
Turning Failure into Proof:
Evaluating the ProB Disprover

Sebastian Krings, Jens Bendisposto and Michael Leuschel

Institut für Informatik, Universität Düsseldorf??

Universitätsstr. 1, D-40225 Düsseldorf
{krings,bendisposto,leuschel}@cs.uni-duesseldorf.de

Abstract. The ProB disprover uses constraint solving to try and find
counter examples to proof obligations. As the ProB kernel is now ca-
pable of determining whether a search was exhaustive, one can also use
the disprover as a prover. In this paper, we compare the ProB Prover
with the standard automatic provers for B and Event-B, such as ml, pp
and the Rodin SMT plug-in. We demonstrate that ProB is able to deal
with classes of proof obligations that are not easily discharged by other
provers. As benchmarks we use medium sized specifications such as solu-
tions to the ABZ 2014 case study, a CAN bus specification and a railway
system.

1 Introduction and Motivation

Both the B-method and its successor Event-B [1] are state-based formal methods
rooted in set theory. They are used for the formal development of software and
systems that are correct by construction. This usually involves formal proofs
of different properties of the specification. The proof obligations often include
set theoretic theorems and claims. Many provers such as “ml” of Atelier-B are
able to discharge certain proof obligations automatically. In former work [13]
we already described a disprover based on using ProB’s constraint solver to
automatically find counter-examples for given proof obligations and thus saving
the user from spending time in a futile interactive proof attempt.

We made the observation that in some cases, namely if we never encounter in-
finite sets nor deferred sets1 whose cardinality remains unbounded, the absence
of a counter example is actually a proof. In [13] we thus suggested as future
work to implement an analysis that checks if the absence of a counter example
is a valid proof. This work has been finalized in the recent months: ProB now
keeps track of infinite set enumeration, in particular the scope in which an in-
finite enumeration has occurred and whether a solution has been found or not.
This enables our technique to detect if the search for a counter-example was
exhaustive, i.e., we can now use ProB as a prover.

?? Part of this research has been sponsored by the EU funded FP7 project 287563
(ADVANCE).

1 Deferred sets are sets which are not given upfront by enumerating their elements.
They are unbound sets which can become bounded by further constraints.

In [13] we have also identified the need to empirically evaluate the disprover.
In this paper we will focus on this research goal: the empirical evaluation of
our constraint-based approach to checking proof obligations, in particular when
compared to the existing provers available for B.

2 Technique

When working on a proof obligation, Rodin keeps track of two sets of hypotheses:
the set of all hypothesis available to proof the target goal and a user-selected
subset. The idea behind this is to be able to shrink the search space of automatic
provers by omitting hypothesis that should not be used in a proof attempt. In
the case of the ProB prover we could, for instance, get rid of hypotheses that
are irrelevant for the proof but contain variables over infinite domains, deferred
sets or complicated constraints. This approach can not lead to false positives
because limiting the number of available hypothesis can not render a formerly
unprovable sequent provable.

However, disproving while omitting hypotheses can lead to false negatives if
the hypotheses are too weak for a proof. In order not to confuse the user with
invalid counter-examples, we only try to disprove a sequent using all hypotheses.

Figure 1 outlines how we proceed:

1. We try to solve the predicate H1 ∧ ... ∧ Hm ∧ ¬G, i.e. the negated goal
together with all available hypotheses. If we find a solution, we report a
counter-example to Rodin and show it inside the proof tree as shown in
Figure 2. If a contradiction is detected, either by analyzing the predicate or
by enumerating exhaustively without finding a solution, the initial sequent
is proven, because no counter-example exists.

2. If the constraint solver is unable to prove or disprove the predicate, we reduce
the number of hypotheses to the user-selected hypotheses. After reducing to
a subset of the hypotheses we will not report counter examples to avoid false
negatives as discussed:
– A contradiction detected with the reduced set of hypotheses is still a

valid proof as reducing the number of hypotheses might introduce further
counter-examples but not remove them.

– If we find a solution, we report a possible counter-example. However, we
do not prevent a following proof effort.

– Otherwise we return without a result.

The ProB constraint solver supports sets in different ways. First of all, all set
theoretic features of the B language are available to formulate constraints. This
includes, among others, subset, strict subset, membership, union and intersection
as well as cardinality of sets.

