
Verification and Certification  

Using Rewriting Logic 
Santiago Escobar 

Technical University of Valencia 



Outline  

Verification and Certification in Rewriting Logic 

1.  Web Verdi-M: a rule-based Web verification system 

2.  Maude-NPA: a crypto protocol analyzer 

3.  Automated Certification of Java Source Code in 
Maude 



Why rewriting logic (Maude)?  

1.  Models and formal specification are easily written in Maude 
(Simplicity, Expressiveness, and Performance) 

2.  Maude provides rewriting modulo associativity, commutativity 
and identity 

3.  Differentiation between concurrent and deterministic 
fragments of a model, differentiation between non-terminating 
and terminating fragments of a model 

4.  It provides order-sorted specifications 
5.  It provides an infrastructure for formal analysis and verification 

(including a search command, a LTL model checker, a theorem 
prover, etc. 

6.  Reflection (meta-modeling, symbolic execution, etc.) 
7.  Models of computation (λ-calculi, π-calculus, petri nets, CCS), 

Programming languages (Java, Haskell, Prolog), Distributed 
algorithms and systems (real-time, probabilistic), Biological 
systems in Maude 



María Alpuente (Universidad Politecnica de Valencia, Spain) 
Demis Ballis (Università di Udine, Italy) 

Moreno Falaschi (Università di Siena, Italy)  
Pedro Ojeda (Universidad Politécnica de Valencia, Spain) 

Daniel Romero (Universidad Nacional de Río Cuarto,  Argentina) 



Web Verdi-M : Goals 

•  Web Service and web client for verification of 
web sites w.r.t. an intended behavior. 

•  Optimization and repairing support. 



Intended Behavior 

•  We have a specification language to verify if a 
web site is correct w.r.t. its specification. 

•  This specification contains rules: 
•  Correctness rules (for detecting incorrect web 

pages). These rules have the following form: 
•  member( name(  X  )  , surname(  Z  )  )  -> error : X == Z 

•  Completeness rules (for detecting information 
incomplete and/or missing web pages). These rules 
have the following form: 

•  hpage( status(  Professor  )  )  -> #hpage( #status(  #Professor  )  , 
teaching(  )  )  <  A  > 



Web Verdi-M: Architecture  

Front-end Back-end 



Graphical interface 

•  The graphical interface is based on tree 
directories. 

•  Example: 
•  member(name(X),surname(Z)) 



Main Window 



Web Site Panel 



Check Rules - Options 

•  Check via the web service, the correctness 
rules loaded. 

•  Check via the web service, the completeness 
rules loaded. 

•  Check via the web service, the correctness and 
completeness rules loaded. 



Error Views – Correctness(1) 



Error Views – Correctness(2) 



Error Views – Completeness(1) 



Error Views – Completeness(2) 



Extensions and Optimizations 

  Abstract Verification (via Source-to Source 
Compression Transformation) 

  Ontology reasoning 



Maude-NPA: crypto protocol 
analyzer 

Santiago Escobar (Universidad Politécnica de Valencia, Spain) 
Catherine Meadows (Naval Research Laboratory, USA) 

José Meseguer (University of Illinois at Urbana-Champaign, USA) 
Sonia Santiago (Universidad Politécnica de Valencia, Spain) 

Carolyn Talcott (SRI International, USA) 



General Maude‐NPA Goal 

•  Crypto protocol analysis with the standard free algebra model (“Dolev-Yao”) well 
understood 

•  Extend standard free algebra model of cryto protocol analysis to deal with algebraic 
properties: 
1.  Encryption-decryption 
2.  Diffie Hellman 
3.  Exclusive-or, etc. 

•  Provide tool than can be used to reason about protocols with these algebraic 
properties in the unbounded session model 

•  Provide graphical interface for analysis, interaction and validation of crypto 
protocols 

2 

MOTIVATION 



Overview of Maude‐NPA 

•  Use rewriting logic as general theoretical framework 
−  rewrite rules are obtained from strands 
−  algebraic identities as equational properties and axioms 

•  Use narrowing modulo equational theories in two ways 
−  as  a symbolic reachability analysis method 
−  as an extensible equational unification method 

•  Combine with state reduction techniques of NRL Protocol Analyzer (grammars, 
optimizations, etc.) 

