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Abstract. We present a symbolic reachability analysis approach for
B that can provide a significant speedup over traditional explicit state
model checking. The symbolic analysis is implemented by linking PrRoB
to LTSMIN, a high-performance language independent model checker. The
link is achieved via LTSMIN’s PiNs interface, allowing PROB to benefit
from LTSMIN’s analysis algorithms, while only writing a few hundred
lines of glue-code, along with a bridge between PROB and C using OMQ.
PRrROB supports model checking of several formal specification languages
such as B, Event-B, Z and TLA™T. Our experiments are based on a wide
variety of B-Method and Event-B models to demonstrate the efficiency of
the new link. Among the tested categories are state space generation and
deadlock detection; but action detection and invariant checking are also
feasible in principle. In many cases we observe speedups of several orders
of magnitude. We also compare the results with other approaches for
improving model checking, such as partial order reduction or symmetry
reduction. We thus provide a new scalable, symbolic analysis algorithm
for the B-Method and Event-B, along with a platform to integrate other
model checking improvements via LTSMIN in the future.
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1 Introduction

In this paper we describe the process, technique and design decisions we made for
integrating the two tooling sets: LTSMIN and PROB. Bicarregui et al. suggested,
in a review of projects which applied formal methods [5], that providing useable
tools remained a challenge. Recent use of the PROB tool in a rail system case
study [15], where model checking large industrial sized complex specifications
was performed, illustrated that there continues to be limitations with the tooling.
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Fig. 1: Modular PINS architecture of LTSMIN [16]

Model checking CSP||B [32] specifications in PROB was the original motivator
for this research, and based on a promising initial exploration [34], this paper
defines a systematic integration of the two tooling sets.

LTSMIN is a high-performance language-independent model checker that
allows numerous modelling language front-ends to be connected to various anal-
ysis algorithms, through a common interface, as shown in Figure 1. It offers a
wide spectrum of parallel and symbolic algorithms to deal with the state space
explosion of different verification problems. This connecting interface is called
the PARTITIONED INTERFACE to the Next-State function (PINS), the basis of
which consists of a state-vector definition, an initial state, a partitioned successor
function (NEXTSTATE), and labelling functions [16]. It is through PINS that we
have been able to leverage the PROB tool, therefore allowing us to take advantage
of LTSMIN’s algorithmic back-ends. In this paper we focus on the new PROB
language front-end, the grouping of transitions, and the symbolic back-end. In
Section 5 we also briefly discuss state variable orders.

PrOB [20] is an animator and model checker for many different formal
languages [29], including the classical B-Method [2], Event-B [1], CSP, CSP|B,
Z and TLA". PROB can perform automatic or step by step animation of B
machines, and can be used to systematically verify the behaviour of machines.
The verification can identify states which do not meet the invariants, do not
satisfy assertions or that deadlock. At the heart of PROB is a constraint solver,
which enables the tool to animate and model check high-level specifications. The
built-in model checker is a straightforward, explicit state model checker (albeit
augmented with various features such as symmetry reduction [21] or partial order
reduction [10]). The explicit state model checker TLC can also be used as a
backend [11].

The purpose of this paper is to make use of the advanced features of the
LTSMIN model checker, such as symbolic reachability analysis, by linking the
PROB state exploration engine with LTSMIN. This is achieved through a C
programming interface [4] within the PROB tool, allowing the representation of a
state to be compatible for LTSMIN’s consumption. In this paper the integration
focuses on what is required in order to perform symbolic reachability analysis of
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B-Method and Event-B specifications. The contribution of this research is a new
tool integration, which can be used as a platform for further extensions.

The paper is structured as follows: Section 2 presents an overview of the
B-Method, a running example and an illustration of definitions of transition
systems used by LTSMIN. Section 3 details the symbolic reachability analysis
and Section 4 outlines the implementation details. Section 5 provides empirical
results from performing reachability analysis benchmarking examples in PROB
alone and using the new integration of the two tools. The paper concludes in
Section 6 with reflections and future work.

2 Preliminaries: B-Method and Transition Systems

In this section we provide an overview of the B-Method and the foundations used
within LTSMIN.

A B machine consists of a collection of clauses and a collection of operations.
The MACHINE clause declares the abstract machine and gives it its name. The
VARIABLES clause declares the variables that are used to carry the state informa-
tion within the machine. The INVARIANT clause gives the type of the variables,
and more generally it also contains any other constraints on the allowable machine
states. The INITIALISATION clause determines the initial state(s) of the machine.
Operations in a machine are events that change the state of a machine and can
have input parameters. Operations can be of the form SELECT P THEN S
END where P is a guard and S is the action part of the operation. The predicate
P must include the type of any input variables and also give conditions on when
the operation can be performed. When the guard of an operation is true then the
operation is enabled and can be performed. If the guard is the simple predicate
true then the operation form is simplified to BEGIN S END. An operation can
also be of the form PRE P THEN S END so that the predicate is a precondition
and if the operation is invoked outside its precondition then this results in a
divergence (we do not illustrate this in our running example). Finally, the action
part of an operation is a generalised substitution, which can consist of one or
more assignment statements (in parallel) to update the state or assign to the
output variables of an operation. Conditional statements and nondeterministic
choice statements are also permitted in the body of the operation. The example
in Figure 2 illustrates the MutexSimple machine with three variables and five
operations. Its initial state is deterministic and wait is set to MAXINT. For
MAXINT=1 we get 4 states; the state space constructed by ProB can be found
in Figure 3. From the initial state only the guards for Enter and Leave are true.
Following an Enter operation the value of the cs variable is true which means
that the guard of the CS_Active operation is true and the system can indicate
that it is in the critical section by performing the CS_Active operation.

