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Abstract. We present an integration of the constraint solving kernel of
the ProB model checker with the SMT solver Z3. We apply the combined
solver to B and Event-B predicates, featuring higher-order datatypes and
constructs like set comprehensions. To do so we rely on the finite set
logic of Z3 and provide a new translation from B to Z3, better suited
for constraint solving. Predicates can then be solved by the two solvers
working hand in hand: constraints are set up in both solvers simulta-
neously and (intermediate) results are transferred. We thus combine a
constraint logic programming based solver with a DPLL(T) based solver
into a single procedure. The improved constraint solver finds application
in many validation tasks, from animation of implicit specifications, to
test case generation, bounded and symbolic model checking on to dis-
proving of proof obligations. We conclude with an empirical evaluation of
our approach focusing on two dimensions: comparing low and high-level
encodings of B as well as comparing pure ProB to ProB combined with
Z3.
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1 Introduction and Motivation

B [1] and its successor Event-B [2] are two specification languages for the for-
mal development of software and systems following the correct-by-construction
approach. Both languages are rooted in set-theory and support different higher
order data types like relations, functions and sequences. ProB [20,19] is a model
checker for both languages featuring explicit state model checking as well as dif-
ferent constraint based techniques [13,18] for the analysis of specifications.

Originally, the ProB kernel has been tailored towards satisfiable formulas,
acting primarily as a model finder [20,19]. Recent additions to ProB have ex-
tended the kernel in a different direction. With the introduction of ProB-based
(dis-)proving of Event-B proof obligations, detecting the unsatisfiability of pred-
icates shifted into focus [15].

ProB’s kernel is developed in SICStus Prolog [8]. The integer part of the
solver is mostly based on the CLP(FD) library. Custom extensions and solvers
are implemented for sets, relations and records. Furthermore, support for quan-
tifiers has been added on top of CLP(FD). The different solvers are integrated



Formula ProB Boolean
Predicate Solver

ProB 
Integer
Solver

SICStus
CLP(FD)

ProB Base
Sets Solver

ProB Pairs,
Sets, 

Relations, 
Records 
Solver

ProB 
Waitflags StoreEnumeration

ProB
Kernel

Fig. 1. ProB Kernel Overview

using “waitflags” to control which constraints should be tackled. Truth values
between solvers are communicated using reification variables. Figure 1 gives an
overview.

This approach is fundamentally different from the DPLL(T) [12] approach
employed by modern SMT solvers like Z3 [9]. In [15] we already compared both
approaches for Event-B proof obligations and outlined that neither is able to
outperform the other: there are a considerable number of proof obligations that
can only be solved by one of them. Hence, our idea is to combine the particular
strengths into a single solving procedure. In Section 1.1 we will show some exam-
ples for strengths and weaknesses and argue towards our integrated approach.

Our new translation from B to Z3 and its integration is included in the
latest nightly release of ProB. Information regarding installation and usage is
available at:

http://stups.hhu.de/ProB/Using_ProB_with_Z3.

1.1 Small Experiments

To outline some of the weaknesses of the CLP(FD) based solving kernel, have
a look at the following predicate: X > 3 ∧ X < 7 ∧ X < Y ∧ Y < X. Classic
CLP(FD) style domain propagation first sets up the domains 4 .. 6 for X and
−∞ ..∞ for Y . In a second step, all values that cannot be part of a solution
are removed from the domains. Both domains end up being empty. Hence, the
predicate is detected as unsatisfiable. As soon as we drop one of the constraints on
X, CLP(FD) is unable to do so and has to resort to enumeration. For example,
the predicate X < Y ∧ Y < X can not be proven unsatisfiable by ProB’s
CLP(FD) kernel alone, as both domains for X and Y are infinite (−∞ ..∞).
Similarly, X < 7 ∧ X < Y ∧ Y < X leads to an infinite sequence of narrowed
down domains, never reaching inconsistency. Z3 on the other hand easily detects
the unsatisfiability.

