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Purpose of this Presentation

- Topics:

- Foundation for deductive and formal proofs

- A quick review of Propositional Calculus
- A quick review of First Order Predicate Calculus
- A quick review of Set Theory

- A quick review of Arithmetic

- WARNING: This presentation does not contain an exhaustive

treatment of proof, first order logic, set theory, and arithmetic

- It is a REMINDER of notions supposedly already encountered



Foundation for Deductive and Formal Proofs

- Reason: We want to understand how proofs can be mechanized

- Topics:

- Concepts of Sequent and Inference Rule

- Backward and Forward Reasoning

- Basic Inference Rules



Sequent

- Sequent is the generic name for “something we want to prove”

- We shall be more precise later



Inference Rule

- An inference rule is a tool to perform a formal proof
- It is denoted by:

A R
C
- A is a (possibly empty) collection of sequents: the antecedents

- C is a sequent: the consequent
- R is the name of the rule

The proofs of each sequent of A
together give you
a proof of sequent C




Foundation for Deductive (and formal) Proofs

- Concepts of Sequent and Inference Rule

- Backward and Forward Reasoning

- Basic Inference Rules



Backward and Forward Reasoning 6

A

Given an inference rule with antecedents A and consequent

o

Forward reasoning: % !

Proofs of each sequent in A give you a proof of the consequent C

Backward reasoning: & 1
In order to get a proof of C, it is sufficient to have proofs of each

sequentin A

Most steps done in a proof are backward steps



“Executing” the Proof of a Sequent S (backward reasoning)

- We are given:

- a collection 7 of inference rules of the form &

- a sequent container K, containining S initially

WHILE K Is not empty

CHOOSE a rule % In 7 whose consequent C'is in K;

REPLACE C' in K by the antecedents A (if any)

This proof method is said to be goal oriented



Example of a Proof

- We are given the following set of inference rules

S7 52 S3 S4 S5 S6
51 712 713 osrd 53 19 g6 =17

- We have 7 rules r1 to r7

- S1 to S7 are supposed to denote some sequents

- Notice that rules r1, r4, r6, and r7 have no antecedents

- Our intention is to prove sequent S1 using backward reasoning



Proof of sequent S1

S7 S2 S3 S4 S5 S6
@H mr2 7 r3 §r4 Tr5 %rG Wﬂ




Proof of Sequent S1 10

S7 S2 S3 S4 S5 S6
@H mr2 7 r3 §r4 Tr5 %rG Wﬂ
S1
r3
/TN
S2 S3 S4



Proof of Sequent S1 11

S7 S2 S3 S4 S5 S6
@H mr2 7 r3 §r4 Tr5 %rG Wﬂ
S1
r3
/TN
S2 S3 S4

r1 ? ?



Proof of Sequent S1 12

S7 S2 S3 S4 S5 S6
@H mr2 7 r3 §r4 Tr5 %rG Wﬂ

S1
r3
/TN

S2 S3 S4

ri 5 ?
al

S5 S6



Proof of Sequent S1 13

S7 S2 S3 S4 S5 S6
@H mr2 7 r3 §r4 Tr5 %rG Wﬂ

S1
r3
/TN

S2 S3 S4

ri 5 ?
al

S5 S6

r4 ?



Proof of Sequent S'1

ol 2fr2 5253 543 4 220015 16 17

S1
r3
/TN

S2 S3 S4

r1i 5 ?
a

S5 S6

rq ré



Proof of Sequent S1 15

S7 S2 S3 S4 S5 S6
—=I1 mr2 7 r3 §r4 Tr5 %rG Wﬂ

S1
r3
/TN
S2 S3 S4
r1i 5 r2
ya 7
S5 S6 ST
rq ré ?



