Towards a Shared Specification Repository

Philipp Kérner ¥ [0, Michael Leuschel ¥ @] and Jannik Dunkelau

Institut fir Informatik, Universitat Diisseldorf
Universitatsstr. 1, D-40225 Diisseldorf, Germany

{p.koerner,michael.leuschel, jannik.dunkelau}@uni-duesseldorf.de

Abstract. Many formal methods research communities lack a shared
set of benchmarks. As a result, many research articles in the past have
evaluated new techniques on specifications that are specifically tailored
to the problem or not publicly available. While this is great for proving
the concept in question, it does not offer any insights on how it performs
on real-world examples. Additionally, with machine learning techniques
gaining more popularity, a larger set of public specifications is required.
In this paper, we present our public set of B machines and urge contri-
bution. As we think this to be an issue in other communities in scope
of the ABZ as well, we are also interested in specifications expressed in
other formalisms, for example Alloy, TLA™ or Z.

1 Introduction and Motivation

Our group in Diisseldorf has collected since 2003 thousands of B and Event-B
machines: our PROB repository contains around 13 000 machines, of which more
than 3500 are publicly available. The examples are used for PROB’s regression,
performance and feature tests. Those public examples contain some duplicates,
as they are compiled from different sources: e.g., from tickets in our bug tracker,
teaching, literature, case studies, or student projects.

Naturally, not all machines are relevant to all research questions: infinite
state spaces might be interesting in order to evaluate symbolic model checking
techniques [IT], whereas large yet finite state spaces are the important class
for distributed model checking [I0]. Other use cases, such as data validation [7]
work by executing a model along one particular, linear path, while others, like
constraint solving problems, sometimes work on machines without variables,
consisting of a single state. Most recently, machine learning (ML) techniques
are applied to model checking or synthesis as well, and require a large number
of specifications, e.g., in order to extract and re-combine predicates [6]. Even
with access to numerous machines, it is time-consuming and cumbersome to
identify machines to use for benchmarking, especially since only a small amount
of data can be presented in a typical research article. Without any doubt, other
research groups have their individual set of B machines they use for testing and
evaluation. Thus, we propose that individual sets of benchmarks from different
parts of the community are combined into a global, shared repository. With
this paper, we start this endeavour, and create an index of our specifications as
described in Section Pl Benefits include:


https://orcid.org/0000-0001-7256-9560
https://orcid.org/0000-0002-4595-1518
https://orcid.org/0000-0003-0819-5554

Benchmarks are publicly available and experiments can be replicated easily.

Performance comparisons of several tools in different versions can be drawn.
— Suitable benchmarks can be quickly identified.
— Examples for translations between formalisms or ML are available.

Particularly successful examples can be shared for teaching.
While we are most involved in the B and Event-B community, we think that
similar issues are present in other communities which make up the ABZ con-
ference. Thus, we explicitly want to invite everyone to contribute specifications
written in other formalisms as well. The repository is located at:

https://github.com/hhu-stups/specifications

2 Proposed Index

Since our initial set of models is rather large, it is vital that a sufficient amount of
meta-information is attached to the models. For this, we suggest usage of edrﬂ
a serialisation format with parsers available in most mainstream programming
languages. For each specification, some basic information should be offered:

— Which formalism is this specification written in?

— A SHA-256 hash code to identify duplicates, and to ensure reproducibility
of experiments regarding the specification.

— Number of deferred sets, enumerated sets, constants, state variables and
operations / events, number of included machines, etc.

— Number of states and state transitions in the machine (if known)ﬂ

— Presence of invariant violations, deadlocks, etc. (if the property is known).

— Optional link to another (previous) model (e.g., a correction or evolution).

The information above is known to never change, but can be extended once
further properties are considered. Additional information depending on the tool,
its configuration or the use case altogether can be included as well, such as
temporal properties (e.g., expressed in LTL or CTL) which are expected to
hold or to be violated, tool name and version/revision which is able to parse or
execute the specification, or settings, walltime and memory usage required for
application of a technique such as model checking.

