
Validating Z Specifications using the
ProB Animator and Model Checker

Daniel Plagge and Michael Leuschel

Softwaretechnik und Programmiersprachen
Institut für Informatik, Universität Düsseldorf

Universitätsstr. 1, D-40225 Düsseldorf
{plagge,leuschel}@cs.uni-duesseldorf.de

Abstract. We present the architecture and implementation of the proz
tool to validate high-level Z specifications. The tool was integrated into
prob, by providing a translation of Z into B and by extending the kernel
of prob to accommodate some new syntax and data types. We describe
the challenge of going from the tool friendly formalism B to the more
specification-oriented formalism Z, and show how many Z specifications
can be systematically translated into B. We describe the extensions, such
as record types and free types, that had to be added to the kernel to
support a large subset of Z. As a side-effect, we provide a way to animate
and model check records in prob. By incorporating proz into prob, we
have inherited many of the recent extensions developed for B, such as the
integration with CSP or the animation of recursive functions. Finally, we
present a successful industrial application, which makes use of this fact,
and where proz was able to discover several errors in Z specifications
containing higher-order recursive functions.

1 Introduction

Both B [1] and Z [2, 26] are formal mathematical specification notations, using
the same underlying set theory and predicate calculus. Both formalisms are used
in industry in a range of critical domains.

The Z notation places the emphasis on human-readability of specifications.
Z specifications are often documents where ambiguities in the description of the
system are avoided by supporting the prose with formal statements in Z. LATEX
packages such as fuzz [25] exists to support type setting and checking those
documents. The formal part of a specification mainly consists of schemas which
describe different aspects of a system using set theory and predicate logic. The
schema calculus—a distinct feature of Z—enables system engineers to specify
complex systems by combining those schemas.

B was derived from Z by Jean-Raymond Abrial (also the progenitor of Z)
with the aim of enabling tool support. In the process, some aspects of Z were
removed and replaced, while new features were added (notably the ASCII Ab-
stract Machine Notation). We will discuss some of the differences later in depth.
In a nutshell, B is more aimed at refinement and code generation, while Z is a

more high-level formalism aimed for specification. This is, arguably, why B has
industrial strength tools, such as Atelier-B [27] and the B-toolkit [5]. Recently
the prob model checker [19] and refinement checker [20] have been added to B’s
list of tools. Similar tools are lacking for Z, even though there are recent efforts
to provide better tool support for Z [24].

In this paper we describe the challenge of developing a Z version of prob,
capable of animating and model checking realistic Z specifications. We believe an
animator and model checker is a very important ingredient for formal methods;
especially if we do not formally derive code from the specification (as is common
in Z [13, 12]). This fact is also increasingly being realised by industrial users of
formal methods.

At the heart of our approach lies a translation of Z specifications into B, with
the aim of providing an integrated tool that is capable to validate both Z and
B specifications, as well as inheriting from recent refinements developed for B
(such as the integration with CSP [8]). One motivation for our work comes from
an industrial example, which we also describe in the paper.

2 Specifications in Z

First we give a brief introduction to the Z notation. We want to describe the
structure of Z specifications, especially how this differs from specifications in B
as supported by prob. The interested reader can find a tutorial introduction to
Z inside the Z reference manual [26]. A more comprehensive introduction with
many examples is [16].

2.1 A brief description of Z

Usually, a specification in Z consists of informal prose together with formal
statements. In a real-life applications, the prose part is at least as important as
the formal part, as a specification has to be read by humans as well as computers.

Usually, one describes state machines in Z, i.e., one defines possible states as
well as operations that can change the state. The Z syntax can be split into two:
a notation for discrete mathematics (set theory and predicate calculus) and a
notation for describing and combining schemas, called the schema calculus.

For illustration, we use the simple database of birthdays (Fig. 1) from [26].
The first line in the example is a declaration [NAME ,DATE] which simply
introduces NAME and DATE as new basic types, without providing more in-
formation about their attributes (like generics in some programming languages).
We can also see three boxes, each with a name on the upper border and a hori-
zontal line dividing it into two parts. These boxes define the so-called schemas.
Above the dividing line is the declaration part, where variables and their types
are introduced, and below a list of predicates can be stated.

Without additional description, the purpose of each schema in the example is
not directly apparent. We use the first schema BirthdayBook to define the state
space of our system. Init defines a valid initial state and the schema AddBirthday

2

[NAME ,DATE]
BirthdayBook
known : �NAME
birthday : NAME � DATE

known = dom birthday

Init
BirthdayBook

known = �

AddBirthday
∆BirthdayBook
name? : NAME
date? : DATE

name? /∈ known
birthday ′ = birthday ∪

{name? 7→ date?}

Fig. 1. The birthday book example

is the description of an operation that inserts a new name and birthday into the
database.

We describe the schemas in more detail. In BirthdayBook we have two vari-
ables: known is a set of names and birthday is a partial function that maps names
to a date. The predicate states that known is the domain of the partial function,
i.e., the set of names that have an entry in the function. A possible state of our
system consists of values for these two variables which satisfy the predicate.

The declaration part of the Init schema contains a reference to the BirthdayBook
schema. This imports all variable declarations and predicates of BirthdayBook
into Init . The predicate says that known is empty. Together with the predicate
of BirthdayBook this implicitly states that the domain of birthday is empty,
resulting in an empty function.

