NA),[]) :- convert_to_avl_inside_set(avl_set(A),avl_set(NA)). % do we need to normalise here ??
5297 get_template2(string(X),string(X),[]).
5298 get_template2(term(X),term(X),[]).
5299 get_template2(freetype(X),R,[]) :- convert_to_avl_inside_set(freetype(X),R).
5300 get_template2(rec(Fields),rec(TFields),ToUnifyAfter) :- get_fields_template(Fields,TFields,ToUnifyAfter).
5301 get_template2(freeval(ID,Case,Value),freeval(ID,Case,TValue),ToUnifyAfter) :- get_template(Value,TValue,ToUnifyAfter).
5302 get_template2(global_set(GS),R,[]) :- convert_to_avl_inside_set(global_set(GS),R).
5303
5304
5305 get_fields_template(A,R,[rec(A)/rec(R)]) :- var(A),!.
5306 get_fields_template([],[],ToUnifyAfter) :- !, ToUnifyAfter=[].
5307 get_fields_template([field(Name,Val)|T],[field(Name,TVal)|TT],ToUnifyAfter) :- nonvar(Name),!,
5308 get_template(Val,TVal,ToUnifyAfter1),
5309 get_fields_template(T,TT,ToUnifyAfter2), append(ToUnifyAfter1,ToUnifyAfter2,ToUnifyAfter).
5310 get_fields_template(A,R,[rec(A)/rec(R)]).
5311
5312
5313 % succeed if we can decide membership of an avl_set on the spot
5314 quick_test_avl_membership(AVL,X,Res) :-
5315 element_can_be_added_or_removed_to_avl(X),
5316 convert_to_avl_inside_set(X,AX),
5317 (avl_fetch(AX,AVL) -> Res=pred_true ; Res=pred_false).
5318
5319 % ---------------------
5320
5321 % a dispatch predicate
5322 my_avl_member(Key,AVL) :-
5323 (preferences:preference(randomise_enumeration_order,true)
5324 ? -> random_avl_member(Key,AVL) ; avl_member_opt(Key,AVL)).
5325 :- use_module(library(random),[random/3]).
5326 ?random_avl_member(Key,AVL) :- avl_height(AVL,Height), H1 is Height+1, random_avl_member(Key,H1,AVL).
5327 % TO DO: make more intelligent; this is not really a very uniform way of randomly enumerating an AVL set (e.g., Key never occurs between L and R)
5328 random_avl_member(Key, H, node(K,_,_,L,R)) :-
5329 random(1,H,1), !, H1 is H-1,
5330 ? (Key=K ; random_avl_member(Key,H1,L) ; random_avl_member(Key,H1,R)).
5331 random_avl_member(Key, H, node(K,_,_,L,R)) :- random(1,3,1), !, H1 is H-1,
5332 ? (random_avl_member(Key,H1,L) ; random_avl_member(Key,H1,R) ; Key=K).
5333 random_avl_member(Key, H, node(K,_,_,L,R)) :- H1 is H-1,
5334 ? (random_avl_member(Key,H1,R) ; random_avl_member(Key,H1,L) ; Key=K).
5335
5336 % a variation of avl_member from library(avl) which tries to avoid leaving choice points behind
5337 avl_member_opt(Key, node(K,_,_,L,R)) :-
5338 ? ( avl_member_opt(Key, L)
5339 ; R=empty -> Key = K % avoid trailing choice_point
5340 ? ; (Key=K ; avl_member_opt(Key, R))
5341 ).
5342
5343 % ---------------------
5344
5345 :- use_module(kernel_objects,[check_element_of_wf/3,not_element_of_wf/3]).
5346 :- use_module(memoization,[element_of_memoization_closure/6]).
5347 element_of_special_closure(interval(LOW,UP),X,WF,_,_,_) :- !,
5348 %hit_profiler:add_profile_hit(in_nat_range(X,LOW,UP,CondClosure)),
5349 ? kernel_objects:in_nat_range_wf(X,int(LOW),int(UP),WF).
5350 element_of_special_closure(member_closure(_ID,_Type,VAL),X,WF,_,_,_) :-
5351 (VAL=value(_) ; VAL = cartesian_product(b(value(A),_,_),b(value(B),_,_))),!,
5352 %hit_profiler:add_profile_hit(in_member_closure(X,Par,Typ,Body)),
5353 (VAL=value(Set) -> check_element_of_wf(X,Set,WF)
5354 ; X=(XA,XB),
5355 ? kernel_objects:check_element_of_wf(XA,A,WF),
5356 ? kernel_objects:check_element_of_wf(XB,B,WF)).
5357 element_of_special_closure(not_member_closure(_ID,_Type,value(Set)),X,WF,_,_,_) :- !,
5358 %hit_profiler:add_profile_hit(in_not_member_closure(X,Par,Typ,Set)),
5359 not_element_of_wf(X,Set,WF).
5360 % we used to have to add enumerator, as not_element_of does not instantiate; e.g. relevant when doing X :: GS - {y}
5361 % This is no longer required
5362 % see test 6 (../prob_examples/public_examples/B/FeatureChecks/NotMemberCheck.mch)
5363 element_of_special_closure(recursive_special_closure(RId),X,WF,Parameters,PT,CondClosure) :- !,
5364 add_recursive_parameter(Parameters,PT,X,RId,CondClosure,NewParameters,NewPT,Value,WF),
5365 element_of_normal_closure(Value,NewParameters,NewPT,CondClosure,WF).
5366 element_of_special_closure(memoization_closure(MemoID),X,WF,P,T,B) :- !,
5367 element_of_memoization_closure(MemoID,X,WF,P,T,B).
5368 element_of_special_closure(_,X,WF,Parameters,PT,CondClosure) :-
5369 % none of the special cases above apply after all
5370 ? element_of_normal_closure(X,Parameters,PT,CondClosure,WF).
5371
5372 :- block element_of_closure(?,-,?,?,?), element_of_closure(?,?,?,-,?).
5373 % element_of_closure(X,Para,T,Body,_WF): check if X is a member of closure(Para,T,Body)
5374 element_of_closure(X,Parameters,PT,CondClosure,WF) :-
5375 is_special_closure(Parameters,PT,CondClosure, SpecialClosure),!,
5376 %print_term_summary(element_of_special_closure(SpecialClosure,X,WF,Parameters,PT,CondClosure)), trace_in_debug_mode,
5377 ? element_of_special_closure(SpecialClosure,X,WF,Parameters,PT,CondClosure).
5378 element_of_closure(X,Parameters,PT,CondClosure,WF) :-
5379 %print_term_summary(element_of_normal_closure(X,Parameters,PT,CondClosure,WF)), trace_in_debug_mode,
5380 ? element_of_normal_closure(X,Parameters,PT,CondClosure,WF).
5381 element_of_normal_closure(X,Parameters,PT,CondClosure,WF) :-
5382 %hit_profiler:add_profile_hit(element_of_closure(X,Parameters,PT,CondClosure)),
5383 same_length(Parameters,ParValues),
5384 convert_list_into_pairs(ParValues,X),
5385 ? b_test_closure_wo_enum(Parameters,PT,CondClosure,ParValues,WF).
5386
5387 :- use_module(store,[set_up_localstate/4]).
