
Measuring Coverage of Prolog Programs Using
Mutation Testing

Alexandros Efremidis1, Joshua Schmidt1�, Sebastian Krings2, and Philipp
Körner1[0000−0001−7256−9560]

1 Institut für Informatik, Universität Düsseldorf
Universitätsstr. 1, D-40225 Düsseldorf

{alefr101,joshua.schmidt,p.koerner}@uni-duesseldorf.de
2 Niederrhein University of Applied Sciences

Mönchengladbach, Germany
sebastian.krings@hs-niederrhein.de

Abstract. Testing is an important aspect in professional software de-
velopment, both to avoid and identify bugs as well as to increase main-
tainability. However, increasing the number of tests beyond a reasonable
amount hinders development progress. To decide on the completeness of
a test suite, many approaches to assert test coverage have been suggested.
Yet, frameworks for logic programs remain scarce.
In this paper, we introduce a framework for Prolog programs measuring
test coverage using mutations. We elaborate the main ideas of mutation
testing and transfer them to logic programs. To do so, we discuss the
usefulness of different mutations in the context of Prolog and empiri-
cally evaluate them in a new mutation testing framework on different
examples.

1 Introduction & Motivation

Testing is an important aspect in professional software development, both to
avoid and identify bugs as well as to increase maintainability. However, tests
themselves again consist of source code and possibly further artifacts that need
to be maintained. In modern software systems, code only needed for testing
purposes can contribute between 33% and 50% to the overall source code of a
project [14,4]. In consequence, increasing the number of tests beyond a reasonable
amount again hinders development progress.

The key to an efficient test suite is to assert the code coverage of existing tests.
That means, it is verified to what extent production code is tested. Afterwards,
one can remove tests that do not cover additional aspects and add tests where
code is uncovered. In Section 2, we present different approaches to measure code
coverage.

This paper makes two contributions: Firstly, inspired by Toaldo and Vergilio [17],
we discuss several program transformations used for mutation testing in Section 3
and argue whether we deem them to be sensible or not. Secondly, we implemented
a framework featuring several mutations. Our framework is publicly available for

SWI and SICStus Prolog and will be presented in Section 4. In Section 5, this
framework is used to evaluate whether our intuitive classification of mutations
as sensible or foolish is correct by measuring the test coverage of several selected
examples. Finally, we discuss related and future work in Sections 6 and 7.

2 Code Coverage Metrics

Different metrics for code coverage, mostly differing in granularity, have been
suggested and are at least partially applicable to Prolog:

Predicate, Clause, Sub-Goal Coverage: A simple way to gain some insight
into code coverage is to execute tests and trace which code was executed. This
can be done on different levels, that is, on the level of sub-goals, clauses or
predicates. Moreover, there are different metrics to decide whether a specific
level is covered. For instance, a sub-goal, clause or predicate can be regarded
as covered if it succeeded at some point during execution. In this paper, we
use a more restricted metric. We regard a clause to be covered if all sub-goals
are covered, and, analogously, regard a predicate to be covered if all clauses are
covered. Success on each level can be traced, for instance, by inserting tracing
code via term expansion (source-to-source transformation) as done by Krings [7],
using hooks into the Prolog interpreter (as done in SWI-Prolog’s [18] testing
framework PlUnit) or executing the code in a meta-interpreter.

Branch Coverage: Instead of considering individual program points covered
if reached, branch coverage considers if branching points such as if-statements
have been executed both ways. In particular, this implies that each condition
has been evaluated to both true and false at least once. For Prolog, this could be
implemented either on the level of conditions, but also on the level of individual
calls. In this case, we would expect the test suite to make each call fail and
succeed at least once. This would be harder to reach than the predicate coverage
introduced above, given that each predicate would additionally have to fail at
least once. In case of Prolog, one also has to decide if and how redos of predicates
should be counted.

Path Coverage: Path coverage abstracts further from individual program
points. Instead of enforcing each condition to be evaluated in both directions,
path coverage considers all combinations of decision, that is, all paths through
a predicate. As above, one has to decide how redos should be counted, that is,
if each combination of redo and later succeed is an individual path.

MC/DC Analysis: A more sophisticated and popular approach is coverage
analysis via MC/DC (modified condition / decision coverage). In order for code
to be considered covered by MC/DC, all conditions and decisions have to take

2

all outcomes, and, furthermore, each condition of a decision has to indepen-
dently influence the overall outcome of the decision. MC/DC analysis can be
implemented via term expansion as well.

