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Abstract. Partial order reduction has been very successful at combat-
ting the state explosion problem [4], [9] for lower-level formalisms, but
has thus far made hardly any impact for model checking higher-level
formalisms such as B, Z or TLA+. This paper attempts to remedy this
issue in the context of the increasing importance of Event-B, with its
much more fine-grained events and thus increased potential for event-
independence and partial order reduction. This paper provides a detailed
description of a partial order reduction in ProB. The technique is eval-
uated on a variety of models. Additionally, the implementation of the
method is discussed, which contains new constraint-based analyses.
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1 Introduction

ProB [14] is a toolset for validating systems formalised in B, Event-B, CSP,
TLA+ and Z. Initially developed for B, ProB comprises an animator, a model
checker, and a refinement checker. Using the ProB model checker for consistency
checking of B and Event-B models is a convenient way of searching for errors in
the model. In contrast to interactive theorem provers, model checking performs
tasks like invariant and deadlock freedom checking automatically.

B offers a variety of data structures and B models are often infinite state.
Making such a B machine manageable for model checking requires setting bounds
on the types of the variables. However, even systems with finite types can have
very large state spaces. Therefore, applying various optimisation techniques is
essential for practical model checking of B or Event-B specifications.

Partial order reduction reduces the state space by taking advantage of inde-
pendence between actions. The reduction relies on choosing only a subset of all
enabled actions in each reachable state of the state space. In the process of choos-
ing such a subset, certain requirements have to be satisfied so that no new error
states (deadlocks) are introduced and no important executions for the verifica-
tion of the underlying system are pruned. There are several theories [8], [11], [19]
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ensuring the soundness of such a type of reduction. Our implementation of par-
tial order reduction uses the ample set theory which is suggested as a method
for partial order reduction in [4], [8], [9].

Our optimisation uses a static analysis for determining the relations between
each pair of operations or events in a B or Event-B machine, respectively. The
static analysis is executed prior to the model checking and is based on both
syntactic and new constraint-based analyses. These analyses are used for dis-
covering the mutual influences of actions inside the model. In this paper we
present an implementation of partial order reduction in the standard ProB
model checker [14] for the formalisms B [1] and Event-B [2]. In addition, we
evaluate the implementation on several case study models, and discuss the im-
plementation and its limitations. For practical reasons, we will concentrate our
review of the implementation of partial order reduction on Event-B only.

Indeed, Event-B events are much more fine-grained than typical operations
in classical B (e.g. an if-then-else is decomposed into two separate events in
Event-B). As such, the potential for finding independent events and partial order
reduction is greater. Our intuition is that the more fine-grained nature of events
in Event-B should dramatically increase the potential for partial order reduction.

In the next section, we give a brief overview of the Event-B formalism and
consistency checking algorithm in ProB, as well as basic definitions and notation
are introduced. In Section 3, we discuss and define formally relations between
events that are relevant for this work. Section 4 presents the method and the
algorithm. The evaluation and the discussion of the implementation are given in
Section 5. The related work is outlined in Section 6. Finally, we discuss future
improvements and features for the reduced state space search, and draw the
conclusions of our work.

2 Preliminaries

Event-B. Event-B is a formal language for modelling and analysing of hardware
and software systems. The formal development of a system in Event-B is a state-
based approach using two types of components for the description of the system:
contexts and machines.

The machines represent the dynamic part of the model and each machine
is comprised primarily of variables, invariants, and events. The variables are
typecast and constrained by the invariants. The variables determine the states
of the machine. In turn, the states of the machine are related to each other by
means of the events. Each event consists of two main parts: guards and actions.
Formally, an event can be described as follows:

event e = any t where G(x, t) then S(x, t, x′) end

In the definition above, x and x′ stand for the evaluation of the variables before
and after the execution of the event e, respectively. The parameters t in the any
clause are typecast and restricted in the enabling predicate G(x, t) of the event.
The enabling predicate of an event e will be often denoted as the guard of e.



The actions part S(x, t, x′) of an event is composed of a number of assignments
to state variables. When the event is executed, all assignments in S(x, t, x′) are
completed simultaneously. All non-assigned variables remain unaltered.

The event e is said to be enabled in a particular state s of the machine if
G(x, t) holds for the current evaluation of the variables of s. Otherwise, we say
that the event e is disabled in s.