The CLP(FD) based solver in ProB however can handle certain higher-order
constructs like set comprehensions better than the SMT solvers: look for example

http://stups.hhu.de/ProB/Using_ProB_with_Z3


at the predicate (2 7→ 4) ∈ {y|∃(x).(y = (x 7→ x + 2))}. It states that the pair
(2 7→ 4) is a member of the set of all pairs y that are of the form (x, x+ 2). The
predicate is identified as true by ProB. Of course the performance of Z3 highly
depends on the translation. Choosing a low-level translation, the predicate can
be broken down to 4 = 2 + 2 and be solved by Z3. If we stay on the high-
level of set logics, the set comprehension has to be described using universal
quantification. If translated this way, Z3 runs into a timeout.

Additionally, the CLP(FD) based solver performs better for model finding
tasks that involve non-linear integer constraints. As an example take the verbal
arithmetic puzzle to find (non-equal) digits K, I, S, P,A,O,N such that KISS ∗
KISS = PASSION . In B this can be written as (1000 ∗K + 100 ∗ I + 10 ∗ S +
S) ∗ (1000 ∗ K + 100 ∗ I + 10 ∗ S + S) = 1000000 ∗ P + 100000 ∗ A + 10000 ∗
S + 1000 ∗ S + 100 ∗ I + 10 ∗ O + N . As each letter should represent a single
digit, constraints like 0 ≤ K ≤ 9 are added for all the variables. Finally, we
add pairwise disequalities for all variables. The resulting predicate is solved by
ProB in milliseconds, while Z3 answers unknown.

In the following sections we suggest a possible integration between the CLP(FD)
and SMT approaches, trying to gain the advantages of both.

2 New High-Level Translation of B to Z3

The following section will explain both our new translation from B to Z3 and
how we integrated Z3 into ProB in order to solve constraints given in B or
Event-B. First, in Section 2.1 we outline a normal form for B that avoids certain
constructs that are hard to translate. Primarily, this is achieved by replacing
several expressions by equivalent ones using different operators. Following, in
Section 2.2 we translate constraints given in normalized B into the (set-)logic
of Z3. Lastly, Section 3 explains how ProB’s kernel and the SMT solver are
integrated in order to combine both solvers.

2.1 Normalizing B / Event-B

B and Event-B feature many constructs that are not directly available in Z3’s
input language. In preparation of the translation from B to SMT in Section 2.2,
we use rewrite rules to transform a B predicate into a normal form that is easier
to translate. All these transformation rules are meant to be applied repeatedly
until a fixpoint is reached.

In a first step, we replace certain negated operators available in B by the
negation of the regular operator. For instance, we replace x /∈ y by ¬(x ∈ y).
In addition, we have to rewrite set operations involving strict subsets to subsets
and (dis-)equalities. See Table 1 for the operators and their translations.

Currently, the set logics of SMT solvers have no direct support for intervals
or the bounded B integer sets NAT, NAT1, INT. We thus rewrite constraints
featuring membership in one of these to a conjunction of disequalities, e.g.,

x ∈ 1..5⇔ 1 ≤ x ∧ x ≤ 5.



Table 1. Normalization of Operators

B Normalized B

E 6= S ¬(E = S)
E 6∈ S ¬(E ∈ S)
E 6⊂ S ¬(E ⊂ S)
E 6⊆ S ¬(E ⊆ S)
E ⊂ S ¬(E = S) ∧ (E ⊆ S)

Membership in unions, intersections or set differences of these are handled by
decomposing into multiple conjuncts or disjuncts respectively, e.g.,

x ∈ −2..5 ∩ NAT⇔ (−2 ≤ x ∧ x ≤ 5) ∧ (0 ≤ x ∧ x ≤ MAXINT).