2.1 Mutation Testing

The idea behind mutation testing is to determine the test coverage by asserting
the effectiveness of a test suite on modified versions of the source code under
test. To do so, syntactically nonequivalent versions of the source code, called
mutants, are generated which are intended to be semantically nonequivalent to
the original code. We view two programs to be semantically nonequivalent if
they produce a different output for the same input at least once. For instance,
a mutant is generated by replacing an equality with an inequality. Afterwards,
all tests are executed.

If creating a semantically nonequivalent mutant, the semantics of the sources
under test have changed. We then expect at least one test to change its outcome.
That means, at least one positive test fails or negative test succeeds. If this is the
case, the mutant is called dead, indicating that the test suite covers the mutated
clause. Otherwise, the mutant is called alive, indicating a lack of coverage.

To finally determine the coverage, a mutation testing tool will run the tests
on the mutant, check the result and reset the mutant to the original code for
the next iteration. This cycle continues until no further mutation is possible.
Afterwards, the so-called mutation score is computed. That is, the number of
dead mutants divided by the number of generated mutants. The mutation score
can be used as a measure for the test coverage.

As one can see, it is crucial to compute mutants that are indeed nonequivalent
regarding their semantics, as a semantically equivalent mutant will always be
considered alive. In consequence, the mutation score becomes less meaningful
with an increasing amount of semantically equivalent mutants. However, deciding
whether two programs are semantically equivalent is, in general, undecidable [13].

To counter this, it is possible to approximate the equivalence of two source
code snippets by constraining the domains of used arguments, as for exam-
ple suggested by Offutt and Pan [12]. Afterwards, their equivalence is checked
exhaustively within these restricted domains. Of course, this might result in
detecting false positives depending on the chosen domains. For instance, two
source code snippets might be semantically equivalent in a restricted domain
but have different behavior for values outside this specific domain. Nevertheless,
neglecting a mutation that results in a different semantics due to approximation
is superior to using a mutation that does not change the behavior at all.

In consequence, special care has to be taken when selecting mutation opera-
tors to be applied to the source code [5]. While it is only seldomly possible to find
mutation operators without risk of generating semantically equivalent mutants,
the risk of semantically identical mutants differs between operators.

Libraries of useful mutations have been suggested for other languages, such
as the Javalanche framework [15] and PIT [2] for Java, Mull [3] for LLVM, and
many more [6]. However, due to the different nature of Prolog, those libraries

3

wrapped_sort(L, R) :-
L = [], !,
R = [].

wrapped_sort(L, R) :-
sort(L, R).

wrapped_sort(L, R) :-
L \= [], !,
R = [].

wrapped_sort(L, R) :-
sort(L, R).

Fig. 1. An Example for Equivalent Mutants via Negation

cannot simply be adapted for mutation testing of Prolog programs. In Prolog,
for instance, negating an operator does not necessarily result in semantically
different code. This can be seen in Figure 1: for instance, a predicate might
treat some cases differently in order to improve performance, like the empty list.
Mutating L = [] to L \= [] will make the clause fail. Yet, the Prolog interpreter
will backtrack and enter the second clause, which may still find a solution for
L = [], resulting in a semantically equivalent program.

3 Mutation Operators

In the following, we introduce our selection of mutation operators, which is based
on the selection suggested by Toaldo and Vergilio [17]. We distinguish between
sensible operators, which we expect to yield semantically different programs, and
foolish operators, were programs are expected to retain the original semantics in
most cases. For most mutations, examples that represent idiomatic Prolog code
are given.

In all cases, we expect existing test cases to be reasonable: for example, if
the actual test initially fails, backtracking should be avoided and the test should
fail. Furthermore, the test should compare with a (mostly) ground term instead
of allowing unification generously. Test cases can either prove or disprove a goal.
When applying mutation testing, we expect all tests to succeed. That means, a
test disproving a goal should also succeed by checking for failure.

3.1 Sensible Mutations

From our experience, we consider the following transformations to be sensible:

Predicate Removal: Deleting a predicate φ, more precisely all clauses of φ
with the same arity, is a sensible mutation because at least one test should fail,
otherwise φ is not tested at all. As long as φ is not dead code, the semantics
change by removing φ due to the occurring existence error. This mutation is
comparable to predicate coverage, as we expected at least one test to call φ.