Notation and Basic Definitions. When we talk about enabled events in a
particular state s, we mean all events whose enabling predicates hold in s. The
set of all events that are enabled in a state s will be denoted by enabled(s).

By definition, an event in Event-B may have parameters and non-deterministic
assignments. Thus, in some state s an event e can have several representations,
i.e. there is more than one successor state s′ such that s

e→ s′. In that case,
we say that e is a non-deterministic event. For simplicity, from now on we will
assume that each event is deterministic. However, the optimisation in this work
has been implemented for the general case where non-determinism is present.

An event is called a stutter event if it preserves the truth value of each atomic
proposition of the property being checked. By property we mean an LTL formula
or invariant of an Event-B machine. Formally, an event e is stuttering w.r.t.
a property φ if for each transition s

e→ s′ it is fulfilled that for each atomic
proposition p of φ either s |= p and s′ |= p or s 6|= p and s′ 6|= p.

The implementation of the partial order reduction technique presented in this
work is realised by the ample set theory. The reduction of the state space happens
by choosing a subset of enabled(s) in each state s. These subsets we will denote
by ample(s). In the context of partial order reduction, a state s is then said to
be fully expanded if ample(s) = enabled(s).

The Consistency Checking Algorithm. Since the main contribution of this
work is the optimisation of the consistency checking algorithm for Event-B and
B, we will give a quick overview of it (Algorithm 1).

The pseudo code in Algorithm 1 describes a graph traversal algorithm for
exhaustive error search in a directed transition system. All unexplored nodes
in the state space are stored in a standard queue data structure Queue while
running the consistency check for the particular Event-B machine. By popping
unexplored states from the front or the end of the queue a depth-first search or
a breadth-first search through Graph can be simulated, respectively. A mixed
depth-first/breadth-first search can be simulated by a randomised popping from
the front and end of the queue. This is the standard search strategy in ProB.

Once an unexplored state has been chosen from the queue, it will be checked for
errors by the function error (line 4). An error state, for example, can be a state
that violates the invariant of the machine or that has no outgoing transitions.

If no error has been found in the current state, then it will be expanded.
In this context, expansion means that all events from the current machine will
be applied to the current state. Each event whose enabling predicate G(x, t)
holds for the current variables’ evaluation will be executed and a possible new
successor state will be generated. Subsequently, a new transition will be added
to the state space (line 8) if not already present in Graph, and a new state succ



Algorithm 1: Consistency Checking

1 Queue := {root} ; Visited := {}; Graph := {};
2 while Queue is not empty do
3 state := get state(Queue)
4 if error(state) then
5 return counter-example trace in Graph from root to state
6 else

7 for all succ,evt such that state
evt→ succ do

8 Graph := Graph ∪ {state
evt→ succ};

9 if succ 6∈ Visited then
10 push to front(succ, Queue);
11 Visited := Visited ∪ {succ}
12 end if

13 end for
14

the code to
be optimised

15 end if

16 end while
17 return ok

will be adjoined to the queue (line 10) if not already visited. The algorithm runs
as long as the queue is non-empty and no error state has been found.

Since the way of adding transitions to the state space will become slightly
different in order to apply partial order reduction, the most relevant part of
Algorithm 1 for this paper is thus the pseudo code in lines 7-13.

3 Event Relations

Finding out how the events of an Event-B machine are related to each other
is a key step for applying partial order reduction. The simplest approach just
analyses the syntactic structure. For this, we first need to determine the read
and write sets for each event. For an event e, we denote by read(e) the set of the
variables that are read by e, and by write(e) the set of the variables that are
written by e. With readG(e) and readS(e) we will denote the sets of the variables
that are read in the guard and in the actions part of the event e, respectively.
To simplify the presentation we assume that each event is deterministic.

Introducing Independence. The most important event relation is indepen-
dence. Formally, one can define independence between two events as follows:

Definition 1 (Independence).
Two events e1 and e2 are independent if for any state s with e1, e2 ∈ enabled(s)

it is satisfied that the executions s
e1→ s1

e2→ s′ and s
e2→ s2

e1→ s′′ are feasible in
the state space (enabledness), and additionally s′ = s′′ (commutativity).

