
The Efficient Handling of Guards
in the Design of RPython’s Tracing JIT

David Schneider Carl Friedrich Bolz
Heinrich-Heine-Universität Düsseldorf, STUPS Group, Germany

david.schneider@uni-duesseldorf.de cfbolz@gmx.de

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors—code generation, incremental com-
pilers, interpreters, run-time environments

General Terms Languages, Performance, Experimenta-
tion

Keywords tracing JIT, guards, deoptimization

Abstract
Tracing just-in-time (JIT) compilers record linear control
flow paths, inserting operations called guards at points of
possible divergence. These operations occur frequently in
generated traces and therefore it is important to design and
implement them carefully to find the right trade-off between
deoptimization, memory overhead, and (partly) execution
speed. In this paper, we perform an empirical analysis of
runtime properties of guards. This is used to guide the design
of guards in the RPython tracing JIT.

1. Introduction
Tracing just-in-time (JIT) compilers record and compile
commonly executed linear control flow paths consisting of
operations executed by an interpreter.1 At points of possible
divergence from the traced path operations called guards are
inserted. Furthermore, type guards are inserted to specialize
the trace based on the types observed during tracing. In this
paper we describe and analyze how guards work and explain
the concepts used in the intermediate and low-level represen-
tation of the JIT instructions and how these are implemented.

1 There are also virtual machines that have a tracing JIT compiler and do not
use an interpreter [4]. This paper assumes that the baseline is provided by
an interpreter. Similar design constraints would apply to a purely compiler-
based system.

[Copyright notice will appear here once ’preprint’ option is removed.]

This is done in the context of the RPython language and the
PyPy project, which provides a tracing JIT compiler geared
at dynamic language optimization.

Our aim is to help understand the constraints when im-
plementing guards and to describe the concrete techniques
used in the various layers of RPython’s tracing JIT. All de-
sign decisions are motivated by an empirical analysis of the
frequency and the overhead related to guards.

It is important to handle guards well, because they are
very common operations in the traces produced by tracing
JITs. As we will see later (Figure 7) guards account for
about 14% to 22% of the operations before and for about
15% to 20% of the operations after optimizing the traces
generated for the different benchmarks used in this paper.
An additional property is that guard failure rates are very
uneven. The majority of guards never fail at all, whereas
those that do usually fail extremely often.

Besides being common, guards have various costs associ-
ated with them. Guards are possible deoptimization points.
The recorded and compiled path has to be left if a guard
fails, returning control to the interpreter. Therefore guards
need enough associated information to enable rebuilding the
interpreter state. The memory overhead of this information
should be kept low. On the other hand, Guards have a run-
time cost, they take time to execute. Therefore it is important
to make the on-trace execution of guards as efficient as possi-
ble. These constraints and trade-offs are what makes the de-
sign and optimization of guards an important and non-trivial
aspect of the construction of a tracing just-in-time compiler.

In this paper we want to substantiate the aforementioned
observations about guards and describe based on them the
reasoning behind their implementation in RPython’s tracing
just-in-time compiler. The contributions of this paper are:
• An analysis of guards in the context of RPython’s JIT,
• detailed measurements about the frequency and the mem-

ory overhead associated with guards, and
• a description about how guards are implemented in the

high and low-level components of RPython’s JIT and a
description of the rationale behind the design.
The set of central concepts upon which this work is based

are described in Section 2, such as the PyPy project, the

1 2012/9/9

RPython language and its meta-tracing JIT. Based on these
concepts in Section 3 we proceed to describe the details of
guards in the frontend of RPython’s tracing JIT. Once the
frontend has traced and optimized a loop it invokes the back-
end to compile the operations to machine code, Section 4
describes the low-level aspects of how guards are imple-
mented in the machine specific JIT-backend. The frequency
of guards and the overhead associated with the implementa-
tion described in this paper is discussed in Section 5. Sec-
tion 6 presents an overview about how guards are treated in
the context of other just-in-time compilers. Finally, Section 7
summarizes our conclusions and gives an outlook on further
research topics.

2. Background
2.1 RPython and the PyPy Project
The RPython language and the PyPy project2 [22] were
started in 2002 with the goal of creating a Python interpreter
written in a high level language, allowing easy language ex-
perimentation and extension. PyPy is now a fully compat-
ible alternative interpreter for the Python language. Using
RPython’s tracing JIT compiler it is on average about 5 times
faster than CPython, the reference implementation. PyPy is
an interpreter written in RPython and takes advantage of the
language features provided by RPython such as the provided
tracing just-in-time compiler described below.

RPython, the language and the toolset originally created
to implement the Python interpreter have developed into
a general environment for experimenting and developing
fast and maintainable dynamic language implementations.
Besides the Python interpreter there are several experimental
language implementation at different levels of completeness,
e.g. for Prolog [9], Smalltalk [8], JavaScript and R.

RPython can mean one of two things, the language it-
self and the translation toolchain used to transform RPython
programs to executable units. The RPython language is a
statically typed object-oriented high-level subset of Python.
The subset is chosen in such a way to make type inference
possible[1]. The language tool-set provides several features
such as automatic memory management and just-in-time
compilation. When writing an interpreter using RPython the
programmer only has to write the interpreter for the language
she is implementing. The second RPython component, the
translation toolchain, is used to transform the interpreter into
a C program.3 During the transformation process different
low level aspects suited for the target environment are auto-
matically added to the program such as a garbage collector
and a tracing JIT compiler. The process of inserting a trac-
ing JIT is not fully automatic but is guided by hints from the
interpreter author.

2 http://pypy.org
3 RPython can also be used to translate programs to CLR and Java byte-
code [1], but this feature is somewhat experimental.

2.2 RPython’s Tracing JIT Compiler
Tracing is a technique of just-in-time compilers that gen-
erate code by observing the execution of a program. VMs
using tracing JITs are typically mixed-mode execution envi-
ronments that also contain an interpreter. The interpreter pro-
files the executing program and selects frequently executed
code paths to be compiled to machine code. Many tracing
JIT compilers focus on selecting hot loops.