•  Implement in Maude programming environment 
−  Rewriting logic gives us theoretical framework and understanding 
−  Maude implementation gives us tool support 

•  Define graphical interface within Maude and its associated frameworks for 
graphical interaction (IOP, IMaude and JLamba) 

3 

MOTIVATION 



Maude‐NPA 

•  A tool to find or prove the absence of attacks using backwards search 

•  Analyzes infinite state systems 
-  Active intruder 
-  No abstraction or approximation of nonces 
-  Unbounded number of sessions 

•  Intruder and honest protocol transitions represented using variant of strand space  model 

•  Algebraic identities such as exponentiation and Encryption/Decryption cancellation 
identities included 

•  Uses modified strand space model 

•  Each local execution and each intruder action represented by a strand, plus a marker 
denoting the current state 
–  Searches backwards through strands from final state. 
–  Set of rewrite rules governs how search is conducted 
–  Sensitive to past and future 

•  Grammars and other optimizations used to prevent infinite loops and avoid some 
transitions 

4 

GOAL & APPROACH 



How protocols are specified in Maude‐NPA 
•  Represent protocols and intruder actions using strands 

−  Strands may contain variables, except for terms of type Fresh, which are 
always constant (used by nonces) 

−  Strand annotated with fresh terms generated by principal executing strands 

−  :: r :: [pke( B, n (A, r); A) +, pke(A, n(A,r); NB) − , pke(B,NB) +] 

5 

MAUDE-NPA 



Diffie‐Hellman Protocol 

6 

THE MAUDE-NPA GUI 

•  Protocol 

A --> B: A ; B ; exp(g, N_A) 
B --> A: A ; B ; exp(g, N_A) 
A --> B: enc(exp(exp(g, N_B) , N_A), secret(A,B)) 

•  Equational Theory Algebraic properties 

B = { (X * Y) * Z = X * (Y * Z), (X * Y) = Y * X} 
Δ = { exp( exp( W, Y), Z) = exp( W, Y * Z) } 

Can B in a session apparently in A without A engaging in the corresponding session? 



Main Window 

7 

THE MAUDE-NPA GUI 



State info 

8 

THE MAUDE-NPA GUI 



Graphical view of Strands for each state 

9 

THE MAUDE-NPA GUI 



A Tool for Automated Certification  
of Java Source Code in Maude 

Mauricio Alba-Castro (Universidad Autonoma de Manizales, Colombia) 
María Alpuente (Universidad Politécnica de Valencia, Spain) 

Santiago Escobar (Universidad Politécnica de Valencia, Spain) 
Pedro Ojeda (Universidad Politécnica de Valencia, Spain) 

Daniel Romero (Universidad Nacional de Río Cuarto,  Argentina) 



Proof‐Carrying Code Scheme in Maude 

•  Proof-Carrying Code based on rewriting logic (Maude) 

2 



Abstract Reachability Analysis 

•  Producer (certificate generator): 
–  Uses abstract operational semantics of Java written in Maude 

–  Chooses an abstract domain suitable for the safety properties to be 
certified 

–  Initial and final abstract reachability states are inferred from safety 
properties 

–  Applies abstract reachability analysis 

•  Safety Certificate: 
–  Consists of abstract rewriting sequences (performed by Maude) 

–  Generated from search command in Maude 

–  Demonstrate unreachability of unsafe states, i.e. those undesired states 
which are inferred from safety property 3 



Safety Policies specified in JML 

•  Arithmetic: 

4 



Safety Policies specified in JML 

•  Non-interference: 

5 



PCC Overview 

6 



Main Windows 

7 


	Dusseldorf-1-ELP
	Dusseldorf-2-GVerdi
	Dusseldorf-3-Maude-NPA
	Dusseldorf-4-Noninterferece