ProB represents relations and functions as sets of tuples. Usually, the set
is computed exhaustively. For certain relations or functions, e.g., infinite ones,
ProB tries to keep the set symbolic. Furthermore, B allows set theoretic opera-
tors to be applied to functions as well. For these two reasons, we cannot simply
express B functions as uninterpreted functions in SMT-LIB. We represent func-
tions in SMT-LIB the same way we do in ProB. This makes it necessary to
rewrite some B expressions on functions. For instance, we rewrite the function
application using a temporary variable:

f = {(1 7→ 4), (2 7→ 2)} ∧ x = f(1)

becomes
f = {(1 7→ 4), (2 7→ 2)} ∧ ∃t.x = t ∧ (1 7→ t) : f.

During normalization, we have to keep in mind that well-definedness conditions
of a predicate might change. In the given examples, if we request the function
value of f at 3, the predicate is not well-defined:

f = {(1 7→ 4), (2 7→ 2)} ∧ x = f(3)

We have applied the function f outside of its domain. In contrast,

f = {(1 7→ 4), (2 7→ 2)} ∧ ∃t.x = t ∧ (3 7→ t) : f.

is well-defined and evaluates to false. In several cases, we add well-defined con-
ditions later on. We show an example, division, in Section 2.2. Note that Rodin
creates a separate proof obligation for well-definedness. Hence, one can assume
well-definedness to be handled by those proof obligations.

Several other operators like domain(restriction) or range(restriction) can be
rewritten to set comprehensions. For example, the following equality holds for
the range of a function f :

ran(f) = {y|∃x.(x 7→ y) ∈ f}.



More definitions of (Event-)B operators in terms of set comprehension can be
found in the “reference” books on B [1,2] and [25].

B features record datatypes comparable to those supported by Z3. However,
using Z3 record types have to be introduced and typed before constraints can
be applied to the fields. In normalized B, the declaration of a constrained record
is hence split in the declaration of a general record conjoined with a predicate
constraining the fields. A record membership expression like

r : struct(f1 : 11..20, f2 : 12..30)

becomes

type of r ∧ r′f1 ≥ 11 ∧ 20 ≥ r′f1 ∧ r′f2 ≥ 12 ∧ 30 ≥ r′f2.

Some functions included in B, like the two arithmetic functions min and max
or the cardinality of a set, are not directly available in SMT-LIB. We hence add
temporary variables and supply certain axioms as we did to encode function
application. For instance, the expression min(S) is replaced by variable t and
the following additional constraints are added:

– ∀m.m ∈ S ⇒ t ≤ m, i.e., the temporary variable is less or equal to all
members of the set.

– ∃m.m ∈ S ∧ t = s, i.e., t is equal to one of the members of S.

We encode max using the same pattern. For the cardinality, we add a con-
straint stating that c is the cardinality of S if there exists a bijection between
the interval 1..c and S. For the empty set, this holds for any c ≤ 0. Hence, we
add c ≥ 0 to Z3, resulting in card(∅) = 0.

The choice of axioms supplied to Z3 in order to define the B functions influ-
ences the performance. We could provide more properties of max, e.g.,

max(S1) > max(S2)⇒ ∀c.c ∈ S2 ∧ ∃s.s ∈ S1 ∧ s > c.

Additional axioms might aid Z3 in detecting unsatisfiable predicates. However,
they might also decrease performance as they have to be considered during
reasoning.

The rules above transform a B predicate into an equivalent B predicate. How-
ever, we could go even further, depending on how we employ Z3: For animation
and (explicit state) model checking, we have to use an equivalent formula, as we
rely on the models. In contrast, for certain symbolic model checking algorithms
or proof attempts, we could use rewriting rules that transform a B predicate
into an equisatisfiable predicate. The added freedom could be used to tailor the
formula towards the solvers’ strengths. We will address this in future work.

While nearly all complicated B constructs can be rewritten to set compre-
hensions, not all of the resulting predicates can be solved by Z3. So far, we did
not have any success with the following operators:



– The general union, general intersection, general sum and general product. For
instance, the general union of U ∈ P(P(S)) could be rewritten as union(U) =
{x|x ∈ S∧ (∃s.s ∈ U ∧x ∈ s)}. However, the existential quantification inside
the set comprehension leads to highly involved constraints later on.

