
BMotionWeb
Handbook (v0.1.0)

ProB Edition

Lukas Ladenberger (Editor)

This work is sponsored by the ADVANCE Project

Contents

Contents 1

1 Introduction 3
1.1 Overview . 3

1.1.1 Formats of this Handbook . 3
1.2 Conventions . 4
1.3 ADVANCE . 4
1.4 Creative Commons Legal Code . 4

2 First Steps 5
2.1 Installation and Start . 5
2.2 Open a Visualization . 5
2.3 Create a new Visualization . 5

3 BMotionWeb 7
3.1 Visualization Template . 7

3.1.1 Manifest File . 7
3.1.2 Visualization Files . 9
3.1.3 Groovy Script File . 10

3.2 Working with Graphical Elements . 10

4 BMotionWeb for Event-B and Classical-B 13
4.1 Tutorial . 13

4.1.1 Preparation . 13
4.1.2 The Formal Model . 13
4.1.3 Link the Model with the Visualization 13
4.1.4 Create the Actual Visualization . 14
4.1.5 Start the Visualization . 14
4.1.6 Create Observers . 14
4.1.7 Add Event Handler . 16

4.2 Observers and Interactive Handlers . 19
4.2.1 Formula Observer . 19
4.2.2 Predicate Observer . 21

1

4.2.3 Set Observer . 22
4.2.4 Refinement Observer . 23
4.2.5 Illustration of Observers . 25
4.2.6 Execute Event Handler . 25
4.2.7 Context-Sensitive Options . 27
4.2.8 Other API Features . 28

4.3 External Method Calls . 28
4.3.1 BMotionWeb Groovy Scripting API 30

4.4 Visual Editor . 34

5 Frequently Asked Questions 37
5.1 Where can I download the tool? . 37
5.2 Where can I report bugs? . 37
5.3 Where can I find examples? . 37

Chapter 1

Introduction

1.1 Overview

This handbook consists of five parts:

Introduction (Chapter 1) You are reading the introduction right now. Its purpose is to
help you orient yourself and to find information quickly.

First Steps (Chapter 2) If you are completely new to BMotionWeb, this section is a good
way to get up to speed quickly. It guides you through the installation and usage of the
tool.

BMotionWeb for Event-B and Classical-B (Chapter 4) This section provides a doc-
umentation of BMotionWeb for creating visualizations of Event-B or Classical-B mod-
els.

Frequently Asked Questions (Chapter 5) Common issues are listed by category in the
FAQ.

Index We included an index particularly for the print version of the handbook, but it may
be useful in the electronic versions as well.

1.1.1 Formats of this Handbook

The handbook comes in various formats:

Online You can access the handbook online.

PDF Both online versions also include a link to the PDF version of the handbook.

3

https://www3.hhu.de/stups/handbook/bmotion/current/html
https://www3.hhu.de/stups/handbook/bmotion/current/pdf/bms-doc.pdf

1.2 Conventions

We use the following conventions in this manual:

Checklists and milestones are designated with a tick. Here we summarize what
we want to learn or should have learned so far.

Useful information and tricks are designated by the information sign.

Potential problems and warnings are designated by a warning sign.

Examples and Code are designated by a pencil.

We use typewriter font for file names and directories.
We use sans serif font for GUI elements like menus and buttons. Menu actions are depicted

by a chain of elements, separated by “〉”, e.g. File 〉 Open Visualization.

1.3 ADVANCE

This work has been sponsored by the Advance project1. ADVANCE is an FP7 Information
and Communication Technologies Project funded by the European Commission. The overall
objective of ADVANCE is the development of a unified tool-based framework for automated
formal verification and simulation-based validation of cyber-physical systems.

The ADVANCE project is unique in addressing both simulation and formal verification
within a single design framework.

Unification is being achieved through the use of a common formal modelling language
supported by methods and tools for simulation and formal verification. An integrated tool
environment is providing support for construction, verification and simulation of models.

ADVANCE is building on an existing formal modelling language - Event-B - and its
associated tools environment - Rodin - with strong support for formal verification. In AD-
VANCE, Rodin is being further strengthened and augmented with novel approaches to multi-
simulation and testing.

1.4 Creative Commons Legal Code

The work presented here is the result of an collaborative effort that took many years. To
ensure that access to this work stays free and to avoid any legal ambiguities, we decided to
formally license it under the Creative Commons NonCommercial ShareAlike License.

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike
4.0 International License. To view a copy of this license, visit http://creativecommons.

org/licenses/by-nc-sa/4.0/ or send a letter to Creative Commons, 444 Castro Street,
Suite 900, Mountain View, California, 94041, USA.

1http://www.advance-ict.eu/

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.advance-ict.eu/

Chapter 2

First Steps

2.1 Installation and Start

Start off by downloading BMotionWeb for your operating system. You can find the latest
version of the tool at http://www.stups.hhu.de/ProB/index.php5/BMotionWeb. Decom-
press the archive and expand the directory if necessary. Navigate to the application folder
and start BMotionWeb by executing the bmotion-prob binary. After a short loading time
you should see the window shown in Figure 2.1.

2.2 Open a Visualization

To open a visualization, click on the box in the middle of the window and select the BMo-
tionWeb manifest file (see 3.1.1) of the visualization or just drag and drop the BMotionWeb
manifest file into the box. You can also open a visualization via the top menu: File 〉 Open
Visualization.

2.3 Create a new Visualization

To create a new visualization choose File 〉 New Visualization. A window will be opened asking
you for some additional information (e.g. the id and name of your visualization). Enter your
data and press on OK. Now, the tool asks you for a location (a folder) where you want to
save your visualization. In the next step, the tool asks you for a model to be visualized.
Select a model and click on OK. This will start the fresh visualization. The tool will create
a bunch of files into the selected folder:

bmotion.json: The bmotion.json file is the root file of your BMotionWeb visualization
(also called BMotionWeb manifest file). It contains the configuration formatted using JSON
(JavaScript Object Notation)1.

1http://www.json.org.