The schema defining the operation AddBirthday contains two variables with
an appended question mark. By convention, variables with a trailing ? (resp. !)
describe inputs (resp. outputs) of operations, thus name? and date? are inputs
to the operation. The first line of the schema is ∆BirthdayBook . This includes
all declarations and predicates of BirthdayBook , as previously seen in Init . Ad-
ditionally the variable declarations are included with a prime appended to their
name, representing the state after the execution of the operation. The predi-
cates are also included a second time where all occurring variables have a prime
appended. To clarify this, we show the expanded schema:

AddBirthday
known, known ′ : �NAME
birthday , birthday ′ : NAME � DATE
name? : NAME
date? : DATE

known = dom birthday ∧ known ′ = dom birthday ′

name? /∈ known
birthday ′ = birthday ∪ {name? 7→ date?}

The schema thus defines the relation between the state before and after
executing the operation AddBirthday . Accordingly the unprimed variables refer

3

MACHINE BirthdayBook

SETS NAME;DATE

VARIABLES known,birthday

INVARIANT

known:POW(NAME) & birthday:NAME+->DATE & known=dom(birthday)

INITIALISATION known,birthday := {},{}

OPERATIONS

AddBirthday(name,date) = PRE name:NAME & date:DATE & name/:known THEN

birthday(name) := date || known := known \/ {name}

END

END

Fig. 2. The birthday book example in B

to the state before and the primed ones to the state after the execution. The
effect of AddBirthday is that the function birthday has been extended with a
new entry. But, together with the predicates from BirthdayBook , it is (again
implicitly) stated that name? should be added to known.

Instead of the schema boxes there is also a shorter equivalent syntax. E.g.,
Init can also be defined with Init =̂ [BirthdayBook | known = �]. In addition
to inclusion, as seen in the example, the schema calculus of Z provides more
operators to combine schemas. E.g., the conjunction of two schemas R =̂ S1 ∧ S2
merges their declaration part in a way that the resulting schema R has the
variables of both schemas S1 and S2, and its predicate is the logical conjunction
of both original predicates. The schema calculus is a very important aspect of the
Z notation, because it makes Z suitable for describing large systems by handling
distinct parts of it and combining them.

2.2 Some differences between Z and B

proz is an extension of prob, a tool that animates specifications in B. To make
use of its core functionality, we need to translate a Z specification into prob’s
internal representation of a B machine. To illustrate the fundamental issues and
problems, we describe some of the major differences between Z and B using our
example.

Figure 2 shows the birthday book example as a B machine. Aside from the
ASCII notation, one difference is the use of keywords to divide the specification
into multiple sections. The VARIABLES section defines that known and birthday
are the variables making up the state. There is an explicit initialisation and in
the OPERATIONS section the operation AddBirthday is described. In a Z specifi-
cation, on the other hand, the purpose of each schema must be explained in the
surrounding prose.

If we look closer at the INITIALISATION section in the example, we see that
both known and birthday are set to �. This is unlike the Z schema Init in Fig. 2,
where only known = � is stated and the value of birthday is implicitly defined.
Also in the definition of the operation AddBirthday both variables are changed
explicitly. Generally in B all changes to variables must be stated explicitly via

4

generalised substitutions. All other variables are not changed, whereas in Z every
variable can change, as long its values satisfy the predicates of the operation.

Another noteworthy difference is the declaration of an invariant in the B
machine. An invariant in B is a constraint that must hold in every state. To
prove that a machine is consistent it has to be proven that the initialisation is
valid and that no operation leads to an invalid state if applied to a valid state.
In Z the predicate of the state’s schema is also called invariant, but unlike B
the operations implicitly satisfy it by including the state’s schema. Errors in a
B specification can lead to a violation of the invariant. A similar error in Z leads
to an operation not being enabled, which in turn can lead to deadlocks.

2.3 Translating Z to B

The notation of substitutions often results in specifications that are easier to
animate than higher-level Z specifications. Hence, at the heart of proz is a
systematic translation of Z schemas into B machines.

Figure 3 contains such a B translation of the birthday book Z specification,
as computed by our tool (to make the specification more readable we use Z style
identifiers, i.e., ending with ′, ? or !, even though strictly speaking this is not
valid B syntax). As can bee seen, we have identified that the variables birthday
and known form part of the state, their types are declared in the invariant. The
initialisation part is a translation of the expanded Init schema. One operation
AddBirthday with two arguments date? and name? has been identified, a trans-
lation of the expanded AddBirthday schema can be found in the WHERE clause
of its ANY statement. There are also several references to a constant maxentries.
We added it and a constraint # known ≤ maxentries to demonstrate the han-
dling of axiomatic definitions (cf. Section 3.1).

The B machine from Figure 3 can be fed directly into prob, for animation
and model checking. However, Z has also two data types, free types and schema
types, that have no counterpart in B. This means that some aspects of Z cannot
be effectively translated into B machines, and require extensions of prob. In the
next section we present the overall architecture of our approach, as well as a
formal explanation of how to derive a B model from a Z specification.

3 Architecture and the proz compiler

In the previous section we have examined the basic ingredients of Z specifications,
and have highlighted why Z specifications are inherently more difficult to animate
and model check than B specifications. In this and the next section we explain
how we have overcome those issues; in particular:

– How to analyse the various schemas of Z specification, identifying the state
of a Z specification, the state-changing operations and the basic user-defined
data types (cf. Section 3.1).

– How to deal with the fact that Z specifications do not specify all changes to
variables explicitly.