Disjunction to Conjunction: By mutating a disjunction to a conjunction,
only a subset of queries can succeed: now, they have to satisfy both branches.
Similar to branch coverage, we expect tests to cover each branch individually. In

4

is_empty(L) :-
L = [], !
;
fail.

is_empty(L) :-
L = [], !
,
fail.

Fig. 2. Changing Semantics by Replacing a Disjunction with a Conjunction.

particular, there should exist a test where the first alternative fails whereas the
second succeeds. An example is given in Figure 2.

In pure propositional logic, replacing a disjunction with a conjunction does
not necessarily change the semantics since a disjunction also provides the case
where both arguments are true. Prolog, on the other hand, does not execute
the case that both disjuncts are true. Instead, Prolog introduces a choice point
leading to backtracking when searching for another solution. This choice point
is not retained by the mutant. In practice, the calls within a disjunction often
refer to the same variables providing alternative results. To that effect, we expect
replacing a disjunction with a conjunction to alter the semantics in most cases,
and, thus, to be sensible in Prolog.

Conjuntion to Disjunction: Replacing a conjunction by a disjunction does
not necessarily change the semantics in pure propositional logic. For instance,
if A ∧ B is true, the disjunction A ∨ B will be true, too. However, if A ∧ B is
false, the disjunction will be true if A or B is true. Therefore, depending on the
interpretations of A and B, there might be several cases in pure propositional
logic where this mutation does not change the semantics. In Prolog however, the
data flow of a predicate often consists of passing arguments between predicates
within a conjunction as can be seen in Figure 3. In this context, replacing a
conjunction by a disjunction will most likely change the semantics since the
execution of this predicate will terminate after executing the first argument of a
disjunction but initializing a choice point. This also applies if a goal is supposed
to fail.

flatten ([L|Ls], FlatL) :-
flatten(L, NewL),
flatten(Ls , NewLs),
append(NewL , NewLs , FlatL).

flatten ([L|Ls], FlatL) :-
flatten(L, NewL) ;
flatten(Ls , NewLs) ,
append(NewL , NewLs , FlatL).

Fig. 3. Semantics Change Caused by Replacing a Conjunction with a Disjunction.

Atom or Variable to Anonymous Variable: Turning an atom or a variable
to an anonymous variable causes that certain values are no longer ground which
most likely changes the semantics. Yet, tests may still pass if recursive cases are

5

not tested. Nevertheless, the predicate might be too complicated, taking a vari-
able as parameter that is not used within a clause. Moreover, a variable might
be a singleton one. In both cases, replacing this variable by an anonymous one
will not necessarily change the semantics of this specific clause as can be seen
in Figure 4. However, assuming that a clause does not define singleton or unnec-
essary variables, this mutation will change the semantics in most cases. These
false positives still bear meaning about code quality, where singleton variables
and unnecessary parameters qualify as “code smell” that should be avoided.

remove_dups ([X,X|T],W,Res) :-
remove_dups ([X|T],W,Res).

remove_dups ([X,X|T],_,Res) :-
remove_dups ([X|T],_,Res).

Fig. 4. Predicate Retaining its Semantics when Replacing a Variable with an Anony-
mous One.

Interchanging Arithmetic Operators: When replacing two arithmetic op-
erators with each other (e.g. replacing + with *), a sensible mutant is likely to
be created. Since there are many operators to choose from (e.g., an addition
might be replaced by a subtraction, multiplication, division, modulo, . . .), it is
important to not create multiple mutants to avoid an disproportional impact on
the overall mutation score: For instance, if an arithmetic operation is well tested,
every mutation should fail. Using several mutations would lead to a higher mu-
tation score, although the branch is already ensured to be covered by a single
mutation. On the other hand, other branches without heavy arithmetic, where
only few sensible mutation are applicable, would be valued lower due to the
branch’s lower amount of mutations.

Interchanging Relational Operators: The mutation of relational operators
is also sensible but not in every case. It is not necessarily sensible to mutate
A \== B to A > B because multiple cases exist where the semantics do not
change, that is, every case where A > B is true. A sensible mutant is created
by negating the relational operator (e.g. < to >=). By negating a logical opera-
tor, the semantics is inverted: every case which was true before will be false now
and vice versa (see Figure 5).

min(A, B, A) :-
A < B, !.

min(A, B, B).

min(A, B, A) :-
A >= B, !.

min(A, B, B).

Fig. 5. An Example for the Semantics Change of Relational Operators.