After profiling identifies an interesting path, tracing is
started thus recording all operations that are executed on
this path. This includes inlining functional calls. As in most
compilers, tracing JITs use an intermediate representation to
store the recorded operations, typically in SSA form [11].
Since tracing follows actual execution, the code that is
recorded represents only one possible path through the con-
trol flow graph. Points of divergence from the recorded path
are marked with special operations called guards. These op-
erations ensure that assumptions valid during the tracing
phase are still valid when the code has been compiled and
is executed. Guards are also used to encode type checks that
come from optimistic type specialization by recording the
types of variables seen during tracing[13, 14]. After a trace
has been recorded it is optimized and then compiled to plat-
form specific machine code.

When the check of a guard fails, the execution of the
machine code must be stopped and the control is returned to
the interpreter, after the interpreter’s state has been restored.
If a particular guard fails often a new trace starting from
the guard is recorded. We will refer to this kind of trace
as a bridge. Once a bridge has been traced and compiled
it is attached to the corresponding guard by patching the
machine code. The next time the guard fails the bridge will
be executed instead of leaving the machine code.

RPython provides a tracing JIT that can be reused for a
number of language implementations [7]. This is possible,
because it traces the execution of the language interpreter
instead of tracing the user program directly. This approach
is called meta-tracing. For the purpose of this paper the
fact that RPython’s tracing JIT is a meta-tracing JIT can
be ignored. The only point of interaction is that some of
the guards that are inserted into the trace stem from an
annotation provided by the interpreter author [6].

Figure 1 shows an example RPython function that checks
whether a number reduces to 1 with less than 100 steps of
the Collatz process.4 It uses an Even and an Odd class to
box the numbers, to make the example more interesting. If
the loop in check_reduces is traced when a is a multiple
of four, the unoptimized trace looks like in Figure 2. The
line numbers in the trace correspond to the line numbers in
Figure 3. The resulting trace repeatedly halves the current
value and checks whether it is equal to one, or odd. In either
of these cases the trace is left via a guard failure.

4 http://en.wikipedia.org/wiki/Collatz_conjecture

2 2012/9/9

http://pypy.org
http://en.wikipedia.org/wiki/Collatz_conjecture

1class Base(object):

2def __init__(self, n):

3self.value = n

4@staticmethod

5def build(n):

6if n & 1 == 0:

7return Even(n)

8else:

9return Odd(n)

10

11class Odd(Base):

12def step(self):

13return Even(self.value * 3 + 1)

14

15class Even(Base):

16def step(self):

17n = self.value >> 2

18if n == 1:

19return None

20return self.build(n)

21

22def check_reduces(a):

23j = 1

24while j < 100:

25j += 1

26if a is None:

27return True

28a = a.step()

29return False

Figure 1. Example program

-1[j1, a1]
25j2 = int_add(j1, 1)

26guard_nonnull(a1)
28guard_class(a1, Even)

17i1 = getfield_gc(a1, descr=’value’)

17i2 = int_rshift(i1, 2)

18b1 = int_eq(i2, 1)

18guard_false(b1)
6i3 = int_and(i2, 1)

6i4 = int_is_zero(i3)
6guard_true(i4)
7a2 = new(Even)

3setfield_gc(a2, descr=’value’)

24b2 = int_lt(j2, 100)

24guard_true(b2)
-1jump(j2, a2)

Figure 2. Unoptimized trace, the line numbers in the trace
correspond to the line numbers in Figure 3.

3. Guards in the Frontend
In this context we refer to frontend as the component of
the JIT that is concerned with recording and optimizing the
traces as well as storing the information required to rebuild
the interpreter state in case of a guard failure. Since tracing
linearizes control flow by following one concrete execution,
the full control flow of a program is not observed. The
possible points of deviation from the trace are denoted by
guard operations that check whether the same assumptions
observed while tracing still hold during execution. Similarly,

in the case of dynamic languages guards can also encode
type assumptions. In later executions of the trace the guards
can fail. If that happens, execution needs to continue in
the interpreter. This means it is necessary to attach enough
information to a guard to reconstruct the interpreter state
when that guard fails. This information is called the resume
data.

To do this reconstruction it is necessary to take the values
of the SSA variables in the trace to build interpreter stack
frames. Tracing aggressively inlines functions, therefore the
reconstructed state of the interpreter can consist of several
interpreter frames.

If a guard fails often enough, a trace is started from it
to create a bridge, forming a trace tree. When that happens
another use case of resume data is to reconstruct the tracer
state. After the bridge has been recorded and compiled it
is attached to the guard. If the guard fails later the bridge
is executed. Therefore the resume data of that guard is no
longer needed.

There are several forces guiding the design of resume
data handling. Guards are a very common operations in the
traces. However, as will be shown, a large percentage of all
operations are optimized away before code generation. Since
there are a lot of guards the resume data needs to be stored
in a very compact way. On the other hand, tracing should be
as fast as possible, so the construction of resume data must
not take too much time.

3.1 Capturing of Resume Data During Tracing
Every time a guard is recorded during tracing the tracer at-
taches preliminary resume data to it. The data is preliminary
in that it is not particularly compact yet. The preliminary
resume data takes the form of a stack of symbolic frames.
The stack contains only those interpreter frames seen by the
tracer. The frames are symbolic in that the local variables in
the frames do not contain values. Instead, every local vari-
able contains the SSA variable of the trace where the value
would later come from, or a constant.

3.2 Compression of Resume Data
After tracing has been finished the trace is optimized. Dur-
ing optimization a large percentage of operations can be re-
moved (Figure 7). In the process the resume data is trans-
formed into its final, compressed form. The rationale for not
compressing the resume data during tracing is that a lot of
guards will be optimized away. For them, the compression
effort would be lost.