Proof of Sequent S'1

16

=TI

S2 S3 S4r3

——r4 53 565

S7
mr2

S5 53 5616

S

S1
r3
/TN
S2 S3 S4
r1i 5 r2
ya 7
S5 S6 ST
r4 ré r7



Recording the Proof of Sequent S1 17
S7 S2 S3 S4 S5 S6
@H mr2 r3 §r4 Tr5 %rG Wﬂ
S1
r3
/TN
S2 S3 S4
r1i 5 r2
ya 7
S5 S6 ST
r4 ré r7

- The proof is a tree



Alternate Representation of the Proof Tree 18
S7 S2 S3 S4 S5 S6
51 2712 713 osfd IS ol 17
- A vertical representation of the proof tree:
[:31 S1 r3
S2 r1
7 TN S3 IS
S2 S3 54
S5 r4
r1 IS r2
S6 16
S5 /5I6 ST7 54 12
ST 7

r4 ré r7




Foundation for Deductive (and formal) Proofs

19

- Concepts of Sequent and Inference Rule

- Backward and Forward Reasoning

- Basic Inference Rules




Being (a Little) more Precise About Sequents

20

- We supposedly have a PREDICATE Language
(NOT DEFINED YET)

- A sequent is denoted by the following construct:| H G

- H is a (possibly empty) collection of predicates: the hypotheses

- G is a predicate: the goal

Under the hypotheses of collection H, prove the goal G




Basic Inference Rules of Mathematical Reasoning

- There are three basic inference rules

- These rules are independent of our future Predicate Language

- HYP: If the goal belongs to the hypotheses of a sequent,

then the sequent is proved,

HYP
H PP




Basic Inference Rules of Mathematical Reasoning (cont’d)

22

- MON: Once a sequent is proved, any sequent with the

same goal and more hypotheses is also proved,

HE Q

MON
H PFQ

- CUT: If you succeed in proving P under H, then

P can be added to the collection H for proving a goal Q.

H-P HPHQ

CUT
HF-Q




Presentation of the Mathematical Language

23

- It will be done by successive refinements:
(1) Propositional Language

2) First Order Predicate Language

4) Set theory

(2)
(3) Equality and Pairs
(4)
(5) Arithmetic

- Each additional language is built on top of the previous ones



Purpose of this Presentation

24

- Foundation for deductive and formal proofs

- A quick review of Propositional Calculus

- A quick review of First Order Predicate Calculus

- A quick review of Set Theory

- A quick review of Arithmetic



Basic Constructs of Propositional Calculus

25

- Given predicates P and @), we can construct:

- NEGATION: - P

- CONJUNCTION: P AQ

- IMPLICATION: P = Q



Syntax

26

Predicate ::=

- Predicate

Predicate AN Predicate
Predicate = Predicate

- This syntax is ambiguous



More on Syntax

27

- Pairs of matching parentheses can be added freely.
- Operator A is associative: P A Q A R is allowed.

- Operator = is not associative: P = @Q = R is not allowed.

- Write explicitely either (P = Q) = R o P = (Q = R) .

- Operators have precedence in this decreasing order: =, A, = .
- Example:

P = QAR IS to be read as (—-P) = (Q \NR)



Propositional Calculus Rules of Inference (1) 28
- Rules about conjunction
HP,Q - R HEP HFEQ
AND _L AND R
H PAQ - R H - PAQ
- Rules about implication
HPQ F R — HP  Q P R
H P, P=Q - R i HE- P=Q !

Note: Rules with a double horizontal line can be applied in both directions




Propositional Calculus Rules of Inference (2)

29

- Rules about negation

H - P

PP F a NOort
HP  Q HP - -Q |
H - —P ]
H-P F Q H-P + -Q
NOT R




Extensions: Falsity, Truth, Disjunction and Equivalence 30

- FALSITY: L

- TRUTH: T

- DISUUNCTION: P Vv Q

-EQUIVALENCE: P & Q



Definitions of the New Constructs

1 —= PAN-P
T == = _|
P\/Q —— —lpéQ

P&Q == (P=Q) N (Q=P)



Syntax

32

Predicate ::

1

T

— Predicate

Predicate N Predicate
Predicate VvV Predicate
Predicate = Predicate
Predicate < Predicate




More on Syntax

33

- Pairs of matching parentheses can be added freely.