6

Negating a predicate likely manipulates the program’s data flow due to the
forced backtracking and possibly occurring side effects (see Figure 6). From a
purely logical point of view, this mutation definitely changes the semantics.

rev ([] ,[]).
rev([H|T],Rev) :-

rev(T,NT) ,
append(NT ,[H],Rev).

rev ([] ,[]).
rev([H|T],Rev) :-

\+ rev(T,NT) ,
append(NT ,[H],Rev).

Fig. 6. Example for Negating a Predicate Resulting in Different Semantics.

3.2 Foolish Mutations

There are also several mutations that we consider to be foolish. Our reasoning
is presented in the following:

Clause Reversal: By reversing the order of clauses of a given predicate, seman-
tically different mutants are most likely just an infinite loop in case a predicate
is non-deterministic (see Figure 7). The creation of a non-terminating loop has
no value for calculating the mutation score, because one cannot tell whether
the mutated branch is tested or not due to the non-termination. Therefore, we
consider the result of a test that exceeds a reasonable time limit and a failing
test to be different. Otherwise, the mutation score would possibly be corrupted.

Furthermore, reversing the order of a predicate’s clauses does not change the
semantics in case the predicate is purely logical and deterministic, that is, each
clause of the predicate validates its inputs (see Figure 8).

add_to_list(L, _, 0, L).
add_to_list(L, E, C, R) :-

CC is C - 1,
LL = [E|L],
add_to_list(LL, E, CC, R).

add_to_list(L, E, C, R) :-
CC is C - 1,
LL = [E|L],
add_to_list(LL, E, CC, R).

add_to_list(L, _, 0, L).

Fig. 7. An Example for a Non-Terminating Loop with Reversed Clause Ordering.

is_list ([]).
is_list ([_|T]) :-

is_list(T).

is_list ([_|T]) :-
is_list(T).

is_list ([]).

Fig. 8. An Example for an Equivalent Program with Reversed Clause Ordering.

7

Cut Transformations: Inserting, removing and permuting cuts in Prolog is, in
general, not a good idea. In Prolog, there are two kinds of cuts: A cut is called red,
when its removal would create a semantically non-equivalent program. Predicates
with red cuts are, thus, not pure in a logical sense and, per definition, behave
differently without their cuts. All other cuts are called green: while not affecting
the semantics of the program, they are used in order to increase performance. In
practice however, it is difficult to efficiently decide whether a cut is red or green.

In the context of mutation testing, we only want to mutate red cuts in order
to change the semantics. Shifting a red cut to a subsequent position is unlikely
to change the semantics since the condition of the cut has still been evaluated.
Thus, shifting red cuts to a prior position within the predicate is most likely to
be reasonable for mutation testing, because the original condition after which a
cut is called has not been evaluated. By preventing backtracking, the semantics
of the predicate is likely to be changed as can be seen in Figure 9.

filter(_,[] ,[]).
filter(Pred ,[H|T],[H|NT]) :-

call(Pred ,H) , ! ,
filter(Pred ,T,NT).

filter(Pred ,[_|T],NT) :-
filter(Pred ,T,NT).

filter(_,[] ,[]).
filter(Pred ,[H|T],[H|NT]) :- ! ,

call(Pred ,H) ,
filter(Pred ,T,NT).

filter(Pred ,[_|T],NT) :-
filter(Pred ,T,NT).

Fig. 9. Changing the Semantics of a Predicate by Moving a Red Cut Forward.

4 A Mutation Testing Framework

In the following, we will take a closer look at the implementation of our frame-
work. As it relies on term expansion, the framework must be loaded before the
module that shall be tested. Before the tool is able to begin with the mutation
testing process, some setup routines are executed: In order to generate sensible
mutants, the tool collects the source code’s predicates upon term expansion.
Moreover, the term expander adds a dynamic declaration for all predicates that
may be modified. The reason behind this is that the framework uses retraction
and assertion to create mutants, therefore the predicates have to be dynamic.
Then, the actual tests are executed on the original code to ensure that every
test passes. Otherwise, the criterion that tests pass on the mutant is obviously
flawed. Furthermore, the overall runtime of the tests is stored in order to derive
a reasonable timeout. As mutations might result in infinite loops, tests must be
executed with a timeout on mutants.

The process can be divided into the following procedures (also cf. Figure 10):

1. find a suitable mutant, i. e., a predicate where a new mutation is applicable
2. generate a mutant
3. retract the predicate and assert the mutant

8

4. run the tests and check for failing tests or timeouts
5. restore the original predicate

This cycle continues until no other suitable mutation can be found.