5388 :- block b_test_closure_wo_enum(?,?,-,?,?).
5389 b_test_closure_wo_enum(Parameters,ParameterTypes,ClosurePred,ParValues,WF) :-
5390 % same_length(Parameters,ParValues), % not necessary
5391 set_up_localstate(Parameters,ParValues,[],LocalState),
5392 ? b_enumerate:b_type_values_in_store(Parameters,ParameterTypes,LocalState),
5393 copy_wf_start(WF,b_test_closure_wo_enum(Parameters),InnerWF),
5394 % avoid that WF0 actions triggered before we have had a chance to traverse the expression
5395 b_test_boolean_expression(ClosurePred,LocalState,[],InnerWF),
5396 ? copy_wf_finish(WF,InnerWF).
5397
5398 % recursive identifier to list of parameters with body as value
5399 % NewValue is the Value that should be checked for membership in the adapted closure; it has one argument more
5400 add_recursive_parameter(Parameters,Types,Value,TId,CondClosure,NewParameters,NewTypes,NewValue,WF) :-
5401 TId = b(identifier(RId),SetType,_), % unification replaces: get_texpr_id(TId,RId), get_texpr_type(TId,SetType),
5402 append(Parameters,[RId],NewParameters),
5403 append(Types,[SetType],NewTypes),
5404 %tools_printing:print_term_summary(recursion(Value)),nl,
5405 % TO DO check some variant decreases
5406 (kernel_waitflags:pending_abort_error(WF)
5407 -> NewValue = (_,_) % prevent further expansion of recursion, in case WD error in recursive function
5408 % TO DO: detect whether WD error occurs within recursive function,
5409 % indeed, the expansion of the recursive function could be unrelated to WD error and be important to detect inconsistency which prevents WD error: e.g., 1/x=res & recfun(x) \= 0
5410 ,debug_println(19,stopping_recursion_due_to_wd_error)
5411 ; NewValue = (Value,closure(Parameters,Types,CondClosure))
5412 ).
5413
5414
5415 % same as above, but without a waitflag
5416 element_of_custom_set(X,CS) :- element_of_custom_set2(CS,X).
5417
5418 element_of_custom_set2(global_set(GS),X) :- !,element_of_global_set(X,GS).
5419 element_of_custom_set2(freetype(ID),_) :- is_maximal_freetype(ID),!. % freetypes are always maximal at the moment
5420 element_of_custom_set2(avl_set(AVL),X) :- !,
5421 safe_avl_member(X,AVL).
5422 element_of_custom_set2(CS,X) :- init_wait_flags(WF,[element_of_custom_set2]),
5423 element_of_custom_set_wf2(CS,X,WF),
5424 ground_wait_flags(WF).
5425
5426 % ---------------
5427
5428 % function application for closure
5429
5430 % same as check_element_of_wf but does not wait on Y:
5431 % should also work for relation ??
5432
5433 check_element_of_function_closure(X,Y,Parameters,PT,CondClosure,WF) :-
5434 is_special_closure(Parameters,PT,CondClosure, SpecialClosure),!, % this covers recursive closures
5435 element_of_special_closure(SpecialClosure,(X,Y),WF,Parameters,PT,CondClosure).
5436 check_element_of_function_closure(X,Y, P,T,ClosureBody, WF) :-
5437 % affects test 1312, unless we add s:seq(0..9) before calling num
5438 % a special rule which tries and avoid enumerating solutions to arguments of function application
5439 % usually a function application will either be given all arguments or maybe be used in inverse
5440 ? is_converted_lambda_closure(P,T,ClosureBody), %is_converted_non_recursive_lambda_closure(P,T,ClosureBody),
5441 % TO DO: also make this work for recursive closures by adding recursive args (see e.g. test 1302)
5442 is_lambda_closure(P,T,ClosureBody, OtherIDs, OtherTypes, DomainPred, EXPR),
5443 (debug:debug_level_active_for(4) ->
5444 print('Apply Fun : '), translate:print_bexpr(DomainPred), print(' | '), translate:print_bexpr(EXPR),nl,
5445 get_texpr_info(ClosureBody,I), print(info(I,WF)),nl,
5446 print_term_summary((X,Y)),nl %,trace
5447 ; true),
5448 !,
5449 % alternative: annotate X,Y as inner variable ?
5450 get_texpr_info(ClosureBody,BInfo),
5451 b_interpreter:set_up_typed_localstate2(OtherIDs,OtherTypes,BInfo,ParValues,_TypedVals,[],LocalState,positive),
5452 convert_list_into_pairs(ParValues,SingleParValue),
5453 kernel_objects:equal_object_wf(X,SingleParValue,check_element_of_function_closure,WF),
5454 (is_truth(DomainPred) -> true
5455 ; init_wait_flags(InnerWF,[check_element_of_function_closure]),
5456 %copy_wf01e_wait_flags(WF,InnerWF), % we could delay copying WF0 until after test_boolean_expression of DomainPred ?
5457 b_test_boolean_expression(DomainPred,LocalState,[],InnerWF),
5458 get_wait_flag0(WF,WF0), get_wait_flag0(InnerWF,WF0), % was: ground_wait_flag0(InnerWF), but this can result in inner WF0 being set when outer is not yet set; see test 1948
5459 ground_value_check(X,GrX),
5460 (nonvar(GrX) -> copy_waitflag_store(InnerWF,WF) % block would trigger already
5461 ; ground_value_check(Y,GrY),
5462 (nonvar(GrY) -> copy_waitflag_store(InnerWF,WF) % block would trigger already
5463 ; get_last_wait_flag(check_element_of_function_closure(OtherIDs),WF,LastWF),
5464 block_copy_waitflag_store(InnerWF,WF,GrX,GrY,LastWF)
5465 )
5466 )
5467 ),
5468 b_interpreter:b_compute_expression(EXPR,LocalState,[],Y,WF).
5469 check_element_of_function_closure(X,Y, P,T,ClosureBody, WF) :-
5470 element_of_normal_closure((X,Y),P,T,ClosureBody,WF).
5471 % we could memoize on X here if /*@symbolic-memo */ pragma used and closure has special ID associated with it
5472
5473 :- block block_copy_waitflag_store(?,?,-,-,-).
5474 block_copy_waitflag_store(InnerWF,WF,_GrX,_GrY,_LWF) :-
5475 % copy waitflags from InnerWF store to WF
5476 copy_waitflag_store(InnerWF,WF).
5477
5478 /* -------------- */
5479 /* NOT_ELEMENT_OF */
5480 /* -------------- */
5481
5482 :- use_module(kernel_objects,[not_element_of_global_set/2]).
5483
5484 not_element_of_custom_set(X,CS) :- init_wait_flags(WF,[not_element_of_custom_set]),
5485 not_element_of_custom_set_wf(X,CS,WF),
5486 ground_wait_flags(WF).
5487 not_element_of_custom_set_wf(X,CS,WF) :-
5488 ? not_element_of_custom_set_wf2(CS,X,WF).
5489
5490 not_element_of_custom_set_wf2(global_set(GS),X,_WF) :- not_element_of_global_set(X,GS).
5491 not_element_of_custom_set_wf2(freetype(_),_,_) :- !,fail. % TO DO: what if we have List(1..3) ? can that occur ??