5

http://www.stups.hhu.de/ProB/index.php5/BMotionWeb
http://www.json.org

Figure 2.1: BMotionWeb Desktop Application

Section 3.1.1 contains a full list of available options.

script.js: In the JavaScript file you can setup observers and actions (see Section 4.2).
Moreover, the user can take advantage of the entire JavaScript language. There exist are a lot
of libraries for JavaScript that you can apply to create custom visualizations. For instance,
it exists libraries for generating chart and plot diagrams.

index.html: The HTML file contains the reference to the scripts.js file and to the
visualization.svg file.

visualization.svg: The actual SVG visualization. The user is not restricted to an editor
in order to create a visualization. The user can make use of the integrated visual editor or
any other tool that supports the creation of SVG graphics.

bms.api.js: JavaScript library that is needed for running the visualization. Please do not
edit this file!

Chapter 3

BMotionWeb

3.1 Visualization Template

At the heart of an interactive formal prototype, one finds a visualization template. It is
the part of the interactive formal prototype that is developed by the user. It describes the
visualization and the gluing code (observers and interactive handlers) for the interactive
formal prototype. An important design decision was to make the full web-technology stack
available to the developer for creating a visualization template. The benefit of this design
decision is that the visualization template becomes flexible since external resources, such as
SVG images and third party JavaScript libraries, can be reused. Indeed, this can save time for
developing an interactive formal prototype and may provide a large selection of reusable SVG
images and JavaScript libraries. This design decision can also help the developer to create
complex interactive formal prototypes, e.g. with numerous or repeated graphical elements. In
general, a visualization template consists of several files which are described in the following
subsections.

3.1.1 Manifest File

A visualization template is identified by a manifest file. The manifest file is the root file of
every interactive formal prototype. It contains the configuration for the interactive formal
prototype in JSON (JavaScript Object Notation) format.1 Table 3.1 gives an overview of
the available options. The table shows the option’s name, its type, a short description, and
denotes if the option is required or optional. Listing 3.1 exemplifies the use of a manifest file
based on the interactive formal prototype of the Event-B simple lift system.

1http://www.json.org.

7

Table 3.1: Available options for BMotionWeb manifest file

Name Type Required Description

id string yes Unique id of the interactive formal prototype.

name string no The name of the interactive formal prototype.

template string yes The relative path to the HTML template file (e.g. “tem-
plate.html”).

groovy string yes The relative path to the groovy script file (e.g.
“script.groovy”).

model string yes The relative path to the formal specification file that should
be animated (e.g. “model/mymodel.mch”).

modelOptions map no A key/value map defining the options for loading the model
- The available options are dependent on the animator and
formalism.

autoOpen array no The user can specify the ProB views which should be
opened automatically when running the interactive formal
prototype - The following views are available for ProB an-
imations (Event-B, classical-B and CSPM): CurrentTrace,
Events, StateInspector and ModelCheckingUI.

views list no List of additional views - A view object has the following
options:

id string yes Unique id of the view.

name string no The name of the view.

template string yes The relative path to the HTML template file of the view
(e.g. “view1.html”).

width numeric no The width of the view.

height numeric no The height of the view.

1 {

2 "id": "lift",

3 "name": "Simple lift system",

4 "template": "lift.html",

5 "groovy": "script.groovy",

6 "model": "model/m2.bcm",

7 "autoOpen": [

8 "CurrentTrace",

9 "Events"

10]

11 }

Listing 3.1: Example manifest file for the simple lift system (JSON)

3.1.2 Visualization Files

The HTML template file that is linked in the manifest (see line 4 in Listing 3.1) is the
starting point for developing the actual visualization for the interactive formal prototype.
The snippet in Listing 3.2 shows an example HTML template file for the simple lift system.

1 <html>

2 <head>

3 <title>Simple lift system visualization</title>

4 </head>

5 <body>

6 <script src="bms.api.js"></script>

7 <script src="lift.js"></script>

8 <div bms-svg="lift.svg"></div>

9 </body>

10 </html>

Listing 3.2: HTML template file for simple lift system (HTML)

In general, a visualization in BMotionWeb makes use of SVG. For this, BMotionWeb
provides a special attribute called bms-svg that takes a relative path to an SVG image file as
its value (see line 8). The attribute renders the entered SVG image file within the visualization
and registers it in the visualization template. A registered SVG image file can be edited by
means of the built-in visual editor in BMotionWeb which is described in Section 4.4. Since
the SVG image file is an external file it can also be edited with any other SVG editor. As
an example, consider Fig. 3.1. The left side of the figure shows the SVG image file for the
simple lift system and the right side demonstrates the SVG file rendered in the interactive
formal prototype. In addition to SVG, BMotionWeb also makes the full web-technology
stack available to the user in order to create a visualization (i.e. the user can apply other
web-techniques with HTML5, CSS and JavaScript).

In line 6 we reference the JavaScript file bms.api.js. This provides the BMotionWeb
JavaScript API with functions, e.g. to register observers and interactive handlers. The
developer can make use of this API by referencing an additional JavaScript file which contains

custom JavaScript code (see lift.js in line 7). The BMotionWeb JavaScript API is described
in Section 4.2.

3.1.3 Groovy Script File

The developer can optionally define a Groovy2 script file (see line 5 in Listing 3.1) to link
custom Groovy or Java code to the interactive formal prototype that is evaluated on the
server side. Within the Groovy script file the developer can also make use of the BMotionWeb
Groovy API with functions, e.g. to control the integrated animation engine or to register
external methods that can be triggered from the client side (JavaScript). As an example,
using the Groovy API the developer may query an external database or make some complex
computations based on the information coming from the animated formal specification (e.g.
state information). The Groovy API is described in Section 4.3 in more detail.

3.2 Working with Graphical Elements

The web-technologies used for developing a visualization provide us with several predefined
graphical elements and techniques for creating and styling them. For instance, HTML pro-
vides elements like tables, buttons and lists, and SVG provides elements like shapes and
images. These elements are also referred to DOM elements.3 With CSS we have a compre-
hensive technique to define the style and layout for HTML and SVG elements. BMotionWeb
uses these techniques as the basis for implementing the graphical element concept introduced
in ?? and for linking them to observers and interactive handlers.