The example presented could also be considered as an Event-B example
since it is a simple guarded system. We do not elaborate further on the notation
of Event-B in this paper but note that the results in the subsequent sections are
also applicable to Event-B.
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MACHINE MutexSimple
VARIABLES cs, wait, finished
INVARIANT
cs: BOOL & wait: NATURAL & finished: NATURAL
INITIALISATION cs := FALSE || wait := MAXINT || finished := 0
OPERATIONS
Enter = SELECT cs = FALSE & wait >0 THEN
cs := TRUE || wait := wait — 1 END;
Exit = SELECT cs = TRUE THEN
cs := FALSE || finished := finished + 1 END;
Leave — BEGIN cs :— FALSE END;
CS_Active = SELECT cs = TRUE THEN skip END;
Restart = SELECT finished >0 THEN
wait := wait + 1 || finished := finished — 1 END
END
Fig. 2: MutexSimple B-Method machine example
Lea"’e INITIALISATION.. ... root
<
cs=FALSE,wait=1,finished=0 «—— | cs=FALSE,wait=0,finished=1
Restart U
lEnter - Leave
Exit

cs=TRUE,wait=0,finished=0 ———— cs=FALSE,wait=0,finished=0

‘U Leave U

CS_Active Leave

Fig. 3: MutexSimple statespace for MAXINT=1

As far as symbolic reachability analysis is concerned, a formal model is seen
to denote a transition system. LTSMIN adopts the following definition:

Definition 1 (Transition System). A Transition System (TS) is a structure
(S,—,1I), where S is a set of states, — C S x S is a transition relation and
I C § is a set of initial states. Furthermore, let —* be the reflerive and transitive
closure of —, then the set of reachable states is R={s € S |3s’ €1.s —*s}.

A B-Method and Event-B model induces such a transition system: initial
states are defined by the initialisation clause and the individual operations
together define the transition relation —. Figure 3 shows the transition system?*
for the machine in Figure 2. As can be seen in Figure 3, the transition relation is
annotated with operation names. For symbolic reachability analysis it is actually
very important that we divide the transition relation into groups, leading to the
concept of a partitioned transition system:

4One subtle issue is that LTSMIN actually only supports a single initial state; this
is solved by introducing the artificial root state linked to the initial states proper. We
ignore this technical issue in the paper.
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Definition 2 (Partitioned Transition System). A Partitioned Transition
System (PTS) is a structure P = (SN, G, =M, IV), where
— SN =81 X ...x Sy is the set of states, which are vectors of N values,
— G =(=1,...,—u) is a vector of M transition groups —; C S¥ x SN (V1 <
i<M)
- =M= Uyzl —; 1s the overall transition relation induced by G, i.e., the union
of the M transition groups , and
— IN C SN is the set of initial states.

We write s —; t when (s,t) € =, for 1 <i <M, and s =™t when (s,t) € =M.

For example IN = {(FALSE, MAXINT,0)} in the running example. Note
that G in Definition 2 does not necessarily form a partition of —", overlap is
allowed between the individual groups.

3 Symbolic Reachability Analysis for B

Computing the set of reachable states (R) of a transition system can be done
efficiently with symbolic algorithms if many transition groups —; touch only
a few variables. This concept is known as event locality [8]. Many models of
transition systems in the B-Method employ event locality. In the B-Method
event locality occurs in operations, where only a few variables are read from, or
written to. For example in Figure 2 operation CS_Active only reads from cs and
Leave only writes to cs. This event locality benefits the symbolic reachability
analysis, so that the algorithm is capable of coping with the well known state
space explosion problem. Since the B-Method employs event locality we build on
the foundations of earlier work on LT'SMIN [6,24] and extend it to PROB. To
perform symbolic reachability analysis of the B-Method, PROB should provide
LTSMIN with read matrices and write matrices. These matrices inform LTSMIN
about the locality of events in the B-Method.

Read independence is an important concept, it allows one to reuse the suc-
cessor states computed in one state s for all states s’ which differ just by
read-independent variables from s, and vice versa.

Definition 3 (Read independence). Two state vectors s, s’ are equivalent
except on index j, denoted by s ~; ', iff Vk#j: s, =5

Transition group i is read-overwrite independent from state variable j, iff
Vs,s',t € SN such that s =; s’ and s —; t, we have that s" —; t.

Transition group i is read-copy independent from state variable j, iff Vs, s’,
t € 8™ such that s ~; s' and s —; t, we have that s" —; (t1,...,t;—1,5], tj11,

cyty).

A transition group is read independent iff it is either read-overwrite or

read-copy independent.

If an event never reads but may write to a variable j it generally does not
satisfy the above definition. For example, the operation MayReset = IF ¢s =
true THEN wait := 0 END would neither be read-copy nor read-overwrite
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independent (for state vectors with c¢s = false it satisfies the definition of
the former and for ¢s = true the latter, but neither for all state vectors).
LTSMIN can also deal with more liberal independence notions, but we have not
yet implemented this in the present paper.

Definition 4 (Write independence). Transition group i is write-independent
from state variable j, if Vs, t € SNt (s1,...,8),...,5:0) =i (t, .., 8, ... ) =>(s; =
t;), i.e. state variable j is never modified by transition group i.