The core idea of storing resume data as compactly as pos-
sible is to share parts of the data structure between subse-
quent guards. This is useful because the density of guards in
traces is so high, that quite often not much changes between
them. Since resume data is a linked list of symbolic frames,
in many cases only the information in the top frame changes
from one guard to the next. The other symbolic frames can
often be reused. The reason for this is that, during trac-

3 2012/9/9

ing only the variables of the currently executing frame can
change. Therefore if two guards are generated from code in
the same function the resume data of the rest of the frame
stack can be reused.

In addition to sharing as much as possible between subse-
quent guards, a compact representation of the local variables
of symbolic frames is used. Every variable in the symbolic
frame is encoded using two bytes. Two bits are used as a tag
to denote where the value of the variable comes from. The
remaining 14 bits are a payload that depends on the tag bits.
The possible sources of information are:
• For small integer constants the payload contains the value

of the constant.
• For other constants the payload contains an index into a

per-loop list of constants.
• For SSA variables, the payload is the number of the

variable.
• For virtuals, the payload is an index into a list of virtuals,

see next section.

3.3 Interaction With Optimization
Guards interact with optimizations in various ways. Using
many classical compiler optimizations the JIT tries to re-
move as many operations, and therefore guards, as possible.
In particular guards can be removed by subexpression elim-
ination. If the same guard is encountered a second time in a
trace, the second one can be removed. This also works if a
later guard is weaker and hence implied by an earlier guard.

One of the techniques in the optimizer specific to tracing
for removing guards is guard strengthening [3]. The idea of
guard strengthening is that if a later guard is stronger than
an earlier guard it makes sense to move the stronger guard
to the point of the earlier, weaker guard and to remove the
weaker guard. Moving a guard to an earlier point is always
valid, it just means that the guard fails earlier during the trace
execution (the other direction is clearly not valid).

The other important point of interaction between resume
data and the optimizer is RPython’s allocation removal opti-
mization [5]. This optimization discovers allocations in the
trace that create objects that do not survive long. An exam-
ple is the instance of Even in Figure 2. Allocation removal
makes resume data more complex. Since allocations are re-
moved from the trace it becomes necessary to reconstruct
the objects that were not allocated so far when a guard fails.
Consequently the resume data needs to store enough infor-
mation to make this reconstruction possible.

Storing this additional information is done as follows: So
far, every variable in the symbolic frames contains a con-
stant or an SSA variable. After allocation removal the vari-
ables in the symbolic frames can also contain “virtual” ob-
jects. These are objects that were not allocated so far, be-
cause the optimizer removed their allocation. The structure
of the heap objects that have to be allocated on guard fail-
ure is described by the virtual objects stored in the symbolic
frames. To this end, the content of every field of the virtual

object is described in the same way that the local variables
of symbolic frames are described. The fields of the virtual
objects can therefore be SSA variables, constants or other
virtual objects. They are encoded using the same compact
two-byte representation as local variables.

During the storing of resume data virtual objects are also
shared between subsequent guards as much as possible. The
same observation as about frames applies: Quite often a
virtual object does not change from one guard to the next,
allowing the data structure to be shared.

A related optimization is the handling of heap stores
by the optimizer. The optimizer tries to delay stores into
the heap as long as possible. This is done because often
heap stores become unnecessary due to another store to the
same memory location later in the trace. This can make it
necessary to perform these delayed stores when leaving the
trace via a guard. Therefore the resume data needs to contain
a description of the delayed stores to be able to perform
them when the guard fails. So far no special compression
is done with this information, compared to the other source
of information delayed heap stores are quite rare.

Figure 3 shows the optimized version of the trace in
Figure 2. Allocation removal has removed the new operation
and other operations handling the instance. The operations
handle unboxed numbers now.

Figure 4 sketches the symbolic frames of the first two
guards in the trace. The frames for check_reduces and
Even.step as well as the description of the allocation-
removed virtual instance of Even are shared between the
two guards.

-1label(j2, i2, descr=label1)

25j3 = int_add(j2, 1)

17i5 = int_rshift(i2, 2)

18b3 = int_eq(i5, 1)

18guard_false(b3)
6i6 = int_and(i5, 1)

6b4 = int_is_zero(i6)
6guard_true(b4)
24b5 = int_lt(j3, 100)

24guard_true(b5)
-1jump(j3, i5, descr=label1)

Figure 3. Optimized trace

4. Guards in the Backend
After the recorded trace has been optimized, it is handed
over to the platform specific backend to be compiled to ma-
chine code. The compilation phase consists of two passes
over the lists of instructions, a backwards pass to calculate
live ranges of IR-level variables and a forward pass to emit
the instructions. During the forward pass IR-level variables
are assigned to registers and stack locations by the register
allocator according to the requirements of the emitted in-
structions. Eviction/spilling is performed based on the live
range information collected in the first pass. Each IR in-

4 2012/9/9

Even.step
n =
self =

check_reduces
j =
a =

j2

build

n = i5

Guard 2

Guard 1

virtual Even

.value = i2

i5

Figure 4. The resume data for Figure 3

struction is transformed into one or more machine level in-
structions that implement the required semantics. Operations
without side effects whose result is not used are not emit-
ted. Guard instructions are transformed into fast checks at
the machine code level that verify the corresponding condi-
tion. In cases the value being checked by the guard is not
used anywhere else the guard and the operation producing
the value can merged, further reducing the overhead of the
guard. Figure 5 shows how the int_eq operation followed
by a guard_false from the trace in Figure 3 are compiled
to pseudo-assembler if the operation and the guard are com-
piled separated or if they are merged.

18b3 = int_eq(i5, 1)

18guard_false(b3)

CMP r6, #1

MOVEQ r8, #1

MOVNE r8, #0

...

CMP r8, #0

BEQ <bailout>

CMP r6, #1

BNE <bailout>

...

...

...

...

Figure 5. Result of separated (left) and merged (right) com-
pilation of one guard and the following operation (top).