In order to identify and to manipulate a graphical element within a visualization, BMo-
tionWeb uses jQuery.4 jQuery is a JavaScript library for selecting and manipulating DOM
elements in an HTML document. It extends the CSS selector syntax5 to provide selectors
based on the id, name, classes, types, attributes and many more properties of a DOM ele-
ment. As an example, consider the JavaScript snippet in Listing 3.3. It shows two examples
for selecting and manipulating graphical elements based on the SVG image shown in Fig. 3.1.
With jQuery we can select the graphical element that represents the lift door by its id as
demonstrated in line 1 (the prefix “#” is used to match a graphical element by its id). Once
an element is selected, jQuery provides us with a reference to the selected element and allows
us to manipulate it, e.g. by changing its attributes. For instance, in line 2 we set the fill
attribute of the door to the color gray. We can also select and manipulate multiple graphical
elements as demonstrated in lines 4 and 5, where we select all ellipse graphical elements which
have a data-floor attribute (line 4) and color them all green (line 5). For a comprehensive
list of jQuery selectors we refer the reader to the jQuery selectors API documentation.6

2http://groovy-lang.org.
3http://www.w3schools.com/js/js htmldom.asp.
4https://jquery.com.
5https://www.w3.org/TR/css3-selectors.
6http://api.jquery.com/category/selectors.

1 var door = $("#door");

2 door.attr("fill", "gray");

3

4 var allRequestButtons = $("ellipse[data-floor]");

5 allRequestButtons.attr("fill", "green");

Listing 3.3: Example for selecting and manipulating elements using jQuery (JS)

1 <svg width="220" height="340"

2 xmlns="http://www.w3.org/2000/svg">

3 <g id="lift_system">

4 <g id="lift">

5 <rect fill="white" stroke="black"

6 height="330" width="100" y="5" x="50"/>

7 <rect id="door" fill="gray" stroke="black"

8 height="80" width="70" y="245" x="65" />

9 <text fill="black" y="58" x="165">Floor 1</text>

10 <text fill="black" y="182" x="165">Floor 0</text>

11 <text fill="black" y="290" x="165">Floor -1</text>

12 </g>

13 <g id="request_buttons">

14 <ellipse id="bt_1" data-floor="1"

15 ry="11" rx="11" cy="54" cx="22" fill="gray"/>

16 <ellipse id="bt_0" data-floor="0"

17 ry="11" rx="11" cy="177" cx="22" fill="gray"/>

18 <ellipse id="bt_-1" data-floor="-1"

19 ry="11" rx="11" cy="285" cx="22" fill="gray"/>

20 </g>

21 </g>

22 </svg>

Floor 1

Floor 0

Floor -1

Figure 3.1: SVG image of simple lift system: source (left) and rendered (right)

Chapter 4

BMotionWeb for Event-B and
Classical-B

4.1 Tutorial

The objective of this chapter is to get you to a stage where you can use BMotionWeb to
visualize Event-B or Classical-B models. We expect that you have already downloaded the
BMotionWeb tool (see Section 2.1).

You should be able to work through the tutorial with no or little outside help. We
encourage you not to download solutions to the examples but instead to actively build them
up yourself as the tutorial progresses.

4.1.1 Preparation

Let’s start by creating a new visualization template as described in Section 2.3.

4.1.2 The Formal Model

We are going to create a visualization for a simple lift system that allows movement of a
single lift cage between three floors. The door of the lift can be closed and opened - all in
response to the pressing of floor call and cage send buttons.

You can download the Event-B model here1. Decompress the archive and put the files
into a new folder called model relative to your index.html file.

4.1.3 Link the Model with the Visualization

The first step consists of linking the model with the visualization. For this, open the BMo-
tionWeb manifest file with an editor of your choice and set the model path property to
“model/MLift.bcm”. This links the visualization with the Event-B machine called “MLift”.

1The URL of the resource is: http://nightly.cobra.cs.uni-duesseldorf.de/bmotion/bmotion-

prob-handbook/nightly/files/EventBLift.zip

13

http://nightly.cobra.cs.uni-duesseldorf.de/bmotion/bmotion-prob-handbook/nightly/files/EventBLift.zip
http://nightly.cobra.cs.uni-duesseldorf.de/bmotion/bmotion-prob-handbook/nightly/files/EventBLift.zip
http://nightly.cobra.cs.uni-duesseldorf.de/bmotion/bmotion-prob-handbook/nightly/files/EventBLift.zip

Linking a model within the BMotionWeb manifest file will automatically load the model,
when starting the visualization (see Section 4.1.5).

4.1.4 Create the Actual Visualization

Please download the prepared lift.svg2 file and open it with Inkscape as demonstrated in
Figure ??. Feel free to modify and explore the SVG graphic. In order to link graphical
elements of the SVG graphic with the formal model later, we have to give them identifiers.
For this, select an element in Inkscape, open the context menu and select Object Properties.
A popup window should be opened as demonstrated in Figure ??. As an example, we give
the graphical element that represents the door (the gray filled rectangle), the id “door”. In
Section 4.1.6 we explain how we can use this information in order to establish observers. If
you are satisfied with your SVG graphic, save it as a plain SVG graphic with File 〉 Save As.
Select Plain SVG (*.svg) as an output format and click on the Save button. You can save the
SVG file anywhere on your local system. Open the index.html file with an editor of your
choice and change the path to the SVG file “lift.svg” within the “data-bms-svg” attribute.

4.1.5 Start the Visualization

Let’s try out the visualization for the first time! Just drag and drop the BMotionWeb manifest
files on the marked area or open it via the file dialog. The visualization should start. At the
top menu you will find a menu item called ProB for opening different ProB related views. For
instance, Figure 4.1 shows the running lift visualization with the ProB Events view opened.

At the moment the appearance of the visualization doesn’t change whenever a state
change occurred (i.e. when executing events in the ProB Events view). This is because no
observers exist yet. In the next Section we learn how we can link graphical elements with
the formal model by establishing observers.

4.1.6 Create Observers

Observers are used to link graphical elements with the model. An observer is notified when-
ever the model has changed its state, i.e. whenever an event has been executed. In response,
the observer will query the model’s state and triggers actions on the linked graphical elements
in respect to the new state. In general, observers are written in JavaScript and should be
placed in the script.js file. As an example, consider the following formula observer :

1 bms.observe("formula", {

2 selector: "#txt_cur_floor",

3 formulas: ["cur_floor"],

4 trigger: function (origin, values) {

5 origin.text(values[0])

6 }

2The URL of the resource is: http://nightly.cobra.cs.uni-duesseldorf.de/bmotion/bmotion-

prob-handbook/nightly/files/lift.svg

http://nightly.cobra.cs.uni-duesseldorf.de/bmotion/bmotion-prob-handbook/nightly/files/lift.svg
http://nightly.cobra.cs.uni-duesseldorf.de/bmotion/bmotion-prob-handbook/nightly/files/lift.svg
http://nightly.cobra.cs.uni-duesseldorf.de/bmotion/bmotion-prob-handbook/nightly/files/lift.svg

Figure 4.1: Running the Lift visualization for the First Time

7 });

Listing 4.4: Formula Observer Displaying the Current Floor (JavaScript)

Checkout Section ?? for more details about observers.