The solver is based on constraint-propagation and resorts to enumeration
if no further propagation is possible. While doing so, the solver tracks where
and why the elements of a set have to be enumerated. It is able to distinguish

PROOF

All
Hypothesis

not(Goal)
1. ProB

Constraint
Solver

Counterexample
solution found

No solution found &
enumeration
exhaustive

No solution found, but
not exhaustive

Selected
Hypothesis

2. ProB
Constraint

Solver

No solution found &
enumeration
exhaustive

DISPROOF: Goal cannot be proven

No solution found, but
not exhaustive

Solution found

UNKNOWN

Fig. 1. Disproving Algorithm

Fig. 2. Counter-Example inside the Rodin Proof Tree

between safe and unsafe enumerations, i.e. if all possible values of a variable
have to be tried out or if a single solution is sufficient. This is done by observing
the context2 in which an enumeration occurs. Exhaustive enumeration can then
be detected individually for each variable and later be transferred to the whole
constraint if possible. Let us look at a few examples, where we suppose all free
variables to be existentially quantified:

– i ∈ {1, 2, 1024, 2048} ∧ i > 2 ∧ ¬(i mod 2 6= 0) :
ProB finds two solutions (i = 1024 and i = 2048) and no infinite enumera-
tion has occurred as ProB has narrowed down the interval of i to 3..2048 be-
fore enumeration has started. As such, we can conclude that G = i mod 2 6= 0
is not a logical consequence of the hypotheses H1 = i ∈ {1, 2, 1024, 2048}
and H2 = i > 2. The same solutions could be found by a CLP(FD) query.3

– i > 20 ∧ ¬(i mod 2 6= 0):
ProB finds a solution (i = 22), but infinite enumeration has occurred in

2 This includes quantification, negation and arbitrarily nested combinations of them.
3 SICStus Prolog: list to fdset([1,2,1024,2048],FDSet), I in set FDSet, I

#>2, I mod 2 #\= 0 #<=> 0, labeling([],[I]).

the sense that the possible values of i lie in the interval 22..∞. However,
in this context this is not an issue, as a solution has been found. As such,
we can conclude that i mod 2 6= 0 is not a logical consequence of i > 20.
This time there is no CLP(FD) query that returns a solution. As there is
no finite domain attached to i, labeling can not be performed. In contrast,
ProB is able to (partially) enumerate the infinite domain of i in order to
find a solution.

– i ∈ {1, 2, 1024, 2048} ∧ i > 2 ∧ ¬(i mod 2 = 0) :
ProB finds no solution and no infinite enumeration has occurred. As such,
we have proven that i mod 2 = 0 follows logically from i ∈ {1, 2, 1024, 2048}∧
i > 2. A CLP(FD) query also confirms, that there is no solution.

– i > 20 ∧ ¬(i mod 2 = 0 ∨ i mod 1001 6= 800):
Here ProB finds no solution, but an “enumeration warning” is produced.
Indeed, the constraint solver has narrowed down the possible solutions for i
to the interval 801..∞, but with the default search settings no solution has
been found. Here, we cannot conclude that i mod 2 = 0∨ i mod 1001 6= 800
is a logical consequence of i > 20. Indeed, i = 1801 is a counter example. 4

Again, CLP(FD) is unable to solve the query due to the infinite domain of
i.

As mentioned in the introduction, we will not go into further technical details
in this paper.

3 Empirical Evaluation and Comparison

For our empirical evaluation we compare ProB to several other provers available
for the Rodin platform [2], i.e., Rodin’s automatic tactic and the SMT plug-in
[9,10]. Our comparison shows the benefit gained from using ProB as a prover.
Each additional obligation that is discharged in this comparison actually saves
time and money.

3.1 Experimental Setup

– The automatic tactic applies a number of rewriting rules and decision pro-
cedures to the proof tree. For instance, a decision procedure checks if the
goal is listed in the set of hypotheses and thus discharged. It also uses the
PP and ML provers from AtelierB. The automatic tactic is applied until a
fixpoint is reached.