! Extensible Data Notation, see: https://github.com/edn-format/edn

2 Note that different tools count the number of transitions and states slightly differ-
ently. it might be necessary to keep track of the number of initial states and, e.g., the
virtual constants setup states of prob. then, one can derive the expected statistics
for other validation tools. some settings can also influence the number of states, e.g.,
the default scope for deferred sets or maximum number of transitions per operations.
in that case, it is preferable not to specify a number of states, but rather include
that number in a specific run of the tool (see below), that also includes the settings
needed for replication.


https://github.com/hhu-stups/specifications
https://github.com/edn-format/edn

Optional Fields. Naturally, this data must also be extensible via optional fields.
For instance, additional information due to a new use case can be gathered, e.g.,
the amount of states when using state space reduction techniques. As runtime
might depend on the hardware it was ran on, relevant data should be included
as well. They also allow extension of the information, e.g., for further tools
such as Atelier-B [] or handling of entirely different file formats, e.g., Rodin [I]
archives. In order to select suitable set of specifications, one can simply apply a
filter predicate testing the formalism or dialect of it. Furthermore, optinal fields
enable links between different machines (e.g., due to refinement or different pa-
rameter instantiation) and to external information, such as references to articles
describing the model, descriptions of the models as well as the author(s) and
their contact information. Finally, certain metrics do not make sense for specific
use cases of a formalism, or cannot be applied to other formalisms at all. Thus,
such data must not be a mandatory field (but may be mandatory for a given
formalism)ﬂ

Filtering Specification. As previously mentioned, we use edn for the meta infor-
mation because this format can easily be processed. A short example written in
Clojure is given in Listing[I.1] There, all files containing meta-information in the
directory are located (Il. 1-5). Then, they are read in and filtered (1l. 7-15). The
expression starting in 1. 9 returns a list of all file names of specifications written
in the B formalism that are known to have a state space of at least 100000
states. At the time of writing, there are 45 such machines. This example shows
that finding specifications based on certain criteria is fairly easy and necessary
for verification tool maintainers.

Table [I] provides an overview of the information of B machines currently
present in the repository, compiled after running each machine with a timeout
of 30 minutes in the PROB model checker.

On Updating Versions. We strongly argue that the published version of a spec-
ification must not be replaced. Once they are online, they may be used by any
researcher. Even though git clearly documents the history of a file, it would be
unclear which version was used as a benchmark or presented in an article. If
mistakes were spotted, new versions can be submitted as a modified copy.

3 Conclusions, Related and Future Work

We firmly believe that a shared repository of specifications will benefit all com-
munities coming together at ABZ. Aside from making benchmarks available for
replication, it can assist courses teaching the formal methods. Furthermore, it
builds the foundation for exciting new research that relies on such a dataset.

3 It would be sensible to define different standard formats for different formalisms.
These can be automatically enforced in a CI pipeline, e.g., by Clojure Spec [5],
before pull requests are accepted.



(def META-INF-DIR (java.io.File. "../meta-information"))

;7 get a sequence of all meta-information files in the directory
(def meta-files (remove (fn [file] (.isDirectory file))
(file-seq META-INF-DIR)))

(defn read-meta-file [f] (read-string (slurp f)))

(->> meta-files
(map read-meta-file)
(filter (fn [data]
(and (= (:formalism data) :b)
(number? (:number-of-states data))
(> (:number—-of-states data) 100000))))
(map :file))

Listing 1.1: Finding Specifications Based on Their Information

Similar issues have been found in other communities. This led to the creation
of central benchmarking sets, e.g., BEEM for models written in DVE [I3], or
the PRISM benchmark suite [12] for models written in PRISM. Yet, to our
knowledge, it is not possible to contribute to these databases. This has led to
criticism that, e.g., not many models that are large enough are featured. Also,
a fixed set of benchmarks is not a viable approach in the B community, that
creatively uses the B language in order to solve very different types of problems.

In other communities, such as SMT and SAT solving, shared benchmark
sets are established for many years [3I8]. They both grow via community contri-
butions and are the foundation for solver competitions [2/9]. SMT-LIB in par-
ticular is a success story, containing more than 100000 benchmarks. There are
many other examples for competitions and problem collections, e.g., SV—COMPE|7
TPLPE| [15], which we cannot exhaustively list here due to page limitations.

An interesting question we could not answer in this paper is to what extent
our examples match the reality of (confidential) industrial specifications. An
answer requires to take a closer look at the data that is available to us. When
considering state space size, number of variables and operations as well as idioms
used, e.g., usage of program counters or certain data structures, it might be
possible to label some public machines accordingly.

Furthermore, research papers often contain links to download pages not only
for benchmarks, but also tools themselves. Some tools presented years ago are
hard or near impossible to find now. Some conferences, e.g., POPL, established
artifact evaluation committees, yet making artifacts permanently available often

* lhttps://sv-comp.sosy-lab.org/2020/
5 Which inspired the second author to generate another library, Dozens of Problems
for Partial Deduction fhttps://github.com/leuschel/DPPD.


https://sv-comp.sosy-lab.org/2020/
https://github.com/leuschel/DPPD

Table 1: Overview of available machine meta data with a timeout of 30 min.