Fig. 10. The Framework’s Workflow Diagram.

Particular care has to be taken when manipulating a single clause of pred-
icate: the order of all clauses should (usually) be retained, but new facts can
only be asserted either at the top or bottom of the predicate. In order to solve
that problem, the tool retracts and re-asserts the entire predicate, i. e., all of its
clauses, at once.

The mutation score is later calculated on the basis of all collected results.
Mutants are labeled either as dead when at least a single test has failed or as
alive when all tests have passed.

However, a mutation may have caused an infinite loop. To interrupt infinite
loops, tests on a mutant are executed with a timeout. The timeout is defined as
a constant plus the original runtime multiplied by two. Mutants, which exceeded
their test runtime are labeled as timeouts. In general, it is undecidable whether
an actual infinite loop was encountered or the mutant just runs significantly
longer. To calculate the mutation score, mutants labeled as timeouts are not

9

considered. We thus deem the result of a test exceeding a time limit to be
different from a failing test. Otherwise, the mutation score might be corrupted
in case of detecting false positives caused by a significantly longer runtime.
Furthermore, this framework uses solely PlUnit, in order to execute the tests, as
an external library.

5 Empirical Evaluation

In this section, we aim to evaluate two different aspects of mutation testing.
Firstly, we verify our claims from Section 3 by measuring living and dead mu-
tants on several pieces of code that we regard as reasonably tested. Secondly,
the overall mutation scores for these programs are compared with coverage com-
puted by predicate, clause and sub-goal coverage. For the evaluation, we use
several Prolog programs which can be found on GitHub3 along with a more de-
tailed description. Most of the programs are part of an evaluation of different
interpreter designs [10]. We have chosen these programs since they are part of
a publication and have been developed test driven. Therefore, we expect these
programs to have at least a mediocre test coverage. Additionally, we test the
coverage of a translation between two formalisms (alloy2b) [8]. We think this
program is interesting for a comparison of different coverage metrics since it
only contains integration tests. The code will thus not be tested in detail which
probably has an impact on the different coverage scores.

5.1 Sensibleness of Mutations

A detailed overview of the results for our benchmarks can be found in Table 1,
where for each considered file, the amount of living and dead mutants are given
per mutation.

As claimed, removing a tested predicate always creates dead mutants. In the
cases where mutants are still alive, there simply existed no test case for the
predicates. This is a mutation that is obviously sensible.

In our benchmarks, disjunctions have been fairly scarce; this is due to the
fact that usually two separate clauses are preferred. However, no mutants on the
few disjunctions survived the testing, so it seems to be as sensible as claimed.
Changing conjunctions to disjunctions, however, generates more living mutants
than expected. This mutation is apparently not as sensible as assumed.

There are a few instances of living mutants after negating a unification: e.g.,
in the case of the eight_puzzle_solver, the only unification unifies a potential
solution to the actual solution as a condition to terminate. Since the implemented
algorithms are expected to always find a solution, terminating with a wrong
solution after mutation is not caught. Overall, it still seems to be a sensible
mutation for most applications.

3 https://github.com/joshua27/mutation-testing-benchmarks

10

Table 1. Overview of Living (First Number) / Dead (Second Number) Mutants in
Real-World Examples. Timeouts are not considered.

Mutation

as
t_

in
te
rp
re
te
r

co
m
pi
le
r

pa
rs
er

ra
ti
on

al
_
tr
ee
s

rt
_
by

te
co
de

al
lo
y2

b

ei
gh

t_
pu

zz
le

remove predicate 0/3 4/11 0/5 0/5 0/4 8/68 4/17
; to , 0/2 0/2 0/3 0/2 0/1 1/15 1/0
, to ; 0/30 10/34 1/14 4/12 12/31 38/245 22/22

= to \= 0/1 0/2 0/0 0/1 0/0 4/51 1/0
\= to = 0/0 0/0 0/0 0/0 0/0 0/1 0/0

=:= to =\= 0/0 0/0 0/0 0/0 0/0 0/0 0/0
=\= to =:= 0/0 0/0 0/0 0/0 0/0 0/0 0/0
== to \== 0/2 0/0 0/0 0/3 0/1 1/2 0/0
\== to == 0/0 0/0 0/0 0/0 0/0 0/0 0/0