We are going to explain the JavaScript code line by line. In line 1 we register a formula
observer on the graphical element with the id txt cur floor (line 2) that is located in our
index.html file. BMotionWeb follows the jQuery selector syntax3 to select graphical ele-
ments. The prefix “#” denotes that we want to select an element by its id. In line 3 we
define a list of observed formulas. In this case we observe the variable cur floor. In line 4 to 6
we define a trigger function that is called after every state change with its origin (the origin
parameter holds a reference to the graphical element that the observer is attached to) and
the values (the values parameter contains the values of the defined formulas in an array, e.g.
use values[0] to obtain the value of the first formula). The trigger function changes the text
of the graphical element (origin) to the current value of the variable cur floor (values[0]).

Let’s create another observer. Check out the following JavaScript snippet:

3For more information about jQuery and selectors we refer the reader to the jQuery API documentation
http://api.jquery.com/category/selectors/.

1 bms.observe("formula", {

2 selector: "#door",

3 formulas: ["cur_floor", "door_open"],

4 trigger: function (origin, values) {

5

6 switch (values[0]) {

7 case "0":

8 origin.attr("y", "175");

9 break;

10 case "1":

11 origin.attr("y", "60");

12 break;

13 case "-1":

14 origin.attr("y", "275");

15 break;

16 }

17

18 if(values[1] === "TRUE") {

19 origin.attr("fill", "white");

20 } else {

21 origin.attr("fill", "lightgray");

22 }

23

24 }

25 });

Listing 4.5: Formula Observer for the Lift Door (JavaScript)

In line 1 we register a formula observer on the graphical element that matches the selector
“#door” (line 2) (similar to the previous defined formula observer). In line 3 we define the
set of observed formulas (cur floor and door open). In line 4 to 24 we define a trigger
function, that makes the following action: Line 5 to 15 will switch the y coordinate of the
door (denoting the movement of the door between floors) according to the current value of
the variable cur floor (values[0]). Lines 18 to 22 affect that the attribute fill of the door will
be set to “white” (denoting the door is open) whenever the formula door open evaluates to
TRUE in the current state (values[1]), otherwise to “lightgray” (denoting the door is closed).

Add both snippets to your script.js file, save the file and click on the Reload button.
Let’s see how this affects our visualization: Setup and initialize the machine using the ProB
events view. Execute some events and see what happens. For instance, Figure 4.2 shows the
lift visualization where the lift is on floor 0 and the door is open.

4.1.7 Add Event Handler

In this Section we learn how we can enhance our visualization with interactive features, e.g.
executing an Event-B event by clicking on a graphical element.

Checkout Section ?? for more details about event handlers.

Figure 4.2: Lift visualization with observers

Let’s add an interactive feature, where the user can click on a floor label to order the lift
on the corresponding floor. Add this code snippet to your script.js file:

1 bms.executeEvent({

2 selector: "text[data-floor]",

3 events: [

4 {

5 name: "push_call_button",

6 predicate: function (origin) {

7 return "b=" + origin.attr("data-floor")

8 }

9 }

10]

11 });

Listing 4.6: Example of an Execute Event Handler (JavaScript)

In line 1 we register an execute event handler for each graphical element that matches
the defined selector “text[data-floor]” (line 2). In particular, the selector matches the three
floor labels (see Figure 4.1). In line 3 to 10 we define the list of events that should be wired
with the graphical elements. Every event should contain the name. In addition, the user
may enter a predicate that defines the event’s arguments. If the user defines more than one
event, a tooltip will be shown with a list of the defined events after clicking on the graphical
element. In our example we define only one event with the name push call button and the
predicate that is determined by a closure that passes a reference to the element (origin).
In particular, we use the value of the attribute data-floor of the corresponding floor label
(origin) to define the event parameter (line 6).

Apply these changes by clicking on the Reload button and try to click on a floor label.
This should call the Event-B event push call button with the corresponding predicate/pa-
rameter.

Let’s add another interactive feature, where the user can click on the graphical element
that represents the door to open or close the door respectively. Add the following code
snippet to your script.js file:

1 bms.executeEvent({

2 selector: "#door",

3 events: [

4 { name: "close_door" },

5 { name: "open_door" }

6]

7 });

Listing 4.7: Interaction with the Lift Door (JavaScript)

This execute event handler will bind to events to the graphical element that matches the
selector “#door”.

4.2 Observers and Interactive Handlers

BMotionWeb implements various observers and interactive handlers with different functions.
They are implemented in JavaScript and follow the uniform schema shown in Listing 4.8,
where bms is a global variable pointing to the BMotionWeb JavaScript API, observe a func-
tion to register an observer (see line 1) and handler a function to register an interactive
handler (see line 2). The functions have two arguments: the first argument defines the type
of the observer or interactive handler, and the second argument defines a list of options that
are passed to the respective function. The options are defined as a key/value map, where key
is the option’s name, and value is the option’s value. The options may be of different types
(e.g. string, integer, boolean, or a function). In order to link graphical elements to observers
and interactive handlers, each observer and interactive handler can define the selector option.
The selector option determines the graphical elements to which the observer or interactive
handler will be attached using the jQuery selector syntax (see Section 3.2).

1 bms.observe(<type>, <options>);

2 bms.handler(<type>, <options>);

Listing 4.8: Implementation schema for observers and interactive handlers (JS)

In the following subsections we present the various observer and interactive handler types.
In each section, we first give a brief description of the characteristics of the respective observer
or interactive handler and list their available options in a table. The table defines the option’s
name, its type, a short description and denotes if the option is required or optional. To
illustrate the behavior of an observer or interactive handler, we apply it to the simple lift
system presented in Fig. 3.1.

4.2.1 Formula Observer

The formula observer watches a list of formulas (e.g. expressions, predicates or single vari-
ables) and triggers a function whenever a state change occurred in the animated formal
specification. The values of the formulas and the origin (the reference to the graphical ele-
ment that the observer is attached to) are passed to the trigger function. Within the trigger
function, the user can manipulate the origin (e.g. change its attributes) based on the values
of the formulas in the respective state. Table 4.1 gives an overview of the available options
for the formula observer.