5492 not_element_of_custom_set_wf2(avl_set(node(Y,_,_,empty,empty)),X,WF) :- !,
5493 % X /: {Y} <=> X /= Y
5494 ? kernel_objects:not_equal_object_wf(X,Y,WF). % improve if X is ground
5495 not_element_of_custom_set_wf2(avl_set(AVL),X,_WF) :- !,
5496 ground_value_check(X,GrX),
5497 ? propagate_avl_not_element_information(X,GrX,AVL),
5498 not_element_of_avl_set_block(GrX,X,AVL).
5499 not_element_of_custom_set_wf2(closure(Parameters,PT,Cond),X,WF) :-
5500 ? closure_not_member(X,Parameters,PT,Cond,WF).
5501
5502 :- block not_element_of_avl_set_block(-,?,?).
5503 not_element_of_avl_set_block(_,X,AVL) :-
5504 convert_to_avl_inside_set(X,CX),
5505 \+ avl_fetch(CX,AVL). %% IMPROVE ??
5506
5507 propagate_avl_not_element_information(_,GrEl,_) :- nonvar(GrEl),!.
5508 propagate_avl_not_element_information(Element,_,AVL) :- preferences:preference(use_clpfd_solver,true),
5509 is_avl_simple_set(AVL,Type), % integer or global(GS) \+ground(Element) ,
5510 ((Type=integer -> avl_height_less_than_with_solver_strength(AVL,6) % 16-31 elements - was: avl_size<20
5511 ; true)
5512 -> !,
5513 ? propagate_avl_not_element_information3(Type,Element,AVL) % uses clpfd_not_inlist
5514 ; Type=integer, avl_height_less_than_with_solver_strength(AVL,15),
5515 avl_is_interval(AVL,Min,Max)
5516 -> !,
5517 kernel_objects:not_in_nat_range(Element,int(Min),int(Max)) % WF not used anyway in _wf version
5518 ).
5519 propagate_avl_not_element_information(_Element,_,AVL) :-
5520 quick_definitely_maximal_set_avl(AVL),
5521 !, % we require something not to be an element of the full set; impossible
5522 fail.
5523 % to do: check if all but one element is in set
5524 propagate_avl_not_element_information(_,_,_).
5525
5526 avl_height_less_than_with_solver_strength(AVL,Limit) :- preference(solver_strength,SS),
5527 RealLimit is Limit + SS/100,
5528 avl_height_less_than(AVL,RealLimit).
5529
5530 % try and compute a small finite cardinality for a ground value; fail if not possible
5531 try_get_finite_max_card_from_ground_value(pred_true,2).
5532 try_get_finite_max_card_from_ground_value(pred_false,2).
5533 try_get_finite_max_card_from_ground_value(fd(_,Type),Card) :-
5534 b_global_sets:b_fd_card(Type,Card), integer(Card).
5535 try_get_finite_max_card_from_ground_value((A,B),Card) :-
5536 try_get_finite_max_card_from_ground_value(A,CA),
5537 try_get_finite_max_card_from_ground_value(B,CB),
5538 Card is CA*CB,
5539 Card < 20000.
5540 try_get_finite_max_card_from_ground_value(rec(Fields),Card) :-
5541 try_get_finite_max_card_from_fields(Fields,Card).
5542 try_get_finite_max_card_from_ground_value(freeval(FreetypeId,_CaseId,_EArgs),Card) :-
5543 freetype_cardinality(FreetypeId,Card), number(Card), Card < 20000.
5544 try_get_finite_max_card_from_ground_value(avl_set(node(El,_True,_,_,_)),Card) :-
5545 try_get_finite_max_card_from_ground_value(El,CEl),
5546 CEl < 16,
5547 safe_pow2(CEl,Card).
5548 % int(_), term(floating(_)), string(_) are all infinite
5549
5550 try_get_finite_max_card_from_fields([],1).
5551 try_get_finite_max_card_from_fields([field(_,A)|TF],Card) :-
5552 try_get_finite_max_card_from_ground_value(A,CA),
5553 try_get_finite_max_card_from_fields(TF,CB),
5554 Card is CA*CB,
5555 Card < 20000.
5556
5557 :- use_module(b_global_sets,[get_global_type_value/3]).
5558 propagate_avl_not_element_information3(integer,int(El),AVL) :-
5559 avl_domain(AVL,R),project_avl_domain_on_fd(R,FDList),
5560 clpfd_interface:clpfd_not_inlist(El,FDList).
5561 propagate_avl_not_element_information3(global(GS),FD,AVL) :-
5562 get_global_type_value(FD,GS,El), % sets up the FD constraint if var; maybe we can detect inconsistency straightaway below
5563 avl_domain(AVL,R),project_avl_domain_on_fd(R,FDList), % maybe we can compute directly the complement ?
5564 ? clpfd_interface:clpfd_not_inlist(El,FDList).
5565
5566
5567 :- block closure_not_member(?,-,?,?,?).
5568 %, closure_not_member(-,?,?,?,?). /* El is unlikely to be instantiated by not_element_of test , but test 6 requires commenting out block declaration */
5569
5570 closure_not_member(X,Parameters,Types,Body,WF) :-
5571 is_special_closure(Parameters,Types,Body,SpecialClosure),!,
5572 ? not_element_of_special_closure(SpecialClosure,X,WF,Parameters,Types,Body).
5573 closure_not_member(El,Parameters,PT,Cond,WF) :-
5574 normal_closure_not_member(El,Parameters,PT,Cond,WF).
5575
5576 :- use_module(memoization,[not_element_of_memoization_closure/6]).
5577 not_element_of_special_closure(interval(LOW,UP),X,_WF,_Parameters,_Types,_Body) :-
5578 ? !,kernel_objects:not_in_nat_range(X,int(LOW),int(UP)).
5579 not_element_of_special_closure(member_closure(_ID,_Type,VAL),X,WF,_Parameters,_Types,_Body) :-
5580 ( VAL = value(_)
5581 ; VAL = cartesian_product(b(value(A),_,_),b(value(B),_,_))),!,
5582 %hit_profiler:add_profile_hit(member(X,Par,Typ,Body)),
5583 ( VAL=value(Set) -> kernel_objects:not_element_of_wf(X,Set,WF)
5584 ? ; kernel_objects:not_is_cartesian_pair(X,A,B,WF)).
5585 not_element_of_special_closure(not_member_closure(_ID,_Type,value(Set)),X,WF,_Parameters,_Types,_Body) :-
5586 !,kernel_objects:check_element_of_wf(X,Set,WF).
5587 not_element_of_special_closure(memoization_closure(MemoID),X,WF,P,T,B) :- !,
5588 not_element_of_memoization_closure(MemoID,X,WF,P,T,B).
5589 not_element_of_special_closure(recursive_special_closure(RId),X,WF,Parameters,Types,Body) :-
5590 !,
5591 add_recursive_parameter(Parameters,Types,X,RId,Body,NewParameters,NewPT,Value,WF),
5592 normal_closure_not_member(Value,NewParameters,NewPT,Body,WF).
