INnnoQ

REST:
SOA without Contracts?

Stefan Tilkov | innoQ | stefan.tilkov@innoq.com

mailto:stefan.tilkov@innoq.com
mailto:stefan.tilkov@innoq.com

What is REST?

REST: An Architectural Style

One of a number of “architectural styles”

.. described by Roy Fielding in his
dissertation

.. defined via a set of constraints that have to
be met

.. architectural principles underlying HT TP,
defined a posteriori

.. with the Web as one particular instance

See: http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

REST: The Web Used Correctly

A system or application architecture

.. that uses HT TP, URI and other Web
standards “correctly”

.. Is “on” the Web, not tunneled through it
.. also called “WOA”", “ROA”, “RESTful HTTP”

REST: XML without SOAP

Send plain XML (w/o a SOAP Envelope) via
HTTP

... violating the Web as much as WS-*
... preferably use GET to invoke methods
... or tunnel everything through POST

... commonly called “POX”

RESTful HTTP
Explained
iIn 5 Easy Steps

1. Give Every “Thing” an ID

http://example.

http://example.
http://example.

http://example.

com/customers/1234

com/orders/2007/10/776654
com/products/4554

com/processes/sal-1ncrease-234

http://example.com/customers/1234
http://example.com/customers/1234
http://example.com/orders/2007/10/776654
http://example.com/orders/2007/10/776654
http://example.com/products/4554
http://example.com/products/4554
http://example.com/processes/sal-increase-234
http://example.com/processes/sal-increase-234

2. Link Things To Each Other

<order self="http://example.com/orders/1234°>
<amount>Z23</amount>
<product ref="http://example.com/products/4554° />
<customer ref="http://example.com/customers/1234° />
</order>

http://example.com/customers/1234
http://example.com/customers/1234
http://example.com/customers/1234
http://example.com/customers/1234
http://example.com/customers/1234
http://example.com/customers/1234
http://example.com/customers/1234
http://example.com/customers/1234
http://example.com/customers/1234
http://example.com/customers/1234

3. Use Standard Methods

GET Retrieve information, possibly cached
PUT Update or create with known |ID
POST Create or append sub-resource

DELETE (Logically) remove

4. Allow for Multiple
“Representations”

GET /customers/1234
Host: example.com
Accept: application/vnd.mycompany.customer+xml

<customer>...</customer>

GET /customers/1234
Host: example.com
Accept: text/x-vcard

begin:vcard

end:vcard

5. Communicate Statelessly

GET /customers/1234
Host: example.com
Accept: application/vnd.mycompany.customer+xml

<customer><order ref=’./orders/46’</customer>

... shutdown
.. update software
... rep|ace hardware
... startup

GET /customers/1234/orders/46

Host: example.com
Accept: application/vnd.mycompany.order+xml

<order>...</order>

What’s cool
about REST?

generic

interface Resource {
Resource(URT u)

Response get()

Response post(Request r)
Response put(Request r)
Response delete()

class CustomerCollection : Resource {

Response post(Request r) {
1d = createCustomer(r)
return new Response(201, r)

A

v

specific

Any HTTP client

(Firefox, IE, curl, wget)

Any HTTP server
Caches

Proxies

Google,Yahoo!, MSN

Anything that knows

your app

OrderManagementService

+ getOrders()

+ submitOrder()

+ getOrderDetails()

+ getOrdersForCustomers()
+ updateOrder()

+ addOrderltem()

+ cancelOrder()

«interface»
Resource

CustomerManagementService

GET
PUT
POST

+ getCustomers()

+ addCustomer()

+ getCustomerDetails()
+ updateCustomer()

+ deleteCustomer()

BE =i

/orders

GET - list all orders

PUT - unused

POST - add a new order
DELETE - unused

/orders/id}

GET - get order details
PUT - update order
POST - add item
DELETE - cancel order

/customers
GET - list all customers
PUT - unused

POST - add new customer
DELETE - unused

/customers/{id}

GET - get customer details
PUT - update customer
POST - unused

DELETE - delete customer

/customers/id}/orders

GET - get all orders for customer
PUT - unused

POST - add order

DELETE - cancel all customer orders

Mapping Examples

getFreeTimeSlots(Person)

— GET /people/{id}/timeslots?state=free

rejectApplication(Application)

—POST /rejections+
<application>http://...</application>+
<reason>Unsuitable for us!</reason>

performTariffCalculation(Data)

—POST /contracts+

Data
+Location: http://.../contracts/471 |
— GET /contracts/471 | /rate
+—Result

shipOrder(ID)

—PUT /orders/0815+
<status>shipped</status>

shipOrder(ID) [variation]

—POST /shipments+
Data
—Location: http://.../shipments/471 |

Description

The SOAP/WSDL Problem

Each application is different

Each application requires its own protocol
Need to learn a new API every single time
WSDL as formal approach for syntax only

Separation of application and metadata

Anatomy of a WSDL File

80% XML Schema

2% Message Definitions

5% Operation Names, Input, Output
0% Meaningless Legacy

3% Address Info

SOAP/WSDL

RESTful HTTP

XML Schema

XML Schema

Message Definitions

Operation Names, Input, Output

GET, PUT, POST, DELETE

Meaningless Legacy

Address Info

URIs

“Informal” Documentation
(Word, PDE HTML, ...)