We illustrate the above definitions below.

Definition 5 (Dependency Matrices). For a PTS P = (S, G, =M, IV), the
write matrix is an M x N matric WM (P) = WMFE, , € {0,1}"*" such that
(WM, ; = 0) = transition group % is write independent from state variable j.
Furthermore, the read matrix is an M x N matriz RM (P) = RMF,, € {0,1}M*N,
such that (RM;; = 0) = transition group i is read independent from state
variable j.

In this paper we will use sufficient syntactic conditions to ensure Definitions 3
and 4 and obtain the read and write matrix from Definition 5. Indeed, we compute
for every operation syntactically which variables are read from and which variables
are written to.

— If an operation does not write to a variable, its transition group is write
independent according to Definition 4 and the corresponding entry in WM is
0.

— If an operation does not read a variable, its transition group is read inde-
pendent according to Definition 3, unless it maybe written to (e.g., because
the assignment is in the branch of an if-then-else). In this case, we will mark
the variable as both write and read independent. Also, note that when the

assignment within an operation is of the form £(X) := E then the operation
should have a read dependency on the function £ (in addition to the write
dependency).
For our example in Figure 2 the syntactic read-write information is as follows:
cs wait finished cs wait finished
Enter 1 1 0 Enter 1 1 0
Exit 1 0 1 Exit 1 0 1
Leave 0 0 0 Leave 1 0 0
CS_Active | 1 0 0 CS_Active | O 0 0
Restart 0 1 1 Restart 0 1 1
(a) Read matrix (RM) (b) Write matrix (WM)

Fig. 4: Dependency matrices

From the matrices we can infer if a variable is read-copy or read-overwrite
independent: a variable that is read independent and not written to (i.e., write
independent) is read-copy independent, otherwise it is read-overwrite independent.
We can thus infer that:

— the transition group of Enter is read-copy and write independent on finished.
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— Exit is read-copy and write independent on wait.

— Leave is read-copy and write independent on wait and finished and read-
overwrite independent on cs.

— CS_Active is read-copy and write independent on wait and finished and
write independent on cs (but not read-independent on cs).

— Leave is read-copy and write independent on cs.

3.1 Exploration Algorithm

We now present the core of the symbolic reachbility analysis algorithm of LTSMIN.
Algorithm 1 computes the set of reachable states R (represented as a decision
diagram) and it uses the independence information to minimise the number of
next state computations that have to be carried out, i.e., re-using the next states
{t | s —;t} computed for a single state s for many other states s’ according to
Definitions 3 and 4. Algorithm 1 will, while it keeps finding new states, expand
the partial transition relation with potential successor states, and apply the
expanded relation to the set of new states.

Four key functions that make Algorithm 1 highly performant are the follow-
ing.® The (1) read projection n7 = nM and (2) write projection 7% = n}VM
take as argument a state vector and produce a state vector restricted to the
read and write dependent variables of group 4, respectively. Furthermore these
function are extended to apply to sets directly, e.g., given the examples in Fig-
ures 2 and 4, a read projection for Leave is 7} ({(FALSE,0,0),(FALSE,0,1),
(FALSE,1,0)}) = {(FALSE)}. This is illustrated in Figure 6 and used at Line 2
in Algorithm 2. The read projection prevents LTSMIN from doing two unnecessary
next state calls to PROB, since Leave is read-copy independent on wait and
finished.

The function (3) NEXTSTATE; takes a read projected state and projects (with
7i”) all successor states of transition group 7. The partial transition relation <%
is learned on the fly, and NEXTSTATE; is used to expand —?. An example next
state call for Enter is NEXTSTATE, ((FALSE,1)) = {(TRUE,0)}.

Lastly, (4) NEXT takes a set of states, a partial transition relation, a row of the
read and write matrix and outputs a set of successor states. For example, applying
the partial relation of Enter to the initial state yields NEXT({(FALSE,1,0)},
{((FALSE,1),(TRUE,0))},(1,1,0),(1,1,0)) = {(TRUE,0,0)}. Note that in
this example Enter is read-copy independent on finished and thus NEXT will
copy its value from the initial state.

The usage of these four key functions is also illustrated in Figure 5. The figure
shows that first the projection is done for Enter, then < is expanded with a
NEXTSTATE; call, lastly relation —¥ is applied to the initial state, producing
the first successor state.

Figure 6 shows for each operation the transition relation <! and the projected
states on which they are computed. Definition 3 ensures that the projected state

w

5We refrain from giving their formal definitions; they can be found in [24].
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Algorithm 1: REACHBREADTHFIRST Algorithm 2: LEARNTRANS
Input :I¥ C S¥,M € N,RM, WM Description: Extends —?
Output: The set of reachable states R .

LRI LR 1for1§z§er0

2 for 1 < i< Mdo RP + @; =P « & while 2 LP +— 7 (L);

L # 2 do 3 for sP € LP — R} do

3 LEARNTRANS(); N < & p p b gp

4 | for1<i<Mdo 4 = o7 U{(s?,dP) |

5 | N+ NUnexT(L, =P, RM;, WM,);

6 L+N-R; R+ RUN; 5 dP €

turn R
Tre NEXTSTATE; (s*)};
6 RY «+ RY U LP;
" and ﬁp R
cs = FALSE,wait = 1 finished = 0
cs = FALSE,wait = 1 9 projection
Emeri
cs = TRUE,wait = 0 \\n:“
cs = TRUE,wait = 0,finished = 0

Fig. 5: Hlustrating one iteration of Algorithm 1 for MutexSimple and Enter
operation

space shown in Figure 6 can be used to compute the effect of each of these
operations for the entire state space (using next).