5593
5594 not_element_of_special_closure(SC,_X,_WF,Parameters,Types,Body) :-
5595 SC \= interval(_,_),
5596 SC \= not_member_closure(_,_,_),
5597 is_definitely_maximal_closure(Parameters,Types,Body),
5598 !,
5599 fail.
5600 not_element_of_special_closure(_,X,WF,Parameters,Types,Body) :-
5601 % falling back to normal test
5602 ? normal_closure_not_member(X,Parameters,Types,Body,WF).
5603
5604 :- use_module(library(lists),[same_length/2]).
5605
5606 normal_closure_not_member(El,Parameters,PT,Cond,WF) :-
5607 %hit_profiler:add_profile_hit(closure_not_member(El,Parameters,PT,Cond,WF)),
5608 same_length(Parameters,ParValues),
5609 convert_list_into_pairs(ParValues,El),
5610 ? b_not_test_closure_wf(Parameters,PT,Cond,ParValues,WF).
5611
5612
5613
5614
5615 /* -------------------------- */
5616 /* VARIOUS CLOSURE PREDICATES */
5617 /* -------------------------- */
5618
5619
5620 :- use_module(tools,[convert_list_into_pairs/2]).
5621 :- use_module(b_interpreter,[b_test_boolean_expression/4, b_not_test_boolean_expression/4]).
5622 :- use_module(b_enumerate).
5623
5624 :- assert_pre(custom_explicit_sets:expand_closure_to_list(_,_,ClosureBody,_Result,_Done,_,_WF),
5625 (nonvar(ClosureBody),
5626 bsyntaxtree:check_if_typed_predicate(ClosureBody))).
5627 :- assert_post(custom_explicit_sets:expand_closure_to_list(_,_,_,Result,_Done,_,_WF),
5628 b_interpreter:value_type(Result)).
5629
5630 :- block expand_interval_closure_to_avl(-,?,?), expand_interval_closure_to_avl(?,-,?).
5631 expand_interval_closure_to_avl(Low,Up,Result) :-
5632 Delta is Up-Low,
5633 (Delta>9999 -> perfmessage(expanding_interval(Low,Up)) ; true),
5634 construct_interval_ord_list(Low,Up,OL),
5635 ord_list_to_avlset_direct(OL,ARes,expand_interval),
5636 equal_object(ARes,Result,expand_interval_closure_to_avl).
5637 construct_interval_ord_list(Low,Up,Res) :-
5638 (Low>Up -> Res = []
5639 ; Res = [int(Low)-true|T], L1 is Low+1, construct_interval_ord_list(L1,Up,T)
5640 ).
5641
5642 :- block expand_interval_closure_to_list(-,?,?,?), expand_interval_closure_to_list(?,-,?,?).
5643 expand_interval_closure_to_list(Low,Up,Result,Done) :-
5644 construct_interval_list(Low,Up,OL),
5645 equal_object(OL,Result,expand_interval_closure_to_list),
5646 Done=true.
5647 construct_interval_list(Low,Up,Res) :-
5648 (Low>Up -> Res = []
5649 ; Res = [int(Low)|T], L1 is Low+1, construct_interval_list(L1,Up,T)
5650 ).
5651
5652 expand_closure_to_list([X],[integer],Body,Result,Done,_,_) :-
5653 ? is_interval_closure_body(Body,X,Low,Up),!,
5654 expand_interval_closure_to_list(Low,Up,Result,Done).
5655 expand_closure_to_list(Par,Types,Body,Result,Done,Source,WF) :-
5656 expand_normal_closure(Par,Types,Body,CResult,CDone,expand_closure_to_list(Source),WF),
5657 expand_if_avl(CResult,Result,CDone,Done,Source),
5658 (WF==no_wf_available -> true ;
5659 lazy_check_elements(Result,CDone, Par,Types,Body,WF)).
5660
5661 % Note: does slow down test 1306
5662 % check that if result variable bound by the outside, before closure expanded, we check that the predicate holds for its elements
5663 :- block lazy_check_elements(-,-, ?,?,?,?).
5664 lazy_check_elements(Result,CDone, _Par,_Types,_Body,_WF) :- (var(Result) ; nonvar(CDone)),!.
5665 lazy_check_elements([H|T],CDone, Par,Types,Body,WF) :- !,
5666 ? element_of_closure(H,Par,Types,Body,WF),
5667 ? lazy_check_elements(T,CDone, Par,Types,Body,WF).
5668 lazy_check_elements(avl_set(A),_CDone, Par,Types,Body,WF) :- !,
5669 avl_max(A,X),
5670 element_of_closure(X,Par,Types,Body,WF).
5671 % TO DO: also check avl_min or even all elements ?
5672 lazy_check_elements(_,_,_,_,_,_).
5673
5674 %check_valid_avl(AVL,Origin) :-
5675 % (nonvar(AVL) -> true
5676 % ; add_internal_error('Var avl_set: ', check_valid_avl(AVL,Origin)),fail).
5677
5678 :- block expand_if_avl(?,?,-,?,?).
5679 expand_if_avl(avl_set(S),Result,_,Done,Source) :- !, % we could transmit a flag to expand_normal_closure so that transform_result_into_set does not expand to avl
5680 ? expand_custom_set_to_list2(avl_set(S),Result,Done,_,expand_if_avl(Source),no_wf_available).
5681 expand_if_avl(Res,Result,_,Done,Source) :- check_list(Res,expand_if_avl(Source)),
5682 equal_object(Res,Result), Done=true.
5683
5684 check_list(Res,_) :- nonvar(Res), is_list(Res),!.
5685 check_list(Res,Src) :- add_error(Src,'Could not expand to list: ',Res).
5686 is_list([]). is_list([_|_]).
5687
5688 expand_closure_to_avl_or_list([X],[integer],Body,Result,_CheckTimeouts,_WF) :-
5689 ? is_interval_closure_body(Body,X,Low,Up),!,
5690 expand_interval_closure_to_avl(Low,Up,Result).
5691 %expand_closure_to_avl_or_list(P,T,Body,Result,_WF) :- is_member_closure(P,T,Body,TS,Set),
5692 % print(expand_member_closure(P,T,Body,TS,Set)),nl,fail.
5693 expand_closure_to_avl_or_list(Par,Types,Body,Result,CheckTimeouts,WF) :-
5694 expand_normal_closure(Par,Types,Body,CResult,_Done,CheckTimeouts,WF),
5695 kernel_objects:equal_object(Result,CResult,expand_closure_to_avl_or_list). % may convert to AVL, should we wait for _Done?
5696
5697
5698 % use WF just for call stack messages; we should not delay creating result
5699 expand_closure_to_avl_wf([X],[integer],Body,Result,_WF) :-
5700 is_interval_closure_body(Body,X,Low,Up),!,
5701 expand_interval_closure_to_avl(Low,Up,Result). % we could pass WF
5702 expand_closure_to_avl_wf(Par,Types,Body,Result,WF) :-
5703 expand_normal_closure(Par,Types,Body,S,Done,check(expand_closure_to_avl),WF),
5704 (ground_value(S) % ground value is sufficient to proceed; we do not need to check Done
5705 -> convert_to_avl_inside_set(S,R),equal_object(R,Result,expand_closure_to_avl)
5706 ; print(cannot_convert_closure_value_to_avl(closure(Par,Types),done(Done))),nl,
5707 translate:print_bexpr(Body),nl,trace,
5708 fail).