5

MACHINE z_translation

SETS NAME;DATE

CONSTANTS maxentries

PROPERTIES

(maxentries:INTEGER) & (maxentries>=5)

VARIABLES birthday, known

INVARIANT

(birthday:POW(NAME*DATE)) & (known:POW(NAME))

INITIALISATION

ANY birthday’, known’

WHERE

(known’:POW(NAME)) & (birthday’:(NAME+->DATE))

& (known’=dom(birthday’)) & (card(known’)<=maxentries)

& (known’={})

THEN

birthday, known := birthday’, known’

END

OPERATIONS

AddBirthday(date?, name?) =

PRE (name?:NAME)

& (date?:DATE)

THEN

ANY birthday’, known’

WHERE

(known:POW(NAME)) & (birthday:(NAME+->DATE))

& (known=dom(birthday)) & (card(known)<=maxentries)

& (known’:POW(NAME)) & (birthday’:(NAME+->DATE))

& (known’=dom(birthday’)) & (card(known’)<=maxentries)

& (name?/:known) & (birthday’=(birthday\/{(name?,date?)}))

THEN

birthday, known := birthday’, known’

END

END

END

Fig. 3. The translated birthday book example

– How to deal with the new data types provided by Z.
– How to deal with new operators and constructs.

Overall Architecture proz is an extension of prob that supports Z specifications
which can be parsed by the fuzz typechecker. Those specifications are given as
a LATEX file. When the user loads a specification into proz, the following steps
are performed (see also Figure 4):

1. The specification is typechecked with fuzz. fuzz writes the formal content
of the specification into a file which then is parsed by proz.

2. The different components of the specification (definition of constants, state,
initialisation and operations) are identified.

6

3. All schemas are expanded and normalised, i.e., all schema inclusions are
resolved and the type declarations of variables are strictly separated from
constraints on their values.

4. Several rules to simplify expressions are applied.
5. proz then translates the specification to an internal representation of a B

machine (with some small extensions, which are discussed later in the paper).
6. After the translation process prob treats the specification the same way as

other B machines are treated (with some extensions having been added to
the prob kernel).

Most of the expressions in Z have a direct counterpart in B, for those the
translation in point 4 is just a conversion from one syntax into another. Some
cases where there is more logic need in the translation process or where we
extended the prob interpreter are presented in Section 3.3. The support of two
Z data types as discussed in the next section affects the translation process and
requires extensions to the kernel as well.

Fig. 4. Overview of proz Architecture

3.1 Identifying components of the specification

As we have seen in the previous sections, the purpose of the schemas in a specifi-
cation is not stated formally. But to interpret a given specification for animation
and model checking, we must identify which schemas describe the state space,
the initialisation and the operations. To be able to do so, we require that the
specification satisfies some rules:

– There must be a schema called Init for initialisation.
– Init includes exactly one other schema. The included schema will be taken

as the description of the state space.
– A schema with all variables of the state and their primed versions, that is

not included by any other schema, will be used as an operation.
The rules can be applied to the birthday book example in Fig. 1: There

is a schema Init which includes BirthdayBook . Thus Init is the initialisation
of the state which consists of BirthdayBook ’s variables known and birthday .
Expanding AddBirthday shows that it has all variables of the state and also the

7

primed versions known ′ and birthday ′. It is not included by any other schema.
Thus proz would identify AddBirthday as an operation.

In the next two paragraphs we present two other components of a specifica-
tion that are used by proz and explain how they relate to existing features of
prob.

Invariant As seen in the comparison in Sect. 2.2, the B invariant has no direct
counterpart in Z. But it can be useful to search for states that violate a certain
property by model checking. To make this feature available for Z specifications,
proz looks for a schema named Invariant . If such an invariant is given, its
predicate is checked for every visited state in an animation or in model checking.
The predicate is then used analogously to the invariant in B.

Axiomatic definitions In our short introduction to Z we did not describe how
global constants can be introduced in Z by axiomatic definitions. Like schemas,
axiomatic definitions consist also of a declaration and a predicate part, but their
declared variables can be used throughout the specification without a schema
inclusion. E.g., we can define a constant maxentries which value is at least 5
with the axiomatic definition

maxentries : �

maxentries ≥ 5

We interpret axiomatic definitions analogously to how prob interprets CONSTANTS
and PROPERTIES in a B machine: The very first step of an animation or model
checking—before the initialisation of the state variables—consists in finding val-
ues for the constants which satisfy the predicates of the axiomatic definitions.
After this step the predicates of the axiomatic definitions can be ignored. To illus-
trate how the axiomatic definitions are handled, we added the definition above to
the birthday book example and appended the predicate # known ≤ maxentries
to the schema BirthdayBook before translating the specification to the result in
Figure 3.

3.2 Translating initialisation and operations from Z to B

The initialisation schema Init consists of the declaration of all state variables
and a predicate I . We annotate Tv as the type of variable v .

Init
x1 : Tx1 ; . . . ; xn : Txn

I

In B, the initialisation is a generalised substitution to all variables of the ab-
stract machine. We can state “choose any values that satisfy I ” with an ANY

8

statement:

ANY x ′1, . . . , x
′
n

WHERE x ′1 ∈ Tx1 ∧ . . . ∧ x ′n ∈ Txn
∧

I ′

THEN x1, . . . , xn := x ′1, . . . , x
′
n

END

Beside the predicate I , the WHERE clause of the ANY contains the type dec-
laration of the variables. The types Tv and the predicate I are translated from
Z to B syntax. Most of the types, predicates and expressions in Z have a direct
counterpart in B and can be translated directly. In section 3.3 we show how we
extended the B interpreter to support other constructs.

