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Abstract. Courses on formal methods are often based on examples and
case studies, which are supposed to show students how to apply for-
mal methods in practice. However, examples often fall into one of two
categories: First, many are artificial and thus do not relate to practice.
Second, examples are based on projects of industry partners and are,
thus, way too involved for students to understand them.
In this paper, we present a different approach. By formalizing the rules of
commonly known games, we achieve examples both engaging and suited
for students. Furthermore, we broaden the horizon of formal methods,
driving research at the same time: we present extensions such as playable
visualizations and explore the relationship between game AIs and model
checking heuristics.

1 Introduction

Rather than purely focusing on the mathematical foundations, courses on formal
methods are often based on examples and case studies, supposed to show stu-
dents how to apply formal methods in practice. However, the examples used are
often quite artificial and do not relate to practice. At the same time, examples
based on projects of industry partners are rooted in practice but often are way
too involved for students to understand.

In this paper, we present a different approach, relying on games as examples
for formal models. The models discussed are used in teaching and have been de-
veloped during theses. We deem games particularly suited as teaching examples
for two reasons:

1. The games we use are well-known to the students. We can thus focus on
the modeling and proving as well as on methodology, rather than having to
discuss intended properties of our models. Essentially, reducing the amount
of requirements engineering we have to perform by using common examples
allows us to focus on the formal method itself.

2. Modern computer games are among the most sophisticated examples of soft-
ware systems. Due to the high complexity, implementations of game seman-
tics, e.g., rules of movement, can often only be tested scarcely and are thus
naturally suited for applying formal methods.



As a simple example, consider the board game checkers. If an implementation
somehow allowed moving a piece onto a white field, no valid moves would be
defined afterwards. Arbitrary successor states might occur, or the game might
never be over, as no other piece can capture it or vice versa. If the invalid move
is only seldomly possible, it might not be hit be testing procedures.

In the following, we will use the B-method [1] and its successor Event-B [2].
Both represent state-based formal methods used for modeling software and sys-
tems and proving their correctness. Models written in B or Event-B can be
animated and model checked using ProB [26,25,24]. Additionally, we discuss
the tools used in the development of our prototypes in Section 3.

Apart from teaching, using formal methods to prototype games has several
advantages for game development itself: First of all, creation of a working pro-
totype is often faster in B, due to the high level of abstraction3. Furthermore,
step-wise refinement allows focusing on certain parts of a game. In consequence,
our case studies contribute both to teaching and research.

2 A Primer on B and the B-Method

The formal specification language B [1], its successor Event-B [2] and the B-
method [1] follow the correct-by-construction approach. Their models consist of
a set of machines, which itself contain constants and variables together with cor-
responding type definitions. A predicate (which might have multiple solutions)
is used to describe the initial states.

Different means of composing machines are available. Furthermore, the B-
method heavily relies on abstraction, i. e., the step-wise refinement of very ab-
stract machines towards more concrete implementations. In addition to ma-
chines, Event-B features contexts, supposed to hold static information.

Machine operations (or events, in case of Event-B) are used to specify transi-
tions between states. A machine operation has a unique name and consists of B
substitutions defining the state after execution. An operation can have a precon-
dition allowing or prohibiting execution based on the current state. Operations
can be non-deterministic and might be nested. Furthermore, B features a multi-
tude of different substitutions, including if-then-else constructs and while loops.
Event-B’s events are considerably simpler and can only include preconditions for
execution and variable assignments.

To ensure correctness of a specification, the user can define machine invari-
ants, i. e., safety properties that have to hold in every state. Depending on
the tool used, these properties can be verified either by formal proof or using
model checking. In addition, LTL properties can be specified to verify temporal
behavior.

Besides using the types explicitly provided by the B language specification,
one can introduce used-defined types in the form of sets. A set is defined by a
unique name and may be initialized by a finite enumeration of distinct elements.

3 Regarding the trade-off between ease of implementation and efficient execution see
[16] for a general point of view and [22] for a perspective on B and Event-B.