– The SMT plug-in [9,10] applies two different SMT solvers (veriT [8] and
CVC3 [5]) to the original goal, after some pre-processing.

– The disprover tactic applies three trivial decision procedures (check if goal
is >, check if the hypotheses contain ⊥ and if the goal appears in the list of
hypotheses). Afterwards the disprover is applied to the goal.

4 Which ProB can find if you enlarge the default search space, e.g., by adding i <
10000 as additional constraint.

For our experiments, we have used Rodin 2.8, version 2.0.1 of the Atelier B
provers plugin and version 1.1.0.e126305 of the SMT Solvers Plugin, with the
bundled version 2.4.1 of CVC3 and the bundled development version of veriT.
We have used a timeout of 1 second for each SMT solver, run in succession.
ProB was used in version 1.3.7-beta10, connected through the disprover plugin
version 2.4.4.201403152244. Again, a timeout of 1 second was used for each
constraint solving attempt with a maximum of two attempts per proof obligation
(see Figure 1). Both the CLP(FD) and the CHR-based solvers of ProB were
activated. All benchmarks were run on a MacBook Pro featuring a 2,6 GHz
Intel Core i7 CPU and 8 GB 1600 MHz DDR3 memory. The CPU includes 4
cores, yet we ran at most two proof attempts at once. We used a plugin5 for
the Rodin platform that applies the user- or pre-defined proof tactics to selected
proof obligations.

As models for our benchmarks we used the following models:

– Answers to the ABZ-2014 case study [7]. The case study models a landing
gear system. Beside our own version [12], we also used the three models by
Su and Abrial [17], a model by André, Attiogbé and Lanoix [3] as well as a
model by Mammar and Laleau [14].

– A model of the Stuttgart 21 Railway station interlocking by Wiegard, derived
from the interlocking model in chapter 17 of [1] with added timing and
performance modeling.

– A model of a controller area network (CAN) bus. A CAN Bus is used in
vehicles for direct communication between components without a central
processor. The model was developed by Colley.

– A formal development of a graph coloring algorithm by Andriamiarina and
Méry. The graphs to be colored are finite, but unbounded and not fixed in
the model.

– A model of a pacemaker by Neeraj Kumar Singh [15].
– A model formalizing a number of set theoretical laws; generated for regres-

sion tests.

3.2 Results and Analysis

The results of the benchmarks are shown in Table 1 and Figures 4 and 5. Table 1
shows the total number of proof obligations discharged, as well as a column
showing the percentage of proof obligations discharged using ML/PP together
with SMT and in the last column the percentage discharged by using these two
proof tactics together with the ProB disprover. Each Venn diagram shows how
many proof obligations are discharged by which prover. Except for the graph
coloring algorithm and the set laws example ProB performs surprisingly well.

The graph coloring algorithm uses unbounded sets, that means that some of
the proof obligations cannot be proven using constraint solving and enumeration.

5 The source code of the plugin can be found at https://github.com/wysiib/

ProverEvaluationPlugin. An update site for installation inside Rodin is available
at http://nightly.cobra.cs.uni-duesseldorf.de/rodin_provereval/.

https://github.com/wysiib/ProverEvaluationPlugin
https://github.com/wysiib/ProverEvaluationPlugin
http://nightly.cobra.cs.uni-duesseldorf.de/rodin_provereval/

Table 1. Benchmark results: proof obligations discharged for various developments

Model # POs ML/PP SMT ProB % excl. ProB % incl. ProB

Landing Gear System 1, Su, et. al. 2328 2171 2312 2275 99.57 99.79
Landing Gear System 2, Su, et. al. 1188 845 1140 1165 97.22 99.49
Landing Gear System 3, Su, et. al. 341 201 187 251 74.78 85.63
CAN Bus, Colley 542 501 490 320 95.02 95.2
Graph Coloring, Andriamiarina, et. al. 254 226 116 19 96.06 96.06
Landing Gear System, Hansen, et. al. 74 72 63 74 100 100
Landing Gear System, Mammar, et. al. 433 347 385 334 95.15 98.15
Landing Gear System, Andre, et. al. 619 466 400 459 79.81 90.63
Pacemaker, Neeraj Kumar Singh 370 360 358 351 98.38 100
Stuttgart 21 interlocking, Wiegard 202 57 94 184 55.45 93.56
Set laws, Leuschel 67 67 67 62 100 100

ProB is only able to prove some very trivial invariants, such as ∀n ·n ∈ S ⇔ n ∈
dom(R) for the initialization S := ∅ || R := ∅. The other unfavorable case, the
set laws, is very similar. The model contains five invariants that contain infinite
sets and cannot be proven using ProB.