Table 4.1: Available options for formula observer

Name Type Required Description

selector string no The selector matches a set of graphical elements which
should be linked to the observer.

formulas list yes A list of formulas (e.g. expressions, predicates or single
variables) which should be evaluated in each state. For
instance, [′x′,′ card(x)′] observes the variable x and the ex-
pression card(x) (the cardinality of the variable x).

translate boolean no In general the result of the formulas will be strings. This
option should be set to true to translate B-structures to
JavaScript objects.

trigger function yes The trigger function will be called after every state change
with its origin reference set to the graphical element that
the observer is linked to and with the values of the formulas
at the new state. The values parameter is an array contain-
ing the values of the formulas, e.g. use values[0] to obtain
the result of the first formula. If no selector is defined, the
trigger function is called only with the values parameter.

1 bms.observe("formula", {

2 selector: "#door",

3 formulas: ["floor"],

4 translate: true,

5 trigger: function (origin, values) {

6 switch (values[0]) {

7 case 1: origin.attr("y", "20"); break

8 case 0: origin.attr("y", "140"); break

9 case -1: origin.attr("y", "250"); break

10 }

11 }

12 });

Listing 4.9: Example formula observer (JS)

Listing 4.9 shows how the formula observer is used in the simple lift system. In line 1 we
register a new formula observer to the graphical element that matches the selector “#door”,
i.e. the graphical element that represents the door of the simple lift system (line 2). Line 3
states that the observer should observe the variable floor during the animation. In line 4 we
set the translate option to true. By default the results of evaluating the formulas are strings.
Setting the translation option to true translates the string results into JavaScript objects.
Table 4.2 gives an overview of the mapping between B (classical-B and Event-B) constructs
represented as strings and JavaScript objects. For instance, the value “TRUE” is translated
into the JavaScript object true which can be then used in the JavaScript context (e.g. in a
conditional statement). In lines 5 to 11 we define a trigger function that is called whenever
a state change has occurred. The reference to the matched graphical element (origin) and

Table 4.2: Overview of translating B constructs to JavaScript objects

Example

B Construct JavaScript B as String JavaScript

BOOL Boolean “TRUE” true

Naturals Number “2” 2

Integers Number “-2” -2

Sets Array “{2, 3}” [2, 3]

Sets of Sets Array “{{2}, {2, 3}, {2, 3, 4}}” [[2], [2, 3], [2, 3, 4]]

Relations Array “{(2, 3), (3, 4)}” [[2, 3], [3, 4]]

Nested Relations Array “{({(2, 3)}, 3)}” [[[[0, 0]], 0]]

Functions Array “{(2, 3), (3, 4)}” [[2, 3], [3, 4]]

the state values of the observed formulas (values) are passed as arguments to the trigger
function. The trigger function in Listing 4.9 defines the position of the lift cabin (see lines 6
to 10). For this, it maps the y coordinate attribute of the origin to the desired value based
on the state value of the floor variable (values[0]).

4.2.2 Predicate Observer

The predicate observer observes a predicate and triggers a function depending on the evalu-
ation of the predicate in the respective state (true or false). The reference to the graphical
element to which the observer is attached is passed to the particular function. Table 4.3 gives
an overview of the available options for the predicate observer.

As an example, Listing 4.10 shows a predicate observer for the simple lift system. The
purpose of the observer is to set the fill attribute of the door to the color white (denoting that
the door is opened) or to gray (denoting that the door is closed) based on to the evaluation
of the predicate in the respective state (true or false). To do this, we register a new predicate
observer (line 1) for the graphical element that matches the selector “#door” (line 2). In
line 3 we define the predicate door = open that should be observed during the animation.
Lines 4 to 6 define the function that is called whenever the predicate is true in the respective
state. When this is not the case the false function is called (see lines 7 to 9).

Table 4.3: Available options for predicate observer

Name Type Required Description

selector string no The selector matches a set of graphical elements which
should be linked to the observer.

predicate string yes A predicate which should be evaluated in each state.

true function yes The true function will be called whenever the predicate
evaluates to true in the respective state with its origin ref-
erence set to the graphical element that the observer is
linked to. If no selector is defined, the true function is
called without parameters.

false function yes The false function will be called whenever the predicate
evaluates to true in the respective state with its origin ref-
erence set to the graphical element that the observer is
linked to. If no selector is defined, the false function is
called without parameters.

1 bms.observe("predicate", {

2 selector: "#door",

3 predicate: "door = open",

4 true: function(origin) {

5 origin.attr("fill", "white");

6 },

7 false: function(origin) {

8 origin.attr("fill", "gray");

9 }

10 });

Listing 4.10: Example predicate observer (JS)

4.2.3 Set Observer

The state-based formal methods classical-B and Event-B are based on set theory. Thus, the
different aspects of the system are often expressed as sets. As an example, consider a formal
specification of an interlocking system, where the occupied block segments of a track are
expressed as a set. It would be useful to identify graphical elements based on the elements
of this set and to color all of them red at once (denoting that the blocks are occupied).
To do this, we present an observer called set observer that is capable of selecting graphical
elements based on a user-defined set expression. Table 4.4 shows the available options for
the set observer.

To illustrate the use of the set observer consider Listing 4.11. The purpose of the observer
is to set the fill of all pressed request buttons to green. To do this, we define the set selector
based on the variable request which defines the set of floor numbers where the request button
has been pressed (line 3). Since the ids of the graphical elements that represent the request

Table 4.4: Available options for set observer

Name Type Required Description

selector string no The selector matches a set of graphical elements which
should be linked to the observer.

set string yes The result of the defined set expression is used to establish
a set selector which in turn is used to find child graphical
elements of the graphical element that matches the selector
of the observer. The elements of the set are joined with the
prefix “#” (e.g. “#ele1,#ele2,#ele3,...”).

convert function no The convert function is called for each element of the de-
fined set. It returns an element selector of the form “#id”,
where id is the identifier of the element. The user can also
override the method.

actions list yes A list of actions that determine the appearance and the
behaviour of the set graphical elements.

attr string yes The attribute of the elements that should be modified.

value string yes The new value of the attribute.

buttons have the form “bt nr”, where nr is the respective floor number (−1, 0 or 1), we
override the prefix using the convert function (lines 4 to 6). The returned prefix is composed
of the string “#bt ” and the floor number (e.g. “#bt 0”). Finally, in lines 7 to 10 we define
the actions triggered on the graphical elements that matches the composed set selector: we
color the graphical elements in green (denoting the buttons that are pressed).

