| 1 | % (c) 2019-2024 Lehrstuhl fuer Softwaretechnik und Programmiersprachen, | |
| 2 | % Heinrich Heine Universitaet Duesseldorf | |
| 3 | % This software is licenced under EPL 1.0 (http://www.eclipse.org/org/documents/epl-v10.html) | |
| 4 | :- module(smt_symmetry_breaking, [init_graph/0, | |
| 5 | get_top_level_symmetry_breaking_predicates/3, | |
| 6 | get_top_level_symmetry_breaking_predicates_decomposed/2, | |
| 7 | add_symmetry_breaking_predicates/2, | |
| 8 | get_amount_of_found_sbps/1]). | |
| 9 | ||
| 10 | :- use_module(library(plunit)). | |
| 11 | :- use_module(library(codesio), [write_to_codes/2]). | |
| 12 | :- use_module(library(samsort), [samsort/3]). | |
| 13 | :- use_module(library(lists), [select/3, maplist/3]). | |
| 14 | :- use_module(extension('bliss/bliss_interface')). | |
| 15 | :- use_module(probsrc(b_global_sets), [b_get_global_enumerated_sets/1]). | |
| 16 | :- use_module(probsrc(bmachine), [b_get_machine_set/1]). | |
| 17 | :- use_module(probsrc(error_manager), [add_message/2,add_warning/3]). | |
| 18 | :- use_module(probsrc(b_interpreter_check),[norm_pred_check/2,norm_expr_check/2]). | |
| 19 | :- use_module(probsrc(tools_meta),[safe_time_out/3]). | |
| 20 | :- use_module(probsrc(bsyntaxtree), [get_texpr_expr/2, | |
| 21 | conjunct_predicates/2, | |
| 22 | conjunction_to_list/2, | |
| 23 | disjunction_to_list/2, | |
| 24 | predicate_components_in_scope/3, | |
| 25 | remove_all_infos_and_ground/2, | |
| 26 | find_typed_identifier_uses/3, | |
| 27 | safe_create_texpr/4]). | |
| 28 | ||
| 29 | % Foundation: "SyMT: Finding Symmetries in SMT formulas" by Areces et al. | |
| 30 | % Possible improvement (TODO): "Advances in Symmetry Breaking for SAT Modulo Theories" by Dinliwal et al. | |
| 31 | ||
| 32 | :- dynamic next_color/1, color/2, seen_pred/2, seen_upred/2, seen_expr/2, seen_uexpr/2, node_id_to_ast/2, ast_to_node_id/3. | |
| 33 | :- volatile next_color/1, color/2, seen_pred/2, seen_upred/2, seen_expr/2, seen_uexpr/2, node_id_to_ast/2, ast_to_node_id/3. | |
| 34 | ||
| 35 | init_graph :- | |
| 36 | bliss_interface:init_bliss_interface, | |
| 37 | bliss_interface:init_directed_graph, | |
| 38 | retractall(node_id_to_ast(_,_)), | |
| 39 | retractall(ast_to_node_id(_,_,_)), | |
| 40 | retractall(seen_pred(_,_)), | |
| 41 | retractall(seen_upred(_,_)), | |
| 42 | retractall(seen_expr(_,_)), | |
| 43 | retractall(seen_uexpr(_,_)), | |
| 44 | retractall(color(_,_)), | |
| 45 | asserta(color(arg, 0)), % all argument nodes have the same unique color | |
| 46 | retractall(next_color(_)), | |
| 47 | asserta(next_color(1)). | |
| 48 | ||
| 49 | get_texpr_expr_functor_and_type(b(Expr,Type,_), Expr, Type, Functor) :- | |
| 50 | functor(Expr, Functor, _). | |
| 51 | ||
| 52 | %% get_top_level_symmetry_breaking_predicates_decomposed(+SmtFormula, -SBPs). | |
| 53 | % Decompose constraint into independent components and conjunct symmetry breaking predicates of each component. | |
| 54 | get_top_level_symmetry_breaking_predicates_decomposed(SmtFormula, SBPs) :- | |
| 55 | ( SmtFormula = b(truth,pred,_) | |
| 56 | ; SmtFormula = b(falsity,pred,_) | |
| 57 | ), | |
| 58 | !, | |
| 59 | SBPs = b(truth,pred,[]). | |
| 60 | get_top_level_symmetry_breaking_predicates_decomposed(SmtFormula, SBPs) :- | |
| 61 | findall(DeferredSetId, b_get_machine_set(DeferredSetId), DeferredSetIds), | |
| 62 | predicate_components_in_scope(SmtFormula, DeferredSetIds, Components), | |
| 63 | b_get_global_enumerated_sets(EnumeratedSets), | |
| 64 | get_top_level_symmetry_breaking_predicates_from_components(Components, EnumeratedSets, SBPs). | |
| 65 | ||
| 66 | get_top_level_symmetry_breaking_predicates_from_components([component(SingleComponent,_)|T], EnumeratedSets, SBPs) :- | |
| 67 | reset_found_sbps, | |
| 68 | get_top_level_symmetry_breaking_predicates(SingleComponent, EnumeratedSets, CSBPs), | |
| 69 | log_found_sbps(CSBPs), | |
| 70 | get_top_level_symmetry_breaking_predicates_from_components(T, CSBPs, EnumeratedSets, SBPs). | |
| 71 | ||
| 72 | get_top_level_symmetry_breaking_predicates_from_components([], Acc, _, Acc). | |
| 73 | get_top_level_symmetry_breaking_predicates_from_components([component(SingleComponent,_)|T], Acc, EnumeratedSets, SBPs) :- | |
| 74 | get_top_level_symmetry_breaking_predicates(SingleComponent, EnumeratedSets, CSBPs), | |
| 75 | log_found_sbps(CSBPs), | |
| 76 | conjunct_predicates([Acc,CSBPs], NAcc), | |
| 77 | get_top_level_symmetry_breaking_predicates_from_components(T, NAcc, EnumeratedSets, SBPs). | |
| 78 | ||
| 79 | %% get_top_level_symmetry_breaking_predicates(+SmtFormula, +EnumeratedSets, -SBPs). | |
| 80 | % Assuming that the AST has been normalized by B AST cleanup. | |
| 81 | get_top_level_symmetry_breaking_predicates(SmtFormula, EnumeratedSets, SBPs) :- | |
| 82 | get_top_level_symmetry_breaking_predicates(SmtFormula, EnumeratedSets, SBPs, _). | |
| 83 | ||
| 84 | %% get_top_level_symmetry_breaking_predicates(+SmtFormula, -SBPs, -Generators). | |
| 85 | get_top_level_symmetry_breaking_predicates(SmtFormula, EnumeratedSets, SBPs, Generators) :- | |
| 86 | find_typed_identifier_uses(SmtFormula, [], UsedIds), | |
| 87 | remove_all_infos_and_ground(SmtFormula, CSmtFormula), | |
| 88 | order_variables(UsedIds, _TypeOrdering, VariableOrdering), | |
| 89 | ( VariableOrdering == [] | |
| 90 | -> SBPs = b(truth,pred,[]) | |
| 91 | ; init_graph, | |
| 92 | build_colored_graph(CSmtFormula), | |
| 93 | %graph_to_dot_file('sym_graph.dot'), | |
| 94 | !, | |
| 95 | bliss_interface:find_automorphisms(TGenerators), | |
| 96 | %nl, write('Generators: '), write(Generators),nl, | |
| 97 | get_sbps_from_generators(TGenerators, VariableOrdering, EnumeratedSets, TSBPs), | |
| 98 | !, | |
| 99 | SBPs = TSBPs, | |
| 100 | Generators = TGenerators | |
| 101 | ). | |
| 102 | ||
