1 | % (c) 2025-2025 Lehrstuhl fuer Softwaretechnik und Programmiersprachen, | |
2 | % Heinrich Heine Universitaet Duesseldorf | |
3 | % This software is licenced under EPL 1.0 (http://www.eclipse.org/org/documents/epl-v10.html) | |
4 | ||
5 | :- module(bounds_analysis,[infer_bounds/3, infer_bounds/4]). | |
6 | :- use_module(probsrc(module_information),[module_info/2]). | |
7 | :- module_info(group,b2asp). | |
8 | :- module_info(description,'Perform bounds analysis on predicates for integer values.'). | |
9 | ||
10 | % we use CLP(FD) to implement the bounds propagation | |
11 | % bint(FDVAR) : the possible values of an integer | |
12 | % binterval(FDVAR1,FDVAR2,NonEmptyVar) : | |
13 | % all values of the set must lie within FDVAR1 and FDVAR2 | |
14 | % NonEmptyVar is a reification of NonEmptyVar #<=> FDVAR1 #=< FDVAR2 | |
15 | ||
16 | ||
17 | % bound_id_info(ID,Type,Bounds) : information provided to the outside users of the module | |
18 | % bound_internal_info(ID,Type,InternalBoundsRepresentation) : internal bounds info and representation | |
19 | ||
20 | :- use_module(probsrc(error_manager)). | |
21 | :- use_module(library(clpfd)). | |
22 | :- use_module(library(lists)). | |
23 | :- use_module(probsrc(bsyntaxtree),[definitely_not_empty_set/1, create_cartesian_product/3]). | |
24 | :- use_module(clingo_interface,[get_string_nr/2]). | |
25 | ||
26 | infer_bounds(Paras,Pred,Res) :- infer_bounds(Paras,Pred,[],Res). | |
27 | ||
28 | % infer bounds for quantified typed ids inside predicate Pred | |
29 | % valid options are labeling: which forces a CLP(FD) labeling of the bounds variables to check for consistency | |
30 | infer_bounds(Paras,Pred,Options,_Res) :- | |
31 | new_env(Env,Options), | |
32 | format(user_output,'Inferring bounds for: ~w~n',[Paras]), | |
33 | bb_put(infer_bounds_result,contradiction_found), | |
34 | (add_typed_ids(Paras,LocalBoundsInfo,Env,Env2), | |
35 | infer_pred_bounds(Pred,Env2) | |
36 | -> portray_env(Env2), | |
37 | (label_env(Env2,Options) | |
38 | -> bb_put(infer_bounds_result,LocalBoundsInfo) | |
39 | ; format(user_output,'No consistent labelled solution exists, predicate unsatisfiable~n',[]) | |
40 | ) | |
41 | ; format(user_output,'No consistent solution exists, predicate unsatisfiable~n',[]) | |
42 | ), | |
43 | fail. % to avoid pending co-routines / CLPFD variables we fail and recover the result with bb_get: | |
44 | infer_bounds(_,_,_,Res) :- bb_get(infer_bounds_result,Res). | |
45 | ||
46 | ||
47 | infer_pred_bounds(b(Pred,pred,_Infos),Env) :- !, | |
48 | % format(user_output,' pred --> ~w~n',[Pred]), | |
49 | infer_pred_bounds(Pred,Env). | |
50 | infer_pred_bounds(conjunct(A,B),Env) :- !, | |
51 | infer_pred_bounds(A,Env), | |
52 | infer_pred_bounds(B,Env). | |
53 | % TODO: disjunct: copy env, and then perform LUB | |
54 | infer_pred_bounds(truth,_) :- !. | |
55 | infer_pred_bounds(member(A,B),Env) :- | |
56 | infer_scalar_bounds(A,Env,SetBoundsA), | |
57 | infer_set_bounds(B,Env,SetBoundsB), !, | |
58 | mem_bounds(SetBoundsA,SetBoundsB). | |
59 | infer_pred_bounds(SubsetAB,Env) :- is_subset(SubsetAB,A,B,EmptyA,EmptyB), | |
60 | infer_set_bounds(A,Env,SetBoundsA), | |
61 | infer_set_bounds(B,Env,SetBoundsB), !, | |
62 | force_non_empty(EmptyA,SetBoundsA), | |
63 | force_non_empty(EmptyB,SetBoundsB), | |
64 | subset_bounds(SetBoundsA,SetBoundsB). | |
65 | infer_pred_bounds(equal(A,B),Env) :- is_scalar(A), | |
66 | infer_scalar_bounds(A,Env,ScBoundsA), | |
67 | infer_scalar_bounds(B,Env,ScBoundsB), !, | |
68 | eq_bounds(ScBoundsA,ScBoundsB). | |
69 | infer_pred_bounds(equal(A,B),Env) :- is_set(A), | |