- Operators A and V are associative.

- Operator = and < are not associative.

- Precedence decreasing order: =, A and V , = and <.



More on Syntax (cont’'d)

34

- The mixingof A and V without parentheses is not allowed.

- You have to write either PA(QV R) or (PAQ)VR

- The mixing of = and < without parentheses is not allowed.

- You have to write either P = (Q<R) or (P = Q)&R

- Example:

RAN(—-P=Q) & (PVQ) AR



More Rules

35

- Rules about disjunction

HP - R HaQ F R
H PvQ - R )
HEP OR R1 HEQ@ OR R2
H+- PvQ - H+ PvQ -




More Rules

36

- Rule about negation

T £ p CNTR
- Transforming a disjunctive goal
H-P - Q
NEG

H - PVAQ




Purpose of this Presentation

37

- Foundation for deductive and formal proofs

- A quick review of Propositional Calculus

- A quick review of First Order Predicate Calculus

- A quick review of Set Theory

- A quick review of Arithmetic



Syntax of our Predicate Language so far

38

predicate ::= _L
-
- predicate
predicate N predicate
predicate V predicate
predicate = predicate
predicate < predicate

- The letter P, Q, etc. we have used are generic variables

- Each of them stands for a predicate



Refining our Language: Predicate Calculus

39

predicate

variable

var_list

erpression ::

1

T

- predicate

predicate N predicate
predicate V predicate
predicate = predicate
predicate < predicate
Vvar_list - predicate

variable
rdenti fier

variable
variable,var _list




On Predicates and Expressions 40

- A Predicate is a formal text that can be proved

- An Expression is a formal text denoting an object.

- A Predicate denotes nothing.

- An Expression cannot be proved.

- Predicates and Expressions are incompatible.

- Expressions will be considerably extended in the set-theoretic and

arithmetic notations.



Inference Rules for Predicate Calculus

41

H, Vx-P(x), P(E) - Q

ALL L
H, Vx-P(x) F Q
where E is an expression
H - P(x)
ALL R
H  Vx.:P(x)

- In rule ALL R, variable x is not free in H



Extending the language:

Existential Quantification

42

predicate

exrpression
variable

var_ list

= _L

-

- predicate

predicate N predicate
predicate V predicate
predicate = predicate
predicate & predicate
Vvar_ list - predicate
Jvar_list - predicate

.:= wvariable
::= dentifier

«:= wvariable

variable, var_list




Definition of Existential Quantification

43

dex - P == —~Vx--P



Rules of Inference for Existential Quantification

44

H, Px) F Q

H, Ix-P(x) + Q

XSTL

- In rule XST L, variable x is not free in H and Q

H - P(E)
H F dx-P(x)

XSTR

where E is an expression



Comparing the Quantification Rules 45
H, vx.-P(x), P(E) - Q ALL L H ~ P(x) ALL R
H, vx-P(x) - Q ) H ~ vx-P(x) )
H, P(x) - Q H ~ P(E)
H, Ix-P(x) -~ Q XSTL H + 3x.P(x) XSTR




Summary of Logical Operators

46

PAQ

P Vv Q

YV -

dx -




Refining our Language: Equality and Pairs

47

predicate = _L
=
- predicate
predicate N predicate
predicate V predicate
predicate = predicate
predicate < predicate
VYvar list - predicate
Jvar_list - predicate
ETPresston — erpression

expressiton ::= wvariable
exrpression — exrpression

variable 1= e

var_list S—TR




Equality Rules of Inference

48

H(F), E=F + P(F)

H(E), E=F + P(E)

EQLR

HE), E=F + P(E)

HF), E=F  P(F)