| 103 | get_amount_of_found_sbps(FoundSBPs) :- | |
| 104 | found_sbps(FoundSBPs). | |
| 105 | ||
| 106 | :- dynamic found_sbps/1. | |
| 107 | :- volatile found_sbps/1. | |
| 108 | ||
| 109 | found_sbps(0). | |
| 110 | ||
| 111 | reset_found_sbps :- | |
| 112 | retractall(found_sbps(_)), | |
| 113 | asserta(found_sbps(0)). | |
| 114 | ||
| 115 | log_found_sbps(SymBreakPs) :- | |
| 116 | SymBreakPs \= b(truth,pred,_), | |
| 117 | conjunction_to_list(SymBreakPs, L), | |
| 118 | length(L, Len), | |
| 119 | retract(found_sbps(FoundSBPs)), | |
| 120 | NFoundSBPs is FoundSBPs + Len, | |
| 121 | asserta(found_sbps(NFoundSBPs)). | |
| 122 | log_found_sbps(_). | |
| 123 | ||
| 124 | %% add_symmetry_breaking_predicates(+SmtFormula, -NSmtFormula). | |
| 125 | % Adds symmetry breaking predicates to quantifiers as well. | |
| 126 | add_symmetry_breaking_predicates(SmtFormula, NSmtFormula) :- | |
| 127 | reset_found_sbps, | |
| 128 | b_get_global_enumerated_sets(EnumeratedSets), | |
| 129 | safe_time_out(add_symmetry_breaking_predicates(SmtFormula, EnumeratedSets, NSmtFormula), 10000, TORes), | |
| 130 | ( TORes == time_out | |
| 131 | -> NSmtFormula = SmtFormula | |
| 132 | ; true | |
| 133 | ). | |
| 134 | ||
| 135 | %% add_symmetry_breaking_predicates(+SmtFormula, +EnumeratedSets, -NSmtFormula). | |
| 136 | add_symmetry_breaking_predicates(SmtFormula, EnumeratedSets, NSmtFormula) :- | |
| 137 | ( get_top_level_symmetry_breaking_predicates(SmtFormula, EnumeratedSets, SymBreakPs) | |
| 138 | -> log_found_sbps(SymBreakPs) | |
| 139 | ; add_message(smt_symmetry_breaking, 'Skip top-level symmetry breaking due to failure'), | |
| 140 | SymBreakPs = b(truth,pred,[]) | |
| 141 | ), | |
| 142 | add_sbps_to_quantifiers(SmtFormula, EnumeratedSets, TSmtFormula), | |
| 143 | safe_create_texpr(conjunct(SymBreakPs,TSmtFormula), pred, [] ,NSmtFormula). | |
| 144 | ||
| 145 | %% add_sbps_to_quantifiers(+Ast, +EnumeratedSets, -SmtFormula). | |
| 146 | add_sbps_to_quantifiers(b(Expr,Type,Info), EnumeratedSets, NSmtFormula) :- | |
| 147 | !, | |
| 148 | add_sbps_to_quantifiers_expr(Expr, EnumeratedSets, NExpr), | |
| 149 | safe_create_texpr(NExpr, Type, Info, NSmtFormula). | |
| 150 | add_sbps_to_quantifiers(Formula, _, Formula). | |
| 151 | ||
| 152 | add_sbps_to_quantifiers_expr(forall(Ids,Lhs,Rhs), EnumeratedSets, NExpr) :- | |
| 153 | !, | |
| 154 | get_top_level_symmetry_breaking_predicates(Rhs, EnumeratedSets, SBPs), | |
| 155 | log_found_sbps(SBPs), | |
| 156 | add_sbps_to_quantifiers(Rhs, EnumeratedSets, NRhs), | |
| 157 | ( SBPs = b(truth,pred,_) | |
| 158 | -> NExpr = forall(Ids,Lhs,NRhs) | |
| 159 | ; safe_create_texpr(conjunct(SBPs,Lhs), pred, [], NLhs), | |
| 160 | NExpr = forall(Ids,NLhs,NRhs) | |
| 161 | ). | |
| 162 | add_sbps_to_quantifiers_expr(exists(Ids,Body), EnumeratedSets, NExpr) :- | |
| 163 | !, | |
| 164 | get_top_level_symmetry_breaking_predicates(Body, EnumeratedSets, SBPs), | |
| 165 | log_found_sbps(SBPs), | |
| 166 | add_sbps_to_quantifiers(Body, EnumeratedSets, NBody), | |
| 167 | ( SBPs = b(truth,pred,_) | |
| 168 | -> NExpr = exists(Ids,NBody) | |
| 169 | ; safe_create_texpr(conjunct(SBPs,NBody), pred, [], NNBody), | |
| 170 | NExpr = exists(Ids,NNBody) | |
| 171 | ). | |
| 172 | add_sbps_to_quantifiers_expr(Expr, _, NExpr) :- | |
| 173 | ( is_interpreted_symbol(Expr) | |
| 174 | ; is_uninterpreted_symbol(Expr) | |
| 175 | ), | |
| 176 | !, | |
| 177 | NExpr = Expr. | |
| 178 | add_sbps_to_quantifiers_expr(Expr, EnumeratedSets, NExpr) :- | |
| 179 | functor(Expr, Functor, 2), | |
| 180 | !, | |
| 181 | arg(1, Expr, Arg1), | |
| 182 | arg(2, Expr, Arg2), | |
| 183 | add_sbps_to_quantifiers(Arg1, EnumeratedSets, NArg1), | |
| 184 | add_sbps_to_quantifiers(Arg2, EnumeratedSets, NArg2), | |
| 185 | functor(NExpr, Functor, 2), | |
| 186 | arg(1, NExpr, NArg1), | |
| 187 | arg(2, NExpr, NArg2). | |
| 188 | add_sbps_to_quantifiers_expr(Expr, EnumeratedSets, NExpr) :- | |
| 189 | functor(Expr, Functor, 1), | |
| 190 | !, | |
| 191 | arg(1, Expr, Arg), | |
| 192 | add_sbps_to_quantifiers(Arg, EnumeratedSets, NArg), | |
| 193 | functor(NExpr, Functor, 1), | |
| 194 | arg(1, NExpr, NArg). | |
| 195 | add_sbps_to_quantifiers_expr(Expr, _, Expr). | |
| 196 | ||
| 197 | %% get_sbps_from_generators(+Generators, +VariableOrdering, -SBPs). | |
| 198 | get_sbps_from_generators(Generators, VariableOrdering, EnumeratedSets, SBPs) :- | |
| 199 | add_sbps_from_generators(Generators, VariableOrdering, EnumeratedSets, b(truth,pred,[]), SBPs). | |
| 200 | ||
| 201 | %% add_sbps_from_generators(+Generators, +VariableOrdering, +Acc, -SBPs). | |
| 202 | add_sbps_from_generators([], _, _, Acc, Acc). | |
| 203 | add_sbps_from_generators([Generator|T], VariableOrdering, EnumeratedSets, Acc, SBPs) :- | |
| 204 | add_sbps_from_generator(VariableOrdering, Generator, EnumeratedSets, Acc , NAcc), | |
| 205 | add_sbps_from_generators(T, VariableOrdering, EnumeratedSets, NAcc, SBPs). | |
| 206 | ||
| 207 | %% add_sbps_from_generator(+Generators, +VariableOrdering, +Acc, -SBPs). | |
| 208 | add_sbps_from_generator([], _, _, Acc, Acc). | |
| 209 | add_sbps_from_generator([FirstVarAst|T], Generator, EnumeratedSets, Acc, NAcc) :- | |
| 210 | FirstVarAst = b(Node,_,_), | |
| 211 | ast_to_node_id(Node, NType, FirstVarId), % use stored type since it can e.g. be either set(couple(integer,boolean)) or seq(boolean) | |
| 212 | NFirstVarAst = b(Node,NType,[]), | |
| 213 | !, | |
| 214 | image_of_generator(Generator, FirstVarId, ImageId), | |
| 215 | node_id_to_ast(ImageId, ImageAst), | |
| 216 | get_texpr_expr(ImageAst, Id1), | |
| 217 | ( Id1 == Node | |
| 218 | -> % tautology | |
| 219 | add_sbps_from_generator(T, Generator, EnumeratedSets, Acc, NAcc) | |
| 220 | ; safe_create_texpr(equal(NFirstVarAst,ImageAst), pred, [], Eq), | |
| 221 | ( ( | |