70 | infer_set_bounds(A,Env,SetBoundsA), | |
71 | infer_set_bounds(B,Env,SetBoundsB), !, | |
72 | eq_bounds(SetBoundsA,SetBoundsB). | |
73 | infer_pred_bounds(BOP,Env) :- | |
74 | scalar_binary_pred(BOP,A,B,ClpfdOp), | |
75 | infer_scalar_bounds(A,Env,BoundsA), | |
76 | infer_scalar_bounds(B,Env,BoundsB), !, | |
77 | apply_binary_pred(ClpfdOp,BoundsA,BoundsB). | |
78 | infer_pred_bounds(Uncov,_Env) :- write(user_output,uncovered_pred(Uncov)), nl(user_output). | |
79 | ||
80 | is_scalar(A) :- get_texpr_type(A,integer). | |
81 | is_scalar(A) :- get_texpr_type(A,string). | |
82 | is_scalar(A) :- get_texpr_type(A,couple(_,_)). | |
83 | is_set(A) :- get_texpr_type(A,TA), is_set_type(TA,_). | |
84 | ||
85 | % check if we have a predicate that we should treat like subset | |
86 | is_subset(subset(A,B),A,B, can_be_empty,can_be_empty). | |
87 | is_subset(subset_strict(A,B),A,B,can_be_empty,non_empty). | |
88 | is_subset(member(A,PB),A,B,EmptyA,EmptyB) :- is_pow(PB,B,EmptyA,EmptyB). | |
89 | is_subset(member(A,RelFun),A,Cart,can_be_empty,can_be_empty) :- is_rel_fun(RelFun,Dom,Ran), | |
90 | create_cartesian_product(Dom,Ran,Cart). | |
91 | ||
92 | is_rel_fun(b(P,_,_),Dom,Ran) :- is_rel_fun(P,Dom,Ran). | |
93 | is_rel_fun(relations(A,B),A,B). | |
94 | is_rel_fun(total_relation(A,B),A,B). | |
95 | is_rel_fun(partial_function(A,B),A,B). | |
96 | is_rel_fun(partial_injection(A,B),A,B). | |
97 | is_rel_fun(partial_surjection(A,B),A,B). | |
98 | is_rel_fun(partial_bijection(A,B),A,B). | |
99 | is_rel_fun(total_function(A,B),A,B). | |
100 | is_rel_fun(total_injection(A,B),A,B). | |
101 | is_rel_fun(total_surjection(A,B),A,B). | |
102 | is_rel_fun(total_bijection(A,B),A,B). | |
103 | is_rel_fun(perm(B),A,B) :- iset(A,'NATURAL1'). | |
104 | is_rel_fun(seq(B),A,B) :- iset(A,'NATURAL1'). | |
105 | is_rel_fun(iseq(B),A,B) :- iset(A,'NATURAL1'). | |
106 | is_rel_fun(seq1(B),A,B) :- iset(A,'NATURAL1'). | |
107 | is_rel_fun(iseq1(B),A,B) :- iset(A,'NATURAL1'). | |
108 | ||
109 | iset(b(integer_set(SET),set(integer),[]),SET). | |
110 | ||
111 | is_pow(b(P,_,_),B,EmptyA,EmptyB) :- is_pow(P,B,EmptyA,EmptyB). | |
112 | is_pow(pow_subset(B),B, can_be_empty,can_be_empty). | |
113 | is_pow(pow1_subset(B),B,non_empty,non_empty). | |
114 | is_pow(fin_subset(B),B, can_be_empty,can_be_empty). | |
115 | is_pow(fin1_subset(B),B,non_empty,non_empty). | |
116 | ||
117 | force_non_empty(non_empty,binterval(_,_,NonEmpty)) :- !, NonEmpty=1. | |
118 | force_non_empty(_,_). | |
119 | ||
120 | scalar_binary_pred(less(A,B),A,B,'#<'). | |
121 | scalar_binary_pred(greater(A,B),A,B,'#>'). | |
122 | scalar_binary_pred(less_equal(A,B),A,B,'#=<'). | |
123 | scalar_binary_pred(greater_equal(A,B),A,B,'#>='). | |
124 | ||
125 | apply_binary_pred(Pred,bint(A),bint(B)) :- !, | |
126 | if(call(Pred,A,B),true, % TODO: catch overflows | |
127 | (format(user_output,'Inconsistent ~w ~w ~w constraint!~n',[A,Pred,B]),fail)). | |
128 | apply_binary_pred(ClpfdOp,BoundsA,BoundsB) :- | |
129 | add_internal_error('Illegal call: ',apply_binary_pred(ClpfdOp,BoundsA,BoundsB)), fail. | |
130 | ||
131 | ||
132 | mem_bounds(BoundsInfo,SetBounds) :- format(user_output,'member ~w ~w~n',[BoundsInfo,SetBounds]), | |
133 | if(mem_bounds2(BoundsInfo,SetBounds),true, | |
134 | (format(user_output,'Inconsistent ~w : ~w constraint!~n',[BoundsInfo,SetBounds]),fail)). | |
135 | mem_bounds2(bint(X),binterval(A,B,NonEmpty)) :- !, | |
136 | NonEmpty = 1, % set must be non-empty to contain an element | |
137 | (number(A),number(B) -> X in A..B ; X #>=A #/\ X #=< B). | |