Two events e1 and e2 are said to be syntactically independent if the following
three conditions are satisfied:



(SI 1) The read set of e1 is disjoint to the write set of e2 (read(e1)∩write(e2) = ∅).
(SI 2) The write set of e1 is disjoint to the read set of e2 (write(e1)∩read(e2) = ∅).
(SI 3) The write sets of e1 and e2 are disjoint (write(e1) ∩ write(e2) = ∅).

Two syntactically independent events are independent by means of Definition
1 since no event can affect the guard of the other one (enabledness) and addi-
tionally the read and write sets of each of both events are disjoint to the write
set of the other one (commutativity).

On the other hand, syntactical independence is obviously a quite coarse con-
cept: two events of an Event-B machine can be independent even if some of the
conditions (SI 1) - (SI 3) are violated. Take for example the following two events:

Example 1 (Event Dependency).

event e1 =

when

x ∈ N
then

y := y + 1

end

event e2 =

when

z ≥ 1 ∧ z ≤ 10

then

x := z ‖ z := z + 1

end

Apparently, e1 and e2 are not syntactically independent as (SI 1) is violated
(read(e1)∩write(e2) = {x}). However, e2 cannot affect the guard of e1 because
e2 can assign to x only values between 1 and 10, and e1 is enabled when x is
a natural number. Since additionally write(e1) ∩ read(e2) = ∅, it follows that
the enabledness condition for independence for e1 and e2 is fulfilled. Further, no
variable written by the one event will be read in the actions part of the other
event and the write sets of e1 and e2 are disjoint. Thus, both events cannot
interfere each other and herewith the commutativity condition for independence
is fulfilled for e1 and e2. Hence, e1 and e2 are indeed independent events.

Since partial order reduction takes advantage of the independence between
events, it is important to determine independence as accurately as possible. The
higher the degree of independence in a system, the higher is the chance to reduce
its state space significantly. This motivates the following, more precise approach
to determine independence by using the ProB’s constraint solving facilities.

Refining the Dependency Relation. We use the constraint solver to find
feasible sequences of events for the analysed Event-B model. First, we define a
procedure stating a Prolog predicate in ProB used for testing whether a given
sequence of events is feasible. This will form the basis of our analysis.

Definition 2 (The test path procedure).
For a given Event-B machine M , let Φ and Ψ be B predicates for M , and
e1, . . . , en events of M . Then, we define test path as follows:

test path(Φ, 〈e1, . . . , en〉, Ψ) =

 true if there is an execution s
e1→ . . .

en→ s′

such that s |= Φ and s′ |= Ψ
false otherwise



The predicates Φ and Ψ are used in order to constrain the search for possible
test paths for M . If, for example, Φ and Ψ are both equal to the truth value
TRUE then test path will return true if the given sequence of events is possible
from some valid state of M .

We can now refine our definition of independence. We introduce the binary
relation DependentM ⊆ EventsM ×EventsM which is intended to comprise all
dependent pairs of events of a given Event-B machine M . Two events e1 and
e2 will be denoted as dependent if (e1, e2) ∈ DependentM , otherwise they are
considered to be independent. The dependency relation is defined as follows:

DependentM := {(e, e′) | (e, e′) ∈ EventsM × EventsM ∧ dependent(e, e′)},

where M is the observed Event-B machine, EventsM is the set of events of M
and dependent is the procedure showed in Algorithm 2.

Algorithm 2: Determining Events’ Dependency

1 procedure boolean dependent(e1, e2)
2 if write(e1) ∩ write(e2) 6= ∅ then
3 return true /* events are race dependent */

4 else if (read(e1) ∩ write(e2) = ∅ ∧ write(e1) ∩ read(e2) = ∅) then
5 return false /* events are syntactically independent */

6 else
7 return
8 (readS(e1) ∩ write(e2) = ∅ ∧ write(e1) ∩ readS(e2) = ∅)⇒
9 ((readG(e1) ∩ write(e2) 6= ∅ ∧ test path(Ge1 ∧Ge2 , ·

e2→ ·,¬Ge1))

10 ∨ (write(e1) ∩ readG(e2) 6= ∅ ∧ test path(Ge2 ∧Ge1 , ·
e1→ ·,¬Ge2))