> to =< 0/0 0/0 0/0 0/0 0/0 0/2 1/2
>= to < 0/0 0/4 0/7 0/0 0/0 0/0 0/0
< to >= 0/0 0/2 0/0 0/0 0/0 0/1 0/1
=< to > 0/0 0/0 2/5 0/0 0/0 0/0 0/1
+ to - 0/0 0/6 0/0 0/0 0/0 0/2 0/2
- to + 0/0 4/35 0/0 0/5 0/0 0/1 0/2
* to + 0/0 0/0 0/0 0/0 0/0 0/0 0/0
/ to - 0/0 0/0 0/0 0/0 0/0 0/0 0/0

increase number 0/0 10/34 11/3 0/0 0/15 9/151 2/30
decrease number 0/0 9/35 12/2 0/0 1/14 10/151 4/28
negate expression 0/19 6/24 0/7 0/9 2/29 15/102 6/22

true to false 0/3 0/2 0/0 0/2 0/0 1/2 0/0
false to true 0/3 1/2 0/0 0/0 0/0 8/0 0/0

var to _ 33/184 122/245 0/69 5/103 133/252 244/1327 95/138
atom to _ 0/0 1/2 0/0 0/4 1/3 48/185 3/0

[] to _ 0/1 12/6 3/0 0/1 2/1 42/51 11/1
permute cut 1/0 4/1 0/1 2/0 16/0 18/21 1/3

reverse predicate 3/0 13/2 3/2 5/0 4/0 38/22 18/0

11

For the considered programs, negating expressions results in a very small
amount of living mutants. As this is fairly close to sub-goal coverage, we think
that they might be created by uncovered code instead of false positives.

Changing variables to anonymous variables results in a fairly large amount
of mutants in many cases, yet the mutation is applicable in a significantly larger
amount of places as well. There is a good chance that tests do not cover all
variables, in particular where entire predicates remain uncovered. Overall, this
mutation seems to be sensible as well.

As expected, permuting cuts to an earlier position, and reversing clauses of
a predicate often result is in semantically equivalent code.

Overall, our reasoning in Section 3 seems to be supported by our measure-
ments taken. The only unexpected outcome is changing conjunctions to disjunc-
tions. Yet, for example, mutations concerning arithmetic are not covered by our
benchmarks representatively. For these transformations, further code examples
are required.

5.2 Comparison with Predicate and Clause Coverage

In the following, we will compare the coverage of different Prolog modules us-
ing the coverage tools of SWI4 and SICStus5 Prolog as well as the introduced
mutation testing framework. To give a short impression of the complexity of a
program, we list the number of predicates, clauses and lines of code for each
Prolog program in Table 2.

The coverage tool of SICStus Prolog measures how many times specific parts
of the program, referred to as coverage sites, were executed. According to the
documentation of SICStus, a coverage site corresponds to all predicate calls like
in trace mode. To that effect, there are different ways of interpreting the coverage
results of the SICStus Prolog coverage analysis. First, we compute the coverage
on the level of clauses, that is, we view a predicate’s clause to be uncovered if
any coverage site within this clause is indicated to be uncovered. Second, we
compute the coverage on the level of predicates which we view as uncovered if
they contain an uncovered clause. Third, we compute a more detailed sub-goal
coverage where we view each sub-goal independently.

The coverage tool of SWI Prolog behaves similar and computes the predicate
coverage. In the following, we will thus only refer to clause and predicate coverage
without distinguishing between SWI and SICStus Prolog.

For two source files, we encountered technical issues with our mutation test-
ing framework. Both programs rely on writing and consulting Prolog files at
runtime. Yet, when mutating the code, the corresponding streams might not be
closed properly, resulting in an error caused by holding too many file handles
simultaneously.

Overall, the results are non-binary. In most cases, the results are similar to the
clause coverage approach. For some files, our framework reports a higher score
4 http://www.swi-prolog.org/pldoc/man?section=cover
5 https://sicstus.sics.se/sicstus/docs/4.3.2/html/sicstus/Coverage-Analysis.html

12

Table 2. Comparison of Prolog Coverage Tools

Prolog File LoC Predicates Clauses ClauseCoverage
Predicate
Coverage

Sub-Goal
Coverage

Mutation
Coverage

ast_interpreter 107 2 20 100.00% 100.00% 100.00% 88.10%
compiler 165 15 42 80.95% 62.50% 86.04% 52.60%
parser 80 38 16 100.00% 100.00% 100.00% 95.00%
rational_trees 39 4 10 100.00% 100.00% 100.00% 93.70%
rt_bytecode 105 4 33 93.93% 50.00% 95.24% 92.70%
alloy2b 725 74 198 84.41% 75.95% 87.68% 83.50%
eight_puzzle 161 21 44 77.27% 67.10% 82.28% 78.50%

than predicate coverage and, sometimes, even clause coverage. Yet, it is able to
find uncovered instances where both other approaches claim perfect coverage. In
general, no approach can fully substitute all others. Thus, we recommend to use
mutation testing as an additional tool.