T2 sjigfoldecisibabiDiggiamaihm in Section 3.1 uses List Decision Diagrams
(LDDs) to store the reachable states and transition relations. Similar to a Binary
Decision Diagram, an LDD [6] represents a set of vectors. Due to the sharing
of state vectors within an LDD, the memory usage can be very low, even for
very large state spaces. Three example LDDs for the running example are given
in Figure 7. The LDDs represent the set of reachable states R in Algorithm 1
at each iteration of Line 2. In an LDD every path from the top left node to
{e} is a state, e.g., the initial state (FALSE,1,0) in Figure 7b. A node in an
LDD represents a unique set of (sub) vectors, e.g., {¢} represents the set of zero-
length vectors and the right-most 0 of variable wait in Figure 7d encodes the set
{(0,0),(0,1),(1,0)}. Figure 7c shows that firing Enter will add (TRUE,0,0)
to R. In Figure 7d (FALSE,0,0) and (FALSE,0,1) are added to R, by firing
Leave and Exit respectively. The benefit of using LDDs for state storage is
due to the sharing of state vectors. For example, the subvector (FALSE) of the
states {(FALSE,0,0),(FALSE,0,1),(FALSE,1,0),(FALSE,1,1)} in iteration
3 is encoded in the LDD with a single node. For bigger state spaces the sharing
can be huge; resulting in a low memory footprint for the reachability algorithm.

3.3 Performance: NEXTSTATE function

There are two big differences of Algorithm 1 with classical explicit state model
checking as used by PROB [20]. First, the state space is represented using an
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read-copy independent on wait, finished read-copy independent on cs

wait=1finished = 0
cs = FALSE

read-copy independent on
wait, finished

wait=0, finished = 0 and read-overwrite
Restart independent on cs
cs =TRUE CS_Active

wait=0 finished = 1

Leave

cs = FALSE,wait = 1 ©s = FALSE finished = 0 cs = FALSE
E$
cs = TRUE, finished = 0
cs = TRUE,wait =0
E%n
cs = FALSE,wait = 0 cs = FALSE finished = 1

read-copy independent on finished read-copy independent on wait

Fig.6: M 3rat10n|FALSE|lp1 |TRUE|FALSE| r ]|TRUE|FALSE| ate space
(] 0 0

0
finished:NATURAL | 0 | 0 | | 0 | 1 |

(a) Variables (b) Iteration 1  (c) Iteration 2 (d) Iteration 3
Fig. 7: LDDs of the reachable states

(e} (e}

LDD datastructure, which enables sharing amongst states. Second, independence
is used to apply the NEXTSTATE function not state by state, but for entire
sets of states in one go. For each of the 4 states in Figure 3, the explicit model
checking algorithm of PROB would check whether each of the 5 operations is
enabled; resulting in 20 next-state calls. With LTSMIN’s symbolic reachability
Algorithm 1, only 12 NEXTSTATE calls are made. This is shown in the following
table, where + means enabled, - means disabled, and C means that LTSMIN has
reused the results of a previous call to PROB.

State#H cs ‘wait‘ﬁnished"Enter‘Exit‘Leave‘CS,Active Restart

1 FALSE| 1 0 + C C C -
2 TRUE| 0 0 - + + + -
3 FALSE| 0 0 - - C - C
4 FALSE| 0 1 C - C C +

If we initialise wait with MAXINT = 500, the state space has 251,002 states.
The runtime with PrROB is 70 seconds, with LTSMIN+PROB 48 seconds and
LTSMIN performs only 6012 NEXTSTATE calls. The example does not have a lot
of concurrency and uses only simple data structures (and thus the overhead of
the LTSMIN’s PROB front-end is more of a factor compared to the runtime of
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ProB for computing successor states); other examples will show greater speedups
(see Section 5). But the purpose of this example is to illustrate the principles.

4 Technical Aspects and Implementation

We used a distributed approach to integrate PROB and LTSMIN. Both tools are
stand-alone applications, so a direct integration, i.e., turning one of the tools into
a shared library would require considerable effort. We therefore added extensions
to both tools that convert the data formats and use sockets to communicate with
each other. A high level view of the integration is shown in Figure 8. We use the
OMQ [13] library for communication. @MQ is oriented around message queues
and can be used as both, a networking library with very high throughput and as
a concurrency framework. We have chosen @MQ because it worked very well in
previous work [4]. Although we do not (yet) have to care about concurrency in
this work, the reactor abstraction provided by @MQ was very handy in the PROB
extension. It allows to implement a server that receives and processes messages
without much effort. The communication is always initiated by LTSMIN; it sends
a message and blocks until it receives the answer from PROB.

We usually run both tools on a single computer using interprocess (IPC)
sockets, but it is only a matter of configuration to run the tools on different
machines using TCP sockets. We currently only support Linux and Mac OS.
The communication protocol is straightforward. Reachability analysis is initiated
from LTSMIN by sending an initialisation packet. PROB answers with a message
containing the relevant static information about a model, such as the dependency
matrices that LTSMIN requires (see Section 3).