11 end if

The procedure dependent presents a refined strategy for determining the de-
pendency between two events. The else branch in Algorithm 2 will be executed
if at least one of the two events modifies a variable that is read by the other
one. In order to test whether two events are independent, we need to check the
two independence conditions enabledness and commutativity. The test for de-
pendency is expressed by means of the predicate in lines 8-10. We are interested
mainly in the case when the predicate evaluates to false. This is clearly fulfilled
when the left side of the implication holds and the right side evaluates to false.
In case the premise of the implication

(readS(e1) ∩ write(e2) = ∅ ∧ write(e1) ∩ readS(e2) = ∅)

is satisfied, then it is assured that both events cannot affect each other (at
this point we know that the write sets of e1 and e2 are disjoint) and thus the
commutativity condition for independence is satisfied in case the events cannot
disable each other. Once we know that e1 and e2 cannot interfere, we need to
check the enabledness condition. The enabledness condition is tested by the two
disjunction arguments in lines 9 and 10. If at least one of the arguments is
fulfilled, we have deduced that e1 and e2 are indeed dependent. Otherwise, we
have proven that e1 and e2 are independent.



Checking whether the events can disable one other is realised by means of
the test path procedure. If, for example, e2 assigns a variable that is read in
the guard Ge1 of e1 (i.e. if readG(e1) ∩ write(e2) 6= ∅) then we can further
check whether e2 eventually can disable e1. This can be additionally examined
by searching for a possible transition s

e2→ s′ such that e1 and e2 are enabled in
s (s |= Ge1 ∧ Ge2) and e1 disabled in s′ (s′ |= ¬Ge1). The call for this case is

then test path(Ge1 ∧ Ge2 , ·
e2→ ·,¬Ge1). If the result of the call is true then we

have found a case in which e2 can disable e1 and thus inferred that e1 and e2 are
dependent. Otherwise, we have shown that the enabling condition of e1 cannot
be affected by the execution of e2.

The Enabling Relation. In addition to the independence of events, we are also
interested in the particular way events may influence each other. Concretely, if
event e1 modifies some variables in the guard of event e2 we are asking in which
way the effect of e1 may affect the guard of e2. In that case, the possible direct
influences of e1 to e2 can be enabling and disabling. The enabling relation is the
residual relation needed for applying the optimisation technique in this work.

In the next section we are interested whether events can be enabled after the
successively execution of a number of certain events. We will retain the enabling
information between events in terms of a directed edge graph, defined as follows:

Definition 3 (Enable Graph). An enable graph for an Event-B machine M
is a directed edge graph EnableGraphM = (V,E), where V = EventsM are the
vertices and E = {e1 7→ e2 | e1, e2 ∈ EventsM ∧ can enable(e1, e2)} the edges
of EnableGraphM .

In Definition 3, e1 7→ e2 means that e1 can enable e2, while can enable consti-
tutes a procedure which returns false when write(e1)∩readG(e2) = ∅, otherwise
tests if e1 can enable e2 by means of the test path procedure. The call of test path
for testing whether e1 may enable e2 is then test path(Ge1 ∧ ¬Ge2 , ·

e1→ ·, Ge2).

4 Algorithm

In this section we introduce the theory of partial order reduction and the algo-
rithm for the expansion of states by using the ample set method. The reduction
of the original state space using ample sets is realised by choosing of a subset of
all enabled events in each state.

The Ample Set Requirements. There are four requirements that should be
satisfied by each ample set to make the reduction of the state space sound:

(A 1) Emptiness Condition
ample(s) = ∅⇔ enabled(s) = ∅

(A 2) Dependency Condition
Along every finite execution in the original state space starting in s, an
event dependent on ample(s) cannot appear before some event e ∈ ample(s)
is executed.



(A 3) Stutter Condition
If ample(s) ( enabled(s) then every e ∈ ample(s) has to be a stutter event.

(A 4) Cycle Condition
For any cycle C in the reduced state space, if a state in C has an enabled
event e, then there exists a state s in C such that e ∈ ample(s).

The Need of Local Criteria for (A 2). We are interested in how efficiently
each of the requirements can be checked. For a state s, the conditions (A 1)
and (A 3) can be checked by examining the events in ample(s). In contrast to
conditions (A 1) and (A 3), condition (A 2) is a global property which requires for
ample(s) the examination of all possible executions (in the original state space)
starting in s. A straightforward checking of (A 2) will demand the exploration
of the original state space. Local criteria thus need to be given for (A 2) that
facilitate an efficient computation of the condition.