138 | mem_bounds2(bcouple(X,Y),bcart(BoundsA,BoundsB,NonEmpty)) :- !, | |
139 | NonEmpty = 1, | |
140 | mem_bounds2(X,BoundsA), mem_bounds2(Y,BoundsB). | |
141 | mem_bounds2(A,B) :- format(user_output,'Uncovered mem_bounds ~w : ~w~n',[A,B]). | |
142 | ||
143 | :- block subset_list(-,?). | |
144 | subset_list([],_). | |
145 | subset_list([H|T],List2) :- member(H,List2), !, % will instantiate List2 if necessary | |
146 | subset_list(T,List2). | |
147 | ||
148 | eq_bounds(BoundsInfo,BoundsInfo2) :- format(user_output,'eq bounds: ~w = ~w~n',[BoundsInfo,BoundsInfo2]), | |
149 | if(eq_bounds2(BoundsInfo,BoundsInfo2),true, | |
150 | (format(user_output,'Inconsistent ~w = ~w constraint!~n',[BoundsInfo,BoundsInfo2]),fail)). | |
151 | eq_bounds2(binterval(A,B,NonEmpty),binterval(A2,B2,NonEmpty2)) :- !, | |
152 | NonEmpty=NonEmpty2, | |
153 | eq_interval(NonEmpty,A,B,A2,B2). | |
154 | eq_bounds2(bint(A),bint(B)) :- !, A=B. | |
155 | eq_bounds2(bcouple(A1,A2),bcouple(B1,B2)) :- !, eq_bounds2(A1,B1), eq_bounds2(A2,B2). | |
156 | eq_bounds2(bcart(A1,A2,NonEmptyA),bcart(B1,B2,NonEmptyB)) :- !, | |
157 | NonEmptyA=NonEmptyB, | |
158 | eq_cart(NonEmptyA,A1,B1,A2,B2). | |
159 | eq_bounds2(_,_). | |
160 | ||
161 | :- block eq_interval(-,?,?,?,?). | |
162 | eq_interval(0,_,_,_,_). % both empty | |
163 | eq_interval(1,A,B,X,Y) :- (A,B) = (X,Y). | |
164 | :- block eq_cart(-,?,?,?,?). | |
165 | %eq_cart(NE,A1,B1,A2,B2) :- write(user_output,eq_cart(NE,A1,B1,A2,B2)),nl(user_output),fail. | |
166 | eq_cart(0,_,_,_,_). % both cartesian products empty | |
167 | eq_cart(1,A1,B1,A2,B2) :- eq_bounds2(A1,B1), eq_bounds2(A2,B2). | |
168 | :- block eq_list(-,?,?). | |
169 | eq_list(0,_,_). % both cartesian products empty | |
170 | eq_list(1,A,B) :- subset_list(A,B), subset_list(B,A). | |
171 | ||
172 | subset_bounds(BoundsInfo,SetBounds) :- format(user_output,'subset_bounds ~w ~w~n',[BoundsInfo,SetBounds]), | |
173 | if(subset_bounds2(BoundsInfo,SetBounds),true, | |
174 | (format(user_output,'Inconsistent ~w <: ~w constraint!~n',[BoundsInfo,SetBounds]),fail)). | |
175 | subset_bounds2(binterval(X,Y,NonEmptyXY),binterval(A,B,NonEmptyAB)) :- !, | |
176 | NonEmptyXY #=< NonEmptyAB, % if RHS A..B is empty then so is LHS X..Y | |
177 | subset_interval(X,Y,NonEmptyXY,A,B,NonEmptyAB). | |
178 | subset_bounds2(bcart(X,Y,NonEmptyXY),bcart(A,B,NonEmptyAB)) :- !, | |
179 | NonEmptyXY #=< NonEmptyAB, % if RHS is empty then so is LHS | |
180 | subset_cart(X,Y,NonEmptyXY,A,B,NonEmptyAB). | |
181 | subset_bounds2(A,B) :- format(user_output,'Uncovered subset_bounds2 ~w : ~w~n',[A,B]). | |
182 | ||
183 | :- block subset_interval(?,?,-,?,?,?). | |
184 | subset_interval(_,_,0,_,_,_). % first set empty | |
185 | subset_interval(X,Y,1,A,B,1) :- (X#>= A #/\ Y #=< B). | |
186 | ||
187 | :- block subset_cart(?,?,-,?,?,?). | |
188 | subset_cart(_,_,0,_,_,_). % first set empty | |
189 | subset_cart(X,Y,1,A,B,1) :- subset_bounds2(X,A), subset_bounds2(Y,B). | |
190 | ||
191 | % -------- | |
192 | % SETS | |
193 | % -------- | |
194 | ||
195 | :- use_module(library(avl),[avl_min/2, avl_max/2, avl_member/2]). | |
196 | ||
197 | infer_set_bounds(b(E,Type,_Infos),Env,Bounds) :- !, | |
198 | (finite_type(Type) -> Bounds = Type % we could try and infer bounds for fd(_,_) global set values | |
199 | ; infer_set_bounds(E,Type,Env,Bounds)). | |
200 | infer_set_bounds(empty_set,set(integer),_,Bounds) :- !, Bounds = binterval(1,0,0). | |
201 | infer_set_bounds(integer_set('NATURAL'),set(integer),_,Bounds) :- !, init_binterval(0,_,Bounds,1). | |