| 222 | \+ has_enumerated_set_type(NFirstVarAst, EnumeratedSets), | |
| 223 | less_eq_for_type_except_enumerated_set(NFirstVarAst, ImageAst, LEq) | |
| 224 | ) | |
| 225 | -> extend_conj_acc(Acc, LEq, NAcc1) | |
| 226 | ; NAcc1 = Acc | |
| 227 | ), | |
| 228 | add_sbps_from_generator_eq_acc(T, Generator, Eq, EnumeratedSets, NAcc1, NAcc) | |
| 229 | ). | |
| 230 | add_sbps_from_generator([FirstVarAst|_], _, _, _, _) :- | |
| 231 | add_warning(smt_symmetry_breaking, 'Missing node id in symmetry breaking graph for AST ', [FirstVarAst]), !, | |
| 232 | fail. | |
| 233 | ||
| 234 | %% image_of_generator(+Generator, +Id, -ImageId). | |
| 235 | image_of_generator([], Id, Id). % identity | |
| 236 | image_of_generator([Cycle|_], Id, ImageId) :- | |
| 237 | image_of_cycle(false, Cycle, Id, TImageId), | |
| 238 | !, | |
| 239 | ImageId = TImageId. | |
| 240 | image_of_generator([_|T], Id, ImageId) :- | |
| 241 | image_of_generator(T, Id, ImageId). | |
| 242 | ||
| 243 | image_of_cycle(MapLastToFirst, [FirstCycleId|T], Id, ImageId) :- | |
| 244 | image_of_cycle(MapLastToFirst, [FirstCycleId|T], FirstCycleId, Id, ImageId). | |
| 245 | ||
| 246 | %% image_of_cycle(+MapLastToFirst, +FirstCycleId, +Id, -ImageId). | |
| 247 | % Tautologies are generated in symmetry breaking if last element maps to first. | |
| 248 | image_of_cycle(true, [Id], ImageId, Id, ImageId). | |
| 249 | image_of_cycle(false, [Id], _, Id, Id). | |
| 250 | image_of_cycle(_, [Id,TImageId|_], _, Id, ImageId) :- | |
| 251 | ImageId = TImageId. | |
| 252 | image_of_cycle(MapLastToFirst, [_|T], FirstCycleId, Id, ImageId) :- | |
| 253 | image_of_cycle(MapLastToFirst, T, FirstCycleId, Id, ImageId). | |
| 254 | ||
| 255 | %% add_sbps_from_generator(+VariableOrdering, +Generator, +EqAcc, +EnumeratedSets, +Acc, -NAcc). | |
| 256 | add_sbps_from_generator_eq_acc([], _, _, _, Acc, Acc). | |
| 257 | add_sbps_from_generator_eq_acc([VarAst|T], Generator, EqAcc, EnumeratedSets, Acc, NAcc) :- | |
| 258 | VarAst = b(Node,_,_), | |
| 259 | ast_to_node_id(Node, NType, VarId), | |
| 260 | NVarAst = b(Node,NType,[]), | |
| 261 | image_of_generator(Generator, VarId, ImageId), | |
| 262 | node_id_to_ast(ImageId, ImageAst), | |
| 263 | get_texpr_expr(ImageAst, Id1), | |
| 264 | ( Id1 == Node | |
| 265 | -> % tautology | |
| 266 | add_sbps_from_generator_eq_acc(T, Generator, EqAcc, EnumeratedSets, Acc, NAcc) | |
| 267 | ; safe_create_texpr(equal(NVarAst,ImageAst), pred, [], Eq), | |
| 268 | ( ( | |
| 269 | \+ has_enumerated_set_type(NVarAst, EnumeratedSets), | |
| 270 | less_eq_for_type_except_enumerated_set(NVarAst, ImageAst, LEq) | |
| 271 | ) | |
| 272 | -> safe_create_texpr(negation(EqAcc), pred, [], NegEqAcc), | |
| 273 | safe_create_texpr(disjunct(NegEqAcc,LEq), pred, [], Impl), | |
| 274 | extend_conj_acc(Acc, Impl, NAcc1), | |
| 275 | safe_create_texpr(conjunct(EqAcc,Eq), pred, [], NEqAcc) | |
| 276 | ; NAcc1 = Acc, | |
| 277 | NEqAcc = EqAcc | |
| 278 | ), | |
| 279 | add_sbps_from_generator_eq_acc(T, Generator, NEqAcc, EnumeratedSets, NAcc1, NAcc) | |
| 280 | ). | |
| 281 | ||
| 282 | % Enumerated sets are already ordered in ProB and thus do not contain any symmetries. | |
| 283 | % In fact, when breaking symmetries for enumerated sets again we'd need to respect the internal ordering of ProB! (see get_ordering_for_enumerated_set_elements/4) | |
| 284 | has_enumerated_set_type(b(_,Type,_), EnumeratedSets) :- | |
| 285 | Type = global(EnumSet), | |
| 286 | member(EnumSet, EnumeratedSets). | |
| 287 | ||
| 288 | %% less_eq_for_type_except_enumerated_set(+VarAst, +ImageAst, -LEq). | |
| 289 | less_eq_for_type_except_enumerated_set(VarAst, ImageAst, LEq) :- | |
| 290 | OrderedList = [VarAst,ImageAst], | |
| 291 | LEq = b(external_pred_call('LEQ_SYM', OrderedList),pred,[]). | |
| 292 | less_eq_for_type_except_enumerated_set(VarAst, ImageAst, _) :- | |
| 293 | VarAst = b(_,TypeA,_), | |
| 294 | ImageAst = b(_,TypeB,_), | |
| 295 | TypeA \== TypeB, | |
| 296 | % don't throw an error here since we fail and CDCL(T) can try to solve without symmetry breaking | |
| 297 | add_warning(less_eq_for_type_except_enumerated_set, 'Differently typed permutation mapping. Encoding for SMT symmetry breaking is defective.', [VarAst,ImageAst]), !, | |
| 298 | fail. | |
| 299 | ||
| 300 | %% extend_conj_acc(+Acc, +TConj, -Acc). | |
| 301 | extend_conj_acc(b(truth,pred,[]), TConj, Conj) :- | |
| 302 | !, | |
| 303 | Conj = TConj. | |
| 304 | extend_conj_acc(Acc, Conj, b(conjunct(Acc,Conj),pred,[])). | |
| 305 | ||
| 306 | add_nodes_from_ast_list_commutative(_, []). | |
| 307 | add_nodes_from_ast_list_commutative(RootNodeId, [Id|T]) :- | |
| 308 | get_texpr_expr_functor_and_type(Id, IdExpr, IdType, IdFunctor), | |
| 309 | add_term_and_symbol_nodes_to_graph(IdExpr, IdType, IdFunctor, IdRootNodeId), | |
| 310 | add_node_to_colored_graph(arg, IdExpr, IdType, IdNodeId), | |
| 311 | bliss_interface:add_edge(IdNodeId, IdRootNodeId), | |
| 312 | bliss_interface:add_edge(RootNodeId, IdNodeId), | |
| 313 | build_colored_graph(IdExpr, IdType, IdRootNodeId), | |
| 314 | add_nodes_from_ast_list_commutative(RootNodeId, T). | |
| 315 | ||
| 316 | split_associative_node(conjunct(A,B), AstList) :- | |
| 317 | !, | |
| 318 | conjunction_to_list(b(conjunct(A,B),pred,[]), AstList). | |
| 319 | split_associative_node(disjunct(A,B), AstList) :- | |
| 320 | !, | |
| 321 | disjunction_to_list(b(disjunct(A,B),pred,[]), AstList). | |
| 322 | split_associative_node(Expr, AstList) :- | |
| 323 | functor(Expr, Functor, 2), | |
| 324 | member(Functor, [add,multiplication,union,intersection]), | |
| 325 | associative_ast_to_list(Functor, b(Expr,_,_), AstList). | |
| 326 | ||
| 327 | associative_ast_to_list(Functor, Expr, AstList) :- | |
| 328 | associative_ast_to_list(Functor, Expr, [], AstList). | |
| 329 | ||