For our implementation, we define the following two local conditions (which
will replace (A 2)), where M is the observed Event-B machine, EventsM the set
of events in M , and s a state in the original state space:

(A 2.1) Direct Dependency Condition
Any event e ∈ enabled(s) \ ample(s) is independent of ample(s).

(A 2.2) Enabling Dependency Condition
Any event e ∈ EventsM \ enabled(s) that depends on ample(s) may not
become enabled through the activities of events e′ /∈ ample(s).

The following theorem states that (A 2.1) and (A 2.2) are sufficient local
criteria for (A 2). The proof of Theorem 1 can be examined in [10].

Theorem 1 (Sufficient Local Criteria for (A 2)).
Given a state s in the original state space. If ample(s) is computed with respect

to the local criteria (A 2.1) and (A 2.2), then ample(s) satisfies (A 2) for all
execution fragments in the original state space starting in state s.

Computing ample(s). We can now present our algorithm for computing an
ample set satisfying (A 1) through (A 3). The procedure ComputeAmpleSet in
Algorithm 3 gets as argument a set of events.DependentM and EnableGraphM
are the dependent relation and the enable graph computed for the correspond-
ing Event-B machine M , respectively (see Algorithm 2 and Definition 3). The
procedure ComputeAmpleSet uses the DependencySet procedure for comput-
ing a set S satisfying the local dependency condition (A 2.1). In the body of
procedure DependencySet the set G is regarded as directed graph where the
vertices are represented by the events of T and the edges by tuples α 7→ β. The
tuple α 7→ β, for example, represents an edge from vertex α to vertex β. By
reachable(α,G) we denote the set of vertices that are reachable from vertex α
in G. The set T is meant to be enabled(s), where s is the currently processed
state. Accordingly, the set S in Algorithm 3 is intended to be ample(s). The
output of the ComputeAmpleSet is an ample set ample(s) satisfying the first
three conditions of the ample set constraints.



Algorithm 3: Computation of ample(s)

1 procedure set ComputeAmpleSet(T )
2 foreach α ∈ T such that α randomly chosen do
3 b := true;
4 S := DependencySet(α, T ); /* (A 2.1) holds */

5 I := T \ S ;
6 foreach β ∈ I do /* checking whether S fulfils (A 2.2) */

7 if there is a path β → γ1 → . . .→ γn → γ in EnableGraphM

such that γ1 , . . . , γn , γ /∈ S ∧ γ depends on S then
8 b := false;
9 break

10 end if

11 end foreach
12 if b ∧ (S is a stutter set) then /* checking (A 3) */

13 return S
14 end if

15 end foreach
16 return T
17 end procedure

18 procedure set DependencySet(α, T )
19 G := ∅;
20 foreach (β, γ) ∈ DependentM ∩ (T × T ) do
21 G := {β 7→ γ} ∪G
22 end foreach
23 return reachable(α,G)
24 end procedure

The first step of computing ample(s), in case that T is a non-empty set, is
choosing randomly an event α from T . After that, a subset S of all enabled
events in s in regard to α is computed such that condition (A 2.1) is satisfied
(line 4). The set of events S is determined by means of the DependencySet
procedure (lines 18-24). Once the set S in regard to the randomly chosen event
α is computed, we test whether there may be an event β that is not from S and
from which a finite execution fragment

σ = s
β→ s1

γ2→ . . .
γn→ sn

γ→ sn+1

can start such that an event γ dependent on S may be enabled before execut-
ing some event from S (i.e. γ1, . . . , γn /∈ ample(s)). This we do by means of
looking for paths in EnableGraphM having as a starting point the event β and
reaching an event γ /∈ S which is dependent on S. In other words, in lines 6-11
of procedure ComputeAmpleSet we test if S further satisfies the second local
dependency condition (A 2.2). If there is some event β ∈ I for which condi-
tion (A 2.2) is violated we choose randomly the next event from T in order to
compute a new potential ample set. Otherwise, if for all β ∈ I there is no path



in EnableGraphM that presumptively represents an execution in TSM violating
(A 2.2), we check whether S fulfils the stutter condition (line 12). The procedure
ComputeAmpleSet in Algorithm 3 runs until an appropriate ample set has been
found or all potential ample sets fail to satisfy conditions (A 2) and (A 3) (the
we return T ). A proof of the correctness of Algorithm 3 can be found in [10].