Sets not defined by enumeration are called deferred sets and are assumed to be
non-empty and finite.

3 Software Used

Both for our courses and the case studies presented below we rely on three tools
for development and verification of formal models. Each supports different verifi-
cation techniques, such as model checking and proof. When writing specifications
in Event-B, one often combines all of them instead of using only a single veri-
fication tool. Consequently, integrations into one another have been developed.
In detail, the tools we use are:

– ProB [26,25,24], a constraint solver, model finder and model checker for
the B family of languages. One of the key features of ProB is fully au-
tomatic animation of specifications, i. e., the user can traverse the state
space without having to supply values for variables or parameters. In ad-
dition, ProB incorporates different model checking techniques, including
explicit state and symbolic ones [17]. Both model checking and animation
are driven by a backend written in SICStus Prolog [6], relying mainly on its
constraint logic programming based solving library [7]. The Prolog kernel is
supported by integrating SMT solvers [18] and SAT solvers [31] via Kod-
kod [33]. While ProB supports basic visualizations of formulas, individual
states and the state space, more involved visualizations and software proto-
types are realized using BMotionWeb. ProB supports LTL model checking
using a tableau-based algorithm as outlined in [30,11].

– Rodin [3] is an IDE for Event-B implemented on top of Eclipse. It features
generation of proof obligations, e. g., for invariant preservation, and can be
combined with different provers for discharging them. In particular, one can
connect the Atelier-B provers [8] and SMT solvers [12,13]. Rodin does not
directly support visualization of models. Instead, ProB is provided as a
plugin [5].

– BMotionWeb [20,21] is a tool for the rapid creation of formal prototypes on
top of B and Event-B machines. In particular, it allows to link a graphical
user interface to a formal specification animated by ProB.

Below, we present three case studies in which we applied the formal approach
of [20] to prototyping games. In Section 4, we present a prototype of Pac-Man,
while in Section 5, we are modeling chess. Afterwards, in Section 6, a version of
Lightbot is presented. The case studies outline the broad applicability of formal
methods to games: with Pac-Man, we have a game featuring continuous and
simultaneous movement. In contrast, chess represents turn-based board games
where players move in succession. Finally, the Lightbot game presents how stack-
based programming languages are implemented.



4 Pac-Man

As a first case study, we use the well-known classic arcade game Pac-Man. We
will start with the set of requirements to be verified in our model in Section 4.1.
The requirements are posed to the students in the same way, e.g., as a practical
specification task.

The Event-B model4 is discussed in Section 4.2. On top of the model, we used
visualization techniques to implement an interactive and playable prototype as
discussed in Section 4.3. In the background, the model checker drives a simple
artificial intelligence controlling the ghosts as described in Section 4.4.

4.1 Requirements

We try to keep the set of requirements simple and easy to grasp to help students
focus on applying the formal method rather than spending time on implementa-
tion or specification details. Furthermore, we abstract further from the original
Pac-Man: Instead of being continuous, movement is made discreet, i. e., Pac-Man
and ghosts move on a grid of fields.

rq1 Pac-Man can only be moved from one field of the grid to a direct neighbor
field. This implies that it cannot jump to another position in the level.

rq2 Each ghost can only be moved from one field to a direct neighbor field.
rq3 Pac-Man can only be moved when every ghost, that must have been started,

has moved at least once after the last movement of Pac-Man.
rq4 Pac-Man can be moved through a tunnel.
rq5 The first two ghosts must start before Pac-Man starts.
rq6 The third / fourth ghost must start as soon as 30 / 180 dots are collected.
rq7 Each dot can only be collected once.
rq8 If Pac-Man and a ghost are on the same field, one must catch the other.
rq9 If a ghost catches Pac-Man, the player loses a life.

4.2 Model and Refinement Hierarchy

The model of Pac-Man is split into different refinement levels, each introducing
additional detail to the game. The first refinement level adds Pac-Man’s move-
ment, the second deals with collecting as well as scoring dots and the third and
fourth refinement levels consider moving the ghosts and hunting.