An operation schema Op declares in addition to the state variables x1, . . . , xn

their primed counterparts x ′1, . . . , x
′
n and variables for input i1?, . . . , ik? and out-

put o1!, . . . , ol !. The predicate P describes the effect of the operation.

Op
x1 : Tx1 ; . . . ; xn : Txn

x ′1 : Tx1 ; . . . ; x ′n : Txn

i1? : Ti1 ; . . . ; ik? : Tik

o1! : To1 ; . . . ; ol ! : Tol

P

proz translates such a schema to a B operation of the form

o∗1 !, . . . , o∗l !← Op(i1?, . . . , ik?) =
PRE i1 ∈ Ti1 ∧ . . . ∧ ik ∈ Tik THEN

ANY x ′1, . . . , x
′
n , o1!, . . . , ol !

WHERE x ′1 ∈ Tx1 ∧ . . . ∧ x ′n ∈ Txn ∧ o1! ∈ To1 ∧ . . . ∧ ol ! ∈ Tol
∧

P
THEN x1, . . . , xn , o∗1 !, . . . , o∗l ! := x ′1, . . . , x

′
n , o1!, . . . , ol !

END
END

END

Like in the initialisation the central part of the operation is an ANY state-
ment with the predicate P , but additionally we have to consider the possible
result values. The surrounding PRE statement is just for declaring the types of
the operation’s arguments.

Often operations change only a subset of the state variables. proz checks if
terms like x = x ′ occur in the predicate P . If such a term is found, we know
that x does not change and so we can remove the substitution x := x ′. Also we
can replace all occurrences of x ′ by x in P . Then x ′ is not used anymore in the
statement and can be removed. If parts of the state or the complete state are
not modified by an operation, the expression θS = θS ′ is often used, where S is

9

a schema containing all variables that should not change. ΞS is an abbreviation
for including ∆S and stating θS = θS ′. Those expressions are transformed into
s1 = s ′1 ∧ . . . ∧ sn = s ′m with s1, . . . , sm as the variables of S. This way the
simplification of the ANY statement is also working with θ-expressions.

3.3 New constructs and operators

Some constructs of Z’s mathematical language do not have a direct counterpart
in B, and below we show how we have treated those.

Translation of Comprehension Sets A comprehension set has the form {Decl |
Pred } and specifies a set with a declaration of variables and a predicate. E.g.,
the expression { i :
 | i ≥ 5 } is the set of all numbers greater or equal to 5. This
kind of comprehension sets is also supported by B, but Z has an extended syntax
of the form {Decl | Pred • Expr }. E.g., the set { i :
 | i ≥ 5 • i ∗ i } is the set of
all square numbers greater or equal to 25. We translate such comprehension sets
as follows. Let T be the type of Expr , then we express {Decl | Pred • Expr } by
{ v : T | (∃Decl | v = Expr ∧ Pred) } and translate this into B.

Extensions to the B Interpreter The following expressions are not easily translat-
able to B (or would entail a considerable efficiency penalty), and hence extensions
were made to the prob interpreter to support an extended B syntax:

– We added an if -expression to the standard B syntax. While B contains a
substitution IF − THEN − ELSE, it can not be used as an expression that
yields a value. The if expression of Z resembles to the ternary ?: operator
known in C or Java.

– The let in Z can be used as an expression or as a predicate. Both can not
be stated directly in B, which again only has the LET as a substitution.

– The operations (extraction) and � (filter) on sequences are defined with
the function squash. We added the squash function to the interpreter.

– We added the definite description quantifier µ.

4 New Types

To deal with the Z specifications we have seen so far, it was sufficient to translate
Z to B, possibly with some some syntactic extensions. There are, however, two
important features of Z which cannot be effectively dealt with in that way: Z’s
schema and free types. Supporting those features in an effective manner requires
a fundamental addition to the core datatypes of the prob kernel.

Overview of the prob-kernel The prob kernel is responsible for storing and
finding values for the values of the variables in a specification. In order to avoid
naive enumeration of possible values, the prob kernel is written in Prolog works
in multiple phases (controlled by Prolog’s when co-routining mechanism). In the
first phase, only deterministic propagations are performed (e.g., the predicate

10

x = 1 will be evaluated but the predicates x ∈ IN will suspend until they
either become deterministic or until the second phase starts). In the second
phase, a restricted class of non-deterministic enumerations will be performed.
For example, the predicate x ∈ {a, b} will suspend during the first phase but
will lead to two solutions x = a and x = b during the second phase. In the final
phase, all variables, parameters and constants that are still undetermined (or
partially determined) are enumerated.

New Data types Adding a new basic data type to the kernel requires the exten-
sion of four Prolog predicates: equal object to check two objects for equality,
not equal object to check two objects for disequality, one predicate to type
check an object and one predicate to enumerate all possible values of an object
given its type. So far the kernel supported basic user-defined types (defined in B’s
SET clause), integers, pairs and sets (relations are represented as sets of pairs).
Below, we present two new data types, schema types and free types, which are
needed for Z.