A rather unsatisfying result, however, is that living mutants still require
tedious, manual review in order to find uncovered code and to verify that tests
are missing.

6 Related Work

As already stated in Section 3, different mutation operators for Prolog have been
outlined by Toaldo and Vergilio [17]. Our evaluation performed in Section 5
has shown that not all of these operators are efficient, for instance, they might
generate numerous semantically identical mutations.

Of course, mutation testing can be performed on other, non-logical, languages
as well. Among the most prominent tools is PIT [2], a mutation testing tool
for Java. Imperative languages aside, mutation testing has been considered for
declarative and functional languages as well [1]. Usable tools exist, for instance,
for Haskell [11].

Regarding test coverage, several measurement tools are available and inte-
grated into the most common Prolog interpreters such as SWI [18] and SICS-
tus [16]. While they provide basic code coverage metrics, they usually only report
on reached ports, that is, call, exit, redo and fail during execution. As discussed
in the introduction and shown in our empirical evaluation, this can lead to dif-
ferent results compared to calculating coverage based on mutation testing. Of
course, this does not imply that one metric is better than the other.

7 Future Work

Even though we have improved the selection of mutation operators, our ap-
proach still generates mutations semantically equivalent to the program under
test. As an equivalent mutation does not lead to a failing test by definition, each
equivalent mutation causes a false-negative to be reported. With our current

13

implementation, deciding whether a mutation is semantically equivalent is done
after the test results are reported. In particular, the decision is made manually
by the programmer.

To improve the efficiency of our test framework, techniques to detect seman-
tically equivalent mutations should be incorporated in the future. For instance,
we are able to approximate the check for equivalence of two programs by re-
stricting the domains of the arguments and using constraint solving to search
for a counter example. However, Prolog is a dynamic language not providing
types which hampers constraint solving. To counter this, we could try to detect
the types of a predicate’s arguments at runtime. Unfortunately, this is not pos-
sible in general, for instance, if an argument is a variable which is not unified
within a specific predicate call. plspec [9], for example, offers a simple and easily
extensible domain specific language for type annotations. If a predicate is anno-
tated using plspec, we are able to derive the types of arguments as well as their
role, that means, whether they act as an input or output of a predicate. One
downside of approximating the equivalence of two programs is that we do not
consider possible side-effects of a predicate. Nevertheless, in practice, we expect
an approximation with appropriate domains will exclude more false negatives
than true negatives. To that effect, the meaningfulness of mutation testing will
probably increase.

Another future work is to integrate automated test case generation in the
mutation testing framework. Again, we need to be able to derive the types of the
arguments of a predicate and assume that plspec has been used. When running
mutation testing, we gain a lot of information about the program under test. In
case a mutation does not cause a failing test, that means the mutant is alive,
we might be able to use the mutated code together with the original code to
generate an appropriate test case covering the mutated clause. For instance, we
could mutate a predicate p using two arguments while the first argument acts as
an input and the second one as an output. The predicate is mutated to pmut and
the mutation stays alive. Assuming the mutation did change the semantics of p,
we know that our test case needs to satisfy a call to p and has to fail for pmut.
We can then use techniques like fuzzing to generate randomized inputs until a
set of parameters has been found. Furthermore, we can use constraint solving to
search for appropriate arguments. Doing so, we can, on the one hand, search for
any arguments that cause different behavior on the level of the predicate call.
That means, the arguments satisfy the constraint ∃a, b : p(a, b) ∧ ¬pmut(a, b).
On the other hand, in case we know which arguments are inputs and outputs,
we can probably generate a more detailed test case by searching for input values
that cause different output values. In the context of our example that results to
asserting ∃a : p(a, b) ∧ pmut(a, b̄) ∧ b 6= b̄ to hold. Of course, the implementation
of the predicate p might be faulty. We thus can not automatically determine a
generated test case to be correct. However, we can present generated test cases
to the user who can validate the behavior.