202 | infer_set_bounds(integer_set('NATURAL1'),set(integer),_,Bounds) :- !, init_binterval(1,_,Bounds,1). | |
203 | infer_set_bounds(value(AVL),set(integer),_Env,Bounds) :- nonvar(AVL), AVL=avl_set(A), !, | |
204 | avl_min(A,int(Min)), %min_of_explicit_set_wf(Val,int(Min),no_wf_available), | |
205 | avl_max(A,int(Max)), Bounds = binterval(Min,Max,1). | |
206 | infer_set_bounds(value(AVL),set(string),_Env,Bounds) :- nonvar(AVL), AVL=avl_set(A), !, | |
207 | findall(Nr,(avl_member(string(S),A), get_string_nr(S,Nr)),Nrs), | |
208 | min_member(Min,Nrs), max_member(Max,Nrs), Bounds = binterval(Min,Max,1). | |
209 | infer_set_bounds(interval(A,B),_,Env,Bounds) :- !, | |
210 | infer_scalar_bounds(A,Env,bint(BA)), | |
211 | infer_scalar_bounds(B,Env,bint(BB)), | |
212 | init_binterval(BA,BB,Bounds,_). | |
213 | infer_set_bounds(intersection(A,B),_,Env,Bounds) :- !, | |
214 | infer_set_bounds(A,Env,BoundsA), | |
215 | infer_set_bounds(B,Env,BoundsB), % TODO: treat if one of the two calls fails | |
216 | intersect_bounds(BoundsA,BoundsB,Bounds). | |
217 | infer_set_bounds(union(A,B),_,Env,Bounds) :- !, | |
218 | infer_set_bounds(A,Env,BoundsA), | |
219 | infer_set_bounds(B,Env,BoundsB), | |
220 | union_bounds(BoundsA,BoundsB,Bounds). | |
221 | infer_set_bounds(set_extension(List),_,Env,Bounds) :- !, | |
222 | (List = [A], infer_scalar_bounds(A,Env,bint(BA)) | |
223 | -> Bounds = binterval(BA,BA,1) | |
224 | ; maplist(infer_set_ext_el(Env,Bounds),List) | |
225 | % TODO: use union code instead? we loose info that these are all the elements of the set | |
226 | ). | |
227 | infer_set_bounds(identifier(A),Type,Env,Bounds) :- !, | |
228 | lookup_id_bounds(A,Env,Type,Bounds). | |
229 | infer_set_bounds(cartesian_product(A,B),_,Env,Bounds) :- !, | |
230 | infer_set_bounds(A,Env,BoundsA), | |
231 | infer_set_bounds(B,Env,BoundsB), | |
232 | construct_bcart(A,B,BoundsA,BoundsB,Bounds). | |
233 | infer_set_bounds(domain(A),_,Env,DomBounds) :- !, | |
234 | infer_set_bounds(A,Env,bcart(DomBounds,_,NE)), | |
235 | imply_non_empty(DomBounds,NE). % if domain is non-empty, then full relation must be non-empty | |
236 | infer_set_bounds(range(A),_,Env,RanBounds) :- !, | |
237 | infer_set_bounds(A,Env,bcart(_,RanBounds,NE)), | |
238 | imply_non_empty(RanBounds,NE). % if range is non-empty, then full relation must be non-empty | |
239 | infer_set_bounds(image(Rel,_Set),Type,Env,RanBounds) :- !, | |
240 | infer_set_bounds(range(Rel),Type,Env,RanBounds). % we ignore Set | |
241 | infer_set_ext_el(Env,Bounds,A) :- | |
242 | (infer_scalar_bounds(A,Env,BoundsA) | |
243 | -> mem_bounds(BoundsA,Bounds) | |
244 | ; format(user_output,'Cannot infer bounds for set-ext element:~w~n',[A]) | |
245 | ). | |
246 | ||
247 | intersect_bounds(binterval(Low1,Up1,NE1),binterval(Low2,Up2,NE2),Bounds) :- | |
248 | init_binterval(Low,Up,Bounds,NE), | |
249 | NE #=< NE1, % if set1 empty intersection empty | |
250 | NE #=< NE2, % ditto for set 2 | |
251 | Low #= max(Low1,Low2), Up #= min(Up1,Up2). | |
252 | union_bounds(binterval(Low1,Up1,NE1),binterval(Low2,Up2,NE2),Bounds) :- | |
253 | init_binterval(Low,Up,Bounds,NE), | |
254 | NE1 #=< NE, % if union empty then set1 empty | |
255 | NE2 #=< NE, % ditto for set 2 | |
256 | NE #=< NE1+NE2, % if set1 & set2 empty then union is empty | |
257 | (NE1 #= 0) #=> (Low #= Low2 #/\ Up #= Up2), % if set1 empty we copy set2 to result | |
258 | (NE1 #= 1 #/\ NE2 #= 1) #=> (Low #= min(Low1,Low2) #/\ Up #= max(Up1,Up2)). | |
259 | ||
260 | init_binterval(Low,Up,binterval(Low,Up,NonEmpty),NonEmpty) :- | |
261 | NonEmpty #<=> (Low #=< Up). | |
262 | ||