1 bms.observe("set", {

2 selector: "#request_buttons",

3 set: "request",

4 convert: function(element) {

5 return "#bt_" + element;

6 },

7 actions: [{

8 attr: "fill",

9 value: "green"

10 }]

11 });

Listing 4.11: Example set observer (JS)

4.2.4 Refinement Observer

Refinement is an important concept in the state-based formal methods classical-B and Event-
B. It can be used to structure the development of a formal specification and to gradually
introduce complexity and details (e.g. new variables or events). In order to support re-
finement in interactive formal prototypes, we introduce an appropriate observer with the

Table 4.5: Available options for refinement observer

Name Type Required Description

selector string no The selector matches a set of graphical elements which
should be linked to the observer.

refinement string yes The refinement that should be observed. The option ac-
cepts the name of a classical-B or Event-B machine.

enable function yes The enable function is called whenever the defined refine-
ment is part of the animation with its origin reference set
to the graphical element that the observer is linked to. If
no selector is defined, the enable function is called without
parameters.

disable function yes The disable function is called whenever the defined refine-
ment is not part of the animation with its origin reference
set to the graphical element that the observer is linked to. If
no selector is defined, the disable function is called without
parameters.

available options shown in Table 4.5.

Listing 4.12 shows the use of the refinement observer based on the Event-B simple lift
system. The purpose of the observer is to show the request buttons of the visualization
(see Fig. 3.1) only if the corresponding refinement (the machine m2 where the buttons are
introduced) is part of the animation, otherwise the request buttons should be hidden. To
do this, we register a new refinement observer to the group of request button graphical
elements (“#request buttons”). In line 3 we define the refinement (the name of the machine)
that introduces the request buttons: m2. Lines 4 to 6 define the enable function that sets
the opacity attribute of the graphical element to the value 1 (showing the request buttons)
whenever the defined refinement is part of the animation. Otherwise, the disable function
(lines 7 to 9) is called which sets the opacity attribute of the graphical element to the value
0 (hiding the request buttons).

1 bms.observe("refinement", {

2 selector: "#request_buttons",

3 refinement: "m2",

4 enable: function (origin) {

5 origin.attr("opacity", "1")

6 },

7 disable: function (origin) {

8 origin.attr("opacity", "0")

9 }

10 });

Listing 4.12: Example refinement observer (JS)

4.2.5 Illustration of Observers

Figure 4.3: Effect of formula, predicate and set observers on simple lift system

Figure 4.3 illustrates the effect of the example formula (Listing 4.9), predicate (List-
ing 4.10) and set (Listing 4.11) observers on the simple lift system (Fig. 3.1). Some example
states and their variable configurations are shown at the bottom of the figure. The effect of
applying the observers is shown at the top of the figure. As can be seen in the figure, the
effect of the formula observer is to change the y coordinate based on the current state value
of the variable floor (denoting the movement of the door between floors). The effect of the
predicate observer is to set the fill color of the lift door according to the evaluation of the
predicate door = open. For instance, in state #2 the predicate is true. Hence, the door is
white denoting the door is opened. Finally, the set observer colors all pressed request buttons
to green based on the set variable request.

4.2.6 Execute Event Handler

The execute event handler wires a list of classical-B operations or Event-B events to graphical
elements. Table 4.6 shows the available options for the execute event handler.

Listing 4.13 shows how the execute event handler is used. In line 1, we register a new
execute event handler for the graphical element that represents the request button for floor

Table 4.6: Available options for execute event handler

Name Type Required Description

selector string yes The selector matches a set of graphical elements which
should be linked to the interactive handler.

events list yes A list of events which should be wired with the graphical
element.

name string yes The name of the event.

predicate string no The predicate for the event.

label function no The label function returns a custom label as a string to be
shown in the tooltip. The user can also return an HTML
element. The function provides two arguments: the origin
reference set to the graphical element to which the handler
is linked and the event data.

callback function no The callback function will be called after the event has been
executed. If the event returns a value (e.g. when executing
a classical-B operation with return value), the return value
is passed to the callback function.

0 (line 2). In lines 3 to 8, we define the event with the event’s name (line 5) and predicate4

(line 6) which should be wired to the graphical element. Finally, in lines 9 to 11 we define
a custom label based on the data of the event object which contains the name (event.name)
and the predicate (event.predicate) of the defined event.

1 bms.handler("executeEvent", {

2 selector: "#bt_0",

3 events: [

4 {

5 name: "send_request",

6 predicate: "f=0"

7 }

8],

9 label: function(origin, event) {

10 return "Push button " + event.predicate;

11 }

12 });

Listing 4.13: Example execute event handler (JS)

Figure 4.4 illustrates the effect of the execute event handler. A tooltip that lists all
available events (disabled and enabled) will be shown when hovering over the graphical
element or when clicking on the graphical element and if all events are disabled or more than
one event is enabled. If only one event is enabled, it is executed directly when clicking on
the graphical element. As an example, in the figure the user hovers over the request button

4The predicate defines the values of the parameters for the event.

on floor 0.

Figure 4.4: Effect of execute event handler on simple lift system

4.2.7 Context-Sensitive Options

Each option for an observer or interactive handler (except of the selector option and the
options that take a function as its value) can also define a function that returns its value.
The origin (the reference to the graphical element that the observer or interactive handler is
attached to) is passed to the value function as the first parameter. Defining a value function
enables the user to determine the value of an option in the context of the linked graphical
element. As an example, consider the execute event handler presented in Listing 4.13. The
handler wires the send request event with the predicate f = 0 to the graphical element
that represents the lift request button on the floor 0 (#bt 0). Instead of creating similar
execute event handlers for the other request buttons, we could also define a selector that
selects all request buttons and a value function that returns the predicate in context of the
matched graphical elements. Listing 4.14 shows an alternative execute event handler linked
to all ellipse graphical elements that provide a data-floor attribute (ellipse[data-floor]). The
data-floor attribute defines the floor number (-1, 0 or 1) of the respective request button.
In line 6 to 8 we define a function that returns the predicate of the event send request in
context of the matched graphical elements, i.e. the function returns the predicate based on
the data-floor attribute of the linked graphical element. For instance, the predicate function
returns f = 1 for the graphical element where the data-floor attribute is set to 1. Based on
context-sensitive options, we can create generic observers and interactive handlers: if we add
more request floor buttons, the execute event handler in Listing 4.14 would be also valid for
the new buttons.