Each matrix is
encoded as a 2-dimensional
array, which is not
optimal for a sparse sun | s | oros e 1P Socke sy | e
matrix but is not Shekend Lorary Extension
an issue because we
only send the matri-
ces once. The packet also cppagnhe i PhpR RIS Hg TRt e di® of
transition groups, and the 1n1tg1a state.

States are represented as a list of so called chunks. A chunk is one of the
elements in the state vector according to Definition 2. In the case of B, each
chunk is a value of one of the state variables. Because LTSMIN will not look inside
the chunks, we simply use the binary representation of PROB’s Prolog term that
represents the value of a variable. This has the advantage, that PROB does not
have to keep information about the state space. It can always recover a state
from the chunks that are sent by LTSMIN. The transition groups correspond to
B operations as explained in Figure 3. Like chunks the transition groups are only
used as names in LTSMIN.

Once the initial setup is done, LTSMIN will start to ask PROB for successor
states for specific transition groups. It will send a next-state message containing

ProB

LTSMIN Process ProB Process
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a state and a transition group. The state, that LTSMIN sends is a list of chunks
and PROB’s LTSMIN extension can directly consume them and construct a
Prolog term that internally represents a state. Using this constructed state and
the transition group, the extension will then ask PROB for all successor states.
The result is a list of Prolog terms, each representing a successor state. The
extension transforms the list of states into a list of lists of chunks and sends them
back to LTSMIN. This is repeated until LTSMIN has explored all necessary states
and sends a termination signal.

The next-state messaging is similar to Figure 5, the projection is achieved by
replacing all read independent variables by a dummy value.

5 Experiments

To demonstrate that the combination of PROB and LTSMIN improves the
performance of the reachability analysis and deadlock detection compared with the
standalone version of PROB, we use a wide range of B and Event-B models. Our
benchmark suite contains puzzles (e.g., towers of Hanoi) as well as specifications
of protocols (e.g., Needham-Schroeder), algorithms (e.g., Simpson’s four slot
algorithm) and industrial specifications (e.g., a choreography model by SAP, a
cruise control system by Volvo and a fault tolerant automatic train protection
system by Siemens).5

The experiments were run on Ubuntu 15.10 64-bit, with 8 GB RAM, 120 GB
SSD and an Intel Sandybridge Mobile i5 2520M 2.50 GHz Dual core. The version of
PROB used in this paper is 1.5.1-beta3, and LTSMIN tag LTSminProBiFM20167

Figure 9 summarises a selection of the experiments that we ran. The last two
models are Event-B models. In these experiments we used Breadth-First Search
(BFS) and looked for deadlocks. A deadlock was found only for the Philosophers
model (this is also why there are no next state call statistics for this model).
The table also contains the number of next state calls for PROB reachability
analysis on its own and when called from LTSMIN’s symbolic reachability analysis
algorithm (i.e., our new integration see Section 3.3) without deadlock checking.
One can clearly see that we obtain a considerable reduction in wallclock time.
The PROB time is the walltime of the PROB reachability analysis and initial
state computation and does not include parsing and loading. The LTSMIN CPU
time column shows how much time is spent in the LTSMIN side of the symbolic
reachability analysis algorithm. The LTSMIN wall time shows the total walltime,
and this also contains the time spent in the communication layer and waiting for
the PROB process to compute the next states. To compare the benefit of our new
algorithm we compute the speedup of the walltime in the last column by dividing
the PROB walltime from column 5 with the LTSMIN walltime in column 7.

SMore detailed descriptions can be found in Appendix A.
"The software and models can be found online at https://github.com/utwente-
fmt/ProB-LTSmin-iFM16.
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We can see that for some of the smaller models the overhead of setting
up LTSMIN does not pay off. However, for all larger models, except for the
Trainl_Lukas_POR model considerable speedups were obtained.

Benchmark Events| States ProB|LTSMmIN| ProB|LTSMIN|LTSMIN|Speedup
Nxt St| NxtSt Wall CPU Wall
Calls Calls (ms) (ms) (ms)

CAN_BUS 21[132600| 2784560 3534| 122850 660 1590 77.264
ConcurrentCounters 4(110813| 443249| 113032| 21820 2760 13820 1.579
Cruise_finitel 26| 1361 35361 1667 2900 100 1020 2.843
file_system 8 698 5577 1198 1900 180 4660 0.41
MutexSimple 5 10 46 26 10 10 190 0.053
Philosophers 5 480 40 590 0.814
SiemensMiniPilot_Abrial0 9 181 1621 182 100 20 260 0.385
Simpson_Four_Slot 9| 46658 419906 2089| 17310 200 860| 20.128
Trainl_Lukas_POR 8| 24637 197082| 101441| 33660 6480 50260 0.670
nota 11| 80719| 887899 588| 287970 130 660| 436.318
pkeyprot2 10| 4412 44111 2004| 22190 210 1710 12.977
Ref5_Switch_mch 38| 29861| 1134681 1281| 160600 490 1260| 127.460
obsw_MO001 21(589279|12374779| 23406|2051320 1620 12420| 165.163

Fig.9: B and Event-B Machines, with BFS and deadlock detection

A major result we achieved with non default settings for LTSMIN, is for
elevatorl2.eventb. This model is not listed in Figure 9, because PROB runs out
of memory on the hardware configuration used for this experiment. LTSMIN
computed in 34 seconds, with 96,523 NEXTSTATE calls, that the model has
1,852,655,841 states. As reachability algorithm we chose chaining [30], and to
compute a better variable order, we ran Sloan’s bandwidth reduction algorithm
[33] on the dependency matrix.