Pac-Man’s Movement Initially, on the first refinement level, we specify the
movement of Pac-Man, focusing on requirements containing constraints imme-
diately applicable to movement: rq1 and rq4.

The maze in which Pac-Man moves is encoded as a set containing the coordi-
nates of each field. We use two variables to store Pac-Man’s position: one for its

4 A full version of the model can be found at:
https://github.com/pkoerner/EventBPacman-Plugin/tree/master/eventb

https://github.com/pkoerner/EventBPacman-Plugin/tree/master/eventb


current and one for its prior location, used to prevent Pac-Man from jumping.
Both are members of the set of fields in the maze as stated using type invariants
inv101 and inv102 shown below. Combined, the invariants state that Pac-Man
never leaves the maze.

After storing the prior position, an additional invariant inv103a can be used
to prohibit jumping over squares. This is sufficient to verify rq1. Using LTL
rather than state invariants, the requirement could also be checked without in-
troducing an additional variable.

inv101: pos ∈ maze // current position

inv102: prior pos ∈ maze // last position

inv103a: (prj1(pos)− prj1(prior pos) ∈ {2,−2} ∧ prj2(pos) = prj2(prior pos))∨
(prj2(pos)− prj2(prior pos) ∈ {2,−2} ∧ prj1(pos) = prj1(prior pos))

Additionally, the model includes two Boolean variables indicating if Pac-
Man was moved in the last event and if it was moved at all. The latter will
allow us to verify rq5 later on. Furthermore, we can already specify that Pac-
Man may move through a tunnel to the opposite side of the grid. This is done by
introducing another boolean variable, which indicates whether the last movement
was through the tunnel. We add this variable as a guard to invariant inv103a
resulting in inv103 to allow jumps in case of tunnel traversal. We also state that
if the tunnel is used, Pac-Man has to appear on the other side in inv107.

inv106: tunneled ∈ BOOL // last movement was through tunnel

inv103: (moving = > ∧ tunneled = ⊥)⇒
((prj1(pos)− prj1(prior pos) ∈ {2,−2} ∧ prj2(pos) = prj2(prior pos))∨
(prj2(pos)− prj2(prior pos) ∈ {2,−2} ∧ prj1(pos) = prj1(prior pos)))

inv107: tunneled = > ⇔ {pos, prior pos} = tunnel

An example of an Event-B event concerned with movement is shown below.

Event move up 〈ordinary〉 =̂
any

p
where

grd101: p ∈ accesible

grd102: (prj1(position) = prj1(p)) ∧ (prj2(position)− prj2(p)) = 2

grd103: position ∈ tunnel ⇒ p /∈ tunnel
then

act101: position before := position

act102: position := p

act103: moving := >
act104: tunneled := ⊥
act105: moved := >

end



Collecting Dots In a second refinement, we introduce how collecting dots and
thus scoring points works. The corresponding requirements are rq6 and rq7. In
this step we also add the four super pills which enable Pac-Man to catch ghosts.
Furthermore, we add distinct events for moving Pac-Man to an empty field or
to a dot.

The first three invariants introduced in this refinement state that the score
always is a natural number (inv201 and inv202) and, furthermore, that it can
only be increased by either 10 or 200 points or remain the same value (inv203).

inv201: score ∈ N // current score

inv202: score before ∈ N // last score

inv203: score− score before ∈ {0, 10, 200} // possible values for increment

inv204: scoredots current ∈ P(scoredots) // uncollected small dots

inv205: ghostdots current ∈ P(ghostdots) // uncollected super pills

inv206: counter scored = card(scoredots)− card(scoredots current) // dots

collected

Invariants inv204 and inv205 give type information for the collectible dots.
Additionally, we count the amount of dots collected in counter scored. Then,
inv206 ensures that no dots get lost, i. e., that every collected dot is awarded to
the player’s score.

The Ghosts, Lives and Hunting After movement and scoring, a third refine-
ment is used to add the ghosts. This includes their movement as well as catching
Pac-Man. Variables, invariants and events corresponding to the ones we added
for Pac-Man’s rules of movement are added for each ghost as well.