The Ignoring Problem. Condition (A 3), which requires adding only of stutter
events to the ample sets of each state (assuming that (A 1) and (A 2) are
also satisfied), can sometimes cause ignoring of certain (non-stutter) events in
the reduced state space. Ignoring of non-stutter events may happen when the
reduction results in a cycle of stutter events only. If some events are ignored in
the reduced state space of the model, then computing ample sets w.r.t. (A 1)
through (A 3) may not be sufficient to preserve some of the LTL−X properties.
The issue is also known as the ignoring problem [19].

To ensure that no events in the reduced state space are ignored, the cycle
condition (A 4) should be guaranteed by the reduced state space. We establish
(A 4) by means of the following condition:

(A 4’) Strong Cycle Condition
Any cycle in the reduced state space has at least one fully expanded state.

Using the strong cycle condition (A 4’) is a sufficient criterion for (A 4)
(Lemma 8.23 in [4]) and easier to implement. Since at least one of the states
should be fully expanded in any cycle, we expand fully each state s with an out-
going transition reaching an expanded state generated before s, as well as each
state with a self loop. Note that this method of implementing the strong cycle
condition (A 4’) is approximative because it expands fully states unnecessarily
sometimes. We have chosen this way of realising (A 4’) in order to generalise
our algorithm of calculating ample sets for different exploration strategies. This
technique of implementing (A 4) has been also proposed in other works like in [5].

Expanding a State by Applying the Ample Events Only. To apply the
ample set approach for the consistency checking algorithm, we change the way
each state is expanded. Thus, the respective changes in Algorithm 1 take place
in lines 7-13 of the algorithm. Basically, we can replace the code in the else
branch of Algorithm 1 by calling the procedure compute ample transitions in
Algorithm 4 with the currently processed state s as argument.

Algorithm 4 summarises the computation of the ample events in each state
and the execution of those in the reduced state space. The presented procedure
compute ample transitions gets as argument the state being expanded. The
computation of the successor states and the insertion of the new determined
transitions are realised by the procedure execute event.

In Algorithm 4 all enabled events in the currently processed state s will be
assigned to T (line 2). After that, an ample set S satisfying (A 1) through (A
3) is computed by means of the procedure ComputeAmpleSet. If the test of the
cycle condition in line 7 fails for each loop-iteration, then only the events from
S will be executed in s. Otherwise, the full expansion of s will be forced (lines
8-10), if a transition from S reaches an already expanded state s′ (s′ /∈ Queue)



generated before s or it is s itself (id(s) ≥ id(s′)).

Algorithm 4: Computation of the Ample Transitions

1 procedure compute ample transitions(s)
2 T := compute all enabled events in s;
3 S := ComputeAmpleSet(T );
4 foreach evt ∈ S do
5 s′ := execute event(s,evt);
6 T := T \ {evt}
7 if (id(s) ≥ id(s ′)) ∧ s ′ /∈ Queue then /* check (A 4) */

8 foreach e ∈ T do
9 execute event(s,e)

10 end foreach
11 break /* state s has been fully explored */

12 end if

13 end foreach

5 Discussion and Evaluation

Discussion. In Section 4, we presented the background of the ample set theory
and our implementation of partial order reduction (Algorithms 3 and 4). Our
algorithm reduces the original state space of an Event-B machine M by using
the dependency relation DependentM and the enable graph EnableGraphM .
DependentM and EnableGraphM are computed prior to the model checking by
using a static analysis on the events of M . We chose to determine the dependency
and enabling relations between the events in this way for performance reasons.
Computing the respective relations between events on-the-fly in each state can
sometimes be expensive since we use constraint based analyses in addition to
syntactic analysis. In fact, timeouts are set by default in ProB for diminishing
the possibility that the overhead caused by static analysis and partial order re-
duction outweighs the improvement achieved by the reduction of the state space.
ProB can also apply partial order reduction without using its constraint solv-
ing facilities. In this case, the determination of the dependency and enabledness
between events is provided by inspecting their syntactic structure only. This,
however, often results in less state space reduction.