– The construction of (non-empty) powersets. Again we could translate
P(X) = {s|s ⊆ X}.

– The iteration and closure operators of classical B.

2.2 Translation Rules

We feed the normalized constraints generated in the previous section into the
C / C++ APIs of Z3. In particular we use logics including support for sets. Z3
realizes those using the techniques described in [23].

Any logic including integer arithmetic, sets and quantifiers already covers
most of the expressions occurring in our normalized constraints. Thus, we can
pass most of the constraints unmodified. There are however some exceptions:

– Some common operators have different semantics in B and SMT-LIB.
– SMT-LIB as well as Z3 do not support set comprehensions natively. We will

translate those by using a universal quantification constraining all members
of a set variable.

– User-given sets have to be mapped to SMT-LIB sorts.

For an approach that is based on translation to be both sound and complete we
have to ensure that semantical differences are taken into account. In particular, B
features a distinct concept of well-definedness, i.e., operators may only be applied
under certain conditions. This contrasts with SMT-LIB treating operators as
total functions that always return a result. Additionally, the results of applying
certain operators differ as well.

Integer division is a prominent example: B uses a division that rounds towards
zero. In contrast, SMT-LIB semantics define a division rounding towards −∞.
Furthermore, B does not allow division by zero while for SMT solvers division
is a total function, e.g., for the predicate x = 1/0 Z3 returns the solution x = 0.
In order to overcome these differences, we set up x = a/b using SMT-LIB’s
if-then-else as

ite(a > 0, a/b, ite(b > 0, (a/b) + 1, (a/b)− 1)) ∧ b 6= 0.

For the sake of brevity we can not fully discuss the sematical differences between
B and SMT-LIB in this article.

Now, let us have a look at the translation of set comprehensions. A B ex-
pression like

¬(r ∈ {x|x mod 2 = 1})

is submitted to Z3 using a temporary variable and axiomatizing the set compre-
hension. The resulting constraint is

¬(∃tmp.(r ∈ tmp ∧ ∀v.v ∈ tmp⇔ v mod 2 = 1)).



So far we do not provide any additional hints like instantiation triggers to Z3.
In addition to given types likes INTEGER, the B method features user defined

types represented as deferred or enumerated sets. We translate those to custom
SMT-LIB sorts. For enumerated sets we additionally introduce the identifiers
and enforce their disequality using an additional constraint. Z3 natively supports
sorts with given cardinality. Hence, if the cardinality of a user-given type can be
computed statically by ProB we can submit said cardinality to Z3.

3 Integration of Solvers

We investigated different modes of using Z3 together with the ProB kernel:

– Use it alone without relying on ProB. This approach was quickly abandoned
due to the (currently) untranslatable predicates outlined in Sections 2.1
and 2.2. Additionally, some translations have to resort to quantification that
hinders proof efforts and model finding.

– Use Z3 solely for falsification of B predicates. If we only rely on the SMT
solvers for the detection of unsatisfiability, we can safely skip untranslatable
parts of the predicate without risking unsound results (as those parts will be
checked by ProB’s solver). However, many predicates cannot be disproven
once important parts are missing.

– We could employ a cooperative approach where parts of a predicate are
given to one or both of the SMT solvers, while other parts are handled by
the ProB kernel. In this case, we would translate partial assignments back
and forth between the two solvers in order to communicate intermediate
results.

– Lastly, we could use a fully integrated approach where the whole predicate is
given to the ProB kernel and as much as is translatable is given to the SMT
solvers. In addition to partial assignments we could transport information
about inferred or learned clauses or unsatisfiable cores back and forth.

The first approach was quickly discarded, because the SMT solvers alone are
often too weak to solve interesting predicates. This is mostly due to cumbersome
translations of higher-order B expressions like set cardinality. The same holds
true for the second approach. Even though the SMT solvers are able to falsify
several predicates that ProB cannot falsify (see Section 1.1), much is left to be
desired. Hence, we investigated the integrated approaches more thoroughly.