| 330 | associative_ast_to_list(Functor, b(Expr,_,_), Acc, AstList) :- | |
| 331 | functor(Expr, Functor, 2), | |
| 332 | !, | |
| 333 | arg(1, Expr, Arg1), | |
| 334 | arg(2, Expr, Arg2), | |
| 335 | associative_ast_to_list(Functor, Arg1, Acc, NAcc), | |
| 336 | associative_ast_to_list(Functor, Arg2, NAcc, AstList). | |
| 337 | associative_ast_to_list(_, Ast, Acc, [Ast|Acc]). | |
| 338 | ||
| 339 | %% build_colored_graph(+SmtFormula). | |
| 340 | build_colored_graph(SmtFormula) :- | |
| 341 | get_texpr_expr_functor_and_type(SmtFormula, Expr, Type, ExprFunctor), | |
| 342 | add_term_and_symbol_nodes_to_graph(Expr, Type, ExprFunctor, RootNodeId), | |
| 343 | build_colored_graph(Expr, Type, RootNodeId). | |
| 344 | ||
| 345 | %% build_colored_graph(+Term, +TermRootNodeId). | |
| 346 | build_colored_graph(truth, pred, _) :- | |
| 347 | !. | |
| 348 | build_colored_graph(falsity, pred, _) :- | |
| 349 | !. | |
| 350 | build_colored_graph(Expr, _, RootNodeId) :- | |
| 351 | ( Expr = set_extension(List) | |
| 352 | ; Expr = sequence_extension(List) | |
| 353 | ; Expr = rec(List) | |
| 354 | ), | |
| 355 | !, | |
| 356 | build_colored_graph_from_set(List, RootNodeId). | |
| 357 | build_colored_graph(Expr, Type, RootNodeId) :- | |
| 358 | ( Expr = let_predicate(Ids, EqVals, Body) | |
| 359 | ; Expr = let_expression(Ids, EqVals, Body) | |
| 360 | ; Expr = lazy_let_pred(Ids, EqVals, Body) | |
| 361 | ), | |
| 362 | !, | |
| 363 | % non-commutative | |
| 364 | zip_to_equalities_conj(Ids, EqVals, EqsConj), | |
| 365 | get_texpr_expr_functor_and_type(EqsConj, EqsExpr, EqsType, EqsFunctor), | |
| 366 | get_texpr_expr_functor_and_type(Body, BodyExpr, BodyType, BodyFunctor), | |
| 367 | add_term_and_symbol_nodes_to_graph(EqsExpr, EqsType, EqsFunctor, EqsRootNodeId), | |
| 368 | add_term_and_symbol_nodes_to_graph(BodyExpr, BodyType, BodyFunctor, BodyRootNodeId), | |
| 369 | add_node_to_colored_graph(arg, EqsExpr, EqsType, EqsNodeId), | |
| 370 | add_node_to_colored_graph(arg, BodyExpr, BodyType, BodyNodeId), | |
| 371 | bliss_interface:add_edge(EqsNodeId, EqsRootNodeId), | |
| 372 | bliss_interface:add_edge(BodyNodeId, BodyRootNodeId), | |
| 373 | bliss_interface:add_edge(EqsNodeId, BodyNodeId), | |
| 374 | bliss_interface:add_edge(RootNodeId, EqsNodeId), | |
| 375 | build_colored_graph(EqsExpr, EqsType, EqsRootNodeId), | |
| 376 | build_colored_graph(BodyExpr, Type, BodyRootNodeId). | |
| 377 | build_colored_graph(partition(Set,AstList), _, RootNodeId) :- | |
| 378 | !, | |
| 379 | get_texpr_expr_functor_and_type(Set, SetExpr, SetType, SetFunctor), | |
| 380 | add_term_and_symbol_nodes_to_graph(SetExpr, SetType, SetFunctor, SetRootNodeId), | |
| 381 | add_nodes_from_ast_list_commutative(RootNodeId, AstList), | |
| 382 | add_node_to_colored_graph(arg, SetExpr, SetType, SetNodeId), | |
| 383 | bliss_interface:add_edge(SetNodeId, SetRootNodeId), | |
| 384 | bliss_interface:add_edge(RootNodeId, SetNodeId), | |
| 385 | build_colored_graph(SetExpr, SetType, SetRootNodeId). | |
| 386 | build_colored_graph(if_then_else(Cond,If,Else), _, RootNodeId) :- | |
| 387 | % non-commutative | |
| 388 | !, | |
| 389 | get_texpr_expr_functor_and_type(Cond, CondExpr, CondType, CondFunctor), | |
| 390 | get_texpr_expr_functor_and_type(If, IfExpr, IfType, IfFunctor), | |
| 391 | get_texpr_expr_functor_and_type(Else, ElseExpr, ElseType, ElseFunctor), | |
| 392 | add_term_and_symbol_nodes_to_graph(CondExpr, CondType, CondFunctor, CondRootNodeId), | |
| 393 | add_term_and_symbol_nodes_to_graph(IfExpr, IfType, IfFunctor, IfRootNodeId), | |
| 394 | add_term_and_symbol_nodes_to_graph(ElseExpr, ElseType, ElseFunctor, ElseRootNodeId), | |
| 395 | add_node_to_colored_graph(arg, CondExpr, CondType, CondNodeId), | |
| 396 | add_node_to_colored_graph(arg, IfExpr, IfType, IfNodeId), | |
| 397 | add_node_to_colored_graph(arg, ElseExpr, ElseType, ElseNodeId), | |
| 398 | bliss_interface:add_edge(CondNodeId, CondRootNodeId), | |
| 399 | bliss_interface:add_edge(IfNodeId, IfRootNodeId), | |
| 400 | bliss_interface:add_edge(ElseNodeId, ElseRootNodeId), | |
| 401 | bliss_interface:add_edge(CondNodeId, IfNodeId), | |
| 402 | bliss_interface:add_edge(IfNodeId, ElseNodeId), | |
| 403 | bliss_interface:add_edge(RootNodeId, CondNodeId), | |
| 404 | build_colored_graph(CondExpr, CondType, CondRootNodeId), | |
| 405 | build_colored_graph(IfExpr, IfType, IfRootNodeId), | |
| 406 | build_colored_graph(ElseExpr, ElseType, ElseRootNodeId). | |
| 407 | build_colored_graph(assertion_expression(Cond,_ErrMsg,Expr), _, RootNodeId) :- | |
| 408 | % non-commutative | |
| 409 | !, | |
| 410 | get_texpr_expr_functor_and_type(Cond, CondExpr, CondType, CondFunctor), | |
| 411 | get_texpr_expr_functor_and_type(Expr, ExprExpr, ExprType, ExprFunctor), | |
| 412 | add_term_and_symbol_nodes_to_graph(CondExpr, CondType, CondFunctor, CondRootNodeId), | |
| 413 | add_term_and_symbol_nodes_to_graph(ExprExpr, ExprType, ExprFunctor, ExprRootNodeId), | |
| 414 | add_node_to_colored_graph(arg, CondExpr, CondType, CondNodeId), | |
| 415 | add_node_to_colored_graph(arg, ExprExpr, ExprType, ExprNodeId), | |
| 416 | bliss_interface:add_edge(CondNodeId, CondRootNodeId), | |
| 417 | bliss_interface:add_edge(ExprNodeId, ExprRootNodeId), | |
| 418 | bliss_interface:add_edge(CondNodeId, ExprNodeId), | |
| 419 | bliss_interface:add_edge(RootNodeId, CondNodeId), | |
| 420 | build_colored_graph(CondExpr, CondType, CondRootNodeId), | |
| 421 | build_colored_graph(ExprExpr, ExprType, ExprRootNodeId). | |
| 422 | build_colored_graph(forall(Ids,Lhs,Rhs), pred, RootNodeId) :- | |
| 423 | !, | |
| 424 | ( Lhs = b(truth,pred,_) % typing information might have been removed | |
| 425 | -> Body = Rhs | |
| 426 | ; Body = b(implication(Lhs,Rhs),pred,[]) | |
| 427 | ), | |
| 428 | create_nodes_for_ids(Ids), | |