The reduction of the state space by using partial order reduction cannot only
be influenced by the independence of the events of the model being verified, but
also by the type of the checked property. For instance, deadlock preservation is
guaranteed by any ample set satisfying conditions (A 1) and (A 2) [12], [19].
We adapted the implementation to this fact to gain more state space reduction
when a model is checked for deadlock freedom only.

Another factor that can influence the effectiveness of the reduction is the
number of the stutter events. For example, if we check the full invariant I , then
every event that trivially fully preserves I is a stutter event. Systems specified
in Event-B often have a very low number, if any, of events that trivially fulfil



the invariant. This means that partial order reduction will probably only yield
minor state space reduction in such cases. A possible way to detect more stutter
events w.r.t. I is to use either proof information (from the Rodin provers) or
ProB for checking invariant preservation for operations: any event which we
can prove to preserve the invariant now becomes a stuttter event.

Evaluation. We have evaluated our implementation of partial order reduction
on various models that we have received from academia and industry.1 A part
of those experiments are presented in Table 1. In particular, we wanted to study
the benefit of the optimisation on models with large state spaces.

Besides having sizeable state spaces, the particular models should also have a
certain number of independent concurrent events. Otherwise, the possibility of
reducing the state space is very minor. If, for instance, we have a system where
there is no pair of independent events or a system where any two independent
events are never simultaneously enabled, then no reductions of the state space
can be gained at all.

Table 1 - Part of the Experimental Results (times in seconds)

Analysis Model Checking
Model Algorithm States Transitions Time Time

Counters MC 3,974 11,485 - 3.417*

MC+POR 961 1,807 < 0.001 0.823*

MC-NoINV 110,813 325,004 - 73.167
MC-NoINV+POR 152 154 0.010 0.097

BPEL v6 MC 2,248 4,960 - 7.437
MC+POR 2,248 4,960 0.748 7.884
MC-NoINV 2,248 4,960 - 6.944
MC-NoINV+POR 847 1,004 0.640 2.670

Token Ring MC 8,196 45,077 - 14.291
MC+POR 8,176 40,565 0.011 14.671
MC-NoINV 8,196 45,077 - 13.814
MC-NoINV+POR 4,776 12,129 0.016 7.807

Sieve MC 8,328 28,436 - 215.138
MC+POR 8,142 25,237 12.437 217.754
MC-NoINV 8,328 28,436 - 220.864
MC-NoINV+POR 6,421 14,557 12.439 186.101

Phil v2 MC 2,350 4,528 - 9.086
MC+POR 2,347 4,390 0.406 9.354
MC-NoINV 2,350 4,528 - 8.870
MC-NoINV+POR 2,346 4,336 0.378 9.167

(*) Invariant Violation

We have performed four different types of checks in order to measure the per-
formance of our implementation of partial order reduction. By all types of tests
we used the mixed depth-first/breadth-first search of ProB for the exploration
of the state space. The four types of checks are abbreviated in Table 1 as follows:

1 The models and their evaluations can be obtained from the following web page
http://nightly.cobra.cs.uni-duesseldorf.de/por/



MC: Model checking by using the standard consistency checking algorithm.
MC+POR: Model checking with partial order reduction.
MC-NoINV: Model checking by using the standard consistency checking al-

gorithm without invariant violations checking.
MC-NoINV+POR: Model checking with partial order reduction without in-

variant violations checking.

The consistency checking algorithm and the partial order reduction algorithm
are respectively Algorithm 1 and Algorithm 4. For the evaluations we used model
checking for searching for deadlocks and invariant violations only.2 Due to the
fact that checking for deadlock freedom only requires the satisfaction of the
ample set conditions (A 1) and (A 2) for the reduced search, we additionally
observed experiments with MC-NoINV+POR. For this type of checks, the results
produced by MC-NoINV+POR were compared with the results of MC-NoINV.

One specification, Counters, in Table 1 is given that represents the best case
for the reduced search in ProB. Counters is a toy example aiming to show the
benefit of partial order reduction when each event in the model is independent
from the executions of all other events. The worst case, when no reductions of
the state space are gained, is represented by checking BPEL v6 with MC+POR.
Phil [7] and BPEL [3] are case studies of the dinning philosophers problem with
four philosophers and of a business process for a purchase order, respectively.
Both are carried by a stepwise development via refinement; their last refinement
versions Phil v2 and BPEL v6 are presented in Table 1. Token Ring is a B model
of a token ring protocol and Sieve an Event-B model formalising a parallel version
(for four processes) of the algorithm of sieve of eratosthenes for computing all
prime numbers from 2 to 40.