This refinement step satisfies rq2 in the same way rq1 was implemented ear-
lier. Additional invariants are used to ensure rq6. Again, we can check rq5 with
an LTL formula: for all possible paths through the state space, the ghosts have to
move before the Pac-Man can start. In another refinement step we introduce the
hunting of ghosts activated when Pac-Man collects a super pill: once collected,
all ghosts are added to a set of currently catchable ghosts. Once caught, they
are removed from this set. Additional guards are added to the movement events
to ensure only huntable ghosts can actually be caught. Otherwise, the ghost
will catch Pac-Man. Furthermore, we added the lives the player has and that he
loses one if he gets caught. Invariant inv402 ensures that Pac-Man cannot gain
an infinite amount of lives. Moreover, inv404 implies that Pac-Man cannot gain
an additional life and only can lose at most one life at a time. Furthermore, in
this refinement step, we can check both rq8 and rq9 using LTL formulas.

inv402: lives ≤ start lives // current lives

inv404: lives old− lives ∈ {0, 1} // at most one life is removed

inv406: chased ghosts ⊆ {ghost 1, ghost 2, ghost 3, ghost 4} // hunted ghosts

The last refinement step adds further movement rules. These rules enforce the
order of movement, e. g., that the second ghost moves after the first. Additionally,
to satisfy rq3, Pac-Man can only be moved once all ghosts have been moved.



Fig. 1. Pac-Man Visualization

4.3 Visualization

After the model is initialized, the visualization shows the maze and Pac-Man as
well as the four ghosts in their starting positions. In addition, the score value
is shown together with the three small Pac-Mans representing the lives of the
player. Afterwards, the visualization reacts to changes of the model using the
observer pattern of BMotionWeb, i. e., we register observers for the variables
and define how the elements of the visualization react to changes in the state
space.

Usually, events are executed by the user by selecting them from a list of
enabled events. To get closer to a playable prototype, we added four arrow
buttons. We registered all events to move the Pac-Man in a direction to each of
the corresponding arrow buttons. When the user clicks on one of the buttons,
BMotionWeb executes the event if it is enabled in the current state.

Additionally, we implemented a listener for key events, enabling the user to
play the model just like the real game by using arrow keys.



4.4 Adding a Simple Game AI on Top of Formal Models

The model of Pac-Man also served as a playground for two novel research direc-
tions:

– Can the prototypical model made playable without further code generation,
i.e., by executing it directly via the model checker. In particular, we were
interested to see how user interaction be designed and what level of re-
sponsiveness could be reached. This line of research later lead to a general
implementation of runtime usage of B models [19].

– Furthermore, Pac-Man allowed us to experiment state-space search algo-
rithms beyond simple depth-first or breath-first traversal.

To gain a test-bed for both questions, we use the Groovy API of BMotionWeb
in order to implement a simple AI that is able to control the Pac-Man and the
four ghosts. It supports three different modes of operation: First, if the user
plays with the arrow keys, the AI lets Pac-Man move in the given direction until
it hits a wall and moves the ghosts each tick. Secondly, the user may click the
Play!-button and the AI plays the game against itself. This means the Pac-Man
and the ghosts are completely controlled by the AI. Lastly, the AI can be used
in order to move the ghosts automatically after the user moved the Pac-Man.

In the first two cases, we run a loop in a thread until the user stops it or the
game is over. It moves both the Pac-Man and each of the ghosts. While in the
first case, the Pac-Man simply follows its current direction, in the second case
the AI decides where Pac-Man should turn. As a heuristic, we use a breadth-first
search in order to find the nearest dot to score. This directly corresponds to the
search strategy used in the underlying model checker.

In the last case, the model checkers search strategy is only used to control
how the four ghosts are moved. After a specific operation is executed by the
used controlling Pac-Man, we again use breadth-first search to identify possible
paths for the ghosts.

5 Chess

As a second case study, we implemented the well-known board game chess in
B5. Again, we will discuss our model and the set of requirements and continue
with visualization and the integration of a game-playing AI in our model.