As can be seen in the last two columns of Table 1, ProB improves the
results of automatic proving in all other developments. In some cases, such as
the cases shown in Figure 5(b), 4(c) and 4(e) the improvement is rather big.
The reason for the big improvement is that these models only use enumerated
sets and integers. In these cases ProB can produce elaborate case distinctions,
combined with constraint solving to narrow down the search space. This type of
proof is not supported by the classical provers ML and PP. Generally, the proof
obligations that pose problems to the ProB disprover are well-definedness proof
obligations.

It is also interesting to note that, on their own, the ML and PP provers do
not fare quite so well as in Table 1: they require specific pre-processing to be
effective. In Table 2 are the results for two models without any pre-processing
(except for collecting hypotheses using the lasso tool):

Table 2. Results without pre-processing by Rodin

Model # POs Provers SMT ProB
ML PP ML/PP

Landing Gear System, Mammar et al 433 284 127 284 385 341
Landing Gear System, Andre et al 619 560 81 567 400 511
Pacemaker, Neeraj Kumar Singh 370 344 187 352 328 350

As can be seen, for the first model ML on its own discharges just 284 (45.9
%) proof obligations. PP discharges just 127 (20.5 %) of the proof obligations.
The SMT solver also benefits considerably from pre-processing: without it, it
discharges “just” 385 (62.2 %) of the proof obligations. The third model shows

Fig. 3. Counter-Example for proof obligation of Landing Gear System by Andre et al.

quite similar declines if pre-processing is omitted. However, the second model
shows the opposite behavior: without pre-processing, more proof obligations can
be discharged. This is due to the timeouts leaving less time for the actual prover,
if we include a pre-processing phase. In future, we want to examine whether
better pre-processing can improve the performance of the ProB disprover.

The first landing gear system by Andre et al. contains unprovable proof
obligations, where the disprover finds counter examples (e.g., the proof obligation
cockP handleUp/onHand/INV in the model LandingSysDP SWITCH A). This is very
useful feedback to the developer of the model, and the initial purpose of the
ProB disprover. Figure 3 shows the counter-example inside the Rodin proof
tree.

Finally, for the Landing Gear System by Mammar et al., the developers had
trouble discharging a few proof obligations using the other provers (including
the SMT plugin). The ProB disprover was able to discharge them; one of the
proof obligations was a well-definedness proof obligation.

4 Discussion and Conclusion

A secondary motivation for the experiments conducted in this paper was the
empirical evaluation of our constraint solver, more precisely its capability to
detect inconsistencies (a successful proof with the disprover requires finding an
inconsistency without enumerating unbounded variables; see Fig. 1). Finding
inconsistencies is important for detecting disabled events during animation, and
more importantly for constraint-based validation, such as constraint-based dead-
lock checking [11]: it avoids the constraint solver exploring unsuccessful alterna-
tives. In the context of model-based testing, it enables one to detect uncoverable
alternatives, and not spending time trying to find test cases to cover them.

One important issue is the soundness of the ProB disprover. In [6] we have
presented the various measures we are taking to validate ProB’s results. In

addition, we have developed a SMT-LIB [4] importer for ProB and have applied
our disprover to a large number of SMT-LIB benchmarks, checking that no “false
theorems” are proven. For this paper, we have also double checked many of the
proof obligations which were only provable by ProB, to ensure that they are
indeed provable. As the Venn diagrams in Figures 4 and 5 show, a large number
of proof obligations can be proven by two or even three different provers. As the
three provers rely on completely different technologies and have been developed
by independent teams, we can have a very high confidence that those proof
obligations are indeed provable.