| 429 | get_texpr_expr_functor_and_type(Body, BodyExpr, BodyType, BodyFunctor), | |
| 430 | add_term_and_symbol_nodes_to_graph(BodyExpr, BodyType, BodyFunctor, ArgRootNodeId), | |
| 431 | add_node_to_colored_graph(arg, BodyExpr, BodyType, ArgNodeId), | |
| 432 | bliss_interface:add_edge(ArgNodeId, ArgRootNodeId), | |
| 433 | bliss_interface:add_edge(RootNodeId, ArgNodeId), | |
| 434 | build_colored_graph(BodyExpr, BodyType, ArgRootNodeId). | |
| 435 | build_colored_graph(Expr, _, RootNodeId) :- | |
| 436 | ( Expr = comprehension_set(Ids,Body) | |
| 437 | ; Expr = exists(Ids,Body) | |
| 438 | ), | |
| 439 | !, | |
| 440 | create_nodes_for_ids(Ids), | |
| 441 | get_texpr_expr_functor_and_type(Body, BodyExpr, BodyType, BodyFunctor), | |
| 442 | add_term_and_symbol_nodes_to_graph(BodyExpr, BodyType, BodyFunctor, ArgRootNodeId), | |
| 443 | add_node_to_colored_graph(arg, BodyExpr, BodyType, ArgNodeId), | |
| 444 | bliss_interface:add_edge(ArgNodeId, ArgRootNodeId), | |
| 445 | bliss_interface:add_edge(RootNodeId, ArgNodeId), | |
| 446 | build_colored_graph(BodyExpr, BodyType, ArgRootNodeId). | |
| 447 | build_colored_graph(Fun, _, RootNodeId) :- | |
| 448 | functor(Fun, Functor, 3), | |
| 449 | member(Functor, [lambda,general_sum,general_product,quantified_union,quantified_intersection]), | |
| 450 | arg(2, Fun, Pred), | |
| 451 | arg(3, Fun, LExpr), | |
| 452 | % non-commutative | |
| 453 | !, | |
| 454 | get_texpr_expr_functor_and_type(LExpr, LExprExpr, LExprType, LExprFunctor), | |
| 455 | get_texpr_expr_functor_and_type(Pred, PredExpr, PredType, PredFunctor), | |
| 456 | add_term_and_symbol_nodes_to_graph(LExpr, LExprExpr, LExprFunctor, LExprRootNodeId), | |
| 457 | add_term_and_symbol_nodes_to_graph(Pred, PredType, PredFunctor, PredRootNodeId), | |
| 458 | add_node_to_colored_graph(arg, LExprExpr, LExprType, LExprNodeId), | |
| 459 | add_node_to_colored_graph(arg, PredExpr, PredType, PredNodeId), | |
| 460 | bliss_interface:add_edge(LExprNodeId, LExprRootNodeId), | |
| 461 | bliss_interface:add_edge(PredNodeId, PredRootNodeId), | |
| 462 | bliss_interface:add_edge(LExprNodeId, PredNodeId), | |
| 463 | bliss_interface:add_edge(RootNodeId, LExprNodeId), | |
| 464 | build_colored_graph(LExprExpr, LExprType, LExprRootNodeId), | |
| 465 | build_colored_graph(PredExpr, PredType, PredRootNodeId). | |
| 466 | build_colored_graph(record_field(Record, FieldName), Type, RootNodeId) :- | |
| 467 | % treated as a non-commutative operator but needs special case since the field name is just a Prolog atom and no B AST node | |
| 468 | !, | |
| 469 | get_texpr_expr_functor_and_type(Record, RecordExpr, RecordType, RecordFunctor), | |
| 470 | add_term_and_symbol_nodes_to_graph(RecordExpr, RecordType, RecordFunctor, RecordRootNodeId), | |
| 471 | ( have_seen_expr(FieldName, Type, TNodeId) | |
| 472 | -> FieldNameRootNodeId = TNodeId | |
| 473 | ; get_next_color(Color), | |
| 474 | bliss_interface:add_node(FieldName, Color, FieldNameRootNodeId), | |
| 475 | log_seen_expr(FieldName, Type, FieldNameRootNodeId) | |
| 476 | %asserta(ast_to_node_id(Term,Type,RootNodeId)) | |
| 477 | %asserta(node_id_to_ast(RootNodeId,b(Term,Type,[]))) | |
| 478 | ), | |
| 479 | add_node_to_colored_graph(arg, RecordExpr, RecordType, RecordNodeId), | |
| 480 | add_node_to_colored_graph(arg, FieldName, record_key, FieldNameNodeId), % use an artificial type record_key | |
| 481 | % one edge from the argument node to the argument's root node | |
| 482 | bliss_interface:add_edge(RecordNodeId, RecordRootNodeId), | |
| 483 | bliss_interface:add_edge(FieldNameNodeId, FieldNameRootNodeId), | |
| 484 | % edge from first to second argument to represent the ordering | |
| 485 | bliss_interface:add_edge(RecordNodeId, FieldNameNodeId), | |
| 486 | % add an edge from the root node to the first argument's argument node | |
| 487 | bliss_interface:add_edge(RootNodeId, RecordNodeId), | |
| 488 | build_colored_graph(RecordExpr, RecordType, RecordRootNodeId). | |
| 489 | build_colored_graph(Binary, _Type, RootNodeId) :- | |
| 490 | functor(Binary, Functor, Arity), | |
| 491 | Arity == 2, | |
| 492 | is_associative(Functor), | |
| 493 | !, | |
| 494 | split_associative_node(Binary, AstList), | |
| 495 | add_nodes_from_ast_list_commutative(RootNodeId, AstList). | |
| 496 | build_colored_graph(Binary, _Type, RootNodeId) :- | |
| 497 | functor(Binary, Functor, Arity), | |
| 498 | Arity == 2, | |
| 499 | \+ is_binary_interpreted_symbol(Binary), | |
| 500 | !, | |
| 501 | arg(1, Binary, Arg1), | |
| 502 | arg(2, Binary, Arg2), | |
| 503 | get_texpr_expr_functor_and_type(Arg1, Arg1Expr, Arg1Type, Arg1Functor), | |
| 504 | get_texpr_expr_functor_and_type(Arg2, Arg2Expr, Arg2Type, Arg2Functor), | |
| 505 | % root nodes for arguments | |
| 506 | add_term_and_symbol_nodes_to_graph(Arg1Expr, Arg1Type, Arg1Functor, Arg1RootNodeId), | |
| 507 | add_term_and_symbol_nodes_to_graph(Arg2Expr, Arg2Type, Arg2Functor, Arg2RootNodeId), | |
| 508 | ( is_commutative_but_not_associative(Functor) | |
| 509 | -> % add an edge from the root node to the root node of each argument | |
| 510 | bliss_interface:add_edge(RootNodeId, Arg1RootNodeId), | |
| 511 | bliss_interface:add_edge(RootNodeId, Arg2RootNodeId) | |
| 512 | ; % special argument node for each argument | |
| 513 | add_node_to_colored_graph(arg, Arg1Expr, Arg1Type, Arg1NodeId), | |
| 514 | add_node_to_colored_graph(arg, Arg2Expr, Arg2Type, Arg2NodeId), | |
| 515 | % one edge from the argument node to the argument's root node | |
| 516 | bliss_interface:add_edge(Arg1NodeId, Arg1RootNodeId), | |
| 517 | bliss_interface:add_edge(Arg2NodeId, Arg2RootNodeId), | |
| 518 | % edge from first to second argument to represent the ordering | |
| 519 | bliss_interface:add_edge(Arg1NodeId, Arg2NodeId), | |
| 520 | % add an edge from the root node to the first argument's argument node | |