As far as memory consumption is concerned; when performing reachability
analysis on CAN_BUS, the PROB process consumes 370 MB real memory, while
the LTSMIN process consumes 633 MB, with the default settings. With the
default settings LTSMIN will allocate 2%? elements (~ 100 MB) for the node
table and 224 elements (=~ 500 MB) for the operations cache. If we choose a
smaller node table and operations cache for the LDD package (both 28 elements),
LTSMIN consumes only 22 MB. The default settings for LTSMIN are geared
towards larger symbolic state spaces than that of CAN_BUS. The default node
table and cache are too big for CAN_BUS, and thus not completely filled during
reachability.

We have also run our new symbolic reachability analysis on Z and TrLA™
models. For example, we successfully validated the video rental Z model from [9].
For 2 persons and 2 titles and maximum stock level of 4, LTSMIN generates
the 23009 states in 1.75 seconds compared to 52.4 seconds with PROB alone.
The model contained useless constants; after removing them PROB runs in 1.6
seconds; the runtime of LTSMIN stays unchanged. We were unable to use the
output of z2sal [9] using SAL [26] and its symbolic model checker for comparison.

In summary, Figure 9 shows that for several non-trivial B and Event-B models,
considerable improvements can be obtained using the symbolic reachability
analysis technique described in this paper.
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Alternate Approaches Other techniques for improving model checking for
B-Method and Event-B models have been developed and evaluated in the recent
years. We have run a further set of experiments using a selection of those methods;
the complete results can be found in Appendix B. For technical reasons, the
experiments were run on different hardware than above, a MacBook Air with
2.2 GHz i7 processor and 8GB of RAM. We summarise the findings here and
compare the results with our new symbolic model checking algorithm.

Benchmark ProB POR ProB Hash TLc ProB no opt.

ms Speedup ms Speedup|sec Speedup ms
CAN_BUS 138720 0.80| 98390 1.12| 3 37 110400
ConcurrentCounters 50 345.8| 18400 1.06| 1 17 17290
file_system 2380 0.37 210 4.24| 29 0.03 890
Simpson_Four_Slot 20860 0.70| 9550 1.52| 1 15 14530
Trainl_Lukas_POR | 34030 0.75] 28930 0.88| 4 6 25740
nota 490 509.22| 14780 16.88| 10 25 249520
Ref5_Switch_mch 215160 0.59[124500 1.01] 6 21 126170
obsw_MO001 2150520 0.80| 76190 22.53| 55 31 1716770

The authors in [11] presented a translation from the B-Method to TLAT,
with the goal of using the TLC model checker [36] as backend. TLC has no
constraints solving capabilities, and as such that it can only deal with lower level
models. On the other hand, its execution can be considerably faster than PROB,
and its explicit state model checking engine (which stores fingerprints) is very
efficient. On the downside, there is a small probability that fingerprint collisions
can occur. The experiments show that TLC does not deal well with benchmark
programs which require constraint solving (graph isomorphism, JobsPuzzle, ... ),
running up to three orders of magnitude slower than PROB or LTSMIN with
PRrOB. However, it does deal very well with lower level models, e.g., it is faster
than LTSMIN for ConcurrentCounters. For many benchmark models, even those
not requiring constraint solving, our symbolic reachability analysis is faster. For
example, for the nota example, TLC runs in about 10 seconds—faster than PROB
without any optimisation—but slower than LTSMIN by less than a second.

Symmetry reduction [21] can be very useful; but exponential improvements
usually occur only on academic examples. Here we have experimented with the
hash marker symmetry reduction, which is PROB’s fastest symmetry method, but
is generally not guaranteed to explore all states. The method gives the best results
for certain models (e.g., file_system). But for several of the larger, industrial
examples shown above, its benefit is not of the same scale as LTSMIN. In future,
we will investigate combining PROB’s symmetry reduction with the new LTSMIN
algorithm.

We have also experimented with partial order reduction. [10] uses a se-
mantic preprocessing phase to determine independence (different from our purely
syntactic determination; see Section 3). As such, it can induce a slow down for
some examples where this does not pay off (e.g., file_system). PROB’s partial
order reduction obtains the best times for certain models with a large degree of
concurrency (ConcurrentCounters, SiemensMiniPilot_Abrial, and nota). However,
once we start doing invariant checking, [10] does not scale nearly as well (e.g., it
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takes 134 seconds instead of 0.5 seconds for LTSMIN checking the nota model).
But even without invariant checking, there are plenty examples where the sym-
bolic reachability analysis approach is better (e.g., Cruise_finitel, Philosophers,
Simpson_Four_Slot and almost two orders of magnitude for CAN_BUS). In
summary:

— TLC is good for models not requiring constraint solving. It is a very efficient,
explicit state model checker. However, models often have to be rewritten (such
as CAN_BUS), and there is a small chance of having fingerprint collisions.

— Symmetry reduction excels when models make use of deferred sets. However,
the hash marker method is not guaranteed to explore all states.

— Partial order reduction is very good for models with a large degree of con-
currency. However, it can cause slow downs and is less suited for invariant
checking.

— The new symbolic reachability analysis algorithm deals well with concurrency
and is by far the fastest method for certain larger, industrial models, such as
CAN_BUS, obsw_MO001, elevator12, the ABZ landing gear model or Abrial’s
mechanical press. LTSMIN is currently the only tool set that uses a symbolic
representation of the state space that is connected to PROB.