263 | % construct a bcart/3 term; setting up non-empty flag | |
264 | construct_bcart(A,B,BA,BB,bcart(BA,BB,NonEmptyAB)) :- NonEmptyAB in 0..1, | |
265 | (get_non_empty_flag(A,BA,NonEmptyA), | |
266 | get_non_empty_flag(B,BB,NonEmptyB) | |
267 | -> NonEmptyAB #= NonEmptyA*NonEmptyB % or minimum of both; if one set empty (0) then cartesian product empty | |
268 | ; format(user_output,'Could not get non-empty-flags: ~w * ~w~n',[A,B]) | |
269 | ). | |
270 | ||
271 | get_non_empty_flag(Expr,Bounds,NonEmpty) :- | |
272 | (definitely_not_empty_set(Expr) -> NonEmpty=1 | |
273 | , format(user_output,'Def non-empty: ~w~n',[Expr]) | |
274 | ; get_non_empty_flag(Bounds,NonEmpty)). | |
275 | ||
276 | get_non_empty_flag(binterval(_,_,NE),R) :- !, R=NE. | |
277 | get_non_empty_flag(bcart(_,_,NE),R) :- !, R=NE. | |
278 | get_non_empty_flag(_,NE) :- | |
279 | NE in 0..1. % we don't know if set is empty or not; TODO: use definitely_not_empty !? | |
280 | ||
281 | % if bounds are non-empty force another non-empty flag to be 1 | |
282 | imply_non_empty(Bounds,NonEmptyFlag) :- get_non_empty_flag(Bounds,NE), | |
283 | imply_block(NE,NonEmptyFlag). | |
284 | :- block imply_block(-,?). | |
285 | imply_block(1,1). | |
286 | imply_block(0,_). | |
287 | ||
288 | % SCALARS | |
289 | % -------- | |
290 | ||
291 | :- use_module(probsrc(bsyntaxtree),[is_set_type/2]). | |
292 | :- use_module(probsrc(kernel_objects),[max_cardinality/2]). | |
293 | infer_scalar_bounds(b(E,T,_Infos),Env,Bounds) :- !, | |
294 | (finite_type(T) -> Bounds = T % we could try and infer bounds for fd(_,_) global set values | |
295 | ; infer_scalar_bounds2(E,T,Env,Bounds)). | |
296 | infer_scalar_bounds2(integer(A),_,_Env,Bounds) :- !, Bounds = bint(A). | |
297 | infer_scalar_bounds2(string(A),_,_Env,Bounds) :- !, get_string_nr(A,Nr),Bounds = bint(Nr). | |
298 | infer_scalar_bounds2(identifier(A),Type,Env,Bounds) :- !, lookup_id_bounds(A,Env,Type,Bounds). | |
299 | infer_scalar_bounds2(card(A),integer,_Env,bint(Card)) :- | |
300 | %infer_set_bounds(A,Env,binterval(Low,Up)), | |
301 | !, | |
302 | % TODO: if Low <= Up -> Card #= 1+Up-Low else = 0 | |
303 | (get_texpr_type(A,AType),is_set_type(AType,SType), | |
304 | max_cardinality(SType,MaxCard),number(MaxCard) | |
305 | -> Card in 0..MaxCard ; Card #>= 0). | |
306 | infer_scalar_bounds2(couple(A,B),couple(_TA,_TB),Env,bcouple(BA,BB)) :- !, | |
307 | infer_scalar_bounds(A,Env,BA), % TODO: treat if one of them fails / is finite | |
308 | infer_scalar_bounds(B,Env,BB). | |
309 | infer_scalar_bounds2(function(Rel,_Arg),Type,Env,Bounds) :- !, | |
310 | infer_set_bounds(range(Rel),set(Type),Env,RanBounds), % we ignore Arg | |
311 | %convert_set_bounds_to_scalar(RanBounds,Bounds). % we could use this if TRY_FIND_ABORT is TRUE | |
312 | if(mem_bounds(Bounds,RanBounds), | |
313 | true, | |
314 | create_dummy_value(RanBounds,Bounds)). % empty range probably meaning WD error; just return a concrete dummy value | |
315 | infer_scalar_bounds2(BOP,_,Env,Bounds) :- | |
316 | scalar_binary_op(BOP,A,B,ClpfdOp), !, | |
317 | infer_scalar_bounds(A,Env,BoundsA), | |
318 | infer_scalar_bounds(B,Env,BoundsB), | |
319 | apply_binary_op(ClpfdOp,Bounds,BoundsA,BoundsB). | |
320 | infer_scalar_bounds2(BOP,_,_,_) :- write(user_output,uncov_scalar(BOP)),nl(user_output),fail. | |
321 | ||
322 | %convert_set_bounds_to_scalar(binterval(A,B,NonEmpty),bint(X)) :- | |
323 | % (NonEmpty#=1) #=> (X #>= A #/\ X #=< B). | |
324 | ||
325 | % create a dummy element for given bounds | |
326 | create_dummy_value(binterval(A,_,_),bint(DA)) :- !, (var(A),fd_min(A,Min),number(Min) -> DA=Min ; DA=0). | |