| 521 | bliss_interface:add_edge(RootNodeId, Arg1NodeId) | |
| 522 | ), | |
| 523 | build_colored_graph(Arg1Expr, Arg1Type, Arg1RootNodeId), | |
| 524 | build_colored_graph(Arg2Expr, Arg2Type, Arg2RootNodeId). | |
| 525 | build_colored_graph(Term, _, _) :- | |
| 526 | ( is_interpreted_symbol(Term) | |
| 527 | ; is_uninterpreted_symbol(Term) | |
| 528 | ), | |
| 529 | !. | |
| 530 | build_colored_graph(Unary, _Type, RootNodeId) :- | |
| 531 | functor(Unary, _Functor, Arity), | |
| 532 | Arity == 1, | |
| 533 | !, | |
| 534 | arg(1, Unary, Arg), | |
| 535 | get_texpr_expr_functor_and_type(Arg, ArgExpr, ArgType, ArgFunctor), | |
| 536 | % root node for argument | |
| 537 | add_term_and_symbol_nodes_to_graph(ArgExpr, ArgType, ArgFunctor, ArgRootNodeId), | |
| 538 | % special argument node for each argument | |
| 539 | add_node_to_colored_graph(arg, ArgExpr, ArgType, ArgNodeId), | |
| 540 | % one edge from the argument node to the argument's root node | |
| 541 | bliss_interface:add_edge(ArgNodeId, ArgRootNodeId), | |
| 542 | % add an edge from the root node to the first argument's argument node | |
| 543 | bliss_interface:add_edge(RootNodeId, ArgNodeId), | |
| 544 | build_colored_graph(ArgExpr, ArgType, ArgRootNodeId). | |
| 545 | build_colored_graph(Expr, _Type, _ExprRootNodeId) :- | |
| 546 | add_warning(smt_symmetry_breaking, 'Missing implementation in build_colored_graph/3 for: ', [Expr]), !, | |
| 547 | fail. | |
| 548 | ||
| 549 | %% build_colored_graph_from_set(+List, +RootNodeId). | |
| 550 | build_colored_graph_from_set([], _). | |
| 551 | build_colored_graph_from_set([Elm|T], RootNodeId) :- | |
| 552 | % commutative | |
| 553 | ( Elm = field(_,FieldElm) % Note: we treat records as sets for symmetry breaking, i.e., it's just a collection with no order | |
| 554 | -> get_texpr_expr_functor_and_type(FieldElm, ElmExpr, ElmType, ElmFunctor) | |
| 555 | ; get_texpr_expr_functor_and_type(Elm, ElmExpr, ElmType, ElmFunctor) | |
| 556 | ), | |
| 557 | add_term_and_symbol_nodes_to_graph(ElmExpr, ElmType, ElmFunctor, ElmRootNodeId), | |
| 558 | bliss_interface:add_edge(RootNodeId, ElmRootNodeId), | |
| 559 | build_colored_graph(ElmExpr, ElmType, ElmRootNodeId), | |
| 560 | build_colored_graph_from_set(T, RootNodeId). | |
| 561 | ||
| 562 | create_nodes_for_ids([]). | |
| 563 | create_nodes_for_ids([b(identifier(Id),Type,_)|T]) :- | |
| 564 | add_term_and_symbol_nodes_to_graph(identifier(Id), Type, identifier, _), | |
| 565 | create_nodes_for_ids(T). | |
| 566 | ||
| 567 | have_seen_expr(Term, Type, NodeId) :- | |
| 568 | norm_expr_check(b(Term,Type,[]), Norm), | |
| 569 | seen_expr(Norm, NodeId). | |
| 570 | ||
| 571 | have_seen_pred(Term, NodeId) :- | |
| 572 | norm_pred_check(b(Term,pred,[]), Norm), | |
| 573 | seen_pred(Norm, NodeId). | |
| 574 | ||
| 575 | log_seen_expr(Term, Type, RootNodeId) :- | |
| 576 | norm_expr_check(b(Term,Type,[]), Norm), | |
| 577 | asserta(seen_expr(Norm, RootNodeId)). | |
| 578 | ||
| 579 | log_seen_pred(Term, RootNodeId) :- | |
| 580 | norm_pred_check(b(Term,pred,[]), Norm), | |
| 581 | asserta(seen_pred(Norm, RootNodeId)). | |
| 582 | ||
| 583 | %% add_term_and_symbol_nodes_to_graph(+Term, +Type, +Functor, -RootNodeId). | |
| 584 | % Add a root node for compound term f(t1,...,tn). Add an edge from the root node to the (unique) symbol node for f. | |
| 585 | % Add a node for (un)interpreted symbols. | |
| 586 | add_term_and_symbol_nodes_to_graph(Term, Type, _, RootNodeId) :- | |
| 587 | is_interpreted_symbol(Term), | |
| 588 | ( have_seen_expr(Term, Type, TNodeId) | |
| 589 | -> TRootNodeId = TNodeId | |
| 590 | ; get_next_color(Color), | |
| 591 | term_to_label(Term, ATerm), | |
| 592 | bliss_interface:add_node(ATerm, Color, RootNodeId), | |
| 593 | log_seen_expr(Term, Type, RootNodeId) | |
| 594 | %asserta(ast_to_node_id(Term,Type,RootNodeId)) | |
| 595 | %asserta(node_id_to_ast(RootNodeId,b(Term,Type,[]))) | |
| 596 | ), !, | |
| 597 | RootNodeId = TRootNodeId. | |
| 598 | add_term_and_symbol_nodes_to_graph(Term, Type, _, RootNodeId) :- | |
| 599 | is_uninterpreted_symbol(Term), | |
| 600 | ( have_seen_expr(Term, Type, TNodeId) | |
| 601 | -> TRootNodeId = TNodeId | |
| 602 | ; get_color_for_type(Type, Term, Color), | |
| 603 | term_to_label(Term, ATerm), | |
| 604 | bliss_interface:add_node(ATerm, Color, RootNodeId), | |
| 605 | log_seen_expr(Term, Type, RootNodeId), | |
| 606 | asserta(ast_to_node_id(Term,Type,RootNodeId)), | |
| 607 | asserta(node_id_to_ast(RootNodeId,b(Term,Type,[]))) | |
| 608 | ), !, | |
| 609 | RootNodeId = TRootNodeId. | |
| 610 | add_term_and_symbol_nodes_to_graph(Term, Type, Functor, RootNodeId) :- | |
| 611 | categorize_type(Type, Category, SymbolCategory), | |
| 612 | add_node_to_colored_graph(SymbolCategory, Functor, Type, SymbolNodeId), | |
| 613 | add_node_to_colored_graph(Category, Term, Type, RootNodeId), | |
| 614 | % add an edge from the root node to the symbol node | |
| 615 | bliss_interface:add_edge(RootNodeId, SymbolNodeId). | |
| 616 | ||
| 617 | %% add_node_to_colored_graph(+Category, +Symbol, +Type, -NodeId). | |
| 618 | % Symbol can be a compound term like conjunct(_,_) or uninterpreted symbol like conjunct. | |
| 619 | % Argument nodes are assigned a specific, unique color. | |
| 620 | % Uninterpreted symbol nodes and root nodes are assigned a color based on their type. | |
| 621 | % Each interpreted symbol such as the integer 1 is assigned a unique color. | |
| 622 | add_node_to_colored_graph(arg, _, _, ArgNodeId) :- | |
| 623 | color(arg, Color), | |
| 624 | bliss_interface:add_node('arg', Color, ArgNodeId), !. | |
| 625 | %asserta(node_id_to_ast(ArgNodeId,b(Symbol,pred,[]))). | |
| 626 | add_node_to_colored_graph(Category, Symbol, Type, NodeId) :- | |
| 627 | ( Category == pred, IsPred = true, IsExpr = false | |