The third approach is comparable to the one taken in [24], translating B to
SAT. The key problem to this approach is to decide which predicate to translate
and submit to Z3 and which ones to keep in ProB. In [24] the authors used a
greedy approach: every predicate that can be translate will be translated.

However, we integrated the two solvers further and set up constraints in both
simultaneously. We delay the call to Z3 until after the deterministic propagation
phase of ProB and also submit the information inferred so far. Additionally, we
use the unsat core found by Z3 to control backtracking on the ProB Prolog side
and to lift ProB from backtracking to backjumping. Details on both techniques
are given below.



Data: Predicate P , (partial) State S
Result: fails iff P is unsat, succeeds with model iff P is sat; might time out
procedure boolean solve(P, S)

set up clpfd variables(S)
set up smt variables(S)
while exists conjunct C in P that has not been set up do

D = to clpfd solver(C) // domains D from clpfd propagation

smt result = to smt solver(C,D) // transfer C and domains

if smt result = unsat then
backjump using unsat core

end

end
while exists unbound variable V in S do

clpfd labeling(V ) // binds V to value

smt result = to smt solver(V ) // V now bound: transfer new value

if smt result = unsat then
backjump using unsat core

end

end
return S with all variables labeled

Algorithm 1: Integrated Constraint Solver

Transferring CLP(FD) Domains to the SMT Solvers As can be seen in
Algorithm 1 communication with the SMT solver starts after the determinis-
tic propagation phase. During this phase, ProB tries to deterministically infer
knowledge about the values of the variables in a predicate. For instance, from
X > 3 ∧ Y > X ProB infers Y > 4. The underlying propagation rules are not
limited to arithmetic but support further B constructs like set theory. Before a
predicate is submitted to Z3, all the statically inferred information is added to
it.

Controlled Backjumping Using the Unsat Core In case Z3 detects un-
satisfiability, we can use Z3’s unsat core computation in order to perform back-
jumping inside ProB’s kernel. The unsat core contains a subset of the conjuncts
C taken from P as outline in Algorithm 1. Note that this subset does not nec-
essarily contain the conjunct submitted last. Inside ProB’s kernel we can now
backjump until at least one of the conjuncts inside the unsat core has been re-
moved from both the SMT solver and the CLP(FD) solver. After the backjump,
ProB can choose a different path inside case distinctions or decide on different
heuristics. Thus, the backjump has cut of parts of the search space ProB would
have explored otherwise.



Table 2. Results of running Provers

Model # POs SMT HL-SMT ProB ProB/SMT

prove disprove prove disprove prove disprove

Landing Gear System 1, Su, et. al. 2328 1478 2196 0 2311 0 2303 0
Landing Gear System 2, Su, et. al. 1188 548 741 0 1176 0 1152 0
Landing Gear System 3, Su, et. al. 341 171 77 0 290 0 262 0
CAN Bus, Colley 534 296 316 0 276 0 340 1
Graph Coloring, Andriamiarina, et. al. 254 119 51 0 0 0 51 0
Landing Gear System, Hansen, et. al. 74 59 55 0 74 0 74 0
Landing Gear System, Mammar, et. al. 433 265 212 0 400 0 413 0
Landing Gear System, André, et. al. 619 263 77 0 567 5 533 4
Pacemaker, Neeraj Kumar Singh 370 198 369 0 354 0 370 0
Stuttgart 21 interlocking, Wiegard 202 46 18 0 125 2 123 0

4 Limitations

One key limitation of our approach is related to the type system of B. There is
no strict differentiation between functions, sets and sequences. For instance, one
can apply the set union operator to two functions leading to a result that might
not be a function.

For the same to be allowed in the SMT-LIB translation, we had to use a
common representation: we express relations and functions as sets of pairs con-
necting input and output values; sequences are encoded as sets of pairs consisting
of the sequence index and the value.

Using this common base representation, all B and Event-B operators can be
encoded. However, we cannot use more sophisticated SMT-LIB representations
anymore. In particular, sequences could have been mapped to SMT-LIB arrays,
resulting in improved performance due to the usage of specialized decision pro-
cedures.