1 bms.executeEvent({

2 selector: "ellipse[data-floor]",

3 events: [

4 {

5 name: "send_request",

6 predicate: function (origin) {

7 return "f=" + origin.attr("data-floor")

8 }

9 }

10],

11 label: function(origin, event) {

12 return "Push button " + event.predicate;

13 }

14 });

Listing 4.14: Context sensitive execute event handler (JS)

4.2.8 Other API Features

The BMotionWeb JavaScript API also provides some other features listed below:

Evaluate formulas manually. The JavaScript API provides the bms.eval function that
takes a list of options defining the formulas to be evaluated and a trigger function that is
called with the values of the formulas. The function is similar to the formula observer, except
that the bms.eval function is executed once (in the current state) rather than after every state
change.

Execute transitions manually. With the bms.executeEvent API function, the developer
can execute a transition manually. The function takes a list of options, where the name and
predicate options define the name and the predicate of the event to be executed respectively.
Similar to the execute event handler the developer can optionally define a callback function
that is called after the event has been executed. If the event returns a value (e.g. for a
classical-B operation with a return value) the return value is passed to the callback function.

Initialization listener. The bms.init function takes a function as its parameter that is
called whenever the animated formal specification is initialized. Thus, the developer could
create the visualization according to static data coming from the formal specification (e.g.
constants or external data from a database).

4.3 External Method Calls

BMotionWeb provides a Groovy API that can be accessed via the global variable bms within
a Groovy script file. The Groovy API provides different functions to programatically control
the integrated animation engine and to interact with the animated formal specification, e.g.

to access the state space or trace of the animated formal specification. The developer can
also register external methods that are evaluated on the server side. The registered meth-
ods accept arguments from the client and may also return data to the client. Listing 4.15
demonstrates the bms.registerMethod Groovy API function.5 The method takes two argu-
ments: the first argument defines the name under which the method should be registered,
and the second argument is a closure that defines the actual method. For instance, in line
1 we register a method called random with a parameter n and the method body defined in
lines 2 to 11. The purpose for this method is to randomly execute n events in the animated
formal specification, where n is a number passed to the method. If a number below or equal
zero has been passed to the method the method returns an error message. Otherwise the
method randomly executes the event and returns a success message.

Since BMotionWeb integrates with the ProB animation engine, some of the ProB func-
tionality is exposed to the user via the BMotionWeb Groovy API. ProB is tightly integrated
with the Groovy scripting language. Everything from the constraint solver to the user in-
terface is exposed via the scripting language.6 For instance, in lines 5 and 7 in Listing 4.15
we access the current trace (bms.getTrace()) and execute a random event (trace.anyEvent())
of the animated formal specification respectively. These methods then call the appropriate
methods within the ProB Java API.

1 bms.registerMethod("random", { n ->

2 if(n <= 0) {

3 return "Only numbers greater than 0 are allowed.";

4 } else {

5 def trace = bms.getTrace();

6 1.upto(n, {

7 trace = trace.anyEvent();

8 });

9 bms.getAnimationSelector().traceChange(trace);

10 return n + " events have been executed.";

11 }

12 });

Listing 4.15: Register method on the server side (Groovy)

To use a registered method on the client side, the method can be wired to graphical
elements (e.g. with an observer or interactive handler) or the developer can call the method
manually (see lines 11 to 18 in Listing 4.16). Lines 2 to 9 in Listing 4.16 demonstrate the
execute method handler that executes a registered server side method when the user clicks
on the linked graphical element. In line 2 we register the handler on the graphical element
that matches the selector #button (line 3). In line 4 and 5 we define the name and args
(the arguments that should be passed to the method) of the method to be called. In lines
6 to 8 we define a callback function that is called whenever the method on the server side
returns a value. The origin (the reference to the graphical element) and the returned data

5An overview of the BMotionWeb Groovy API functions is given in Section 4.3.1.
6A documentation of the ProB Java API is available at http://www3.hhu.de/stups/handbook/prob2/

current/devel/html.

http://www3.hhu.de/stups/handbook/prob2/current/devel/html
http://www3.hhu.de/stups/handbook/prob2/current/devel/html

Table 4.7: Available options for method observer and execute method handler

Name Type Required Description

selector string no (observer)
yes (handler)

The selector matches a set of graphical elements which
should be linked to the observer or handler.

name string yes The name of the registered server side method.

args list no The args that should be passed to the registered server side
method.

callback function no The callback function is called whenever the server side
method returns a value with its origin reference set to the
graphical element that the observer or handler is linked to
and the return value of the method.

is passed to the callback function. In a similar fashion, an observer can be defined for
observing a registered server side method (i.e. the method is called after every state change).
Table 4.7 gives an overview of the available options for the method observer and execute
method handler.

1 // Register execute method handler

2 bms.handler("method", {

3 selector: "#button",

4 name: "random",

5 args: [10],

6 callback: function(origin, data) {

7 alert(data);

8 }

9 });

10

11 // Call method on server side manually

12 bms.callMethod({

13 name: "random",

14 args: [10],

15 callback: function(msg) {

16 alert(msg);

17 }

18 });

Listing 4.16: Use registered method on client side (JS)

4.3.1 BMotionWeb Groovy Scripting API

1 package de.bmotion.core;

2

3 import java.util.Map;

4

5 import groovy.lang.Closure;

6

7 public interface IBMotionApi {

8 /**

9 *

10 * Logs the given message on the client side. An arbitrary object can be

11 * passed as a message with the assumption that the object is serializable.

12 *

13 * @param message

14 * An arbitrary serializable message object

15 */

16 public void log(Object message);

17

18 /**

19 *

20 * Executes an event for the given name.

21 *

22 * @param name

23 * The name of the event that should be executed

24 * @return The return value of the event (e.g. classical-B operations may

25 * have return values)

26 * @throws BMotionException

27 */

28 public Object executeEvent(String name) throws BMotionException;

29

30 /**

31 *

32 * Executes an event for the given name and options.