“Informal”’” Documentation
(Word, PDF HTML, ...

RESTful HTTP Approach

Data Operations Identity

Data

media types
content negotiation
standard formats
XML Schema & Co.

Operations

minimal set of methods
standardized semantics
uniformity

general applicability

Identity

standardized IDs
cross-application usage
“dereferencability”

ID longevity

“RESTful” Formalisms

WSDL 2.0: Supposedly Usable for REST

» XML-focused and operation-centric
» No content negotiation
» No hypermedia Support

WADL (Web Application Description
Language), https://wadl.dev.java.net/

» As RESTful as external metadata can be
» Use cases still doubtful

WADL Example

<resources base="http://api.search.yahoo.com/NewsSearchService/V1/">
<resource path="newsSearch">
<method name="GET" 1id="search">
<request>
<param name="appid" type="xsd:string" style="query" required="true"/>
<param name="query" type="xsd:string" style="query" required="true"/>
<param name="type" style="query" default="all">
<option value="all"/>
<option value="any"/>
<option value="phrase"/>
</param>
<param name="results" style="query" type="xsd:int" default="10"/>
<param name="start" style="query" type="xsd:int" default="1"/>
<param name="sort" style="query" default="rank">
<option value="rank"/>
<option value="date"/>
</param>
<param name="language" style="query" type="xsd:string"/>
</request>
<response>
<representation mediaType="application/xml" element="yn:ResultSet"/>
<fault status="400" mediaType="application/xml" element="ya:Error"/>
</response>
</method>
</resource>
</resources>

Conclusion(s)

1. External metadata is a
problem, not a solution

2. Data, operation and identity
semantics can be separated

3. The Web is more than you
think it is

If You Want to Know
More

http://www.innoq.com/resources/REST

http://www.innoq.com
http://www.innoq.com

I
Web Services for the Real World

Ao LR L Jovos 1 g il ke
/. = o
, :
& o
Y o A
% S
] ~ %2
B0)

e

) e

vl L
) 3

5%

"RESTful

O‘REILLY. Leonard Ricivordson & Sam Ruln

http://www.oreilly.com/catalog/9780596529260/

http://www.oreilly.com/catalog/9780596529260/
http://www.oreilly.com/catalog/9780596529260/

3 All Content on InfoQ ab...

InfoQ

332,438 Aug unique
visitors

Welcome, Stefan!

Sign out
Preferences
About us
Personal feed £
Home

Your Communities

¥ Java
[1.NET

¥ Ruby

v SOA

[Agile

¥ Architecture

’, Search

Cantisvrard ThAamisco

Tracking change and innovation in the enterprise software development
community

Version 1.4

Topic/Tag specific view

All content and news on InfoQ about REST

Latest featured content about REST
AtomServer — The Power of Publishing for Data Distribution — Part Two

Community SOA Topics REST, Open Source

In this article, Bryon Jacob and Chris Berry continue their description of AtomServer, their implementat
of a full-fledged Atom Store based on Apache Abdera. The authors have created several extensions t«
AtomPub specification, among them Auto-Tagging, Batching, and Aggregate Feeds. By Chris Berry & Bry
Jacob on Sep 26, 2008, ' Discuss

ress hetp://www.infoq.com/REST

JSR 311 rinai: vava Ar1 Tor KED 1TUI vveb Services
Community Java, SOA Topics REST
After a little more than one and a half years, the Java platform gets its own API for building RESTful w

RS, JSR 311. InfoQ had a chance to talk to spec leads Marc Hadley and Paul Sandoz. By Stefan Tilkov on Se
comments

WOA vs SOA Debate

Community SOA Topics REST

In an interview, Loraine Lawson asked Cartner Vice President Nick Gall, who is credited with first desc
oriented architecture (WOA), to give business and IT leaders the bottom line about the WOA versus SQC
Krishnan on Sep 22, 2008, - Discuss

More news about REST >>
Articles about REST

http://www.infoq.com
http://www.infoq.com

Thank you!
Any questions?

http://www.innoqg.com
http://railsconsulting.de

Stefan Tilkov

http://www.innog.com/blog/st/

INnnoQ

Architectural Consulting

SOA WS-* REST
MDA MDSD MDE
J(2)EE RoR NET

innol Deutschland GmbH o 0 Schweiz GmbH
Halskestralie 17 Gewerbestrasse 11
D-208B0 Ratingen CH=6330 Cham

Fhone +49 2102 77 162 -100 Phone +4141 743101

i o TPV LCoim - l."."."J'n'q'.ir'lrIlilq.L"I.llll

http://www.innoq.com/blog/st
http://www.innoq.com/blog/st
http://www.innoq.com/blog/st
http://www.innoq.com/blog/st