5709
5710
5711 % possible values for CheckTimeouts: check, check_no_inf, no_check, ...
5712 % Note: we no longer check is_infinite_explicit_set(closure(Parameters,ParameterTypes,ClosureBody))
5713 % and no longer raise add_closure_warning(Source,Parameters,ParameterTypes,ClosureBody,'### WARNING: expanding infinite comprehension set: ')
5714 % and no longer use preference warn_when_expanding_infinite_closures
5715 % this is relevant for e.g., test 1291
5716 expand_normal_closure(Parameters,ParameterTypes,ClosureBody,Result,Done,CheckTimeouts,WF) :-
5717 expand_normal_closure_memo(CheckTimeouts,Parameters,ParameterTypes,ClosureBody,Result,Done,WF).
5718
5719 :- public add_closure_warning_wf/6.
5720 add_closure_warning_wf(Source,Parameters,_ParameterTypes,_ClosureBody,_MSG,_WF) :-
5721 preference(provide_trace_information,false),preference(strict_raise_warnings,false),!,
5722 format('### TIME-OUT raised during closure expansion (~w,~w).~n### set TRACE_INFO preference to TRUE for more details.~n',[Parameters,Source]).
5723 add_closure_warning_wf(Source,Parameters,ParameterTypes,ClosureBody,MSG,WF) :-
5724 (debug_mode(on) -> Limit = 2500, AvlLim=10 ; Limit = 500, AvlLim=5),
5725 preferences:temporary_set_preference(expand_avl_upto,AvlLim,CHNG),
5726 call_cleanup(translate:translate_bvalue_with_limit(closure(Parameters,ParameterTypes,ClosureBody),Limit,CT),
5727 preferences:reset_temporary_preference(expand_avl_upto,CHNG)),
5728 bsyntaxtree:get_texpr_info(ClosureBody,Infos),
5729 add_warning_wf(Source,MSG,CT,Infos,WF), debug_print(19,'! infos: '), debug_println(Infos). %,trace.
5730
5731
5732 :- use_module(memoization,[is_memoization_closure/4,get_complete_memoization_expansion/6]).
5733
5734 % a version of closure expansion which memoizes its results; stored_expansion needs to be cleared when new machine loaded
5735 expand_normal_closure_memo(CHECK,Parameters,ParameterTypes,ClosureBody,FullResult,Done,WF) :-
5736 ? is_memoization_closure(Parameters,ParameterTypes,ClosureBody,MemoID),
5737 !, Span=ClosureBody,
5738 % MemoID can be a variable
5739 (var(MemoID) -> perfmessage(CHECK,'Getting full value of a memoized function',ClosureBody) ; true),
5740 get_complete_memoization_expansion(MemoID,FullResult,Done,Span,expand_normal_closure_memo(CHECK),WF).
5741 expand_normal_closure_memo(CHECK,Parameters,ParameterTypes,ClosureBody,FullResult,Done,WF) :-
5742 preferences:preference(use_closure_expansion_memoization,false),!,
5743 expand_normal_closure2(CHECK,Parameters,ParameterTypes,ClosureBody,FullResult,Done,WF).
5744 expand_normal_closure_memo(CHECK,Parameters,ParameterTypes,ClosureBody,FullResult,Done,WF) :-
5745 % maybe we should only memo when ClosureWaitVars are ground ?
5746 MemoLookupTerm = closure(Parameters,ParameterTypes,ClosureBody),
5747 compute_memo_hash(MemoLookupTerm,Hash),
5748 % idea: maybe store expansion only on second hit ?
5749 (get_stored_memo_expansion(Hash,MemoLookupTerm,StoredResult)
5750 -> %print_term_summary(reusing_expansion(Hash,Parameters,ParameterTypes,ClosureBody,StoredResult)),nl,
5751 UPV=StoredResult, %state_packing:unpack_value(StoredResult,UPV),
5752 FullResult = UPV, Done=true
5753 ; %statistics(runtime,[T1,_]), %%
5754 expand_normal_closure2(CHECK,Parameters,ParameterTypes,ClosureBody,FullResult,Done,WF),
5755 %statistics(runtime,[T2,_]), Time is T2-T1, store_memo_computation_time(Hash,Time),
5756 (Done==true/* ,T2-T1>0*/
5757 -> PackedValue=FullResult, %state_packing:pack_value(FullResult,PackedValue),
5758 store_memo_expansion(Hash,MemoLookupTerm,PackedValue)
5759 ; true)
5760 ).
5761
5762
5763 expand_normal_closure2(_CHECK,Parameters,ParameterTypes,ClosureBody,FullResult,Done,WF) :-
5764 % TO DO: add more symbolic member closures who have expression computation code
5765 is_closure1_value_closure(Parameters,ParameterTypes,ClosureBody,VAL),!,
5766 bsets_clp:relational_trans_closure_wf(VAL,FullResult,WF),
5767 ground_value_check(FullResult,FRGr),
5768 when(nonvar(FRGr),Done=true).
5769 expand_normal_closure2(CHECK,Parameters,ParameterTypes,ClosureBody,FullResult,Done,WF) :-
5770 % special treatment for lambda closures: Advantage: we don't have to wait for variables in EXPR body of closure
5771 % Disadvantage: EXPR only gets evaluated after a solution has been found for args: can mean repeated computations !
5772 % (cf pas_as_env_inv_cv_sui, negated version of !(cv_i).(cv_i : t_cv_pas => closure(%cv_o2.((...|>> {cv_i} : t_cv_pas <-> t_cv_pas) ASSERTION
5773 % Advantage: it can solve constraints such as f = %x.(x:1..10|x+y) & f(5)=1005 (finding y without enumeration); see test 1168
5774 \+ preferences:preference(use_smt_mode,false),
5775 is_lambda_closure(Parameters,ParameterTypes,ClosureBody, OtherIDs,OtherTypes, DomainPred, EXPR),
5776 \+ ground_bexpr(EXPR), % if EXPR is ground, there is nothing to be gained by special treatment here
5777 WF \= no_wf_available, % otherwise we may have to enumerate EXPR result leading to choice points, e.g. in phase 0
5778 !,
5779 bexpr_variables(DomainPred,ClosureWaitVars),
5780 (CHECK=no_check -> TIMEOUTCODE = true ;
5781 TIMEOUTCODE = add_closure_warning_wf(CHECK,Parameters,ParameterTypes,ClosureBody,
5782 'TIME-OUT occurred while ProB was expanding: ',WF)),
5783 (CHECK=check_no_inf -> VIRTUALTIMEOUTCODE=true ; VIRTUALTIMEOUTCODE=TIMEOUTCODE),
5784 delay_setof_check_wf( ParTuple,
5785 (custom_explicit_sets:b_test_closure(OtherIDs,OtherTypes,DomainPred,OtherValues,all_solutions,WF),
5786 convert_list_into_pairs(OtherValues,ParTuple)
5787 % TO DO: compile EXPR when we start expanding the closure: to avoid repeated re-computation of expressions for every instance
5788 ),
5789 Result, ClosureWaitVars, __Done,
5790 TIMEOUTCODE,VIRTUALTIMEOUTCODE,WF,DomainPred),
5791 (WF = no_wf_available
5792 -> init_wait_flags(WF1,[expansion_context(lambda_function_result,Parameters)])
5793 ; WF1=WF
5794 ),
5795 evaluate_result_expr(Result,EXPR,OtherIDs,EvResult,EvDone,WF1),
5796 when(nonvar(EvDone),(
5797 (WF = no_wf_available -> ground_wait_flags(WF1) ; true),
5798 kernel_objects:equal_object_wf(EvResult,FullResult,expand_normal_closure2,WF),
5799 Done=true)).
5800 expand_normal_closure2(no_check,Parameters,ParameterTypes,ClosureBody,Result,Done,WF) :- !,
5801 expand_normal_closure_direct(Parameters,ParameterTypes,ClosureBody,Result,Done,WF).