Attached to each guard in the IR is a list of the IR-
variables required to rebuild the execution state in case the
trace is left through the guard. When a guard is compiled,
in addition to the condition check two things are generated/-
compiled.

First, a special data structure called backend map is cre-
ated. This data structure encodes the mapping from IR-
variables needed by the guard to rebuild the state to the
low-level locations (registers and stack) where the corre-
sponding values will be stored when the guard is executed.
This data structure stores the values in a succinct manner.
The encoding is efficient to create and provides a compact
representation of the needed information in order to maintain
an acceptable memory profile.

Second, for each guard a piece of code is generated that
acts as a trampoline. Guards are implemented as a condi-

tional jump to this trampoline in case the guard check fails.
In the trampoline, the pointer to the backend map is loaded
and after storing the current execution state (registers and
stack) execution jumps to a generic bailout handler, also
known as compensation code, that is used to leave the com-
piled trace.

Using the encoded location information the bailout han-
dler reads from the stored execution state the values that the
IR-variables had at the time of the guard failure and stores
them in a location that can be read by the frontend. After
saving the information the control is returned to the fron-
tend signaling which guard failed so the frontend can read
the stored information and rebuild the state corresponding to
the point in the program.

As in previous sections, the underlying idea for the low-
level design of guards is to have a fast on-trace profile and
a potentially slow one in case the execution has to return
to the interpreter. At the same time, the data stored in the
backend, required to rebuild the state, should be as compact
as possible to reduce the memory overhead produced by the
large number of guards. The numbers in Figure 9 illustrate
that the compressed encoding currently has about 15% to
25% of the size of of the generated instructions on x86.

As explained in previous sections, when a specific guard
has failed often enough a bridge starting from this guard is
recorded and compiled. Since the goal of compiling bridges
is to improve execution speed on the diverged path (failing
guard) they should not introduce additional overhead. In
particular the failure of the guard should not lead to leaving
the compiled code prior to execution the code of the bridge.

The process of compiling a bridge is very similar to com-
piling a loop. Instructions and guards are processed in the
same way as described above. The main difference is the
setup phase. When compiling a trace we start with a clean
slate. The compilation of a bridge is started from a state (reg-
ister and stack bindings) that corresponds to the state during
the compilation of the original guard. To restore the state
needed to compile the bridge we use the backend map cre-
ated for the guard to rebuild the bindings from IR-variables
to stack locations and registers. With this reconstruction all
bindings are restored to the state as they were in the origi-
nal loop up to the guard. This means that no register/stack
reshuffling is needed before executing a bridge.

Once the bridge has been compiled the corresponding
guard is patched to redirect control flow to the bridge in case
the check fails. In the future, if the guard fails again it jumps
to the code compiled for the bridge instead of bailing out.
Once the guard has been compiled and attached to the loop
the guard becomes just a point where control-flow can split.
The guard becomes the branching point of two conditional
paths with no additional overhead. Figure 6 shows a diagram
of a compiled loop with two guards, Guard #1 jumps to the
trampoline, loads the backend map and then calls the bailout
handler, whereas Guard #2 has already been patched and

5 2012/9/9

directly jumps to the corresponding bridge. The bridge also
contains two guards that work based on the same principles.

5. Evaluation
The results presented in this section are based on numbers
gathered by running a subset of the standard PyPy bench-
marks. The PyPy benchmarks are used to measure the per-
formance of PyPy and are composed of a series of micro-
benchmarks and larger programs.5 The benchmarks were
taken from the PyPy benchmarks repository using revision
ff7b35837d0f.6 The benchmarks were run on a version of
PyPy based on revision 0b77afaafdd0 and patched to collect
additional data about guards in the machine code backends.7

The tools used to run and evaluate the benchmarks including
the patches applied to the PyPy sourcecode can be found in
the repository for this paper.8 All benchmark data was col-
lected on a MacBook Pro 64 bit running Max OS 10.8 with
the loop unrolling optimization disabled.9

We used the following benchmarks:

chaos: A Chaosgame implementation creating a fractal.

crypto_pyaes: An AES implementation.

django: The templating engine of the Django Web frame-
work.10

go: A Monte-Carlo Go AI.11

pyflate_fast: A BZ2 decoder.

raytrace_simple: A ray tracer.

richards: The Richards benchmark.

spambayes: A Bayesian spam filter.12

simpy_expand: A computer algebra system.

telco: A Python version of the Telco decimal benchmark,13

using a pure Python decimal floating point implementa-
tion.

twisted_names: A DNS server benchmark using the Twisted
networking framework.14

5 http://speed.pypy.org/
6 https://bitbucket.org/pypy/benchmarks/src/ff7b35837d0f
7 https://bitbucket.org/pypy/pypy/src/0b77afaafdd0
8 https://bitbucket.org/pypy/extradoc/src/tip/talk/vmil2012
9 Since loop unrolling duplicates the body of loops it would no longer be
possible to meaningfully compare the number of operations before and after
optimization. Loop unrolling is most effective for numeric kernels, so the
benchmarks presented here are not affected much by its absence.
10 http://www.djangoproject.com/
11 http://shed-skin.blogspot.com/2009/07/

disco-elegant-python-go-player.html
12 http://spambayes.sourceforge.net/
13 http://speleotrove.com/decimal/telco.html
14 http://twistedmatrix.com/

Trace

operation

operation

guard #1

operation

patched guard #2

operation

jump

Bridge from guard #2

operation

operation

guard 3

operation

guard 4

operation

jump

Trampoline #1

backend
map #1

backend
map #2

backend
map #4

backend
map #3

Trampoline #2

Trampoline #3

Trampoline #4

compensation code

read backend map
decode resume data
retrieve stack and
register values

...
return to interpreter

DataControl Flow Invalidated

Figure 6. Trace control flow in case of guard failures with
and without bridges

From the mentioned benchmarks we collected different
datasets to evaluate the frequency, the overhead and overall
behaviour of guards, the results are summarized in the re-
mainder of this section. We want to point out three aspects
of guards in particular:
• Guards are very common operations in traces.
• There is overhead associated with guards.
• Guard failures are local and rare.