4.1 Schema Types

In Z each schema defines a new data type, a schema type which resembles record
types known from other languages. Basically, a record data value rec(f) consists
of a list f = [n1/v1, . . . ,nk/vk] of field names ni along with values vi for each
field. We require that all field names are sorted alphabetically. Two record values
are identical iff they have the exact same field names and all field values are
identical. In the kernel this gives rise to two new inference rules:

x1 = y1 . . . xk = yk n1 < n2 < . . . < nk

rec([n1/x1, . . . ,nk/xk]) = rec([n1/y1, . . . ,nk/yk])
xi 6= y 0 ≤ i ≤ k n1 < n2 < . . . < nk

rec([n1/x1, . . . ,ni/xi , . . . ,nk/xk]) 6= rec([n1/x1, . . . ,ni/y , . . . ,nk/xk])

The type of a record contains the name of the fields and the types of each field.
This gives rise to two new inference rules for type inference and enumeration,
where we use the k-ary type constructor Record for records with k -fields:

x1 : τ1 . . . xk : τk n1 < n2 < . . . < nk

rec([n1/x1, . . . ,nk/xk]) : Record(n1/τ1, . . . ,nk/τk)
x1 ∈ enum(τ1) . . . xk ∈ enum(τk) n1 < n2 < . . . < nk

rec([n1/x1, . . . ,nk/xk]) ∈ enum(Record(n1/τ1, . . . ,nk/τk))

Classical B does not have a record type, but a record type extension and
syntax has been introduced by the tool Atelier-B [27].1 In extending the kernel,
prob now also supports those records in B.

1 See also [11] for a theoretical foundation of records.

11

Note that in Z, possible instances of a schema type (the bindings) can be
further constrained by the predicates of the schema. E.g. the schema

ExampleRecord =̂ [x , y : � | x < y]

can be used as a record with the constraint x < y . The kernel does not support
this directly, instead an unconstrained record [x , y : �] can be used. We show
how the constraints can be preserved in the translation process by normalisation.

proz normalises all schemas of a specification, i.e. it strictly separates type
information and additional predicates on the instances. E.g. the normalised form
of the schema [x : {1, 2, 3}] is [x : � | x ∈ {1, 2, 3}]. Given a normalised schema
A =̂ [Decl | Pred], we define A∗ =̂ [Decl] as the schema with just the type
information and without any additional constraints. If A is used as a type for
a variable v , in the normalisation process it is split into the type A∗ and the
additional constraint v ∈ {Decl | Pred • θA}. Because the type A∗ does not
have further constraints, it’s supported by the kernel. The constraint had been
made explicit by the normalisation and can be translated to B. The used θ-
operator creates an instance of type A. We can translate it directly to a record
constructor.

4.2 Free Types

Another feature of the Z notation is the definition of free types. E.g.,

T ::= empty | value�{1, 2, 3}�

defines a new data type T with a constant value empty and a constructor func-
tion value which maps values from {1, 2, 3} to T . Contrary to schema types, free
types can also be recursive, as in the following example, defining a binary tree
with integers:

BinTree ::= empty | leaf ��� | node�BinTree × �× BinTree�

In Z, free types are only syntactic sugar and can also be expressed with
axiomatic definitions and basic types. But for the purpose of animating the
specification it is essential for efficiency to implement this type directly.

There is no counterpart for free types in B, so we extended the prob core.
The representation of data values and the inference rules for equality and typing
are similar to record types; one just needs to also store the constructor used
(e.g., in the case of T above we need to know whether we are in the case empty
or in the case value). Two free type data values are thus identical iff they have
the same constructor and if the values for that constructor are identical.

Free type definitions can be made recursive, so the implementation of enumer-
ation must prevent the generation of infinitely many values. We solved this by
introducing a maximum recursion depth when enumerating free types. The max-
imum is adjustable by the user. The introduction of a maximum recursion depth

12

has the effect that the model checker might not find all possible solutions (simi-
larly to integer variables whose enumeration is restricted to MININT..MAXINT).

The prob interpreter is extended by a constructor FreeConstructor for cre-
ating instance values of free types. The arguments are the free type, the case
(empty or value in the T example) and the tuple containing the arguments
to the constructor. Also there is the inverse of the constructor FreeDestructor ,
which takes a free type instance and returns the type, the case and the tuple of
arguments. Finally, we have a predicate FreeCase that takes the identifier of a
case and a free type instance as arguments and evaluates to true if the free type
value has the given case.

The kernel itself does not support constraints on the values of a constructor.
In the T example above the type of the constructor value is � but the domain
constrained to {1, 2, 3}. Like with the schema types, the constraints have to be
handled separately in the translation. This is done by normalisation as follows.

Given a free type F of the form

F ::= c1 | . . . | cn | d1�S1� | . . . | dm�Sm�

we define the type F ∗ which has just the type information of F without other
constraints, where Ti is the underlying type of Si (e.g. Si = {1, 2, 3} ⇒ Ti = �):

F ∗ ::= c1 | . . . | cn | d∗1�T1� | . . . | d∗m�Tm�

Then we convert F and the constructors di , 1 ≤ i ≤ m to

F == { x : F ∗ | x ∈ ran d∗1 ⇒ d∗1
∼(x) ∈ S1 ∧ . . . ∧ x ∈ ran d∗m ⇒ d∗m

∼(x) ∈ Sm }
di == (λ x : Ti | x ∈ Si • d∗i (x))

The schema normalisation transforms a variable v of type F to a variable of
type F ∗ and adds the constraint v ∈ F .

The transformed example would be

T ∗ ::= empty | value∗���
T == { x : T ∗ | x ∈ ran value∗ ⇒ value∗∼(x) ∈ {1, 2, 3} }
value == (λ x : � | x ∈ {1, 2, 3} • value∗(x))

Finally, expressions of the form x ∈ ran d∗i are translated to the predicate
FreeCase(F , d∗i , x) and constructor calls of the form d∗i (x) (resp. the inverse
d∗i

∼(y)) are translated to FreeConstructor(F ∗, d∗i , x) (resp. FreeDestructor(F ∗, d∗i , y)).
The result can then be dealt with by the extended prob interpreter and kernel.