Errors on Load 310
Formalism 763 Event-B 2886 Classical B
Deadlock found 1080 yes 1576 no 683 timeout
Invariant violated 255 yes 2498 no 586 timeout

max avg usage in # machines
States 1000002 8743 2624
Transitions 5570544 53296 2624
Included Machines 13 1.18 3339
State Variables 10000 7.49 2282
Operations 2000 6.00 2497
Deferred Sets 50 0.44 669
Enumerated Sets 19 0.79 1310
Invariants 10000 9.39 1958
Constants 10000 8.63 2090
Properties 12015 17.51 2094
Static Assertions 188 1.46 646
Dynamic Assertions 54 0.20 200
Definitions 374 2.75 1265

is optional. ACM conferences offer different badge&ﬁ depending on availability,
replicability, etc. A similar, mandatory repository containing at least one binary
version or even the source code of tools presented at conferences might prove
useful to the research community as well. Worth mentioning here is the StarExec
platform [I4], that allows storage and execution of tools and benchmark prob-
lems, which may serve this effort to a satisfactory extent already.

In order for the presented endeavour to be successful, the effort of the en-
tire community is required and their contributions to this repository will be
appreciated.

Acknowledgement. Computational support and infrastructure was provided
by the “Centre for Information and Media Technology” (ZIM) at the University
of Diisseldorf (Germany). We thank the many persons who contributed to the
repository (a list is available at the project’s website).

References

1. J.-R. Abrial, M. Butler, S. Hallerstede, and L. Voisin. An Open Extensible Tool
Environment for Event-B. In Proceedings ICFEM, volume 4260 of LNCS, pages
588-605. Springer, 2006.

2. C. Barrett, L. De Moura, and A. Stump. SMT-COMP: Satisfiability modulo the-
ories competition. In Proceedings CAV’05, volume 3576 of LNCS, pages 20-23.
Springer, 2005.

S Cf. https://www.acm.org/publications /policies /artifact-review-badging


https://www.acm.org/publications/policies/artifact-review-badging

10.

11.

12.

13.

14.

15.

. C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB Standard — Version 2.0. In
Proceedings SMT’10, July 2010.

ClearSy. Atelier B, User and Reference Manuals. Aix-en-Provence, France, 2016.
Available at |http://www.atelierb.eu/\

Clojure Spec Guide. https://clojure.org/guides/spec. Accessed: 2020-03-12.

J. Dunkelau, S. Krings, and J. Schmidt. Automated Backend Selection for ProB
Using Deep Learning. In Proceedings NFM’19, volume 11460 of LNCS, pages 130—
147. Springer, 2019.

D. Hansen, D. Schneider, and M. Leuschel. Using B and ProB for Data Validation
Projects. In Proceedings ABZ’16, volume 9675 of LNCS, pages 167-182. Springer,
2016.

H. H. Hoos and T. Stiitzle. SATLIB: An online resource for research on SAT. In
SAT2000, pages 283-292. 10S Press, 2000.

M. Jarvisalo, D. Le Berre, O. Roussel, and L. Simon. The international SAT solver
competitions. Ai Magazine, 33(1):89-92, 2012.

P. Koérner and J. Bendisposto. Distributed Model Checking Using ProB. In Pro-
ceedings NFM’18, volume 10811 of LNCS. Springer, 2018.

S. Krings. Towards Infinite-State Symbolic Model Checking for B and Event-B.
PhD thesis, Universitats-und Landesbibliothek der HHU Diisseldorf, 2017.

M. Kwiatkowska, G. Norman, and D. Parker. The PRISM benchmark suite. In
Proceedings QEST’12, pages 203—204. IEEE CS press, Sept. 2012.

R. Peldnek. BEEM: benchmarks for explicit model checkers. In Proceedings
SPIN’07, volume 4595 of LNCS, pages 263—267. Springer, 2007.

A. Stump, G. Sutcliffe, and C. Tinelli. StarExec: A cross-community infrastructure
for logic solving. In Proceedings IJCAI’14, volume 8562 of LNCS, pages 367-373.
Springer, 2014.

G. Sutcliffe. The TPTP Problem Library and Associated Infrastructure. From CNF
to THO, TPTP v6.4.0. Journal of Automated Reasoning, 59(4):483-502, 2017.


http://www.atelierb.eu/
https://clojure.org/guides/spec

	Towards a Shared Specification Repository

