Integrating ProB into the TLA Toolbox

Dominik Hansen, Jens Bendisposto, Michael Leuschel

Institut fiir Informatik, Universitit Diisseldorf**
{hansen, bendisposto, leuschel}@cs.uni-duesseldorf.de

The TLA2B translator [2] enables the validation of TLA™ specifications with the
model checker, animator and constraint-based checker PROB [4]. In order to provide a

convenient way to use PROB as a new validation tool for TLAT, we integrated PROB
into the TLA toolbox (Fig. 1).

@ SWT File Edit Window TLC Model Checker TLA Proof Manager ProB i Help
600 TLA+ Toolbox
: Brents ﬁ = O|| [pieHard.tla 52 | £ Model_1 = O || 3 smotion Studio view 52 =0
Q Fier Ever TLA Module
. 5 50
isad LI L el o €* Now we define the actions that our hero can perform. There are three *)
52 (* things they can do 9
2 53¢)
FilSmalug) 56 €* - Pour water from the faucet into o jug o)
¥ FilBigJug) 55 g+ ¥ 5
> EmptySmalldug) 2 ¢ - Four voter from @ g orto the growmd 3
> EmpyBigug) 58 (* - Pour water from one jug ints another)
P SmalToBig) ¢ el 4
S * We now consider the first two. Since the jugs are not calibrated,)
EiTosmal) ¢* partially filling or partially emptying a jug accomplishes nothing. — *)
C* So, the first two possibilities yield the following four possible o) 3
(* actions. *)
64
Fillsmalllug == A\ snall’ = 3 2
6 A\ big' - big
Fillbigly - A\ big’ -
A snall’ < snall 1
71 EnptySmalllug == A\ small' - 8
72 A\ big' - big

74 EmptyBiglug == /\ big' = 0
75 A snall' - small

T

Corrent Trace 82 S {| 78 (* We now consider pouring water from one jug into another. Again, since *) e =
[Bcurenctace X| " O 05 (e the Jugs are not callibrated, when pouring From jug A fo jug B, it 3 fBsenetozpectony
FillSmalidug) 80 (* makes sense only to either fill B or empty A. And there's no point in *)
SmalToBig) 81 (* emptying A if this will cause B to overflow, since that could be b Name Value Previous Value
82 (* accomplished by the two actions of first filling B and then emptying A. *)
FillSmallJug() 83 €* So, pouring water from A to B leaves B with the lesser of (i) the water %) MC
SmalToBig) 8 ¢* contained in both jugs and (ii) the volume of B. To express this 3
EmpyBigJu 8 (* mathematically, we first define Min(m,n) to equal the minimm of the *)
PYBIg.Ug0 86 (* numbers m and n o) Variables
SmalToBig) b
Fillsmalkug) & MinCm,n) == IF m < n THEN m ELSE n big 4 a
SmalToBig) 8
% small 3 o
FillSmallJug() 91 (* Now we define the last two pouring actions. From the observation 2]
Sinitialise_machine(0,0) 92 (% above, these definitions should be clear. “
SnallToBig == /\ big' = Min(big + small, 5)
s /A small' - small - (big' - big)
7 BigToSmall - A\ small' - MinCbig + small, 3)
/A big' = big - (small' - small)
€* We define the next-state relation, which I like to call Next. A Next *)
(* step is a step of one of the six actions defined above. Hence, Next is *)
(* the disjunction of those actions)
10
195 Next == \/ Fi1Small Tun
150Mof 210M | Spec staus - BRI | 5 & O

Fig. 1. Using PROB within the TLA Toolbox

Features. Animation is one of the most useful features of PROB that is not currently
supported by the TLATtool chain. It allows a user to interact with the specification by
discovering the statespace step by step and to evaluate expressions on the current state.
Animation could be especially useful for newcomers to get familiar with TLAT. Moreover,
the PROB animator can be used to control a graphical visualization of a specification
(top right view in Fig. 1). Apart from that, PROB is a model checker complementary to
TLC. Experimental results comparing both model checkers can be found in [3]. Another
useful feature of PROB is called constrained based model checking. In this mode of oper-
ation, PROB does not explore all reachable states starting from the initial state(s), but
checks whether a single step of the next-state relation can result in an invariant violation

** Part of this research has been sponsored by the EU funded FP7 project 287563 (ADVANCE).

independently of the initial state(s) of the model. If the constraint based checker finds a
counter-example, this indicates that the model may contain a problem. The step discov-
ered by the constraint based checker leads from a valid state (satisfying the invariant(s))
to an invariant violation. Note that the valid state is not necessarily reachable from a
valid initial state, but this situation indicates that the invariant(s) are not inductive and
cannot be proved.

Integration into the toolbox. We already had an integration for the Eclipse based
RODIN [1] platform. Furthermore, our architecture was already decomposed, i.e., the
small part that depends on RODIN only contained declarative bindings for the UT (e.g.,
where menus and popups are shown) and the code for loading an EventB model. The rest
of the tool including the implementation of the Ul was already independent from RODIN
and could be reused. We developed a plug-in that contains the UI bindings for the toolbox
and the code for loading TLA™* models. We also needed to make small changes to the
product and target definitions of the toolbox (i.e, to include ProB in the toolbox).

TLA2B. We developed a new version of the TLA2B translator especially for the
toolbox integration. The translator is build upon the SANY parser and uses a TLC run
configuration provided by the toolbox. In contrast to the old translator, the new one
directly creates the abstract syntax tree (AST) PROB is working on. Hence, we skip the
parsing procedure of the formerly created B machine. Directly creating the AST makes
us more flexible because we do not have to extend the B languages for the missing TLA™
constructs (e.g. the CHOOSE operator). Moreover, we need no longer a renaming phase
handling naming clashes. The AST also contains nodes for constructs from other formal
languages such as Z or Event-B which are also supported by PROB.

Limitations and current work. A main difference between TLAT and B are
the concepts of typing. While TLA™T is untyped, B is strongly typed. Since the PROB
kernel was designed and optimized to support a typed language, TLA2B contains a type
inference algorithm for TLA™. All data values of TLA™ are supported including TLC’s
model values. However, there are some resulting restrictions such as values of different
types can not be mixed in a set and variables can not have a polymorphic type. While
these limitations seems be unavoidable, we are working on the other issues such as the
support of recursive definitions. Even a support of temporal formulas seems be possible
since PROB has a integrated LTL model checker. Moreover, we are currently working
on a closer interaction of PROB and TLC: PROB could be used to setup the constants
for TLC (i.e, creating a run configuration) or automatically replaying-counter examples
produced by TLC in the animator.

At the workshop we want to present the current state of the integration of PROB into
the toolbox, in the hope of getting feedback and to guide further development.

References

1. J.-R. Abrial, M. Butler, and S. Hallerstede. An open extensible tool environment for Event-B.
In Z. Liu and J. He, editors, Proceedings ICFEM’06, LNCS 4260, pages 588-605. Springer-
Verlag, 2006.

2. D. Hansen and M. Leuschel. Translating TLA+ to B for validation with ProB. In Proceedings
1FM’2012, LNCS 7321, pages 24-38. Springer, June 2012.

3. D. Hansen and M. Leuschel. Translating B to TLA+ for validation with TLC. Technical
report, Institut fiir Informatik, Universitat Diisseldorf, 2013. To appear in ABZ’14.

4. M. Leuschel and M. J. Butler. ProB: an automated analysis toolset for the B method. STTT,
10(2):185-203, 2008.