5.1 Requirements

When posed as a specification task to students, we usually provide the following
set of requirements, leading to a prototype that can be considered playable:

rq1: Pieces can only be moved in their specific way (e. g., a king can only move
exactly one field into any direction).

5 The main B machine can be found at:
https://github.com/pkoerner/b-chess-example/blob/master/b/board.mch

https://github.com/pkoerner/b-chess-example/blob/master/b/board.mch


rq2: If the king is in check, only moves getting the king out of check are permitted.
rq3: No piece can be moved outside of the 8× 8 board.
rq4: Special moves (Castling, En Passant and Promotion) follow the rules.
rq5: If the king cannot be defended immediately, the game is lost.
rq6: If no legal move is possible for one player, the game is considered as a draw.
rq7: Both players have the same set of pieces and the white player has the first

move.

5.2 Model and Refinement Hierarchy

Rather than relying on refinement as done with the Event-B specification of
Pac-Man, we use the modularization capabilities of classical B and split our
model into a model containing the board, another for visualization and a third
containing basic variables and sets.

There are two different ways to specify the board: A piece-centric approach
associates all pieces with the field they occupy, e. g., white king → e1. In con-
trast, a square-centric approach maps each field on the board to the piece on
it. This could be done using a partial function (to avoid mapping empty files
to placeholders) or using a total function (which can be beneficial for constraint
solving and visualization). In this case study, we opted for a square-centric repre-
sentation using a total function. We accept the corresponding overhead in order
to find empty fields more easily.

Movement Moving pieces is encoded using B operations, i. e., each move results
in a state transition. Four different B operations are introduced: movement for
black and white pieces each and taking a piece, again with individual operations
for black and white. Special moves, such as castling, En Passant or promoting
a pawn are added to the model in further refinement steps. Their preconditions
share common predicates, checking if the figure/field combination exists, if a
movement path is feasible and if the player is not in chess.

grd tuple: x ∈ dom(board) // Field x exists in board and it maps to a white or

black piece

grd check: not in check(new board) // The player is not in check after the move

Furthermore, operations have to distinguish between moving and taking a piece:
When taking a piece, it suffices to check whether the movement is valid, i.e.,
according to the rules and all fields in between are empty. Simply moving a
piece, however, requires an additional precondition to check whether the target
field is empty.

grd move: move white piece(piece,x,y,take,board) // move respects movement rules

grd fields: ∀field ∈ between(x, y).free(field) // fields on the way and target are

empty

grd take: take = 1⇒ board(y) = opponent piece // if taking: there is an opponent

piece



Fig. 2. Chess Visualization

Check, Checkmate and Draw In order to implement check, one needs to
look one step ahead to find out if an opponent piece could take the king. This
impacts performance, as for every possible move every possible opponent move
might have to be calculated twice: first, when checking whether the move should
be enabled or not and again after executing the operation. Additionally, we
decided to encode checkmate as an invariant violation. One of the invariants
claims that one white king and one black king are part of the match at all times.
If one of them is taken, the invariant is violated and model checking stops.

A draw can be reached in various ways. If both players agree, the game could
be declared as a draw at any time. Further, if 50 moves have passed without
moving a pawn or taking a piece, it leads to If the situation on the board is
deadlocked and the same position is reached too often, the game is declared as
a draw. While the number of moves can be tracked using an integer variable,
keeping track of all prior positions leads to a combinatorial explosion, effectively
rendering model checking impossible.

5.3 Visualization

To visualize the chess board and let the user play, we again rely on BMotionWeb.
On the left side of Figure 2, the visualization itself is placed. Clicking on a piece
and a target field triggers the corresponding operation.

An operation can be evaluated manually by clicking on one of those listed
inside the events window on the right-hand side. The history of executed events
is shown below, the user can return to a former state by clicking on one of



the operations listed there. By doing so, the trace rolls back to state after the
operation was executed.