EQ RL




Purpose of this Presentation

49

- Foundation for deductive and formal proofs

- A quick review of Propositional Calculus

- A quick review of First Order Predicate Calculus

- A quick review of Set Theory

- A quick review of Arithmetic



Refining our Language: Set Theory (1)

50

predicate ::

1
-

- predicate

predicate N predicate
predicate V predicate
predicate = predicate
predicate < predicate

VY var_list - predicate

3 var_list - predicate
ETPression — erpression
expression € set




Refining our Language: Set Theory (2) 51

expression ::= wvartable
exrpression — exrpression
set

variable ::= dentifier

var_list ::= wvartable

variable,var_list

set ;:= set X set
P(set)
{ var list - predicate | expression }

- When expression is the same as var list, the last construct can

be written { var list | predicate }



Set Theory

92

- Basis

- Basic operators

- Extensions
- Elementary operators
- Generalization of elementary operators
- Binary relation operators

- Function operators



Set Theory: Membership 53

- Set theory deals with a new predicate, the membership predicate:

EecsS

- where FE is an expression and S’ is a set



Set Theory: Basic Constructs

54

There are three basic constructs in set theory:

Cartesian product

S xT

Power set

P(S)

Comprehension 1

{x-x€S N P(x) | F(x)}

Comprehension 2

{z|z€S A P2)}

where S and T are sets, a is a variable and P is a predicate.



Cartesian Product

55

al

SXT

bl




Power Set

56

a3

P(S)

01010



Set Comprehension

o7

Subset of S



Basic Set Operator Memberships (Axioms) 58

These axioms are defined by equivalences.

Left Part Right Part
EFE—FeSxT EeS N FeT
S e P(T) Ve-x €S =>xeT
Ec{x-ze€S N P(x)| F(x)} Jr-x €S N P(x) N E=F(x)
Ec{x|xeS N P(x)} EeS N P(FE)




Set Inclusion and Extensionality Axiom

59

Left Part Right Part
SCT S € P(T)
S=T SCT N TCS

The first rule is just a syntactic extension

The second rule is the Extensionality Axiom



Elementary Set Operators

60

Union SuT
Intersection SNT
Difference S\T
Extension {a, ,b}
Empty set %)




Union, Difference, Intersection

61

Union

| nter section

Difference




Elementary Set Operator Memberships

62

EeSuT EcsS EecT
EeSNT EcS EeT
EecS\T EcsS Eg¢T
E € {a,...,b} E=a V E=b

Ec o




Summary of Basic and Elementary Operators

63

S xT SuT
P(S) SNT
{z|lzeS APY | S\T
SCT {a,...,b}
S=T %




Generalizations of Elementary Operators

64

Generalized Union

union (.S)

Union Quantifier

Jz-xz €S N P(x) | T(x)

Generalized Intersection

inter (S)

Intersection Quantifier

Nez-x€S N P(x) | T(x)




Generalized Union

S union(S)

al

a3

a4

ad

ab
al




Generalized Intersection

66

Inter (S)

a3

al




Generalizations of Elementary Operator Memberships 67

E € union(S) ds-se€ S AN E€s

EecJxz-xzeS N Pl)|T) | Jz-2eS N P(x) N Ee€T(x)

E € inter(S) Vs-s€S = EE€s

EeNx-zeS N P)|T(x) | Ve-x €S N P(z) = FEeT(x)

Well-definedness condition forcase 3: S #= @

Well-definedness condition forcase 4: dxz -2 € S A P(x)



Summary of Generalizations of Elementary Operators 68

union (.S)

Jxz-zeS NP | T

inter (S)

Nex-x€S NP |T




Binary Relation Operators (1)

69

Binary relations ST

Domain dom ()
Range ran (1)

Converse r—1




A Binary Relation r from a Set A to a Set B

A B
I
al bl
a2— a3 V - b2
<\ ?
34- 4 ) b3
5 <_

az . b5
b6

r € A— B



Domain of Binary Relation »