| 628 | ; Category == expr, IsExpr = true, IsPred = false | |
| 629 | ), | |
| 630 | ( ( (IsPred, have_seen_pred(Symbol, TNodeId)) | |
| 631 | ; (IsExpr, have_seen_expr(Symbol, Type, TNodeId)) | |
| 632 | ) | |
| 633 | -> NodeId = TNodeId | |
| 634 | ; get_color_for_type(Type, Symbol, Color), | |
| 635 | term_to_label(Symbol, ASymbol), | |
| 636 | bliss_interface:add_node(ASymbol, Color, NodeId), | |
| 637 | ( IsExpr | |
| 638 | -> log_seen_expr(Symbol, Type, NodeId) | |
| 639 | ; log_seen_pred(Symbol, NodeId) | |
| 640 | ) | |
| 641 | %asserta(node_id_to_ast(NodeId,b(Symbol,Type,[]))) | |
| 642 | ), !. | |
| 643 | add_node_to_colored_graph(upred, USymbol, pred, NodeId) :- | |
| 644 | seen_upred(USymbol, TNodeId), | |
| 645 | !, | |
| 646 | NodeId = TNodeId. | |
| 647 | add_node_to_colored_graph(upred, USymbol, pred, NodeId) :- | |
| 648 | get_next_color(Color), | |
| 649 | bliss_interface:add_node(USymbol, Color, NodeId), | |
| 650 | asserta(seen_upred(USymbol,NodeId)), !. | |
| 651 | add_node_to_colored_graph(uexpr, USymbol, _, NodeId) :- | |
| 652 | seen_uexpr(USymbol, TNodeId), | |
| 653 | !, | |
| 654 | NodeId = TNodeId. | |
| 655 | add_node_to_colored_graph(uexpr, USymbol, _, NodeId) :- | |
| 656 | get_next_color(Color), | |
| 657 | bliss_interface:add_node(USymbol, Color, NodeId), | |
| 658 | asserta(seen_uexpr(USymbol,NodeId)), !. | |
| 659 | ||
| 660 | expr_functor(b(Expr,_,_), Functor) :- | |
| 661 | !, | |
| 662 | functor(Expr, Functor, _). | |
| 663 | expr_functor(Expr, Functor) :- | |
| 664 | functor(Expr, Functor, _). | |
| 665 | ||
| 666 | term_to_label(Term, Atom) :- | |
| 667 | Term =.. [Functor|Args], | |
| 668 | maplist(expr_functor, Args, ArgFunctors), | |
| 669 | NTerm =.. [Functor|ArgFunctors], | |
| 670 | write_to_codes(NTerm, Codes), | |
| 671 | atom_codes(Atom, Codes). | |
| 672 | ||
| 673 | %% get_color_for_type(+Type, +Symbol, -Color). | |
| 674 | get_color_for_type(Type, _, Color) :- | |
| 675 | color(Type, TColor), | |
| 676 | !, | |
| 677 | Color = TColor. | |
| 678 | get_color_for_type(Type, _, Color) :- | |
| 679 | get_next_color(Color), | |
| 680 | asserta(color(Type,Color)). | |
| 681 | ||
| 682 | %% get_next_color(-Color). | |
| 683 | get_next_color(Color) :- | |
| 684 | retract(next_color(Color)), | |
| 685 | Color1 is Color + 1, | |
| 686 | asserta(next_color(Color1)). | |
| 687 | ||
| 688 | %% categorize_type(+Type, -Category, -SymbolCategory). | |
| 689 | % Only used for a faster lookup of asserted facts. | |
| 690 | categorize_type(Type, Category, SymbolCategory) :- | |
| 691 | Type == pred, | |
| 692 | !, | |
| 693 | Category = pred, | |
| 694 | SymbolCategory = upred. | |
| 695 | categorize_type(_, expr, uexpr). | |
| 696 | ||
| 697 | %% is_associative(+Term). | |
| 698 | is_associative(conjunct). | |
| 699 | is_associative(disjunct). | |
| 700 | is_associative(add). | |
| 701 | is_associative(multiplication). | |
| 702 | is_associative(union). | |
| 703 | is_associative(intersection). | |
| 704 | ||
| 705 | %% is_commutative_but_not_associative(+Term). | |
| 706 | is_commutative_but_not_associative(equivalence). | |
| 707 | is_commutative_but_not_associative(equal). | |
| 708 | is_commutative_but_not_associative(not_equal). | |
| 709 | ||
| 710 | is_uninterpreted_symbol(identifier(_)). | |
| 711 | %is_uninterpreted_symbol(record_field(_,_)). | |
| 712 | ||
| 713 | is_interpreted_symbol(Symbol) :- | |
| 714 | is_binary_interpreted_symbol(Symbol). | |
| 715 | is_interpreted_symbol(boolean_true). | |
| 716 | is_interpreted_symbol(boolean_false). | |
| 717 | is_interpreted_symbol(max_int). | |
| 718 | is_interpreted_symbol(min_int). | |
| 719 | is_interpreted_symbol(empty_set). | |
| 720 | is_interpreted_symbol(empty_sequence). | |
| 721 | is_interpreted_symbol(bool_set). | |
| 722 | is_interpreted_symbol(real_set). | |
| 723 | is_interpreted_symbol(float_set). | |
| 724 | is_interpreted_symbol(string_set). | |
| 725 | is_interpreted_symbol(real(_)). | |
| 726 | is_interpreted_symbol(integer(_)). | |
| 727 | is_interpreted_symbol(string(_)). | |
| 728 | is_interpreted_symbol(value(_)). | |
| 729 | is_interpreted_symbol(integer_set(_)). | |
| 730 | is_interpreted_symbol(event_b_identity). | |
| 731 | ||
| 732 | is_binary_interpreted_symbol(interval(A,B)) :- | |
| 733 | is_interpreted_symbol(A), | |
| 734 | is_interpreted_symbol(B). | |
| 735 | ||
| 736 | %% zip_to_equalities_conj(+Ids, +EqVals, -Eqs). | |
| 737 | zip_to_equalities_conj([Id|T], [EqVal|VT], Eqs) :- | |
| 738 | zip_to_equalities_conj(T, VT, b(equal(Id,EqVal),pred,[]), Eqs). | |
| 739 | ||
| 740 | zip_to_equalities_conj([], [], Acc, Acc). | |
| 741 | zip_to_equalities_conj([Id|T], [EqVal|VT], Acc, Eqs) :- | |
| 742 | safe_create_texpr(conjunct(b(equal(Id,EqVal),pred,[]),Acc), pred, [], NAcc), | |
| 743 | zip_to_equalities_conj(T, VT, NAcc, Eqs). | |
| 744 | ||
| 745 | %% order_variables(+TypedVars, -TypeOrdering, -VariableOrdering). | |
| 746 | % Assume that the variable set used in the SMT formula is an ordered set. | |
| 747 | % Assume that there is some pre-defined ordering over types, and all the | |
| 748 | % variables of a certain type ti appear before all the variables of another | |
| 749 | % type tj in the variable ordering if type ti appears before type tj in the type ordering. | |
| 750 | order_variables(TypedVars, TypeOrdering, VariableOrdering) :- | |
| 751 | order_variables_by_type(TypedVars, [], VarsOrderedByType), | |
| 752 | order_variables_within_typed_group(VarsOrderedByType, [], [], TypeOrdering, VariableOrdering). | |
| 753 | ||
| 754 | %% order_variables_by_type(+TypedVars, +Acc, -VarsOrderedByType). | |
| 755 | % Deterministic ordering of variables and corresponding types. The variables within the group of a type | |
| 756 | % are sorted by their name using @<. | |