All measurements were made on an Intel Xeon Server, 8 x 3.00 GHz Intel(R)
Xeon(TM) CPU with 8 GB RAM running Ubuntu 12.04.3 LTS. The Analy-
sis times in Table 1 are the measured runtimes for the static analysis of each
machine. If the POR option is not set in an experiment, no static analysis is
performed. Each experiment has been performed ten times and its respective
geometric means (states, transitions and times) are reported in the results.

In general, the most considerable reductions of the state space were gained
with the reduced search when only deadlock freedom checks were performed.
We consider both the reductions of the number of states and transitions. In one
case (BPEL v6 ), no reductions of the state space were gained using the reduced
search MC+POR. However, the model checking runtimes in those cases are not
significantly different from the model checking runtimes for the standard search
MC. As expected, significant reduction of the state space and thus the overall
time for checking the Counters model were gained by both reduction searches
MC+POR and MC-NoINV+POR. For the test cases MC and MC+POR of
Counters an invariant violation was found which led to a termination of the
respective search. Interesting results were obtained when applying any of the re-
duced searches on the Phil v2 model. Although the model has a great magnitude

2 Another options like finding a goal or searching for assertion violations have not
been checked while model checking the particular model.



of independence, the coupling between the events is so tight that no significant
reductions can be gained.

6 Related Work

Several works have been devoted to optimising the ProB model checker for
B and Event-B. In this section, we refer to some of the techniques have been
developed and analysed for the ProB model checker.

Symmetry reduction is a technique successfully implemented in ProB for
combating the state space explosion problem. Using the fact that symmetry
is induced by the deferred sets in B, two sorts of exhaustive symmetry reduc-
tion algorithms in ProB have been implemented: the graph canonicalisation
method [18] and the permutation flooding method [15]. The general idea of both
techniques is to check only a single representative of each symmetry class of
equivalent states during the consistency check of the model being verified. An
approximative symmetry reduction method [16] based on computing symmetry
markers for states of B machines has been also implemented in ProB. The idea
of the method is that two states are considered to be symmetrically equivalent if
they have the same symmetrical marker. All three methods showed good perfor-
mance results when model checking B or Event-B models with a certain degree
of symmetry induced by B’s deferred sets.

Another notion of optimising the ProB model checker has been presented
in [6]. The idea of this work is to improve the efficiency of the model checker by
using the already discharged proof information from the front-end environment.
The verification technique, known as proof assisted model checking, is used by
default in ProB and has shown a performance improvement up to factor two
on various industrial models.

Other techniques, such as using mixed breadth-first/depth-first search strategy
and heuristic functions for performing directed model checking [13], have been
also suggested as optimisation methods for the standard ProB model checker.

7 Conclusion and Future Work

Partial order reduction has been very successful for lower-level models such as
Promela, but has had relatively little impact for higher-level modelling languages
such as B, Z or TLA+. Inspired by Event-B’s more simpler event structures and
more distributed nature, we have started a new attempt at getting partial order
reduction to work for high-level formal models. We have presented an imple-
mentation of partial order reduction in ProB for Event-B (and also classical B)
models. The implementation makes use of the ample set theory for reducing the
state space and uses new constraint-based analyses to obtain precise relations
of influence between events. Our evaluation of the reduction method has shown
that considerable reductions of the state space can be gained for models with
a high degree of independence and concurrency. We also observed that check-



ing only for deadlock freedom tends to provide more significant reductions than
checking simultaneously for invariant violations and deadlock freedom.

Our approach of satisfying the Cycle condition (A 4) is an approximative
method for loop detection during the reduced expansion of the state space.
Finding possible cycles in the reduced state space simply by checking whether
the currently processed state has an outgoing transition to an already expanded
state can cause less state space reductions, since the full exploration of a state
can also be forced when no true cycles are discovered. For this reason, future
work will concentrate on improving the reduction algorithm w.r.t. the Cycle de-
tection condition. Further work will need to be done in elaborating the reduction
algorithm presented in this work for the LTL model checker [17] in ProB.
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