33 *

34 * @param name

35 * The name of the event that should be executed

36 * @param options

37 * The options for the event (e.g. an additional predicate)

38 * @return The return value of the event (e.g. classical-B operations may

39 * have return values)

40 * @throws BMotionException

41 */

42 public Object executeEvent(String name, Map<String, String> options) throws

BMotionException;

43

44 /**

45 *

46 * Evaluates the given formula in the current state and returns the value.

47 *

48 * @param formula

49 * The formula that should be evaluated in the current state

50 * @return The result of the formula

51 * @throws BMotionException

52 */

53 public Object eval(String formula) throws BMotionException;

54

55 /**

56 *

57 * Evaluates the given formula with options in the current state and returns

58 * the value.

59 *

60 * @param formula

61 * The formula that should be evaluated in the current state

62 * @param options

63 * The options for the evaluation (e.g. translate flag)

64 * @return The result of the formula

65 * @throws BMotionException

66 */

67 public Object eval(String formula, Map<String, Object> options) throws

BMotionException;

68

69 /**

70 *

71 * Registers a method on the server side.

72 *

73 * @param name

74 * The name of the method.

75 * @param func

76 * The functional body of the method as a {@link Closure}

77 */

78 public void registerMethod(String name, Closure<?> func);

79

80 /**

81 *

82 * Calls a registered method on the server side.

83 *

84 * @param name

85 * The name of the method.

86 * @param args

87 * The arguments for the method

88 * @return The return value of the method

89 * @throws BMotionException

90 */

91 public Object callMethod(String name, Object... args) throws BMotionException;

92

93 /**

94 *

95 * Returns a list of registered server side methods.

96 *

97 * @return A list of registered server side methods

98 */

99 public Map<String, Closure<?>> getMethods();

100

101 /**

102 *

103 * Returns session related data.

104 *

105 * @return Session related data

106 */

107 public Map<String, Object> getSessionData();

108

109 /**

110 *

111 * Returns tool related data.

112 *

113 * @return Tool related data

114 */

115 public Map<String, Object> getToolData();

116

117 }

Listing 4.17: BMotionWeb Groovy Scripting API

1 package de.bmotion.prob;

2

3 import de.bmotion.core.IBMotionApi;

4 import de.prob.model.representation.AbstractModel;

5 import de.prob.statespace.AnimationSelector;

6 import de.prob.statespace.Trace;

7

8 public interface IProBVisualizationApi extends IBMotionApi {

9

10 /**

11 *

12 * Returns the ProB representation of the loaded formal specification.

13 *

14 * @return The formal specification as {@link AbstractModel}

15 */

16 public AbstractModel getModel();

17

18 /**

19 *

20 * Returns the current {@link Trace} of the animation.

21 *

22 * @return The current {@link Trace} of the animation

23 */

24 public Trace getTrace();

25

26 /**

27 *

28 * Returns the {@link AnimationSelector} which is the entry point to the

29 * ProB GUI.

30 *

31 * @return The {@link AnimationSelector} which is the entry point to the

32 * ProB GUI

33 */

34 public AnimationSelector getAnimationSelector();

35

36 }

Listing 4.18: BMotionWeb for ProB specific Groovy Scripting API

4.4 Visual Editor

An important component of BMotionWeb is the built-in visual editor. The overall goal of
the editor is to facilitate the rapid creation of visualization templates. The editor has been
implemented and adapted based on method draw, a web based SVG editor.7 Figure 4.5
shows the editor while editing the visualization template of the simple lift system interactive
formal prototype. The editor consists of a palette for creating graphical elements, like shapes,
labels, and images and a view for managing the properties of graphical elements. Graphical
elements can be added to a canvas which provides like drag and drop, undo/redo, copy/paste
and zooming.

Palette with graphical
elements and tools

Toolbar

Canvas with
graphical elements

Properties, observers and
interactive handlers view

Figure 4.5: Built-in visual editor of BMotionWeb

7https://github.com/duopixel/Method-Draw.

The visual editor also supports the creation of observers and interactive handlers. Two
additional views (one for creating observers and a second for creating interactive handlers) are
available for this purpose. As an example, Fig. 4.6 shows the observers view. The view lists
all observers with their corresponding options for the current edited visualization template.
The user can edit the options of an observer directly in the observers view. If an option
has a JavaScript function as its value, a JavaScript editor is shown when editing the option.
For instance, the left side of Fig. 4.6 shows the JavaScript editor for the trigger function of
the formula observer that is wired to the graphical element #door. The user only needs to
provide the body of the function. The arguments (origin and values) are passed directly to
the function body while running the interactive formal prototype.

Figure 4.6: Observers view in visual editor of BMotionWeb

Chapter 5

Frequently Asked Questions

5.1 Where can I download the tool?

You can find the latest version of the tool at http://www.stups.hhu.de/ProB/index.php5/
BMotionWeb_Download.

5.2 Where can I report bugs?

If you want to submit a bug report, please use our bug tracker. You may also want to ask
questions within our prob-users group.

5.3 Where can I find examples?

You can find a bunch of examples at GitHub: https://github.com/ladenberger/bmotion-
prob-examples.

37

http://www.stups.hhu.de/ProB/index.php5/BMotionWeb_Download
http://www.stups.hhu.de/ProB/index.php5/BMotionWeb_Download
http://jira.cobra.cs.uni-duesseldorf.de/
https://groups.google.com/d/forum/prob-users
https://github.com/ladenberger/bmotion-prob-examples
https://github.com/ladenberger/bmotion-prob-examples

	Contents
	Introduction
	Overview
	Formats of this Handbook

	Conventions
	ADVANCE
	Creative Commons Legal Code

	First Steps
	Installation and Start
	Open a Visualization
	Create a new Visualization

	BMotionWeb
	Visualization Template
	Manifest File
	Visualization Files
	Groovy Script File

	Working with Graphical Elements

	BMotionWeb for Event-B and Classical-B
	Tutorial
	Preparation
	The Formal Model
	Link the Model with the Visualization
	Create the Actual Visualization
	Start the Visualization
	Create Observers
	Add Event Handler

	Observers and Interactive Handlers
	Formula Observer
	Predicate Observer
	Set Observer
	Refinement Observer
	Illustration of Observers
	Execute Event Handler
	Context-Sensitive Options
	Other API Features

	External Method Calls
	BMotionWeb Groovy Scripting API

	Visual Editor

	Frequently Asked Questions
	Where can I download the tool?
	Where can I report bugs?
	Where can I find examples?