| 757 | order_variables_by_type([], Acc, Acc). | |
| 758 | order_variables_by_type([TypedVar|T], Acc, VarsOrderedByType) :- | |
| 759 | TypedVar = b(_,Type,_), | |
| 760 | extend_type_acc(Acc, Type, TypedVar, NAcc), | |
| 761 | order_variables_by_type(T, NAcc, VarsOrderedByType). | |
| 762 | ||
| 763 | %% order_variables_within_typed_group(+TypeVarsTuples, +VarAcc, +TypeAcc, -TypeOrdering, -VariableOrdering). | |
| 764 | order_variables_within_typed_group([], VAcc, TAcc, TAcc, VAcc). | |
| 765 | order_variables_within_typed_group([(Type,TypeVars)|T], VAcc, TAcc, TypeOrdering, VariableOrdering) :- | |
| 766 | samsort(cmp_typed_identifier, TypeVars, STypeVars), | |
| 767 | append(STypeVars, VAcc, NVAcc), | |
| 768 | order_variables_within_typed_group(T, NVAcc, [Type|TAcc], TypeOrdering, VariableOrdering). | |
| 769 | ||
| 770 | cmp_typed_identifier(b(identifier(Id1),_,_), b(identifier(Id2),_,_)) :- | |
| 771 | Id1 @< Id2. | |
| 772 | ||
| 773 | %% extend_type_acc(+Acc, +Type, +TypedVar, -NAcc). | |
| 774 | % Acc is a list of tuples (Type,TypeVars). | |
| 775 | extend_type_acc(Acc, Type, TypedVar, NAcc) :- | |
| 776 | select((Type,TypedVars), Acc, RAcc), | |
| 777 | !, | |
| 778 | NAcc = [(Type,[TypedVar|TypedVars])|RAcc]. | |
| 779 | extend_type_acc(Acc, Type, TypedVar, NAcc) :- | |
| 780 | NAcc = [(Type,[TypedVar])|Acc]. | |
| 781 | ||
| 782 | :- begin_tests(order_variables). | |
| 783 | ||
| 784 | test(order_variables_empty, [true((VariableOrdering == ExpectedVars, TypeOrdering == ExpectedTypes))]) :- | |
| 785 | Variables = [], | |
| 786 | order_variables(Variables, TypeOrdering, VariableOrdering), | |
| 787 | ExpectedVars = [], | |
| 788 | ExpectedTypes = []. | |
| 789 | ||
| 790 | test(order_variables_single_type, [true((VariableOrdering == ExpectedVars, TypeOrdering == ExpectedTypes))]) :- | |
| 791 | Variables = [b(identifier(c),integer,[]),b(identifier(a),integer,[]),b(identifier(b),integer,[])], | |
| 792 | order_variables(Variables, TypeOrdering, VariableOrdering), | |
| 793 | ExpectedVars = [b(identifier(a),integer,[]),b(identifier(b),integer,[]),b(identifier(c),integer,[])], | |
| 794 | ExpectedTypes = [integer]. | |
| 795 | ||
| 796 | test(order_variables_two_types, [true((VariableOrdering == ExpectedVars, TypeOrdering == ExpectedTypes))]) :- | |
| 797 | Variables = [b(identifier(c),integer,[]),b(identifier(d),set(integer),[]),b(identifier(a),integer,[]),b(identifier(e),set(integer),[]),b(identifier(b),integer,[]),b(identifier(f),set(integer),[])], | |
| 798 | order_variables(Variables, TypeOrdering, VariableOrdering), | |
| 799 | ExpectedVars = [b(identifier(a),integer,[]),b(identifier(b),integer,[]),b(identifier(c),integer,[]),b(identifier(d),set(integer),[]),b(identifier(e),set(integer),[]),b(identifier(f),set(integer),[])], | |
| 800 | ExpectedTypes = [integer,set(integer)]. | |
| 801 | ||
| 802 | test(order_variables_two_types_set_first, [true((VariableOrdering == ExpectedVars, TypeOrdering == ExpectedTypes))]) :- | |
| 803 | Variables = [b(identifier(d),set(integer),[]),b(identifier(a),integer,[])], | |
| 804 | order_variables(Variables, TypeOrdering, VariableOrdering), | |
| 805 | ExpectedVars = [b(identifier(d),set(integer),[]),b(identifier(a),integer,[])], | |
| 806 | ExpectedTypes = [set(integer),integer]. | |
| 807 | ||
| 808 | test(order_variables_two_types_integer_first, [true((VariableOrdering == ExpectedVars, TypeOrdering == ExpectedTypes))]) :- | |
| 809 | Variables = [b(identifier(a),integer,[]),b(identifier(d),set(integer),[])], | |
| 810 | order_variables(Variables, TypeOrdering, VariableOrdering), | |
| 811 | ExpectedVars = [b(identifier(a),integer,[]),b(identifier(d),set(integer),[])], | |
| 812 | ExpectedTypes = [integer,set(integer)]. | |
| 813 | ||
| 814 | test(order_variables_three_types, [true((VariableOrdering == ExpectedVars, TypeOrdering == ExpectedTypes))]) :- | |
| 815 | Variables = [b(identifier(c),integer,[]),b(identifier(d),set(integer),[]),b(identifier(a),integer,[]),b(identifier(e),set(integer),[]),b(identifier(b),integer,[]),b(identifier(f),set(set(string)),[])], | |
| 816 | order_variables(Variables, TypeOrdering, VariableOrdering), | |
| 817 | ExpectedVars = [b(identifier(d),set(integer),[]),b(identifier(e),set(integer),[]),b(identifier(a),integer,[]),b(identifier(b),integer,[]),b(identifier(c),integer,[]),b(identifier(f),set(set(string)),[])], | |
| 818 | ExpectedTypes = [set(integer),integer,set(set(string))]. | |
| 819 | ||
| 820 | :- end_tests(order_variables). | |
| 821 | ||
| 822 | ||
| 823 | % The elements of enumerated sets already impose an order which has to be respected for symmetry breaking using the external prediate call LEQ_SYM. | |
| 824 | %get_ordering_for_enumerated_set_elements(GlobalType, Ast1, Ast2, OrderedList) :- | |
| 825 | % b_get_named_machine_set(GlobalType, EnumElements), | |
| 826 | % Ast1 = b(identifier(Var1),global(GlobalType),_), | |
| 827 | % Ast2 = b(identifier(Var2),global(GlobalType),_), | |
| 828 | % nth0(Pos1, EnumElements, Var1), | |
| 829 | % nth0(Pos2, EnumElements, Var2), | |
| 830 | % % TODO: improve for "transitive" symmetries with non-static enumerated set elements | |
| 831 | % ( Pos1 =< Pos2 | |
| 832 | % -> OrderedList = [Ast1,Ast2] | |
| 833 | % ; OrderedList = [Ast2,Ast1] | |
| 834 | % ). | |
| 835 | ||
| 836 | %% get_equality_from_cycle(+Cycle, -Eq). | |
| 837 | % Pairwise equality. | |
| 838 | %get_equality_from_cycle([A,B|T], Eq) :- | |
| 839 | % EqAcc = b(equal(A,B),pred,[]), | |
| 840 | % get_equality_from_cycle([B|T], EqAcc, Eq). | |
| 841 | % | |
| 842 | %get_equality_from_cycle([_], EqAcc, EqAcc). | |
| 843 | %get_equality_from_cycle([A,B|T], EqAcc, Eq) :- | |
| 844 | % NEqAcc = b(conjunct(b(equal(A,B),pred,[]),EqAcc),pred,[]), | |
| 845 | % get_equality_from_cycle([B|T], NEqAcc, Eq). |