327 | create_dummy_value(bcart(A,B,_),bcouple(DA,DB)) :- !, create_dummy_value(A,DA), create_dummy_value(B,DB). | |
328 | create_dummy_value(T,T) :- finite_type(T). | |
329 | ||
330 | scalar_binary_op(add(A,B),A,B,'+'). | |
331 | scalar_binary_op(multiplication(A,B),A,B,'*'). | |
332 | scalar_binary_op(minus(A,B),A,B,'-'). | |
333 | apply_binary_op(Op,bint(Res),bint(A),bint(B)) :- !, RHS =.. [Op,A,B], | |
334 | if(call('#=',Res,RHS),true, % TODO: catch overflows | |
335 | (format(user_output,'Inconsistent ~w #= (~w ~w ~w) constraint!',[Res, A,Op,B]),fail)). | |
336 | apply_binary_op(ClpfdOp,Bounds,BoundsA,BoundsB) :- | |
337 | add_internal_error('Illegal call: ',apply_binary_op(ClpfdOp,Bounds,BoundsA,BoundsB)), fail. | |
338 | ||
339 | :- use_module(probsrc(bsyntaxtree), [def_get_texpr_id/2, get_texpr_id/2, get_texpr_type/2]). | |
340 | ||
341 | %relevant_identifier(TID,Env,ID,BoundsInfo) :- get_texpr_id(TID,ID), | |
342 | % lookup_id_bounds(ID,Env,_,BoundsInfo). | |
343 | ||
344 | ||
345 | % environment utilities: | |
346 | ||
347 | new_env(env(E,_),Opts) :- | |
348 | (member(outer_bounds(OB),Opts) | |
349 | -> maplist(add_outer_bound_info,OB,E) | |
350 | % outer bounds are already ground and need no labeling; they provide bounds for outer variables | |
351 | ; member(open,Opts) -> true ; E=[]). | |
352 | ||
353 | lookup_id_bounds(ID,env(Env,_),Type,BoundsInfo) :- | |
354 | (member(bound_internal_info(ID,Type,StoredBounds),Env) | |
355 | -> BoundsInfo=StoredBounds | |
356 | ; format(user_output,'Could not find identifier ~w !!~n',[ID]), | |
357 | bounds_type(Type,BoundsInfo,_)). % set up unconstrained bounds | |
358 | ||
359 | % add typed ids to environment, also returns list of bounds information for added ids | |
360 | add_typed_ids([],[]) --> []. | |
361 | add_typed_ids([TID|T],[BoundsInfo|TB]) --> add_typed_id(TID,BoundsInfo), add_typed_ids(T,TB). | |
362 | ||
363 | add_typed_id(TID,bound_id_info(ID,Type,Bounds),env(Env,Flags),env(NewEnv,Flags)) :- def_get_texpr_id(TID,ID), | |
364 | get_texpr_type(TID,Type), | |
365 | NewEnv = [bound_internal_info(ID,Type,Fresh)|Env], | |
366 | (bounds_type(Type,Fresh,_) | |
367 | -> compute_bound_info(ID,Type,Fresh,Bounds,Flags) | |
368 | ; format(user_output,'Ignoring identifier ~w in analysis~n',[ID]), | |
369 | Fresh=Type, Bounds=Type), | |
370 | label_id(ID,Type,Fresh,Flags). | |
371 | ||
372 | % add information from outer variables (e.g., computed by infer_bounds for outer predicate) | |
373 | add_outer_bound_info(bound_id_info(ID,Type,Bounds),bound_internal_info(ID,Type,InternalType)) :- | |
374 | convert_bounds_to_internal(Bounds,InternalType). | |
375 | ||
376 | convert_bounds_to_internal(integer_in_range(From,To,_),bint(X)) :- !, X in From..To. | |
377 | convert_bounds_to_internal(set(integer_in_range(From,To,_)),binterval(From2,To2,_NonEmpty)) :- !, | |
378 | (number(From) -> From2=From ; true), (number(To) -> To2=To ; true). | |
379 | % we do not know if set is empty or not; | |
380 | % see test 2519 :clingo-double-check x<:1..3 & !y.(y:0..3 & x*(1..2)=(1..2)*(1..y) => y=2) | |
381 | convert_bounds_to_internal(string,bint(Nr)) :- !, Nr #>= 0. % strings number start at 0 | |
382 | convert_bounds_to_internal(set(string),binterval(From,_To,_NonEmpty)) :- !, | |
383 | From #>= 0. | |
384 | convert_bounds_to_internal(set(couple(A,B)),BCart) :- !, | |
385 | convert_bounds_to_internal(set(A),BA), | |
386 | convert_bounds_to_internal(set(B),BB), | |
387 | Dummy = b(empty_set,any,[]), | |
388 | construct_bcart(Dummy,Dummy,BA,BB,BCart). | |