6 More Related Work, Future Work and Conclusion

We have already evaluated the use of TLC [36] for model checking B. Another
explicit state model checker for B has been presented in [22], which uses lazy
enumeration. Symbolic model checking [7] has been used for railway applications
in [35]. The best known symbolic model checker is probably SMV [23], which uses
a low-level input language. Some comparisons between using SMV and PrRoOB
have been conducted in [14], where models were translated by hand. For abstract
state machines there is the AsmetaSMV [3] tool, which automatically translates
ASM specifications to SMV. It is our impression that the translation often leads
to a considerable blowup of the model, encoded in SMV’s low-level language, also
affecting performance. We did one experiment on a Tic-Tac-Toe model provided
for AsmetaSMV: NuSMYV 2.6 took over 13 seconds to find a configuration where
the cross player wins; PROB (without LTSMIN) took 0.2 seconds model checking
time for the same property on a similar B model. Another experiment involved
puzzle 3 of the RushHour game: PROB solves this in 5 seconds, while NuSMV
still had not found a solution after 120 minutes.

Other symbolic model checkers that perform comparable well to LTSMIN
include MARCIE [12] and PETRIDOTNET [25].

The paper provides a stable architectural link between PROB and LTSMIN
that can be extended. First, we plan to provide LTSMIN with more fine-grained
information about the models, both statically and dynamically. Dynamically,
PrOB will transmit to LTSMIN which variables have actually been written by an
operation, enabling a more extensive independence notion to be used. Statically,
PrROB will transmit the individual guards of operations and provide variable read
matrices for the guards. We will also transmit the individual invariants in the
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same manner, to enable analysis of the invariants. (It is actually already possible
to check invariants using the present integration, simply by encoding invariants
as operations. We have done so with success for some of the examples, e.g., the
nota from Section 5.) When PROB transmits individual guards, we also hope to
use the guard-based partial order optimisations of LTSMIN [17] and enable LTL
model checking with LTSMIN.

These future directions will strengthen the capability of the verification tools
and hence further encourage the application of formal methods within industry
as identified in [5], for example to support complex railway systems verification in
CSP||B. This will require both more fine-grained static and dynamic information.

In summary, we have presented a new scalable, symbolic analysis algorithm
for the B-Method and Event-B, along with a platform to integrate other model
checking improvements via LTSMIN in the future.
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A Models for experiments (for referees)

These model descriptions will be uploaded to a website, also containing the
publicly available models.
The classical B models shown in the tables in Section 5 are:

— CAN_BUS
A model of a controller area network (CAN) bus developed by Colley.

— ConcurrentCounters
This is a very simple model with three concurrent counters that can be incremented
independently.

— Cruise_finitel
Volvo Vehicle Function. The B specification machine has 15 variables, 550 lines
of B specification, and 26 operations. The invariant consists of 40 conjuncts. This
B specification was developed by Volvo as part of the European Commission IST
Project PUSSEE (IST-2000-30103).

— file_system is a simple model of a file system with users, groups and access control.

— MutexSimple
This is the model shown in Fig. 2 of the paper.

— Philospohers
This is a B model of the well-known dining philosphers problem.

— SiemensMiniPilot_Abrial0
This Siemens Mini Pilot was developed within the Deploy Project. It is a specification
of a fault-tolerant automatic train protection system that ensures that only one
train is allowed on a part of a track at a time. The model contains a single refinement
level and rather complex invariants. The model was translated to classical B from
Event-B.

— Simpson_Four_Slot
A model of Simpson’s four slot algorithm. This B model only represents the
individual steps of the algorithm. It is intended to be used in conjunction with a
CSP model to describe the sequencing of the steps. Here, the B model on its own
is model checked (thus leading to invariant violations).

— Trainl_Lukas_POR
This is the first level of refinement of the railway interlocking model in Chapter 17
of [1]. It uses a simplified topology and routes are released immediately when all
blocks are free (to reduce the state space).

— nota
A model developed by Nokia within the RODIN Project® for the validation and
verification of Nokia’s NoTA hardware platform; see [28].

— pkeyprot2 (Needham-Schroeder)
The Needham-Schroeder public key protocol is an authentication protocol for

8http://rodin.cs.ncl.ac.uk/
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creating a secure connection over a public network [27]. The model consists of a
network with the two normal users called Alice and Bob, an attacker named Eve
and the keyserver. The first version of this protocol, developed in 1978, contains an
error which was found in 1995 by Lowe. This model is a slightly simplified version
(reducing the messages sent by Eve).

The Event-B models shown in the tables in Section 5 are:

Ref5_Switch_mch This is the fifth level of refinement of a solution [18] to the
ABZ’14 landing gear challenge.

obswl_MO001

The Space Systems Finland example is a model of a subsystem used for the ESA
BepiColombo mission. The model is a specification of parts of the BepiColombo
On-Board software, that contains a core software and two subsystems used for
telecommand and telemetry of the scientific experiments, the Solar Intensity X-ray
and particle Spectrometer (SIXS) and the Mercury Imaging X-ray Spectrometer
(MIXS). The model was a mini pilot of the Deploy project.

elevator1l2

This is the twelfth refinement of an elevator model by ETH Ziirich.

Here are additional experiments that were run, but whose results are not

shown in the main paper (due to page limit restrictions).