All measurements presented in this section do not take
garbage collection of resume data and machine code into ac-
count. Pieces of machine code can be globally invalidated or
just become cold again. In both cases the generated machine
code and the related data is garbage collected. The figures
show the total amount of operations that are evaluated by the
JIT and the total amount of code and resume data that is gen-
erated. The measurements and the evaluation focus on trace
properties and memory consumption, and do not discuss the
execution time of the benchmarks. These topics were cov-
ered in earlier work [5] and furthermore are not influenced
that much by the techniques described in this paper.

6 2012/9/9

http://speed.pypy.org/
https://bitbucket.org/pypy/benchmarks/src/ff7b35837d0f
https://bitbucket.org/pypy/pypy/src/0b77afaafdd0
https://bitbucket.org/pypy/extradoc/src/tip/talk/vmil2012
http://www.djangoproject.com/
http://shed-skin.blogspot.com/2009/07/disco-elegant-python-go-player.html
http://shed-skin.blogspot.com/2009/07/disco-elegant-python-go-player.html
http://spambayes.sourceforge.net/
http://speleotrove.com/decimal/telco.html
http://twistedmatrix.com/

Benchmark # Traces Ops. before Guards before Ops. after Guards after Opt. rate Guard opt. rate

chaos 3213 21787 3954 ~ 18.1% 5168 888 ~ 17.2% 76.3% 77.5%
crypto_pyaes 3516 19675 2795 ~ 14.2% 6028 956 ~ 15.9% 69.4% 65.8%
django 4021 22740 5111 ~ 22.5% 5661 1137 ~ 20.1% 75.1% 77.8%
go 870805 785747 130499 ~ 16.6% 152966 29989 ~ 19.6% 80.5% 77.0%
pyflate-fast 147104 85886 13826 ~ 16.1% 21639 4019 ~ 18.6% 74.8% 70.9%
raytrace-simple 11585 89414 14174 ~ 15.9% 17526 2661 ~ 15.2% 80.4% 81.2%
richards 5138 32461 5503 ~ 17.0% 5552 1044 ~ 18.8% 82.9% 81.0%
spambayes 471321 242423 42053 ~ 17.3% 70962 12693 ~ 17.9% 70.7% 69.8%
sympy_expand 174113 92238 20333 ~ 22.0% 22417 4532 ~ 20.2% 75.7% 77.7%
telco 9364 97821 20356 ~ 20.8% 15794 2804 ~ 17.8% 83.9% 86.2%
twisted_names 250114 222535 47490 ~ 21.3% 49947 9561 ~ 19.1% 77.6% 79.9%

Figure 7. Number of operations and guards in the recorded traces before and after optimizations

5.1 Frequency of Guards
Figure 7 summarizes15 the total number of operations that
were recorded during tracing for each of the benchmarks
and what percentage of these operations are guards. The
static number of operations was counted on the unoptimized
and optimized traces. The figure also shows the overall op-
timization rate for operations, which is between 69.4% and
83.89%, of the traced operations and the optimization rate
of guards, which is between 65.8% and 86.2% of the oper-
ations. This indicates that the optimizer can remove most of
the guards, but after the optimization pass these still account
for 15.2% to 20.2% of the operations being compiled and
later executed. The frequency of guard operations makes it
important to store the associated information efficiently and
also to make sure that guard checks are executed quickly.

5.2 Guard Failures
The last point in this discussion is the frequency of guard
failures. Figure 8 presents for each benchmark a list of the
relative amounts of guards that ever fail and of guards that
fail often enough that a bridge is compiled.16 It also contains
sparklines depicting the failure rates for the failing guards
in decreasing order, each normalized to the most failing
guard. The numbers presented for guards that have a bridge
represent the failures up to the compilation of the bridge and
all executions of the then attached bridge.

From Figure 8 we can see that only a very small amount
of all the guards in the compiled traces ever fail. This amount
varies between 2.4% and 5.7% of all guards. As can be
expected, even fewer, only 1.2% to 3.6% of all guards fail
often enough that a bridge is compiled for them. Also, of all
failing guards a few fail extremely often and most fail rarely.
Reinforcing this notion the figure shows that, depending on
the benchmark, between 0.008% and 0.225% of the guards
are responsible for 50% of the total guards failures. Even
considering 99.9% of guard failures the relative amount of

15 In all tables the minimum and maximum values for each column are
highlighted in dark/light gray.
16 The threshold used is 200 failures. This rather high threshold was picked
experimentally to give good results for long-running programs.

guards does not rise above 3%. The colored dots in the
sparklines correspond to 50%, 99% and 99.9%. These results
emphasize that as most of the guards never fail it is important
to make sure that the successful execution of a guard does
not have unnecessary overhead.

This low guard failure rate is expected. Most guards do
not come from actual control flow divergences in the user
program, but from type checks needed for type specializa-
tion. Various prior work has shown [10, 15, 21] that most
programs in dynamic languages only use a limited amount
of runtime variability. Therefore many guards are needed for
making the traces behave correctly in all cases but fail rarely.

5.3 Space Overhead of Guards
The overhead that is incurred by the JIT to manage the re-
sume data, the backend map as well as the generated ma-
chine code is shown in Figure 9. It shows the total mem-
ory consumption of the code and of the data generated by
the machine code backend and an approximation of the size
of the resume data structures for the different benchmarks
mentioned above. The machine code taken into account is
composed of the compiled operations, the trampolines gen-
erated for the guards and a set of support functions that are
generated when the JIT starts and which are shared by all
compiled traces. The size of the backend map is the size of
the compressed mapping from registers and stack to IR-level
variables and finally the size of the resume data is the size of
the compressed high-level resume data as described in Sec-
tion 3.17

For the different benchmarks the backend map has about
15% to 20% of the size compared to the size of the generated
machine code. On the other hand the generated machine
code has only a size ranging from 20.5% to 37.98% of the
size of the resume data and the backend map combined and
being compressed as described before.