5802 expand_normal_closure2(CHECK,Parameters,ParameterTypes,ClosureBody,Result,Done,WF) :-
5803 bexpr_variables(ClosureBody,ClosureWaitVars),
5804 TIMEOUTCODE = add_closure_warning_wf(CHECK,Parameters,ParameterTypes,ClosureBody,
5805 'TIME-OUT occurred while ProB was expanding: ',WF),
5806 (CHECK=check_no_inf -> VIRTUALTIMEOUTCODE=true ; VIRTUALTIMEOUTCODE=TIMEOUTCODE),
5807 % Note: delay_setof_check_wf will throw enumeration warning for virtual timeouts, after VIRTUALTIMEOUTCODE
5808 delay_setof_check_wf( ParTuple,
5809 custom_explicit_sets:test_closure_and_convert(Parameters,ParameterTypes,ClosureBody, ParTuple,WF),
5810 Result, ClosureWaitVars, Done, TIMEOUTCODE, VIRTUALTIMEOUTCODE,WF,ClosureBody).
5811
5812 expand_normal_closure_direct(Parameters,ParameterTypes,ClosureBody,Result,Done,WF) :-
5813 bexpr_variables(ClosureBody,ClosureWaitVars),
5814 Span = ClosureBody,
5815 delay_setof_wf( ParTuple,
5816 % TO DO: refresh waitflag in outer WF store to let pending code run to completion and avoid spurious WD errors ?
5817 custom_explicit_sets:test_closure_and_convert(Parameters,ParameterTypes,ClosureBody, ParTuple,WF),
5818 Result, ClosureWaitVars, Done,WF, Span).
5819
5820
5821
5822 :- block evaluate_result_expr(-,?,?,?,?,?).
5823 evaluate_result_expr(avl_set(AVL),EXPR,OtherIDs,Res,Done,WF) :-
5824 avl_domain(AVL,R),
5825 evaluate_result_expr(R,EXPR,OtherIDs,Res,Done,WF).
5826 evaluate_result_expr([],_EXPR,_OtherIDs,[],Done,_WF) :-
5827 %ground_wait_flags(WF),
5828 Done=true.
5829 evaluate_result_expr([ParTuple|T],EXPR,OtherIDs,[FullTuple|ET],Done,WF) :-
5830 % same_length(OtherIDs,ParValues), % not necessary
5831 set_up_localstate(OtherIDs,ParValues,[],LocalState),
5832 convert_list_into_pairs(ParValues,ParTuple), % bind values in ParTuple to LocalState
5833 b_interpreter:b_compute_expression(EXPR,LocalState,[],EXPRVALUE,WF),
5834 append(ParValues,[EXPRVALUE],FullValues),
5835 convert_list_into_pairs(FullValues,FullTuple),
5836 evaluate_result_expr(T,EXPR,OtherIDs,ET,Done,WF).
5837
5838 :- use_module(bsyntaxtree,[split_names_and_types/3]).
5839 :- use_module(probsrc(bsyntaxtree), [def_get_texpr_id/2]).
5840 %:- use_module(library(lists),[prefix_length/3, suffix_length/3]).
5841 % test a closure and convert into pairs; assume we want all solutions
5842 test_closure_and_convert(Parameters,ParameterTypes,ClosureBody, ParTuple, WF) :-
5843 is_recursive_closure(Parameters,ParameterTypes,ClosureBody),
5844 get_recursive_identifier_of_closure_body(ClosureBody,TRID),!,
5845 def_get_texpr_id(TRID,RID), get_texpr_type(TRID,RType),
5846 %print(test_recursion(RID)),nl, translate:nested_print_bexpr(ClosureBody),nl,
5847 RecVal = closure(Parameters,ParameterTypes,ClosureBody), % Recursive Value added to parameters
5848 same_length(Parameters,ParValues),
5849 reset_closure_solution_counter(Parameters),
5850 b_test_closure([RID|Parameters],[RType|ParameterTypes],ClosureBody,[RecVal|ParValues],all_solutions,WF),
5851 convert_sol_list_into_pairs(ParValues,Parameters,ParTuple). % convert tuple without recursive value to ParTuple
5852 test_closure_and_convert(Parameters,ParameterTypes,b(exists(EParAndTypes,ClosureBody),pred,OuterInfo), ParTuple, WF) :-
5853 % Motivation: enumerating Parameters can be quite inefficient
5854 % if for example we have something like {x|#y.(y:SmallSet & x=f(y))}
5855 % Problem: the existential quantifier will be delayed until the Parameters are instantiated !
5856 % relevant test: 1162
5857 % Note: this is duplicating to some extent the code in b_test_exists_wo_expansion
5858 % However, here we can also apply lambda_closure optimisation in b_test_closure below, this is
5859 % relevant for private_examples/2023/.../rule_FICHIER_MRGATKSAATPAR_RVF219_MRGA_DE.mch
5860 ? exists_should_be_lifted(Parameters,ParameterTypes,OuterInfo,ClosureBody),
5861 split_names_and_types(EParAndTypes,EPar,ETypes),
5862 !,
5863 % print(' Lifting existential quantifier (i.e., enumerating paras with closure paras): '), print(EPar),nl,
5864 % print(outer_paras(Parameters)),nl,
5865 % append Parameters at end; in case we have a lambda function
5866 append(EPar,Parameters,FullPar), length(Parameters,NrParas),
5867 append(ETypes,ParameterTypes,FullTypes),
5868 length(EPar,NrExistsParas),
5869 length(IrrelevantParas,NrExistsParas), length(Suffix,NrParas),
5870 append(IrrelevantParas,Suffix,FullParList),
5871 copy_identifier_infos(OuterInfo,ClosureBody,ClosureBody2),
5872 reset_closure_solution_counter(Parameters),
5873 % bsyntaxtree:check_used_ids_in_ast(ClosureBody2),
5874 ? b_test_closure(FullPar,FullTypes,ClosureBody2, FullParList,all_solutions,WF),
5875 convert_sol_list_into_pairs(Suffix,Parameters,ParTuple).
5876 test_closure_and_convert(Parameters,ParameterTypes,ClosureBody, ParTuple, WF) :-
5877 reset_closure_solution_counter(Parameters),
5878 % print(test),nl, translate:nested_print_bexpr(ClosureBody),nl,
5879 length(Parameters,Len), length(ParValues,Len),
5880 %(annotate_exists(Parameters,ParameterTypes,ClosureBody,Body2) -> true ; Body2=ClosureBody),
5881 ? b_test_closure(Parameters,ParameterTypes,ClosureBody,ParValues,all_solutions,WF),
5882 convert_sol_list_into_pairs(ParValues,Parameters,ParTuple). % ,print(solution(ParTuple)),nl,nl.