5.4 Minimax as Model Checking Heuristic

Minimax is a game-independent algorithm, i. e., its implementation only differs
in the game-specific evaluation functions used to determinate a value for each
leaf node. For chess, we could consider the number of pieces left for each player
or the value of own pieces compared to opponent pieces (e. g., a queen is more
valuable than a pawn). Furthermore, one could evaluate the number of reachable
fields or movability.

While using as much information as possible in general leads to a stronger AI
it also renders computing the evaluation function more difficult. As a tradeoff,
we decided on the following information and weights:

– Values of figures residing on the board following the valuation by Shannon
E. Claude [32].

– Number of pawns in desired positions, e.g., passed pawns as well as number
of pawns in undesired positions, e.g., doubled pawns.

– The number of semi-open files, i.e., the number of rows or columns the
player’s rooks can move at least five fields into one direction on. This is a
measure rock movability, which indicates how well players can bring their
rooks into play. We multiply the measure with a weight of 2.

– We count how well the fields adjacent to the own king are guarded, again
applying a weight of 2.

– We measure to what extent a player controls the four squares in the center
of the field. As they are usually crucial to winning the game, we apply a
weight of 3.

To prevent the model checker from running too long, a relatively small search
depth is set. Essentially, this is done by performing a depth-limited exploration of
the state space and applying the evaluation function of Minimax to the reached
states. The highest ranking states are then explored further, effectively driving
the model checker along the path a depth-restricted Minimax would have taken.
As commonly done in chess engines, paths which might yield a better situation
but are too long are not considered further. At the same time, the value of a state
is only influenced by the best movements the opponent can make, i.e., Minimax
implicitly follows the best strategy of both players and thus is not influenced by
good states that have a single bad successor state.

Since a lost game results in an invariant violation, we can now use model
checking to find a playing strategy. Using ProB we try to find a path leading to
a checkmate and, in consequence, a win. Due to the inherent combinatorial com-
plexity of chess, state spaces are usually too large to be explored exhaustively.
In the future, we want to study the effect of state space reduction techniques
such as partial order reduction on the performance of game prototypes.



6 Lightbot

Lightbot6 is not as universally known as Pac-Man or chess: It is an educational
puzzle game with the aim of programming a robot such that it follows a specific
path through a grid. On its way, it has to light up several tiles of the grid to
reach the overall objective.

The instruction set to control the robot is fairly small, i.e. moving and turning
the robot, letting the robot jump upwards or downwards, toggling special fields
and calling specified procedures. However, this small instruction set is sufficient
to implement recursive programs as well as loops and builds a Turing-complete
language.

While the two former case studies have been created during Bachelor and
Master theses, we have used lightbot as a mandatory assignment in our course
on safety critical systems several times. Usually, students had to specify a formal
model of lightbot including a (playable) visualization to be allowed to take the
final exam. In particular, we required the model to be parametric, in the sense
that it should be possible to add and change the robot’s programming during
execution. More general, this implies that students had to specify a model of the
interpreter of Lightbot’s programming language.

6.1 Requirements

The rules of the game can be best explained in form of requirements:

rq1: The robot moves on a three-dimensional board.
rq2: The game is generic, i.e., different levels (boards) are supported and can be

provided and switched in some way.
rq3: The robot supports all moves (forward, toggle light, left/right turn, jumping

and entering one of two sub-procedures).
rq4: The robot starts execution in the main-procedure.
rq5: A program stack is required to execute the user-defined sub-routines, as the

may be mutually recursive. Again, this underlines the idea that students do
in fact specify the internal workings of an interpreter.

rq6: The lowest elevation level is 1.
rq7: Starting position and the tiles the robot has to light up to complete the level

are described in the level itself, not hard-coded in the interpreter.

6.2 Refinement Hierarchy

As we expect our students to follow the formal modeling process as a whole, we
do not provide a particular refinement hierarchy upfront.

Our reference specification7 however starts with modeling a two-dimensional
grid that the robot moves upon. In that stage, moving up, down, left and right

6 https://lightbot.com/
7 Available at: https://www3.hhu.de/stups/models/fmfun19/lb.zip

https://lightbot.com/
https://www3.hhu.de/stups/models/fmfun19/lb.zip


is allowed if the robot faces the corresponding direction. It is also possible to
turn the robot, and to light up specific tiles.