A B
r
al b1
a2— a3 > - b2
<\ ?
a4 4 b3
5 <_

26 b4
) a7 1 b5
b6

dom(r) = {al,a3,a5,a7}



Range of Binary Relation r

A B
r
al b1
a2— a3 > - b2
<\ ?
a4 4 b3
5 <_

26 b4
) a7 1 b5
b6

ran(r) = {bl,b2,b4,b6}



Converse of Binary Relation » 73

A B
r
al bl
a2 a V 4 "
<\ ?
o4 4 b3
5 <__

26 b4
a7 . b5
b6

r~1 = {bl+— a3,b2 — al,b2 — a5,b2 — a7,b4 — a3,b6 — a7}



Binary Relation Operator Memberships (1)

74

Left Part Right Part
re ST rCSxT
E € dom () dy-Ewr—y € r
F € ran(r) Jx-xz+— F € r
Ew— Ferl F—Ecr




Binary Relation Operators (2)

75

Partial surjective binary relations S T
Total binary relations S« T
Total surjective binary relations S« T




A Partial Surjective Relation

/6

A B
I
al bl
% a3 — - b2
=~ »
a4
a7 b5
b6

r € A~ B




A Total Relation

77

A B
r
al bl
a2 ~
s\
& v,? b3
ab >
a7 . b5
b6

r € A« B




A Total Surjective Relation

/8

A B
r
al 4 /
a2 3 V e
a4 Q‘
a5 ,v’
6 4’\ | T—u_ b4
a7 ~{— b5

r € A« B




Binary Relation Operator Memberships (2)

79

Left Part Right Part
reS«T reS~T AN ran(r) =T
reS«T reS—T ANdom(r)=T

re S «T

reS«——T NresS«T




Binary Relation Operators (3)

80

Domain restriction S<r
Range restriction r>T
Domain subtraction S4r
Range subtraction re T




The Domain Restriction Operator

81

{a3, a7} < F



The Range Restriction Operator

82

F > {b2,b4}



The Domain Restriction Operator

83

{a3, a7} 9 F



The Range Restriction Operator

84

F & {b2,b4}



Binary Relation Operator Memberships (3)

85

Left Part

Right Part

E—F € S<r

EFEeS N E— Fer

E—F € rp>T

FE—Fer N FeT

E—F € S4gr

E¢S AN E—~Fer

E—F € rpT

E—Fer N FgT




Binary Relation Operators (4)

86

Image r{w]
Composition P.q
Overriding P < q
|dentity id (S)




Image of {a, b} under r

87

S T

@\r/ /ﬂ"l

— N
i. U

rl{a,b}] = {m,n,p}




Forward Composition

88

[EE=

\




The Overriding Operator

89




The Overriding Operator

90




Special Case

91

F

X |[=> Yy}




Special Case 92

- F x>y

F<+{x|->Vy}




The Identity Relation

93

S S
al \ / al
a2 a2
a3 a3
a4 a4




Binary Relation Operator Memberships (4)

94

F € r[w]

dr-x€ew N x— F Er

E—Fe(p:q)

de-E—x€ep N xz— F Eq

pP<q

(dom(q) <p) U ¢

EF— Feid(S)

EFEeS N F=FE




Binary Relation Operators (5)

95

Direct Product PR q
First Projection pri1 (S, T)
Second Projection prjo (S, T)

Parallel Product

pllq




Binary Relation Operator Memberships (5) 96

E— (F—G)ep®gq

EFE—Fep N E—GEq

(E— F)w— G e prj1(S,T)

EeS N FeT N G=EFE

(E— F)w— Geprjp(S,T)

EeS N FeT N G=F

(E—G)— (F—H)epl|q

E—Fep N G— HeEq




Summary of Binary Relation Operators

97

ST Sar rlw] pri1 (S, T)
dom(r) | r>T | pig priz (5,T')
ran () S4qr << q id (S)
1 reT | p®q | plla