Tracing JIT compilers only compile the subset of the
code executed in a program that occurs in a hot loop, for

17 Due to technical reasons the size of the resume data is hard to measure
directly at runtime. Therefore the size given in the table is reconstructed
from debugging information stored in log files produced by the JIT.

7 2012/9/9

Benchmark Sparkline Failing > 200 failures 50% of failures 99% of failures 99.9% of failures

chaos 3.5% 1.5% 2 ~ 0.225% 9 ~ 1.014% 11 ~ 1.239%
crypto_pyaes 3.0% 1.7% 2 ~ 0.209% 8 ~ 0.837% 8 ~ 0.837%
django 5.4% 1.8% 2 ~ 0.185% 4 ~ 0.369% 11 ~ 1.015%
go 4.0% 2.7% 18 ~ 0.060% 410 ~ 1.367% 795 ~ 2.651%
pyflate-fast 3.9% 2.6% 1 ~ 0.025% 31 ~ 0.771% 64 ~ 1.592%
raytrace-simple 4.2% 3.2% 5 ~ 0.188% 42 ~ 1.578% 65 ~ 2.443%
richards 5.7% 3.6% 2 ~ 0.192% 23 ~ 2.203% 30 ~ 2.874%
spambayes 4.0% 2.5% 1 ~ 0.008% 110 ~ 0.852% 266 ~ 2.060%
sympy_expand 4.9% 2.6% 9 ~ 0.199% 73 ~ 1.611% 125 ~ 2.758%
telco 3.0% 2.3% 5 ~ 0.178% 43 ~ 1.534% 62 ~ 2.211%
twisted_names 2.4% 1.2% 9 ~ 0.094% 46 ~ 0.481% 101 ~ 1.055%

Figure 8. Failing guards, guards with more than 200 failures and guards responsible for 50%, 99% and 99.9% of the failures
relative to the total number of guards

Benchmark Code Resume data Backend map

chaos 157.1 KiB 390.5 KiB 24.4 KiB
crypto_pyaes 170.4 KiB 493.2 KiB 24.1 KiB
django 233.5 KiB 577.2 KiB 51.0 KiB
go 4871.0 KiB 22877.6 KiB 888.1 KiB
pyflate-fast 729.3 KiB 2036.7 KiB 150.7 KiB
raytrace-simple 491.6 KiB 1427.7 KiB 74.0 KiB
richards 157.1 KiB 685.1 KiB 17.6 KiB
spambayes 2499.9 KiB 6601.5 KiB 331.7 KiB
sympy_expand 929.2 KiB 2231.1 KiB 214.0 KiB
telco 516.5 KiB 1514.1 KiB 77.6 KiB
twisted_names 1694.9 KiB 5486.0 KiB 228.4 KiB

Figure 9. Total size of generated machine code and resume
data

this reason the amount of generated machine code will be
smaller than in other just-in-time compilation approaches.
This creates a larger discrepancy between the size of the
resume data when compared to the size of the generated
machine code and illustrates why it is important to compress
the resume data information.

Why the efficient storing of the resume data is a central
concern in the design of guards is illustrated by Figure 10.
This figure shows the size of the compressed resume data,
the approximated size of storing the resume data without
compression and an approximation of the best possible com-
pression of the resume data by compressing the data using
the xz compression tool, which is a “general-purpose data
compression software with high compression ratio”.18

The results show that the current approach of compres-
sion and data sharing only requires 18.3% to 31.1% of the
space compared to a naive approach. This shows that large
parts of the resume data are redundant and can be stored
more efficiently using the techniques described earlier. On
the other hand comparing the results to the xz compression
which only needs between 17.1% and 21.1% of the space
required by our compression shows that the compression is
not optimal and could be improved taking into account the

18 http://tukaani.org/xz/

Benchmark Compressed Naive xz compressed

chaos 390.48 KiB 1312.44 KiB 82.27 KiB
crypto_pyaes 493.17 KiB 1685.70 KiB 90.00 KiB
django 577.23 KiB 2383.15 KiB 109.70 KiB
go 22877.60 KiB 91200.30 KiB 3753.16 KiB
pyflate-fast 2036.74 KiB 7422.01 KiB 380.38 KiB
raytrace-simple 1427.70 KiB 4591.58 KiB 270.48 KiB
richards 685.10 KiB 2579.73 KiB 116.98 KiB
spambayes 6601.51 KiB 36708.27 KiB 1248.16 KiB
sympy_expand 2231.07 KiB 10048.70 KiB 442.48 KiB
telco 1514.11 KiB 6352.27 KiB 285.35 KiB
twisted_names 5485.98 KiB 30032.90 KiB 1034.82 KiB

Figure 10. Resume data sizes

trade-off between the required space and the time needed to
build a good, compressed representation of the resume data
for the large amount of guards present in the traces.

6. Related Work
6.1 Guards in Other Tracing JITs
Guards, as described, are a concept associated with tracing
just-in-time compilers to represent possible divergent con-
trol flow paths.

SPUR [3] is a tracing JIT compiler for a CIL virtual ma-
chine. It handles guards by always generating code for every
one of them that transfers control back to the unoptimized
code. Since the transfer code needs to reconstruct the stack
frames of the unoptimized code, the transfer code is large.

Mike Pall, the author of LuaJIT describes in a post to the
lua-users mailing list different technologies and techniques
used in the implementation of LuaJIT [20]. Pall explains that
guards in LuaJIT use a datastucture called snapshots, simi-
lar to RPython’s resume data, to store the information about
how to rebuild the state from a guard failure using the in-
formation in the snapshot and the machine execution state.
According to Pall [20] snapshots for guards in LuaJIT are
associated with a large memory footprint. The solution used

8 2012/9/9

http://tukaani.org/xz/

there is to store sparse snapshots, avoiding the creation of
snapshots for every guard to reduce memory pressure. Snap-
shots are only created for guards after updates to the global
state, after control flow points from the original program and
for guards that are likely to fail. As an outlook Pall mentions
plans to switch to compressed snapshots to further reduce re-
dundancy.19 It should be possible to combine the approaches
of not creating snapshots at all for every guard and the re-
sume data compression presented in this paper.