Another limitation is the missing support for set cardinality in Z3’s set logic.
Although it was part of the initial proposal for the SMT-LIB finite set theory [16]
it has not yet been implemented in Z3. We thus encode c = card(S) as

∃t.t ∈ S�� [1, c]

i.e., we search for a total bijection from S to the interval [1, c]. This encoding
is quite cumbersome and often leads to Z3 answering “unknown”. Cardinality
constraints however have to be used in the translation of some B operators, e.g.,
to compute the next index of a sequence upon concatenation. Hence, those can
often not be solved as well.

5 Empirical Results

In this section we will evaluate two different aspects. First, we want to know
how our new high-level translation of set theory in Z3 compares to the more
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low-level approach of the SMT translation outlined in [10,11]. Second, we want
to evaluate if it is it worthwhile to integrate Z3 into ProB and to communicate
back and forth. In order to find out, we compare the integrated solution to Z3
and ProB on their own.

We benchmarked the following configurations:

– SMT, the SMT solvers plugin for Rodin as presented in [10,11],
– HL-SMT, our high-level translation from Event-B to SMT featuring Z3’s

set theory, alone without ProB’s solver,
– ProB, a plain version of ProB’s constraint solving kernel, and
– ProB/SMT, ProB’s constraint solving kernel integrated with Z3.

For better comparability, we used the same set of benchmarks already em-
ployed in [15]:

– Answers to the ABZ-2014 landing gear case study [6]. Beside our own ver-
sion [14], we also used the three models by Su and Abrial [26], a model
by André, Attiogbé and Lanoix [4], as well as a model by Mammar and
Laleau [21].

– A model of the Stuttgart 21 Railway station interlocking by Wiegard, derived
from chapter 17 of [2] with added timing and performance modeling.

– A model of a controller area network (CAN) bus developed by Colley.
– A formal development of a graph coloring algorithm by Andriamiarina and

Méry. The graphs to be colored are finite, but unbounded and not fixed in
the model.

– A model of a pacemaker by Méry and Singh [22].

For the benchmarks, we have used Rodin 3.2, version 2.1.0 of the Atelier B
provers plugin and version 1.2.1 of the SMT plugin. For better comparability,



we did not use the bundled SMT solvers CVC3 and veriT. Instead, we relied
on Z3 version 4.4.1 as used in the ProB integration as well. ProB was used
in version 1.5.1-beta3, connected through the disprover plugin version 3.0.8. We
used a global timeout of 25 seconds for a single proof attempt.

All benchmarks were run on a MacBook Pro featuring a 2.6 GHz i7 CPU and
8 GB of RAM. We did not parallelize the benchmarks in order to avoid issues
due to hyper-threading or scheduling. Benchmarks were run using a dedicated
evaluation plugin1 for the Rodin platform. The data is presented as follows:

– Figure 2 shows a Venn diagram comparing the number of discharged proof
obligations by each of the configurations mentioned above.

– Table 2 shows how the individual configurations perform on the different
models. In particular it distinguishes between proof and disprove.

– Table 3 shows how the individual configurations perform on different kinds
of proof obligations.

Regarding the different performance of the high-level vs. the low-level SMT
translation we have mixed results. Judging by the total numbers, the high-level
approach is superior: as can be seen in Fig. 2 it is able to discharge 4112 proof
obligations, while the low-level approach only discharges 3443. However, there
is also a considerable amount of proof obligations that can be discharged with
the low-level approach but not with the high-level one. Since the original SMT
plugin does not support disprove of POs, we cannot say anything about the per-
formance. The high-level approach is unable to disprove a single of the defective
obligations.

Comparing ProB solo and together with Z3 paints a similar picture. The
integrated solution is superior but the margin is small. Again, 149 proof obli-
gations cannot be discharged anymore once the SMT integration is enabled.
Virtually all of these result in a timeout afterwards. Since a global timeout is
used and Z3 takes up to much time ProB misses the solution. We could indeed
use a local timeout for the integrated SMT solver. However, we did not find a
sensible heuristic to decide when to give time to Z3 vs. giving it to the ProB
kernel.