Classical Results with Relation Operators

r =r
dom(r~1) = ran(r)
(S<r)™ = =18

(p;9)~" = ¢ 'sp

(P;q@)sr = q;(p;r)

(p; @)|w] = qlplw]]
p;(gur) = (p;q) U (p;7)

rla U b] = rla] U r[b]



More Definitions 99

Given arelation r suchthatr € § < S

r =1 r is symmetric
rNnr =g r is asymmetric
rNr—t C id(S) r is antisymmetric
id(S) C r r is reflexive

r Nid(S) =9 r is irreflexive

rir Cr r IS transitive



Translations into First Order Predicates 100

Given a relation » suchthatr € § «— S

r =71 Ve,y- € SANyeS=(r—yecrsSy—xecr)
rOr1=0 Ve,y-c—yer=yr—x&r

rnr~t C id(S) Ve,y-zc—y€rANy—xz€r—=x=uy

id(S) C r Ve-x€S=x—xTET

rNid(S) =2 Ve, y-x—yeEer—=—x#uy

rir Cr Ve, y,z-x—yeEr\Ny—zEr—=xr—zE€r

Set-theoretic statements are far more readable than predicate calculus statements



Function Operators (1)

101

Partial functions S+ T
Total functions S —T
Partial injections S+ T
Total injections S —T




A Partial Function F from a Set A to a Set B 102

F'' ¢ A+— B



A Total Function F from a Set A to a Set B 103

A B
F
al bl
a2 \ —— <
» b2
a4 > b3
6 \ b4
a7 / b5 ~

F' ¢ A— B



A Partial Injection F from a Set A to a Set B

104

A B
F
al b3
a3 b2
a.4' \
6 — \ b5

Fe A—+ B

— b6




A Total Injection F from a Set A to a Set B

105

\

b3

b2

b5

g

FFecA— B

— b6




Function Operator Memberships (1)

106

Left Part Right Part

feESwT feES—T A (f71;f) =id(ran(f))
feS—-T feS+—T N S=dom(f)
fesS—+T fes+-T AN f_léT—HS

fes—T

fes—-T

AN fTleT+ S




Function Operators (2)

107

Partial surjections S T
Total surjections S —»T
Bijections S »» T




A Partial Surjection F from a Set A to a Set B 108

A B
F
al
a3 b2
ad ><
ab — \
o — b6

Fe A+ B



A Total Surjection F from a Set A to a Set B 109

FeA—B



A Bijection F from a Set A to a Set B

110

a3

b2

Nr\m
b5

\J

— b6

Fec A—»B




Function Operator Memberships (2) 111

Left Part Right Part

fesS+»T fesS+—T AN T =ran(f)

fes—>"T feS—-T AN T =ran(f)

fesS—»T fesS—-T N feS—>T




Summary of Function Operators 112

S T S T




Summary of all Set-theoretic Operators (40)

113

SxT S\T r—1 r[w] id (S) {x|lx €S N P}
P(S) | g | 8§57 | pia | §57 | {z-weS A P|B)
SCT g:% ;g% pP<q g:% {a, b, ..., n}
SuT :I;rzn(q(a;) prii pRq gj% union |
SNT %) prj2 pllq S »»T inter N




Applying a Function 114

Given a partial function f, we have

Left Part Right Part

F = f(FE) E—F € f

Well-definedness conditions:  f is a partial function
E € dom (f)



Example: a Very Strict Society 115

- Every person is either a man or a woman

- But no person can be a man and a woman at the same time

- Only women have husbands, who must be a man

- Woman have at most one husband

- Likewise, men have at most one wife

- Moreover, mother are married women



Formal Representation

116

men

C

women

PERSON

PERSON \ men

- Every person is either a man or a woman

- But no person can be a man and a woman at the same time
- Only women have husbands, who must be a man