14

8 Conclusion

In conclusion, we have presented a framework for performing mutation testing
on Prolog code. Starting from the discussion of mutation rules by Toaldo and
Vergilio [17], we have devised a set of mutation rules we deem sensible, i. e., we
suspect them to mostly compute semantically different mutations. Our testing
framework is available both for SICStus and SWI Prolog and can be downloaded
from https://github.com/hhu-stups/prolog-mutation-testing.

We have shown empirically, that our mutation testing framework can handle
different Prolog programs. In particular, we tested it on larger examples, showing
both applicability and performance of our approach. Furthermore, we have shown
that mutation testing indeed reports different coverage statistics than the ones
provided by the coverage analysis tools shipping with SICStus and SWI. We do
not want to start a discussion on whether predicate coverage, path coverage or
MC/DC analysis is better or worse than mutation testing. Instead, we argue
that any further knowledge about test coverage and the validity of a test suite
helps to improve the overall implementation.

References

1. M. A. Alipour, R. Gopinath, and A. Groce. Mutation Testing of Functional Pro-
gramming Languages. 2014.

2. H. Coles, T. Laurent, C. Henard, M. Papadakis, and A. Ventresque. PIT: A Practi-
cal Mutation Testing Tool for Java (Demo). In Proceedings of the 25th International
Symposium on Software Testing and Analysis, ISSTA 2016, pages 449–452, New
York, NY, USA, 2016. ACM.

3. A. Denisov and S. Pankevich. Mull it over: Mutation testing based on llvm. In 2018
IEEE International Conference on Software Testing, Verification and Validation
Workshops (ICSTW), pages 25–31, April 2018.

4. A. V. Deursen, L. Moonen, A. Bergh, and G. Kok. Refactoring Test Code. In
Proceedings of the 2nd International Conference on Extreme Programming and
Flexible Processes in Software Engineering, pages 92–95, 2001.

5. B. J. Grün, D. Schuler, and A. Zeller. The impact of equivalent mutants. In
Software Testing, Verification and Validation Workshops, 2009. ICSTW’09. Inter-
national Conference on, pages 192–199. IEEE, 2009.

6. Y. Jia and M. Harman. An analysis and survey of the development of mutation
testing. IEEE transactions on software engineering, 37(5):649–678, 2011.

7. S. Krings. Code Coverage Analysis for Prolog. Bachelor’s thesis, Heinrich-Heine-
University, Duesseldorf, Germany, 2 2010.

8. S. Krings, J. Schmidt, C. Brings, M. Frappier, and M. Leuschel. A Translation
from Alloy to B. pages 71–86, 01 2018.

9. P. Körner and S. Krings. plspec - A Specification Language for Prolog Data. In
D. Seipel, M. Hanus, and S. Abreu, editors, Proceedings Declare 2017, volume 499
of Technical Report. University of Würzburg, 2017.

10. P. Körner, D. Schneider, and M. Leuschel. Evaluating Interpreter Design in Pro-
log. In 18. Kolloquium Programmiersprachen und Grundlagen der Programmierung
KPS 2015, Schriftenreihe des Instituts für Computersprachen, 2015.

15

11. D. Le, M. Alipour, R. Gopinath, and A. Groce. MuCheck: An extensible tool
for mutation testing of haskell programs. In 2014 International Symposium on
Software Testing and Analysis, ISSTA 2014 - Proceedings, 07 2014.

12. A. J. Offutt and J. Pan. Automatically detecting equivalent mutants and infeasible
paths. Software testing, verification and reliability, 7(3):165–192, 1997.

13. C. H. Papadimitriou. A note the expressive power of prolog. Bulletin of the EATCS,
26(21-23):61, 1985.

14. R. S. Sangwan and P. A. L. LaPlante. Test-Driven Development in Large Projects.
IT Professional, 8(5):25–29, Sept. 2006.

15. D. Schuler and A. Zeller. Javalanche: efficient mutation testing for Java. In Proceed-
ings of the the 7th joint meeting of the European software engineering conference
and the ACM SIGSOFT symposium on The foundations of software engineering,
pages 297–298. ACM, 2009.

16. SICS, Kista, Sweden. SICStus Prolog User’s Manual. Available at
http://www.sics.se/isl/sicstuswww/site/documentation.html.

17. J. R. Toaldo and S. R. Vergilio. Applying Mutation Testing in Prolog Programs.
18. J. Wielemaker, T. Schrijvers, M. Triska, and T. Lager. SWI-Prolog. CoRR,

abs/1011.5332, 2010.

16

	Measuring Coverage of Prolog Programs Using Mutation Testing