Regarding disproving, integrating Z3 into ProB lead to the discovery of a
new counter-example. Despite our usage of the CAN Bus model in [15] the error
went unnoticed till now. Yet again, some counter-examples previously found
cannot be discovered by the integrated solver in the given timeframe.

Table 2 outlines for which models we see better or worse performance for
the high-level SMT translation. In particular the landing gear systems and the
Stuttgart 21 interlocking models show a decline in successfully discharged POs
when compared with the low-level SMT translation. This models feature a con-
siderable amount of concrete data that can easily be translated using the low-
level approach. We assume that some of these POs can be discharged on the

1 See https://github.com/wysiib/ProverEvaluationPlugin for sources and instruc-
tions.

https://github.com/wysiib/ProverEvaluationPlugin


Table 3. Performance of provers on different kinds of proof obligations

Kind of PO # POs SMT HL-SMT ProB ProB/SMT

Feasibility of non-det. action 59 40 (67.8 %) 52 (88.1 %) 44 (74.6 %) 57 (96.6 %)
Guard strengthening 300 13 (4.3 %) 139 (46.3 %) 258 (86.0 %) 254 (84.7 %)
Invariant preservation 4938 3106 (62.9 %) 3741 (75.8 %) 4488 (90.9 %) 4552 (92.2 %)
Natural number for a numeric variant 6 5 (83.3 %) 6 (100.0 %) 4 (66.7 %) 6 (100.0 %)
Action simulation 153 104 (68.0 %) 86 (56.2 %) 134 (87.6 %) 142 (92.8 %)
Theorem 97 29 (29.9 %) 26 (26.8 %) 66 (68.0 %) 62 (63.9 %)
Decreasing of variant 6 6 (100.0 %) 6 (100.0 %) 6 (100.0 %) 6 (100.0 %)
Well definedness 779 140 (18.0 %) 56 (7.2 %) 570 (73.2 %) 539 (69.2 %)
Feasibility of a witness 1 0 (0.0 %) 0 (0.0 %) 1 (100.0 %) 1 (100.0 %)
Well definedness of a witness 4 0 (0.0 %) 0 (0.0 %) 2 (50.0 %) 2 (50.0 %)

6343 3443 (54.3 %) 4112 (64.8 %) 5573 (87.9 %) 5621 (88.6 %)

boolean level, without any higher-order reasoning. Table 2 also shows that these
are the models where ProB alone works well.

The high-level SMT approach, both with and without ProB integration
performs better for more abstract models like the CAN Bus, the graph coloring
algorithm and the pacemaker model. This stresses our assumption that integra-
tion the high-level SMT translation into ProB is worthwhile as they represent
orthogonal technologies that could benefit from one another.

6 Related Work

As mentioned above, in [10,11] the authors present an integration of SMT solvers
into Rodin [3], an IDE for Event-B development. In this scenario, the SMT
solvers are used as provers in order to discharge Event-B proof obligations. The
authors investigate two different ways of translating Event-B to SMT-LIB.

For SMT solvers in general they suggest the ppTrans approach. Here, set the-
ory and arithmetic are broken down into first-order formulas using uninterpreted
functions for membership, etc. On the one hand, this approach is more flexible
than the one presented in this paper: it does not rely on the API of a specific
SMT solver. On the other hand, the resulting formulas only approximate the
Event-B semantics, as operators are replaced by uninterpreted functions. The
authors thus add certain set theoretic axioms to the SMT problem in order to
recover from this.

A second approach, called λ-based relies on an extension to SMT-LIB pro-
vided by the veriT solver [7]. Set theoretic constructs are then translated into
λ-expressions. The major shortcoming of this approach is that sets of sets cannot
be handled.