- Woman have at most one husband

- Likewise, men have at most one wife

- Moreover, mother are married women



Formal Representation 117

men C PERSON

women = PERSON \ men

husband € women —+ men

- Every person is either a man or a woman

- But no person can be a man and a woman at the same time
- Only women have husbands, who must be a man

- Woman have at most one husband

- Likewise, men have at most one wife

- Moreover, mother are married women



Formal Representation 118

men C PERSON

women = PERSON \ men

husband € women —+ men

mother € PERSON — dom(husband)

- Every person is either a man or a woman

- But no person can be a man and a woman at the same time
- Only women have husbands, who must be a man

- Woman have at most one husband

- Likewise, men have at most one wife

- Moreover, mother are married women



Defining New Concepts 119

men C PERSON

women = PERSON \ men

husband € women —+ men

mother € PERSON — dom(husband)

wife =
spouse —

father =




Defining New Concepts 120

men C PERSON

women = PERSON \ men

husband € women —+ men

mother € PERSON — dom(husband)

wife = husband™1
spouse —

father =




Defining New Concepts 121

men C PERSON

women = PERSON \ men

husband € women —+ men

mother € PERSON — dom(husband)

wife = husband™1
spouse = husband U w:ife

father =




Defining New Concepts 122

men C PERSON

women = PERSON \ men

husband € women —+ men

mother € PERSON — dom(husband)

wife = husband™1
spouse = husband U w:ife

father = mother ; husband




Defining New Concepts 123

men C PERSON
women = PERSON \ men

husband € women —+ men

mother € PERSON — dom(husband)

father = mother ; husband
children =
daughter —=

stbling =




Defining New Concepts 124

men C PERSON
women = PERSON \ men

husband € women —+ men

mother € PERSON — dom(husband)

father = mother ; husband
children = (mother U father)™!
daughter —=

stbling =
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men C PERSON
women = PERSON \ men

husband € women —+ men

mother € PERSON — dom(husband)

father = mother ; husband
children = (mother U father)™!

daughter = children > women

stbling =
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men C PERSON
women = PERSON \ men

husband € women —+ men

mother € PERSON — dom(husband)

father = mother ; husband
children = (mother U father)™!
daughter = children > women

stbling = (children!; children) \ id(PERSON)




Exercises. To be defined
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brother = 7

stbling — in — law =
nephew — or — niece
uncle — or — aunt —

cousitm — 7?

?

?

?




Exercises. To be proved 128

mother = father ; wife

spouse — spouse_l

sibling = sibling™!

cousin = cousin 1

father ; father—!' = mother ; mother—!

father ; mother—1 = o

mother ; father—1 %)

father ; children = mother ; children
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- Foundation for deductive and formal proofs

- A quick review of Propositional Calculus

- A quick review of First Order Predicate Calculus

- A quick review of Set Theory

- A quick review of Arithmetic
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predicate ::

1

T

- predicate

predicate N predicate
predicate V predicate
predicate = predicate
predicate <& predicate
V var_ list - predicate

d var_list - predicate

erpression — exrpression
expression € set
number < number
number < number
number > number
number > number

finite(set)
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variable

var_list

set

exrpression ::

variable

exrpression — exrpression
set

number

ident frer

variable
variable, var _list

set X set

P(set)

{ var list - predicate | expression }
7

N

number .. number
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number ::= 0
1

— number

number + number
number — number
number x number
number /number
number mod number
number  number
card(set)

min(set)

max(set)
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inter (S) S # O

Nx-x€S AN P(z) | T(x) Jdx-x €S NP(x)

f(E) {7 iesgoriﬁgice;l function
E/F F 40

E mod F F£0

card(S) finite(S)

min(S) SCZ

Jr-x€Z N (Yn-neS = x<n)

SCZ
Jr-x€Z AN (Yn-neS = x>n)

max(.S)