5 Case study

The case study was inspired by a real industrial example. The specifications
are very high level and, using the guidelines from [13], were not destined to be

13

refined into code. These Z specifications thus2 provide a particular challenge for
our tool. Below we present two sub-components of the system, the challenges in
animating and validating them, as well as an indication on the errors located by
our tool.

5.1 Route calculation

The route calculation component is a key component of the overall system, con-
taining several intricate algorithmic aspects. It is important to ascertain the
correctness of the algorithms (e.g., before proceeding with an implementation).

This system component calculates routes through a given geometry. The ge-
ometry (mainly places and roads) is stored in the system state. The main part
of the specification consists of the definition of a function that takes a route
as input. The input route is a sequence that starts and ends with a place and
between both is a list of places or roads. The result of the function is the ex-
pansion of the route, i.e. the sequence of all places that lie between the first
and the last place. E.g., in the given geometry in figure 5 the expansion of
〈Bicester ,A34,M 4,Swindon〉 is 〈Bicester ,Oxford ,NewburyRoundabout ,Swindon〉.
For sake of simplicity we ignore below the connections which are not roads. The

Fig. 5. An example geometry

expansion function is constructed by combining several other functions, which
do not work directly on the input route. Instead a record is created that contains
the original route, information about which part has already been processed, the
result so far, and a set of errors. An error could be “no connection found”, for
example. A recursive function (Fig. 6) expands every single element in the route

2 Some of the features of B, such as generalised union, are rarely used in formal refine-
ments as the existing B provers do not support them very well. It is our experience
that formal B specifications that are refined to code are easier to animate than more
liberal specifications.

14

until the complete route is expanded or an error is found. In total the specifica-
tion consists of 8 function definitions which are combined to calculate the result.
Most of these functions are defined by comprehension sets.

Due to the complexity of the defined functions, it was not feasible to enumer-
ate them (i.e., to store all possible inputs and outputs). Fortunately, prob [22]
has the ability to compile these kind of definitions into symbolic closures, which
are evaluated and expanded on demand. For example, given a set comprehension
S = {x | x ∈ IN ⇒ P} and the condition y ∈ S the Kernel will “only” check that
P holds for x = y and not compute the entire set S . A similar situation arises
for lambda abstractions. Take for example, f = λ x .(x ∈ IN | E). In that case,
to evaluate f (y) the Kernel “only” evaluates E with y substituted for x and not
the entire function f .3 The kernel, even supports recursive function definitions,
such as the one presented in Fig. 6.

Storing comprehensions sets and λ-expressions symbolically was an essential
feature to allow the animation of the specification. By integrating proz into
prob we inherit this feature, which allows us to validate this specification.

ExpandElems
ExpandElemexpandElems : Expansion � Expansion

expandElems = {∆Expansion |
θExpansion ′ = if error 6= � ∨ currentElem /∈ dom proposedRoute

then θExpansion
else expandElems(expandElem(θExpansion)) •

θExpansion 7→ θExpansion ′ }

Fig. 6. Example: The recursive definition of the function expandElems.

To make an animation possible, the system was initialised with test data
that describes a map with six cities. Running the animation the user can simply
click on the AddElement operations to construct an input and sees immediately
the result. Figure 7 shows a screenshot of the animator after entering the route
“Newbury → A34 → Bicester”. In the middle the list of enabled operations can
be seen where the Expand operation contains the solution (which is truncated
in the screenshot).

The animation of the specification quickly exhibited one error in the spec-
ification. For each road a sequence of places to which it connects is stored in
the geometry. When a route contains a road, the entry and exit points are
calculated and the section between both is appended to the result. But under
certain circumstances the section was appended in the wrong direction so that
the route “Newbury→ A34→ Bicester” was calculated to “Newbury→ Bicester
→ Oxford→ Newbury→ Bicester” instead of the much simpler correct solution
“Newbury → Oxford → Bicester”.

3 Some expressions, however, will require the computation of the entire function (e.g.,
dom(f) ⊆ SetA). In those circumstances the kernel converts the symbolic form into
explicit form.

15

Fig. 7. Animation of the route calculation

Figure 8 shows the function containing the error. The result of the expression
(in the third let expression)

(if entry > exit then exit . . entry else entry . . exit) roadPlaces(r)

are all places on the road r that are between entry and exit . If roadPlaces(r) is
the sequence 〈a, b, c, d , e〉, entry is 4 and exit is 2, than the result is 〈b, c, d〉.
Although the case entry > exit is covered explicitly in the specification, it has
been forgotten to reverse the resulting sequence to 〈d , c, b〉.

ExpandRoad
FindConnections
expandRoad : Expansion � Expansion

expandRoad = {r : ElementName; ExpansionOp |
r ∈ RoadName ∧
(proposedRoute(currentElem)).type = roadElementType ∧
(proposedRoute(currentElem)).name = r ∧
(let entries == findConnections(r , proposedRoute(currentElem − 1));

exits == findConnections(r , proposedRoute(currentElem + 1)) •
((entries = � ∨ exits = �)
∧ error ′ = {noConnection} ∧ expandedRoute ′ = 〈〉) ∨

(let entry == min(entries); exit == min(exits) •
(let placesToAdd == (if entry > exit then exit . . entry

else entry . . exit) roadPlaces(r) � place •
expandedRoute ′ = if last expandedRoute = head placesToAdd

then expandedRoute � tail placesToAdd
else expandedRoute � placesToAdd ∧
error ′ = �))) •

θExpansion 7→ θExpansion ′}

Fig. 8. The definition of the function expandRoad containing an error.