Many of the rewrite rules presented here are similar to those in [10,11]. The
key difference is that we rely on the given set theory of Z3 instead of translating
further into first-order logic.

In addition to other SMT-based approaches, there are different ways of solv-
ing B and Event-B predicates. ProB itself mainly relies on constraint logic
programming. There is also the formerly mentioned backend [24] translating B



to Kodkod [27]. Kodkod then uses a SAT solver to find solutions to the given
formulas.

7 Future Work

For the future, we have different directions in mind. First of all, we would like to
investigate whether using an equisatisfiable translation instead of an equivalent
one is of use. In particular for approaches like proving or disproving as discussed
in [15] we expect improved performance.

We also want to tighten the integration of the SMT solvers and ProB. Cur-
rently we are transporting partial assignments and we use the unsat core to con-
trol backjumping on the Prolog side. In future, we want to investigate, whether
we can access and use clauses learned on the SMT side in order to set up further
constraints on the Prolog side. For instance, we want to investigate whether we
can use interpolants or conflict clauses in case of unsatisfiable predicates.

Regarding our translation to SMT-LIB, the benchmarks show that in par-
ticular the usage of quantifiers can be improved. One possibility to do so is to
further investigate how to set instantiation triggers for comprehensions typically
occurring in our scenarios. In [17] the authors already outlined a general ap-
proach that can serve as a starting point. Another option is to try to reduce
the amount of quantifiers we use. This could be achieved by providing a custom
theory to the SMT solvers, i.e., including inference rules for min and max that
avoid the quantifiers introduced in Section 2.2. Changing the set of axioms we
supply to Z3 in order to define min and max is certainly another direction that
should be evaluated.

Another technique we want to implement should help us to overcome some of
the limitations discussed in Section 4. As mentioned, the B type system allows
to use set operators on sequences. Hence, we had to encode sequence using the
a representation as sets of pairs. A static check could investigate, how operators
are applied in a B machine. It could determine, if sequences are only used with
sequence operators. In this case, we could employ a more efficient translation to
SMT-LIB, e.g., encode them as arrays.

Regarding benchmarks and applications, we would like to move from solving
predicates to explicit state model checking and later to symbolic model checking
and constrained based validation techniques.

8 Discussion and Conclusion

One motivation for the integration of SMT solvers into ProB was to overcome
the weaknesses we spotted in our previous work [15]: ProB should be enabled
to handle infinite domains and detection of unsatisfiability should be improved.

With the suggested high-level translation of B to SMT-LIB both goals could
be achieved. The integrated solution is able to discharge more proof obligations
than ProB alone. In many cases, translation into the high-level (set) logics of



Z3 seems advantageous over a low-level translation to predicate logic. Indeed,
in our experimental evaluation on Event-B proof obligations, our new high-level
translation discharges 4112 proof obligations in total, out of which 1475 cannot
be discharged by the previous SMT translation [10,11].

Our evaluation also showed, that there is not only a gain in the number of
proof obligations: the low-level translation discharges 806 proof obligations that
are not discharged by our new translation. Yet, it is not clear when to employ
a high-level and when to employ a low-level approach. A practical solution is to
use both in a solver portfolio.

It remains yet to be seen, how SMT solvers like Z3 will evolve regarding
high-level theories. The current version of the SMT-LIB standard only features
a “possible declaration for a theory of sets and relations” [5]. How and if different
possibilities are realized will certainly influence the impact SMT solvers have in
the formal methods community.

Summarizing, we provided new ways to tackle the complexity of constraints
in B and Event-B. We provided a new high-level translation of B to Z3’s in-
put language, which can be used on its own or integrated into ProB’s solver.
This high-level SMT based solver appears to be an orthogonal addition to the
other solvers, solving many constraints that could not be solved by the previ-
ous low-level translation and is better suited at finding models. Our evaluation
also confirms that the integration of the ProB solver with Z3 provides the best
overall result, discharging 5621 proof obligations. We hope that these new capa-
bilities open up new applications, from synthesis to improved symbolic validation
techniques such as bounded model checking.
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