389 | convert_bounds_to_internal(X,X). | |
390 | ||
391 | finite_type(boolean). | |
392 | finite_type(global(_GS)). | |
393 | finite_type(set(X)) :- finite_type(X). | |
394 | finite_type(couple(X,Y)) :- finite_type(X), finite_type(Y). | |
395 | ||
396 | % a type for which we can determine bounds: | |
397 | % it also returns a 0..1 CLP(FD) flag for non-emptyness; useful for sets only | |
398 | bounds_type(integer,bint(_),1). | |
399 | bounds_type(string,bint(_),1). | |
400 | bounds_type(set(integer),binterval(_,_,NonEmpty),NonEmpty). | |
401 | bounds_type(set(string),binterval(_,_,NonEmpty),NonEmpty). | |
402 | bounds_type(couple(A,B),bcouple(BA,BB),1) :- | |
403 | bounds_of_pair(A,B,BA,BB,_). % at least one part requires bounds | |
404 | bounds_type(set(couple(A,B)),bcart(BA,BB,NonEmpty),NonEmpty) :- | |
405 | bounds_of_pair(set(A),set(B),BA,BB,NonEmpty). | |
406 | ||
407 | % get bounds of two types, ensuring at least one of them requires bounds inference | |
408 | bounds_of_pair(A,B,BA,BB,NonEmpty) :- | |
409 | (bounds_type(A,BA,NEA) | |
410 | -> (bounds_type(B,BB,NEB) -> NonEmpty #= min(1,NEA+NEB) | |
411 | ; BB=B, NonEmpty=NEA) | |
412 | ; BA=A, bounds_type(B,BB,NonEmpty)). | |
413 | ||
414 | :- block compute_bound_info(?,?,?,?,-). | |
415 | compute_bound_info(ID,Type,Fresh,Bounds,_) :- | |
416 | get_bounds(Fresh,Type,Bounds), | |
417 | format(user_output,'Computed bounds ~w : ~w --> ~w~n',[ID,Type,Bounds]). | |
418 | ||
419 | % get bounds of an internal representation into format suitable for b2asp / other tools | |
420 | % it creates a type term, using integer_in_range/2 in place of integer | |
421 | get_bounds(bint(X),Type,integer_in_range(Min,Max,Type)) :- !, fd_min(X,Min), fd_max(X,Max). | |
422 | get_bounds(binterval(X,Y,NonEmpty),set(Type),set(integer_in_range(Min,Max,Type))) :- !, | |
423 | ( NonEmpty == 0 -> Min=1, Max=0 | |
424 | ; NonEmpty == 1 -> fd_min(X,Min), fd_max(Y,Max) | |
425 | ; get_non_empty_interval_bounds(X,Y,NonEmpty,Min,Max) % we do not know if set empty or not | |
426 | ). | |
427 | get_bounds(bcouple(A,B),couple(TA,TB),couple(BA,BB)) :- !, get_bounds(A,TA,BA), get_bounds(B,TB,BB). | |
428 | get_bounds(bcart(A,B,NonEmpty),set(couple(TA,TB)),set(couple(BA,BB))) :- !, | |
429 | ( NonEmpty == 0 -> get_bounds(A,set(TA),set(BA)), get_bounds(B,set(TB),set(BB)) % we could return empty_set for BA/BB | |
430 | ; NonEmpty == 1 -> get_bounds(A,set(TA),set(BA)), get_bounds(B,set(TB),set(BB)) | |
431 | ; get_non_empty_cart_bounds(A,B,TA,TB,NonEmpty,BA,BB) % we do not know if cartesian product empty or not | |
432 | ). | |
433 | get_bounds(B,_,R) :- finite_type(B),!, R=B. | |
434 | get_bounds(B,Type,R) :- format(user_output,'Unknown bound: ~w (type ~w)~n',[B,Type]), R=B. | |
435 | ||
436 | % try get bounds assuming set is non-empty; these bounds will be used for enumeration in clingo | |
437 | get_non_empty_interval_bounds(X,Y,NonEmpty,_,_) :- | |
438 | bb_put(bounds_analysis_min_max,(1,0)), % if propagation fails the set must be empty | |
439 | (NonEmpty=1 % force non-empty and check to see in which range the values must be | |
440 | -> fd_min(X,Min2), fd_max(Y,Max2), | |
441 | bb_put(bounds_analysis_min_max,(Min2,Max2)) | |
442 | ; format(user_output,'Bounds interval cannot be non-empty~n',[]) | |
443 | ), | |
444 | fail. | |
445 | get_non_empty_interval_bounds(_,_,_,Min,Max) :- bb_get(bounds_analysis_min_max,(Min,Max)). | |
446 | ||
447 | % try get bounds assuming cartesian product is non-empty; these bounds will be used for enumeration in clingo | |
448 | get_non_empty_cart_bounds(A,B,TA,TB,NonEmpty,_,_) :- | |