Linking side exits to pieces of later compiled machine
code was described first in the context of Dynamo [2] under
the name of fragment linking. Once a new hot trace is emit-
ted into the fragment cache it is linked to the side exit that led
to the compilation of the fragment. Fragment linking avoids
the performance penalty involved in leaving the compiled
code. Fragment linking also allows to remove compensation
code associated to the linked fragments that would have been
required to restored the execution state on the side exit.

Gal et. al [14] describe the HotpathVM, a JIT for a Java
VM. They experimented with having one generic compen-
sation code block, like the RPython JIT, that uses a regis-
ter variable mapping to restore the interpreter state. Later
this was replaced by generating compensation code for each
guard which produced a lower overhead in their benchmarks.
HotpathVM also records secondary traces starting from fail-
ing guards that are connected directly to the original trace.
Secondary traces are compiled by first restoring the register
allocator state to the state at the side exit. The information is
a mapping stored in the guard between machine level regis-
ters and stack to Java level stack and variables.

For TraceMonkey, a tracing JIT for JavaScript, Gal et.
al [13] illustrate how it uses a small off-trace set of instruc-
tions that is executed in case a guard failure to return a struc-
ture describing the reason for the exit along with the infor-
mation needed to restored the interpreter state. TraceMonkey
uses trace stitching to avoid the overhead of returning to the
trace monitor and calling another trace when taking a side
exit. In this approach it is required to write live values to an
activation record before entering the new trace.

6.2 Deoptimization in Method-Based JITs
Deoptimization in method-based JITs is used if one of the
assumptions of the code generated by a JIT changes. This
is often the case when new code is added to the system, or
when the programmer tries to debug the program.

Deutsch et. al. [12] use stack descriptions to make it
possible to do source-level debugging of JIT-compiled code.
Self uses deoptimization to reach the same goal [16]. When a
function is to be debugged, the optimized code version is left
and one compiled without inlining and other optimizations
is entered. Self uses scope descriptors to describe the frames

19 This optimization is now implemented in LuaJIT, at the time of writing it
has not been fully documented in the LuaJIT Wiki: http://wiki.luajit.
org/Optimizations#1-D-Snapshot-Compression

that need to be re-created when leaving the optimized code.
The scope descriptors are between 0.42 and 1.09 times the
size of the generated machine code. The information needed
for debugging together is between 1.22 and 2.33 times the
size of generated machine code, according to the paper.

Java Hotspot [19] contains a deoptimization framework
that is used for debugging and when an uncommon trap is
triggered. To be able to do this, Hotspot stores a mapping
from optimized states back to the interpreter state at various
deoptimization points. There is no discussion of the memory
use of this information.

The deoptimization information of Hotspot is extended
to support correct behaviour when scalar replacement of
fields is done for non-escaping objects [17, 18]. The ap-
proach is extremely similar to how RPython’s JIT handles
virtual objects. For every object that is not allocated in the
code, the deoptimization information contains a description
of the content of the fields. When deoptimizing code, these
objects are reallocated and their fields filled with the val-
ues described by the deoptimization information. The data
structures for the deoptimization information are very simi-
lar to those used by RPython’s tracing JIT. For every com-
piled Java method there is a scope entry for the stack and
one for the local variables. The objects that are replaced by
scalars are described by object entries, which are equivalent
to RPython’s virtual objects.

The papers does not describe any attempts to share the ob-
ject entries and scope entries between different deoptimiza-
tion safe points. This seems to not be needed in a method-
based JIT compiler, because method-based JITs have fewer
deoptimization points than tracing JITs. Indeed, in the eval-
uation presented in the second paper [17] the number of safe
points is low for the benchmarks presented there, between
167 and 1512.20 The size of the debugging information in
the presented benchmarks is at most about half the size of
the machine code generated.

7. Conclusion
In this paper we have concentrated on guards, an operation
found in tracing just-in-time compilers and used to denote
points of possible control flow divergence in recorded traces.
Based on the observation that guards are a frequent opera-
tion in traces and that they do not fail often, we described
how they have been implemented in the high- and low-level
components of RPython’s tracing JIT compiler.

Additionally we presented experimental data collected
using the standard PyPy benchmark set to evaluate previ-
ous observations and assumptions about guards. Our experi-
ments confirmed that guards are a very common operation
in traces. At the same time guards are associated with a
high overhead, because for all compiled guards information
needs to be stored to restore the execution state in case of

20 The fact that the density of safe points is low also means that the sharing
approaches of this paper likely would not work well.

9 2012/9/9

http://wiki.luajit.org/Optimizations#1-D-Snapshot-Compression
http://wiki.luajit.org/Optimizations#1-D-Snapshot-Compression

a bailout. The measurements showed that the compression
techniques used in PyPy effectively reduce the overhead of
guards, but they still produce a significant overhead. The re-
sults also showed that guard failure is a local event: there are
few guards that fail at all, and even fewer that fail very of-
ten. These numbers validate the design decision of reducing
the overhead of successful guard checks as much as possible
while paying a higher price in the case of bailout due to hav-
ing to decode a compressed state representation. The com-
pressed state representation reduces the memory footprint of
rarely used data.

Based on the observation that guard failure is rare it
would be worth exploring if a more aggressive compression
scheme for guards would be worth the memory saving in
contrast to the increased decoding overhead. Based on the
same observation we would like to explore the concept of
LuaJIT’s sparse snapshots and its applicability to RPython’s
JIT. There is an ongoing effort to replace the backend map in
RPython’s JIT with a simpler technique that does not require
decoding the backend map on each guard failure.