BlocksWorldGeneric6

A model of blocksworld, with six blocks; the goal being to put all blocks in the
right-order on top of each other.

Echo

The Echo algorithm is designed to find the shortest paths in a network topology.

Hanoi6

The well-known towers of Hanoi puzzle with 6 discs.

scheduler_bztt

The process scheduler from [19].

RushHour

The Rush Hour puzzle.® This is the hardest puzzle (number 40 in the regular version
of the game). The shortest solution needs 83 moves; here we have explored the full
state space of 4782 states and 29890 transitions.

Cansell_Contention

A Firewire-Leader election protocol by Dominique Cansell.

CXCCo

CXCC (Cooperative Crosslayer Congestion Control) [31] is a cross-layer approach
to prevent congestion in wireless networks. The invariants used in the model are
rather complex.

press_7b_mch

This is the seventh level of refinement of Abrial’s model of a mechanical press.

9See http://en.wikipedia.org/wiki/Rush_Hour_(board_game).
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More Experiments: Partial order reduction, Symmetry
and TLC (for referees)

We have run a further set of experiments using a selection of alternate methods
for improving model checking for B and Event-B models. These experiments were
run on a MacBook Air with 2.2 GHz i7 processor. For the final version of the
paper, these experiments will be re-run on the same hardware as in Sect. 5, for
all relevant PROB and LTSMIN settings. The experiments, models and setup will
be put onto a website for open access.

[11] presented a translation from classical B to TLA+, with the goal of
using the TLC . We used this to run TLC with one worker, no invariant,
no deadlock and no assertion and no LTL checking. The table in Sect. 5
of the paper contains just the TLC model checking time (as measured by
TLC to a one second accuracy). However, the table below includes the full
runtime; including JVM startup and parsing. The factor removes 1 second
from runtime; in the final version of the paper we will obtain more precise
model checking times for TLC. It can also not be directly applied to Event-B
or Z models (requiring a translation to classical B first); hence the numbers
for the Event-B models are missing.

Hash marker symmetry reduction [21]. It is the fastest symmetry method,
but is generally not guaranteed to explore all states The time is the walltime
of the model checking and initial state computation and does not include
parsing and loading.

partial order reduction method of [10]. It uses a semantic preprocessing phase
to determine independence. The time is the walltime of the model checking
and initial state computation and does not include parsing and loading.

An analysis of these results can be found in Section 5. First, we present the
models also shown in Figure 9 in Section 5:

Benchmark POR Hash TLC No opt.

ms Factor ms Factor ms Factor ms
CAN_BUS 138720 1.26| 98390 0.89| 5340 0.04| 110400
ConcurrentCounters 50 0.00| 18400 1.06| 2130 0.07| 17290
Cruise_finitel 5060 1.92| 2330 0.89| 2950 0.74 2630
MutexSimple 30 1.50 30 1.50| 1660 33.00 20
Philosophers 4180 52.25 100 1.25| 1690 8.63 80
SiemensMiniPilot_Abrial _0 70 0.70 100 1.00| 1440 4.40 100
Simpson_Four_Slot 20860 1.44| 9550 0.66| 2670 0.11| 14530
Trainl_Lukas_POR 34030 1.32| 28930 1.12| 6650 0.22| 25740
nota 490 0.00| 14780 0.06({11780 0.04| 249520
pkeyprot2 24140 1.29| 17990 0.96| 1190 0.01| 18770
Ref5_Switch_mch 215160 1.71{124500 0.99 - 126170
obsw_MO001 2150520 1.25| 76190 0.04 - 1716770

These are some additional experiments that we performed; TLC could not run
on the RushHour model due to a bug in TLC.
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Benchmark POR Hash TLC No opt.

ms Factor ms Factor ms Factor ms
BlocksWorldGeneric6 2980 0.94| 950 0.30| 2240 0.39 3160
CAN_BUS_normalized 105460 1.43|77090 1.05| 4590 0.05| 73530
CSM 700 1.37 50 0.10] 1790 1.55 510
EchoAlg 1000 3.57| 280 1.00f 2730 6.18 280
GardnerSwitchingPuzzle_v2| 1390 1.78| 780 1.00| 4510 4.50 780
GraphlsoMedium 50 0.83| 110 1.83{40360 656.00 60
Hanoi6 440 0.98| 440 0.98| 1540 1.20 450
JobsPuzzle 100 1.11 80 0.89]32410 349.00 90
NQueens 40 1.00 30 0.75]20550 488.75 40
PhilRing 1500 1.95| 120 0.16| 1820 1.06 770
Reading 120 1.00 40 0.33| 1470 3.92 120
brueckenproblem 530 1.89| 300 1.07| 2150 4.11 280
fahrzeugverwaltung2 2880 1.18 90 0.04| 2840 0.75 2440
file_system 2380 2.67| 210 0.24|28600 31.01 890
scheduler_bztt 260 3.25 60 0.75| 1340 4.25 80
RushHour_v2_TLC 18670 1.25|16520 1.11 err -| 14920
cont0 330 0.65 320 0.63| 1290 0.57 510
Model_4_NoDeadlock_v6 850 0.50| 590 0.35 - 1710
VM_4_mch 1050 1.62 860 1.32 - 650
cxcc0 410 5.86 70 1.00 - 70
press_7b_mch 9960 1.23| 2500 0.31 - 8090
scheduler 50 1.25 30 0.75 - 40