5883
5884 % Lifting existential quantifier was previously done here, but was duplicating code in b_test_exists_wo_expansion
5885 % we now simply generate the allow_to_lift_exists annotation here and let b_test_exists_wo_expansion do its job
5886 %annotate_exists(Parameters,ParameterTypes,
5887 % b(exists(EParAndTypes,ClosureBody),pred,OuterInfo),
5888 % b(exists(EParAndTypes,ClosureBody),pred,[allow_to_lift_exists|OuterInfo])) :-
5889 % exists_should_be_lifted(Parameters,ParameterTypes,OuterInfo,ClosureBody).
5890
5891 % check if a top-level exists with body ExistsClosureBody should be lifted
5892 % within a closure with paras Parameters of type ParameterTypes:
5893 exists_should_be_lifted(Parameters,ParameterTypes,OuterInfo,ExistsClosureBody) :-
5894 (Parameters == ['_was_lambda_result_'] % here we are quite sure that we gain by this optimisation
5895 ? ; member(allow_to_lift_exists,OuterInfo) % parameters were originally from a set comprehension,
5896 % see test 306: in this case existential quantifier is lifted in b_interpreter anyway;
5897 % Note we counter the rewrite ran({x1,...xn|P}) ---> {xn| #(x1,...).(P)} and similarly for dom({...})
5898 ; ExistsClosureBody = b(member(_,_),_,_) % we have a simple projection closure
5899 % TO DO: maybe support other ones as well
5900 ? ; basic_type_list_cardinality(ParameterTypes,Card),
5901 (Card=inf -> true ; Card>10000)
5902 % if here are only a few parameter values: do not lift existential quantified variables
5903 ).
5904
5905 % we need to copy important infos about the outer Parameters to ClosureBody
5906 copy_identifier_infos(Info,b(InnerPred,T,II),b(InnerPred,T,II2)) :-
5907 findall(I,identifier_info(I,Info),ToCopy),
5908 append(ToCopy,II,II2).
5909 identifier_info(I,Info) :- I=prob_annotation('DO_NOT_ENUMERATE'(ID)),
5910 ? member(I,Info), ID \= '$$NONE$$'.
5911
5912 convert_sol_list_into_pairs(ParaValues,Parameters,ParTuple) :-
5913 convert_list_into_pairs(ParaValues,ParTuple),
5914 update_closure_solution_counter(Parameters,ParTuple).
5915
5916 :- if(environ(prob_debug_flag,true)).
5917 :- dynamic closure_solution_counter/3.
5918 % debugging long expansions of comprehension_set / closures
5919 reset_closure_solution_counter(Parameters) :- retractall(closure_solution_counter(Parameters,_,_)).
5920
5921 update_closure_solution_counter(Parameters,ParTuple) :-
5922 retract(closure_solution_counter(Parameters,OldCount,OldTime)),!,
5923 statistics(walltime,[W2,_]), Delta is W2-OldTime,
5924 NewCount is OldCount+1,
5925 ((Delta > 5000 ; NewCount mod 1000 =:= 0)
5926 -> format('--> Solution ~w for expansion of closure ~w (delta ~w ms): ',[NewCount,Parameters,Delta]),
5927 translate:print_bvalue(ParTuple),nl,
5928 assert(closure_solution_counter(Parameters,NewCount,W2))
5929 ; assert(closure_solution_counter(Parameters,NewCount,OldTime))
5930 ).
5931 update_closure_solution_counter(Parameters,_ParTuple) :-
5932 statistics(walltime,[W2,_]),
5933 assert(closure_solution_counter(Parameters,1,W2)).
5934 :- else.
5935 reset_closure_solution_counter(_).
5936 update_closure_solution_counter(_,_).
5937 :- endif.
5938
5939
5940
5941 % compute cardinality of a list of basic types
5942 basic_type_list_cardinality([],1).
5943 basic_type_list_cardinality([BasicType|T],Res) :-
5944 basic_type_list_cardinality(T,TCard),
5945 (TCard=inf -> Res=inf
5946 ? ; kernel_objects:max_cardinality(BasicType,Card),
5947 safe_mul(Card,TCard,Res)
5948 ).
5949
5950 % for lambda closures we can set up a second waitflag for the expression and only ground it when body enumeration finished
5951 % idea is to avoid perturbation of constraint solving of main closure predicate by lambda expression, see test 1737
5952 % something like %(x,y).(x:1..200 & y:1..100 & y+x<259 & y*x>10|(y+x*x+y) mod 100) is faster
5953 % this is slower : %(x,y).(x:1..200 & y:1..100 |(y+x*x+y))
5954 % currently this slows down test 1336
5955 :- block b_test_closure(?,?,-,?,?,?).
5956 b_test_closure(Parameters,ParameterTypes,ClosureBody, FullParValues, NegationContext, OuterWF) :-
5957 (preference(data_validation_mode,true)
5958 -> true % avoids ineraction between domain and range expression enumeration; see
5959 % private_examples/ClearSy/2019_May/perf_3264/rule_186.mch or
5960 % computation of 631 ic___DMI_MRGATKSAAT___Parametre_Identifiant_indices_function in rule_FICHIER_MRGATKSAATPAR_RVF219_MRGA_DE.mch
5961 % however, as b_optimize below does *not* evaluate nested set comprehensions, there can be a slowdown:
5962 % the nested set comprehension gets re-evaluated for every soluiton of the lambda parameters !
5963 % this was the case of private_examples/ClearSy/2019_Nov/rule_Regle_31C_0005/rule.mch before using SORT
5964 ; \+ preferences:preference(use_smt_mode,false)), % TO DO: enable in normal mode when performance of 1336 fixed
5965 % print(test_closure(Parameters,FullParValues)),nl,
5966 is_lambda_closure(Parameters,ParameterTypes,ClosureBody, OtherIDs,OtherTypes, DomainPred, EXPR),
5967 % TO DO: detect not only equalities at end, but any equality which is irrelevant for the rest
5968 % nl,print(lambda_closure(OtherIDs)),nl, translate:print_bexpr(EXPR),nl,
5969 append(ParValues,[LambdaResult],FullParValues),
5970 !,
5971 get_texpr_info(ClosureBody,BInfo),
5972 ? b_interpreter:set_up_typed_localstate2(OtherIDs,OtherTypes,BInfo,ParValues,TypedVals,[],LocalState,NegationContext),
5973 simplify_span(ClosureBody,BSpan), % sometimes BInfo no longer contains a position info, but first_sub_expr does
5974 init_quantifier_wait_flag(OuterWF,comprehension_set(NegationContext),OtherIDs,ParValues,BSpan,WF),
5975 b_test_boolean_expression(DomainPred,LocalState,[],WF),
5976 %print('PRED: '),translate:print_bexpr(ClosureBody),nl,
5977 b_tighter_enumerate_values_in_ctxt(TypedVals,DomainPred,WF), % also does: project_away_useless_enumeration_values
5978 init_quantifier_wait_flag(OuterWF,comprehension_set(NegationContext),OtherIDs,ParValues,BSpan,WF2),
5979 b_compiler:b_optimize(EXPR,[],LocalState,[],CEXPR,WF), % already pre-compile lookup, without constraint processing; is not sufficient for test 1336
5980 ? ground_wait_flags(WF), % TODO: also call ground inner WF in context
5981 b_interpreter:b_compute_expression(CEXPR,LocalState,[],LambdaResult,WF2),
5982 ground_inner_wait_flags_in_context(NegationContext,WF2).