The second refinement steps adds a third dimension. This adds two different
aspects to the game. First, simple movement is now blocked in case the elevation
of the adjacent square is different. Second, a new kind of movement is introduced
as the robot has to jump in order to move vertically. This refinement level com-
pletes the basic execution engine. It is possible to execute all enabled commands
whenever one likes, with no constraints concerning a program counter or limited
amount of memory.

The third refinement level is used to introduce the actual programming of
the robot. We use an Event-B context to describe the level (elevation and tiles to
light up), as well as the starting position of the robot and the direction it faces.
Additionally, the context is used to constrain how large individual procedures
implemented by the player may be.

The corresponding Event-B machine specifies how programs are specified
and executed, i.e., the program has to be written beforehand and, upon inter-
pretation, only operations at the current program counter may be executed.
Additionally, a program stack is added that stores the program counters once
sub-procedures are called and resumes execution upon returning.

6.3 Visualization

As with chess and Pac-Man, the current state of the game can be immediately
identified when looking at a visualization instead of pretty prints of the under-
lying data structures. The visualization in Figure 3 also relies on BMotionWeb.

On the top left, the grid with the robot and tiles that are to be switched
on (blue) and the ones already lit (yellow) is shown. Underneath, all available
commands are given next to each other. Again, the game is fully playable using
the visualization, e.g., one can select a procedure to add instructions to and
modify it at will. The current code of the main procedure and all sub-procedures
is given below.

The history Event-B events executed by the model checker (both during the
construction and execution of the program) as well as all events that can be
executed in the current state are shown on the right-hand side. As with the
original game, once the robot begins executing the player-given code, only two
Events are still permitted to be executed: fetching the next instruction and
executing it.

Our reference specification and its visualization can be used in order to ex-
plain the game to the students, before they have to implement it on their own.
As it is much easier to reason about a concept that one is familiar with rather
than something given from an informal text-based representation, this assists
students a lot in the early phase.



Fig. 3. Lightbot Visualization

6.4 Models of Virtual Machines

The original game is an educational game on coding. It is used in order to teach
basic programming concepts, such as function calls, recursion and loops.

Following this idea, writing a specification of the game itself (as opposed
to a specification of the player-given code to solve a level) teaches the same
aspects on a meta-level, i.e., how to model and verify function calls, recursion
and loops. Thus, students learn how to model programming languages and their
interpreters.

The same concept could later be applied to “real” programming languages
with more sophisticated semantics.

7 Related Work

Teaching formal methods concepts by relying on card games and card tricks
rather than artificial examples has been considered by Curzon and McOwan [9].
They discuss numerous tricks and small games that visualize the concept of
invariants, etc.



In his dissertation [27], Timo Nummenmaa already considered implementing
game prototypes using formal software development techniques. Both in the
dissertation and in the related publications [28,29] the possible impact of using
formal methods for game development are discussed. In particular, the authors
especially mention the benefit of executable formal models, as we provide by
the combination of B and ProB. We were able to extend upon the former work
thanks to BMotionWeb: we can provide richer and more interactive visualization,
closer to the intended game design itself.

Formal verification of properties of checkers has been considered in [4]. The
authors encode the game as a finite state system and search for winning strategies
using symbolic model checking. In contrast to our work, the focus is on properties
of the game itself, rather than creating playable prototypical implementations.
However, [4] underlines that state spaces of (albeit simple) board games can be
handled by current model checkers.

In [15], the author uses the HOL4 theorem prover [14] to verify chess endgame
databases. To do so, an encoding of possible moves similar to the one in Section 5
is used. Instead of using a model checker to find and evaluate possible moves, the
correctness of predefined move sequences given in endgame databases is verified.

Instead of using verification techniques to encode games, [10] considers the
opposite way: Verification tasks are encoded as games, that could later be solved
by people unaccustomed to software verification. Software and security con-
straints are represented by a simple puzzle-like game, which solution represents
either failure or successful verification.