We have demonstrated that ProB is capable to discharge proof obligations
that currently cannot be proven using Rodin’s auto tactic and the SMT solvers.
Our prover typically deals well with a different kind of proof obligations than
the other provers, and is thus an orthogonal extension rather than a replace-
ment. Rodin’s auto tactic performs well in the realm of set theoretic constructs
and relational expressions, some of which cannot be easily represented in the
SMT syntax. SMT on the other hand performs well on arithmetic expressions,
where the auto tactics often fail. ProB finally covers predicates over enumerated
sets, explicit data and explicit computations and has a good support for integer
arithmetic over finite domains.

However, for models which make heavy use of deferred sets, such as the
graph colouring algorithm model (see Table 1), the ProB disprover can currently
mainly play its role as disprover. More precisely, for any proof obligation which
involves deferred sets and where no precise value of the cardinality of the deferred
set is known, the disprover can only return either a counter example or the
result “unknown”. In future, we plan to improve the treatment of deferred sets
in ProB, and to have the constraint solver determine the cardinalities of those
sets while solving. This should also enable the disprover to act as a prover for
more proof obligations involving deferred sets.

We think that the ProB Disprover is a valuable extension to Rodin’s set of
provers, because it can increase the number of proof obligations that are auto-
matically discharged, thus saving time and money. Overall, the outcome of the
empirical evaluation was a positive surprise, as ProB’s main domain of appli-
cation is finding concrete counter examples, not discharging proof obligations.
In particular, the fact that the number of discharged proof obligations, for the
models under consideration in Table 1, is comparable to that of the SMT plugin
with its two SMT solvers was unexpected. In future, we also plan to use our
SAT backend [16] for the ProB disprover, and evaluate its performance.

Acknowledgements We would like to thank the various developers for giv-
ing us access to their Event-B models, and for discussions and feedback: Jean-
Raymond Abrial, Andre, Attiogbe, John Colley, Régine Laleau, Lanoix, Amel
Mammar, Dominique Méry, Neeraj Kumar Singh, Wen Su.

References

1. J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge
University Press, 2010.

2. J.-R. Abrial, M. Butler, and S. Hallerstede. An open extensible tool environment
for Event-B. In Z. Liu and J. He, editors, Proceedings ICFEM’06, LNCS 4260,
pages 588–605. Springer-Verlag, 2006.

3. André, Attiogbé, and Lanoix. Modelling and Analysing the Landing Gear Sys-
tem: a Solution with Event-B/Rodin. http://www.lina.sciences.univ-nantes.

fr/aelos/softwares/LGS-ABZ2014/index.php. Solution to ABZ-2014, Accessed:
2014-03-17.

4. C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB Standard: Version 2.0. In
A. Gupta and D. Kroening, editors, Proceedings of the 8th International Workshop
on Satisfiability Modulo Theories (Edinburgh, UK), 2010.

5. C. Barrett and C. Tinelli. CVC3. In W. Damm and H. Hermanns, editors, Proceed-
ings of the 19th International Conference on Computer Aided Verification (CAV
’07), volume 4590 of Lecture Notes in Computer Science, pages 298–302. Springer-
Verlag, July 2007. Berlin, Germany.

6. J. Bendisposto, S. Krings, and M. Leuschel. Who watches the watchers: Validating
the prob validation tool. In Proceedings of the 1st Workshop on Formal-IDE,
EPTCS XYZ, 2014. Electronic Proceedings in Theoretical Computer Science, 2014.

7. Boniol and Wiels. Landing gear system. http://www.irit.fr/ABZ2014/landing_
system.pdf. Accessed: 2014-03-17.

8. T. Bouton, D. C. B. de Oliveira, D. Déharbe, and P. Fontaine. verit: an open,
trustable and efficient smt-solver. In R. A. Schmidt, editor, Proc. Conference on
Automated Deduction (CADE), Lecture Notes in Computer Science, pages 151–
156. Springer-Verlag, 2009.

9. D. Déharbe. Automatic Verification for a Class of Proof Obligations with SMT-
Solvers. In M. Frappier, U. Glässer, S. Khurshid, R. Laleau, and S. Reeves, editors,
Proceedings ASM 2010, LNCS 5977, pages 217–230. Springer, 2010.

10. D. Deharbe, P. Fontaine, Y. Guyot, and L. Voisin. SMT solvers for Rodin. In
Proceedings ABZ’2012, LNCS 7316, pages 194–207. Springer, 2012.