For this application we did not yet use the model checking facilities of proz,
because we have no further properties about the result of the algorithm (and
hence no way to automatically check the correctness of the result). But the

16

animator alone gives the user a powerful tool to get more insight in the behaviour
of a specification, as the quick detection of errors showed.

5.2 Network protocol

A second important component of the overall system implements access control
to a shared resource, employing a simple network protocol. A number of work-
stations are connected via a network and share are critical resource. Whenever
a workstation wants to access the resource it has to send a request to the other
workstations. The protocol should assure that only one workstation can be in
the critical section at the same time.

The specification distinguishes between the state and behaviour of the work-
stations and the the state and behaviour of the underlying middleware.

The specification of the middleware is the description of an existing sys-
tem. Its state space consists of a sent and received buffer for each workstation.
Messages can be added to a sent buffer, transferred between workstations and
removed from a received buffer to deliver it to the workstation.

The specification of the workstation defines their current states (idle, waiting ,
editing or failed) and their operations. They can send requests to the other
workstations, read their responses, read other requests and send responses.

The components from both parts of the definitions are combined by using
the schema calculus. Especially the pipe operator (>>) was used to connect
operations, where the result of one operation serves as the input for another
operation. E.g. when a workstation sends a request, the operation describing
the workstation behaviour outputs a message that is taken by a middleware
operation as input:

RequestOK =̂ RequestWorkstationOK >> AcceptMsgMiddleware

A screenshot of the animator is shown in Fig. 9. On the left side the current
state is displayed. It can be seen that workstation 1 is waiting for a response of
workstation 2, workstation 2 is in editing mode and workstation 3 is idle. Also
a message is still in the sent buffer of workstation 1.

Fig. 9. Animation of the network protocol

Free types are used in the specification for distinguishing the different modes
of a workstation. wsIdle and wsEditing are constants of the free type, whereas

17

wsWaiting is a constructor, e.g. wsWaiting({1, 3}) refers to the state “waiting
for workstations 1 and 3”.

First we used the model checker to find deadlocks in the protocol. It found a
deadlock that was caused by an error in the specification. It was possible that a
workstation could ignore a rejected request. The same error caused a situation
where more than one workstation was in the critical section.

We added an Invariant schema to the specification to check automatically if
more than one workstation is in the editing mode (wsState is a function defined
in the schema Workstations that maps each workstation to its mode, and the
operator � is used to restrict it to all entries which map to wsEditing):

Invariant =̂ [Workstations | #(wsState � {wsEditing}) ≤ 1]

The model checker was able to find states where the invariant was violated.
Another error was found: Every response to a request was treated as if it was a
grant, even rejections.

The model checker was not able to do an exhaustive search of the state space
because the message buffers in the model are not limited.

6 Discussion, Related and Future Work

Limitations Z is a very large and extensive formal method, with many features
and extension. While we provide a tool that can animate a considerable subset
of Z, some of Z’s features are obviously not yet supported:

– Bags (multisets) are not supported.
– Some expressions like disjoint and partition are not yet implemented.
– Generic definitions cannot be used in a specification yet. We plan to support

them by determining with wich types a generic definition is used, and then
creating for each such type a separate axiomatic definition.

Related and Future Work On the theoretical side, there are several works dis-
cussing the relationship and translations between Z and B [9, 10] or weakest
precondition semantics [4].

On the practical side, several animators for Z exist, such as [29], which
presents an animator for Z implemented in Mercury, as well as the Possum ani-
mation tool [14]. Another animator for Z is ZANS [17]. It has been developed in
C++ and unlike prob only supports deterministic operations (called explicit in
[17]). The more recent Jaza tool by Mark Utting [28] looks very promising. There
has also been a recent push [24] to provide more tool support for Z. However, to
our knowledge, no existing Z animator can deal with the recursive higher-order
functions present in our case study.

The most closely related work on the B side is [6, 3, 18], which uses a special
purpose constraint solver over sets (CLPS) to animate B and Z specifications us-
ing the so-called BZ-Testing-Tools. However, the focus of these tools is test-case
generation and not verification, and the subset of B that is supported is compar-
atively smaller (e.g., no set comprehensions or lambda abstractions, constants
and properties nor multiple machines are supported).

18

Another very popular tool for validating specifications and models is Alloy
[15], which makes use SAT solvers (rather than constraint solving). However, the
specification language of Alloy is first-order and thus cannot be applied “out of
the box” to our motivating industrial example.

Conclusion In this paper we presented proz, a tool for animating and model
checking Z specifications. We pursued an approach to translate Z specifications
to B, reusing the existing prob toolset as much as possible. Some extensions to
the prob core were required (e.g., for free types and schema types), after which
we have obtained an integrated tool that is now capable to animate and vali-
date Z and B specifications. In principle our tool could now validate combined
B/Z specifications,4 and as a side effect we have added support for B specifica-
tions with records. By integrating proz with prob our tool has also inherited
from the recent developments and improvements originally devised for B, such
as visualisation of large state spaces [23], integration with CSP [8], symmetry
reduction [21], and symbolic validation of recursive functions [22].

Our tool was successfully applied to examples which were based on industrial
specifications and also revealed several errors. Especially proz’s ability to store
comprehensions sets symbolically was essential to make the animations of those
specifications possible.

References

1. J.-R. Abrial. The B-Book. Cambridge University Press, 1996.
2. J.-R. Abrial, S. A. Schuman, and B. Meyer. Specification language. In R. M.