Acknowledgements
We would like to thank David Edelsohn, Samuele Pedroni,
Stephan Zalewski, Sven Hager, and the anonymous review-
ers for their helpful feedback and valuable comments while
writing this paper. We thank the PyPy and RPython com-
munity for their continuous support and work: Armin Rigo,
Antonio Cuni, Maciej Fijałkowski, Samuele Pedroni, and
countless others. Any remaining errors are our own.

References
[1] D. Ancona, M. Ancona, A. Cuni, and N. D. Matsakis.

RPython: a step towards reconciling dynamically and stat-
ically typed OO languages. In DLS, Montreal, Quebec,
Canada, 2007. ACM.

[2] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A Trans-
parent Dynamic Optimization System. In PLDI 2000.

[3] M. Bebenita, F. Brandner, M. Fahndrich, F. Logozzo,
W. Schulte, N. Tillmann, and H. Venter. SPUR: a trace-based
JIT compiler for CIL. In OOPSLA, Reno/Tahoe, Nevada,
USA, 2010. ACM.

[4] M. Bebenita, M. Chang, G. Wagner, A. Gal, C. Wimmer, and
M. Franz. Trace-based compilation in execution environments
without interpreters. In Proceedings of the 8th International
Conference on the Principles and Practice of Programming in
Java, pages 59–68, Vienna, Austria, 2010. ACM.

[5] C. F. Bolz, A. Cuni, M. Fijałkowski, M. Leuschel, S. Pedroni,
and A. Rigo. Allocation removal by partial evaluation in a
tracing JIT. In PEPM, Austin, Texas, USA, 2011.

[6] C. F. Bolz, A. Cuni, M. Fijałkowski, M. Leuschel, S. Pedroni,
and A. Rigo. Runtime feedback in a meta-tracing JIT for
efficient dynamic languages. ICOOOLPS ’11, page 9:1–9:8.
ACM, 2011.

[7] C. F. Bolz, A. Cuni, M. Fijałkowski, and A. Rigo. Tracing
the meta-level: PyPy’s tracing JIT compiler. In ICOOOLPS,
pages 18–25, Genova, Italy, 2009. ACM.

[8] C. F. Bolz, A. Kuhn, A. Lienhard, N. Matsakis, O. Nierstrasz,
L. Renggli, A. Rigo, and T. Verwaest. Back to the future in
one week — implementing a Smalltalk VM in PyPy. In Self-
Sustaining Systems, pages 123–139. 2008.

[9] C. F. Bolz, M. Leuschel, and D. Schneider. Towards a jitting
VM for prolog execution. In PPDP, Hagenberg, Austria,
2010. ACM.

[10] O. Callaú, R. Robbes, É. Tanter, and D. Röthlisberger. How
developers use the dynamic features of programming lan-
guages: the case of Smalltalk. In Proceedings of the 8th Work-
ing Conference on Mining Software Repositories, MSR ’11,
page 23–32. ACM, 2011.

[11] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K.
Zadeck. Efficiently computing static single assignment form
and the control dependence graph. ACM Transactions on
Programming Languages and Systems, 13(4):451–490, 1991.

[12] L. P. Deutsch and A. M. Schiffman. Efficient implementation
of the Smalltalk-80 system. In POPL, Salt Lake City, Utah,
1984. ACM.

[13] A. Gal, M. Franz, B. Eich, M. Shaver, and D. Anderson.
Trace-based Just-in-Time Type Specialization for Dynamic
Languages. In PLDI 2009.

[14] A. Gal, C. W. Probst, and M. Franz. HotpathVM: An Effective
JIT Compiler for Resource-constrained Devices. VEE 2006,
pages 144–153. ACM, 2006.

[15] A. Holkner and J. Harland. Evaluating the dynamic be-
haviour of Python applications. In Proceedings of the Thirty-
Second Australasian Conference on Computer Science - Vol-
ume 91, pages 19–28, Wellington, New Zealand, 2009. Aus-
tralian Computer Society, Inc.

[16] U. Hölzle, C. Chambers, and D. Ungar. Debugging optimized
code with dynamic deoptimization. PLDI ’92, page 32–43.
ACM, 1992.

[17] T. Kotzmann and H. Mossenbock. Run-time support for op-
timizations based on escape analysis. CGO ’07, page 49–60,
Washington, DC, USA, 2007. IEEE Computer Society.

[18] T. Kotzmann and H. Mössenböck. Escape analysis in the
context of dynamic compilation and deoptimization. VEE ’05,
page 111–120. ACM, 2005.

[19] M. Paleczny, C. Vick, and C. Click. The Java HotSpot server
compiler. In Proceedings of the Java Virtual Machine Re-
search and Technology Symposium on Java Virtual Machine
Research and Technology Symposium - Volume 1, Monterey,
California, 2001. USENIX Association.

[20] M. Pall. LuaJIT 2.0 intellectual property disclosure and re-
search opportunities, June 2009. http://lua-users.org/

lists/lua-l/2009-11/msg00089.html.

[21] G. Richards, S. Lebresne, B. Burg, and J. Vitek. An analysis of
the dynamic behavior of JavaScript programs. In PLDI 2010,
pages 1–12, Toronto, Ontario, Canada, 2010. ACM.

[22] A. Rigo and S. Pedroni. PyPy’s approach to virtual machine
construction. In DLS, Portland, Oregon, USA, 2006. ACM.

10 2012/9/9

http://lua-users.org/lists/lua-l/2009-11/msg00089.html
http://lua-users.org/lists/lua-l/2009-11/msg00089.html

	Introduction
	Background
	RPython and the PyPy Project
	RPython's Tracing JIT Compiler

	Guards in the Frontend
	Capturing of Resume Data During Tracing
	Compression of Resume Data
	Interaction With Optimization

	Guards in the Backend
	Evaluation
	Frequency of Guards
	Guard Failures
	Space Overhead of Guards

	Related Work
	Guards in Other Tracing JITs
	Deoptimization in Method-Based JITs

	Conclusion