449 | bb_put(bounds_analysis_cart,(empty_set,empty_set)), % if propagation fails the set must be empty | |
450 | (NonEmpty=1 % force non-empty and check to see in which range the values must be | |
451 | -> get_bounds(A,set(TA),set(BA)), get_bounds(B,set(TB),set(BB)), | |
452 | bb_put(bounds_analysis_cart,(BA,BB)) | |
453 | ; format(user_output,'Bounds cartesian product cannot be non-empty~n',[]) | |
454 | ), | |
455 | fail. | |
456 | get_non_empty_cart_bounds(_,_,_,_,_,BA,BB) :- bb_get(bounds_analysis_cart,(BA,BB)). | |
457 | ||
458 | ||
459 | :- block label_id(?,?,?,-). | |
460 | label_id(_ID,_Type,Fresh,copy_bounds(Flag)) :- %format(user_output,'Labeling ~w : ~w~n',[ID,Fresh]), | |
461 | label_bounds(Fresh,Flag). | |
462 | ||
463 | % TODO: check if finite: | |
464 | :- block label_bounds(?,-). | |
465 | label_bounds(_,no_labeling) :- !. | |
466 | label_bounds(bint(X),_) :- !, label_fd_var(X). | |
467 | label_bounds(binterval(X,Y,Empty),_) :- !, (Empty=0 ; Empty=1), label_fd_var(X), label_fd_var(Y). | |
468 | label_bounds(bcouple(X,Y),F) :- !, label_bounds(X,F), label_bounds(Y,F). | |
469 | label_bounds(bcart(X,Y,Empty),F) :- !, (Empty=0 ; Empty=1), label_bounds(X,F), label_bounds(Y,F). | |
470 | label_bounds(Term,_) :- ground(Term),finite_type(Term),!. | |
471 | label_bounds(Term,_) :- add_internal_error('Unknown bounds info to label:', label_bounds(Term)). | |
472 | ||
473 | label_fd_var(X) :- fd_size(X,Sz), (number(Sz) -> indomain(X) ; true). | |
474 | ||
475 | ||
476 | portray_env(env(NE,_)) :- portray_env2(NE). | |
477 | portray_env2(X) :- var(X),!, write(user_output,' - ... '),nl(user_output). | |
478 | portray_env2([]) :- !. | |
479 | portray_env2([bound_internal_info(ID,Type,BoundsInfo)|TT]) :- !, | |
480 | format(user_output,' - ~w (~w) : ',[ID,Type]), portray_bounds(BoundsInfo), nl(user_output), | |
481 | portray_env2(TT). | |
482 | portray_env2(E) :- | |
483 | format(user_output,' *** ILLEGAL ENV *** ~w~n',[E]). | |
484 | ||
485 | portray_bounds(bint(X)) :- !, portray_int(X). | |
486 | portray_bounds(binterval(X,Y,_E)) :- !, | |
487 | write(user_output,'('), portray_int(X), write(user_output,' .. '), portray_int(Y), write(user_output,')'). | |
488 | portray_bounds(bcouple(X,Y)) :- !, portray_bounds(X), write(user_output,' , '), portray_bounds(Y). | |
489 | portray_bounds(bcart(X,Y,_E)) :- !, portray_bounds(X), write(user_output,' * '), portray_bounds(Y). | |
490 | portray_bounds(T) :- finite_type(T), !, write(user_output,T). | |
491 | portray_bounds(U) :- write(user_output,'*** UNKNOWN '), write(user_output,U), write(user_output,' ***'). | |
492 | ||
493 | portray_int(X) :- nonvar(X),!, write(user_output,X). | |
494 | portray_int(X) :- fd_dom(X,Dom), write(user_output,Dom). | |
495 | ||
496 | label_env(env(_,Flags),Options) :- !,Flags=copy_bounds(F2), | |
497 | (member(label,Options) -> F2=label_now ; F2=no_labeling). | |
498 | label_env(E,_) :- add_internal_error('Illegal env: ', label_env(E)). | |
499 | ||
500 | ||
501 | ||
502 | /* | |
503 | ||
504 | Encode set union constraints using single fd variable: | |
505 | ||
506 | | ?- X in 1..3, Y in 2..5, element([X,Y],Z). | |
507 | X in 1 .. 3, | |
508 | Y in 2 .. 5, | |
509 | Z in 1 .. 5 ? | |
510 | ||
511 | Intersection: | |
512 | | ?- X in 1..3, Y in 2..5, element([X],Z), element([Y],Z). | |
513 | X in 2 .. 3, | |
514 | Y in 2 .. 3, | |
515 | Z in 2 .. 3 ? | |
516 | yes | |
517 | ||
518 | But how do we encode empty set? | |
519 | | ?- X in 1..3, Y in 4..5, element([X],Z), element([Y],Z). | |
520 | no | |
521 | ||
522 | */ |