McKeag and A. M. Macnaghten, editors, On the Construction of Programs: An
Advanced Course, pages 343–410. Cambridge University Press, 1980.

3. F. Ambert, F. Bouquet, S. Chemin, S. Guenaud, B. Legeard, F. Peureux, M. Ut-
ting, and N. Vacelet. BZ-testing-tools: A tool-set for test generation from Z and
B using constraint logic programming. In Proceedings of FATES’02, Formal Ap-
proaches to Testing of Software, pages 105–120, August 2002. Technical Report,
INRIA.

4. J. W. Ana Cavalcanti. A weakest precondition semantics for z. The Computer
Journal, 41(1):1–15, 1998.

5. U. B-Core (UK) Limited, Oxon. B-Toolkit, On-line manual, 1999. Available at
http://www.b-core.com/ONLINEDOC/Contents.html.

6. F. Bouquet, B. Legeard, and F. Peureux. CLPS-B - a constraint solver for B. In
J.-P.Katoen and P.Stevens, editors, Tools and Algorithms for the Construction and
Analysis of Systems, LNCS 2280, pages 188–204. Springer-Verlag, 2002.

7. J. P. Bowen. Formal Specification and Documentation using Z. International
Thomson Computer Press, 1996.

8. M. Butler and M. Leuschel. Combining CSP and B for specification and property
verification. In Proceedings of Formal Methods 2005, LNCS 3582, pages 221–236,
Newcastle upon Tyne, 2005. Springer-Verlag.

9. A. Diller and R. Docherty. Z and abstract machine notation: A comparison. In Z
User Workshop, pages 250–263, 1994.

4 It is not clear to us whether this has any practical benefit

19

10. S. Dunne. Understanding object-z operations as generalised substitutions. In E. A.
Boiten, J. Derrick, and G. Smith, editors, IFM, volume 2999 of Lecture Notes in
Computer Science, pages 328–342. Springer, 2004.

11. N. Evans and M. Butler. A proposal for records in event-b. In J. Misra, T. Nipkow,
and E. Sekerinski, editors, FM, volume 4085 of Lecture Notes in Computer Science,
pages 221–235. Springer, 2006.

12. A. Hall. Correctness by construction: Integrating formality into a commercial
development process. In L.-H. Eriksson and P. A. Lindsay, editors, FME, volume
2391 of Lecture Notes in Computer Science, pages 224–233. Springer, 2002.

13. J. A. Hall. Seven myths of formal methods. IEEE Software, 7(5):11–19, September
1990.

14. D. Hazel, P. Strooper, and O. Traynor. Requirements engineering and verification
using specification animation. Automated Software Engineering, 00:302, 1998.

15. D. Jackson. Alloy: A lightweight object modelling notation. ACM Transactions
on Software Engineering and Methodology (TOSEM), 11:256–290, 2002.

16. J. Jacky. The Way of Z: Practical Programming with Formal Methods. Cambridge
University Press, 1997.

17. X. Jia. An approach to animating Z specifications. Available at
http://venus.cs.depaul.edu/fm/zans.html.

18. B. Legeard, F. Peureux, and M. Utting. Automated boundary testing from Z and
B. In Proceedings FME’02, LNCS 2391, pages 21–40. Springer-Verlag, 2002.

19. M. Leuschel and M. Butler. ProB: A model checker for B. In K. Araki, S. Gnesi,
and D. Mandrioli, editors, FME 2003: Formal Methods, LNCS 2805, pages 855–874.
Springer-Verlag, 2003.

20. M. Leuschel and M. Butler. Automatic refinement checking for B. In K.-K. Lau and
R. Banach, editors, Proceedings ICFEM’05, LNCS 3785, pages 345–359. Springer-
Verlag, 2005.

21. M. Leuschel, M. Butler, C. Spermann, and E. Turner. Symmetry reduction for
b by permutation flooding. In Proceedings of the 7th International B Conference
(B2007), LNCS 4355, pages 79–93, Besancon, France, 2007. Springer-Verlag.

22. M. Leuschel, D. Cansell, and M. Butler. Validating and animating higher-order
recursive functions in B. Submitted; preliminary version presented at Dagstuhl
Seminar 06191 Rigorous Methods for Software Construction and Analysis, 2006.

23. M. Leuschel and E. Turner. Visualizing larger states spaces in ProB. In H. Tre-
harne, S. King, M. Henson, and S. Schneider, editors, Proceedings ZB’2005, LNCS
3455, pages 6–23. Springer-Verlag, April 2005.

24. P. Malik and M. Utting. CZT: A framework for Z tools. In H. Treharne, S. King,
M. C. Henson, and S. A. Schneider, editors, Proceedings ZB’2005, volume 3455 of
Lecture Notes in Computer Science, pages 65–84. Springer, 2005.

25. J. M. Spivey. The Fuzz Manual. Available at
http://spivey.oriel.ox.ac.uk/mike/fuzz.

26. J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall International
Series in Computer Science, 2nd edition, 1992.

27. F. Steria, Aix-en-Provence. Atelier B, User and Reference Manuals, 1996. Available
at http://www.atelierb.societe.com/index uk.html.

28. M. Utting. Data structures for Z testing tools. In FM-TOOLS 2000 conference,
July 2000. in TR 2000-07, Information Faculty, University of Ulm.

29. M. Winikoff, P. Dart, and E. Kazmierczak. Rapid prototyping using formal spec-
ifications. In Proceedings of the 21st Australasian Computer Science Conference,
pages 279–294, Perth, Australia, February 1998.

20