11. S. Hallerstede and M. Leuschel. Constraint-based deadlock checking of high-level
specifications. TPLP, 11(4–5):767–782, 2011.

12. Hansen, Ladenberger, Wiegard, Bendisposto, and Leuschel. Validation of the
ABZ Landing Gear System using ProB. http://www.stups.uni-duesseldorf.

de/ProB/index.php5/ABZ14. Solution to ABZ-2014 case study, Accessed: 2014-03-
17.

13. O. Ligot, J. Bendisposto, and M. Leuschel. Debugging Event-B Models using the
ProB Disprover Plug-in. Proceedings AFADL’07, Juni 2007.

14. Mammar and Laleau. Modeling a Landing Gear System in Event-B. http://

www-public.it-sudparis.eu/~mammar_a/LandingGearsSystem.html. Solution to
the ABZ-2014 Case Study, Accessed: 2014-03-17.

15. D. Méry and N. K. Singh. Formal specification of medical systems by proof-based
refinement. ACM Trans. Embed. Comput. Syst., 12(1):15:1–15:25, Jan. 2013.

16. D. Plagge and M. Leuschel. Validating B, Z and TLA+ using ProB and Kodkod.
In D. Giannakopoulou and D. Méry, editors, Proceedings FM’2012, LNCS 7436,
pages 372–386. Springer, 2012.

17. Su and Abrial. Aircraft Landing Gear System: Approaches with Event-B
to the Modeling of an Industrial System. http://www.lab205.org/home/#!

/case-landing. Solution to the ABZ-2014 Case Study.

http://www.lina.sciences.univ-nantes.fr/aelos/softwares/LGS-ABZ2014/index.php
http://www.lina.sciences.univ-nantes.fr/aelos/softwares/LGS-ABZ2014/index.php
http://www.irit.fr/ABZ2014/landing_system.pdf
http://www.irit.fr/ABZ2014/landing_system.pdf
http://www.stups.uni-duesseldorf.de/ProB/index.php5/ABZ14
http://www.stups.uni-duesseldorf.de/ProB/index.php5/ABZ14
http://www-public.it-sudparis.eu/~mammar_a/LandingGearsSystem.html
http://www-public.it-sudparis.eu/~mammar_a/LandingGearsSystem.html
http://www.lab205.org/home/#!/case-landing
http://www.lab205.org/home/#!/case-landing

4
33

11

2

2132

136

5

Autotactic (2171) SMT (2312)

Disprover (2275)

(a) Su and Abrial, version 1

4
8

5

11

822

305

27

Autotactic (845) SMT (1140)

Disprover (1165)

(b) Su and Abrial, version 2

19
5

17

49

128

37

37

Autotactic (201) SMT (187)

Disprover (251)

(c) Su and Abrial, version 3

13 27
29

292
28

36
Disprover (334)

Autotactic (347)

SMT (385)

(d) Mammar and Laleau

5
96

1

89

276

27

67

Autotactic (466) SMT (400)

Disprover (459)

(e) André, Attiogbé and Lanoix

0
0

0

11

61

2

0

Autotactic (72) SMT (63)

Disprover (74)

(f) Hansen, Ladenberger, Wiegard,
Bendisposto and Leuschel

Fig. 4. Visualization of the benchmark results. Part 1: Landing gear system

1 6 19

14
299

177

Disprover (320)
Autotactic (501)

SMT (490)

(a) Colley, CAN Bus

5 13 7739 55

Autotactic (57)
Disprover (184)

SMT (94)

(b) Wiegard, Stuttgart 21

18 86 12112 7

SMT (116) Autotactic (226)

Disprover (19)

(c) Andriamiarina and Mèry, Graph Col-
oring Algorithm

0
19

0

6

335

4

6

Autotactic (360) SMT (358)

Disprover (351)

(d) Singh, Pacemaker

562

Autotactic (67) SMT (67)

Disprover (62)

(e) Leuschel, Set Laws

Fig. 5. Visualization of the benchmark results. Part 2: Miscellaneous models

	Turning Failure into Proof: Evaluating the ProB Disprover