5983 b_test_closure(Parameters,ParameterTypes,ClosureBody,ParValues,NegationContext, OuterWF) :-
5984 % tools:print_bt_message(b_test_closure_testing_closure(Parameters,ParValues)), %%
5985 get_texpr_info(ClosureBody,BInfo),
5986 ? b_interpreter:set_up_typed_localstate2(Parameters,ParameterTypes,BInfo,
5987 ParValues,TypedVals,[],LocalState,NegationContext),
5988 % print_message(b_interpreter:b_test_boolean_expression(ClosureBody,LocalState,[],WF)),
5989 simplify_span(ClosureBody,BSpan), % sometimes BInfo no longer contains a position info, but first_sub_expr does
5990 init_quantifier_wait_flag(OuterWF,comprehension_set(NegationContext),Parameters,ParValues,BSpan,WF),
5991 %external_functions:observe_parameters(Parameters,LocalState), %%
5992 ? b_test_boolean_expression(ClosureBody,LocalState,[],WF),
5993 % tools:print_bt_message(tested_bool_expr), translate:print_bexpr(ClosureBody),nl,
5994 b_enumerate:b_tighter_enumerate_values_in_ctxt(TypedVals,ClosureBody,WF), % also detects useless enumeration ids
5995 ? ground_inner_wait_flags_in_context(NegationContext,WF).
5996
5997
5998
5999 :- block b_not_test_closure_wf(?,?,?,-,?).
6000 b_not_test_closure_wf(Parameters,ParameterTypes,Closure,ParValues,WF) :-
6001 % same_length(Parameters,ParValues), % not necessary
6002 set_up_localstate(Parameters,ParValues,[],LocalState),
6003 b_enumerate:b_type_values_in_store(Parameters,ParameterTypes,LocalState),
6004 ? b_not_test_boolean_expression(Closure,LocalState,[],WF),
6005 get_last_wait_flag(b_not_test_closure_wf(Parameters),WF,WF2),
6006 get_texpr_info(Closure,Infos),
6007 b_not_test_closure_enum(Parameters,ParameterTypes,Infos,LocalState,WF,WF2).
6008
6009 :- block b_not_test_closure_enum(-,?,?,?,?,?).
6010 b_not_test_closure_enum(Parameters,ParameterTypes,Infos,LocalState,WF,WF2) :-
6011 b_enumerate:b_extract_typedvalc(Parameters,ParameterTypes,Infos,LocalState,TypedVals),
6012 (var(WF2) -> ground_typedvals_check(TypedVals,GrVals) ; true),
6013 b_not_test_closure_enum_aux(GrVals,WF2,TypedVals,WF).
6014
6015 :- block b_not_test_closure_enum_aux(-,-,?,?).
6016 b_not_test_closure_enum_aux(_,_,TypedVals,WF) :-
6017 b_enumerate:b_tighter_enumerate_all_values(TypedVals,WF).
6018 % , print(finished_enum(Parameters)),nl.
6019
6020
6021 :- use_module(library(terms)).
6022 % check whether a VARIABLE occurs inside a closure
6023 closure_occurs_check(VARIABLE,_Par,_ParTypes,ClosureBody) :- expression_contains_setvar(ClosureBody,VARIABLE).
6024 % /* occurs check; x = closure1(x) ; for other closures this cannot happen ???!!! TO DO: Check */
6025 % custom_explicit_sets:is_closure1_value_closure(Par,ParTypes,ClosureBody,Val),
6026 % contains_var(VARIABLE,Val).
6027
6028 expression_contains_setvar(b(E,_,_),Variable) :- !,
6029 expression_contains_setvar_aux(E,Variable).
6030 expression_contains_setvar(E,V) :- add_internal_error('Illegal Expression: ', expression_contains_setvar(E,V)),
6031 contains_var(V,E).
6032
6033 expression_contains_setvar_aux(value(Val),Variable) :- !,value_contains_setvar(Val,Variable).
6034 % a few very common cases for performance; currently this predicate is often called for recursive functions
6035 expression_contains_setvar_aux(identifier(_),_) :- !,fail.
6036 expression_contains_setvar_aux(equal(A,B),Variable) :- !,
6037 (expression_contains_setvar(A,Variable) -> true ; expression_contains_setvar(B,Variable)).
6038 expression_contains_setvar_aux(conjunct(A,B),Variable) :- !,
6039 (expression_contains_setvar(A,Variable) -> true ; expression_contains_setvar(B,Variable)).
6040 expression_contains_setvar_aux(function(A,B),Variable) :- !,
6041 (expression_contains_setvar(A,Variable) -> true ; expression_contains_setvar(B,Variable)).
6042 expression_contains_setvar_aux(union(A,B),Variable) :- !,
6043 (expression_contains_setvar(A,Variable) -> true ; expression_contains_setvar(B,Variable)).
6044 expression_contains_setvar_aux(couple(A,B),Variable) :- !,
6045 (expression_contains_setvar(A,Variable) -> true ; expression_contains_setvar(B,Variable)).
6046 % the rest via safe_syntaxelement:
6047 expression_contains_setvar_aux(Expr,V) :-
6048 safe_syntaxelement_det(Expr,Subs,_Names,_,_),!,
6049 ? member(Sub,Subs), expression_contains_setvar(Sub,V),!.
6050 expression_contains_setvar_aux(E,V) :- add_internal_error('Illegal Expression: ', expression_contains_setvar_aux(E,V)),
6051 contains_var(V,E).
6052
6053 value_contains_setvar(Val,V) :- var(Val),!,Val==V.
6054 value_contains_setvar(avl_set(_),_V) :- !, fail. % assume avl_set always properly grounded; avoid looking inside
6055 value_contains_setvar(closure(_,_,Body),V) :- !,
6056 expression_contains_setvar(Body,V).
6057 value_contains_setvar(int(_),_) :- !,fail. % we check for set variables
6058 value_contains_setvar(global_set(_),_) :- !,fail. % we check for set variables
6059 value_contains_setvar(freetype(_),_) :- !,fail. % we check for set variables
6060 value_contains_setvar(freeval(_ID,_Case,Val),V) :- !, value_contains_setvar(Val,V).
6061 value_contains_setvar(string(_),_) :- !,fail. % we check for set variables
6062 value_contains_setvar(fd(_,_),_) :- !,fail. % we check for set variables
6063 value_contains_setvar((A,B),V) :- !, (value_contains_setvar(A,V) ; value_contains_setvar(B,V)).
6064 value_contains_setvar([A|B],V) :- !, (value_contains_setvar(A,V) ; value_contains_setvar(B,V)).
6065 value_contains_setvar(Val,V) :-
6066 contains_var(V,Val).
6067
6068 % ------------------