Directed model checking using different heuristics has been considered in
the context of ProB in [23]. Comparable to the approach used in Section 5,
the authors use state properties to control which state ProB’s model checker
expands next. However, heuristics are not as involved as the Minimax algorithm
employed in this paper.

8 Conclusions and Future Work

In summary, our three case studies have shown both advantages and shortcom-
ings of the tools introduced in Section 3:

– ProB (or any model checker with animation capabilities) is very important
during development. (Bounded) model checking of the specification usually
gives fast feedback whether the implementation is correct. Animation, in
particular with an added visualization on top, allows reassuring a developer
that changes made to the specification are still correct. Sometimes, the tool
cannot cope with the entire state spaces though: e.g., assumptions about
chess based on the rules cannot be model-checked, as the state space is way
too large.

– Student feedback concerning the Rodin tool is rather negative: while it pro-
vides a type checker, a proof obligation generator and proof system with
some automated proof rules, the usability is lacking. Sometimes, Rodin is in



an inconsistent state where, e.g., POs are not generated as they should be
and a cleaning mechanism has to be invoked. Also, as Event-B files are not
plain text, structural editors are default. It is simply uncomfortable to switch
between text boxes in the IDE rather than navigating with arrow keys. Fur-
thermore, some functions such as removing certain elements are hidden in
context menus that only pop up when right-clicking on very specific posi-
tions. Finally, the files do not integrate well in version control systems such
as git.

– BMotionWeb is a great tool in order to explain specifications to domain
experts or students, once the visualization and the model are complete. An
application based entirely on web technologies proved to be hard to use
though. When errors occur, it is not clear in which layer the cause is located:
is it an error in the B model? Is an SVG file broken? Is the config file
incorrect? Is there a bug in the JavaScript code? As some errors are not
reported, development can be cumbersome if one is not an expert in all
technologies that are used by BMotionWeb.

When applied to the development of game prototypes, they support using
classic formal proof and model checking to verify the correctness of game im-
plementations. In particular, we have proven both high-level properties about
the game’s implementation itself and the correct representation of the rules of a
game.

As we mentioned in Section 4.2, playability of game prototypes is limited,
because it is hard to achieve continuous movement in an Event-B model. Nev-
ertheless, they make for easy to understand and highly motivating examples for
students trying to work their way into formal methods. Turn-based games how-
ever, such as chess or Lightbot, are a great match for “slower” execution due to
interpretation overhead and can be fun and engaging to interact with.

Using BMotionWeb, we have the possibility to animate and visualize our pro-
totypes. As we have shown, BMotionWeb is able to produce playable prototypes
of both real-time and round-based games. However, the visualization behaves
quite slow and is thus not usable in presence of time limits. While this is less
critical for teaching and for implementing board games like chess, it limits the
applicability of our approach to games in general.

8.1 Impact on Student Learning

It is hard to measure the influence on how interest, attention and understanding
is enabled for students. There is no clear trend that correlates with introduction
of games as examples: overall student feedback remained the same. The aver-
age grades improved significantly after introducing mandatory projects based
on Lightbot. However, in the following years, exams fell off in quality without
changing the contents. Upon introduction of other examples, the average grade
improved significantly again.

It may be that breaking the routine of the teaching personnel is more en-
gaging for students. It also is possible that some versions of the projects were



shared between students over years, and parts where copied, resulting in students
missing crucial learning outcomes.

Overall, we conclude that teaching – as well as learning – formal methods
is hard. Thus, efforts should be taken to improve student engagements. Using
games as examples is only one of several possible methodologies.

Acknowledgement. We thank Christoph Heinzen who created several versions
of the Pac-Man case study, as well as Philip Höfges for the chess model, AI and
GUI.
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12. D. Déharbe, P. Fontaine, Y. Guyot, and L. Voisin. SMT Solvers for Rodin. In
Proceedings ABZ 2012, volume 7316 of LNCS, pages 194–207. Springer, 2012.
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